Anritsu - GRL

PCIe 4.0 CEM Rx Test Application

Release Note

Fifth Edition

This software is released for PCIe CEM Rx Test.

Table of Contents

<table>
<thead>
<tr>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Release Software</td>
<td>Provides information for this release.</td>
</tr>
<tr>
<td>...Page 2</td>
<td></td>
</tr>
<tr>
<td>2. Peripheral Devices</td>
<td>Shows the list of devices that can be controlled by this software.</td>
</tr>
<tr>
<td>...Page 3</td>
<td></td>
</tr>
<tr>
<td>3. Added Functions</td>
<td>Describes added functions for this release.</td>
</tr>
<tr>
<td>...Page 4</td>
<td></td>
</tr>
<tr>
<td>...Page 5</td>
<td></td>
</tr>
<tr>
<td>5. Remaining Known Bugs</td>
<td>Describes known software bugs in this version to be fixed in future releases.</td>
</tr>
<tr>
<td>...Page 5</td>
<td></td>
</tr>
<tr>
<td>6. Usage Notes</td>
<td>Describes precautions for using this software.</td>
</tr>
<tr>
<td>...Page 6</td>
<td></td>
</tr>
<tr>
<td>7. Troubleshooting</td>
<td>Describes troubleshooting procedures for using this software.</td>
</tr>
<tr>
<td>...Page 17</td>
<td></td>
</tr>
<tr>
<td>Appendix</td>
<td>Describes Quick Startup Guide.</td>
</tr>
<tr>
<td>...Page 20</td>
<td></td>
</tr>
</tbody>
</table>
1. Released Software

The certificate software versions for Keysight / Tektronix Scope are shown in the table.

Keysight

<table>
<thead>
<tr>
<th>Edition</th>
<th>GRL CEM Rx Test Application</th>
<th>Anritsu MX190000A</th>
<th>Anritsu MX183000A</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>V1.0.86</td>
<td>V4.03.12</td>
<td>V4.03.15</td>
<td>DSAZ634A V06.40.00714</td>
</tr>
<tr>
<td></td>
<td>V1.0.86</td>
<td>V4.02.10</td>
<td>V4.02.10</td>
<td>DSAZ634A V06.40.00714</td>
</tr>
<tr>
<td></td>
<td>V1.0.86</td>
<td>V4.01.32</td>
<td>V4.00.08</td>
<td>DSAZ634A V06.40.00714</td>
</tr>
<tr>
<td>04</td>
<td>V1.0.27</td>
<td>V3.01.10</td>
<td>V3.07.12</td>
<td>DSAZ634A V06.20.01101</td>
</tr>
<tr>
<td>03</td>
<td>V1.0.27</td>
<td>V3.00.05</td>
<td>V3.06.16</td>
<td>DSAZ634A V06.20.01101</td>
</tr>
<tr>
<td>02</td>
<td>V1.0.27</td>
<td>V2.05.08</td>
<td>V3.05.00</td>
<td>DSAZ634A V06.20.01101</td>
</tr>
<tr>
<td>01</td>
<td>V1.0.23</td>
<td>V2.05.08</td>
<td>V3.05.00</td>
<td>DSAZ634A V06.20.01101</td>
</tr>
</tbody>
</table>

Tektronix

<table>
<thead>
<tr>
<th>Edition</th>
<th>GRL CEM Rx Test Application</th>
<th>Anritsu MX190000A</th>
<th>Anritsu MX183000A</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>V1.0.86</td>
<td>V4.03.12</td>
<td>V4.03.15</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td></td>
<td>V1.0.86</td>
<td>V4.02.10</td>
<td>V4.02.10</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td></td>
<td>V1.0.86</td>
<td>V4.01.32</td>
<td>V4.00.08</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td>04</td>
<td>V1.0.27</td>
<td>V3.01.10</td>
<td>V3.07.12</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td>03</td>
<td>V1.0.27</td>
<td>V3.00.05</td>
<td>V3.06.16</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td>02</td>
<td>V1.0.27</td>
<td>V2.05.08</td>
<td>V3.05.00</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
<tr>
<td>01</td>
<td>V1.0.23</td>
<td>V2.05.08</td>
<td>V3.05.00</td>
<td>DPO73304DX 10.8.3 Build 3</td>
</tr>
</tbody>
</table>
2. Peripheral Devices

The peripheral devices of the application are shown in the table.

