MP1764D
Error Detector
Operation Manual
(GPIB Programming)

First Edition

¢ Read this manual before using the equipment.

¢ To ensure that the equipment is used safely, read
the "For Safety" in the MP1764D Error Detector
Operation Manual first.

¢ Keep this manual with the equipment.

ANRITSU CORPORATION

Document No.: M-W2342AE-1.0

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following
safety symbols to indicate safety-related information. Insure that you clearly understand the meanings of the sym-
bols BEFORE using the equipment. Some or all of the following five symbols may not be used on all Anritsu
equipment. In addition, there may be other labels attached to products which are not shown in the diagrams in this
manual.

Symbols used in manual

DANGER é This indicates a very dangerous procedure that could result in serious injury or

death if not performed properly.

WARN I N G This indicates a hazardous procedure that could result in serious injury or death if
not performed properly.

C AU TION This indicates a hazardous procedure or danger that could result in light-to-severe
injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information
about safety items and operation precautions. Insure that you clearly understand the meanings of the symbols
and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated sym-
bolically in or near the barred circle.

ed symbolically in or near the circle.

This indicates warning or caution. The contents are indicated symbolically in or
near the triangle.

Q This indicates an obligatory safety precaution. The obligatory operation is indicat-

This indicates a note. The contents are described in the box.

Y These indicate that the marked part should be recycled.

&

MP1764D
Error Detector
Operation Manual (GPIB Programming)

17 March 2004 (First Edition)

Copyright © 2004, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the
publisher.

The contents of this manual may be changed without prior notice.

Printed in Japan

Equipment Certificate

Anritsu guarantees that this equipment was inspected at shipment and

meets the published specifications.

Anritsu Warranty

e During the warranty period, Anritsu will repair or exchange this soft-
ware free-of-charge at the company’s own discretion if it proves defec-
tive when used as described in the operation manual.

e The warranty period is 1 year from the purchase date.

e The warranty period after repair or exchange will remain 1 year from
the original purchase date, or 30 days from the date of repair or ex-
change, depending on whichever is longer.

e This warranty does not cover damage to this software caused by Acts
of God, natural disasters, and misuse or mishandling by the customer.

In addition, this warranty is valid only for the original equipment pur-

chaser. It is not transferable if the equipment is resold.

Anritsu Corporation will not accept liability for equipment faults due to
unforeseen and unusual circumstances, nor for faults due to mishandling

by the customer.

Anritsu Corporation Contact

If this equipment develops a fault, contact Anritsu Service and Sales of-
fices at the address at the end of paper-edition manual or the separate file

of CD-edition manual.

Notes On Export Management

This product and its manuals may require an Export License/Approval by
the Government of the product's country of origin for re-export from your
country.

Before re-exporting the product or manuals, please contact us to confirm
whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals are
needed to be broken/shredded so as not to be unlawfully used for military
purpose.

Trademark and Registered Trademark

‘HP Basic’ is a registered trademark of the Hewlett-Packard Corporation.
‘HP’ is a registered trademark of the Hewlett-Packard Company.

‘MS-DOS’ is a registered trademark of the Microsoft Corporation.

‘Quick Basic’ is a registered trademark of the Microsoft Corporation.

Composition of MP1764D Operation Manuals

The MP1764D Error Detector operation manuals are composed of the following two documents. Use
them properly according to the usage purpose.

Composition
of
MP1764D

Operation Manuals

Function and Operation Part

Function and Operation Part

GPIB Programming :

These outline the MP1764D, and describes the preparations
before use, the panels, specifications, performances, functions,
and operation procedures.

The MP1764D GPIB conforms to IEEE488.2. Remote control by
GPIB is explained based on IEEE488.2. An application program
example using the ANRITSU PACKET V series of personal
computers, HP9000 series HP-BASIC and Quick Basic of
Microsoft Corporation are also provided.

(Blank)

SECTION

SECTION

SECTION

SECTION

SECTION

1
11
1.2

1.2.1
1.2.2

2
2.1
2.2

2.2.1

2.2.2
2.2.3

TABLE OF CONTENTS

GENERAL ...t it s e as

Development of the GPIB Standard
MP1764DGPIBFunctions
Overviews of 2-port GPIB functions

Examples of system makeup using
GPIB1/GPIB2ciciiiiiiii it iinnnannnns

SPECIFICATIONSc.ciiiiiiiiiiiiiiiiii e

InterfaceFunctionscciiiiiiiiiinnn,
Device Message Listc.ccvviviiinnnnn.

IEEE 488.2 common commands and
MP1764Dsupported commands

Statusmessagescciiiiiiiiiiiiiiaea
MP1764Ddevice messagescevenunnnns

3 CONNECTING THE BUS AND SETTINGS ADDRESS

3.1 Connecting Devices with GPIB Cables
3.2 Procedure for Setting the Address and Checking it ..
3.2.1 Addresssettingiiiiiiiiiiiiinn
3.2.2 Connection with MP1763B/C during
the trackingoperationccuaes
3.2.3 Connection with external printer
4 INITIALSETTINGScciiiiiiiiii ittt iinanns
4.1 Buslnitialization by the IFC Statement
4.2 |Initialization for Message Exchange by DCL and
SDCBusCommandscccoiviinnnnnnnnnn
4.3 Device Initialization by the *RST Command
4.4 Device Initialization by the INI Command
4.5 Device StatusatPower-on
5 LISTENERINPUTFORMATccciiiiiiiiiinnnnen
5.1 Listener Input Program Message Syntax Notation ...
5.1.1 Separators, terminators and spaces

beforeheaderscciiiiiiiiiiiirnnnnns

SECTION

SECTION

5.1.2 Genaral format for

program command messages 5-6
5.1.3 Genaral formatfor query messages 5-7
5.2 Functional Elements of Program Messages 5-8
5.2.1 <TERMINATED PROGRAM MESSAGE> 5-8
5.2.2 <PROGRAM MESSAGE TERMINATOR> 5-9
523 <whitespace> ...ttt 5-10
5.2.4 <PROGRAM MESSAGE>ccvunnnn 5-10
5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR> 5-11
5.2.6 <PROGRAM MESSAGEUNIT> 5-11
52.7 <COMMAND MESSAGE UNIT> and
<QUERY MESSAGEUNIT> 5-12

5.2.8 <COMMAND PROGRAM HEADER> 5-13
529 <QUERYPROGRAMHEADER> 5-15
5.2.10 <PROGRAM HEADER SEPARATOR> 5-16
5.2.11 <PROGRAM DATA SEPARATOR> 5-16
53 ProgramDataFormat 5-17
5.3.1 <DECIMAL NUMERIC PROGRAM DATA> 5-18
5.3.2 <NON-DECIMAL NUMERIC PROGRAM DATA> ... 5-20
6 TALKEROUTPUTFORMATciiiiiiininrnnnnnnsn 6-1
6.1 Syntax Differences Between Formats of

Listener Input and Talker Output 6-4
6.2 Functional Elements of Response Message 6-5
6.2.1 <TERMINATED RESPONSE MESSAGE> 6-5
6.2.2 <RESPONSE MESSAGE TERMINATOR> 6-6
6.2.3 <RESPONSE MESSAGE>t 6-7
6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR> 6-8
6.2.5 <RESPONSE MESSAGEUNIT> 6-8
6.2.6 <RESPONSE HEADER SEPARATOR> 6-9
6.2.7 <RESPONSE DATA SEPARATOR> 6-9
6.2.8 <RESPONSEHEADER>cciivvnnnnn 6-9
6.2.9 <RESPONSEDATA>ciiiiiiiiiiinernnnnnns 6-11
7 COMMONCOMMANDSciiiiiiiiiiiirennans 7-1
7.1 Classification by Function of Common Commands

Supported by the MP1764D 7-3
7.2 The Classification of Commands Supported and

theReferenceccoiiiiiiiiiiiiiiinn, 7-4

SECTION

SECTION

SECTION

8 STATUSSTRUCTUREcoiiiiiiiirnnninnennnnns 8-1
8.1 IEEE 488.2 Standard StatusModel 8-4
8.2 StatusByte(STB)Registerccvuvvenn.. 8-6
8.2.1 ESB and MAV summary messages 8-6
8.2.2 Device-dependent summary messages 8-7
8.2.3 Reading and clearing the STB register 8-8
83 EnablingSRQcoiiiiiiiii e 8-10
8.4 Standard Event StatusRegister 8-11
8.41 Bitdefinition el 8-11
8.4.2 Queryerrordetailsciiiiiiiinnnn. 8-13
8.43 Reading, writing to and clearing the standard

eventstatusregisterl 8-14
8.44 Reading, writing to and clearing the standard

eventstatus enableregister 8-14
8.5 Extended Event StatusRegister 8-15
8.5.1 Bitdefinition of END event status register 8-16
8.5.2 Bitdefinition of ERROR event status register 8-18
8.5.3 Reading, writing to and clearing the extended

eventstatusregister 8-20
8.5.4 Reading, writing to and clearing the extended

event status enableregister 8-20
86 QueueModelciiiiiiiiiiiiiiiie 8-21
8.7 Techniqlues for Synchronizing Devices with the

Controller ..ot 8-23

8.7.1 Enforcing the sequential execution 8-23
8.7.2 Wait for a response from the output queue 8-24
8.7.3 Waitforaservicerequestcvviunnnn 8-25
9 DETAILS OF DEVICE MESSAGEScvuntt.. 9-1
9.1 TableofDeviceMessagesccevvnunnn. 9-3
9.1.1 Table of Device Messages

(in the Alphabeticorder)cccvvee...... 9-3
9.1.2 Device Messages (Panel correspondence) 9-9
9.1.3 Detailed Explanation of Device Messages 9-24
10 EXAMPLE OF PROGRAM CREATION 10-1
10.1 Example of Program creation Using HP9000 10-6

10.2 Example of Program creation Using DECpc 10-71

APPENDIX A

VL.

N w

COMPATIBILITY WITH

CONVENTIONAL INSTRUMENTS
PATTERN DMA TRANSFER .

TABLES OF INITIAL VALUES
TABLE OF TRACKING ITEMS

A-1
B-1

D-1

SECTION 1
GENERAL

This section outlines the histotrical development of the GPIB standard and gives a general description
of GPIB functions of the MP1764D Error Detector.

1.1
1.2

TABLE OF CONTENTS
Developmentofthe GPIBStandard i it 1-3
MP1764DGPIB FUNCLIONS i e e e et 1-4
1.2.1 Overviews of 2-port GPIBfunctions iiiiiiiiinnn.. 1-4
1.2.2 Examples of system makeup usingGPIB1/GPIB2cccvven.... 1-5

1-1

(Blank)

SECTION1 GENERAL

1.1 Development of the GPIB Standard

The MP1764D, when combined with an external controller in a system bus automates measurements
on radio communications. For this purpose it is provided with a GPIB interface bus IEEE std. 488.2-
1987) as a standard feature. The GPIB (General Puropose Interrace Bus) was established by the IEEE
(Institute of Electric and Electronics Engineers) in 1975 as a standard digital interface bus for

programmable measuring instruments. The original version was announced in 1975 under the name
IEEE std. 488-1975.

A revised version, called IEEE std. 488-1978, was issued in 1978. As this version only stipulated
hardware specifications for the interface side, IEEE std. 728-1982, which stipulated software
specifications for the device side, was added in 1982.

Though IEEE std. 728-1982 standardized the formats for sending device messages, it was lacking in its
concept of software sharing on the user side. So, in 1987, the IEEE std. 488. 2-1987 (hereafter IEEE
488.2) version, which aimed to overcome the shortcomings, was introduced. This version strengthened

the standardization of message exchange protocol, message date code, device input / output formats and
common commands.

With the introduction of IEEE 488.2, the name of IEEE std. 488-1978 (hereafter IEEE 488) was
changed to IEEE std. 488. 1-1987 (hereafter IEEE 488.1). The table below summarizes the
development of the GPIB standard.

Object of Former New standard Remarks
standard standard
Hardware IEEE 488 IEEE 488.1 IEEE 488.1 is indentical to IEEE
488
Software IEEE 728 IEEE 488.2 IEEE 488.2 is the revised version
of IEEE 728

Devices which support IEEE 488.2 must also have compatibility with IEEE 488.1; however, devices
which support IEEE 488.1 (IEEE 488) are not guaranteed to be compatible to IEEE 488.2.

SECTION1 GENERAL

1.2 MP1764D GPIB Functions

The MP1764D has the following GPIB functions.

(1) Apart from the power switch and some LOCAL keys, all functions can be controlled.
(2) Readout of all setting conditions

(3) Interrupt function and serial poll operation

(4) Automatic measuring systems can be constructed by combining the MP1764D with a personal
computer and other measuring instruments.

(5) GPIB is composed of two ports; GPIB 1 and GPIB 2.

For the last feature (5), see the following description as well as examples.

1.2.1 Overviews of 2-port GPIB functions

MP1764Dis provided with two GPIB ports. The port on the GPIB 1 side primarily carries out, as the
first interface, MP1764D’s remote control through an external host computer; on the other hand, the
port on the GPIB 2 side primarily controls, as the second interface, output of measurement data to an
external printer. Thus an efficient system makeup can be enabled by means of using the GPIB 1 side as
a device port and the GPIB 2 side as a system controller port.

(1) Functions of GPIB 1

GPIB 1 can be handled similarly to conventional measuring instrument having 1-port GPIB. It
functions as a device port when it is in ordinary measurement condition; or it functions as a system
controller port to control the MP1763B/C Pulse Pattern Generator by the system controller’s settings in
tracking operating.

(2) Functions of GPIB 2

GPIB 2 is used, independent of the GPIB 1 port, as a device control port of individual devices connected
to the GPIB 2 port. Thus GPIB 2 always functions as a system controller port, but not as a device port.

SECTION1 GENERAL

1.2.2 Examples of system makeup using GPIB 1/ GPIB 2

(1) Stand-alone type(1) ... Panel operation
MP1764D
PRINTER Outputs data measured with
MP1764D to the printer through
panel operation.
(2) stand-alonetype(2) ... Tracking operation

MP1763B/C

@ Some settings for the transmitter
2 GPIB are synchronized with the

< settings for the receiver. During
this tracking operation, no
external controller can be
connected.

® Some settings for the receiver are
MP1764D synchronized with the settings
for the transmitter. During this
tracking operation, no external
controller can be connected.

% | BEEBEECD

GPIB 1

¥ In the tracking operation, either
MP1763B/C or MP1764D can be
a master (controller).

1-5

SECTION1 GENERAL

(3) Control by the host computer

Host Computer

MP1763B/C

GPIB

0
5 =g

-__:En_"ua": PR'NTER

GPIB 1

By means of controlling MP1763B/C and MP1764D using the host computer via
GPIB 1 port, data can be output to the printer via GPIB 2 port.

SECTION 2
SPECIFICATIONS

In this section, interface functions of the MP1764D GPIB specifications are explained. For the device

message, see SECTION 9.
TABLE OF CONTENTS
2.1 Interface FUNCLIONS i i ettt 2-3
2.2 Device Message List i i i e 2-5
221 IEEE 488.2 common commands and MP1764Dsupported commands 2-6
222 St atUS M AGES ...ttt e 2-8
2.23 MP1764Ddevice mesagesoovviiiit it ettt 2-10

21

(Blank)

SECTION 2 SPECIFICATIONS

2.1 Interface Functions

IEEE 488.2 sets down a minimum requirement for subsets of the GPIB interface functions specified in
IEEE 488.1 that must be provided by measuring intruments used in a GPIB system. The MP1764D
GPIB 1 and GPIB 2 provide the subsets listed in the code columns of the tables below.

GPIB 1 Interface Functions

Code Interface function |EEE 488.2 standard

All source handshake functions are provided. | All functions provided as standard. The
SH1 | Synchronizes the timing of data transmission. |device must have a complete set of source

handshake functions.
All acceptor handshake functions are All functions provided as standard. The
AH1 |provided. Synchoronizes the timing for device must have a complete set of acceptor
receiving data. handshake functions.
Basic talker functions are provided. Davices must have one of the T5, T6, TE5 or
6 The serial poll function is provided. TES6 subsets. The talk-only function is out of
The talk-only function is not provided. the scope of the IEEE 488.2 standard.
The talker can be canceled by MLA.
Basic listener functions are provided. Devices must have one of the L3, L4, LE3 or
L4 | The listen-only function is not provided. LE4 subsets. The listen-only function is out
The listener can be canceled by MTA. of the scope of the IEEE 488.2 standard.
SR1 All service request and status byte functions | All functions are provided as standard.
are provided.
RLA All remote / local functions are provided. RLO (functions not provided) or RL1 (all
The local lockout function is provided. functions provided)
PPO Parallel poll functions are not provided. PPO (functions not provided) or PP1 (all
functions provided)
DC1 | All device clear functions are provided. All functions provided as standard.
DT1 Device trigger functions are provided. DTO (functions not provided) or DT1 (all
functions provided)
C1,C2 | Controller functions are provided. CO0 (functions not provided) or C4 and C5 or
C3,C4, | Canbe used as controller only for tracking any of C7,C9, C11
c7 operation.

SECTION 2 SPECIFICATIONS

GPIB 2 Interface Functions

Code Interface fnction
SH1 All source handshake functions are provided.
Synchronizes the timing of data transmission.
All acceptor handshake functions are provided.
AH1 . o . o .
Synchronizes the timing for receiving data.
Basic talker functions are provided.
6 Serial poll functions are provided.
The talk-only function is not provided.
A talker can be canceled by MLA.
Basic listener functions are provided.
L4 The listen-only function is not provided.
A listender can be canceled by MTA.
SRO Service request and status byte functions are not provided.
RLO Remote / local functions are not provided.
Local lockout functions are not provided.
PPO Parallel poll functions are not provided.
DCO Device clear functions are not provided.
DTO Device trigger functions are not provided.
C1,C2,C3,C4, | Controller functrions are provided.
Cc28

SECTION 2 SPECIFICATIONS

2.2 Device Message List

Device messages are message that are transmitted between the controller and the device via the
system interface in the bus mode, i.e. when the ATN line, is false. There are two types: program
messages and response messages.

Program messages are ASCII data message transferred from controller to device. There are two types
of program message: program commands and program queries.

Program commands consist of commands specific to devices which are used exclusively for the control
of the MP1764D and IEEE 488.2 common commands. The latter are common commands used for, in
addition to the MP1764D, any measuring instrument conforming to the IEEE 488.2 standard.

Program queries are commands used to elecit are response message from a devcice. A program query is
transferred from the controller to the device so that the controller can receive a response message from
the controller later on.

Reponse messages are ASCII data messages sent from device to controller. Status messages and
response messages for program queries are listed on the following pages.

e ® Program command (3 For more details, see SECTION9.)
b ® Program query (ZF For more details, see SECTION 9.)

b @ |EEE 488.2 common commands
Controller (3 For more details, see SECTION 7.)

Program message

Device

Response message

/ \ — ® Status message (F For more details, see SECTION 8.)

- ® Response message (3 For more details, see SECTION 9.)

The messages described above are transferred via the input and output buffers of the device. The
output buffer is also referred to as an output queue. The following table gives a brief explanation of
input and output buffers.

Input buffer Output buffer
A FIFO (First In First Out) memory area where | A FIFO-type queue memory area. All DAB
DAB (program messages or query messages), (response messages) output to a device from the
whose syntax has been analyzed, are controller are all stored in this area until the
temporarily stored before they are executed. controller has read each of them.
The size of the MP1764D is input buffer is 256 | The size of the MP1764D output queue is 256
bytes. bytes.

2-5

SECTION 2 SPECIFICATIONS

2.2.1 |EEE 488.2 common commands and MP1764D supported commands

The table below lists 39 types of common commands specified in the IEEE 488.2 standard. IEEE 488.2
common commands which are supported by the MP1764D are indicated with © symbol in the table.

