Product Introduction

/inritsu

Multi-carrier IQproducer[™]

MG3700A ベクトル信号発生器 MG3700A ベクトル信号発生器 用

MX370104A Multi-carrier IQproducer™ 製品紹介

Version 3.00

アンリツ株式会社

Slide 1 MX370104A-J-I-1

オーダリングインフォメーション

形名·記号	品名			備考
一本 体一				
MG3700A	ベクトル信号発生器		必須	
ーオプションー				
MG3700A-002	メカニカルアッテネータ	標準の電子式アッテネータをメカニカル		
		アッテネータに置換え		
MG3700A-011	上限周波数6 GHz	標準の周波数範囲250 kHz ~ 3 GHzを		
		250 kHz ~ 6 GHzに拡張		
MG3700A-021	ARBメモリ拡張512 Mサンプ	標準のARBメモリサイズ128	推奨	メモリ内の波形パターンは瞬時に切り替えることがで
	ル	Msamples/channel × 2を256		きます。いくつもの波形パターンを切り替えてで評価を
		Msamples/channel × 2に拡張		おこなう際には容量が大きいほど効率的です。
MG3700A-031	高速BER測定機能	標準内蔵のBER測定機能をアップグ		
		レード		
ーソフトウェアー	_(IQproducer システム用ラ-	イセンス)	-	
MX370104A	Multi-carrier IQproducer		必須	
一応用部品一				
W2495AW	MG3700A 取扱説明書	冊子	推奨	取扱説明書は各ソフトウェアのCDIこPDFで保存され
W2496AW	MG3700A IQproducer 取扱	冊子		ています。冊子が必要な場合にこちらをご利用くださ
	説明書			し、 。
W2539AW	MG3700A 標準波形パターン	冊子		
	取扱説明書			
W2633AW	MX370104A Multi-carrier	冊子		
	IQproducer 取扱説明書			
J1261D	シールド付きイーサネットケー	クロス, 3 m	推奨	PCとMG3700Aを直接LANで接続する場合にはクロス
	ブル			ケーブルが必要です。
Z0777	標準波形パターンアップグ	最新の標準波形パターンのDVDセット		
	レードキット			
G0141	HDD ASSY	内蔵HDD破損時の交換用HDD		
J1277	IQ出力変換アダプタ	本体のIQ出カコネクタ(D-sub)をBNCに	推奨	MG3700A背面のIQ出カコネクタはD-Subです。BNC
		変換するケーブル		に変換するためにこれが必要です。

Discover What's Possible™

MX370104Aは、各種通信方式の変調信号やトーン信号に対して、マルチキャリア化した波形パターンを生成することができるPCソフトウェアです。

PCにインストールしたMX370104Aソフトウェアでパラメータを自由に設定し、最大32 キャリアの波形パターンを生成します。生成した波形パターンは、CFcardかLANで MG3700A本体に転送し、MG3700A本体でその波形パターンを選択すると希望の 信号を出力することができます。

MX370104A Multi-carrier IQproducerは、主にデバイス測定に用いるための、各種 通信方式の変調信号の<u>マルチキャリア波形パターンを作成する</u>ためのPCソフトウェアで す。

【Multi-Purpose 機能】

- ・各種通信方式の波形パターンやトーン信号を使った<u>マルチキャリア波形</u>
- •2つ以上の<u>異なる通信方式が混在波形</u>
- ・本体の2信号加算機能の周波数オフセットの<u>範囲を超えたオフセットを持つ波形</u>

【Adjust Rate 機能】

・異なる通信システムの2つの波形パターンのSampling Rateを同じ値に変換した波形 →本体の"2波加算機能"を使って異なる通信方式の2信号を同時に出力できます。

【W-CDMA(DL)機能】

・W-CDMAの基地局送信アンプ評価で使用する、クリッピング調整されたマルチキャリア波形

◆MX3701xxAで波形パターンを生成 → 本体にライセンス必要 PC上ではフリーで動作するので、波形パターンを生成するところまでお試しいただけます。ただし、「本体に」ライセンスがない と波形パターンを認識しませんので信号出力できません。

