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1. Introduction 
Generally, correction of random errors (errors occurring in circuits) uses error-correcting code 
classified as block code. The ITU-T G.709 Optical Transport Network (OTN) Forward Error 
Correction (FEC) code uses the Reed Solomon codes (RS255 and RS239). Since the Reed 
Solomon codes are block codes, generation of pseudo-random errors makes it impossible to 
evaluate FEC decoder performance by comparing the error correction performance with the 
theoretical curve for example. The theoretical curve shown in Fig. 1 plots the random error 
occurrence and shows that FEC performance cannot be evaluated correctly even when errors 
are inserted at some bit rate and the same interval. Accordingly, it is necessary to generate 
errors randomly and to create error correction and non-correction conditions so the long-term 
random error rate is satisfied while the short-term error rate varies in line with the set value. This 
approximates the actual conditions of an in-service network and is a suitable condition for 
evaluating FEC performance. 
This type of random error generation device is called a Poisson error generator. 
However, the random errors generated by a Poisson error generator are thought to be 
dependent on the evaluation method and do not actually fit the Poisson distribution. Accordingly, 
we need an objective method for evaluating whether or not random errors generated by a 
random error generator fit the Poisson distribution. There are several well-established methods 
for testing goodness of fit to the Poisson distribution but this paper proposes using the χ2 test as 
the method recommended by ITU-T O.182 (OTN Measurement Standards). 
 

 
 

Figure 1 Output-Input BER 

 
2. Principle of Random Error Insertion 
The previously described random error insertion method creates error occurrence conditions 
that approximate an in-service circuit. In comparison to methods that insert errors as constant 
interval or intentional sequence, inserting random errors will result in some time slots with no 
errors, but the long-term error rate will still be satisfied (Fig. 2). 
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Figure 2 Error Rate Insertion Methods 

 
2.1 Binomial and Poisson Distributions 
In a test with two possible outcomes A and B, the result of each repeated trial is independent of 
the result of the previous trial and is a constant that depends on the probability (p). This type of 
trial testing is known as a Bernoulli Trial. As a simple example, when an Othello counter (black 
on one side and white on the other) is repeatedly thrown in a Bernoulli Trial on a surface board, 
assuming the counter is equally weighted without bias, the probability of either the white or black 
side being uppermost is 0.5 (1/2). 
When a trial with possible outcome A and B is repeated n times, the probability of obtaining the A 
result k times is given by the following equation (1), whereμ is the mean value andσ2 is the 
distribution. This type of probability distribution is called a binomial distribution. 
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Explaining Equation (1) as an example of error generation, the distribution of k bit errors in n bits 
follows the same probability distribution (k/n). However, direct computation by inserting values 
into Equation (1) is extremely difficult due to the increasing value of n. However, substituting λ
for np and making λ constant shows that p and n are inversely related with p becoming small as 
n increases and vice versa. Considering the most extreme distribution of the binomial distribution 
(n = ∞, p = 0) yields the following equation (2). 
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The probability distribution given by Equation (2) is called the Poisson distribution. Since λ is a 
fixed value, the distribution is expressed by the variable k. Due to the relationship between the 
Poisson and binomial distributions, substituting np for λ yields 
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Figure 3 Poisson Distribution 

 
 

Figure 3 shows the Poisson distribution as a graph. This graph shows the distribution of 
probabilities for generating a phenomenon k times versus the average value of np. For example, 
for a baseball player with a batting average of 3, the chance of hitting the ball in 10 attempts is 

33.010 =×== npλ  hits. However, sometimes the baseball player will hit the ball 8 out of 10 
times and at other times only 1 out of 10 times. In these circumstances, the probability of hitting 
the ball 5 out of 10 times is obtained from equation (3) as: 
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Poisson distribution of probability function k for fixed values of np 

np = 3

np = 1 

np = 5
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In other words, there is about a 10% chance of hitting the ball 5 out of 10 times. 
This result is the probability distribution expressed by “poisson(3,x)” in Figure 3. Using the 
“poisson(3,x)” plot, since this player hits with an average of 3, the peak of the plot is at k = 3 and 
the probability of getting 3 out of 10 hits is 22.4%. In addition, we can see that the probability 
drops whether the hit count rises or falls. 
 