Mnemonic Command name IEEE488.2 Standard | MP1764C supported
*AAD Accept Address Command Optional
*CAL? Calibration Query Optional

*CLS Clear Status Command Mandatory ©
*DDT Define Device Trigger Command Optional

*DDT? Define Device Trigger Query Optional

*DLF Disable Listener Function Command Optional

*DMC Define Macro Command Optional

*EMC Enable Macro Command Optional

*kEMC? Enable Macro Query Optional

*ESE Standard Event Status Enable Command Mandatory ©
*ESE? Standard Event Status Enable Query Mandatory @)
*kESR? Standard Event Status Register Query Mandatory ©
*GMC? Get Macro Contents Query Optional

*IDN? Identification Query Mandatory ©
*¥IST? |Individual Status Query Optional

*LMC? Learn Macro Query Optional

*LRN? Learn Device Setup Query Optional

*0PC Operation Complete Command Mandatory ©
*0PC? Operation Complete Query Mandatory ©
*OPT? Option Identification Query Optional ©
*PCB Pass Control Back Command Mandatory if other

than CO

*PMC Purge Macro Command Optional

*PRE Parallel Poll Register Enable Command Optional

*¥PRE? | Parallel Poll Register Enable Query Optional

*PSC Power On Status Clear Command Optional ©
*PSC? Power On Status Clear Query Optional ©
*PUD Protected User Data Command Optional

*PUD? Protected User Data Query Optional

*RCL Recall Command Optional

*RDT Resource Description Transfer Command Optional

*RDT? Resource Description Transfer Query Optional

*®RST Reset Command Mandatory

*SAV Save Command Optional

*SRE Service Request Enable Command Mandatory ©
*SRE? Service Request Enable Query Mandatory ©

SECTION 2 SPECIFICATIONS

. IEEE488.2 MP1764Cs rted
Mnemonic Command name Standard omane
*%STB? | Read Status Byte Query Mandatory ©
*TRG Trigger Command Mandatory if DT1 ©
*TST? Self Test Query Mandatory ©
*WAI Wait to Continue Command Mandatory ©

? The IEEE 488.2 common commands are always begin with “*” For more details, see SECTION 7.

SECTION 2 SPECIFICATIONS

2.2.2 Status messages

The diagram below shows the structure of service-request summary messages for the status byte
register used with the MP1764D.

Status Byte Register Summary Bit Composition

Bit | Bit7 | Bit6 | Bit5 | Bit4a | Bit3 | Bit2 | Bit1 | BitO
Line | DIO8 | DIO7 | DIO6 | DIOS | DIO4 | DIO3 | DIO2 | DIO1
Summary message bit | Notused | g | ESB MAV | ERROR [END | Notused | Notused
AN — U A A A

-

i I S - :
i i i Summary bit from
! 1 Service Request ;
! i Generation i ?Eel\)lttD ;)age ESB
Y [-

R Summary bit from

/ &ofeach), next page ESB

{correspond) e v e v om | o= s s e (ERROR)

\ w7 /
A

|
e [P -

i Service Request |

MAV summary bit
indicating that the output
queue is not empty

%
N

Message Available (MAV)

i Enable Request i
1 bits0~5,7 1

Event Summary Bit
(ESB)

Logical OR

N

Output queue

A A

Power on

Not used

Command error

Error during execution

Device-dependent error

Query error

RINWI RO |

Not used

0

Standard event status
enable register

Note : means logical AND operation.

O|lRIN|WIAR|IOIO |

End of operation

[
[<1)

[™Y
e

=y
L

{t5]
14

SECTION 2 SPECIFICATIONS

END (measurement completion,
AL completion)

]

E Not used

=Y
[

12

[
(=]

BE

SYNC LOSS occurred

CLOCK LOSS occurred

ERROR occurred

Not used

Error analysis completion X1

Eye Margin measurement completion

[e]=]nlelalafa]~y]=]o]

Extended END event status|
enable register

Auto Search completion

Delay setting

Pattern setting completion

File Access completion

Y Y \

lelzirlelalefo]~|e]jelo]n

Measurement completion
(1 route completed)
Manual measurement:
When STOP occurred
Single measurement:
When STOP occurred
Repeat measurement: Per cycle

Extended END event status register

To previous

page END summary bit

3%1) Error analysis is allowed only when OPTION-01 is installed.

g%t

@9

IHEEBEHE!

oy
> (&

[™Y
(=]
—

> Not used

BRNEOERNEREREERE

Extended ERROR event
status enable register

./

FD malfunction occurred

Printer malfunction occurred

lelo[~]els|afo]~|efo]

Extended ERROR event status register

To previous

page ERROR summary bit

SECTION 2 SPECIFICATIONS

2.2.3 MP1764D device messages

The device messages consist of fixed program commands of the MP1764D queries and response
messages. The device messages list and description are shown in Section 9.

2-10.

SECTION 3
CONNECTING THE BUS AND SETTING ADDRESS

The remote control of devices connected to the GPIB system interface begins with referring to their
addresses as control procedure parameters. This section describes the GPIB cable connections and
setting of addresses that must be performed before using the GPIB interface.

TABLE OF CONTENTS

3.1 Connecting Devices with GPIB Cables

3.2 Procedure for Setting the Address and Checking it
3.2.1 Address settingt e
3.2.2 Connection with MP1763B/C during the tracking operation
3.2.3 Connection with external printer

3-1

(Blank)

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

3.1 Connecting Devices with GPIB Cables

The rear panel has connectors for connecting GPIB cables. The cables must be connected before the
power is switched on.

A maximum of 15 devices, including the controller, can be connected to one system. The restrictions
indicated at the right of the diagram below should be observed when connecting many devices to one
system.

GPIB connector

IA

Total cable length 20m
/ Each cable length between devices = 4m

Number of devices which can be
connected

IA

15

3-3

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

3.2 Procedures for Setting the Address and Checking it

Set the GPIB address for the MP1764D after or before turning on the power. The GPIB 1 address (for
device) is factory-set to 0. The address is preset with the GPIB ADDRESS switch on the rear panel.
There is no need to set the address if using the default address. To change the address, put the
MP1764D in the local state and input the address using the GPIB ADDRESS switch on the rear panel.
Devices connected to the GPIB are normally in the local state when the power is turned on.

Note : 1) The system always checks the GPIB “ADDRESS” switch settings when the power is
turned on and determines its own address. So, changing the address is always
allowed unless the system is in remote state.

2) To control the system as a device from an external controller, set “SYSTEM
CONTROL” of the GPIB 1 address switch to OFF(0).

/ANCItSU ERROR DETECTOR MP1764D 003-12.56H;
i3 PATTRRN WASTARGET

s T e | | [g e L L& B A T s]
'HBBEB..,HBHEB..,.‘ = == r=—5%z5||||~~=>HHHBHBBE8EBE8.:
ErmEes ErwErms| O @3 O3 @3 |||me . e
m— o O =4
= = e T B ol N o
2 sms2 ||BEE oEES &6 ||[BEOBEEOE
peEEE:] () ||TTTTERESTTT || ST - | |

=5 EE= e T kel =
MK BATIO LBte1A) OF g ERROR RATIO (10°) ey Cjrace / [rarreas st rosition @ l BH BH HE HE |
B Eahdihod s
|=C]I% D@@ o|||ggB8aa88A88| O @E@
. (=] ? T =] ? P P J— Tl.:“’lll m::l::'l-?.m il
e e—— e Y Y Y e Y = ==) 8
® ® N T —
. o J e R O o e B s RO 3
(g g| (0= ey o it oy T | ——prmmm i RN e mooE o we o~
FEls 5500 ||@oo et csm| =00 = O [

Data cLoc MONITOR CLOCK r——— TN e——

e — 28 = o, 0 ASY A o S
lB- OO E—-'- E_,, S.,. %..,..}.,.
® ® ®

L mane irimee simae v

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

3.2.1 Address setting

The GPIB addresses for two GPIB ports of MP1764D are set with the DIP switch on the rear panel,
respectively.

MP1764D Rear panel

ADDRESS ADDRESS
SYSTEM r———l I I GPIB 2
CONTROL_l 543 21 GPIB 1 54321 PRINTER
o D °© Jolmm]e
OFF | OO OO O0] o OFF|OOOOO |0
i i F tputting t int
GPIB 1 address setting For tracking, device GPIB 2 address setting O QUTPUTHING TO printer

The GPIB 1’s and GPIB 2’s addresses can be set 0 to 30, respectively. Five switches are weighed
differently: “5”,“4”,“3”,“2” and “1” are respectively weighed to 16, 8,4,2 and 1.

To set the address to 11, for example, the operation is as follows: Since
11=8+2+1,

set switches “4”, “2” and “1” to ON as shown below.

ON - oy

OFF | [- 0

However, address 31, where all the switches are set to ON, is assumed to be address 0.

3-5

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

3.2.2 Connection with MP1763B/C during the tracking operation

Tracking operation is a function that pattern settings are made to be synchronized with each other
between MP1763B/C and MP1764D. Either MP1763B/C or MP1764Dis made to be a Master and the
other is made to be a Slave, and the settings for the Slave are synchronized with those for the Master.

(1) I1fMP1763B/Cis a Master and controls MP1764D:

When the settings for MP1763B/C are set to MP1764D via GPIB, the setting and connection are as
follows:

a)

b)
c)

d)
e)

MP1763B/C rear panel MP1764Drear panel

GPIB cable

Like the diagram above, the GPIB connector on the MP1763B/C’s rear panel is connected with the
GPIB 1 connector on the MP1764D via the GPIB cable (included).

Set “SYSTEM CONTROL?” of the GPIB address switch on the MP1763B/C’ rear panel to ON (1).

Set the value of the GPIB 1 address switch on the MP1764D’s rear panel to that of MP1763B/C’s
GPIB address+ 2.

Turn on the MP1763B/C power again.
Set the TRACKING key on the MP1763B/C’s front panel to ON.

By now, you are ready to perform pattern-tracking.

3-6

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

(2) If MP1764D is a Master and controls MP1763B/C:

When the settings for MP1764D are set for MP1763B/C via GPIB, the setting and connection are as
follows:

a)

b)
c)

d)

e)

MP1763B/C rear panel MP1764Drear panel

GPIB cable

Like the diagram above, the GPIB 1 connector on the MP1764D’s rear panel is connected with the
GPIB connector on the MP1763B/C via the GPIB cable (included).

Set “SYSTEM CONTROL” of the GPIB 1 address switch on the MP1764D’s rear panel to ON (1).

Set the value of the GPIB address switch on the MP1763B/C’s rear panel to that of MP1764D’s
GPIB 1 address +2.

Turn on the MP1764D power again.
Set the TRACKING key on the MP1764D’s front panel to ON.

By now, you are ready to perform pattern-tracking.

3-7

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

(3) Items to be tracked between MP1763B/C and MP1764D

The setting items to be tracked using pattern-tracking function are as follows:

Pattern-setting area on the MP1764D's front panel

PATTERN

A9SF [AT ‘W‘;“/ 2‘7‘7”7‘5/’ P‘“/’ /‘9‘/‘7‘7"/"}“%" W‘Q"/ﬂ/

’/ S 10K

fF—

/A ,///CZW////A@‘ZV%Z////
= SYNC MODEL wmy o DISPLAY SELECT ommmmy N
NORMAL FRAME QUICK PATTY BIT BLOCK ERROR 8
[N o D WINDOW WANDOW ANALYSIS

e =] (=) =] (=]

R
66 /i//s?’/é“/é/ﬁ“%?

i Wwﬂ%’// i

o oo o

PRESE T sy 7 LRROR ANNL Y5154
r ALL: \ < PAGE =— TRIGKLR PATI(RAN TRACKING
GUARD © 1 0 | ON LOADING

() ()0 o [o

—

~J

Items to be tracked are pattern-settings for the shaded area shown on the above diagram.

Within the shaded area shown above, however, the area where a setting for MP1763B/C does not
coincide with that for MP1764D (such as error analysis data) cannot be pattern-tracked.

F For more information on the setting items to be pattern-tracked, see “APPENDIX D Tracking
Items List.”

3-8

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

3.2.3 Connection with external printer

The MP1764D is provided with the GPIB port for outputting measured data to an external printer.
When the measured data is output to an external printer, the connection and address setting are as
follows:

MP1764Drear panel

External printer

GPIB

GPIB 2
PRINTER GPIB cable

a) Like the diagram above, the GPIB 2, PRINTER connector on the MP1764D’s rear panel is
connected with the GPIB connector on an external printer via the GPIB cable.

b) Set the GPIB 2, PRINTER address switch on the MP1764D’s rear panel.

¢) Setthe address on an external printer to the MP1764D’s GPIB 2, PRINTER address setin b) +2.
d) Setthe “PRINTER ON” or “MANUAL PRINT” key on the MP1764D’s front panel to ON.

By now, measured data is ready for being output.

If measured data is non-available (e.g., during measurement halt), however, it is not output.

3-9

SECTION 3 CONNECTING THE BUS AND SETTING ADDRESS

(Blank)

3-10.

SECTION 4
INITIAL SETTINGS

There are 3 levels of initialization for the GPIB interface system. The first level is bus initialization in
which the system bus is in the idle state. The second level is initialization for message exchange in
which devices are able to receive program message. The third level is device initialization in which
device functions are initialized. These levels of initialization prepare a device for operation.

TABLE OF CONTENTS
4.1 Bus Initialization by the IFCStatement L. 4-4
4.2 Initialization for Message Exchange by DCL and SDCBus Commands 4-6
4.3 Device Initialization by the ®kRSTCommandciiiiiiiiinnn.. 4-8
4.4 Device Initialization bytheINICommand, 4-10
4.5 Device Status at POWer-0On i s 4-11

4-1

(Blank)

SECTION 4 INITIAL SETTINGS

The IEEE 488.1 standard stipulates the following two levels for the initialization of the GPIB system.
® Bus initialization

All interface functions connected to the bus are initialized by IFC messages from the controller.
® Device initialization

The DCL GPIB bus command returns all devices to their initial states while the SDC GPIB bus
command returns designated devices only to their stipulated initial states.

In the IEEE 488.2 standard the initialization levels are divided into three, with bus initialization as

the highest level. The second level is initialization for message exchange and third device initilazation.
This standard also stipulates that a device must be set to a known state when the power is turned on.
The above details are summarized in the table below.

Level Imtl%l’l;:tlon Description
B All interface functions connected to the
us . eps o1
1 e e 1e L. bus are initialized by IFC messages from
initialization
the controller
The DCL and SDC GPIB bus commands
Initialization |perform initialization for message
2 for the exchange for all devices and designated
exchange of devices, respectively, as well as
messages nullifying the function to report the end
of operation to the controller.
The *RST or INI reset command resets
Device only specified devices, from among those
3 initialization connected to the GPIB, to their known
states regardless of the conditions under
which they were previously being used.

For levels 1, 2 and 3, see the following description that focuses the instructions for executing these
initializations and their results which mean the items to be initialized. Also, the known states to be
set at power-on are described.

4-3

SECTION 4 INITIAL SETTINGS

IFC @

4.1 Bus Initialization by the IFC Statement

H Syntax
IFCARQ select code

M Example
IFC e1

H Explanation

The IFC line of the GPIB in the stipulated select code is kept active for approximately 100 us
(electrically low level state).

When IFC@ is executed, the interface functions of all devices connected to the bus line of the GPIB in
the select code are initialized. Only the system controller can send this command.

The initialization of interface functions involves erasing the settings made by the controller and
resetting them to their initial states. In the table below, O indicates the functions which are
initialized; A indicates the functions which are partially initialized.

No Function Symbol Initialization by IFC
1 Source handshake SH O
2 Acceptor handshake AH O
3 Talker or extended talker TorTE O
4 Listener or extended listener LorLT O
5 Service request SR A
6 Remote / local RL
7 Parallel poll PP
8 Device clear DC
9 Device trigger DT

10 | Controller C O

Even if the IFC statement is True (the level of the IFC line is set to low by execution of the IFC@
statement), levels 2 and 3 initialization are not performed, so, it does not affect devicer operating
conditions (parameter setting, LEDs ON / OFF, etc.).

The following lists the effect of the IFC statement on some device functions taken from the table
above.

4-4

@ Talker/ listener

.................................

@ Controller

......................................

................................

@ Service request devices

...........................

® Devices in the remote state

.......................

SECTION 4 INITIAL SETTINGS

All talkers and listeners are put in the
idle state (TIDS, LIDS) within 100.s.

The controller is put in the idle state
(CIDS — Controller Idle State) within
1004s ifit is not active (SACS — System
Control Active State).

If the system controller (the device on the
GPIB initially designated as controller)
has given up its control funection to
another device, executing IFC@ returns
the control function to the system
controller. The system controller’s RESET
key causes it to output an IFC message.

The IFC statement has no effecton a
device sending an SRQ message to the
controller (the SRQ line in the figure
below is set to low level by the device),
but it does clear the condition that the
controller has put all devices connected to
the system bus into serial poll mode.

The IFC statement has no effect on devices
in the remote state.

4-5

SECTION 4 INITIAL SETTINGS

DCL @

4.2 Initialization for Message Exchange by DCL and SDC Bus Commands

H Syntax
DCLA@ select code [primary address] [secondary address]

M Example
DCL @1 Initializes all devices under the bus for message exchange (sending DCL).
DCL @103 Initializes only the device whose address is 3 for message exchange (sending
SDC).
M Explanation

This statement carries out the initialization for message exchange for all devices on the GPIB of the
specified select code or that for specified devices only.

The purpose of initialization for message exchange is to prepare devices to receive new commands
from the controller when the sections of devices used for the exchange of messages are in an
inappropriate state to be controlled by the controller as the result of the execution of other programs,
etc. There is no need to change the panel settings, however.

B When only the select code is specified

This carries out the initialization for message exchange of all devices on the GPIB of the specified
select code. DCL@ sends a DCL (Device Clear) bus command to the GPIB.

B When the address is specified

Performs initialization for message exchange for the specified device. After clearing the listeners on
the GPIB of the specified select code, the specified device only is set to listener and an SDC (Selected
Device Clear) bus command is output.

H Items to be initialized for message exchange
@ Input buffer and output queue Cleared
@ Parser, execution controller and response formatter . Reset

® Device commands including %RST All commands that interfere with the
execution of these commands are cleared.

@ Coupled-parameter program messages All commands (in the execution pending
sections and queries) are discarded
because they are coupled parameters.

® Processing the ¥OPCcommand Puts a device in OCIS (Operation
Complete Idle State). As a result, the
operation complete bit cannot be set in
the standard event status register.

4-6

SECTION 4 INITIAL SETTINGS

® Processing the kOPC?query Puts a device in OQIS (Operation
Complete Query Idle State). As a result,
the operation complete bit cannot be set
in the output queue. The MAYV bit is
cleared.

@ Automation of system construction The *¥ADD and ¥ DLF common
commands are nullified.

(These commands are not supported on
the MP1764D)

Devicefunectionsciiiiiiinninn.. Functions for message exchange are put
in the idle state. The device continues to
wait for a message from the controller.

CAUTION A\

Device clear is prohibited from carrying out the followings.
@ Changing the current device settings or stored data.
@ Interrupting front panel 11 0

@ Changing any other status bit except clearing the MAV bit, when clearing the
output queue.

@ Interrupting or having any effect on the device that is currently operating.

M Transmission sequence of GPIB bus commands by the DCL@ statement.

The transmission sequence of the DCL and SDC GPIB bus commands by the DCL@ statement is
shown in the table below.

Bus command transmission sequence Data

Statement (at ATN line “LOW™) (at ATN LINE "HIGH")

DCL@ select code UNL, DCL

DCL@ device number | UNL, LISTEN address, [secondary address], SDC

4-7

SECTION 4 INITIAL SETTINGS

*RST

4.3 Device Initialization by the *RST Command

H Syntax
*RST

M Example
WRITE @103:"*RST" Initializes only the device of the address 3 with level 3.

M Explanation
The *RST (Reset) is an IEEE 488.2 common command which resets a device with level 3.

Normally devices are set to various states using the commands specific to each device (device
messages). The *¥RST command is one of these and is used to reset a device to a specific known state.
The function of nullifying of the end of operation is the same as for level 2.

M Specifying device number in WRITE@ statement
The device with the specified address is initialized with level 3.

After clearing the listeners on the GPIB of the specified select code while the ATN line is active, only
the specified device is set to listener.

When the ATN line is false, the *RST command is sent.

H Device Initialization Items

® Device-dependent functions and states A device is returned to a known state
regardless of its current condition. (See
the next page for the list.)

@ Processing of the %¥OPC command The device is put into OCIS (Operation
Complete Idle State). As aresult, the
operation complete bit cannot be set in
the standard event status register.

® Processing the kOPC?query The device is put into OQIS (Operation
Complete Query Idle State). As a result,
the operation complete bit cannot be set
in the output queue. The MAV bit is
cleared.

@ Macrocommandsiiiiiiiiiiiinani.s Disables macro operations and puts a
device in a mode in which it cannot
receive macro commands. Also, the
definition of macros is returned to the
state specified by the system designer.

4-8

SECTION 4 INITIAL SETTINGS

Note : The *RST command does not affect the items listed below.
@ IEEE 488.1 interface state
@ Device address
® Output queue

® Service Request Enable Register
® Standard Event Status Enable Register

® Power-on-status-clear flag setting

@ Calibration data affecting device specification

Macros defined by the DMC (Define Macro Contents) command

® Response messages for the PUD (Protect User Data) query

@ Response messages for the RDT (Resource Description Transfer) query

There are also preset parameters, etc specific to the MP1764D for the control of external
devices, etc. (Refer to SECTION 8 for items @, ® and ®. The MP1764D does not support
items ® to ©.)

The table below shows the initial settings proper to the MP1764D for the functions and status.

Initial Settings

Group Initial Settings Notes

Setting States |Initialized See Appendix C Initial Value List for Initial
Values.

