MX860803A/MX860903A/ MX268103A/MX268303A/MX268703A cdma Measurement Software (For MS8608A/MS8609A/ MS2681A/MS2683A/MS2687A/B) Operation Manual

### **Fourth Edition**

Read this manual before using the equipment. Keep this manual with the equipment.

### **ANRITSU CORPORATION**

## Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Insure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following five symbols may not be used on all Anritsu equipment. In addition, there may be other labels attached to products which are not shown in the diagrams in this manual.

death if not performed properly.

### Symbols used in manual

DANGER A



This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

This indicates a very dangerous procedure that could result in serious injury or



This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

### Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Insure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.



This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates warning or caution. The contents are indicated symbolically in or near the triangle.

This indicates a note. The contents are described in the box.



These indicate that the marked part should be recycled.

MX860803A/MX860903A/MX268103A/MX268303A/MX268703A cdma Measurement Software (For MS8608A/MS8609A/MS2681A/MS2683A/MS2687A/B) **Operation Manual** 

July 2001 (First Edition) 13 16 May 2005 (Fourth Edition)

Copyright © 2001-2004, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

# For Safety ——

 ALWAYS refer to the operation manual when working near locations at which the alert mark shown on the left is attached. If the operation, etc., is performed without heeding the advice in the operation manual, there is a risk of personal injury. In addition, the equipment performance may be reduced.

Moreover, this alert mark is sometimes used with other marks and descriptions indicating other dangers.

#### 2. Measurement Categories

This instrument is designed for Measurement category I (CAT I). Don't use this instrument at the locations of measurement categories from CAT II to CAT IV.

In order to secure the safety of the user making measurements, IEC 61010 clarifies the range of use of instruments by classifying the location of measurement into measurement categories from I to IV.

The category outline is as follows:

Measurement category I (CAT I):

Secondary circuits of a device connected to an outlet via a power transformer etc.

Measurement category II (CAT II):

Primary circuits of a device with a power cord (portable tools, home appliance etc.) connected to an outlet.

Measurement category III (CAT III):

Primary circuits of a device (fixed equipment) to which power is directly supplied from the power distribution panel, and circuits from the distribution panel to outlets.

Measurement category IV (CAT IV):

All building service-line entrance circuits through the integrating wattmeter and primary circuit breaker (power distribution panel).

### For Safety

### WARNING 🗥

- 3. When supplying power to this equipment, connect the accessory 3-pin power cord to a grounded outlet. If a grounded outlet is not available, before supplying power to the equipment, use a conversion adapter and ground the green wire, or connect the frame ground on the rear panel of the equipment to ground. If power is supplied without grounding the equipment, there is a risk of receiving a severe or fatal electric shock.
- 4. This equipment cannot be repaired by the user. DO NOT attempt to open the cabinet or to disassemble internal parts. Only Anritsu-trained service personnel or staff from your sales representative with a knowledge of electrical fire and shock hazards should service this equipment. There are high-voltage parts in this equipment presenting a risk of severe injury or fatal electric shock to untrained personnel. In addition, there is a risk of damage to precision parts.
- 5. This equipment should be used in the correct position. If the cabinet is turned on its side, etc., it will be unstable and may be damaged if it falls over as a result of receiving a slight mechanical shock. And also DO NOT use this equipment in the position where the power switch operation is difficult.

Repair

WARNING⚠

Falling Over

|               | —— For Safety ———                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | WARNING 🗥                                                                                                                                                                                                                                                                                                                                                                                |
|               | <ol> <li>DO NOT short the battery terminals and never attempt to disassemble it or dispose of it in a fire. If the battery is damaged by any of these actions, the battery fluid may leak.<br/>This fluid is poisonous.</li> </ol>                                                                                                                                                       |
| Battery Fluid | DO NOT touch it, ingest it, or get in your eyes. If it is accidentally<br>ingested, spit it out immediately, rinse your mouth with water and<br>seek medical help. If it enters your eyes accidentally, do not rub<br>your eyes, irrigate them with clean running water and seek medical<br>help. If the liquid gets on your skin or clothes, wash it off carefully<br>and thoroughly.   |
|               | 7. This instrument uses a Liquid Crystal Display (LCD); DO NOT subject the instrument to excessive force or drop it. If the LCD is subjected to strong mechanical shock, it may break and liquid may leak. This liquid is very caustic and poisonous.                                                                                                                                    |
| LCD           | DO NOT touch it, ingest it, or get in your eyes. If it is ingested ac-<br>cidentally, spit it out immediately, rinse your mouth with water and<br>seek medical help. If it enters your eyes accidentally, do not rub<br>your eyes, irrigate them with clean running water and seek medical<br>help. If the liquid gets on your skin or clothes, wash it off carefully<br>and thoroughly. |

|                | CAUTION 🕂                                                                                                                                                                                                                                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replacing Fuse | <ol> <li>Before Replacing the fuses, ALWAYS remove the power cord from<br/>the poweroutlet and replace the blown fuses. ALWAYS use new<br/>fuses of the type and rating specified on the fuse marking on the rea<br/>panel of the cabinet.</li> <li>T5A indicates a time-lag fuse.</li> </ol>                                                          |
|                | There is risk of receiving a fatal electric shock if the fuses are re placed with the power cord connected.                                                                                                                                                                                                                                            |
| Cleaning       | <ol> <li>Keep the power supply and cooling fan free of dust.</li> <li>Clean the power inlet regularly. If dust accumulates around the power pins, there is a risk of fire.</li> <li>Keep the cooling fan clean so that the ventilation holes are no obstructed. If the ventilation is obstructed, the cabinet may over heat and catch fire.</li> </ol> |
| Check Terminal | <ul> <li>3. Maximum DC voltage ratings:<br/>High Power Input and Low Power Input connectors: ±DC 0 V<br/>Maximum AC power (continuous wave) ratings:<br/>For MS8608A<br/>High Power Input connector: +40 dBm<br/>Low Power Input connector: +20 dBm<br/>For MS8609A<br/>+20 dBm<br/>For MS2681A/MS2683A/MS2687A/B<br/>+30 dBm</li> </ul>               |
|                | NEVER input a over maximum ratings to RF Input, excessive powe<br>may damage the internal circuits.                                                                                                                                                                                                                                                    |

|                                     | CAUTION 🔥                                                                                                                                                                                                                                                      |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Replacing memory<br>back-up battery | This equipment uses a Poly-carbomonofluoride lithium battery to<br>back-up the memory. This battery must be replaced by a service engineer when it has reached the end of its useful life; contact the Anrits<br>sales section or your nearest representative. |
|                                     | Note: The battery used in this equipment has a maximum useful life of 7 years. It should be replaced before this period has elapsed.                                                                                                                           |
| External<br>storage media           | This equipment uses memory cards as external storage media for stor ing data and programs.                                                                                                                                                                     |
|                                     | If this media is mishandled or becomes faulty, important data may be<br>lost. To prevent this chance occurrence, all important data and pro-<br>grams should be backed-up.                                                                                     |
|                                     | Anritsu will not be held responsible for lost data.                                                                                                                                                                                                            |
|                                     | <ul> <li>Pay careful attention to the following points.</li> <li>Never remove the memory card from the driver, while it is being accessed.</li> <li>Memory card may be damaged by static electric charges.</li> </ul>                                          |
|                                     |                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                                                                                                                                                                |
|                                     |                                                                                                                                                                                                                                                                |

### **Equipment Certificate**

Anritsu guarantees that this equipment was inspected at shipment and meets the published specifications.

### **Anritsu Warranty**

- During the warranty period, Anritsu will repair or exchange this software free-of-charge at the company's own discretion if it proves defective when used as described in the operation manual.
- The warranty period is 1 year from the purchase date.
- The warranty period after repair or exchange will remain 1 year from the original purchase date, or 30 days from the date of repair or exchange, depending on whichever is longer.
- This warranty does not cover damage to this software caused by Acts of God, natural disasters, and misuse or mishandling by the customer.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation will not accept liability for equipment faults due to unforeseen and unusual circumstances, nor for faults due to mishandling by the customer.

### **Anritsu Corporation Contact**

If this equipment develops a fault, contact Anritsu Service and Sales offices at the address at the end of paper-edition manual or the separate file of CD-edition manual.

### Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals are needed to be broken/shredded so as not to be unlawfully used for military purpose.

### Front Panel Power Switch

To prevent malfunction caused by accidental touching, the front power switch of this equipment turns on the power if it is pressed continuously for about one second in the standby state. If the switch is pressed continuously for one second in the power-on state, the equipment enters the standby state.

In the power-on state, if the power plug is removed from the outlet, then reinserted into it, the power will not be turned on. Also, if the lines is disconnected due to momentary power supply interruption or power failure, the power will not be turned on (enters the standby state) even if the line is recovered.

This is because this equipment enters the standby state and prevents incorrect data from being acquired when the line has to be disconnected and reconnected.

For example, if the sweep time is 1,000 seconds and data acquisition requires a long time, momentary power supply interruption (power failure) might occur during measurement and the line could be recovered automatically to power-on. In such a case, the equipment may mistake incorrect data for correct data without recognizing the momentary power supply interruption.

If this equipment enters the standby state due to momentary power supply interruption or power failure, check the state of the measuring system and press the front power switch to restore power to this equipment.

Further, if this equipment is built into a system and the system power has to be disconnected then reconnected, the power for this equipment must also be restored by pressing the front power switch.

Consequently, if this equipment is built into remote monitoring systems that use MODEMs, please install option 46 "Auto Power Recovery" to equipment.

### **Software License Agreement**

Please read this Software License Agreement before using the accompanying software program (hereafter this software).

You are authorized to use this software only if you agree to all the terms of this License.

By opening the sealed package containing this software, you are agreeing to be bound by the terms of this License.