2.2 Poisson Distribution and Error Rate 

Considering the relationship between random error and the Poisson distribution, p represents 
the element error rate (error rate). np represents the mean error but count μ for a frame length of 
n bits. For example, when p is fixed, pn /μ= . 
Figure 4 shows equivalent case for the error rate example in Figure 3. When the error rate p is 
fixed at p：1x10-3 and the average error bit count is increased as 1, 2, 3, ........ bits, the frame 
length n becomes 1x103, 2x103, 3x103, ........ bits. 
 

 

 
Figure 4 Distribution when p = 1x10-3 

 
 
k represents the error bit count. When the average error bit count np = 1 bit (poisson(1,x)), k = 1 
the peak error probability is at k = 1 bits and there is a lower probability of 2 bit errors (k = 2) in 
1x103 bits. Similarly, at np = 5 bits (poisson(5,x)), the peak error probability is at k = 5 bits and the 
probability of errors of less than or more than 5 bits decreases. 
Random errors can be generated based on this probability distribution. 
Looking at the relationship between error rate and Poisson distribution from another angle, 
Figure 5 shows the Poisson distribution when error bit count k is fixed and average error bit count 
np is varied. 
 

Poisson distribution of probability function k for fixed values of np 

np  = 1 (n=1x103 bit)

np = 3 (n=3x103 bit)

np = 5 (n=5x103 bit)

p=1x10-3



 

5 

 

 
Figure 5 Poisson Distribution with Variation of np 

 
poisson(x,1) in Figure 5 shows the k = 1 bit error probability versus np. When the error rate is 
fixed at p = 1x10-3 (average of 1 bit error in 1000 bits), the peak is at n = 1000 bits. The 1 bit error 
rate in 2000 bits at np = 2 is lower than at np = 1. Similarly, poisson(x,3) indicates the k = 3 bit 
error probability distribution; when the error rate is fixed at p = 1x10-3, the peak is at n = 3000. 
Figure 6 shows an image of actual random error insertion. 
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 Figure 6 Image of Random Error Insertion 

 
 

When data is split into block of n bits, the distribution of the bit error count k inserted into each 
block follows a Poisson distribution. Using the value np of the average error bit count, we can see 
how error bit count k is distributed using the graphs in Figure 4. 
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Error bit

The distribution of k error bits inserted into each block
of n bits follows a Poisson distribution. 
Figure 6 Image of random error insertion 
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3． Applicability of χ2 Test to Poisson Distribution Goodness of Fit 
Sometimes, the random error generator called a Poisson Error Generator does not generate 
errors fitting the Poisson distribution. Consequently, we require an objective method for 
evaluating the distribution of random errors generated by the random error generator. The 
methods for evaluating probability distributions are called tests of goodness of fit and objectively 
evaluate whether the obtained probability distribution matches the hypothesis. There are several 
goodness of fit test methods but this White Paper explains the χ2 Test of Goodness of Fit used by 
ITU-T O.182 (OTN Measurement Standards). 
The χ2 test is described as a hypothesis test because it tests whether or not the sample of finite 
observed data accurately describes the hypothesis. The χ2 test is one of many hypothesis 
methods for testing goodness of fit but it is a typical method. Like other test methods, the χ2 test 
is not a universal test for goodness of fit and it be used for all distributions. Fortunately, however, 
it is one of the best methods for testing the goodness of fit for Poisson distribution and is 
frequently used when the assumed distribution is a Poisson distribution. 
As already mentioned, λ, the only parameter of the Poisson distribution can be chosen freely by 
determining any value for the observation time n. Actually, when testing goodness of fit to the 
Poisson distribution, the optimum value for λ is given by the following relationship. 
 

5 ≤ λ ≤ 20                                    (5) 
 