◆EDAツール(C言語, MATLAB, Microwave Officeなど)で波形パターンを生成 → ライセンス不要

【Multi-Purpose機能の用途】

Multi-purpose機能は、MG3700A用の既存の波形パターンやトーン信号をマルチキャリア化するための機能です。最大32のキャリアを持つ信号を1つの波形パターンとして生成することができます。(Freq. Offsetや波形パターンの組み合わせによって32キャリアまで設定できない場合があります。また本機能で作成した波形パターンを再度wviファイルに選択することで32キャリア 以上の波形パターンを生成することも可能です。)

例) CDMA2000のFWDとRVSのマルチキャリア信号

Image: Weight of the second	oroducer for MG3700 ting Simulation			FFT Graph Monitor Image: Constraint of the second sec
Component	wvi File	Gain (dB)	Freq Offset (MHz)	-40
1	FWD_2457_6kbps_1slot	0.00	+8.750000	9-50-
2	RVS_RC1_FCH	0.00	+7.500000	
	PVVD_2457_6kbps_1slot	0.00	+6.250000	
	EAD 2457 6kbns 1slat	0.00	+3.750000	
6	RVS RC1 ECH	0.00	+2 50000	Add Delete -80-
7	FWD 2457 6kbps 1slot	0.00	+1.250000	-90-
8	RVS RC1 FCH	0.00	0.000000	FFT Points 16384
9	FWD_2457_6kbps_1slot	0.00	-1.250000	Sampling
10	RVS_RC1_FCH	0.00	-2.500000 💌	Ranée UI - [16383 -110-
Phase rando Muliti tone	omize On Over Sampling 0	Freq. O	▶ ffset = ± 62.289560MHz Close	Data Length 25165824 -120 -20 -15 -10 -5 0 5 10 15 20 Ouick Add Mode Mouse Interaction

Multi-carrier setting screen Multi-carrier FFT screen

Discover What's Possible™

Slide 5 MX370104A-J-I-1 **Annitsu**

【Adjust Rate 機能 の用途】

Adjust Rate機能は、サンプリングレートの異なる2つの波形パターンに対して、同一のサンプリ ングレートに変換した2つの波形パターンを生成するための機能です。 MG3700Aの2信号加算機能では、異なるサンプリングレートを持つ波形パターンの加算をおこな うと、メモリB側の波形パターンはメモリA側のサンプリングレートで出力されるので帯域が変化し ます。そのため、同じサンプリングレートを持つ同一通信方式の希望波と妨害波の加算ができま した。今回、Adjust Rate機能によって2つの波形パターンのサンプリングレートを一致させるこ とで、異なる通信方式の信号でも2信号加算機能による出力ができるようになります。

例) WLANとBluetoothのサンプリング周波数合わせ

Discover What's Possible™

MX370104A-J-I-1

【W-CDMA(DL)機能の用途】 <u>W-CDMA Downlinkの4キャリアまたは5キャリアの、任意のキャリアのON/OFF, クリッピング</u> 方法, クリッピング基準レベル, クリッピング比などの設定をおこない波形パターンを生成する 機能です。

●キャリアタイプ (Carrier Type):

Test Model 1 16DPCH, Test Model 5 2HS-PDSCH,

Test Model 1 32DPCH, Test Model 5 4HS-PDSCH,

Test Model 1 64DPCH, Test Model 5 8HS-PDSCH

 クリッピング方法 (Clipping Method): Non, Vector(pre-filter), Vector(post-filter), Scalar(pre-filter), Scalar(post-filter)

