Backhaul Testing Overview

Why do Wireless Operators test E1 Circuits?

Well managed E1 circuits help ensure cellular up-time. Good network management practices include testing prior to acceptance, as well as testing for troubleshooting purposes. In either case, good E1 troubleshooting tools are needed. Troubleshooting can often be done by monitoring an in-service signal, either through a smart jack or dedicated test equipment, while looking for errors. Once spotted, test equipment is normally needed to locate the cause of the error.

However, in some cases, in-service testing is not enough, and an out-of-service Bit Error Test (BERT) is required. A BERT involves generating a bit pattern, sending it down the E1 line, looping it back, and seeing how accurately the bits are returned to the test set. This technique can be used to find and repair many E1 problems.

Bridge and Monitor Mode

The BTS Master, or Cell Master, E1 test set can run in Monitor, Bridge, Loopback, and Terminate mode. Two of these modes, Bridge and Monitor modes, may be used for in-service monitoring of E1 signals.

Bridge mode is a receive-only test mode used by the E1 tester. In Bridge mode, the test set has a high impedance, 1,000 Ohm input, and uses a test cable with clips. These clips, due to the instrument’s high impedance, can be attached anywhere in the E1 circuit without creating excessive load. Bridge mode is very useful when monitoring live E1 signals for Alarms and Errors. Monitor mode is similar to Bridge mode, except that you set the impedance to 75 or 120 Ohms, depending on your E1 line’s needs. Once set, you can use the DSX Monitor test port. Monitor mode wires have Bantam Jacks on the DSX end.

In-Service Fault Localization Using CRCs, BPVs, and E-Bits

When hooked up at point “A,” in the diagram above, the BTS Master or Cell Master should be seeing signal (carrier) and frame sync, no CRC errors, and a normal signal level. Faults at this point are often Telco upstream issues. To monitor the signal at point “A,” a DSX may be used, if installed. If not, the instrument can be set to Bridge Mode and clipped to the signal line. Errors can be used for fault isolation within CPE. If the CPE setup uses PC30 CRC or PC31 CRC framing formats, or CRC Redundancy Check (CRC-4, or CRC) errors and Bi-Polar Violations (BPVs) can be used to spot a faulty span. In this case there are two simple rules to remember:

1. CRC errors propagate downstream from the source.
2. Bi-Polar Violations (BPV’s) are local to the faulty span.

E-bits indicate errors were detected by the equipment at an endpoint.

When monitored for extended periods of time, framing errors can become a valuable indication of signal quality. BPVs are a symptom of low signal quality and result in lower, or no, throughput.

Common Faults:

- Framing
- CRC, or the Cyclic Redundancy Check numbers, are included in the PC30 CRC or PC31 CRC format. If the received CRC and the CRC calculated from the received data do not agree, the received data must be in error.
- Guideline: No CRC errors are allowed in a 15 minute monitoring session.
- Consequences: CRC errors result in a lower overall throughput for the E1 link. These errors can indicate problems bad enough to shut down the link.

Common Faults:

- BPVs (Bi-Polar Violations) are when the signal does not switch polarity every time a “1” is transmitted. BPVs are local to the span with the fault.
- Guideline: No BPVs received in a 15 minute monitoring session.
- Consequences: BPVs are a symptom of low signal quality and result in lower, or no, throughput.

Common Faults:

- BPV’s can be generated by noise on the line or a weak signal.
- Guideline: No framing errors during a 24 hour monitoring session.
- Consequences: Similar to CRC faults.

Frame Loss, shown in the illustration to the left, counts errors in the framing bits. Since framing bits occur once every 193 bits, framing errors do not accumulate as fast as other errors. When monitored for extended periods of time, framing errors can become a valuable indication of signal quality.
- Guideline: No framing errors during a 24 hour monitoring session.
- Consequences: Similar to CRC faults.

CRC, or the Cyclic Redundancy Check numbers, are included in the PC30 CRC or PC31 CRC format. If the received CRC and the CRC calculated from the received data do not agree, the received data must be in error.
- Guideline: No CRC errors are allowed in a 15 minute monitoring session.
- Consequences: CRC errors result in a lower overall throughput for the E1 link. These errors can indicate problems bad enough to shut down the link.