GPIB Address | Not initialized

Time & Date | Not initialized

4-9

SECTION 4 INITIAL SETTINGS

4.4 Device Initialization by the INl Command

H Syntax

INI

M Example (program message)
WRITE @103:"INI" Initializing only the device assigned address 3 with level 3.

M Description

The INI command is one of the device messages proper to MP1764D; this command is sent as a
program message to the device from the controller to reset the device with level 3.

This command functions the same as the *kRST command.

M Specifying a device number in the WRITE@ statement
Initializes the device assigned a specified address with level 3.

The sequence of sending out commands is as follows; listener(s) is(are) released by the GPIB having
a specified selection code while the ATN line is true, then only specified device(s) is(are) set to
listener(s). When the ATN line turns to false, the INl command is output to the specified listener(s)
as a program message.

H Device's items to be initialized

The device’s items to be initialized are the same as those of the RST command.

4-10

4.5 Device Status at Power-on

When the power is switched on:

SECTION 4 INITIAL SETTINGS

@ The device status is the one when the power was last switched off.

@ The input buffer and output queue are cleared.

® The parser, execution control and response formatter are reset.
@ The device is put into the OCIS (Operation Complete Command Idle State).
® The device is put into the OQIS (Operation Complete Query Idle State).

® The MP1764D supports the *kPSC command. Therefore, when the PSC flag is true and all event
status enable registers are cleared. Events can be recorded after the registers have been cleared.

As a special case for O, the settings are the same as the ones in the Initial Settings Table (in C-1) the
first time the MP1764D is switched on after delivery. The diagram below shows the transition states of

items @ to ®.

® Input buffer pon \/ dcas

> Clear

® Output queue

Operation
O QI S Complete
Query

Idle State

*RST

H Items which do not change at power-on
@ Address

Parser

Execution
controller

Response
formatter

pon \/ dcas _

Reset

Operation

O C I S Complete

Command
Idle State

@ Related calibration data (The MP1764D has no calibration data.)

® Data or states which are changed by responses to the common queries listed below.

*IDN?
*OPT?
*psC?
*PUD? (Not supported by the MP1764D)

*RDT? (Notsupported by the MP1764D)

4-11

SECTION 4 INITIAL SETTINGS

B Items related to power-on-status-clear (PSC) flag

The PSC flag has no effect on the Service Request Enable Register, Standard Event Status Enable
Register or Extended Event Status Enable Register when it is false. These registers are cleared
when it is true or the *PSC command is not being executed.

H Items which change at power on
@ Current device function state
© Status information
® *SAV/ *RCL registers
® Marco-definition defined by the *kDDT command (not supported by the MP1764D)
® Marco-definition defined by *k DMC command (not supported by the MP1764D)
® Macros enabled by the ¥ EMC command (not supported by the MP1764D)
@ Addresses received by the *PCB command (not supported by the MP1764D)

4-12.

SECTION 5
LISTENER INPUT FORMAT

Two types of data message are transmitted between the controller and a device via the system interface
when the bus is in the data mode (i.e. the ATN line is false): program messages and response messages.
This section describes the format of program messages received by the listener.

5.1

5.2

5.3

TABLE OF CONTENTS
Listener Input Program Message Syntax Notation 5-4
5.1.1 Separators, terminators and spaces beforeheaders 5-4
5.1.2 General format for program command messages 5-6
5.1.3 General formatforquerymessages i, 5-7
Functional Elements of Program Messagesciuiiieeeernnnnnnneennnn. 5-8
5.2.1 <TERMINATED PROGRAM MESSAGE> 5-8
522 <PROGRAM MESSAGE TERMINATOR> it 5-9
5.23 <White SPace > ... e 5-10
5.24 <PROGRAM MESSAGE > i i it e i 5-10
5.25 <PROGRAM MESSAGE UNITSEPARATOR> it 5-11
5.2.6 <PROGRAM MESSAGE UNIT > i i 5-11
5.2.7 <COMMAND MESSAGE UNIT> and <QUERY MESSAGE UNIT> 5-12
528 <COMMAND PROGRAM HEADER>ttt eiieiaan 5-13
5.29 <QUERY PROGRAM HEADER> it et 5-15
5.2.10 <PROGRAMHEADERSEPARATOR> ittt 5-16
5.2.11 <PROGRAM DATASEPARATOR> i 5-16
Program Data Format i e 5-17
5.3.1 <DECIMALNUMERICPROGRAM DATA> i, 5-18
5.3.2 <NON-DECIMAL NUMERICPROGRAM DATA> iiiiiiiiieannn. 5-20

5-1

(Blank)

SECTION 5 LISTENER INPUT FORMAT

Program messages comprise a sequence of program message units which are either program commands
or program queries.

In the diagram below, in which the data input and clock input termination voltage is set to GND, the
controller sends a program message, composed of two program units DTMA @ and CTMA @ linked by a
program-message unit separator to a device.

< TERMINATED PROGRAM MESSAGE >

L N
Address 3 Listener address specification RAM MESSAGE > < PROGRAM MESSAGE TERMINATOR >

Listener
(device)

<PROGRAM MESSAGE UNIT > <PROGRAM MESSAGE UNIT SEPARATOR > <PROGRAM MESSAGE UNIT> sp <NL>

DIM_0 sp;sp CTM @ } '_\\

<whitespace> 3 <whitespace>

< COMMAND PROGRAM HEADER > < COMMAND PROGRAM HEADER >

< PROGRAM HEADER SEPARATOR > < PROGRAM DATA > <PROGRAM HEADER SEPARATOR > < PROGRAM DATA >
s;i)} 7 p
<white space> < white space> \
< program mnemonic> <decimal numeric program data > <decimal numeric program data>

The program message format is a sequence of functional elements which are the minimum
requirement for indicating a function. The groups of upper-case alphabetic characters enclosed by < >
in the diagram above are examples of functional elements. Functional elements can be further divided
into “encoded elements”. The groups of lower-case alphabetic characters enclosed by < > in the
diagram above are examples of encoded elements.

A diagram indicating the selection of functional elements on a specific path is called a functional
syntax diagram, while a diagram indicating the selection of encoded elements on a specific path is
called an encoded syntax diagram. The following pages explain program message format using these
two diagrams.

Encoded elements represent encoded elements of the actual bus required to send functional element
data bytes to a device. Listeners (which receive the functional element data bytes) determine whether
they conform to the rules for encoding. If they do not, the listener does not recognize them as functional
elements and generates a command error.

5-3

SECTION 5 LISTENER INPUT FORMAT

5.1 Listener Input Program Message Syntax Notation

The following explains program message functional element and program data formats (Compound
and common commands have been omitted)

5.1.1 Separators, terminators and spaces before headers

(1) Program message unit separators

The format for separating program message units is optional space(s) + semicolon.

Example 1: General format for separating two program message units

<white
space>

Example 2: 1 space + semicolon

DTM A ; CTM @

(2) Program data separators

The format for separating program data items is optional space(s) + comma + optional space(s).

Example 1: General format for separating 2 items of program data

<white <white
space> space>

Example 2: Comma only
WRT 1,0
Example 3: Comma + 1 space

WRT 1,A0

(3) Program header separators
The format for separating a program header from program data is:

1 space + optional space(s).

Example 1: General format for single command program header

<white space> <white space>

SECTION 5 LISTENER INPUT FORMAT

Example 2: 1 space

DTMA®

(4) Program message terminators

The format for the terminator at the end of a program message is:
optional space(s) + any of NL, EOI or NL + EOI

General format:

<white space>

(5) Spaces before headers
An optional space may be placed before a program header.

General format:

<white space>

Example: 1 space is placed before the second program header SPF.

DTM 8;ACTM @

5-5

SECTION 5 LISTENER INPUT FORMAT

5.1.2 General format for program command messages
(1) Messages not accompanied by data

o ' <HR>

_

HR : COMMAND PROGRAM HEADER
Examples:

INI Initializes setting

(2) Messages accompanied by integer data

|

o——I <HR> NR1

NR1:integer
Example:

DMSA@ Sets Error measurement display unit Ratio

DMSA\1 Sets Error measurement display unit Count

DMSA 2 Sets Error measurement display unit EI

DMSA\3 Sets Error measurement display unit % EF1

DMSA\4 Sets Error measurement display unit CLOCK FREQUENCY

(3) Messages accompanied by real numbers

o—I <HR> NR2

NR2: real number
Example:
DTHA -3.000 Sets input data threshould level.

(4) Messages accompanied by HEX (hexadecimal)

Y

Example:

BITA#H FFFF

5-6

Y

SECTION 5 LISTENER INPUT FORMAT

(5) Messages accompanied by multiple program data items

©

Example:

PRDA99,23,59,59 Sets measurement time to 99 days 23 hours 59 minutes 59 seconds.

5.1.3 General format for query messages

A query program header is indicated by placing a ? at the end of a command program header.

(1) Messages not accompanied by query data

o— I <HR>

Example:

Y

DTM? Requests data input termination voltage data

(2) Messages accompanied by query data

o——l <HR> SP NR1 or NR2 NR1or NR2 |—>

Example:

FSH? 1 Requests file information whose file No. is from 51 in the files saving measurement
conditions in a floppy disk.

5-7

SECTION 5 LISTENER INPUT FORMAT

5.2 Functional Elements of Program Messages

A device accepts a program message by detecting the terminator at the end of it. The functional
elements of program messages are explained below.

5.2.1 <TERMINATED PROGRAM MESSAGE >
A <TERMINATED PROGRAM MESSAGE > is defined as follows.

<PROGRAM
MESSAGE
TERMINATOR>

Q _ | <PROGRAM MESSAGE >

Y

A <TERMINATED PROGRAM MESSAGE > is a data message which has all the functional elements
required for transmission from the controller to a listener device. A <PROGRAM MESSAGE
TERMINATOR > is attached to the end of a <PROGRAM MESSAGE > to terminate its transmission

Example: < TERMINATED PROGRAM MESSAGE > which sends 2 commands with a WRITE
statement.

<TERMINATED PROGRAM MESSAGE >
.

el N
Address 3 Listener address specification < PROGRAM MESSAGE > < PROGRAM MESSAGE TERMINATOR >

WRITE @103:" DTMA

Listener Talker

Functional element

5-8

SECTION 5 LISTENER INPUT FORMAT

5.2.2 <PROGRAM MESSAGE TERMINATOR >
A <PROGRAM MESSAGE TERMINATOR > is defined as follows

Y

<white space> / >
NL
< <>

A <PROGRAM MESSAGE TERMINATOR > terminates a sequence of one or more <PROGRAM
MESSAGE UNIT > elements of a fixed length.

NL: NL is defined as a single ASCII code byte (decimal 10), i.e. the ASCII control code LF (Line
Feed) used to return the carriage and bring the print position to the beginning of the next line.
Itis also called NL (New Line). When a <PROGRAM MESSAGE > is sent by a WRITE@
statement, there is no need to write the generation of CR.LF code into programs because it is
automatically sent by this statement. To generate LF code only, the following statement is
executed at the beginning of a program: TERM IS CHR$(10)

END: The EOI signal can be generated by making the EOI line (one of GPIB management bus lines)
true (low level).

EOI ON / OFF is one statement for controlling
(Last data byte the EOI line. The default is EOl OFF which
means that the EOI line is not controlled.
Specifying EOI ON causes an EOI signal to be
N\ / transmitted at the same time as terminator
/ LF when the last data byte of the WRITE@
Yo A2 . .
Binary data string Terminator statement is transmitted.

A <PROGRAM MESSAGE > may also be

EOI
V> | terminated, without sending LF, by using an
EOlsignal END signal only.

DIO — byte |..... b)'r‘te Cr L —

Note :

R returns the carriage to the beginning of the
same line, but is generally ignored on the listener
side. However, because there is a lot of
equipment already on the market which uses CR
and LF code, most controllers are designed to
output LF code following CR code.

CR

®

5-9

SECTION 5 LISTENER INPUT FORMAT

5.2.3 <white space>
A <white space > is defined as follows.

A

<white space
character>

A <white space character > is defined as a single ASCII code byte in the range 00 to 09, 0B to 20
(decimal 0 to 9, 11 to 32).

This range includes ASCII control signals and space signal except new line. A device either treats
them as ASCII control signals but as spaces, or skips over them.

5.2.4 <PROGRAM MESSAGE >
A <PROGRAM MESSAGE > is defined as follows.

<PROGRAM

MESSAGE UNIT <
SEPARATOR>

> <PROGRAM MESSAGE UNIT> >

A <PROGRAM MESSAGE > consists of zeros, or a sequence of one or several <PROGRAM
MESSAGE UNIT > elements. <PROGRAM MESSAGE UNIT > elements are either programming
commands or data sent from the controller to devices. The <PROGRAM MESSAGE UNIT
SEPARATOR > element is used to separate <PROGRAM MESSAGE UNITS>.

Example 1:

The program message which sets the data input termination voltage to GND.

DT™M @
Example 2:

The program message which sets as same as the Example 1, and then sets the clock input termination
voltage to GND.

<PROGxM MESSAGE >
DIMB : CTM 0

_l.T

<PROGRAM MESSAGE UNIT > < PROGRAM MESSAGE UNIT SEPARATOR > <PROGRAM MESSAGE UNIT >

5-10

SECTION 5 LISTENER INPUT FORMAT

5.2.5 <PROGRAM MESSAGE UNIT SEPARATOR >
A <PROGRAM MESSAGE UNIT SEPARATOR > is defined as follows.

<white
space> ’

<white space >is defined as follows.

<white space
character>

The <PROGRAM MESSAGE UNIT SEPARATOR > separates the <PROGRAM MESSAGE UNIT >
elements ina <PROGRAM MESSAGE >. A device interprets a semicolon as the separator of
<PROGRAM MESSAGE UNIT > elements so, it skips the <white space characters> before and after
the semicolon. <white space characters> make a program easy to read. If there is one after a
semicolon, it is the <white space> for the next program header.

5.2.6 <PROGRAM MESSAGE UNIT>
A <PROGRAM MESSAGE UNIT > is defined as follows.

<COMMAND MESSAGE UNIT>

<QUERY MESSAGE UNIT>

A <PROGRAM MESSAGE UNIT > is either the <COMMAND MESSAGE UNIT> or <QUERY
MESSAGE UNIT > received by a device. <COMMAND MESSAGE UNITS> and <QUERY
MESSAGE UNITS > are explained in detail on the next page.

5-11

SECTION 5 LISTENER INPUT FORMAT

5.2.7 <COMMAND MESSAGE UNIT> and < QUERY MESSAGE UNIT>
1) A <COMMAND MESSAGE UNIT > is defined as follows.

<PROGRAM
DATA
SEPARATOR>

<COMMAND <PROGRAM
—> PROGRAM HEADER <PROGRAM DATA> 7>
HEADER> SEPARATOR>

Y

< Example> < PROGRAM DATA >
P _AL

4 A\
PRD _99, 23, 59, 59

< COMMAND PROGRAM HEADER >XGRAM HEADER SEPARATOR > <PROGRAM DATA SéPARATOR >

2) A <QUERY MESSAGE UNIT > is defined as follows.

<PROGRAM

<QUERY
PROGRAM
HEADER>

<PROGRAM

<PROGRAM DATA > _%’

< Examp|e> <PROGRAM DATA >
FSH? 1
< QUERY PROGRAM HEADER > <PROGRAM HEADER SEPARATOR >

For both <COMMAND MESSAGE UNITS> and <QUERY MESSAGE UNITS>, a space must be
inserted between the program header and any program data immediately following it. The application,
function and operation of the program data can be seen from the program header. If there is no
program data; the application, function or operation to be performed by a device is indicated by the
header alone.

The <COMMAND PROGRAM HEADER > is a command by which the controller controls a device.
<QUERY PROGRAM HEADER > is a command used for sending a query from the controller to a
device so that the controller can receive a response message from it.

The special feature of the header is that a question mark is always tagged on at the end to indicate that
itis a query.

5-12

5.2.8 <COMMAND PROGRAM HEADER >
A <COMMAND PROGRAM HEADER > is defined as follows. A <white space> may be placed in

front of each header.

<white

SECTION 5 LISTENER INPUT FORMAT

<simple command

space>

R
>

program header>

<common command
program header>

1) A <simple command program header > is defined as follows.

<program
mnemonic>

2) A <common command program header > is defined as follows.

O

<program
mnemonic>

3) A <program mnemonic> is defined as follows.

<upper/ lower

<upper/ lower
case alpha>

case alpha>

R
-

()
&/

<digit>

Y

\]

5-13

SECTION 5 LISTENER INPUT FORMAT

H <COMMAND PROGRAM HEADER >

Indicates the application, function and operation of a program to be executed by a device. If there is no
program data; the application, function and operation to be executed by the device are indicated in the
header itself. This is expressed in ASCII code characters by a <program mnemonic>, usually called
just mnemonic.

The following explains items 1), 2) and 3) above and the definition of mnemonics.

B <program mnemonic>

A mnemonic must begin with upper-case or lower-case alphabetic characters. Following that, upper-
case alphabetic characters from A to Z, lower-case alphabetic characters, the underline and numbers
from 1 to 9 can be used in any combination. The maximum length of a mnemonic is 12 characters but
they usually consist of 3 to 4 upper-case alphabetic characters. There are no spaces between
characters.

® <upper/lower-case alpha>

Defined as a single ASCII code byte in the range 41 to 5A, 61 to 7A (decimal 65 t0 90,97 to 122 = A
toZ,atoz).

o <digit>

Digits are defined as single ASCII code byte in the range 30 to 39 (decimal 48 to 57 = numeric 0 to
9).

o ()
The underline is defined as the single ASCII code byte 5F (decimal 95).

B <simple command program header>

The above definition for <program mnemonic> is used as it is.

B <common command program header>

An asterisk is always placed before the <program mnemonic> in a <common command program
header>. The word ‘common’ is used to indicate that the <common command program header > is
applicable to all other measuring instruments conforming to the IEEE 488.2 standard connected to the
bus.

¢ Example

The operation (of the device with address 3 connected to the select code 1 GPIB interface) is
terminated and it is put in the idle state; then each device is reset to the initial state stipulated for it.

WRITE @1@3:"%RST": *%RST is the common IEEE 488.2 command which
executes the above.

5-14

5.2.9 <QUERY PROGRAM HEADER>

A <QUERY PROGRAM HEADER > is defined as follows. A <white space> is placed before each

header.

<white

SECTION 5 LISTENER INPUT FORMAT

space>

<simple query
program header >

<common query
program header>

1) A <simple query program header> is defined as follows.

<program
mnemonic>

2) A <common query program header> is defined as follows.

—-

<program
mnemonic>

B <QUERY PROGRAM HEADER>

() —
—() —

Y

A <QUERY PROGRAM HEADER > is a command for sending a query from the controller to a device

so that the controller can receive a response message from it. A ?is always added at the end of the

header to indicate a query.

& Except for the ? after it, the format of the <QUERY PROGRAM HEADER > is identical to that of the <COMMAND

PROGRAM HEADER>.

5-15

SECTION 5 LISTENER INPUT FORMAT

5.2.10 <PROGRAM HEADER SEPARATOR >
A <PROGRAM HEADER SEPARATOR > is defined as follows.

<white
space> >

A <PROGRAM HEADER SEPARATOR > is used to separate a <COMMAND PROGRAM
HEADER> or <QUERY PROGRAM HEADER > from <PROGRAM DATA >. When there is more
than one <white space character > between a program header and program data, the first is
interpreted as the separator and the rest are skipped. <white space characters> are used to make a
program easy to read.

So, there must always be one header separator between the header and the data to indicate the end of
the program header and the start of the program data.

5.2.11 <PROGRAM DATA SEPARATOR>
A <PROGRAM DATA SEPARATOR > is defined as follows.

<white <white
space> space>

When a <COMMAND PROGRAM HEADER > or <QUERY PROGRAM HEADER > has many
parameters, A <PROGRAM DATA SEPARATOR > is used to separate them.

A comma must be used witha <PROGRAM DATA SEPARATOR >, but a white space does not always
have to be used. A white space before or after the comma is skipped. They are used to make a program
easier to read.

< PROGRAM DATA >
<Example>

PRD _99,23,59,59

< COMMAND PKOGRAM HEADER >XGRAM HEADER SEPARATOR > < PROGRAM DATA SEPARATOR >

5-16

SECTION 5 LISTENER INPUT FORMAT

5.3 Program Data Format
The following describes the format of <PROGRAM DATA>.

<PROGRAM DATA > functional elements are used in sending various types of parameter related to
the program header. The diagram below shows the different types of program data. The MP1764D
accepts the data types in the shaded ovals.