●クリッピング基準レベル(Clipping Reference): Peak Power, RMS Power

例) W-CDMAのクリッピング&マルチキャリア

Multi-carrier IQproducer for MS269x
<u>File</u> Transfer Setting <u>Simulation</u>
Multi-purpose VV-CDMA(DL)
Odd 0.0
Image: Constraint of the sector of
Carrier Type Test Model 1 16DPCH
Clipping Method Vector(pre-filter)
Clipping Reference Peak Power Clipping Index(%) 100 -
OK

Multi-carrier setting screen

Slide 7 MX370104A-J-I-1

操作イメージ

接続 IQproducerの起動 IQproducer メイン画面 パラメータ編集 波形生成 波形生成 波形パターン転送 その他: パラメータの保存・呼出

Slide. 9 Slide. 10 Slide. 10 Slide. 11 - 16 Slide. 17 Slide. 18 - 19 Slide. 20

Discover What's Possible™

Slide 8 MX370104A-J-I-1

PC, MG3700A ベクトル信号発生器を下図のように配線します。

PCにIQproducer をインストールしてください。

MG3700A本体に、MX370104Aのライセンスをインストールしてください。

IQproducerTM動作環境

CPU	Pentium III 1GHz以上
メモリ	512 Mbytes 以上
ハードディスク	5 Gbytes 以上
ディスプレイ	1024×768ピクセル以上の解像
	度を持つディスプレイ
OS	Windows2000 Professional,
	Windows XP

※IQproducerのインストール方法は、 別紙「IQproducerアップグレード手順」 を参照願います。

※PCとMG3700AのLAN接続は、別紙 「LANの接続方法」を参照願います。

Slide 9 MX370104A-J-I-1

IQproducerの起動

IQproducerを起動します。

スタート > プログラム > Anritsu Corporation > IQproducer for MG3700A

IQproducerメイン画面

IQproducerのソフトを起動すると、下記の画面が表示されます。

[System]メニューからMulti-carrierを選択します。

🕅 IQ	produce	r for MC	3700					
<u>F</u> ile	<u>S</u> ystem	Transfer	& Setting	Simul	ation	File <u>G</u> en.	<u>H</u> elp	
	1×EVD 1×EVD TDMA HSDPA HSDPA <u>W</u> -CDM	O <u>F</u> WD O <u>R</u> VS A/HSUPA <u>I</u> A/HSUPA <u>I</u> MA Downlir MA Downlir	Downlink Uplink hk (Standar Standard)	d)				
	Multi- <u>C</u>	<u>D</u> arrier		>				
	Nigbile D <u>V</u> B-1 F <u>a</u> ding <u>L</u> TE	WMAX F/H						

Discover What's Possible™

6

Slide 10 MX370104A-J-I-1

[System]でMulti-carrierを選択すると、[Multi-purpose], [Adjust Rate], [W-CDMA(DL)]の 3つの機能を選ぶメイン画面が表示されます。いずれかの機能を選択して、その画面から各パラ メータを設定できます。

Multi-Carrier IQproducer for <u>File</u> <u>Transfer Setting</u> <u>Simulation</u> Multi-purpose Adjust Rate W-CDM	MG3700			3つの機能のいずれかを選択 (クリック)します。
Component Tone 1 2 3 4	wvi File	Gain (dB)	Freq Offset (MHz	Multi-purposeAdjust Rate
5 □ 6 □ 7 □ 8 □ 9 □				•W-CDMA (DL)
10 IIII	Ма	× Freq. Offset =	± 0.00000MHz	
Multi tone	OK		Exit	
Discover What's Possible™			Slide 11	/inritsu

MX370104A-J-I-1

パラメータ編集: Multi-purpose (1/2)

最初に各Componentで Tone か wvi File の設定をします。Toneを選択する場合はToneチェックボックスのチェックを行います。

次に、[Gain], [Freq. Offset], [Delay], [Phase]のパラメータを設定します。

MX370104A-J-I-1

パラメータ編集: Multi-purpose (2/2)