It is especially important to satisfy the lower limit of the formula. 
On the other hand, the upper limit does not always need to be satisfied because it is obtained 
from the observation time limit. If the situation permits, λ does not necessarily need to be 
restricted by the upper limit of (5) if no problems are caused by increasing the observation time. 
When the value of λ is small, the Poisson distribution is skewed to the left and the number of 
observations is reduced as a result. Here, the observed frequency k is the error occurrence 
frequency (including 0) for observation time n. The details of the observed frequency are 
explained later. 
When testing goodness of fit, the number of observed items should be at least 5. Although this 
value is based on empirical evidence, it is necessary to maintain the reliability of the result of the 
hypothesis test at a fixed level. In fact, since the χ2 test is based on large sample theory, small 
sample sizes reduce the test reliability. 
On the other hand, if the value of λ is larger than necessary, the number of observations 
increases as a result while the frequency of each item becomes small. Of course, although the 
frequency of each item can be increased by increasing the number of observations, the 
observation time also increases as a result. When testing goodness of fit using the χ2 test, the 
frequency of each item should be at least 5. This is another limitation on using the χ2 test that is 
required to maintain the reliability of the goodness of fit test result at a fixed level. 
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4. Principle of χ2 Test 
Letting jfff ,,, 21 L  and jeee ,,, 21 L  be the observed frequency and expected frequency for N 
experiments where j  is the number of possible outcomes, the value given by the equation 
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approaches the χ2 distribution for ν = j − 1− t degrees of freedom as N increases where t is the 
number of estimated parameters. Generally, when testing goodness of fit for the Poisson 
distribution, the parameter λ is estimated from the sample, so degrees of freedom ν = j – 2. 
From equation (6), it is clear that χ2 becomes smaller as the observed sample fits the proposed 
hypothesis. Normally, this never happens but if the value of χ2 のfound by the above equation 
became 0, it would indicate a perfect match between the distribution of the observed sample and 
the hypothetical distribution. The test of goodness of fit using the χ2 test is a method for testing 
the hypothesis based on the value of χ2 found by the above equation. 
Furthermore, since the χ2 distribution is equivalent to when α = ν/2, andβ = 2 in the gamma 
distribution, therefore, 
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where ν is the degrees of freedom of the χ2 distribution. Moreover, )(αΓ is the gamma function 
given by the following equation. 
 

 dxex x−∞ −∫=Γ
0

1)( αα         (8) 

 
Since Γ(α+ 1) = αΓ(α), when α is an integer value, Γ(α +1) = α! And the value of the 
gamma functions can be factoring, explaining why the gamma function is sometimes called a 
factorial function. 
Moreover, since the χ2 distribution function is also a probability density function, the function area 
approaches 1, meaning 
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Calculating the area of the right tail from some point χα

 of the χ2 distribution (representing the 
incomplete integration as α), then 

 dxx)(
2

2∫
∞

=
αχ
χα                                                                          (10) 

 

Because the entire area of the χ2 distribution function is 1, the value of α given by the above 
equation represents the area ratio and α is called the significance level. Generally, significance 
is expressed as a percentage obtained by multiplying α by 100 and this White Paper follows the 
same convention. 
Since the χ2 distribution is a monotonous and continuous function, χ2

α can be found from the 
significance level 100 x α and is called the significance point, critical point, or percent point. 
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Because it is not always easy to calculate the required significance point from the significance 
level, many statistics books have appendices containing tables of the χ2 distribution function, 
which are used to find the significance point from the significance level and degrees of freedom. 
Figure 7 shows an example for the χ2 distribution with 10 degrees of freedom (ν). 
The χ2 test of goodness of fit evaluates the following based on the significance point found from 
the significance level 
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where H0 is the null hypothesis. In other words, if the value of χ2 found from equation (6) is less 
than the significance point χ2

α found from the significance level 100 x α, the null hypothesis is 
accepted. Conversely, when the value of χ2 exceeds the significance point, the null hypothesis is 
rejected. 
 
 
4.1 Estimating Poisson Distribution Parameter 
When testing the goodness of fit for the Poisson distribution, the parameter λ is not usually 
known so it must be estimated from the obtained sample.  
 

 

 
Figure 7 χ2  Distribution function 

 
In estimating the Poisson distribution parameter, it is known that the maximum likelihood 
estimation and first moment (or the sample mean) are coincident. Consequently, the Poisson 
distribution parameter can be estimated simply from the following equation. 
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where N is the sample size.  
When testing the goodness of fit, it does not matter whether the expected frequency is either 
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calculated from this parameter, or estimated from the observed sample. 
The k-th probability pk for the Poisson distribution calculated based on the determined value of λ 
is found from the following equation. 
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And the k-th expected frequency is given by 
 

kk pNe ⋅=                                                (14) 
 

 
5. Examples of Poisson Distribution Goodness of Fit  
This section explains two examples of Poisson distribution goodness of fit. The first example 
shows a fit at the 5% significance level while the second shows an example that does not a fit at 
the 5% significance level.  