<CHARACTER
\ i PROGRAM DATA > \

<SUFFIX
PROGRAM DATA>

<NON-DECIMAL
NUMERIC

<STRING
PROGRAM DATA >

<ARBITRARY
BLOCK
PROGRAM DATA >

<EXPRESSION
PROGRAM DATA>

Y

5-17

SECTION 5 LISTENER INPUT FORMAT

5.3.1 <DECIMAL NUMERIC PROGRAM DATA >

<DECIMAL NUMERIC PROGRAM DATA > is program data for sending numeric contents expressed
in decimal notation. There are 3 formats for expressing decimal numbers: integer format, fixed point
format and floating point format. The MP1764D does not use the floating point format.

The program data transmission in the integer or fixed point formt used in the MP1764D is described.
Note : The data will processed at any data format in the manner described below.
¢ Rounding off of numeric elements

When a device receives <DECIMAL NUMERIC PROGRAM DATA > elements with more digits
than it can handle, it ignores the sign and rounds it off to the nearest whole number.

® QOutside-range data

When a <DECIMAL NUMERIC PROGRAM DATA > element is outside the permissible range for
the program header, execution error is reported.

(1) Integer format- NR1 transmission

In the diagram below, an integer NR1, i.e. a decimal number which does not contain a floating point or
exponential expression, is transmitted.
j = <white

<digit> 1 > space> T

Zeros can be inserted at the beginning. — 005, + 000045

A

Y

P
>

Spaces cannot be inserted between a + or — sign and a number — +5, + A5 (X)
X: not allowable

Spaces can be inserted after a number. - +5AAA

The + signisoptional. = +5,5

Commas may not be used to separate digits — 1,234,567 (X)

5-18

SECTION 5 LISTENER INPUT FORMAT

(2) Fixed point format - NR2 transmission

The example below shows the transmission of NR2, a real number with no integer or exponential
expressions having digits after the decimal point. The syntax diagram consists of an integer part, the
decimal point and a fraction part.

<«4— Integer part >« - IP(— Fraction part —

Decima

point
/ -
/
/
LL)» <digit>
/
/

-
-

<white
space
character>

L <digit>

/ /
/ /__ Thedecimal J/
4
J . The value in the 82‘3;‘,1'.“@(! not . The value in the fraction part

mtegbrpart may be omitted.

may be omitted.
® The numeric expression of the integer format is applied to the integer part.
[)

No spaces may be inserted between numbers and the decimal point — +753A.123 (X)
X: not allowable

Spaces may be inserted after the fraction part - +753.123AAAA

°

® There need not be any numbers before the decimal point — .05

® A + or — sign can be inserted before the decimal point - +.05, —.05
°

A number can end in a decimal point — 12.

5-19

SECTION 5 LISTENER INPUT FORMAT

5.3.2 <NON-DECIMAL NUMERIC PROGRAM DATA >

<NON-DECIMAL NUMERIC PROGRAM DATA > is program data for sending hexadecimal value
data as non-decimal numeric data. The non-decimal data always begins from the # mark. The non-
decimal data is defined as a coded syntax diagram shown in the below. When strings except for a
specified character string is sent,a command error generates.

A

@ :/H\ > <digit>
% —/

orAtoF

Characters followed by #H are received at the device as an unsigned hexadecimal numeric. Characters
in the () means corresponding decimal numbers.

Example:

The program message which sets the data input timing voltage to GND.
#HABCD (43,981D)

5-20.

SECTION 6
TALKER OUTPUT FORMAT

Two types of data messages are transmitted between the controller and a device via the system
interface when the bus is in the data mode, i.e. when the ATN line is false: program messages and
response messages. This section describes the format of the response messages sent by a talker device

to the controller.
TABLE OF CONTENTS

6.1 Syntax Differences Between Formats of Listener Input and Talker Output 6-4

6.2 Functional Elements of Response Messagecoiiiiiiiiiiiniiienennnnn. 6-5
6.2.1 <TERMINATED RESPONSE MESSAGE> i, 6-5
6.2.2 < RESPONSE MESSAGE TERMINATOR>ttt 6-6
6.2.3 <RESPONSE MESSAGE > ittt it iieeaaanns 6-7
6.2.4 <RESPONSE MESSAGE UNITSEPARATOR>iiiiiiiiiiiiiiinannn. 6-8
6.2.5 < RESPONSE MESSAGE UNIT > i i en 6-8
6.2.6 < RESPONSE HEADERSEPARATOR>ttt 6-9

6.2.7 <RESPONSE DATASEPARATOR> e 6-9
6.2.8 <RESPONSE HEADER >
6.2.9 <RESPONSE DATA>

6-1

(Blank)

SECTION 6 TALKER OUTPUT FORMAT

Response messages convey measured results, setting conditions and status information. Some
response messages have a header, and others not.

The diagram below, as an example, shows each response message is sent from a device to a controller as
an ASCII character string with a header for a data input termination voltage query message unit
DTM? and a clock input termination voltage query message unit CTM?.

< TERMINATED RESPONSE MESSAGE >
A

-~

<RESPONSE MESSAGE > <RESPONSE MESSAGE TERMINATOR >

Talker
(device)

Listener
(controller)

Address 3 ‘

< RESPONSE MESSAGE UNIT > < RESPONSE MESSAGE UNIT SEPARATOR > < RESPONSE MESSAGE UNIT > <NL>
DTM_0 ; /clm) \
<RESPONSE HEADER> <RESPONSE HEADER > NL
DT™M CTM
<RESPONSE HEADER SEPARATOR > <RESPONSE DATA > <RESPONSE HEADER SEPARATOR> <RESPONSE DATA >
sp _Q \ sP ﬂ\
<response mnemonic> < character response data> <character response data >
DTM 1)} 0o

The program for the above would be as follows:

100 WRITE @103:"DTM? "! Data input termination voltage query message request
116 READ @1@03:AS$! When the terminator NL is detected, the response message DTMA@ is read into
AS.

120 WRITE @103:"CTM? " ! Clock input termination voltage query message request
130 READ @103:B$! Clock input termination volgage response message CTMA®

As for program messages, response messages are made up of a sequence of functional elements which
are the minimum unit capable of expressing function. The upper-case alphabetic character items
inside < > in the diagram above are examples of functional elements. Functional elements can be
further subdivided into coded elements. The lower-case alphabetic character items inside < > in the
diagram above are examples of coded elements. Thus, the way of expressing items on functional syntax
diagrams is the same for talker and listener.

The following pages explain the talker device output format focussing on the differences between it and
the listener device input format.

6-3

SECTION 6 TALKER OUTPUT FORMAT

6.1 Syntax Differences Between Formats of Listener Input and Talker Output

The differences in syntax between listener device input and talker device output formats are:

® Listener format

There is flexibility in writing programs to make program messages (from the controller) easy to
receive by the listener. Consequently, program messages can perform the same function despite
differences in message description between them. For example, the free insertion of <white
spaces> in separators and terminators makes programs easy to read.

® Talker format

Strict rules govern the syntax of response messages sent from device to controller to make them easy
to receive. Thus, in contrast to the listener format, there is only one notation for each function in the

talker format.

The table below summarizes the differences between the listener and talker formats. Space in the table

means <white space>.

. . Talker-output response
Item Listener-input program message syntax message syntax
Characteristics (Flexible) (Strict)
. Either upper or lower-case characters can be used.
Alphabetic characters Only upper-case for header. Upper-case only
Before / after E in Optional space(s) + E /e + optional space(s) U E onl
NR3 exponent Not supported by the MS2802A. pper-case & only
+ signin NR3 Can be omitted. .
exponent Not supported by the MS2802A. Cannot be omitted
. Two or more spaces can be placed before or after a
<white space> separtor and before a temrinator. Not used
Message unit @ Header with program data @® Data with header
g @ Header without program data ® Data without header
Unit separator Optional space(s) + semicolon Semicolon only
Space before header Optional space(s) + header Header only
Header spearator Header + 1 or more spaces Header + one $20*
Data separator Optional space(s) + comma + optional space(s) Comma only
Terminator Optional space(s) + any of NL, EOI or NL + EOI |NL + EOI

* ASCII code byte 20 (decimal 32 = ASCII character SP: space)

SECTION 6 TALKER OUTPUT FORMAT

6.2 Functional Elements of Response Message

Response messages output by the talker are accepted by the controller once they have been terminated
by the NL END signal. The following describes the functional elements of the response message.

As the rules for syntax diagram notation are the same as for program messages, refer to Section 5 for
the details. The explanation of functional elements and encoded elements has been omitted where it
would overlap with that for program messages. Refer to Section 5 as required.

6.2.1 <TERMINATED RESPONSE MESSAGE >
A <TERMINATED RESPONSE MESSAGE > is defined as follows:

<RESPONSE
MESSAGE
TERMINATOR>

O > <RESPONSE MESSAGE >

A <TERMINATED RESPONSE MESSAGE > is a data message, containing all the functional
elements required for transmission, sent from a talker device to the controller.

A <RESPONSE MESSAGE TERMINATOR > is attached to the end of a <RESPONSE MESSAGE >
to terminate its transmission.

Example: A <TERMINATED RESPONSE MESSAGE > comprising 2 message units

< TERMINATED RESPONSE MESSAGE >
i

<RESPONSE MESSAGE > <RESPONSE MESSAGE TERMINATOR >

DTM @ ; CTM @ <NL>

Functional elements

Listener Talker

(controller) (device)

Address 3

6-5

SECTION 6 TALKER OUTPUT FORMAT

6.2.2 <RESPONSE MESSAGE TERMINATOR >
A <RESPONSE MESSAGE TERMINATOR > is defined as follows.

G

A <RESPONSE MESSAGE TERMINATOR > is placed after the last <RESPONSE MESSAGE

UNIT > to terminate a fixed length sequence consisting of one or more <RESPONSE MESSAGE
UNIT > elements.

Y

Executing the following statements listed below for NL and END at the start of a program outputs

terminator LF together with the EOI signal, to indicate the END, when the last data byte is
transmitted.

e For NL(LF): TERM IS CHR$(10)
e For END (EOI): EOI ON

Example: To read the current center frequency setting

10 LET ADR=101
20 TERM IS CHR$(1@)! LF (new line) is assigned as the terminator code.

30 EOI ON! When the last data byte is transmitted, the EOl signal is sent which makes the EOl line
true

40 WRITE @ADR:"DTM?"! Query to read the data input termination voltage

5@ READ GADR:AS$! EOIlsignal terminates the reading of response data

60 PRINT A$

70 END

6-6

SECTION 6 TALKER OUTPUT FORMAT

6.2.3 <RESPONSE MESSAGE >
A <RESPONSE MESSAGE > is defined as follows.

<RESPONSE
MESSAGE UNIT 3
SEPARATOR>

> <RESPONSE MESSAGE UNIT> >

A <RESPONSE MESSAGE > consists of one <RESPONSE MESSAGE UNIT > elementor a
sequence of many <RESPONSE MESSAGE UNIT > elements. A <RESPONSE MESSAGE UNIT >
element is a single message sent from a device to the controller. A <RESPONSE MESSAGE UNIT
SEPARATOR> element is used to separate <RESPONSE MESSAGE UNIT > elements.

Example:

Attaches the DTM and CTM headers to the data input termination voltage and clock input termination
voltage, and transmits them in 1- character fixed format.

<RESPONSE MESSAGE >

"DIMAD ; CTMA@\ \

< RESPONSE MESSAGE UNIT > < RESPONSE MESSAGE UNIT SEPARATOR > < RESPONSE MESSAGE UNIT >

6-7

SECTION 6 TALKER OUTPUT FORMAT

6.2.4 <RESPONSE MESSAGE UNIT SEPARATOR >
A <RESPONSE MESSAGE UNIT SEPARATOR > is defined as follows.

,®__,

A semicolon (;) is used as the <RESPONSE MESSAGE SEPARATOR > to separate a sequence of
<RESPONSE MESSAGE UNIT > elements that is to be transmitted as one message.

6.2.5 <RESPONSE MESSAGE UNIT>
A <RESPONSE MESSAGE UNIT > is defined as follows.

<RESPONSE
DATA
SEPARATOR >

<RESPONSE
HEADER
SEPARATOR>

<RESPONSE

HEADER> <RESPONSE DATA>

<RESPONSE
DATA
SEPARATOR>

<RESPONSE DATA> /

Y

A <RESPONSE MESSAGE UNIT > consists of 2 basic types of syntax. The first is a response message
with a header which returns the results of processing data on settings made by program messages. The
second is a response message unit without a header which returns only measured results.

6-8

SECTION 6 TALKER OUTPUT FORMAT

6.2.6 <RESPONSE HEADER SEPARATOR>
A <RESPONSE HEADER SEPARATOR > is defined as follows:

Y

()
N\

The <RESPONSE HEADER SEPARATOR > is a space after the <RESPONSE HEADER > to
separate it from <RESPONSE DATA >. The space, SP, is ASCII code byte 20 (decimal 32).

There is always one space to separate the header from the data in a response message with a header.
This space indicates the end of the header and the start of the data.

6.2.7 <RESPONSE DATA SEPARATOR>
A <RESPONSE DATA SEPARATOR > is defined as follows:

)
\/

A <RESPONSE DATA SEPARATOR > is used to separate <RESPONSE DATA > items when more
than one is output.

Y

6.2.8 <RESPONSE HEADER>

With the exception of the following three points, the format of the <RESPONSE HEADER > is the
same as that described for the <COMMAND PROGRAM HEADER > in paragraph 5.2.8.

® The <response mnemonic> has a stipulated character set stating that alphabetic characters must
be upper-case. Otherwise it is the same as the <program mnemonic> in paragraph 5.2.8.

(@ Spaces can be placed in front of a program header but cannot be placed in front of a response header.

® More than one space may be placed after a program header but only one may be placed after a
response header.

All aspects of the <RESPONSE HEADER > up to the <response mnemonic> are shown on the next
page.

(F Forcharacters used in <response mnemonic>, alphabetic characters are always upper-case characters and other
characters are used in the same manner as <response mnemonic>.)

6-9

SECTION 6 TALKER OUTPUT FORMAT

Element Function
RESPONSE The header indicates the function of the response data. Its meaning is shown by a
HEADER

<response mnemonic> which is a combination, of up to 12 characters, of upper-
case alphabetic characters, numbers and underlines starting with an upper-case
alphabetic character.

<simple
> response
header>

<common
response
header>

1) A <simple response header > is defined as follows:

<response
mnemonic>

2) A <common response header> is defined as follows:

<response

. R
mnemonic>

3) A <response mnemonic> is defined as follows:

-
-

<upper-case
alpha>t

<upper-case
alpha>+t

L) g
=

<digit>

P
Coutl

t<upper-case alpha> ASCII code bytes 41 to 5A (decimal 65 to 90 = upper-case alphabetic A to Z)

6-10

SECTION 6 TALKER OUTPUT FORMAT

6.2.9 <RESPONSE DATA>

The diagram below shows the 11 types of response data. The MP1764D supports the response data in
the shaded ovals below. The type of response data to be returned is determined by the query message.

<CHARACTER
RESPONSE DATA>

1

<NR1 NUMERIC
RESPONSE DATA>

<NR2 NUMERIC
RESPONSE DATA>

<NR3 NUMERIC
RESPONSE DATA>

NUMERIC RESPONSE DATA >

<OCTAL NUMERIC
RESPONSE DATA>

<BINARY NUMERIC
RESPONSE DATA>

<STRING
RESPONSE DATA>

<DEFINITE LENGTH\ \ -
ARBITRARY BLOCK RESPONSE DATA > >

INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA> 1

<ARBITRARY ASCII
RESPONSE DATA> ¥

oL

T Both <INDEFINITE LENGTH ARBITRARY BLOCK RESPONSE DATA > and <ARBITRARY ASCII RESPONSE DATA >
are terminated by an NLAEND in their own last data byte.

6-11

SECTION 6 TALKER OUTPUT FORMAT

AAT2__MANUAL

(2) NR1 NUMERIC
RESPONSE
DATA

<Example>
123
+123
—1234

(3) NR2 NUMERIC
RESPONSE
DATA

<Example>
12.3
+12.34
—12.345

(4) NR3 NUMERIC
RESPONSE
DATA

<Example>
12.3E + 4
+12.34E - 5
—12.345E + 6

® No lower-case
character is
allowed for E.

® Spaces before
and after E are
not allowed.

® “+”in exponent
part cannot be
omitted.

® “+”in mantissa
part can be
omitted.

Element Function
(1) CHARACTER Data composed of character strings common with <response mnemonic>.
RESPONSE Thus the beginning of the character string is always an upper-case alphabetic
DATA character and the character string length is limited to 12 characters. Numeric
parameters are not suitable for being used.
<Example>
A.AT2_____AUTO <response
mnemonic >

Integer data, i.e. decimal values without a decimal point or exponents.

<digit>

Fixed-point data, i.e. decimal values without integers or exponents.

-

<digit> <digit>

Floating-point data, i.e. decimal values with exponent digits.

<digit>

<digit> |

™

<digit>

6-12

SECTION 6 TALKER OUTPUT FORMAT

Element

Function

(5) HEXADECIMAL
NUMERIC
RESPONSE
DATA

<Example>
#HABC123
#H2DC3
#H8301

(6) OCTAL
NUMERIC
RESPONSE
DATA

<Example>
#Q37
#Q26703
#Q30562

(7) BINARY
NUMERIC
RESPONSE
DATA

<Example>
#B011101
#B1011
#B1011

Hexadecimal numeric data.

=)

Octal numeric data.

Binary numeric data.

* For MP1764D, data with “+” and “—” is handled.

(H—)

adiid

{
(

<digit>

/

w@c&i@%

g

6-13

SECTION 6 TALKER OUTPUT FORMAT

Element Function

(8) STRING All the ASCII 7 bit codes are available. Both ends of the character string are
RESPONSE always enclosed by double quotation marks. Double quotation marks within a
DATA character string are used as two consecutive quotations composed of identical

ones. They are suitable for outputting texts to a printer or CRT since CRs, LFs

<Example> and spaces are available.
“This is a text” <
“Say’” “Hello” “.” / ‘ \

<inserted” >

<non-double

quote char>

N\ < /

(9) DEFINITE Fixed-length 8 bit binary block data. It is suitable for transferring a large
LENGTH amount of data, 8 bit extended ASCII codes, non-displayed data and so on.
ARBITRARY - -

BLOCK
RESPONSE
DATA <non-zero N — | <Bbit
—)@—» digit> > <digit> ™ data byte>
<Example>
Transferring
11256099D in >
4 byte length
)
#1400ABC123

(10) INDEFINITE Undefined-length 8 bit binary block data. So, the first data is preceded with

LENGTH #0. The last data is terminated by NLAEND.
ARBITRARY -
BLOCK

RESPONSE
DATA <8-bit
data byte>

<Example>
Transferring —
250, — 50,120, ... >
in undefined
length

!
#0FF06FFCE0078

6-14

SECTION 6 TALKER OUTPUT FORMAT

Element

Function

(11) ARBITRARY
ASCII
RESPONSE
DATA

<Example1>
<ASCII Byte>
<ASCII Byte>
NLAEND

<Example2>
NLAEND

ASCII data bytes (excluding NL characters) sent without separating them; so,

the last data is terminated by NLAEND.

-
-

<ASCII
data byte>

Y

6-15

SECTION 6 TALKER OUTPUT FORMAT

(Blank)

6-16.

SECTION 7
COMMON COMMANDS

This section describes the common commands and common query commands specified in the IEEE
488.2 standard. These common commands are not the bus commands used in interface messages. Like
device messages, common commands are a type of data message used in the bus data mode, i.e. when
the ATN line is false. They can be used for all measuring instruments, including those made by other

companies, as long as they conform to the IEEE 488.2 standard. IEEE 488.2 common commands must
start with an *.

TABLE OF CONTENTS
7.1 Classification by Function of Common Commands Supported by the MP1764D 7-3
7.2 The Classification of Commands Supported and the Reference 7-4

71

(Blank)

SECTION7 COMMON COMMANDS

7.1 Classification by Function of Common Commands Supported by the MP1764D

The table below shows the classification by function of the IEEE 488.2 common commands supported
by the MP1764D. Supported commands are listed on the following pages in alphabetical order.

SECTION7 COMMON COMMANDS

7.2 The Classification of Commands Supported and the Reference

Commands to be supported for MP1764D shown on the previous page are described for each function
group in the table below. Each command is described in alphabetic order from the next page.