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1900A</td>
<td>Signal Quality Analyzer-R</td>
</tr>
<tr>
<td>MU181000B</td>
<td>12.5GHz 4port Synthesizer (Option02 is required.)</td>
</tr>
<tr>
<td>MU181500B</td>
<td>Jitter Modulation Source</td>
</tr>
<tr>
<td>MU195020A</td>
<td>21G/32G bit/s SI PPG</td>
</tr>
<tr>
<td>MU195040A</td>
<td>21G/32G bit/s SI ED</td>
</tr>
<tr>
<td>MU195050A</td>
<td>Noise Generator</td>
</tr>
</tbody>
</table>

For the installation position of the mainframe, refer to the Anritsu website (https://www.anritsu.com).
3. Added Functions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>DM Measurement</td>
<td>A DM (Differential Mode Noise) calibration mode is added, which converts DM from Vrms to Vpp. Normally use with set to Vrms to Vpp. In Edition 04 or earlier, recalibration of already-calibrated DM is not necessary because the Final EH / EW values are not affected.</td>
</tr>
<tr>
<td></td>
<td>Auto Scale</td>
<td>This function turns off the Auto Scale function for Scope to shorten the time required for Initial Tx EQ and Tx LEQ response time test. When the function is set to True, input the amplitude of the Data output of the DUT in the Vertical Range (scale of the vertical axis of Scope) with a value equivalent to Differential Input. The recommended value for Vertical Range is 0.5 Vpp because the Power Divider practically attenuates the data output of the DUT by 6 dB. This software may fail in waveform decoding if the amplitude is too small for the scale or beyond the scale.</td>
</tr>
<tr>
<td></td>
<td>Auto DUT Reset</td>
<td>This function resets the DUT automatically during Compliance Test. To use this function, follow the steps below: a. In the Auto DUT Reset box, select Internal Power Cycle or Internal Power Reset. b. Set up Anritsu Z2025A PCIe CBB Controller according to the Z2025A Installation Guide. c. In the Prompt Before Link EQ Training box, select False.</td>
</tr>
<tr>
<td></td>
<td>Power Cycle Off Time:</td>
<td>Sets the time to turn off the CBB power.</td>
</tr>
<tr>
<td></td>
<td>Power Reset Off Time:</td>
<td>Sets the time to send the Power Reset signal to the DUT.</td>
</tr>
<tr>
<td></td>
<td>Post Reset Wait Time:</td>
<td>Sets the time to wait after turning on Reset or Cycle before Link Training is started.</td>
</tr>
<tr>
<td></td>
<td>Link Training Wait Time</td>
<td>This function sets the time to wait after Link Training is ready to start before it is started.</td>
</tr>
<tr>
<td></td>
<td>Link Training CTLE Gain</td>
<td>Select a CTLE value option to set for SI ED. If the DUT Tx Insertion Loss is large, adjust the value.</td>
</tr>
</tbody>
</table>
Apply CM and CM calibration

The Apply CM function sets whether to apply CM (Common Mode Noise) to Rx LEQ Test. CM Calibration is added as an option for Long Channel Calibration and needs to be performed before using the Apply CM function.

Log Link Training

This function saves an LTSSM Log file to the following directory of MP1900A every time Link Training is performed. "C:\PCIE_LTSSM_LOG"

CTLE and Preset optimization step

This function sets the CTLE range, from 6 to 12 dB in 0.25 dB steps, when performing calibration for searching for an optimum CTLE value. The following change has been made to the order of increasing ISI Channel (Insertion Loss) when searching for an optimum CTLE value.

Before: 27dB -> 28dB -> 30dB
After: 27 dB -> 27.5 dB -> 28 dB -> ... -> 29.5 dB -> 30 dB

4. Bug Fixes

<table>
<thead>
<tr>
<th>Edition</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>Tx LEQ Response time test and Rx LEQ test failed occasionally.</td>
<td>Tx LEQ Response time test and Rx LEQ test failed occasionally.</td>
</tr>
<tr>
<td>01</td>
<td>Sometimes, Preset calibration fails with Tektronix scope.</td>
<td>Calibration fails when attempting to execute Preset calibration. Bug occurs in GRL software version 1.00.23 and Tektronix scope software version 10.8.3.</td>
</tr>
</tbody>
</table>

5. Remaining Known Bugs

None
6. Usage Notes

The precautions for using each version are described below.

6.1 How to shorten measurement time

- EH / EW Calibration

Set Sigtest N Acquisition (basically set to 7 to comply with the test) to 4 or less. Also, set Parallel SigTest Run and Maximum Thread Spawn to True and 4. In order to operate with these settings, CPU with at least CORE i5 and 4 cores is necessary. If the CPU has higher performance than this, it can process even more numbers in parallel. If a set value is larger than the number that can be processed by the CPU, a SigTest error may occur.
- BER and Margin Test

Decrease **Margin Test Measurement Time** and **Margin Test Max Steps**.

Set **Retrain When Sj Frequency Changed** to **False**.
6.2 Note on Apply Embedding

Basically, in order to comply with the PCIe standard:
- Use a scope with the Embedded function installed.
- With the GRL software, set **Apply Embedding** (3 dB for AIC, 5 dB for System on the scope) to **True**.