If you do not agree to these terms, return the unopened software package to Anritsu Corporation (hereafter Anritsu).

#### 1. License

(1) This License gives you the right to use this software on one MS8608A/

MS8609A/MS2681A/MS2683A/MS2687A/B (hereafter computer system).

- (2) To use this software on one computer system, this License allows you to make one copy of this software on the storage device of your computer system.
- (3) You must obtain a site license to use this software on more than one computer system even if such computer systems are not operating simultaneously.

#### 2. Copyright

- (1) Although you are licensed to use this software, Anritsu retains the copyright.
- (2) Although you have purchased this software, rights other than those specified in this License are not transferred to you.
- (3) You may not print, copy, modify, create derivative works, incorporate in other software programs, decompile or disassemble this software in whole or in part, without obtaining prior written permission from Anritsu.

#### 3. Copying

Notwithstanding item (3) of section 2 above, you may make one copy of this software for backup purposes only. In this case, you may only use either the backup copy or the original copy of this software.

#### 4. Termination

- (1) Anritsu will deem this License to be automatically terminated if you fail to comply with any provision of this License. Upon termination, you will lose all rights to this software.
- (2) Either party (Anritsu or yourself) to this Software License Agreement may terminate this Agreement by giving 1 months notice in writing to the other party.
- (3) Upon termination of this License for any reason, you must either immediately destroy this software and related documentation, or return it to Anritsu.

### **About This Manual**

 The contents of this Operation Manual explain the operation of the MS8608A/09A Digital Mobile Radio Transmitter Tester and the MS2681A/83A/87A/B Spectrum Analyzer when the MX860803A/ MX860903A/MX268103A/MX268303A/MX268703A cdma Measurement Software is installed.

In this manual, MX860x03A means MX860803A or MX860903A, MX268x03A means MX268103A or MX268303A or MX268703A. MS860x means MS8608A or MS8609A, MS268x means MS2681A or MS2683A or MS2687A or MS2687B.

 Manual configuration: The MX860x03A/MX268x03A cdma measurement software operation manual consists of the following two documents.



Panel Operation:

Explains overview, panel description, operation and performance test of the MX860x03A/MX268x03A.

Remote Control:

Explains remote control of the MX860x03A/MX268x03A via RS-232C/GPIB interface.

MX860803A/MX860903A/ MX268103A/MX268303A/MX268703A cdma Measurement Software (For MS8608A/MS8609A/ MS2681A/MS2683A/MS2687A/B) Operation Manual (Panel Operation)

### **Table of Contents**

| Section 1      | General | 1-1 |
|----------------|---------|-----|
| Overview       |         | 1-3 |
| Configuration  |         | 1-4 |
| Specifications | 5       | 1-5 |

### Section 2 Panel Layout and Operation

| Overview                                  | 2-1  |
|-------------------------------------------|------|
| List of Controls on Front and Rear Panels | 2-3  |
| Basic Operation                           | 2-13 |
| Registering the Installation Key          | 2-15 |
| Installing Core Module Software           | 2-16 |
| Installing Measurement Software           | 2-17 |
| Changing the Measurement System           | 2-18 |
| Setting Screen Colors                     | 2-19 |

| Section 3 Measurement                         | 3-1  |
|-----------------------------------------------|------|
| Setting Measurement Parameters                | 3-4  |
| Analyzing Modulation Accuracy and Code Domain | 3-14 |
| Measuring Transmission Power                  | 3-38 |
| Measuring Occupied Frequency Bandwidth        | 3-42 |
| Measuring Nearby Spurious                     | 3-54 |
| Measuring Spurious                            | 3-61 |
| Power Meter                                   | 3-71 |
| Measuring the IQ Level                        | 3-73 |
| Saving and Reading Setup Parameters           | 3-76 |

| Section 4 Perf      | formance Test                            | 4-1  |
|---------------------|------------------------------------------|------|
| About the Performar | nce Test                                 | 4-3  |
| Equipment Required  | d for Performance Test <ms860x></ms860x> | 4-4  |
| Performance Test <  | MS860x>                                  | 4-6  |
| Equipment Required  | d for Performance Test <ms268x></ms268x> | 4-25 |
| Performance Test <  | MS268x>                                  | 4-26 |
| Sample of Entry For | rms for Performance Test Results         |      |
| <ms860x></ms860x>   |                                          | 4-44 |
| Sample of Entry For | rms for Performance Test Results         |      |
| <ms268x></ms268x>   |                                          | 4-55 |

This Section describes the overview and product configuration of this software.

| Overview       | 1-3 |
|----------------|-----|
| Configuration  | 1-4 |
| Specifications | 1-5 |

### Overview

The MS8608A/MS8609A Digital Mobile Radio Transmitter Tester and the MS2681A/MS2683A/MS2687A/B Spectrum Analyzer (hereinafter, collectively referred to as "this measurement unit") are unit that allows speedy, accurate and easy measurement of the transmitter characteristics of base/mobile stations for various mobile communications. In addition to the RF/IF signal evaluation function, this measurement unit has an IQ (base band) signal analysis function for evaluation of devices. With measurement software installed, this measurement unit provides a modulation analysis function corresponding to various digital modulation modes. It also employs high-speed digital signal processing technology, enabling fast and accurate measurement.

The MS2681A/MS2683A/MS2687A/B Spectrum Analyzer (hereinafter, referred to as "spectrum analyzer") is a unit that allows speedy, accurate and easy measurement of the transmitter characteristics of base/mobile stations for various mobile communications. In addition to the RF/IF signal evaluation function, it has an IQ (base band) signal analysis function to evaluate devices. With measurement software installed, the Spectrum Analyzer provides a modulation analysis function that supports various digital modulation modes. In addition, employment of high-speed digital signal processing technology enables fast and accurate measurement.

With the MX860803A/MX860903A/MX268103A/MX268303A/MX268703A cdma2000 measurement software (hereinafter, referred to as "cdma software") installed, this measurement unit becomes universal measurement equipment that allows easy measurement of the functions and performance of radio units for a digital mobile phone regulated by IS-95 and IS-2000 Standards.

The measurement unit with the cdma software installed provides the following major measurement functions:

- Modulation accuracy analysis and carrier frequency measurement
- Code domain analysis
- Transmission power measurement
- Occupied bandwidth measurement
- Nearby spurious measurement
- Spurious measurement, etc.

### Configuration

Combinations of this measurement unit and cdma software and product configurations are given below.

• For measurement unit MS8608A

|           | Product name                 | Q'ty | Model name/Ordering<br>No. | Remarks                 |    |
|-----------|------------------------------|------|----------------------------|-------------------------|----|
| Software  | cdma measurement<br>software | 1    | MX860803A                  | Supplied with A<br>card | TA |
| Accessory | Operation manual             | 1    | W1865AE                    |                         |    |

• For measurement unit MS8609A

|           | Product name                 |   | Model name/Ordering<br>No. | Ren           | narks |     |
|-----------|------------------------------|---|----------------------------|---------------|-------|-----|
| Software  | cdma measurement<br>software | 1 | MX860903A                  | Supplied card | with  | ATA |
| Accessory | Operation manual             | 1 | W1865AE                    |               |       |     |

#### • For measurement unit MS2681A

|           | Product name                 |   | Model name/Ordering<br>No. | Remarks                |
|-----------|------------------------------|---|----------------------------|------------------------|
| Software  | cdma measurement<br>software | 1 | MX268103A                  | Supplied with ATA card |
| Accessory | Operation manual             | 1 | W1865AE                    |                        |

• For measurement unit MS2683A

|           | Product name                 | Q'ty | Model name/Ordering<br>No. | Rei           | marks |     |
|-----------|------------------------------|------|----------------------------|---------------|-------|-----|
| Software  | cdma measurement<br>software | 1    | MX268303A                  | Supplied card | with  | ATA |
| Accessory | Operation manual             | 1    | W1865AE                    |               |       |     |

• For measurement unit MS2687A/B

|           | Product name                 | Q'ty | Model name/Ordering<br>No. | Remarks              |     |
|-----------|------------------------------|------|----------------------------|----------------------|-----|
| Software  | cdma measurement<br>software | 1    | MX268703A                  | Supplied with A card | ATA |
| Accessory | Operation manual             | 1    | W1865AE                    |                      |     |

### Specifications

| Item                               | Specifications                                                                                                                                                                                                                               | Remarks |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Model/unit name                    | MX860803A cdma measurement software (MS8608A)                                                                                                                                                                                                |         |
| Purpose                            | To measure transmission characteristics of cdma-type mobile radio units                                                                                                                                                                      |         |
| Electric performance<br>(RF input) | The specifications given below are guaranteed after<br>executing MS8608A level optimization (executed<br>automatically by pressing a key).                                                                                                   |         |
| Modulation/frequency measurement   |                                                                                                                                                                                                                                              |         |
| Measurement<br>frequency range     | 50 MHz to 2.3 GHz                                                                                                                                                                                                                            |         |
| Measurement level<br>range         | -20 to +40 dBm (average power during burst): High-power input                                                                                                                                                                                |         |
| -                                  | -40 to +20 dBm (average power during burst): Low-power input                                                                                                                                                                                 |         |
|                                    | -60 to +10 dBm (average power during burst): Low-power input, with preamplifier $On^*1$                                                                                                                                                      |         |
| Carrier frequency<br>accuracy      | $\pm$ (reference crystal oscillator accuracy +10 Hz) when<br>input: level $\geq$ -10 dBm (high-power input), $\geq$ -30 dBm<br>(low-power input), $\geq$ -40 dBm (low-power input, with<br>preamplifier On*1), using code channel 1 CH       |         |
| Modulation<br>accuracy             |                                                                                                                                                                                                                                              |         |
| Residual vector<br>error           | <2.0%(rms) when input: level $\geq -10$ dBm (high-power input), $\geq -30$ dBm (low-power input), $\geq -40$ dBm (low-power input, with preamplifier On*1), using code channel 1 CH                                                          |         |
| Origin offset<br>accuracy          | $\pm 0.5$ dB when input: level $\geq -10$ dBm (high-power input),<br>$\geq -30$ dBm (low-power input), $\geq -40$ dBm (low-power input,<br>with preamplifier On*1), using only code channel 1 CH, for<br>signal with origin offset $-30$ dBc |         |
| Waveform display                   | For single- to multi-channel input signals, displays the following items:                                                                                                                                                                    |         |
|                                    | Constellation                                                                                                                                                                                                                                |         |
|                                    | Eye diagram                                                                                                                                                                                                                                  |         |
|                                    | Vector error vs. chip number                                                                                                                                                                                                                 |         |
|                                    | Phase error vs. chip number                                                                                                                                                                                                                  |         |
|                                    | Amplitude error vs. chip number                                                                                                                                                                                                              |         |