Group Function Mnemonic
System data | Data specific to each device connected to the GPIB system, e.g. *IDN?
manufacturer, model, serial number, etc.
Internal Device internal control: *RST
operation @ Resetting device in level 3 (See Section 4) *TST?
@ Device self testing and error detection
Synchronization | Synchronization of device to controller by: *0PC
(@ Waiting for a service request *0PC?
(@ Waiting for a response from the device output queue *WAI
® Performed by forcing sequential execution.
Status and A status byte consists of a status summary message. The *CLS
event summary bits of the message are supplied by the standard event *ESE
register, the output queue and the extended event register or ”
extended queue. Four commands and five queries are available to *ESE?
set or clear the data in the registers and queues, to enable or *ESR?
disable them and to obtain the settings status of the registers. *PSC
*PSC?
*SRE
*SRE?
*STB?
Device trigger | Defines the commands to be executed when the IEEE 488.2 GET | %xTRG
bus command is received by a device.
Optional Outputs information on installed options. *0PT?
Information

SECTION7 COMMON COMMANDS

*CLS Clear Status Command
(Clear status byte register)

M Syntax
*CLS

M Example

30 WRITE @103:"*CLS"
40 WRITE @103:"DTMA@G;CTMAD;*CLS"

H Explanation

The *CLS common command clears all status data structures (i.e their event registers and queues)
except for the output queue and its MAV summary messages. It also clears the summary messages
corresponding to these structures.

In the example below, the output queue and its MAV summary messages are also cleared.

30 WRITE @103:"DTMADG;CTMAG"
40 WRITE @1@3:"*CLS;DTM?"

That is to say, if a 3¢ CLS command is sent after a <PROGRAM MESSAGE TERMINATOR > or
before <KQUERY MESSAGE UNIT > elements, all status bytes are cleared. This command also
clears all unread messages in the output queue.

*CLS has no effect on settings in enable registers.

Service Request generated ----4
1
}
1
I
AN
I
)
|
|
o

Extended event
registerorqueue N (\ot ysed by theMP1764D)

Standard event
register

=+ -+ Output queue

Extended event

register or queue (Queue not used by theMP1764D)

Extended event

register or queue (QUeUe not used bytheMP‘I 764D)

\/

Status summary
message

Extended event
register or queue

(Queue not used by the MP1764D)

Extended event
register or queue

(Not used by the MP1764D)
Status byte register

7-5

SECTION7 COMMON COMMANDS

*ESE Standard Event Status Enable Command

(Sets or clears the standard event status enable register)

H Syntax

*kESE <HEADER SEPARATOR > < DECIMAL NUMERIC PROGRAM DATA>

In this format:

<DECIMAL NUMERIC PROGRAM DATA > = Value rounded to an integer from 0 to 255 (Binary
weighted with a base value of 2)

M Example
WRITE @103:"kESE 20"! setsbits2and4ofenable register

M Explanation

The program data is the sum of weighted bit-digit values when the weighted value for bits to be
enabled are selected from among the values2°=1, 2! =2, 2°=4,23=8,2*=16,25=32,26=64 or
27=128; corresponding to the enable register bits 0, 1, 2, 3, 4, 5, 6 or 7. The value of bits to be
disabled is 0.

Prmimr—imimim i

iTo bit 5 of the status byte -:(- Logical OR
iregister for the ESB (Event i T

I H I
pummaryBiY) i

A A A A A

disabled =0, enabled=128(27)| 7 & 7 |Poweron
disabled =0, enabled=64 (26)} 6 @4— 6 |userrequest (Notused in MP1764D)
disabled =0, enabled=32 (25)| 5 ®<— 5 |command error
disabled =0, enabled=16 (24) | 4 @‘ 4 |Execution error
disabled =0, enabled=8 (23) 3 @: 3 Device-dependent error
disabled =0, enabled=4 (22)| 2 @ < 2 Query error
disabled =0, enabled=2 (21) | 1)< 1 |Reauestior by ot i MP1764D)
disabled =0, enabled=1 (20)| O *C&/ < 0 |operation complete
Standard event status Standard event
enable register status register

SECTION7 COMMON COMMANDS

*ESE? Standard Event Status Enable Query

(Returns current value of standard event status enable register)

H Syntax

*ESE?

H Example
2@ is the response if XESE? is sent after executing %kESE 20

M Explanation

Returns NR1, the value of the standard event status enable register

H Response message
NR1=0to 255

SECTION7 COMMON COMMANDS

*ESR?: Standard Event Status Register Query

(Returns the current value in the standard event status register)

H Syntax
*ESR?

M Example

30 WRITE @103:"*ESR?"
40 READ @1@3:STEVET
50 PRINT STEVET

H Response Message
NR1=0 to 255

B Explanation

The current value of the standard event status register is returned by NR1. NR1 is the total of
weighted bit-digit values of bits (enabled by the standard event status enable register) which are
selected from amongs the values 2°=1,2!=2,2?=4,2°=8,2=16,2°=32,2°=64 or 2'=128:
corresponding to the standard event status register bits 0,1, 2, 3,4, 5,6 or 7.

This register is cleared when the response is read (e.g. line 40).

ITo bit 5 of the status byte | Logical OR

iregister for the ESB (Event i T

Summary Bit) !

i A
b e e e d

A A A

disabled =0, enabled =128(27)

disabled =0, enabled =64 (26)
disabled =0, enabled =32 (25)

disabled =0, enabled=8 (23)

disabled =0, enabled=4 (22)

7
6
5
disabled =0, enabled=16 (24)| 4 (&)=
3
2
1

disabled =0, enabled=2 (21)

)< 7
@<~ 6
(& 5
D

4

R\
Ox 3
(&)=< 2
(&)= 1
0

disabled =0, enabled=1 (29| 0 (&)<

Standard event status
enable register

Power on

User request (Not used in MP1764D)
Command error

Execution error

Device-dependent error

Query error

Request for bus control
(Not used in MP1764D)

Operation Complete

Standard event
status register

SECTION7 COMMON COMMANDS

*IDN? Identification Query
(Returns the manufacturer name, model name etc. of the product.)

M Syntax
*IDN?
H Example
30 WRITE @103:"*xIDN?"
4@ READ @103:IDENS$! Stores names of manufacturer, model, etec.

B Explanation

Returns manufacturer’s name, model name, &version No.
VRINRIRINRINRGNIRIRINRINRINIRINPRINRINRG XRINARINRINRARG RRARAARAARARRS

-

MP1762D
ANRITSU

If an *IDN? common query is sent to a device when the manufacturer is Anritsu, the model is

MP1764D, and the firmware version is 1; a response message comprising the four fields shown above
is returned.

® Field1 Manufacturer’s name (Anritsu)
@ Field2 Model name (MP1762D)

® Field3 (usually @)

® Field4 Version No.

M Response message

A Response message comprising the four fields above separated by commas is sent by
< ARBITRARY ASCII RESPONSE DATA >.

<field 1>, <field 2>, <field 3>, <field 4>
For the example above,

ANRITSU,MP1762D,0,1.0

The total length of a response message is =72 characters

Note
Even if the real model name is MP1764D, the response message is MP1762D.

SECTION7 COMMON COMMANDS

*OPC Operation Complete Command
(Sets the status of bit 0 of the standard event status register when device operation is
completed)

l Syntax
*0PC

H Example
WRITE @103:"*O0PC"

M Explanation

Sets the status of bit 0, i.e. the operation complete bit, of the standard event status register when all
pending operations of the selected device have been completed.

Logical OR
A A A A A A A
7 & 7 Power on
(< User request
6 P & 6 ((‘Not used in MP1764D)
5 @4—-—— 5 |commanderror
4 @4— 4 Jexecution error
3 \® - 3 Device-dependent error
2 @/ - 2 |Queryerror
1 /< &\ , 1 Request for bus control
_/‘ (Not used in MP1764D)
enabled=20] 0 *@< 0 |operation complete
Stanbcllard e_v?nt status Standard event status register
enable register
Status byte register 1 .-+ .. Outputqueue
—

7-10

SECTION7 COMMON COMMANDS

**OPC? Operation Complete Query

(Sets 1 in the output queue to generate a MAV summary message when device operation has
been completed)

B Syntax

*0PC?

H Example
WRITE @103:"*0PC?"

M Explanation

When all pending operations of the selected device have been completed, sets 1 in the output queue
and waits for the MAV summary message to be generated.

H Response message
A 1isreturned by <NR1 NUMERIC RESPONSE DATA >.

7-11

SECTION7 COMMON COMMANDS

*OPT? Option Query

(Outputs information on installed options.)

M Syntax
*OPT?

H Example

30 WRITE @103:"*OPT?"
40 READ:OPTI

H Explanation
*OPT query outputs information on the installed options.

H Response message

<ARBITRARY ASCII RESPONSE DATA >
Returns characters corresponding to installed options while separating items with commas.

0 : No installed option
OPT@1 :MP1764D-01 Error Analysis

7-12

SECTION7 COMMON COMMANDS

*PSC Power-on Status Clear Command
(Specifies whether status enable registers are cleared at power-on, or not.)

M Syntax

*PSC <HEADER SEPARATOR><DECIMAL NUMERIC PROGRAM DATA>

In this format:

<DECIMAL NUMERIC PROGRAM DATA> =0 : not cleared
Numbers in range of — 32767 to 32767 : cleared

M Example
WRITE @103:"*PSC @;*SRE 32;%ESE 128"! notcleared and SRQison

H Explanation

The *PSC command specifies whether the three enable registers of service request, standard event
status, and parallel poll in status are cleared at power-on, or not.

A value in the <DECIMAL NUMERIC PROGRAM DATA > field controls the logical state of the
power-on status flag. When it is rounded to 0, the flag is set to false, so the enable registers are not
cleared. When the %kPSC @ is issued, it enables the device to generate the SRQ at power-on. In the
above example, the power-on event is reported to the controller.

When the value in the <DECIMAL NUMERIC PROGRAM DATA > field is rounded to an integer
other than 0 that is in range of — 32767 to 32767, the flag is set to true, so the enable registers are

cleared. When the %PSC 1 isissued, it enables the device to clear the registers but not to generate
the SRQ.

When the value in the <DECIMAL NUMERIC PROGRAM DATA > field is rounded to an integer
that is out of range of — 32767 to 32767, the execution error is generated.

7-13

SECTION7 COMMON COMMANDS

*PSC? Power-on Status Clear Query
(Returns the power-on status flag state)

M Syntax

*PSC?

M Example

30 WRITE @103:"*PSC?"
40 READ:POWF

M Explanation

When the %PSC? common query is issued, 1 is returned when the power-on status flag is true, and @
is returned when it is false.

H Response message

NR1=1 (Power-on status flag is true.) @ (Power-on status flag is false.)

7-14

SECTION7 COMMON COMMANDS

*RST Reset Command
(Resets (initializes) device in level 3)

H Syntax

*RST

B Example
WRITE @103:"*kRST" Resetsdevicesinlevel 3

B Explanation
The *¥RST command resets a device in level 3. (See Section 4)
The items that are reset in level 3 are as follows.

® The functions and conditions specific to a device are reset to a known initial state regardless of the
settings up to that point. (See Section 4 for MP1764D initial states)

@ Macro operation is inhibited and the device can no longer receive macros. And, macro definition
is reset to the state designated by the system designer.

® The device is put into OCIS (Operation Complete Command Idle State). As a result, the operation
complete (end) bit cannot be set in the standard event status register.

@ The device is put into OQIS (Operation Complete Query Idle State). As a result, the operation
complete bit cannot be set in the output queue. The MAYV bit is cleared.

The *RST command has no effect on the following.
D The state of the IEEE 488.1 interface

@ Device address

® Output queue

@ Service request enable register

® Standard event status enable register

® Power-on-status-clear flag setting

7-15

SECTION7 COMMON COMMANDS

**SRE Service Request Enable Command
(Sets status of bits in the service request enable register)

M Syntax

% SRE <HEADER SEPARATOR > < DECIMAL NUMERIC PROGRAM DATA >

<DECIMAL NUMERIC PROGRAM DATA > = Values rounded to an integer from 0 to 255 (binary
weighted with a base value of 2)

M Example
WRITE @103:"*SRE 16" ! Setsbit 4 of the enable register

H Explanation

The program data is the sum of weighted bit-digit values when the weighted value for bits to be
enabled are selected from among the values 2°=1, 2! =2, 22=4,23=8, 2¢=16,2°=32 or 2'=128:
corresponding to the service request enable register bits 0, 1, 2, 3, 4, 5, 6 or 7. The value of bits to be
disabled is 0.

>l Service Request

H Generation |~~""7°7°7 H
E Logical OR -1 f E %
r_A_.\AAAAWKT i — i;
disabled =0, enabled=128(27)| 7 (& ><—|—-: 7 | Notused E g
Not used)\ MSS 6 RQS |=<€------ - >
disabled =0, enabled=32 (25)] 5 (&)= 5| esp «=—m 2
disabled =0, enabled=16 (24)| 4 ®< 4 | MAV €=——— §
disabled =0, enabled=8 (23)| 3 @4 3 | EsB(ERROR) <—— :
disabled =0, enabled=4 (22)| 2 O< 2 | esB(END) <=— 3
disabled =0, enabled=2 (27| 1 @ < 1 | Notused <—— 3
disabled =0, enabled=1 (29)| O r’@‘ 0 | Notused <

Service request enable register Status byte register

7-16

*SRE? Service Request Enable Query
(Returns the current value of the service request enable register)

H Syntax

SECTION7 COMMON COMMANDS

*SRE?

B Example
A 16 is sent in response if kSRE? is sent after executing %*SRE 16.

M Explanation

NR1, the value of the service request enable register, is returned.

H Response message
As NRI1 (bit 6 : RQS bit) cannot be set, NR1 = 0 to 63 or 128 to 191)

717

SECTION7 COMMON COMMANDS

*STB? Read Status Byte Command
(Returns the current values of status bytes including MSS bits)

M Syntax

*STB?

B Example

30 WRITE @103:"*STB?"
40 READ @103:STBV
5@ PRINT STBV

W Explanation

The %STB? query returns the total of the binary weighted values of the status byte register and of
the MSS summary message with <NR1 NUMERIC RESPONSE DATA >.

B Response message

The response message is a <NR1 NUMERIC RESPONSE DATA > integer in the range 0 to 255
representing the total of the binary weighted values of the bits in the status byte register. Status
byte register bits 0 to 5 and 7 are weighted to 1, 2, 4, 8, 16, 32 and 128, respectively, and the MSS
(Master Summary Status) bit to 64. MSS message indicates that a request has at least one cause.

Service Request

H Generation [~777777 H
i Logical OR -1 X i :).’,
,_&\AAAAAT fi — A
disabled =0, enabled=128(27)| 7 >(& : 7 Not used i qE)
Not used /L >IMSS 6 RQS |<------ - >
disabled =0, enabled=32 (25)| 5 (&)= 5| tspe—m 2
disabled =0, enabled=16 (24| 4 (&)< 4 | miv —— g
disabled =0, enabled=8 (23)]| 3 (8)=< 3 | ESB(ERROR) <—— :
disabled =0, enabled=4 (22)| 2 @: 2 | esB(EnD) <—— 3
disabled =0, enabled=2 (21| 1 (&)=< 1 | Notused >
disabled =0, enabled=1 (20| O R)= 0 | Notused <

Service request enable register Status byte register

7-18

SECTION7 COMMON COMMANDS

The table below shows the conditions for the MP1764D’s status byte register.

Bit |Bitweight | Bitname Status-byte-register conditions

7 128 e 0 = Not used

6 64 MSS 0 = Service not requested 1 = Service requested

5 32 ESB 0 = Event status not generated 1 = Event status generated
4 16 MAV 0 = No data in output queue 1 = Data in output queue

3 8 ESB(ERROR) | 0 = Event status not generated 1 = Event status generated
2 4 ESB(END) | 0 = Event status not generated 1 = Event status generated
1 2 —_ 0 = Not used

0 1 e 0 = Not used

7-19

SECTION7 COMMON COMMANDS

*TRG Trigger Command
(The same function as that of IEEE 488.1 GET-Group Execute Trigger-bus command)

M Syntax

*TRG?

M Example
WRITE @103:"*TRG"

M Explanation

The *TRG common command has the same function as the IEEE 488.1 GET — Group Execute
Trigger-bus command. The MP1764D does not support the DDT command.

With the MP1764D, a measurement is started by executing the ®kTRG common command.
WRITE @1@63:"*TRG"

7-20

SECTION7 COMMON COMMANDS

*TST? Self-test Query

(Returns the results of error present/absent in the self-test)

M Syntax

*TST?

M Example

30 WRITE @103:"*TST?"
40 READ @1@3:TEST
50 PRINT TEST

H Explanation

The *TST? query executes the self-test of the internal cirucit in device(s). The test result is set in
the output queue. Data in the output queue indicates whether or not the test has been completed
without error occurrence. Opeator intervention is not required to execute the self-test.

When the power is turned on, the MP1764D reports the self-test result.

H Response message

The response message is sent by <NR1 NUMERIC RESPONSE DATA >. The data range is —
32767 t0 32767.

NR1=0 Indicates no errors

NR1=@ Indicates that errors have occurred

7-21

SECTION7 COMMON COMMANDS

*WAI Wait-Continue Command
(Forces the next command to wait while the device is executing a command)

M Syntax
*WAI

M Example
WRITE @103:"*kWAI"

B Explanation
The *kWAI common command executes a overlap command as a sequential command.

The overlap command is a command or query that is sent by the controller and allows the next
command to be executed even while the device is executing something.

While the device is executing a command, executing the 3¥WAI common command after an overlap
command forces the next command to wait and allows it to be executed after the current command
has been executed. This action is the same as that of sequential command.

7-22.

This section describes device status reports and their data structure as defined in the IEEE 488.2

SECTION 8
STATUS STRUCTURE

standard and explains the techniques for synchronizing the controller and devices.

In order to obtain more detailed status information, the IEEE 488.2 standard has more common
commands and common queries than the IEEE 488.1 standard.

Refer to Section 7 for a detailed explanation of these common commands and queries.

8.1
8.2

8.3
8.4

8.5

8.6
8.7

TABLE OF CONTENTS

IEEE 488.2 Standard Status Modelt s

Status Byte (STB) Registerottt i ettt

8.2.1 ESB and MAV summary MesSagesueeieuunnaneennnnrennnereanennnn
8.2.2 Device-dependent SUMMaAry MesSagesuuuuuuinnenereeeeanaaennn.
8.2.3 ReadingandclearingtheSTBregisterciiiiiiiiiiiiiinnnnn
ENabling SRQ ...ttt
Standard Event Status Register i it e
8.4.1 Bitdefinition o i e
8.4.2 Queryerrordetailscoiiiiiiii e
8.4.3 Reading, writing to and clearing the standard event status register
8.4.4 Reading, writing to and clearing the standard event status enable register
Extended Event Status Register ittt e
8.5.1 Bit definition of END eventstatusregister,
8.5.2 Bit definition of ERROR event statusregister
8.5.3 Reading, writing to and clearing the extended event status register
8.5.4 Reading, writing to and clearing the extended event status enable register
Queue Model ... e
Techniques for Synchronizing Devices withthe Controller
8.7.1 Enforcing the sequential execution il
8.7.2 Wait for aresponse from theoutputqueue
8.7.3 Waitforaservicerequestottt e

8-1

(Blank)

SECTION 8 STATUS STRUCTURE

The Status Byte (SB) sent by the controller is based on the IEEE 488.1 standard. The bits comprising it

are called a status summary message because they represent a summary of the current data contained
in registers and queues.

The following pages explain the status summary message and the structure of the status data that
constitutes the status summary message bits as well as techniques for synchronizing the devices and
controller, which use these status messages.

8-3

SECTION 8 STATUS STRUCTURE

8.1 IEEE 488.2 Standard Status Model

The diagram below shows the standard model for the status data structure stipulated in the IEEE
488.2 standard.

7 "8}(— 7 | Power oniron)
o\
g f\r&gyi g User request (URQ)
/:kgy‘ Command error (CME)
4 (&~ 4 |Eexecution error (EXE)
3 ‘/@: 3 |Device-dependent error (DDE)
2 —>®4 2 Query error (QYE)
1 % 1]Request for bus control (RQC)
0 —’®‘ 0 Joperation complete (OPC)
Standard event status Standard event
enable register status register
Y Y ¥V ¥V ¥V ¥
Logical OR Reggﬁg}{_ﬁkESR? :
Fommmommmmooommmo oo > > Ceneraton. ==
E Logical OR 1 ? i Output queue
A A A A A A ! :
— 1 A !
7 >(& : 7 |<=— i g,
| t>IMSS 6 RQS |<--- -
N v
5 B :@‘ 5 | esp<«—- @
4 (&< 4 | Mave—— -
3 (&)< 3 |< s
2 o\ 2 < E
1 :fQ4 1 <= a
& =
0 ~®- @
Service request pt
enable register E b
Read by serial poll :

Standard Status Model Diagram

SECTION 8 STATUS STRUCTURE

The IEEE 488.1 status byte is used in the status model. This status byte is composed of 7 summary
message bits given from the status data structure. For creating the summary message bits, there are 2
models for the data structure - the register model and the queue model.