Common Faults:

- BPVs (Bi-Polar Violations) are when the signal does not switch polarity every time a “1” is transmitted. BPVs are local to the span with the fault.
- Guideline: No BPVs received in a 15 minute monitoring session.
- Consequences: BPVs are a symptom of low signal quality and result in lower, or no, throughput.

Common Faults:

- BPV’s can be generated by noise on the line or a weak signal.
- Guideline: No framing errors during a 24 hour monitoring session.
- Consequences: Similar to CRC faults.

Frame Loss, shown in the illustration to the left, counts errors in the framing bits. Since framing bits occur once every 193 bits, framing errors do not accumulate as fast as other errors. When monitored for extended periods of time, framing errors can become a valuable indication of signal quality.
- Guideline: No framing errors during a 24 hour monitoring session.
- Consequences: Similar to CRC faults.

Frequent Causes of E1 Problems

1. Signal level too high - Set too high at Smart Jack or CIU.
2. Signal level too low - Loose connection or partial short caused by loss of insulation.
3. Noise on the line - Loss of insulation allowing stray voltage to enter.
E1 Backhaul Testing Field User Guide – utilizing Anritsu’s Handheld BTS Master™ or Cell Master™ Option 52 or 56

E1 Concepts & Terms

E1 has been around since the 1960’s and has evolved from a way to carry multiple voice conversations on one line to a way to carry digital data on a wide variety of physical interfaces. There are many physical configurations available to fit different roles. E1 voice signals are digitized at an 8,000 kHz rate with 8 bits of resolution. Digital signals use this rate, or multiples of this rate. For transmissions, E1 data is encoded as an Alternate Mark Inversion (AMI) signal, which alternates its polarity to avoid excessive DC offset.

Having two successive ‘1’s of the same polarity is called a Bi-Polar Violation (BPV) and is a sure sign of bad data.

Since the ‘1’s data is also used for clock recovery, there can be no more than 3 zeros in a row. This restriction is OK for voice data, but does not work well for digital data. In this case, a specific pattern with intentional Bi-Polar violations, High Density Bipolar Order 3 encoding (HDB3) is substituted for groups of 4 zeros.

The easiest place to hook up is, present, to be a DSX-1 Patch panel, diagrammed below. The line jack is useful for in-service signal monitoring as discussed on the other side of this document. The Out and In ports are for out-of-service loopback testing. Use of these ports takes the data connection down.

The BTS Master or Cell Master should be set to Terminate Mode when plugged into the DSX-1 Out and In ports. Terminate mode is also used with the RJ-48 jack commonly used between E1 circuits to return the transmitted signal to the test equipment receiver.

Status Bar

The status bar is quite useful when setting up for a test. The “H” column indicates history, while the next column to the right shows current issues. If Signal, FAS, and Pattern Sync are green, it is a sign that the cables are plugged up right and the proper framing (PCM30CRC or PCM31CRC) has been selected. When in monitor or bridge modes, Pattern Sync cannot be green. The 2 Mbit column is a quick way to check for alarms and errors.

Errors and BERT Testing

A Bit Error Rate Test (BERT) measures how accurately a circuit can send and receive data. BERT testing is always an on-service activity. BERT tests require the BTS Master at the near-end of the span and a loopback at the far end of the span. The loopback is illustrated in the figure above and to the left. The measurement is shown surrounded in red, above.

Guideline: For troubleshooting tests, circuits should test with no Bit Errors over a 15 minute period. For acceptance tests, circuits should test with few or no errors over a 24 hour period.

Common Faults: wrong circuit options, poor signal replication, wrong signal levels, framing slips, frequency errors, clock slips, or damaged wiring.

Common Controls

The Start/Stop button, indicated with a small red box above, will either start, or stop, measurements. By default, this button is off and should be pressed to start measurements. If the Error light is on, at least one bit has been dropped in a loopback test. Signal, FAS, and Pattern Sync, must be green before the error indication is accurate.

Carrier Loss, or Frame Loss, shown to the right in a green box, happens on the span with a fault. Check upstream, on that span, from the test point to locate the fault. If a fault is at point “A”, there will be a Frame Loss on that span.

Common Faults: Low accuracy signal from LEC, lack of synchronization on the upstream side, clocking plan errors.

Clock Slips are a count of the difference between a reference E1 clock and the E1 line measured. One clock slip is a difference of one clock time period. The BTS Master can measure clock slips between E1 lines if the master line is used as its external reference.