#### MX860803A cdma measurement software specifications

\*1:The preamplifier can be set On when main unit option MS8608A-08 is installed.

| ltem                              | Specifications                                                                                                                                       | Remarks |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Code domain analysis              |                                                                                                                                                      |         |
| Measurement                       | 50 MHz to 2.3 GHz                                                                                                                                    |         |
| frequency range                   |                                                                                                                                                      |         |
| Measurement level                 | -20 to +40 dBm (average power during burst): High-power                                                                                              |         |
| range                             | input                                                                                                                                                |         |
|                                   | -40 to +20 dBm (average power during burst): Low-power                                                                                               |         |
|                                   | input                                                                                                                                                |         |
|                                   | -60 to +10 dBm (average power during burst): Low-power<br>input, with preamplifier On*1                                                              |         |
| Code domain power                 | $\pm 0.1 \text{ dB}$ (code power $\geq -10 \text{ dBc}$ ) or $\pm 0.3 \text{ dB}$ (code power $\geq -25$                                             |         |
| accuracy                          | dBc) when input level: $\geq$ +10 dBm (high-power input), $\geq$ -10 dBm (low-power input), $\geq$ -20 dBm (low-power input, with preamplifier On*1) |         |
| Display function                  | Display code domain power, code domain timing offset, and code domain phase offset values                                                            |         |
|                                   | Available spread ratios:                                                                                                                             |         |
|                                   | 2 to 32 (reverse link < radio configuration 3 and $4 >$ )                                                                                            |         |
|                                   | 64 (forward link < radio configuration 1 and 2 >)                                                                                                    |         |
|                                   | 4 to 128 (forward link < radio configuration 3 to 5 >)                                                                                               |         |
|                                   | Spread ratio automatic detection function provided, IQ sepa-                                                                                         |         |
| A 1:4 1 -                         | rated display for reverse link (radio configuration 5 and 4)                                                                                         |         |
| Amplitude                         |                                                                                                                                                      |         |
| Frequency range                   | 50 MHz to 2 3 CHz                                                                                                                                    |         |
| Measurement level                 | -20 to +40 dBm (average nower during hurst): High-nower                                                                                              |         |
| range                             | input                                                                                                                                                |         |
| 0                                 | -40 to +20 dBm (average power during burst): Low-power                                                                                               |         |
|                                   | input                                                                                                                                                |         |
|                                   | -60 to +10 dBm (average power during burst): Low-power input, with preamplifier On*1                                                                 |         |
| Transmission power<br>measurement | After level calibration using built-in power meter (automatically calibrated by pressing a key)                                                      |         |
| Measurement                       | 0 to +40 dBm (average power during burst): High-power                                                                                                |         |
| range                             | input                                                                                                                                                |         |
|                                   | -20 to +20 dBm (average power during burst): Low-power                                                                                               |         |
|                                   | input                                                                                                                                                |         |
|                                   | -20 to +10 dBm (average power during burst): Low-power input, with preamplifier On*1                                                                 |         |
| Accuracy                          | ±0.4 dB                                                                                                                                              |         |
| Power                             | $\pm 0.20~dB$ (0 to $-40~dB)$ when input level (average power                                                                                        |         |
| measurement                       | during burst): $\geq +10$ dBm (high-power input), $\geq -10$ dBm                                                                                     |         |
| linearity                         | $(10W-power input)$ , $\geq -20$ dBm (10W-power input, with program lifter $(1000000000000000000000000000000000000$                                  |         |
|                                   | settings after range optimization                                                                                                                    |         |
| Burst signal                      | Rise/fall characteristics and On/Off-ratio analysis function                                                                                         |         |
| analysis                          | provided                                                                                                                                             |         |
|                                   |                                                                                                                                                      |         |

\*1:The preamplifier can be set On when main unit option MS8608A-08 is installed.

| ltem                                           | Specifications                                                                                                                                            | Remarks |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Occupied frequency<br>bandwidth<br>measurement |                                                                                                                                                           |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                                                         |         |
| Measurement level<br>range                     | -20 to +40 dBm (average power during burst): High-power input                                                                                             |         |
|                                                | -40 to +20 dBm (average power during burst): Low-power input                                                                                              |         |
|                                                | -60 to +10 dBm (average power during burst): Low-power input, with preamplifier $On^*1$                                                                   |         |
| Measurement<br>method                          |                                                                                                                                                           |         |
| Sweeping method                                | Measures the signal with a sweep-type spectrum analyzer<br>and displays the calculated result.                                                            |         |
| FFT method                                     | Analyzes the signal with FFT and displays the calculated result.                                                                                          |         |
| Nearby spurious<br>measurement                 |                                                                                                                                                           |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                                                         |         |
| Input level range                              | +10 to +40 dBm (average power during burst): High-power input                                                                                             |         |
|                                                | -10 to +20 dBm (average power during burst): Low-power input                                                                                              |         |
| Measurement<br>method                          | Displays the calculated ratio of the transmission power to<br>the power measured with the sweep-type spectrum<br>analyzer                                 |         |
| Transmission power<br>measurement              |                                                                                                                                                           |         |
| Tx Power method                                | Carrier power measured at 1.23 MHz bandwidth                                                                                                              |         |
| SPA method                                     | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                                                |         |
| Measurement range                              | 900 kHz detuning: ≥50 dBc                                                                                                                                 |         |
|                                                | 1.98 MHz detuning: ≥60 dBc                                                                                                                                |         |
|                                                | When input level (average power during burst) ≥+20 dBm<br>(high-power input), ≥0 dBm (low-power input), RBW: 30<br>kHz, VBW: 300 kHz, Detection: Positive |         |

\*1:The preamplifier can be set On when main unit option MS8608A-08 is installed.

| ltem                              | Specifications                                                                                                                                                                                                                                                                        | Remarks |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Spurious                          |                                                                                                                                                                                                                                                                                       |         |
| measurement                       |                                                                                                                                                                                                                                                                                       |         |
| Measurement                       | 10 MHz to 7.8 GHz, except carrier frequency $\pm 50$ MHz                                                                                                                                                                                                                              |         |
| frequency range                   | range                                                                                                                                                                                                                                                                                 |         |
| Input level range                 | +20 to +40 dBm (average power during burst): High-power                                                                                                                                                                                                                               |         |
| (Transmission                     |                                                                                                                                                                                                                                                                                       |         |
| power)                            | 0 to +20 dBm (average power during burst): Low-power input                                                                                                                                                                                                                            |         |
| Measurement                       | •                                                                                                                                                                                                                                                                                     |         |
| method                            |                                                                                                                                                                                                                                                                                       |         |
| Sweep method                      | Sweeps the specified frequency range with a spectrum<br>analyzer and displays the detected peak value. For the<br>power ratio, displays the calculated ratio to the<br>transmission power. Detection mode ids Average.                                                                |         |
| Spot method                       | Measures at the specified frequency with a spectrum<br>analyzer in time domain mode and displays the average<br>value. For the power ratio, displays the calculated ratio<br>to the transmission power. Detiction mode is Average.                                                    |         |
| Search method                     | Sweeps the specified frequency range with a spectrum<br>analyzer, detects the peak value, measures at the<br>frequency in time domain, and displays the average value.<br>For the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average. |         |
| Transmission power<br>measurement |                                                                                                                                                                                                                                                                                       |         |
| <b>Tx Power method</b>            | Carrier power measured at 1.23 MHz bandwidth                                                                                                                                                                                                                                          |         |
| SPA method                        | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                                                                                                                                                                            |         |
| Measurement range                 | At CW carrier frequency 800 MHz to 1000 MHz or 1800<br>MHz to 2200 MHz, power ratio reference value is Tx power<br>(except the spurious given in note below)<br>>79 dB typical (BBW: 100 kHz) (10 to 1000 MHz hand 0)                                                                 |         |
|                                   | In normal mode                                                                                                                                                                                                                                                                        |         |
|                                   | >76-f [CHz] dB typical (BBW: 1 MHz)                                                                                                                                                                                                                                                   |         |
|                                   | (1000  to  3150  MHz)                                                                                                                                                                                                                                                                 |         |
|                                   | >76 dB typical (BBW: 1 MHz) (3150 to 7800 MHz, band 1)                                                                                                                                                                                                                                |         |
| Main unit ontion                  | In spurious mode                                                                                                                                                                                                                                                                      |         |
| With MS8608A-03<br>installed      | $\geq 76 \text{ dB typical} (\text{RBW: 1 MHz}) \qquad (1600 \text{ to } 7800 \text{ MHz, band 1})$                                                                                                                                                                                   |         |
|                                   | Note:                                                                                                                                                                                                                                                                                 |         |
|                                   | When the carrier frequency is 2030.354 to 2200 MHz, spurious will occur at the following frequency:                                                                                                                                                                                   |         |
|                                   | 1 (spurious) = 1 (in) - 2030.345 MHz                                                                                                                                                                                                                                                  |         |