Register model Queue model

The register model consists of the two registers used for recording
events and conditions encountered by a device. These two registers
are the Event Status Register and Event Status Enable Register.
When the results of the AND operation of both register contents is not
0, the corresponding bit of the status bit becomes 1. In other cases, it

The queue in the queue
model is for sequentially
recording the waiting status
values and data. The queue
structure is such that the
relevant bit is set to 1 when

becomes 0. And, when the result of their Logical OR is 1, the
summary message bit becomes also 1. If the Logical OR resultis 0,
the summary message bit becomes 0 too.

there is data in it and 0 when
it is empty.

In IEEE 488.2, there are 3 standard models for status data structure - 2 register models and 1 queue
model - based on the register model and queue model explained above. They are:

@ Standard Event Status Register and Standard Event Status Enable Register

@ Status Byte Register and Service Request Enable Register

® Output queue

Standard Event Status Register

Status Byte Register

Output Queue

The Standard Event Status
Register has the structure of the
previously described register
model. In this register, bits are set
for 8 types of standard event
encountered by a device, viz.

@ Power on, @ User request,

® Command error, ® Execution
error, ® Device-dependent error,
® Query error, @ Request for bus
control and ® Operation complete.
The Logical OR output bit is
represented by Status Byte
Register bit 5 (DIO6) as a summary
message for the Event Status Bit
(ESB).

The Status Byte Register is a
register in which the RQS bit and
the 7 summary message bits from

the status data structure can be set.

It is used together with the Service
Request Enable Register. When
the results of the OR operation of
both register contents is not 0, SRQ
becomes ON. To indicate this, bit 6
of the Status Byte Register (DIO7)
is reserved by the system as the
RQS bit which means that there is
a service request for the external
controller. The mechanism of SRQ
conforms to the IEEE 488.1
standard.

The Output Queue has
the structure of the queue
model mentioned above.
Status Byte Register bit 4
(DIO5)issetasa
summary message for
Message Available
(MAV) to indicate that
there is data in the output
queue.

8-5

SECTION 8 STATUS STRUCTURE

8.2 Status Byte (STB) Register

The STB register consists of device STB and RQS (or MSS) messages. The IEEE 488.1 standard defines
the method of reporting STB and RQS messages but not the setting and clearing protocols or the
meaning of STB. The IEEE 488.2 standard defines the device status summary message and the Master
Summary Status (MSS) which is sent to bit 6 together with STB in response to an %STB? common
query.

8.2.1 ESB and MAV summary messages

The following is a description of the ESB and MAV summary messages.

(1) ESB summary messages

The ESB (Event Summary Bit) summary message is a message defined by IEEE 488.2, which is
represented by bit 5 of the STB register. This bit indicates whether at least one of the events defined in
IEEE 488.2 has occurred or not when the service request enable register is set so that events are
enabled after the final reading or clearing of the standard event status register. The ESB summary
message bit becomes true when the setting permits events to occur if any one of the events recorded in

standard event status register is true. Conversely, it is false if none of the recorded events occurs even
if events are set to occur.

(2) MAV summary messages

The MAV summary message is a message defined in IEEE 488.2 and represented by bit 4 in the STB
register. This bit indicates whether the output queue is empty or not. The MAV summary message bit
is set to 1 (true) when a device is ready to receive a request for a response message from the controller
and to 0 (false) when the output queue is empty. This message is used to synchronize the exchange of
information with the controller. For example, it can be used get the controller to wait till MAV is true
after it has sent a query command to a device. While the controller is waiting for a response from the
device, it can process other jobs.

Reading the output queue without first checking MAV will cause all system bus operations to be
delayed until the device responds.

8-6

SECTION 8 STATUS STRUCTURE

8.2.2 Device-dependent summary messages

’fhe IEEE 488.2 standard does not specify whether bits 7 (DIO8) and 3 (DIO4) to 0 (DIO1) of the status
byte register are used as status register summary bits, or used to indicate that there is data in a queue.
These bits can be used as device-dependent summary messages.

Device-dependent summary messages have the respective status data structures of the register model
or the queue model. Thus, the status data structure may be either the register to report events and
status in parallel or the queue to report conditions and status in sequence. The summary bit represents
a summary of the current status of the corresponding data structure. In the case of the register model,
the summary bit is true when there is an event set to permit the occurrence of more than one true;
while in the case of the queue model, it is true if the queue is not empty.

As shown below, the MP1764D does not use bits 0, 1 and 7. Asit uses bits 2 and 3 as the summary bits
of the status register, it has 5 register model types (, where 3 types extended) and one queue model type
- an output queue with no extension.

Service Request generated -----

1

\ Extended event
1 register or queue
1

1

1

[S 1 Standard event

: register
- f-—--X _.

(Not used by the MP1764D)

- -+ -+ Output queue

Extended event
register or queue

(Queue not used by the MP1764D)

Extended event
register or queue

(Queue not used by the MP1764D)

\/

Status summary
message

Extended event
register or queue

(Not used by the MP1764D)

Extended event
register or queue

(Not used by the MP1764D)
Status byte register

SECTION 8 STATUS STRUCTURE

8.2.3 Reading and clearing the STB register

Serial poll or the *kSTB? common query are used to read the contents of STB register. STB messages
conforming to IEEE 488.1 can be read by either method, but the value sent to bit 6 is different for each
of them.

The STB register can be cleared using the *CLS command.

(1) Reading by serial poll

When using the serial poll conforming to IEEE 488.1, the device must return a 7-bit status byte and an
RQS message bit which conforms to IEEE 488.1.

According to IEEE 488.1, the RQS message indicates whether the device sent SRQ as true or not. The
value of the status byte is not changed by serial poll. The device must set the RQS message to false
immediately after being polled. As a result, if the device is again polled before there is a new cause for
a service request, the RQS message is false.

(2) Reading by the *STB? common query

The *STB? common query requires the device to send the contents of the STB register and one <NR1
NUMERIC RESPONSE DATA > from the MSS (Master Summary Status) summary message. The
response represents the total binary weighted value of the STB register and the MSS summary
message. The STB-register bits 0 to 5 and 7 are weighted to 1, 2, 4, 8, 16, 32, and 128; and the MSS to
64, respectively. Thus, excepting the fact that bit 6 represents the MSS summary message instead of
the RQS message, the response to 3 STB? is identical to that for serial poll.

(3) Definition of MSS (Master Summary Status)

MSS indicates that there is at least one cause for a service request. The MSS message is represented at
bit 6 in a device response to the *kSTB? query but it is not produced as a response to serial poll. In
addition, it is not part of the status byte specified by IEEE 488.1. MSS is produced by the logical OR
operation of STB register with SRQ enable (SRE) register. In concrete terms, MSS is defined as follows.

(STB Register bit0 AND SRE Register bit0)
OR

(STB Register bit1 AND SRE Register bit1)
OR

(STB Register bits AND SRE Register bit5)
OR
(STB Register bit7 AND SRE Register bit7)

8-8

SECTION 8 STATUS STRUCTURE

As bit-6 status of the STB and SRQ enable registers are ignored in the definition of MSS, it can be
considered that bit-6 status are always being 0 when calculating the value of MSS.

(4) Clearing the STB register by the *CLS common command

With the exception of the output queue and its MAV summary message, the 3CLS common command

clears all status data structures (status event registers and queues) as well as the summary messages
corresponding to them.

In the following case, the output queue and its MAV summary message are both cleared.

30 WRITE @103:"DTMAG;CTMAB"
40 WRITE @103:"*CLS;DTM?"

That is to say, sending a *CLS command (after a <PROGRAM MESSAGE TERMINATOR > or before
<QUERY MESSAGE UNIT > elements) clears all status bytes. This clears all unread messages in the
output queue and sets the MAV message to false. The MSS message is also set to false when a response
is made to % STB?. The *CLS command does not affect settings in the enable registers.

Extended event
register or queue (Not used by the MP1764D)

I

I

1

i

1

1

! Standard event
! | register

H

-+ -+ Output queue

Extended event
register or queue

(Queue not used by the MP1764D)

Extended event
register or queue

(Queue not used by the MP1764D)

(4

Status summary
message

Extended event
register or queue

(Not used by the MP1764D)

Extended event
register or queue

(Not used by the MP1764D)
Status byte register

8-9

SECTION 8 STATUS STRUCTURE

8.3 Enabling SRQ

All types of summary message in the STB register can be enabled or disabled for service requests by
using the SRQ enable function. The service request enable (SRE) register is used for this function to
select summary messages as shown in the diagram below.

Bits in the service request enable register correspond to bits in the status byte register. If a bit in the
status byte corresponding to an enabled bit in the service request enable register is set to 1, a device
makes a service request to the controller with the RQS bit set to 1. For example, if bit 4 (MAV) in the
service request enable register is enabled, the device makes a request for service to the controller each
time the MAYV bit is set to 1 when there is data in the output queue.

Service Request
Generation

. [
: Logical OR F- A o
] : 1 : 3
L A A A A A (—A—\
ﬂ | | Lo
disabled =0, enabled=128(27) | 7 > &€ 7 | Notused i E
)
Not used t>IMSS 6 RQS J<----- 4>
disabled =0, enabled=32 (25) | 5 :@: 5 | espe—— g
disabled =0, enabled=16 (2¢) | 4 ()< 4 | Mave— 5
disabled =0, enabled=8 (23) | 3 >@~ 3 | es(erroRr) <
(%]
disabled =0, enabled=4 (22) | 2 (&) 2 | EsB(END) <— 3
disabled =0, enabled=2 (21 | 1 :04 1 | Notused <«— 3
~ (7]
disabled =0, enabled=1 (20) | 0 _)C&_j‘ 0 | Notused
Service request enable (SRE) register Status byte (STB) register

(1) Reading the SRE register

The contents of the SRE register are read using the 3k SRE? common query. The response message to
this query isa <NR1 NUMERIC RESPONSE DATA > integer from 0 to 255 which is the sum of the
bit digit weighted values in the SRE register. SRE register bits 0 to 5 and 7 are respectively weighted
to1,2,4,8,16,32and 128. The unused bit 6 must always be set to 0.

(2) Updating the SRE register

The SRE register is written to using the * SRE common command. <DECIMAL NUMERIC
PROGRAM DATA > elements follow the *SRE common command. <DECIMAL NUMERIC
PROGRAM DATA > is a rounded integer expressed in binary which represents the sum of the binary
weighted value of each bit of SRE register. A bit value of 1 indicates enabled and a bit value of 0
disabled. The value of bit 6 must always be ignored.

(3) Clearing the SRE register

The SRE register can be cleared by executing the *¥SRE common command or turn the power off and it
on again.

Using the *SRE common command, the SRE register is cleared by setting the value of the <DECIMAL
NUMERIC PROGRAM DATA > element to 0. Clearing the register stops status information from
generating rsv local messages, and service requests are no longer generated.

The MP1764D has the *PSC command. Therefore, if the PSC flag is ture when power is turned on, the
SRE register is cleared.

8-10

8.4 Standard Event Status Register

8.4.1 Bitdefinition

SECTION 8 STATUS STRUCTURE

The standard event status register must be available on all devices conforming to the IEEE 488.2
standard. The diagram below shows the operation of the standard event status register model.
Because the operation of the model is the same as that for the other models explained up till now, the
following only explains the meaning of each bit in the standard event status register as defined in the

IEEE 488.2 standard.

disabled =0, enabled = 128(27)
disabled =0, enabled = 64 (26)
disabled =0, enabled =32 (25)
disabled =0, enabled =16 (24)
disabled =0, enabled=8 (23)
disabled =0, enabled=4 (22)
disabled =0, enabled=2 (21)
disabled =0, enabled=1 (20)

Standard Event Status Enable Register

7 @< 7
6 Camk
5 > Q)€ 5
%)
4 > 4
3 (& 3
2 —-——>@< 2
1 —®- 1
0 >®r- 0
BEEBERN
Logical OR
ESB summary message bit

(To status-byte-register bit 5)

Power on (PON)

User request (URQ)

Command error (CME)
Execution error (EXE)
Device-dependent error (DDE)
Query error (QYE)

Request for bus control (RQC)
Operation complete (OPC)

Standard Event Status Register

8-11

SECTION 8 STATUS STRUCTURE

Bit Event name Description

7 |[PON-—Poweron The power is turned to on

6 | URQ—User Request Request for local control (rtl).

This bit is produced regardless of whether a device is in remote or
local mode. It is not used for the MP1764D so, it is always set to 0.

5 |CME—-Command Error An illegal program message, a misspelt command or a GET
command within a program is received. (Syntax error in header
or parameter, or missing or too many parameters)

4 | EXE—Execution Error A legal program message, which cannot be executed, is received
(Out of range for the parameter)

3 | DDE — Device-dependent Error | An error caused by other than CME, EXE or QYE occurred.

(The current device status cannot accept the request.)

2 | QYE—QueryError An attempt is made to read data in the output queue though there
is none there, or data is lost from the output queue due to any
reason, e.g. overflow etc..

1 | RQC—Request Control A device is requesting control of the bus. This bit is not used on
the MP1764D so, it is always set to 0

0 | OPC— Operation Complete A device has completed operations which were pending and is
ready to receive new commands. This bit is only set in response to
the *kOPC command.

8-12

8.4.2

Query error details

SECTION 8 STATUS STRUCTURE

No.

Item

Description

Incomplete program
messages

If a device receives an MTA from the controller before it receives the
terminator of the program message it is receiving, it aborts the
incomplete program message and waits for the next one. In order to
abort the incomplete message, the device clears its input buffer and
output queue, reports a query error and sets bit 2 in the standard
status register to indicate the query error.

Interruption of response
message

If a device receives an MLA from the controller before it has sent the
terminator of the response message it is sending, it automatically
interrupts the response message and waits for the next program
message. Inorder to interrupt the response message, the device
clears its output queue, reports a query error and sets bit 2 in the
standard status register to indicate the query error.

Sending the next
program message
without reading the
previous response
message

When a device becomes unable to send a response message because
the controller has sent another program message immediately
following a program or query message, the device aborts the
response message and waits for the next program message. It then
reports a query error as in No. 2 above.

Output queue overflow

When several program and query messages are executed in
succession, there may be too many response messages for the output
queue (256 bytes). If further query messages are received when the
output queue is full, the output queue cannot send responses to them
because an overflow situation exists in it. If there is an overflow in
the output queue, the device clears it and resets the section where
response messages are created. Then it sets bit 2 in the standard
event status register to indicate a query error.

8-13

SECTION 8 STATUS STRUCTURE

8.4.3 Reading, writing to and clearing the standard event status register

Reading

The register is destructively read by the }kESR? common query, i.e. it is cleared after
being read. The response message is an NR1 value obtained by binary weighting the
event bit and converting it to a decimal number.

Writing

With the exception of clearing, writing operations cannot be performed externally.

Clearing

The register is only cleared in the following cases.

@ A *CLS command is received

@ The power is turned on when the power-on-status-clear flag is true.
® Anevent is read for the *kESR? query command

8.4.4 Reading, writing to and clearing the standard event status enable register

Reading

The register is non-destructively read by the *kESE? common query, i.e. it is not cleared
after being read. The response message is returned by NR1 after having been binary
weighted and converted to decimal.

Writing

The register is written to by the kESE common command. As bits 0 to 7 of the register
are respectively binary weighted to 1, 2, 4, 8, 16, 32, 64 and 128; data to be written is
sent by <DECIMAL NUMERIC PROGRAM DATA > which is the digit total of the bits
selected from these bits.

Clearing

The register is cleared in the following cases.

@® A *ESE command with a data value of 0 is received

@ The power is turned on when the power-on-status-clear flag is true.
The event status enable register is not affected by the following.

@ Changes of the status of the IEEE 488.1 device clear function

@ A *¥RST common command is received

® A *CLS common command is received

8-14

SECTION 8 STATUS STRUCTURE

8.5 Extended Event Status Register

The register models of the status byte register, standard event status register and enable registers are
mandatory for equipment conforming to the IEEE 488.2 standard.

In IEEE 488.2, status-byte-register bits 7 (DIO8), 3 (DIO4) to 0 (DIO1) are assigned to status- summary
bits supplied by the extended-register and extended-queue models.

For the MP1764D, as shown in the diagram below, bits 0, 1 and 7 are unused and bits 2 and 3 are
assigned to the END and ERROR summary bits as the status-summary bits supplied by the extended-
register model.

As the queue model is not extended, there is only one type of queue - the output queue.

Service Request generation -----

Standard event

Not used register model

Standard event summary bit

4 MAV summary bit

A

Il Y

-+ -+ -+ Output queue

ERROR event summary ERROR event
register model
Not used
Not used END event summary bit END event
register model
Status summary
message

Status byte register

The following pages describe bit definition, the reading, writing to and clearing of registers for the
END and ERROR extended event register models.

8-15

SECTION 8 STATUS STRUCTURE

8.5.1 Bitdefinition of END event status register

The following describes the operation of the END event status register model, the naming of its event
bits and what they mean.

disabled = 0, enabled = 32768(2'5) [15] —> %E (Not used)

disabled = 0, enabled = 16384(2'4) [14 > @ 14] (Not used)

disabled =0, enabled =8192 (21313 > @ [13] (Not used)

disabled = 0, enabled = 4096 (212) |12 > @ 12 (Not used)

disabled = 0, enabled = 2048 (211)[11] > @ 11 (Not used)

disabled =0, enabled = 1024 (21) 10 (& 10| SYNCLOSS

disabled =0, enabled =512 (29) |9] > (ib 9] cLock Loss

disabled = 0, enabled =256 (28) |8] >& 8] ERRORS

disabled =0, enabled =128 (27) |7 >(& | 7 | (Not used)

disabled =0, enabled =64 (26) 6 —> @ 6 | Error analysis completion

disabled =0, enabled=32 (25) |5] & 6] Ey& marpin measurement

disabled =0, enabled=16 (24) |4 & 4 | AUTO SEARCH completion

disabled =0, enabled=8 (23) |3] ——> z Eé%'élié‘fﬁ’é‘ﬁ phase setting

disabled =0, enabled=4 (22) |2 —> | 2 | Pattern setting completion

disabled=0,enabled=2 (2 |[1}>(& 1 | FD Access completion

disabled =0, enabled=1 (20) [0 }& [0] Yeasicement completion
END Event Status Enable Register END Event Status Register

YYYYYYYYYYYYYVYY

Logical OR

!

ESB summary message bit
(To bit 2 of the status register)

8-16

SECTION 8 STATUS STRUCTURE

Bit Event name Description
15 (Not used) (Not used)
14 (Not used) (Not used)
13 (Not used) (Not used)
12 (Not used) (Not used)
1 (Not used) (Not used)
10 SYNC LOSS Synchronous loss has been occurred, or recovered.
9 CLOCK LOSS Clock breakdown has been occurred, or recovered.
8 ERRORS Error has been detected from error-free state.
7 (Not used) (Not used)
6 Error analysis completion | Error analysis has been completed (only when OPTION-01 is
installed).
5 Eye margin measurement |Eye margin measurement has been completed.
completion
4 AUTO SEARCH Auto search has been completed.
completion
3 Clock input phase setting | The servo circuit used for setting clock input phase has been
completion turned from BUSY to READY state.
2 Pattern setting completion | Programmable pattern setting has been completed.
1 FD Access completion Accessing the floppy disk has been completed.
0 Measurement completion | When manual measurement, at operator stop. When single

measurement, at measurement completion. When repeat
measurement, at every measurement completion.

8-17

SECTION 8 STATUS STRUCTURE

8.5.2 Bitdefinition of ERROR event status register

The following describes the operation of the ERROR event status register model, the naming of its
event bits and what they mean.

disabled =0, enabled =32768(215) 15

disabled =0, enabled = 16384(214)

disabled =0, enabled =8192 (213)[13

disabled =0, enabled = 4096 (212)
disabled =0, enabled =2048 (211)
disabled =0, enabled = 1024 (210)
disabled =0, enabled =512 (29)
disabled =0, enabled =256 (28)
disabled =0, enabled =128 (27)
disabled =0, enabled =64 (26)
disabled =0, enabled=32 (25)
disabled =0, enabled=16 (24)
disabled =0, enabled =8 (23)
disabled=0,enabled=4 (22)
disabled =0, enabled =2 (21)
disabled =0, enabled =1 (20)

Error Event Status Enable
Register

8-18

[y
(5]

[
£

[y
(2]

> &) {15
:@ 14

|

(=Y
N

|

[ery
[N

[y
(=]

H&)

[elzn]elafe]o]~|efo]

9

o]
8
7
o]
~®]
n
B
2
B
0

r Event Status Register

Err

o

YYYYYYYYYYYYVYY

Iﬂical OR

'

ESB summary message bit
(To bit 3 of the status register)

SECTION 8 STATUS STRUCTURE

Bit Event name Description
15 (Not used) (Not used)
14 (Not used) (Not used)
13 (Not used) (Not used)
12 (Not used) (Not used)
1 (Not used) (Not used)
10 (Not used) (Not used)
9 (Not used) (Not used)
8 (Not used) (Not used)
7 (Not used) (Not used)
6 (Not used) (Not used)
5 (Not used) (Not used)
4 (Not used) (Not used)
3 (Not used) (Not used)
2 (Not used) (Not used)
1 FD malfunction occurred FD abnormal status has occurred.
0 Printer malfunction Printer abnormal status has occurred.

occurred

8-19

SECTION 8 STATUS STRUCTURE

8.5.3 Reading, writing to and clearing the extended event status register

Reading

The register is destructively read by the a query, i.e. it is cleared after being read. The
END and ERROR event status registers are read by the ESR2? and ESR3? queries.
The read value, <NR1>, is obtained by binary weighting the event bit and converting
it to decimal.