This section explains an alternative (optional) procedure for performing calibration when using a scope without the Embedded function installed.

In order to use the Embed function, the InfiniiSim waveform transformation toolset (Option N5465A InfiniiSim) is required on the Keysight scope. If the option is not installed on the scope, set the parameter to **False**. Note that no option is required for Tektronix scopes.

Also, if the parameter is set to **False**, the IL value needs to be added on the physical loss board*. Specifically, for Add-in Card (Upstream, Non-root) calibration, Pair 6 or less* should be used instead of Pair 0. For System (Downstream, Root) calibration, Pair 26 should be used instead of Pair 16 or less*. The connection diagrams are shown in Figure 6.2-1 and Figure 6.2-2.

*As pair number increases by 1, insertion Loss increases by 0.5 dB at 8 GHz. So Pair 6 insertion loss is 3 dB bigger than Pair 0. But, embedding loss and physical loss have different effects on actual EH/EW. If EH/EW calibration is failed, reduce Pair number. Note that this method is optional, and use of the embedding function is official procedure based on the PCIe standard.
- Difference of connection between Embedding and No Embedding Channel Loss when calibrating EH/EW (Add-In Card).

When measuring BER, the DUT is connected to CBB 4.0, so CLB 4.0 and later fixtures are not used. Therefore, by increasing/decreasing the Pair number of “PCIe 4.0 ISI Variable Pair 0” instead of “PCIe 4.0 ISI Variable Pair 25 - 31”, it is possible to match the condition with the Embedding Channel Loss set on the scope.

Figure 6.2-1 Connection Diagram for Add-in Card (Non-root) Calibration

When operating with “No Embedding”, the physical IL (Insertion Loss) must be added on here.

If EH / EW calibration is failed, reduce the Pair number.
- Difference of connection between Embedding and No Embedding Channel Loss when calibrating EH/EW (System Board).

![Connection Diagram for System (Root) Calibration](image)

When operating with “No Embedding”, the physical IL (Insertion Loss) must be added on here.

If EH / EW calibration is failed, reduce the Pair number.

Figure 6.2-2 Connection Diagram for System (Root) Calibration
6.3 Note on Link EQ Response time test

Perform a test with **Tx EQ Response time (Preset)** first and then perform it with **Tx EQ Response Time (Cursor)**.

When starting the test with **Tx EQ Response Time (Preset)**, the cursor values corresponding to Preset are notified from a DUT, and they are saved in MP1900A. These values are required for testing with **Tx EQ Response Time (Cursor)**.

To skip the test with **Tx EQ Response time (Preset)**:

Perform link training follow the below steps to acquire cursor values from a DUT. When replace the DUT to test **Tx EQ Response time (Cursor)**, the steps are required again.

a. Launch MX183000A with PCIe Link Training application.

b. Initialize the PCIe Link Training application.

c. Click on **LEQ Test Setting** check box.
d. Select **Rx LEQ** tab and click on **Apply** button.

![Rx LEQ tab and Apply button](image)

e. Click on **Option** button.

![Option button](image)

f. Set **Algorithm** to **increment** and set **Repeat** to **12** on Link EQ tab.

![Link EQ tab with Algorithm and Repeat options](image)
g. Set specification to **PCIe 3.0/3.1** on Link EQ tab.

h. Set **Algorithm** to **increment** and set **Repeat** to **12** on Link EQ tab.

i. Reset DUT and click on **Link Start** button.
j. When LTSSM State is **Loopback.Active.Master**, click on **Saved Cursor** button on LEQ Test window.

![Image of LTSSM State and Saved Cursor]

k. If All **Saved Cursor check boxes** are **ON**, the steps are finished.

![Image of Saved Cursor Component]
1. Launch GRL application and start **Tx EQ Response time (Cursor)**.
7. Troubleshooting

If you encounter any errors during calibration or testing, check as follows.

7.1 Calibration

7.1.1 In case of an error when calibrating Amplitude, Preset, SJ and RJ

- Check the RF connections. Especially, the connection polarity (Pos/Neg) and the trigger connections (PPG Aux Out and Scope Aux In) are easy to mistake.

- Check the software version. A different version of software may cause an unexpected error.

- Check the SigTest version. SigTest version needs to be 3.2.0.3 for Gen3 or 4.0.38-51 for Gen4. Also, this should be installed to the directory C:\Program Files (x86). Do not change the installation directory from the default setting.

7.1.2 In case of a SigTest error when performing Long Channel Calibration

A SigTest error message is displayed and SigTest has stopped working when calibrating SJ, RJ and EH/EW. Since this message is no effect on calibration results, click Close the program to continue the calibration.