| ltem                   | Specifications                                                                               | Remarks |
|------------------------|----------------------------------------------------------------------------------------------|---------|
| Electric performance   |                                                                                              |         |
| (IQ input)             |                                                                                              |         |
| Input method           | Balance or Unbalance can be selected.                                                        |         |
| Input impedance        | 1 M $\Omega$ (parallel capacity <100 pF) or 50 $\Omega$ can be selected.                     |         |
| Input level range      |                                                                                              |         |
| Balance input          | Differential voltage range: 0.1 to 1 Vpp (at input connector)                                |         |
|                        | Common-mode voltage range: $\pm 2.5$ V (at input connector)                                  |         |
| Unbalance input        | 0.1 to 1 Vpp (at input connector)                                                            |         |
|                        | DC/AC coupling can be switched.                                                              |         |
| Measurement items      | Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), IQ level |         |
| Modulation             |                                                                                              |         |
| accuracy               |                                                                                              |         |
| measurement            |                                                                                              |         |
| <b>Residual vector</b> | <2% (rms), DC coupling at Input level: $\geq$ 0.1 V (rms)                                    |         |
| error                  |                                                                                              |         |
| IQ level               |                                                                                              |         |
| measurement            |                                                                                              |         |
| Level                  | Measures and displays the I and Q input voltages (rms                                        |         |
| measurement            | and peak-to-peak values).                                                                    |         |
| IQ phase               | When CW signal is input to the I and Q input connectors,                                     |         |
| difference             | measures and displays the phase difference between the I-                                    |         |
| measurement            | and Q-phase signals.                                                                         |         |

| ltem                               | Specifications                                                                                                                                                                       | Remarks |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Model/unit name                    | MX860903A cdma measurement software (MS8609A)                                                                                                                                        |         |
| Purpose                            | To measure transmission characteristics of cdma-type mobile radio unit                                                                                                               |         |
| Electric performance<br>(RF input) | The specifications given below are guaranteed after<br>executing MS8609A level optimization (executed<br>automatically by pressing a key).                                           |         |
| Modulation/frequency measurement   |                                                                                                                                                                                      |         |
| Measurement<br>frequency range     | 50 MHz to 2.3 GHz                                                                                                                                                                    |         |
| Measurement level range            | -40 to +20 dBm (average power during burst): With<br>preamplifier Off<br>60 to +10 dBm (average power during burst): With                                                            |         |
|                                    | preamplifier On*1                                                                                                                                                                    |         |
| Carrier frequency<br>accuracy      | $\pm$ (reference crystal oscillator accuracy +10 Hz) when input level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with preamplifier On*1), using code channel 1 CH       |         |
| Modulation<br>accuracy             |                                                                                                                                                                                      |         |
| Residual vector<br>error           | <2.0% (rms) when input level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with preamplifier On*1), using code channel 1 CH                                                |         |
| Origin offset<br>accuracy          | $\pm 0.5$ dB when input level $\geq -30$ dBm (with preamplifier Off), $\geq -40$ dBm (with preamplifier On*1), using only code channel 1 CH, for signal with origin offset $-30$ dBc |         |
| Waveform display                   | For single- to multi-channel input signals, displays the following items:                                                                                                            |         |
|                                    | Constellation                                                                                                                                                                        |         |
|                                    | Eye diagram<br>Vaatan arman ya shin numban                                                                                                                                           |         |
|                                    | Phase error vs. chip number                                                                                                                                                          |         |
|                                    | Amplitude error vs. chip number                                                                                                                                                      |         |

#### MX860903A cdma measurement software specifications

\*1:The preamplifier can be set On when main unit option MS8609A-08 is installed.

| ltem                          | Specifications                                                                                    | Remarks |
|-------------------------------|---------------------------------------------------------------------------------------------------|---------|
| Code domain analysis          |                                                                                                   |         |
| Measurement                   | 50 MHz to 2.3 GHz                                                                                 |         |
| frequency range               |                                                                                                   |         |
| Measurement level             | -40 to +20 dBm (average power during burst): With                                                 |         |
| range                         | preamplifier Off                                                                                  |         |
|                               | -60 to +10 dBm (average power during burst): With preamplifier On*1                               |         |
| Code domain power<br>accuracy | When input level: $\geq -10$ dBm (with preamplifier Off), $\geq -20$ dBm (with preamplifier On*1) |         |
|                               | ±0.1 dB (code power ≥–10 dBc)                                                                     |         |
|                               | ±0.3 dB (code power ≥–25 dBc)                                                                     |         |
| Display function              | Display code domain power, code domain timing offset, and code domain phase offset values         |         |
|                               | Available spread ratios:                                                                          |         |
|                               | 2 to 32 (reverse link < radio configuration 3 and 4 >)                                            |         |
|                               | 64 (forward link < radio configuration 1 and 2 >)                                                 |         |
|                               | 4 to 128 (forward link < radio configuration 3 to 5 >)                                            |         |
|                               | Spread ratio automatic detection function provided, IQ sepa-                                      |         |
|                               | rated display for reverse link (radio configuration 3 and 4)                                      |         |
| Amplitude                     |                                                                                                   |         |
| measurement                   |                                                                                                   |         |
| Frequency range               | 50 MHz to 2.3 GHz                                                                                 |         |
| Measurement level             | -40 to $+20$ dBm (average power during burst): With                                               |         |
| range                         | preamplifier Off                                                                                  |         |
|                               | preamplifier On*1                                                                                 |         |
| Transmission power            | After level calibration using built-in power meter                                                |         |
| measurement                   | (automatically calibrated by pressing a key)                                                      |         |
| measurement                   | -20 to +20 dBm (average power during burst): with                                                 |         |
| Tange                         | -20 to +10 dBm (average power during burst). With                                                 |         |
|                               | preamplifier On*1                                                                                 |         |
| Accuracy                      | ±0.4 dB                                                                                           |         |
| Power                         | $\pm 0.2$ dB (0 to $-40$ dB) when input level (average power                                      |         |
| measurement                   | during burst): ≥-10 dBm (with preamplifier Off), ≥–20 dBm                                         |         |
| linearity                     | (with preamplifier On*1), without changing the reference                                          |         |
|                               | level settings after range optimization                                                           |         |
| Burst signal                  | Rise/fall characteristics and On/Off-ratio analysis function                                      |         |
| analysis                      | provided                                                                                          |         |

\*1:The preamplifier can be set On when main unit option MS8609A-08 is installed

| ltem                                           | Specifications                                                                                                                  | Remarks |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|
| Occupied frequency<br>bandwidth<br>measurement |                                                                                                                                 |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                               |         |
| Measurement level<br>range                     | -40 to +20 dBm (average power during burst): With preamplifier Off                                                              |         |
|                                                | -60 to +10 dBm (average power during burst): With preamplifier On*1                                                             |         |
| Measurement<br>method                          |                                                                                                                                 |         |
| Sweeping method                                | Measures the signal with a sweep-type spectrum analyzer<br>and displays the calculated result.                                  |         |
| FFT method                                     | Analyzes the signal with FFT and displays the calculated result.                                                                |         |
| Nearby spurious<br>measurement                 |                                                                                                                                 |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                               |         |
| Input level range                              | -10 to +20 dBm (average power during burst): With preamplifier Off                                                              |         |
| Measurement<br>method                          | Displays the calculated ratio of the transmission power to<br>the power measured with the sweep-type spectrum<br>analyzer       |         |
| Transmission power<br>measurement              |                                                                                                                                 |         |
| <b>Tx Power method</b>                         | Carrier power measured at 1.23 MHz bandwidth                                                                                    |         |
| SPA method                                     | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                      |         |
| Measurement range                              | 900 kHz detuning: ≥ 50 dBc                                                                                                      |         |
|                                                | 1.98 MHz detuning: ≥60 dBc                                                                                                      |         |
|                                                | When input level (average power during burst) ≥0 dBm<br>(preamplifier input), RBW: 30 kHz, VBW: 300 kHz,<br>Detection: Positive |         |

\*1:The preamplifier can be set On when main unit option MS8609A-08 is installed.