Writing

With the exception of clearing, writing operations cannot be performed externally.

Clearing

The register is cleared in the following cases.

DA *CLS command is received:

@The power is turned on when the power-on-status-clear flag is true.
®An event is read for a query command

8.5.4 Reading, writing to and clearing the extended event status enable register

Reading

The register is non-destructively read by a query, i.e. it is not cleared after being read.
The END and ERROR event status enable registers are read by the ESE2? and ESE37?
queries. The read value, returned by <NR1>, is obtained by binary weighting the
event bit and converting it to decimal.

Writing

The END and ERROR event status enable registers are written to by the ESE2 and
ESE3 program commands. As bits 0 to 7 of the registers are respectively binary
weighted to 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768
data to be written is sent by <DECIMAL NUMERIC PROGRAM DATA >, the digit
total weighted value of the bits selected from among them.

Clearing

The register is cleared in the following cases.

@® ESE2 and ESE3 program commands with a data values of 0 are received by the
END and ERROR event status enable registers.

@ The power is turned on when the power-on-status-clear flag is true.

The extended event status enable register is not affected by the followings:

@ Changes of the status of the IEEE 488.1 device clear function

@ A *RST common command is received

® A *CLS common command is received

8-20

SECTION 8 STATUS STRUCTURE

8.6 Queue Model

The status-data-structure queue model is shown at the right of the diagram below. A queue isdata
structure including data lists arranged in sequence which provides a means of reporting sequential
status and other information. The existence of such information in the queue is indicated by summary
messages. The queue contents are read by the handshake when a device is in TACS (Talker Active
State).

mary bit

L

Queue Output queue

Status byte register

MAV (Message Available) summary
bit indicates that the output queue is
not empty.

The output queue, which is mandatory, is the queue that outputs the MAV summary message to bit 4 of
the status byte. A queue (which can output the MAV summary message to any of bits 0 to 3 or 7 of the
status byte register) is an option and is simply called a “queue”.

As the summary messages from the register model can also be connected to bits 0 to 3 or 7 of the status
byte register, the types of summary messages vary with the device.

Though Anritsu assigns bit 7 of the status byte register for the use of summary message bits from
“queues”, it is not used when the output queue is sufficient.

The output queue is compared with an ordinary queue on the next page.

8-21

SECTION 8 STATUS STRUCTURE

Comparison of Output and Ordinary Queues

cannot be written directly to the
output queue. They can only be sent to
or from the system interface by the
protocol specified by IEEE 488.2
message exchange.

Item Output queue Ordinary Queue
Data input/ output | FIFO (First-In First-Out) Need not always be FIFO
operation

Read Can only be read through the protocol | Read by device-dependent query
defined in SECTION 6. The type of commands. The response messages
response message unit read is read must be of the same type.
determined by the query.

Writing <PROGRAM MESSAGE > elements | <PROGRAM MESSAGE > elements

cannot be written directly to a queue.
They indicate encoded device
information.

Summary message

Is true (1) when the output queue is
not empty and false (0) when the
output queue is empty. The MAV
summary message is used to
synchronize the exchange of
information between a device and the
controller.

Is true (1) when the queue is not empty
and false (0) when the queue is empty.

Clearing

The output queue is cleared in the
following cases:
@ Allitems in it have been read

@ A DCLbus command is received to
initialize message exchange

® PON is true at power on

A queue is cleared in the following
cases:
@ Allitems in it have been read

@ A *¥CLS command is received

® Other device-dependent methods
are used

8-22

SECTION 8 STATUS STRUCTURE

8.7 Techniques for Synchronizing Devices with the Controller

There are 2 ways of synchronizing devices with the controller.

® Enforcing the sequential execution: (Using the *kWAI? command)

@ Wait for a response from the device's output queue: (Using the *kOPC? query)

® Wait for a service request: (Using the *kOPC command / 3k OPC? query)

8.7.1 Enforcing the sequential execution

There are two types of commands specific to devices: sequential commands and overlap commands.

® Sequential command

This is a command or query that is sent by the controller and does not allow the next command to be
executed while the device is executing something.

® Overlap command

This is a command or query that is sent by the controller and allows the next command to be executed
even while the device is executing something.

Enforcing the sequential execution is a synchronizing technique used to enforce a command that
natively acts as an overlap command to be executed sequentially and not to perform the next process
until one process has been completed. In this technique, the ’kWAI command is used.

8-23

SECTION 8 STATUS STRUCTURE

8.7.2 Wait for a response from the output queue

Executing the kOPC? query sets a 1 in the output queue to generate a MAV summary message when a

device has completed all of its pending operations.

In this technique, a device is synchronized with the controller by reading the 1 set in the output queue

as described above or the MAV summary message bit.

As the MAV summary message bit is used in the “wait for a service request” technique, it will be
explained in the next paragraph. The following explains synchronization by reading the output queue.

MSS 6 RQS

Status byte register

<Reading output-queue >

MAV (Message Available) summar
bit indicates that the output queue is

not empty.

O] Send overlap command.

4

@ Send *OPC?

!

<) Read output queue.

{

To the next operation

8-24

Output

queue

.The next %k OPC? is used to confirm
the completion of the final com-
mand. For this reason, it is normal to
send * OPC? after executing an

*|overlap command. However, even

for sequential commands, if it is
necessary to confirm the end of
execution of the final command
from the execution sequence or
execution route, this is done by the

L3k OPC? command.

[The 1 which is read is
ignored, and it goes on to

the next operation

SECTION 8 STATUS STRUCTURE

8.7.3 Wait for a service request

In this technique, the controller is momentarily interrupted by an SRQ signal from a device to process a
status message from the device.

In a normal interrupt, the device would make a request to the controller at any time regardless of what
the controller is doing. However, in using it as a technique for synchronizing the device with the
controller, the controller sends an *kOPC command or an *kOPC? query to the device to check whether
the device's operation has been completed or not. While waiting for the SRQ signal from the operation
complete event, the controller carries on with some other useful task, and when it detects the operation
complete event, the controller processes the designated task.

Logical OR
I 7 |
L A)
MSS 6 RQS
7 >(& 7 lpPoweron
€ 6 > 6 |user request (Not used)
- 5 >|/_&E)(——— 5 Jcommanderror
4 >®< 4 | Eexecution error
3 */&\‘L 3 Device-dependent error
T\
2 >®< 2 Query error
1 ‘/& < 1 mqtuest f?r bus control
& ot used
enabled =20 S Operation complete
Standard event status enable
register (SESER) Standard event status
register (SESR)
Status byte register

- Output queue

M <Using the %¥OPC command >

@Enable the 20 bit of the standard event status enable register. WRITE @103:"ESE 1"
@Enable the 25 bit of the service request enable register. WRITE @103:"%SRE 32"

Y

@ Make the device execute the specified operation. WRITE @103:<PROGRAM MESSAGE>

Y

@Execute the ¥ OPC command. (Since it is an overlap command, the

next command is also executed) WRITE @103:"*0PC"
®Wait for an SRQ interrupt. (ESB summary message) -+ -+ Value of the status byte: 2°+2°=96

8-25

SECTION 8 STATUS STRUCTURE

B <Using the ¥OPC? query>

®Enable the 2* bit of the service request enable register. WRITE ©@1@03:"%SRE 16"

Y

@Make the device execute the specified operation. | WRITE @103 :<PROGRAM MESSAGE>

Y

@ send the *OPC? query. (Wait until the operation in @ has been completed) WRITE @103:"x0PC?"

V.

@Read the ASClI character 1 in the output queue and discard it.

Y

®Wait for the SRQ interrupt (MAV summary message) | - - - - Value of the status byte: 2¢ + 2* =80

Y

To the next operation

Service Request

""""""""""""" > Generation 7777771
Logical OR -1 A E
L A A A A % i r—A—\ i
& ! 7 | Notused i
+>lvss 6 RQs J<----- s

1 5 |ese

enabled =16 (24)

MAV-€—

ESB(ERROR)

ESB(END)

Service request enable register

8-26.

Not used

0 | Notused
Status byte register

-+ -+ Output queue

SECTION9
DETAILS OF DEVICE MESSAGES

This section explains the details of the device messages in the table.

Formats and usage example in this section are explained in the HP-BASIC of the Hewlett-Packard
HP9000 Series.

TABLE OF CONTENTS
9.1 Table of Device Messagesottt i ittt 9-3
9.1.1 Table of Device Messages (in the Alphabeticorder) 9-3
9.1.2 Device Messages (Panel correspondence)o i i, 9-9
9.1.3 Detailed Explanation of Device Messagesccciveviiiiiina.. 9-24

9-1

(Blank)

SECTION 9 DETAILS OF DEVICE MESSAGES

This section explains each device message by group. Each group is corresponded to the front and rear
panel of MP1764D. Groups are specified according to the setting or request contents.

9.1 Table of Device Messages

Control messages and data request messages that are stipulated in the MP1764D specifications are
explained in the listing order.

Check the details of each command by referring to the page numbers listed in the last column of the
table under “Device message details”.

9.1.1 Table of Device Messages (in the Alphabetic order)

An alphabetic list of each control message and data request message is shown in Table 9-1.

9-3

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order)

Control message re%iteast Device message details
Function . message

Hgggter (;\'a‘f[g';gft Hgggter Section Page
Number of pages ADR | NR1lformat | ADR? |PATTERN P9-64
Pattern data preset ALL | NR1format - PATTERN P9-85
(All pages, all bits)
Alarm monitor (alarm detection) ALM | NRlformat | ALM? |[Others P9-130
Alternate pattern A /B switch ALT | NRlformat | ALT? |PATTERN P9-59
selection
Alarm measurement result - - AMD? |MEASUREMENT |P9-115
Pattern . bit BIT | NR1format BIT? |PATTERN P9-65

HEX format
BURST measurement mode BST | NRlformat | BST? |Others P9-138
Intermediate data calculation CAL | NR1lformat | CAL? |Others P9-139
Measurement result for clock count - - CC? |MEASUREMENT |P9-110
Bit window pattern CHM | NR1lformat { CHM? [PATTERN P9-67
HEX format

Clock loss state - - CLI? |MEASUREMENT | P9-94
Clock loss processing function CLS | NR1 format CLS? |Others P9-135
Clock input phase (delay) CPA | NRlformat | CPA? |INPUT P9-28
Clock input polarity CPL | NR1 format CPL? ([INPUT P9-34
Clock input termination voltage CTM | NRlformat | CTM? [(INPUT P9-31
Intermediate result display CUR | NR1lformat | CUR? |MEASUREMENT |P9-98
Floppy data delete DEL | NR1format - MEMORY P9-44
Measurement data length DLN | NRlformat | DLN? |PATTERN P9-61
Delay status - - DLY? |INPUT P9-32
Measurement result display mode DMS | NRlformat | DMS? |MEASUREMENT |P9-97
1-second data print threshold DOT | NRlformat | DOT? |Others P9-147
selection
Display selection DSP | NR1format DSP? |PATTERN P9-58
Data input threshold voltage DTH | NR2format | DTH? |INPUT P9-26
Data input termination voltage DTM | NR1format | DTM? |[INPUT P9-30

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order: contd.)

Control message re%it:st Device message details
Function . message

Feoder | merc [Feader | secton [pase
Error analysis data *1 - - EAB? |PATTERN P9-72
Error analysis page *1 EAP | NR1 format EAP? |PATTERN P9-74
Error analysis trigger *1 EAT | NRlformat | EAT? |PATTERN P9-77
Error count measurement results - - EC? |MEASUREMENT |P9-109
Clears measurement data from EDC - - MEASUREMENT | P9-118
buffer
Stores measurement data in the EDS - - MEASUREMENT | P9-117
buffer
%EF1 measurement results - - EFI? |MEASUREMENT |P9-112
EI measurement results - - EI? MEASUREMENT | P9-111
El, %EFI interval time EIT NR1 format EIT? |Others P9-141
Eye margin measurement display EME | NRlformat | EME? |INPUT P9-35
switching
Measurement data output - - END? [MEASUREMENT |P9-119
Error performance data print EPF | NR1 format EPF? |Others P9-144
selection
Error ratio measurement results - - ER? |MEASUREMENT |P9-108
Error detection status - - ERS? |MEASUREMENT | P9-96
Starts Eye margin measurement EST | NR1 format EST? |[INPUT P9-36
Error performance data threshold ETH | NR1format ETH? |Others P9-137
selection
Error detection mode selection ETY | NRlformat | ETY? |Others P9-140
Eye margin measurement EYT | NRlformat | EYT? |INPUT P9-37
(Error ratio selection)
FD error messages - - FDE? |MEMORY P9-50
FD format FDF - - MEMORY P9-51
File No. / direct mode switching FIL NR1 format FIL? |MEMORY P9-42
Frame length FLN | NRlformat | FLN? |PATTERN P9-60
Memory FD mode - - FMD? |MEMORY P9-39

Others

Data print format FMT | NR1format | FMT? |Others P9-142

9-5

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order: contd.)

Data
Control message request Device message details
Function message
Header Numeric Header ;

part data part part Section Page
Clock frequency measurement - - FRQ? [MEASUREMENT |P9-113
result
File contents retrieving - - FSH? |MEMORY P9-40
GPIB 2 address GPA | NRlformat | GPA? [Others P9-133
Bit window preset HAL | NR1format - PATTERN P9-89
(All pages, all bits)
Bit window preset (1 page, all bits) HPS | NR1format - PATTERN P9-90
Clears measurement intermediate IMC - - MEASUREMENT | P9-123
data from buffer
Intermediate measurement data - - IMD? [MEASUREMENT | P9-124
output
Stores intermediate measurement IMS - - MEASUREMENT | P9-122
data in buffer
Intermediate measurement data ITM | NR1format ITM? [Others P9-145
print
Measurement interval time ITV NR1 format ITV? |Others P9-149
Pattern logic LGC | NR1 format LGC? |PATTERN P9-53
Floppy disk access status - - MAC? |MEMORY P9-49
Block window preset MAL | NR1format - PATTERN P9-87
(All pages, all bits)
Memory function switching MEM | NR1lformat | MEM? |[MEMORY P9-47
Block window pattern MGB | NR1lformat | MGB? |PATTERN P9-70

HEX format

Block window ON / OFF MGE | NR1lformat | MGE? |PATTERN P9-76
Measurement mode MOD | NR1format | MOD? |MEASUREMENT | P9-99
Alarm monitor (error detection) MON | NR1format | MON? |Others P9-131
Block window preset MPS | NR1format - PATTERN P9-88
(1 page, all data)
Number of bytes of block window - - MRD? |PATTERN P9-83
data output
PRBS mark ratio MRK | NRlformat | MRK? |PATTERN P9-56
Bit window ON / OFF MSE | NR1format | MSE? |PATTERN P9-75
Bit window page MSK | NR1format | MSK? |PATTERN P9-69

9-6

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order: contd.)

Control message re?q?:t:st Device message details
Function ' message

Header [Numeric | Header | seciion | page
Measurement status - - MSR? [(MEASUREMENT |P9-103
Number of bytes of block window MWT | NR1 format - PATTERN P9-81
data input
1-second data print OSC | NR1format 0OSC? |Others P9-146
1-second data measurement result - - OSD? |MEASUREMENT |P9-114
Number of pages PAG | NR1lformat | PAG? |PATTERN P9-64
Eye margin measurement result - - PHM? [INPUT P9-29
(Phase)
PAGE /PATTERN SYNC PPD | NRlformat | PPD? |PATTERN P9-92
POSITION switch
Measurement period PRD | NR1 format PRD? |MEASUREMENT |P9-107
Printer function PRN | NRlformat | PRN? |Others P9-128
Manual print PSA - - Others P9-129
PATTERN SYNC POSITION PSP | NRlformat | PSP? |PATTERN P9-91
Pattern data preset (1 page, all bits) PST | NR1format - PATTERN P9-86
Paper saving function PSV | NRlformat | PSV? [Others P9-148
Number of steps of ZERO SUBST PTN | NRlformat | PTN? |PATTERN P9-55
and PRBS
Measurement pattern PTS | NR1format PTS? |PATTERN P9-54
Floppy data recall RCL | NR1 format - MEMORY P9-43
Number of bytes of pattern data - - RED? |PATTERN P9-80
output
Floppy data resave RSV | NR1 format - MEMORY P9-46
Internal timer setting RTM | NR1format | RTM? |[MEASUREMENT |P9-106
Floppy data save SAV | NR1format - MEMORY P9-45
Number of mark ratio AND bit SFT | NRlformat | SFT? |[Others P9-134
shifts
Synec loss state - - SLI? |MEASUREMENT | P9-95
Sync loss processing SLS | NR1 format SLS? |Others P9-136
Sync output selection SOP | NRlformat | SOP? |Others P9-132
Automatic phase threshold search SRH | NR1format | SRH? [INPUT P9-33

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-1 Table of Device Messagess (Alphabetic order: contd.)

Control message re%auteast Device message details
Function i message

Fesder] Samerc [Foate | secion [poce
Measurement start and restart STA - - MEASUREMENT | P9-100
Measurement stop STO - - MEASUREMENT | P9-101
Automatic synchronous threshold SYE | NR1format SYE? [MEASUREMENT |P9-104
Synchronous method SYM | NRlformat | SYM? |[PATTERN P9-57
Automatic synchroniztion SYN | NR1 format SYN? |MEASUREMENT |P9-103
Eye margin measurement result - - THM? |INPUT P9-27
(threshold)
Threshold EI, EFI data print THR | NR1format THR? |[Others P9-143
Real time / Measurement-time TIM | NR1format TIM? |MEASUREMENT | P9-105
display switching
Termination code selection TRM | NR1format | TRM? |Others P9-150
Number of pattern data input bytes WRT | NR1format - PATTERN P9-78
ZERO SUBST length ZLN | NRlformat | ZLN? |PATTERN P9-63

*1) Option 01: A command which is effective only when an error analysis function is provided.

New commands for MD1764D

Control message re%%t:st Device message details
Function ' message
AR

Input data select DSL | NRlformat | DCD? [INPUT P9-151
DATA - DATA tracking/ Difference DAC | NRiformat | DCD? [INPUT P9-152
adjust control select

Single-ended/Differential select DSD | NR1format | DCD? |INPUT P9-153
Clock select RRC | NR1format | DRC? |INPUT P9-154
PLL reset RPL - RPL? |[INPUT P9-155
Recovery frequency RFQ | NR1 format DRC? |INPUT P9-156
Data input termination condition DTC | NR1 format DCD? |INPUT P9-158

9-8

SECTION 9 DETAILS OF DEVICE MESSAGES

9.1.2 Device Messages (Panel correspondence)

Figures 9-1 (1) to (7) and Table 9-2 (1) to (7) show the correspondence of control messages and data
arequest messages to the panel keys.

9-9

SECTION 9 DETAILS OF DEVICE MESSAGES

® [NPUT section

No. 108
DACAX
DCD?

No. 107
DSLAX
DCD?

No. 5
DTMAX
DTM?

No. 112
RFQ
DCR?

No. 110
RRCAX
DRC?

No. 111
RPL
RPL?

No. 8
SRHAX
SRH?