Multi-toneはTone信号を一定の周波数間隔で生成する機能です。選択されているComponent 番号から設定した本数のTone信号を設定します。

対応するComponentにwvi fileがすでに選択されている場合はTone信号に置き換えられます。

パラメータ編集: Adjust Rate

[wvi. File], [Phase], [Delay]のパラメータを設定します。

Discover What's Possible™

MX370104A-J-I-1

パラメータ編集: W-CDMA (DL) (1/2)

下記パラメータを設定します。

Discover What's Possible[™]

Slide 15 MX370104A-J-I-1

パラメータ編集: W-CDMA (DL) (2/2)

◆ W-CDMA (DL) のパラメータの詳細

項目	概要	設定範囲
キャリア配置の選択	キャリア配置の選択をします。	選択,非選択
キャリアの選択	出力するキャリアを選択します。各キャリアのチェックボッ クスをチェックするとそのキャリアが有効となります。	有効, 無効
レベル設定	各キャリアのレベルを設定します。キャリア選択が有効に なっているキャリアのみ設定可能となります。	0.00~一80.00dB 分解能は0.01dB
周波数オフセットの設定	ステップキーにより各キャリアの周波数オフセットを設定し ます。キャリア選択が有効になっているキャリアのみ設定 可能となります。	各キャリアの周波数オフセット±1.0MHz 分解能は0.1MHz
Carrier Typeの選択	W-CDMAのテストモデルを選択します。	Test Model1 16DPCH, Test Model1 32DPCH, Test Model1 64DPCH, Test Model5 2HS-PDSCH, Test Model5 4HS-PDSCH, Test Model5 8HS-PDSCH
Clipping Methodの選択	クリッピング機能の選択をします。	Non, Vector(pre-filter), Vector(post-filter), Scalar(pre-filter), Scalar(post-filter)
Clipping Referenceの選択	各キャリアのクリッピング比の基準値を設定します。	Peak Power, RMS Power
Clipping Indexの設定	Peak Powerが選択されている場合,使用している波形の 最大ピークに対しての比率を%単位で設定します。RMS Powerが選択されている場合,使用している波形のRMS Powerからの比率をdB単位で設定します。	0~100%で分解能は1% (Clipping Referenceの設定 がPeak Powerのとき) 0.00~17.00dBで分解能は0.05dB (Clipping Referenceの設定がRMS Powerのとき)

Discover What's Possible™

/inritsu

波形生成: Calculation

"Calculation"をクリックすると、波形パターンの生成を開始します。

Multi-carrier IQproducer for MG3700							
<u>F</u> ile <u>T</u> ransfer Sett	ing ≦	imulation					
Multi-purpose Adjust Rate VV-CDMA(DL)							
Component	Tone	wvi File	Gain (dB)	Freq Offset (MHz)	Phase (deg)		
1		11a_OFDM_54Mbps_ACP	0.00	0.000000	5		
2		11a_OFDM_54Mbps_ACP	0.00	-20.000000	136		
3						_	
4						_	
5						_	
6						_	
7							
8						_	
9							
10						<u> </u>	
					<u> </u>		
✓ Phase randomize On Max Freq. Offset = ± 55.000000MHz							
Multi tone			ж		E×it		
OK: 波形パターンの生成							

Export File	
Export Path: D¥Anritsu corporation¥Multicarrier¥Data	→ (1)
Package:	→ (2)
Full Path: D:¥Anritsu corporation¥Multicarrier¥Data	
Export File Name:	→ (3)
RMS Value: 1157	
Comment:	_
	ר
	►(4)
	J
OK	

- (1) 波形パターンの出力先フォルダの指定
- (2) 波形パターンのパッケージ名: 31文字以内
- (3) 波形パターンのファイル名: 20文字以
- (4) MG3700Aの画面上に表示されるコメント欄: 各列38文字以内