| ltem                                         | Specifications                                                                                                                                                                                                                                                                        | Remarks |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Spurious<br>measurement                      |                                                                                                                                                                                                                                                                                       |         |
| Measurement<br>frequency range               | 10 MHz to 12.75 GHz, except carrier frequency $\pm$ 50 MHz range                                                                                                                                                                                                                      |         |
| Input level range<br>(transmission<br>power) | 0 to +20 dBm (average power during burst): With preamplifier Off                                                                                                                                                                                                                      |         |
| Measurement<br>method                        |                                                                                                                                                                                                                                                                                       |         |
| Sweeping method                              | Sweeps the specified frequency range with a spectrum<br>analyzer and displays the detected peak value. For the<br>power ratio, displays the calculated ratio to the<br>transmission power. Detiction mode is Average.                                                                 |         |
| Spot method                                  | Measures at specified frequency with a spectrum analyzer<br>in time domain mode and displays the average value. For<br>the power ratio, displays the calculated ratio to the<br>transmission power. Detiction mode is Average.                                                        |         |
| Search method                                | Sweeps the specified frequency range with a spectrum<br>analyzer, detects the peak value, measures at the<br>frequency in time domain, and displays the average value.<br>For the power ratio, displays the calculated ratio to the<br>transmission power. Detiction mode is Average. |         |
| Transmission power<br>measurement            |                                                                                                                                                                                                                                                                                       |         |
| Tx Power method                              | Carrier power measured at 1.23 MHz bandwidth                                                                                                                                                                                                                                          |         |
| SPA method                                   | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                                                                                                                                                                            |         |
| Measurement range                            | At carrier frequency 800 MHz to 1000 MHz or 1800 to 2200 MHz, power-ratio reference value is Tx power (except the spurious given in note below)                                                                                                                                       |         |
|                                              | $\geq$ 79 dB typical (RBW: 100 kHz) (10 to 1000 MHz, band 0)                                                                                                                                                                                                                          |         |
|                                              | In normal mode                                                                                                                                                                                                                                                                        |         |
|                                              | $\geq$ 76-f [GHz] dB typical (RBW: 1 MHz)                                                                                                                                                                                                                                             |         |
|                                              | (1000 to 3150MHZ, band 0)                                                                                                                                                                                                                                                             |         |
|                                              | $\frac{270 \text{ dB typical (RBW: 1 MHz)}}{1)}$ (3150 to 7800 MHz. Band                                                                                                                                                                                                              |         |
| Main unit option                             | In spurious mode                                                                                                                                                                                                                                                                      |         |
| MS8609A-03                                   | $\geq$ 76 dB typical (RBW: 1 MHz) (1600 to 7800 MHz, band                                                                                                                                                                                                                             |         |
| ilistalleu                                   | 1)<br>Note:                                                                                                                                                                                                                                                                           |         |
|                                              | When the carrier frequency is 2030.354 MHz to 2200<br>MHz, spurious will occur at the following frequency:                                                                                                                                                                            |         |
|                                              | f (spurious) = f (in) $-2030.345$ MHz                                                                                                                                                                                                                                                 |         |

| Item                               | Specifications                                                                               | Remarks |
|------------------------------------|----------------------------------------------------------------------------------------------|---------|
| Electric performance<br>(IQ input) |                                                                                              |         |
| Input method                       | Balance or Unbalance can be selected.                                                        |         |
| Input impedance                    | 1 M $\Omega$ (parallel capacity <100 pF) or 50 $\Omega$ can be selected.                     |         |
| Input level range                  |                                                                                              |         |
| Balance input                      | Differential voltage range: 0.1 to 1 Vpp (at input connector)                                |         |
|                                    | Common-mode voltage range: $\pm 2.5$ V (at input connector)                                  |         |
| Unbalance input                    | 0.1 to 1 Vpp (at input connector)                                                            |         |
|                                    | AC/DC coupling can be switched.                                                              |         |
| Measurement items                  | Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), IQ level |         |
| Modulation                         |                                                                                              |         |
| accuracy                           |                                                                                              |         |
| measurement                        |                                                                                              |         |
| Residual vector<br>error           | <2% (rms), DC coupling at Input level: ≥0.1 V (rms)                                          |         |
| IQ level                           |                                                                                              |         |
| measurement                        |                                                                                              |         |
| Level                              | Measures and displays the I and Q input voltages (rms                                        |         |
| measurement                        | and peak-to-peak values).                                                                    |         |
| IQ phase                           | When CW signal is input to the I and Q input connectors,                                     |         |
| difference                         | measures and displays the phase difference between the I-                                    |         |
| measurement                        | and Q-phase signals.                                                                         |         |

| ltem                               | Specifications                                                                                                                                                                                                 | Remarks |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Model/unit name                    | MX268103A cdma measurement software (MS2681A)                                                                                                                                                                  |         |
| Purpose                            | To measure transmission characteristics of cdma-type mobile radio unit                                                                                                                                         |         |
| Electric performance<br>(RF input) | The specifications given below are guaranteed after<br>executing MS2681A level optimization (executed<br>automatically by pressing a key).                                                                     |         |
| Modulation/frequency measurement   |                                                                                                                                                                                                                |         |
| Measurement<br>frequency range     | 50 MHz to 2.3 GHz                                                                                                                                                                                              |         |
| Measurement level<br>range         | -40 to $+30~dBm$ (average power during burst): With preamplifier Off                                                                                                                                           |         |
|                                    | -60 to +10 dBm (average power during burst): With preamplifier $On^{*}1$                                                                                                                                       |         |
| Carrier frequency<br>accuracy      | $\pm$ (reference crystal oscillator accuracy +10 Hz) when input<br>level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with<br>preamplifier On*1), using code channel 1 CH                           |         |
| Modulation<br>accuracy             |                                                                                                                                                                                                                |         |
| Residual vector<br>error           | <2.0% (rms) when input level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with preamplifier On*1), using code channel 1 CH                                                                          |         |
| Origin offset<br>accuracy          | $\pm 0.5$ dB when input level $\geq -30$ dBm (with preamplifier Off), $\geq -40$ dBm (with preamplifier On*1), using only code channel 1 CH, for signal with origin offset $-30$ dBc                           |         |
| Waveform display                   | For single- to multi-channel input signals, displays the following items:                                                                                                                                      |         |
|                                    | Constellation                                                                                                                                                                                                  |         |
|                                    | Eye diagram                                                                                                                                                                                                    |         |
|                                    | Vector error vs. chip number                                                                                                                                                                                   |         |
|                                    | Amplitude error vs. chip number                                                                                                                                                                                |         |
| Waveform display                   | For single- to multi-channel input signals, displays the<br>following items:<br>Constellation<br>Eye diagram<br>Vector error vs. chip number<br>Phase error vs. chip number<br>Amplitude error vs. chip number |         |

#### MX268103A cdma measurement software specifications

\*1:The preamplifier can be set On when main unit option MS2681A-08 is installed.