Common Fault: Too slow loopback stream

Frame Slips also require a E1 reference clock. Controlled frame slips loose or duplicate a frame and uncontrolled slips loose or gain part of a frame.

Common Fault: Excessive frame slips will reduce throughput. Uncontrolled slips lose data while re-synchronizing.

E1 BER Line Testing with Loopbacks, Errors, and Alarms

Alarms and Errors are generated on Local Exchange Carrier (LEC) lines, and sometimes, on a network operator’s Customer Premises Equipment (CPE). Often, the quickest route to the resolution of a problem may be to assist LEC personnel with a loopback test. In any case, it is helpful to understand how alarms and errors work.

Loopbacks, together with a BERT test, are used to locate the source of both alarms and errors. Loopbacks can be created:

- Manually, with a special RJ-48 jack or by pressing a loopback button on the network equipment.
- In some cases, by sending a code to a network element to be looped up. This can quickly identify affected spans over a large area.
- Head-to-Head with a second BTS Master, which offers the most information about the fault. This is the quickest method to isolate faulty spans over a small physical area and is commonly used to test CPE.

Inserting Errors

Once a loopback is in place, the Start/Stop button pressed, and the BTS Master sending and receiving a signal, it is a good idea to cause the BTS Master to transmit a burst of BER errors to verify the loopback.

Referring to the screen shot to the right, errors can be inserted with the buttons in the green box and viewed using the readouts indicated in the red box.

Errors

- If the Error light is on, at least one bit has been dropped in a loopback test. Signal, FAS, and Pattern Sync, must be green before the error indication is accurate.
- Carrier Loss, or Frame Loss, shown to the right in a green box, happens on the span with a fault. Check upstream, on that span, from the test point to locate the fault. If a fault is at point “A”, there will be a Frame Loss on that span.

Common Faults: wrong circuit options, poor signal replication, wrong signal levels, framing slips, frequency errors, clock slips, or damaged wiring.

Common Controls

The Start/Stop button, indicated with a small red box above, will either start, or stop, measurements. By default, this button is off and should be pressed to start measurements. If the Error light is on, at least one bit has been dropped in a loopback test. Signal, FAS, and Pattern Sync, must be green before the error indication is accurate.

Carrier Loss, or Frame Loss, shown to the right in a green box, happens on the span with a fault. Check upstream, on that span, from the test point to locate the fault. If a fault is at point “A”, there will be a Frame Loss on that span.

Common Faults: Low accuracy signal from LEC, lack of synchronization on the upstream side, clocking plan errors.

Clock Slips are a count of the difference between a reference E1 clock and the E1 line measured. One clock slip is a difference of one clock time period. The BTS Master can measure clock slips between E1 lines if the master line is used as its external reference.

Common Fault: Too slow loopback stream

Frame Slips also require a E1 reference clock. Controlled frame slips loose or duplicate a frame and uncontrolled slips loose or gain part of a frame.

Common Fault: Excessive frame slips will reduce throughput. Uncontrolled slips lose data while re-synchronizing.

Common Faults: See clock slip common faults.

Frequency, Clock, and Framing Slips

Frequency refers to the number of bits per second on the 2.048 Mbps E1 line.

Guideline: +/- 102.4 bps from 2,048,000 bps.

Consequences: Poor frequency accuracy leads to slipped frames and data loss. This is a particular issue with multi-line links.

Common Faults: Low accuracy signal from LEC, lack of synchronization on the upstream side, clocking plan errors.

Clock Slips are a count of the difference between a reference E1 clock and the E1 line measured. One clock slip is a difference of one clock time period. The BTS Master can measure clock slips between E1 lines if the master line is used as its external reference.

Common Fault: Too slow loopback stream

Frame Slips also require a E1 reference clock. Controlled frame slips loose or duplicate a frame and uncontrolled slips loose or gain part of a frame.

Common Fault: Excessive frame slips will reduce throughput. Uncontrolled slips lose data while re-synchronizing.

Common Faults: See clock slip common faults.

Line Synchronization

The BTS Master or Cell Master can check for synchronization of multiple line E1 links by:

A. Checking the frequency of each line
B. Looking for clock slips or frame slips while using one of the lines as its external reference clock.