Discover What's Possible™

Slide 17 MX370104A-J-I-1

波形パターン転送

LAN経由でMG3700AとPCを接続します

波形パターン転送

その他: パラメータの保存・呼出

各項目の数値や設定を、パラメータファイルとして保存し、読み出すことができます。

名前を付けて保存			? ×	名前を付けて保存	Z		? X
保存する場所①:	🔄 MultiCarrier 💽	🗢 🗈 💣 🎟		保存する場所型:	🔁 MultiCarrier		* III •
Data OriginFile Tmp Multicarrier.prm				Data OriginFile Tmp Multicarrier.prr	1		
ファイル:名(<u>N</u>):		保存(S)		ファイル名(N):	Multicarrier.prm		保存(<u>S</u>)
ファイルの種類(工):	Setting Files (*.prm)	 キャンセノ 	<u>له ا</u>	ファイルの種類(工):	Setting Files (*.prm)	.	キャンセル

ファイルの保存画面

ファイルの読出画面

Slide 20 MX370104A-J-I-1

お見積り、ご注文、修理などは、下記までお問い合わせください。記載事項は、おことわりなしに変更することがあります。

アンリツ株式会社

ttp://www.apritsu.com

本社	〒243-8555 神奈川県厚木市恩名 5-1-1	TEL 046-223-1111
厚木	〒243-0016 神奈川県厚木市田村町8-5	
	計測器営業本部	TEL 046-296-1202 FAX 046-296-1239
	計測器営業本部 営業推進部	TEL 046-296-1208 FAX 046-296-1248
	〒243-8555 神奈川県厚木市恩名 5-1-1	
	ネットワークス営業本部	TEL 046-296-1205 FAX 046-225-8357
新宿	〒160-0023 東京都新宿区西新宿6-14-1	新宿グリーンタワービル
	計測器営業本部	TEL 03-5320-3560 FAX 03-5320-3561
	ネットワークス営業本部	TEL 03-5320-3552 FAX 03-5320-3570
	東京支店(官公庁担当)	TEL 03-5320-3559 FAX 03-5320-3562
仙台	〒980-6015 宮城県仙台市青葉区中央4-6	-1 住友生命仙台中央ビル
	計測器営業本部	TEL 022-266-6134 FAX 022-266-1529
	ネットワークス営業本部東北支店	TEL 022-266-6132 FAX 022-266-1529
大宮	〒330-0081 埼玉県さいたま市中央区新都	B心4-1 FSKビル
	計測器営業本部	TEL 048-600-5651 FAX 048-601-3620
名古屋	〒450-0002 愛知県名古屋市中村区名駅3	3-20-1 サンシャイン名駅ビル
	計測器営業本部	TEL 052-582-7283 FAX 052-569-1485
大阪	〒564-0063 大阪府吹田市江坂町1-23-10	1 大同生命江坂ビル
	計測器営業本部	TEL 06-6338-2800 FAX 06-6338-8118
	ネットワークス営業本部関西支店	TEL 06-6338-2900 FAX 06-6338-3711
広島	〒732-0052 広島県広島市東区光町1-10-1	19 日本生命光町ビル
	ネットワークス営業本部中国支店	TEL 082-263-8501 FAX 082-263-7306
福岡	〒812-0004 福岡県福岡市博多区榎田1-8	-28 ツインスクェア
	計測器営業本部	TEL 092-471-7656 FAX 092-471-7699
	ネットワークス営業本部九州支店	TEL 092-471-7655 FAX 092-471-7699

計測器の使用方法、その他については、下記までお問い合わせください。

計測サポートセンター

TEL: 0120-827-221、FAX: 0120-542-425 受付時間/9: 00~12: 00、13: 00~17: 00、月~金曜日(当社休業日を除く) E-mail: MDVPOST@anritsu.com

● ご使用の前に取扱説明書をよくお読みのうえ、正しくお使いください。

■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府の輸 出許可または役務取引許可が必要となる場合があります。また、米国の輸出管理規則により、 日本からの再輸出には米国商務省の許可が必要となる場合がありますので、必ず弊社の営業 担当までご連絡ください。

1207