| Code domain analysis<br>Measurement<br>frequency range       50 MHz to 2.3 GHz         Measurement frequency range       -40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1         Code domain power<br>accuracy       When input level: ≥-10 dBm (with preamplifier Off), ≥-20<br>dBm (with preamplifier On*1)<br>±0.1 dB (code power ≥-10 dBc)<br>±0.3dB (code power ≥-25 dBc)         Display function       Displays code domain power, code domain timing offset,<br>and code domain phase offset values<br>Available spread ratios:<br>2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ<br>separated display for reverse link (radio configuration<br>3 and 4)         Amplitude<br>measurement<br>range       50 MHz to 2.3 GHz<br>-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1         Transmission power<br>measurement<br>range       -20 to +30 dBm (average power during burst): With<br>preamplifier On*1         -20 to +30 dBm (average power during burst): With<br>preamplifier On*1       -20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1         Transmission power<br>measurement<br>linearity       -20 dB (bo to -40 dB) when input                                                                                                                                                                               | Item                              | Specifications                                                                                                                                                                                                                  | Remarks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Measurement<br>frequency range       50 MHz to 2.3 GHz         Measurement level<br>range       -40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1         Code domain power<br>accuracy       When input level: ≥-10 dBm (with preamplifier Off), ≥-20<br>dBm (with preamplifier On*1)<br>±0.1 dB (code power ≥-15 dBc)         Display function       Displays code domain power, code domain timing offset,<br>and code domain phase offset values         Available spread ratios:       2 to 32 (roward link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ<br>separated display for reverse link (radio configuration<br>3 and 4)         Amplitude<br>measurement<br>Frequency range       50 MHz to 2.3 GHz<br>-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +20 dB (ypical<br>Power<br>measurement<br>linearity         Power<br>measurement<br>linearity       ±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>(with preamplifier Off), ≥-10 dBm<br>(with preamplifier Off), ≥-20 dBm<br>(with preamplifier Off), ≥-10 dBm<br>(with preamplifier Off), ≥-20 dBm<br>(with preamplifier Off), ≥-20 dBm<br>(with preamplifier Off), ≥-20 dBm | Code domain analysis              |                                                                                                                                                                                                                                 |         |
| Measurement level<br>range-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1Code domain power<br>accuracyWhen input level: $\geq$ -10 dBm (with preamplifier Off), $\geq$ -20<br>dBm (with preamplifier On*1)<br>$\pm$ 0.1 dB (code power $\geq$ -10 dBc)<br>$\pm$ 0.3dB (code power $\geq$ -25 dBc)Display functionDisplays code domain power, code domain timing offset,<br>and code domain phase offset values<br>Available spread ratios:<br>2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ<br>separated display for reverse link (radio configuration<br>3 and 4)Amplitude<br>measurement<br>range50 MHz to 2.3 GHz<br>-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 dB (0 to -40 dB) when input level (average power<br>during burst): 2·0 dBm (with preamplifier Off), 2-20 dBm<br>(with preamplifier Of*1), without changing the reference<br>level settings after range optimization<br>Burst signal<br>analysis                                                                                                                            | Measurement<br>frequency range    | 50 MHz to 2.3 GHz                                                                                                                                                                                                               |         |
| -60 to +10 dBm (average power during burst): With preamplifier On*1         When input level: ≥-10 dBm (with preamplifier Off), ≥-20 dBm (with preamplifier On*1)         ±0.1 dB (code power ≥-10 dBc)         ±0.3dB (code power ≥-25 dBc)         Display function         Display function         Display code domain power, code domain timing offset, and code domain phase offset values         Available spread ratios:         2 to 32 (reverse link < radio configuration 3 and 4 >)         64 (forward link < radio configuration 3 to 5 >)         Spread ratio automatic detection function provided, IQ separated display for reverse link (radio configuration 3 and 4)         Amplitude         measurement         Frequency range         Measurement level range         -20 to +30 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier Off         -20 to +20 dBm (with preamplifier Off)         -20 to +20 dBm (oto -40 dB) when input level (average power during burst): With preamplifier On*1         *20 dB typical         *20 dB typical         *20 dB typical <td< td=""><td>Measurement level<br/>range</td><td>-40 to +30 dBm (average power during burst): With preamplifier Off</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                    | Measurement level<br>range        | -40 to +30 dBm (average power during burst): With preamplifier Off                                                                                                                                                              |         |
| Code domain power<br>accuracyWhen input level: $\geq -10$ dBm (with preamplifier Off), $\geq -20$<br>dBm (with preamplifier On*1)<br>$\pm 0.1$ dB (code power $\geq -10$ dBc)<br>$\pm 0.3dB$ (code power $\geq -25$ dBc)Display functionDisplays code domain power, code domain timing offset,<br>and code domain phase offset valuesAvailable spread ratios:<br>$2$ to $32$ (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   | -60 to +10 dBm (average power during burst): With preamplifier On*1                                                                                                                                                             |         |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Code domain power<br>accuracy     | When input level: $\geq -10$ dBm (with preamplifier Off), $\geq -20$ dBm (with preamplifier On*1)                                                                                                                               |         |
| ±0.3dB (code power ≥-25 dBc)         Display function         Displays code domain power, code domain timing offset, and code domain phase offset values         Available spread ratios:         2 to 32 (reverse link < radio configuration 3 and 4 >)         64 (forward link < radio configuration 1 and 2 >)         4 to 128 (forward link < radio configuration 3 to 5 >)         Spread ratio automatic detection function provided, IQ separated display for reverse link (radio configuration 3 and 4)         Amplitude measurement         Frequency range         Measurement level range         -40 to +30 dBm (average power during burst): With preamplifier Off         -60 to +10 dBm (average power during burst): With preamplifier On*1         Transmission power measurement         Measurement range         -20 to +30 dBm (average power during burst): With preamplifier On*1         Accuracy       ±2.0 dB typical         ±0.2 dB (0 to -40 dB) when input level (average power during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm (average power during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm (with preampl                                                                                                                                                                                                                                                                                                                                               |                                   | $\pm 0.1 \text{ dB}$ (code power $\geq -10 \text{ dBc}$ )                                                                                                                                                                       |         |
| Display function       Displays code domain power, code domain timing offset, and code domain phase offset values         Available spread ratios:       2 to 32 (reverse link < radio configuration 3 and 4 >)         64 (forward link < radio configuration 1 and 2 >)       4 to 128 (forward link < radio configuration 3 to 5 >)         Spread ratio automatic detection function provided, IQ separated display for reverse link (radio configuration 3 and 4)         Amplitude         measurement         Frequency range         Measurement level         range         50 MHz to 2.3 GHz         -40 to +30 dBm (average power during burst): With preamplifier Off         -60 to +10 dBm (average power during burst): With preamplifier On*1         Transmission power measurement         Measurement range         -20 to +30 dBm (average power during burst): With preamplifier On*1         Accuracy       ±2.0 dB (0 to -40 dB) when input level (average power during burst): With preamplifier On*1         Accuracy       ±0.2 dB (0 to -40 dB) when input level (average power during burst): ≥10 dBm (with preamplifier Off), ≥-20 dBm (with preamplifier Off), ≥-20 dBm (with preamplifier On*1), without changing the reference level settings after range optimization         Burst signal analysis       Rise/fall characteristics and On/Off-ratio analysis function analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | $\pm 0.3$ dB (code power $\geq -25$ dBc)                                                                                                                                                                                        |         |
| Available spread ratios:2 to 32 (reverse link < radio configuration 3 and 4 >)64 (forward link < radio configuration 1 and 2 >)4 to 128 (forward link < radio configuration 1 and 2 >)4 to 128 (forward link < radio configuration 1 and 2 >)50 MHz to 2.3 GHzmeasurementFrequency range60 to +30 dBm (average power during burst): With<br>preamplifier Off-60 to +10 dBm (average power during burst): With<br>preamplifier On*1Transmission power<br>measurementMeasurement-20 to +30 dBm (average power during burst): With<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Display function                  | Displays code domain power, code domain timing offset,<br>and code domain phase offset values                                                                                                                                   |         |
| 2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | Available spread ratios:                                                                                                                                                                                                        |         |
| Amplitude       3 and 4)         Amplitude       3 and 4)         Frequency range       50 MHz to 2.3 GHz         Measurement level       -40 to +30 dBm (average power during burst): With preamplifier Off         range       -40 to +10 dBm (average power during burst): With preamplifier On*1         Transmission power measurement       -20 to +30 dBm (average power during burst): With preamplifier Off         Measurement range       -20 to +30 dBm (average power during burst): With preamplifier Off         Accuracy       ±2.0 to +10 dBm (average power during burst): With preamplifier On*1         Accuracy       ±2.0 dB typical         Power       ±0.2 dB (ot to -40 dB) when input level (average power during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm         Inearity       (with preamplifier On*1), without changing the reference level settings after range optimization         Burst signal analysis       Rise/fall characteristics and On/Off-ratio analysis function provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | 2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >)<br>Spread ratio automatic detection function provided, IQ |         |
| Amplitude<br>measurement50 MHz to 2.3 GHzFrequency range50 MHz to 2.3 GHzMeasurement level<br>range-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1Transmission power<br>measurement-20 to +30 dBm (average power during burst): With<br>preamplifier On*1Measurement<br>range-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | 3 and 4)                                                                                                                                                                                                                        |         |
| Frequency range       50 MHz to 2.3 GHz         Measurement level range       -40 to +30 dBm (average power during burst): With preamplifier Off         -60 to +10 dBm (average power during burst): With preamplifier On*1         Transmission power measurement       -20 to +30 dBm (average power during burst): With preamplifier Off         -20 to +30 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier Off         -20 to +10 dBm (average power during burst): With preamplifier On*1         42.0 dB typical         ±0.2 dB (0 to -40 dB) when input level (average power during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm (with preamplifier On*1), without changing the reference level settings after range optimization         Burst signal analysis       Rise/fall characteristics and On/Off-ratio analysis function provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Amplitude                         |                                                                                                                                                                                                                                 |         |
| Measurement level<br>range-40 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1Transmission power<br>measurement-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1Accuracy $\pm 2.0$ dB typical<br>$\pm 2.0$ dB typicalPower<br>measurement<br>linearity $\pm 0.2$ dB (0 to -40 dB) when input level (average power<br>during burst): $\geq -10$ dBm (with preamplifier Off), $\geq -20$ dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimization<br>Rise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Frequency range                   | 50 MHz to 2.3 GHz                                                                                                                                                                                                               |         |
| rangepreamplifier Off<br>-60 to +10 dBm (average power during burst): With<br>preamplifier On*1Transmission power<br>measurement-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1Accuracy±2.0 dB typicalPower<br>measurement<br>linearity±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Measurement level                 | -40 to +30 dBm (average power during burst): With                                                                                                                                                                               |         |
| -60 to +10 dBm (average power during burst): With<br>preamplifier On*1Transmission power<br>measurement-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1<br>±2.0 dB typicalAccuracy±2.0 dB typical<br>±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | range                             | preamplifier Off                                                                                                                                                                                                                |         |
| Transmission power<br>measurement-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1<br>±2.0 dB typicalAccuracy±2.0 dB typicalPower<br>measurement<br>linearity±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | -60 to +10 dBm (average power during burst): With preamplifier On*1                                                                                                                                                             |         |
| Measurement<br>range-20 to +30 dBm (average power during burst): With<br>preamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1Accuracy±2.0 dB typicalPower<br>measurement<br>linearity±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Transmission power<br>measurement |                                                                                                                                                                                                                                 |         |
| rangepreamplifier Off<br>-20 to +10 dBm (average power during burst): With<br>preamplifier On*1Accuracy±2.0 dB typicalPower±0.2 dB (0 to -40 dB) when input level (average power<br>during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Measurement                       | -20 to +30 dBm (average power during burst): With                                                                                                                                                                               |         |
| -20 to +10 dBm (average power during burst): With<br>preamplifier On*1Accuracy $\pm 2.0$ dB typicalPower $\pm 0.2$ dB (0 to -40 dB) when input level (average power<br>during burst): $\geq -10$ dBm (with preamplifier Off), $\geq -20$ dBm<br>(with preamplifier On*1), without changing the reference<br>level settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | range                             | preamplifier Off                                                                                                                                                                                                                |         |
| Accuracy       ±2.0 dB typical         Power       ±0.2 dB (0 to -40 dB) when input level (average power         measurement       during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm         linearity       (with preamplifier On*1), without changing the reference         Burst signal       Rise/fall characteristics and On/Off-ratio analysis function         provided       provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | -20 to +10 dBm (average power during burst): With                                                                                                                                                                               |         |
| Accuracy       ±2.0 dB typical         Power       ±0.2 dB (0 to -40 dB) when input level (average power         measurement       during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm         linearity       (with preamplifier On*1), without changing the reference         level settings after range optimization         Burst signal       Rise/fall characteristics and On/Off-ratio analysis function         provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | preamplifier On*1                                                                                                                                                                                                               |         |
| Power       ±0.2 dB (0 to -40 dB) when input level (average power         measurement       during burst): ≥-10 dBm (with preamplifier Off), ≥-20 dBm         linearity       (with preamplifier On*1), without changing the reference         level settings after range optimization       Rise/fall characteristics and On/Off-ratio analysis function         provided       provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Accuracy                          | $\pm 2.0$ dB typical                                                                                                                                                                                                            |         |
| Ineasurementduring burst): 2-10 dBm (with preampiner On), 2-20 dBmlinearity(with preamplifier On*1), without changing the referencelevel settings after range optimizationBurst signalRise/fall characteristics and On/Off-ratio analysis functionanalysisprovided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Power                             | $\pm 0.2$ dB (0 to -40 dB) when input level (average power during burst) > 10 dBm (with program lifting Off) > 20 dBm                                                                                                           |         |
| Interret(with preamphiler on 1), without enarging the referencelevel settings after range optimizationBurst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lineasurement                     | (with preamplifier $On^{*1}$ ) without changing the reference                                                                                                                                                                   |         |
| Burst signal<br>analysisRise/fall characteristics and On/Off-ratio analysis function<br>provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | micarity                          | level settings after range optimization                                                                                                                                                                                         |         |
| analysis provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Burst signal                      | Rise/fall characteristics and On/Off-ratio analysis function                                                                                                                                                                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | analysis                          | provided                                                                                                                                                                                                                        |         |