 
Table 1: Samples 

 

k Observed 
frequency 

fk 

Expected frequency 
ek = npk 

Probability 
pk 

5 1 1.184 0.000967 
6 9 3.114 0.008704 
7 7 7.019 0.006770 
8 9 13.842 0.008704 
9 20 24.267 0.019342 

10 32 38.287 0.030948 
11 56 54.916 0.054159 
12 78 72.203 0.075435 
13 93 87.630 0.089942 
14 107 98.756 0.103482 
15 112 103.875 0.108317 
16 83 102.431 0.080271 
17 102 95.065 0.098646 
18 75 83.328 0.072534 
19 70 69.195 0.067698 
20 55 54.587 0.053191 
21 40 41.012 0.038685 
22 26 29.412 0.025145 
23 24 20.176 0.023211 
24 16 13.264 0.015474 
25 4 8.371 0.003868 
26 6 5.080 0.005803 
27 5 2.968 0.004836 
28 3 1.673 0.002901 
29 0 0.910 0.000000 
30 1 0.479 0.000967 

Total Σfk = 1034 Σek = 1033.040 Σpk = 1.000000 
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Both examples are obtained from an actual Poisson error generator under the same conditions 
with an element error rate pe = 10-8 and sample size N > 1000. 
Furthermore, in both examples, the number of average errors occurring in the observation time n 
was chosen so that λ = 16. 
In other words, the experiment was executed with observation time n = λ/ pe. Incidentally, 
observation time means discrete time (number of actual clocks). 
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5.1 Good Poisson Distribution Fit 
The first example (Figure 9) plots a data sample obtained from a Poisson error generator using 
the data in Table 1.  

 

Figure 8 Sample 1 
 
 

The figure histogram plot shows the probability found from the observed frequencies and the 

dotted line plots the Poisson distribution function drawn using the sample mean λ
^

. Although the 
Poisson distribution is actually discrete, it has been plotted as a continuous curve interpolated by 
the gamma function for easy viewing. 
The first column in Table 1 represents the observed number of errors k occurring in the 
observation time n . The second column represents the count, i.e. observed frequency of k  
errors occurring in the observation time n . The third column number represents the expected 
frequency for k errors occurring in the observation time n, calculated from estimated mean error 

count λ
^

for the Poisson distribution calculated using the observed sample. In other words, the 
expected frequency is calculated by the following equation. 

 N
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where N is the sample size. The fourth column represents the probability of k errors occurring in 
the observation time n. 
This probability is found easily from the following equation. 

 Nfp kk /=         
The bottom row shows the sum for each column. The sum of the second column is sum of the 
observed frequency, and is also the sample size N. The sum of the third column is the sum of the 
expected frequency. 

 
Table 2 Sample 1 
 

k Observed 
frequency 

fk 

Expected frequency 
ek = npk 

Deviation 
(fk – ek)2/ek 

≤ 7 17 11.808 2.283 
8 9 13.842 1.694 
9 20 24.267 0.750 

10 32 38.287 1.032 
11 56 54.916 0.021 
12 78 72.203 0.465 
13 93 87.630 0.329 
14 107 98.756 0.688 
15 112 103.875 0.636 
16 83 102.431 3.686 
17 102 95.065 0.506 
18 75 8.328 0.832 
19 70 69.195 0.009 
20 55 54.587 0.003 
21 40 41.012 0.025 
22 26 29.412 0.396 
23 24 20.176 0.725 
24 16 13.264 0.565 
25 4 8.371 2.282 
≥ 26 15 11.578 1.012 

Total Σfk = 1034 Σek = 1034.000 χ2 = Σ(fk – ek)2/ek = 17.939
 
Naturally, there are some small differences between the totals of observed frequency and 
expected frequency, because the former is sample size and the latter is the sum of the expected 
frequencies for the k range 5 ≤ k ≤ 30. 
The difference is clarified by the following formula. 
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Here, note that the expected frequencies for k ≤ 6 and k ≥ 27 are less than 5. 
When testing goodness of fit using the χ2 test, as mentioned the reliability of the test result 
deceases when the expected frequency is less than 5. Therefore the table must be rearranged. 
Table 2 shows the result of combining the row 5 ≤ k ≤ 6 in Table 1 with k = 7, and the row 27 k ≤ 
30 with k = 26. The fourth row in Table 2 shows the deviation between the observed and 
expected frequencies. The sum of this deviation is χ2. 
The results of performing this goodness of fit based on this table are shown in Table 3. With this 
sample, the null hypothesis is accepted at the 5% significance level. 
 