To avoid this message:

- Close all applications except the GRL software, MX190000A, MX183000A and scope applications. Especially when VNC is running, SigTest may not work properly.

- If you see this message frequently despite not running other applications on the PC, use another PC with the GRL software installed.

7.1.3 When Final Eye calibration cannot be succeeded

- Use the ISI Trace properly calibrated to 27 to 30 dB. It is recommended to use the calibration fixture distributed by the PCI-SIG.

- If any components (DC block, Power Divider, Attenuator and Adaptor) are attached to the Noise module output, remove them. These components may affect the waveform.
7.2 Tx and Rx LEQ test

7.2.1 When Tx LEQ Response cursor test cannot be started

- Before starting Rx Test, complete all calibrations or load a calibrated session file.

7.2.2 In case of a Link Training error when testing Tx LEQ Response

- Check the RF connections. Especially, the trigger connections (PPG Aux Out and Scope Aux In) are easy to mistake.

- If DUT Tx has large insertion loss, adjust the MP1900A CTLE value in the MX183000A screen. Refer to Appendix C for adjusting CTLE.

7.2.3 In case of a decode error when testing Tx LEQ Responses time

- On the Configurations tab, set CTLE Setting to Auto.

- When DUT Tx has large insertion loss, a decode error sometimes occurs because the Eye is completely closed on the scope even if the CTLE and DFE functions are applied.
7.3 Others

7.3.1 When a session file cannot be loaded

- Close the folder where you installed the GRL software and saved PDF report file(s) because the loaded session file accesses and edits the folder.

- While recalling the session file on CEM spec takes several minutes, it does not mean that the computer is frozen. Wait until the recalling is completed. This function recalls large waveform files which are acquired by Tx initial EQ and Tx LEQ Response time test.
Appendix

A. Quick Startup Guide

1. Connect instruments with Ethernet cables as shown below.
2. Set the IP and GPIB addresses as shown below. These can be set in the Network and Sharing Center (Windows OS feature).
3. Install all applications as shown below (Yellow letters).

- Recommended connection

- Optional connection

* TCP/IP cannot be used when the GRL software is installed on a Tektronix scope. Set the GPIB address as “GPIB8::1::INSTR”.

* TekVISA is needed to control Tektronix scopes. But, the PC on which TekVISA is installed cannot control Keysight scopes. Also, this configuration makes the remote control speed slower than the recommended configuration.
4. Launch application and configure equipment settings. Enter the scope address as below, and click ![Image](image.png). If the setting and connection are correct, the button will turn green.

Tektronix Scope
When the GRL software is installed on the laptop: TCPIP0::192.168.2.110::inst0::INSTR
When the GRL software is installed on the scope: GPIBX::1::INSTR
* Tektronix scope cannot use TCP/IP when the GRL software is installed on it. In this case, GPIB VISA should be set. The address can be checked using the VISA instruments Manager.

Keysight Scope
When the GRL software is installed on the laptop: TCPIP0::192.168.2.110::inst0::INSTR
When the GRL software is installed on the scope: TCPIP0::localhost::inst0::INSTR

MX190000A: TCPIP0::192.168.2.100::5001::SOCKET*
MX183000A: TCPIP0::192.168.2.100::5000::SOCKET*
* Port numbers should be set for MX190000A and MX183000A.
B. Before beginning Tx LEQ response time test

Before beginning Tx LEQ response time test, it is recommended to adjust the **CTLE Gain** value in MX183000A. Especially, this is efficient when DUT Tx has a large Insertion Loss like a System board. Also, in case of a link training error and/or bit error, adjust the **CTLE Gain** value.

a. In MX183000A, display the LEQ test settings and BER Measurement screen.

![CTLE Gain Adjustment](image1.png)

b. Set **CTLE Gain** to 0 (zero) on the BER Measurement panel.

![CTLE Gain Setting](image2.png)

c. On the **Tx LEQ Response** tab of the LEQ test pane, set **PPG Starting Preset** to 7, **DUT Initial Preset** to 7 and **Target Preset** to P4.

![PPG Setting](image3.png)

d. Click **Link Start**.

e. If the following conditions are met, adjust the **CTLE Gain** value. If there is no error, this
procedure is assumed already to be done, so proceed to step h.
- LTSSM State is not Loopback.Active.Master.
- Sync Header Err is other than 0 (zero).

f. Increment the CTLE Gain value, and run Link Training again until Sync Header Err becomes 0 (zero) and Total Error Count becomes 0 (zero). In this case, it is considered to be error free with -6 dB.

g. Repeat steps d to f with DUT target Preset P7.

h. After adjusting the CTLE Gain value, close the MX183000A application and return to the selector screen. The CTLE Gain value is stored on the MX183000A. And, start GRL Tx LEQ response time test again.