\*1:The preamplifier can be set On when main unit option MS2681A-08 is installed.

| ltem                                           | Specifications                                                                                                            | Remarks |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| Occupied frequency<br>bandwidth<br>measurement |                                                                                                                           |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                         |         |
| Measurement level<br>range                     | -40 to $+30~dBm$ (average power during burst): With preamplifier Off                                                      |         |
|                                                | -60 to +10 dBm (average power during burst): With preamplifier On*1                                                       |         |
| Measurement<br>method                          |                                                                                                                           |         |
| Sweeping method                                | Measures the signal with a sweep-type spectrum analyzer<br>and displays the calculated result.                            |         |
| FFT method                                     | Analyzes the signal with FFT and displays the calculated result.                                                          |         |
| Nearby suuprious<br>measurement                |                                                                                                                           |         |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                         |         |
| Input level range                              | -10 to +30 dBm (average power during burst): With preamplifier Off                                                        |         |
| Measurement<br>method                          | Displays the calculated ratio of the transmission power to<br>the power measured with the sweep-type spectrum<br>analyzer |         |
| Transmission power<br>measurement              |                                                                                                                           |         |
| Tx Power method                                | Carrier power measured at 1.23 MHz bandwidth                                                                              |         |
| SPA method                                     | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                |         |
| Measurement range                              | 900 kHz detuning: $\geq$ 50 dBc                                                                                           |         |
|                                                | 1.98 MHz detuning: ≥60 dBc                                                                                                |         |
|                                                | When input level (average power during burst) ≥0 dBm,<br>RBW: 30 kHz, VBW: 300 kHz, Detection: Positive                   |         |

\*1:The preamplifier can be set On when main unit option MS2681A-08 is installed.

|                                              |                                                                                                                                                                                                                                                                                       | 1       |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ltem                                         | Specifications                                                                                                                                                                                                                                                                        | Remarks |
| Spurious<br>measurement                      |                                                                                                                                                                                                                                                                                       |         |
| Measurement<br>frequency range               | 10 MHz to 3.0 GHz, except carrier frequency $\pm 50$ MHz range                                                                                                                                                                                                                        |         |
| Input level range<br>(transmission<br>power) | 0 to +30 dBm (average power during burst): With preamplifier Off                                                                                                                                                                                                                      |         |
| Measurement<br>method                        |                                                                                                                                                                                                                                                                                       |         |
| Sweeping method                              | Sweeps the specified frequency range with a spectrum<br>analyzer and displays the detected peak value. For the<br>power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average.                                                                 |         |
| Spot method                                  | Measures at specified frequency with a spectrum analyzer<br>in time domain mode and displays the average value. For<br>the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average.                                                        |         |
| Search method                                | Sweeps the specified frequency range with a spectrum<br>analyzer, detects the peak value, measures at the<br>frequency in time domain, and displays the average value.<br>For the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average. |         |
| Transmission power<br>measurement            |                                                                                                                                                                                                                                                                                       |         |
| <b>Tx Power method</b>                       | Carrier power measured at 1.23 MHz bandwidth                                                                                                                                                                                                                                          |         |
| SPA method                                   | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                                                                                                                                                                            |         |
| Measurement range                            | At carrier frequency 800 MHz to 1000 MHz or 1800 to 2200 MHz, power-ratio reference value is Tx power (except the spurious given in note below)                                                                                                                                       |         |
|                                              | ≥79 dB typical (RBW: 10 kHz) (10 to 30 MHz)                                                                                                                                                                                                                                           |         |
|                                              | ≥79 dB typical (RBW: 100 kHz) (30 to 1000 MHz)                                                                                                                                                                                                                                        |         |
|                                              | $\geq$ 76–f [GHz] dB typical (RBW: 1 MHz) (1000 to 3000 MHz)                                                                                                                                                                                                                          |         |
|                                              | Note:                                                                                                                                                                                                                                                                                 |         |
|                                              | When the carrier frequency is 2030.354 MHz to 2200<br>MHz, spurious will occur at the following frequency:                                                                                                                                                                            |         |
|                                              | 1 (spurious) = I (in) -2030.343  MHz                                                                                                                                                                                                                                                  |         |

| Item                                                                          | Specifications                                                                               | Remarks |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------|
| Electric performance<br>(IQ input)                                            | This function is available only when MS2681A-17 or 18 option is installed.                   |         |
| Input method                                                                  | When MS2681A-17 is installed: Either Balanced or Unbalanced                                  |         |
|                                                                               | When MS2681A-18 is installed: Unbalanced                                                     |         |
| Input impedance<br>Input level range                                          | 1 M $\Omega$ (parallel capacity <100 pF) or 50 $\Omega$ can be selected.                     |         |
| Balance input                                                                 | Differential voltage range: 0.1 to 1 Vpp (at input connector)                                |         |
|                                                                               | Common-mode voltage range: ±2.5 V (at input connector)                                       |         |
| Unbalance input                                                               | 0.1 to 1 Vpp (at input connector)                                                            |         |
|                                                                               | AC/DC coupling can be switched.                                                              |         |
| Measurement items                                                             | Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), IQ level |         |
| Modulation<br>accuracy<br>measurement<br>Residual vector<br>error<br>IQ level | <2% (rms), DC coupling at Input level: ≥0.1 V (rms)                                          |         |
| measurement                                                                   |                                                                                              |         |
| Level                                                                         | Measures and displays the I and Q input voltages (rms                                        |         |
| measurement                                                                   | and peak-to-peak values).                                                                    |         |
| IQ phase                                                                      | When CW signal is input to the I and Q input connectors,                                     |         |
| ullierence<br>measurement                                                     | measures and displays the phase difference between the 1-<br>and O-phase signals             |         |

| Item                               | Specifications                                                                                                                                                                                            | Remarks |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Model/unit name                    | MX268303A cdma measurement software (MS2683A)                                                                                                                                                             |         |
| Purpose                            | To measure transmission characteristics of coma-type mobile radio unit                                                                                                                                    |         |
| Electric performance<br>(RF input) | The specifications given below are guaranteed after<br>executing MS2683A level optimization (executed<br>automatically by pressing a key).                                                                |         |
| Modulation/frequency measurement   |                                                                                                                                                                                                           |         |
| Measurement<br>frequency range     | 50 MHz to 2.3 GHz                                                                                                                                                                                         |         |
| Measurement level<br>range         | <ul> <li>-40 to +30 dBm (average power during burst): With preamplifier Off</li> <li>-60 to +10 dBm (average power during burst): With</li> </ul>                                                         |         |
| Carrier frequency<br>accuracy      | preamplifier On*1<br>$\pm$ (reference crystal oscillator accuracy +10 Hz) when input<br>level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with<br>preamplifier On*1), using code channel 1 CH |         |
| Modulation<br>accuracy             |                                                                                                                                                                                                           |         |
| Residual vector<br>error           | <2.0% (rms) when input level $\geq$ -30 dBm (with preamplifier Off), $\geq$ -40 dBm (with preamplifier On*1), using code channel 1 CH                                                                     |         |
| Origin offset<br>accuracy          | $\pm 0.5$ dB when input level $\geq -30$ dBm (with preamplifier Off), $\geq -40$ dBm (with preamplifier On*1), using only code channel 1 CH, for signal with origin offset $-30$ dBc                      |         |
| Waveform display                   | For single- to multi-channel input signals, displays the following items:                                                                                                                                 |         |
|                                    | Constellation<br>Eve diagram                                                                                                                                                                              |         |
|                                    | Vector error vs. chip number                                                                                                                                                                              |         |
|                                    | Phase error vs. chip number                                                                                                                                                                               |         |
|                                    | Amplitude error vs. chip number                                                                                                                                                                           |         |