9-10

No. 1 No. 2 No. 3 No. 4
DTHAX THM? CPAAX PHM?
DTH? CPA?
\ / No. 109
DSDAX
AN INPUT / DCD?
[TA CLOCK VA //
THRESHOLD X MARGIN DELAY TIME / MARGIN
v (1]
(BEBOE,, BEBEFE| o
F L e DATA A DIrIRIRNGE X S me / DLY?
\ m DATX TRACKING ADJUST B DIFTRRINTIAL
—— CTMAX
™S CTM?
~ No. 9
_,/@// CPLAX
CPL?
PL:IS_YI“ m‘ SBLRCT PO! I1TY
a0 Eleem Elem
AUTO SBARCH=m (r— BYR MARGIN
/l’n-n RATIO 1/8t01/8) ON .2—-;-nz.ol ?rro‘ (ln';)-:—’|
= OCOCOCOCOoCOdod/dd
TART
- le@
No. 10 No. 11 No. 12
EMEAX ESTAX EYTAX
EME? EST? YET?
No. 113
DTCAX
DCD?
e)
v
(I

Fig. 9-1-(1) INPUT Section

Table 9-2-(1) Table of Device Messages (INPUT section)

SECTION 9 DETAILS OF DEVICE MESSAGES

Data Device
. Control message request messq?e
Function message details
Header | Numeric Header Item Page
part data part part No.
® INPUT section

Data input threshold voltage DTH | NR2format | DTH? 1 P9-26
Eye margin measurement result (threshold) - - THM? 2 P9-27
Clock input phase (delay) CPA | NR1 format CPA? 3 P9-28
Eye margin measurement result (phase) - - PHM? 4 P9-29
Data input termination voltage DTM | NR1format | DTM? 5 P9-30
Clock input termination voltage CTM | NR1lformat | CTM? 6 P9-31
Delay status - - DLY? 7 P9-32
Automatic phase threshold search SRH | NR1format | SRH? 8 P9-33
Clock input polarity CPL | NR1format CPL? 9 P9-34
Eye margin measurement display switching | EME | NR1format | EME? 10 P9-35
Eye margin measurement start EST | NR1format EST? 11 P9-36
Eye margin measurment EYT | NR1format EYT? 12 P9-37
(error ratio selection)
Input data select DSL | NR1f{format DCD? 107 P9-151
DATA - DATA tracking/ Difference DAC | NR1format | DCD? 108 | P9-152
adjust control select
Single-ended/Differential select DSD | NR1format DCD? 109 |P9-153
Clock select RRC | NRlformat | DRC? 110 |P9-154
PLL reset RPL - RPL? 111 [P9-155
Recovery frequency RFQ | NR1format DRC? 112 | P9-156
Data input termination condition DTC | NR1format DCD? 113 | P9-158

9-11

SECTION 9 DETAILS OF DEVICE MESSAGES

® MEMORY Section

No. 21
MAC?
// MBMORY
I’ | = 1 J
No. 14
FSH?AX ~_| ® &)
] sxist XX DIl RECALL SAVE = MODE ey
- 113 WO DILITI RRSAVE Slll‘l‘ PATT OTHRRS
B E 0 - No. 20
[:] J CJ®— MEMAX
MEM?
No. 15 No. 16 No. 18
FILAX RCLAX SAVAX
FIL? No. 17 No. 19
DELAX RSVAX
- FD mode No.13 FMD?
* FD error message No.22 FDE?
- FD format No.23 FDF

9-12

Fig. 9-1-(2) MEMORY Section

Table 9-2-(2) Table of Device Messagess (MEMORY section)

SECTION 9 DETAILS OF DEVICE MESSAGES

Data Device
. Control message request messq?e

Function message details

Header [Numeric Header | Item Page
part data part part No.
® MEMORY section

Memory FD mode - - FMD? 13 P9-39
File contents search - - FSH? 14 P9-40
File No./directory mode switching FIL | NR1format FIL? 15 P9-42
Floppy data recall RCL | NR1 format - 16 P9-43
Floppy datas delete DEL | NR1format - 17 P9-44
Floppy data save SAV | NR1format - 18 P9-45
Floppy data resave RSV | NR1 format - 19 P9-46
Memory function switching MEM | NR1format | MEM? 20 P9-47
Floppy access condition - - MAC? 21 P9-49
FD error message - - FDE? 22 P9-50
FD format FDF - - 23 P9-51

9-13

SECTION 9 DETAILS OF DEVICE MESSAGES

® PATTERN Section

No.24 No.25 No.26 No.27 No.29
LGCAX PTSAX PTNAX MRKAX DSPAX
LGC? PTS? PTN? MRK? DSP?
L N PATTERN
No.28 A LOGIC g PATTERN === g PRBS / 2{RO SUBST ey o= PRBS NARK RATIO = No.30 A
SYMAX POS AINDATA 15 PRBS 7 % 11 15 20 23 31 O Vs Ve ALTAX
SYM? gig cacacaca c:c:c:cac:c:ca:ng:g/:l;l ALT?
3 L N 2 4 c5c:cﬁc5
J Ca0GJ
No.31 T e -— No.33
FLNAX G e e A ZLNAX
FLN? \ WINDOW WANDOW ANALYSIS [:| t:)] ZLN?
3 [:J EJ =EEEE OO
T TRAMC LENGTHammy e DATA LINGTH / ZERO SUBST LENGTH sy
No.34 CJDATA LENGTH No.32
ADRAX I IERO SUBST LENOTH DLNAX
ADR? w E, E, E‘ E E, E E, E‘ E, DLN?
|) OO O
No.34
PAGAX [IPAGE 7 [CIPATTERN SYNC POSITION ™)

PAG? ["] o No.41
No.37 gaaoaeateaa o MSEAX
MSKAX N p BIT \)

P B e B e o e s i N R 3

No.40 @ No.42
EAPAX N BOCK WIROOW MGEAX
EAP? (=] * MGE?

PRESET - '(moa MM.“I&-‘
r—-—-——-ALL-—---—\ r—' PA(:C-—'\ :smm TRACKING
%ﬂ O =) 56

N\ No.35 \No.46 N\ No.48 N\ No.49
BITAX MWTAX ALLAX PSTAX
BIT?

\ No.36 \ No.47 \ No.50 \ No.51
CHMAX MRD?AX MALAX MPSAX
CHM?

\ No.38 k No.39 \No.52 \'No.53
MGBAX EAB? HALAX HPSAX
MGB?

\ No.44
WRTAX

\'No.45
RED?AX

Fig. 9-1-(3) PATTERN Section
9-14

\ No.55

PPDAX
PPD?

No.43
EATAX

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(3) Table of Device Messagess (PATTERN section)

Data Device
Control message request messa?e

Function message details

Header Numeric Header Item Page
part data part part No. 9
® PATTERN section

Pattern logic LGC | NR1format LGC? 24 P9-53
Measurement pattern PTS | NR1format PTS? 25 P9-54

Number of steps of ZERO SUBST and PRBS | PTN | NR1format | PTN? 26 P9-55

PRBS mark ratio MRK | NR1format | MRK? 27 P9-56
Synchronous method SYM | NR1lformat | SYM? 28 P9-57
Display selection DSP | NR1 format DSP? 29 P9-58
Alternate pattern A / B switching ALT | NR1format ALT? 30 P9-59
Frame length FLN | NR1format FLN? 31 P9-60
Measurement data length DLN [NR1 format DLN? 32 P9-61
ZERO SUBST length ZLN | NRlformat | ZLN? 33 |P9-63
Number of pages PAG | NR1lformat | PAG? 34 P9-64
ADR | HEX format | ADR?
Pattern bit BIT | NR1format BIT? 35 P9-65
HEX format
Bit window pattern CHM | NR1format | CHM? 36 P9-67
HEX format
Bit window page MSK | NR1format | MSK? 37 P9-69
Block window pattern MGB | NR1lformat | MGB? 38 P9-70
HEX format
Error analysis data *1 - - EAB? 39 P9-72
Error analysis page *1 EAP | NR1format EAP? 40 P9-74
Bit window ON / OFF MSE | NR1format | MSE? 41 P9-75
Block window ON / OFF MGE | NR1format | MGE? 42 | P9-76
Error analysis trigger *1 EAT | NR1format EAT? 43 P9-77
Number of pattern data input bytes WRT | NR1format - 44 P9-78

9-15

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(3) Table of Device Messagess (PATTERN section: contd.)

Data Device
Control message request message
Function message details
Header Numeric Header Item Page
part data part part No. 9
¢ PATTERN section (contd.)
Number of pattern data output bytes - - RED? 45 P9-80
Number of bytes of block window data input | MWT | NR1 format - 46 P9-81
Number of bytes of block window data - - MRD? 47 P9-83
output
Pattern data preset (all pages, all bits) ALL | NR1format - 48 P9-85
Pattern data preset (1 page, all bits) PST | NR1format - 49 P9-86
Block window preset (all pages, all bits) MAL | NR1format - 50 P9-87
Block window preset (1 page, all bits) MPS | NR1format - 51 P9-88
Bit window preset (all pages, all bits) HAL | NR1 format - 52 P9-89
Bit window preset (1 page, all bits) HPS | NR1 format - 53 P9-90
Pattern sync trigger position PSP | NR1 format PSP? 54 P9-91
Page / pattern sync trigger position display PPD | NR1 format PPB? 55 P9-92
switch

*1) Option 01: A command which is effective only when an error analysis function is provided.

9-16

® MEASUREMENT Section

SECTION 9 DETAILS OF DEVICE MESSAGES

No.73 No.74 No.75
No.56 EI? EFI? FRQ? No.61
CLI? MODAX
/ MOD?
No.57 NEASUREMEN No.60
sLi? CURAX
CURRENT HISTORY] o | e o | e e e — CUR?
| ey T O O O
No.58 1 U E TN N A (2 v N Y B A O
: SYNC L0SS (3 |
ERs? N\ TR | canme | /] No62
;t '—_4 STA
F.— 1SPLAY —¢ r MODL \ *—
ERROR CRAOR CRIOR (RROR FRCC CLOCK CInereat CURRENT
No 71 RATIO COUNT INTERVAL INTCRVAL TRCOUINCY Dsmctt DATA
- =1 =])=]) =] (=] Sl) [=]
7723 V7
No.70 (=] 7
ER? — |
REAL TIME 7 MEAS TiMC \
DAY YCAR 7110UR MONTH 7 MINUTC DAY/ SLCOND No.64
1 1 e —1 MSR?

No.59 I] 1 =
DMSAX
pus?

No.65 onsmmr?fuoour [— No.67 ”
SYNAX PO PRl vt TV
SYN? 72| (7727 A 77

No.66
SYEAX
SYE? /

No.68 No.69
RTMAX PRDAX
RTM? PRD?
- One-second data output :No.76 OSD?AX
- Alarm measurement results :No.77 AMD?AX
+ Result data buffer clear :No.79 EDC
buffer store :No.78 EDS
output :No.80 END?AX
- Intermediate data buffer clear : No.82 IMC
buffer store : No.81 IMS
output :No.83 IMD?AX

Fig. 9-1-(4) MEASUREMENT Section

9-17

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(4) Table of Device Messagess (MEASUREMENT section)

Data Device
Control message request message
Function message details
Header | Numeric Header Item Page
part data part part No.
e MEASUREMENT section

Clock off status - - CLI? 56 | P9-94
Synchronous off status - - SLI? 57 P9-95
Error detection status - - ERS? 58 P9-96
Measurement result display mode DMS | NR1format | DMS? 59 P9-97
Intermediate result display function CUR | NR1format | CUR? 60 P9-98
Measurement mode MOD | NR1format | MOD? 61 P9-99
Measurement start and restart STA - - 62 P9-100
Measurement stop STO - - 63 P9-101
Measurement condition - - MSR? 64 P9-102
Automatic synchronization SYN | NR1lformat | SYN? 65 P9-103
Automatic synchronous threshold SYE | NR1format SYE? 66 P9-104
Real time / Measurement time display TIM | NR1 format TIM? 67 P9-105
switching
Internal timer setting RTM | NRlformat | RTM? 68 P9-106
Measurement period setting PRD | NR1format PRD? 69 P9-107
Error rate measurement result - - ER? 70 P9-108
Number of errors measurement result - - EC? 71 P9-109
Measurement result for clock count - - cc? 72 P9-110
Number of EIs measurement result - - EI? 73 P9-111
%EFI measurement result - - EFI? T4 P9-112
Clock frequency data - - FRQ? 75 P9-113
1-second data measurement result - - 0SD? 76 P9-114
Alarm measurement result - - AMD? 77 P9-115
Stores measurement data in buffer EDS - - 78 P9-117

9-18

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(4) Table of Device Messagess (MEASUREMENT section: contd.)

Data Device
Control message request messa?e
Function message details
Header Numeric Header Item Page
part data part part No. 9
® MEASUREMENT section (contd.)

Clears measurement data from buffer EDC - - 79 P9-118
Measurement termination data output - - END? 80 P9-119
Stores intermediate measurement data in IMS - - 81 P9-122
buffer
Clears intermediate measurement data IMC - - 82 P9-123
from buffer
Outputs intermediate data during - - IMD? 83 P9-124
measurement

9-19

SECTION 9 DETAILS OF DEVICE MESSAGES

® Othersection

9-20

(Front panel)
e SYNC QU TPUT ey == PRINTE Re= s AL AM MONIT T OR ey
/3 cLock
7 1XC0 POSN= paATICAN b ON MANUAL ALARM
VAR POSN SYNC

O — D [:] mnon
CJ .

os-tv Son \

No.88 No.84 No.85 No.87 No.86
SOPAX PRNAX PSA MONAX ALMAX
SOP? PRN? MON? ALM?

Fig. 9-1-(5) Other section (Front panel)
(Rear panel)
cpig 1 [sHiaHi[Te [LaTsrirei]PPe
ADDRESS DC1|DTI|C1 | C2|C3|C4|C?
CONTROL - 5432
4 1
anzh, O Jie
OFF 0
GPIB 2 SH1|AH!| T6 | L4 |SRe|RLS|PPE
ADDRESS (PRINTER) DCe|DTej Ci jc2{c3|c4|c2s
54321
Hell Jie
! Jo
No.89
GPAAX
GPA?

Fig. 9-1-(6) Other section (Rear panel. GPIB)

Notes

There are two setting methods for the GPIB 2 address; one is set via GPIB,
and other is set by setting address SW on the rear panel.

When an address is set via GPIB using the GPA command, the set content is
held while the mainframe is in remote status. (Except when one of the
initialize commands, INI, or *RST, is issued.)

However, if a local state has been made, an address SW status on the rear
panel has priority, so the set contents of the remote status become invalid.

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(5) Table of Device Messagess (Other section: front panel)

Data Device
Control message request messa?e
Function message details
Header Numeric Header Item Page
part data part part No. 9
® Other section (front panel)

Printer function PRN | NR1 format PRN? 84 P9-128
Manual print PSA | NR1 format - 85 P9-129
Alarm monitor (alarm detection) ALM | NR1 format ALM? 86 P9-130
Alarm monitor (Error detection) MON | NR1format | MON? 87 P9-131
Syne output selection SOP | NR1 format SOP? 88 P9-132

Table 9-2-(6) Table of Device Messagess (Other section: rear panel GPIB)

Data Device
Control message request messa?e
Function message details
Header Numeric Header [tem Page
part data part part No. 9
® Other section (rear panel GPIB)
GPIB2 address GPA | NR1format GPA? 89 P9-133

9-21

SECTION 9 DETAILS OF DEVICE MESSAGES

(Rear panel function SW)

No.90
SFTAX
SFT?
No.98 A FUNCTION 1 MEASUREMENT DISPLAY N°-91A
EML X ITEMS SW] __ SPECIFICATION g:::v X
: BIT SHIFT NUMBER _ , -
FOR MARK RATIO VARiep| ' | ®!BIT 113BITS
No.99 CLOCK LOSS EVALUATION| 2 | ®EXCLUDE INCLUDE /No.gz
THRAX SYNC LOSS EVALUATION | 3 | S8€£XCLUDE _ :INCLUDE SLSAX
THR? ERROR PERF ORMANCE . . LS?
THRESHOLD 4| wie=s 11187 @ SLS
BURST MODE s | &oOFF 1:ON q\
N0100A CURRENT DATA CALCULATION| & SPROGRESSIVE 1:UMMEDIAT No.93 A
E';E_) X SSTOTAL ERROR g:_} X
? QU:INSERTION ERROR 2
ERROR 78| |%OMISSION ERROR
11:TOTAL ERROR
No.101 Py No.94
ITMAX INTERVAL TIME g.10] 81:18ms BSTAX
IT™? (E1XEF D) 18] {e:108ms \ BST?
11:s
No.102 UNCTION 2 DATA OUTPUT No.95
OSCAX ITEMS sw SPECIFICATION CALAX
® SHORT FORM OUTPUT 1 | S:OFF 1:0N
0sc? CAL?
THRESHOLD EIEFIDATA | 2 | &OFF 1:0N
ERROR PERFORMANCE DATA| 3 | OOFF 1:0N
No.103 A e INTERMEDIATE DATA | 4 | SOFF 1:0N N°£_6 A
DOT, X ~—— e ouTPuT 5 | eOFF 1:0N Y) X
DOT? R o> § ETY?
seconp [w _ OUTPUT 67| S1>18
- 11:>18~ -
PSV_,AX T————1—————8PAPER SAVING | 8 | &OFF J:ON E'T_)AX
PS5V CURRENT DATA INTERVAL| 9 | &:100ms 1:200ms EIT?
©:1440k/ 726k
No.105 /ro FORMATTING TYPE| 18| Ji1 253K/ 785K
ITVAX
ITV?
No.13
FMD?

Fig. 9-1-(7) Other section (rear panel function SW)

NOTE

When the rear function SW value differs from that set in the remote status,
the processing is done as follows:

® The values set in remote mode are maintained while the mainframe is in
the remote status. (When an initialize command INI, or ®RST is issued,
this is initialized.)

However, if the mainframe becomes local state, function SW status on
the rear panel has priority, so the set contents of the remote status
become invalid.

9-22

SECTION 9 DETAILS OF DEVICE MESSAGES

Table 9-2-(7) Table of Device Messagess (Other section: rear panel FUNCTION switch)

Data Device
_ Control message request messq?e
Function message details
Header | Numeric Header Item Page
part data part part No.
® Other section
(Rear panel FUNCTION switch)
Number of shifts of the mark ratio AND SFT | NR1format SFT? 90 P9-134
shifts
Clock loss processing CLS | NRI1 format CLS? 91 P9-135
Synchronous off processing SLS | NR1 format SLS? 92 P9-136
Error performance data threshold selection ETH | NR1format | ETH? 93 P9-137
BURST measurement mode BST | NR1format BST? 94 P9-138
Intermediate data calculation CAL | NRlformat | CAL? 95 P9-139
Error detection mode selection ETY | NRlformat | ETY? 96 P9-140
EI, %EF1I interval time EIT NR1 format EIT? 97 P9-141
Data print format FMT | NRlformat | FMT? 98 P9-142
Threshold EI, EFI data print THR | NR1format | THR? 99 P9-143
Error performance data print EPF | NR1{format EPF? 100 |P9-144
Intermediate data print ITM | NR1 format ITM? 101 | P9-145
1-second data print OSC | NR1format 08sC? 102 | P9-146
1-second data print threshold DOT | NR1lformat | DOT? 103 | P9-147
Paper saving function PSV | NR1 format PSV? 104 |P9-148
Measurement interval time ITV | NR1 format ITV? 105 |P9-149
Memory FD mode - - FMD? 13 P9-39
Termination code selection TRM | NR1lformat | TRM? 106 |P9-150

9-23

SECTION 9 DETAILS OF DEVICE MESSAGES

9.1.3 Detailed Explanation of Device Messages
MP1764D control messages and data request messages are explained in this section.
The explanation below is already described in HP-BASIC of the Hewlett-Pacckard HP9000 Series.

9-24

SECTION 9 DETAILS OF DEVICE MESSAGES

® |INPUT section

Each control message in the INPUT section is explained in the following pages. The triangle marks
(A) indicates a spece.

9-25

SECTION 9 DETAILS OF DEVICE MESSAGES

1) DTH Data input threshold voltage (Data THreshold)

B Function Setting of data input threshold voltages.
Set resolution is 0.001 V.

Header Program Query Response (Number of characters)
DTH |DTHAm DTH? DTHAmM (FIX 6)
B Valueofm The range of the data input threshold voltages is set 1.875 to —3.000 V.

Range of numeric values: Max. 1.875

Min. —3.000

Step 0.001

B Command type Sequential command
B Usagerestrictions The command is invalid in the following conditions.

Program: During automatic phase threshold search (AUTO SEARCH)
is ON
While Eye margin measurement is being executed
When a floppy disk is being accessed

Query: None

B Usage example Program: When setting the data input threshold voltage to —3.000 V:
OUTPUTA7@@;"DTHA-3"

Query: When the data input threshold voltage is 1.000 V:
OUTPUTA7@@;"DTH?"
ENTERA700;B$
PRINTABS

)
DTHA1.0@@ (CR/LF) is output.

When the data input threshold voltage is —3.000 V:
OUTPUTA7@@;"DTH?"
ENTERA700;B$
PRINTABS
!
DTHA-3.0@@ (CR/LF) is output.

9-26

2) THM?

B Function

SECTION 9 DETAILS OF DEVICE MESSAGES

Eye margin measurement result (threshold)
(THreshold Margin?)

A threshold margin measurement result is output from the Eye-margin
measurement results data.
Measured resolution is 0.001 Vp-p.

Header Program Query Response (Number of characters)
THM | None THM? THMAmM (FIX 6)
B Valueofm The value of the Eye margin from 0.000 Vp-p to 4.875 Vp-p is output.

B Command type
B Usage restrictions

B Usage example

B Note

Range of numeric values: Max. 4.875
Min. 0.000
Resolution 0.001

Here, if there is no Eye margin result, the following data is output.
—9.999

Sequential command
The command is invalid in the following conditions.
Query: None

Query: Whe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>