Table 3 Sample 1 Goodness of Fit Test Result 
 

Item Symbol Value 

Sample size N 1034 

Estimated λ 
λ

^
 

15.7776 

Degrees of freedom ν 18 (k = 7, ..., 26) 

Chi-square χ2  17.9395 (tail area = 45.96%) 

Significance level α 5.0% 

Significance point χ2
α 28.8693 

Hypothesis H0 Accept 
 

 
5.2 No Poisson Distribution Fit 
The second example plots a data sample obtained from a second Poisson error generator. Table 
4 shows the sample for this. The values in the table have the same meaning as the previous 
example. The plot in Figure 9 is based on the data in Table 4 and the meanings of the parts of the 
plot are the same as the previous example. 
Here, in Table 4, note that the expected frequencies for k ≤ 6 and k ≥ 27 are less than 5. 
Consequently, the same combination as in the previous example is required. Table 5 shows the 
result of combining the row 0 ≤ k ≤ 6 with k = 7 and the row for 27 ≤ k ≤ 45 with k = 26. Table 6  
The results of performing this goodness of fit based on this table are shown in Table 6. With this 
sample, the null hypothesis is rejected at the 5% significance level. 
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Table 4 Sample 2 

 

k Observed frequency
fk 

Expected frequency 
ek = npk 

Probability 
pk 

0 1 0.000 0.000977 
2 2 0.016 0.001953 
3 9 0.087 0.008789 
4 17 0.346 0.016602 
5 14 1.099 0.013672 
6 20 2.906 0.019531 
7 36 6.590 0.035156 
8 39 13.076 0.038089 
9 51 23.062 0.049805 

10 41 36.607 0.040039 
11 62 52.824 0.060547 
12 51 69.873 0.049805 
13 74 85.315 0.072266 
14 65 96.730 0.063477 
15 65 102.360 0.063477 
16 59 101.547 0.057617 
17 60 94.816 0.058594 
18 39 83.612 0.038089 
19 43 69.851 0.041992 
20 33 55.438 0.032227 
21 37 41.903 0.036133 
22 29 30.233 0.028320 
23 24 20.865 0.023438 
24 26 13.800 0.025391 
25 20 8.762 0.019531 
26 25 5.349 0.024414 
27 19 3.145 0.018555 
28 12 1.783 0.011719 
29 9 0.976 0.008789 
30 8 0.516 0.007812 
31 10 0.264 0.009766 
32 7 0.131 0.006836 
33 5 0.063 0.004883 
34 1 0.029 0.000977 
35 1 0.013 0.000977 
36 3 0.006 0.002930 
37 3 0.003 0.002930 
41 1 0.000 0.000977 
42 2 0.000 0.001953 
45 1 0.000 0.0009777 

Total Σfk = 1024 Σek = 1024.000 Σpk = 1.000000 
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Table 5 Sample 2 

 
k Observed 

frequency 
fk 

Expected 
frequency 
ek = npk 

Deviation 
(fk – ek)2/ek 

≤ 7 99 11.047 700.225 
8 39 13.076 51.394 
9 51 23.062 33.844 

10 41 36.607 0.527 
11 62 52.824 1.594 
12 51 69.873 5.098 
13 74 85.315 1.501 
14 65 96.730 10.408 
15 65 102.360 13.636 
16 59 101.547 17.827 
17 60 94.816 12.784 
18 39 83.612 23.803 
19 43 69.851 10.322 
20 33 55.438 9.081 
21 37 41.903 0.574 
22 29 30.233 0.050 
23 24 20.865 0.471 
24 26 13.800 10.787 
25 20 8.762 14.415 
≥ 26 107 12.280 730.624 

Total Σfk = 1024 Σek = 1024.000 χ2  = Σ(fk – ek)2/ek = 1648.963
 

 
 

Table 6 Sample ２ Goodness of Fit Test Result 
 

Item Symbol Value 
Sample size N 1024 
Estimated λ 

λ
^

 
15.873 

Degrees of freedom ν 18 (k = 7, ..., 26) 
Chi-square χ2 1648.96 (tail area = 0.00%) 

Significance level α 5.0% 
Significance point χ2

α 28.8693 
Hypothesis H0 Reject 
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Figure 9  Sample 2 

 
6. Conclusion 
The method for testing a Poisson error generator describe in this White Paper, have been 
adopted in the March 2003 ITU-TO.182 recommendations for standards related to evaluation of 
Optical Transport Networks (OTNs). 
Next-generation OTN technologies were standardized in ITU-T G.709 in February 2001 and the 
various manufacturers are increasingly bringing OTN-compliant equipment to market. The OTN 
standards provide an error correction function called Forward Error Correction (FEC) and 
precise evaluation of FEC performance requires measuring instruments supporting random error 
insertion. However, the randomness of inserted errors varies according to the manufacturer and 
cause problems such as dispersion in measurement results, and required standardizing a 
method for evaluating FEC performance. As a solution to this situation, we verified that it is 
possible to obtain accurate measurement results of FEC performance by inserting random errors 
fitting a Poisson distribution and proposed standardizing on this method. Naturally, both the 
Anritsu MP1590B Network Performance Tester and MP1595A 40G Analyzer have the random 
error insertion function for evaluating FEC performance built-in and this proposed method for 
testing a Poisson error generator will assure accurate measurement of FEC performance. 
Anritsu is licensing its patented Poisson error generator test method free of charge to ITU-T in 
the expectation of promoting future standardization and progress in worldwide 
telecommunications. 
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Fax: +44-1582-731303 

• France
Anritsu S.A.
9 Avenue du Québec, Z.A. de Courtabœuf 
91951 Les Ulis Cedex, France  
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

• Germany
Anritsu GmbH
Nemetschek Haus, Konrad-Zuse-Platz 1 
81829 München, Germany 
Phone: +49-89-442308-0 
Fax: +49-89-442308-55

• Italy
Anritsu S.p.A.
Via Elio Vittorini 129, 00144 Roma, Italy
Phone: +39-6-509-9711    
Fax: +39-6-502-2425    

• Sweden
Anritsu AB
Borgafjordsgatan 13, 164 40 KISTA, Sweden
Phone: +46-8-534-707-00    
Fax: +46-8-534-707-30

• Finland
Anritsu AB
Teknobulevardi 3-5, FI-01530 VANTAA, Finland
Phone: +358-20-741-8100
Fax: +358-20-741-8111

• Denmark
Anritsu A/S
Kirkebjerg Allé 90, DK-2605 Brøndby, Denmark
Phone: +45-72112200
Fax: +45-72112210

• Spain
Anritsu EMEA Ltd. 
Oficina de Representación en España
Edificio Veganova
Avda de la Vega, n˚ 1 (edf 8, pl 1, of 8)
28108 ALCOBENDAS - Madrid, Spain
Phone: +34-914905761
Fax: +34-914905762

• United Arab Emirates
Anritsu EMEA Ltd.
Dubai Liaison Office
P O Box 500413 - Dubai Internet City
Al Thuraya Building, Tower 1, Suit 701, 7th Floor
Dubai, United Arab Emirates
Phone: +971-4-3670352
Fax: +971-4-3688460

• Singapore
Anritsu Pte. Ltd.
10, Hoe Chiang Road, #07-01/02, Keppel Towers,
Singapore 089315  
Phone: +65-6282-2400       
Fax: +65-6282-2533       

• India
Anritsu Pte. Ltd. 
India Branch Office
Unit No. S-3, Second Floor, Esteem Red Cross Bhavan,
No. 26, Race Course Road, Bangalore 560 001, India
Phone: +91-80-32944707
Fax: +91-80-22356648

• P.R. China (Hong Kong)
Anritsu Company Ltd.
Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, 
No. 1 Science Museum Road, Tsim Sha Tsui East,
Kowloon, Hong Kong
Phone: +852-2301-4980
Fax: +852-2301-3545 

• P.R. China (Beijing)
Anritsu Company Ltd.
Beijing Representative Office
Room 1515, Beijing Fortune Building, 
No. 5, Dong-San-Huan Bei Road, 
Chao-Yang District, Beijing 10004, P.R. China
Phone: +86-10-6590-9230
Fax: +86-10-6590-9235

• Korea
Anritsu Corporation, Ltd.
8F Hyunjuk Building, 832-41, Yeoksam Dong, 
Kangnam-ku, Seoul, 135-080, Korea
Phone: +82-2-553-6603
Fax: +82-2-553-6604

• Australia
Anritsu Pty. Ltd.
Unit 21/270 Ferntree Gully Road, Notting Hill, 
Victoria 3168, Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

• Taiwan
Anritsu Company Inc.
7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817
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