#### MX268303A cdma measurement software specifications

\*1:The preamplifier can be set On when main unit option MS2683A-08 is installed.
| ltem                              | Specifications                                                                                                                                                        |  |  |  |  |  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Code domain analysis              |                                                                                                                                                                       |  |  |  |  |  |
| Measurement                       | 50 MHz to 2.3 GHz                                                                                                                                                     |  |  |  |  |  |
| frequency range                   |                                                                                                                                                                       |  |  |  |  |  |
| Measurement level<br>range        | -40 to +30 dBm (average power during burst): With preamplifier Off                                                                                                    |  |  |  |  |  |
|                                   | -60 to +10 dBm (average power during burst): With preamplifier $On^{*}1$                                                                                              |  |  |  |  |  |
| Code domain power<br>accuracy     | When input level: $\geq -10$ dBm (with preamplifier Off), $\geq -20$ dBm (with preamplifier On*1)                                                                     |  |  |  |  |  |
|                                   | $\pm 0.1 \text{ dB}$ (code power $\geq -10 \text{ dBc}$ )                                                                                                             |  |  |  |  |  |
|                                   | $\pm 0.3 \text{ dB}$ (code power $\geq -25 \text{ dBc}$ )                                                                                                             |  |  |  |  |  |
| Display function                  | Display code domain power, code domain timing offset, and code domain phase offset values                                                                             |  |  |  |  |  |
|                                   | Available spread ratios:                                                                                                                                              |  |  |  |  |  |
|                                   | 2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >) |  |  |  |  |  |
|                                   | Spread ratio automatic detection function provided, IQ<br>separated display for reverse link (radio configuration<br>3 and 4)                                         |  |  |  |  |  |
| Amplitude                         |                                                                                                                                                                       |  |  |  |  |  |
| measurement                       |                                                                                                                                                                       |  |  |  |  |  |
| Frequency range                   | 50 MHz to 2.3 GHz                                                                                                                                                     |  |  |  |  |  |
| Measurement level                 | -40 to +30 dBm (average power during burst): With                                                                                                                     |  |  |  |  |  |
| range                             | preamplifier Off                                                                                                                                                      |  |  |  |  |  |
|                                   | -60 to +10 dBm (average power during burst): With preamplifier $On^{*}1$                                                                                              |  |  |  |  |  |
| Transmission power<br>measurement |                                                                                                                                                                       |  |  |  |  |  |
| Measurement                       | -20 to +30 dBm (average power during burst): With                                                                                                                     |  |  |  |  |  |
| range                             | preamplifier Off                                                                                                                                                      |  |  |  |  |  |
|                                   | -20 to +10 dBm (average power during burst): With                                                                                                                     |  |  |  |  |  |
|                                   | preamplifier On*1                                                                                                                                                     |  |  |  |  |  |
| Accuracy                          | ±2.0 dB typical                                                                                                                                                       |  |  |  |  |  |
| Power                             | $\pm 0.2$ dB (0 to -40 dB) when input level (average power                                                                                                            |  |  |  |  |  |
| measurement                       | during burst): $\geq$ -10 dBm (with preamplifier Off), $\geq$ -20 dBm                                                                                                 |  |  |  |  |  |
| linearity                         | (with preamplifier On*1), without changing the reference<br>level settings after range optimization                                                                   |  |  |  |  |  |
| Burst signal                      | Rise/fall characteristics and On/Off-ratio analysis function                                                                                                          |  |  |  |  |  |
| analysis                          | provided                                                                                                                                                              |  |  |  |  |  |

\*1:The preamplifier can be set On when main unit option MS2683A-08 is installed.

#### Section 1 General

| ltem                                           | Specifications                                                                                                            | Remarks |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|--|--|
| Occupied frequency<br>bandwidth<br>measurement |                                                                                                                           |         |  |  |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                         |         |  |  |
| Measurement level<br>range                     | -40 to +30 dBm (average power during burst): With preamplifier Off                                                        |         |  |  |
|                                                | -60 to +10 dBm (average power during burst): With preamplifier On*1                                                       |         |  |  |
| Measurement<br>method                          |                                                                                                                           |         |  |  |
| Sweeping method                                | Measures the signal with a sweep-type spectrum analyzer and displays the calculated result.                               |         |  |  |
| FFT method                                     | Analyzes the signal with FFT and displays the calculated result.                                                          |         |  |  |
| Nearby supurious<br>measurement                |                                                                                                                           |         |  |  |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                                         |         |  |  |
| Input level range                              | -10 to +30 dBm (average power during burst): With preamplifier Off                                                        |         |  |  |
| Measurement<br>method                          | Displays the calculated ratio of the transmission power to<br>the power measured with the sweep-type spectrum<br>analyzer |         |  |  |
| Transmission power<br>measurement              |                                                                                                                           |         |  |  |
| Tx Power method                                | Carrier power measured at 1.23 MHz bandwidth                                                                              |         |  |  |
| SPA method                                     | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                |         |  |  |
| Measurement range                              | 900 kHz detuning: $\geq$ 50 dBc                                                                                           |         |  |  |
|                                                | 1.98 MHz detuning: ≥60 dBc                                                                                                |         |  |  |
|                                                | When input level (average power during burst) ≥0 dBm,<br>RBW: 30 kHz, VBW: 300 kHz, Detection: Positive                   |         |  |  |

\*1:The preamplifier can be set On when main unit option MS2683A-08 is installed.

| ltem                              | Specifications                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Spurious                          |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| measurement                       |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Measurement                       | 10 MHz to 7.8 GHz, except carrier frequency ±50 MHz                                                                                                                                                                                                                                   |  |  |  |  |  |
| Input level range                 | 1  ange<br>0 to $\pm 30 \text{ dBm}$ (average newer during hurst). With                                                                                                                                                                                                               |  |  |  |  |  |
| (transmission<br>power)           | preamplifier Off                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Measurement<br>method             |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Sweeping method                   | Sweeps the specified frequency range with a spectrum<br>analyzer and displays the detected peak value. For the<br>power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average.                                                                 |  |  |  |  |  |
| Spot method                       | Measures at specified frequency with a spectrum analyzer<br>in time domain mode and displays the average value. For<br>the power ratio, displays the calculated ratio to the<br>transmission power Detection mode is Average                                                          |  |  |  |  |  |
| Search method                     | Sweeps the specified frequency range with a spectrum<br>analyzer, detects the peak value, measures at the<br>frequency in time domain, and displays the average value.<br>For the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average. |  |  |  |  |  |
| Transmission power<br>measurement |                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Tx Power method                   | Carrier power measured at 1.23 MHz bandwidth                                                                                                                                                                                                                                          |  |  |  |  |  |
| SPA method                        | Carrier power measured at RBW 3 MHz, VBW 3 kHz, detection mode SAMPLE, frequency span 0 Hz                                                                                                                                                                                            |  |  |  |  |  |
| Measurement range                 | At carrier frequency 800 to 1000 MHz or 1800 to 2200 MHz, power-ratio reference value is Tx power (except the spurious given in note below)                                                                                                                                           |  |  |  |  |  |
|                                   | $\geq$ 79 dB typical (RBW: 10 kHz) (10 to 30 MHz, band 0)                                                                                                                                                                                                                             |  |  |  |  |  |
|                                   | $\geq$ 79 dB typical (RBW: 100 kHz) (30 to 1000 MHz, band 0)                                                                                                                                                                                                                          |  |  |  |  |  |
|                                   | In normal mode                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                   | ≥76–f [GHz] dB typical (RBW: 1 MHz)                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                                   | (1000 to 3150 MHz, band 0)                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                   | ≥76 dB typical (RBW: 1 MHz) (3150 to 7800 MHz, band 1)                                                                                                                                                                                                                                |  |  |  |  |  |
| Main unit option                  | In spurious mode                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| installed                         | $\geq$ 10 GB typical (KBW: 1 MHZ) (1600 to 7800 MHZ, band 1)                                                                                                                                                                                                                          |  |  |  |  |  |
|                                   | Note:                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                   | When the carrier frequency is 2030.354 to 2200<br>MHz, spurious will occur at the following frequency:                                                                                                                                                                                |  |  |  |  |  |
|                                   | f (spurious) = f (in) –2030.345 MHz                                                                                                                                                                                                                                                   |  |  |  |  |  |

#### Section 1 General

| Item                                                              | Specifications                                                                               | Remarks |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------|--|--|
| Electric performance<br>(IQ input)                                | This function is available only when MS2683A-17 or 18 option is installed.                   |         |  |  |
| Input method                                                      | When MS2683A-17 is installed: Either Balanced or Unbalanced                                  |         |  |  |
|                                                                   | When MS2683A-18 is installed: Unbalanced                                                     |         |  |  |
| Input impedance<br>Input level range                              | 1 M $\Omega$ (parallel capacity <100 pF) or 50 $\Omega$ can be selected.                     |         |  |  |
| Balance input                                                     | Differential voltage range: 0.1 to 1 Vpp (at input connector)                                |         |  |  |
|                                                                   | Common-mode voltage range: ±2.5 V (at input connector)                                       |         |  |  |
| Unbalance input                                                   | 0.1 to 1 Vpp (at input connector)                                                            |         |  |  |
| •                                                                 | AC/DC coupling can be switched.                                                              |         |  |  |
| Measurement items                                                 | Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), IQ level |         |  |  |
| Modulation<br>accuracy<br>measurement<br>Residual vector<br>error | <2% (rms), DC coupling at Input level: ≥0.1 V (rms)                                          |         |  |  |
| IQ level                                                          |                                                                                              |         |  |  |
| measurement                                                       |                                                                                              |         |  |  |
| Level                                                             | Measures and displays the I and Q input voltages (rms                                        |         |  |  |
| measurement                                                       | and peak-to-peak values).                                                                    |         |  |  |
| IQ phase                                                          | When CW signal is input to the I and Q input connectors,                                     |         |  |  |
| difference                                                        | measures and displays the phase difference between the I-                                    |         |  |  |
| measurement                                                       | and Q-phase signals.                                                                         |         |  |  |

### **Specifications**

| ltem                                | Specifications                                                                                                                               |  |  |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model/unit name                     | MX268703A cdma measurement software (MS2687A/B)                                                                                              |  |  |  |  |
| Purpose                             | To measure transmission characteristics of coma-type mobile radio unit                                                                       |  |  |  |  |
| Electric performance<br>(RF input)  | The specifications given below are guaranteed after<br>executing MS2687A/B level optimization (executed<br>automatically by pressing a key). |  |  |  |  |
| Modulation/frequency<br>measurement |                                                                                                                                              |  |  |  |  |
| Measurement<br>frequency range      | 50 MHz to 2.3 GHz                                                                                                                            |  |  |  |  |
| Measurement level<br>range          | -30 to +30 dBm (average power during burst)                                                                                                  |  |  |  |  |
| Carrier frequency<br>accuracy       | $\pm$ (reference crystal oscillator accuracy +10 Hz) when input level ${\geq}{-30}$ dBm, using code channel 1 CH                             |  |  |  |  |
| Modulation<br>accuracy              |                                                                                                                                              |  |  |  |  |
| Residual vector<br>error            | $<\!\!2.0\%$ (rms) when input level $\geq\!\!-30$ dBm, using code channel 1 CH                                                               |  |  |  |  |
| Origin offset<br>accuracy           | $\pm 0.5$ dB when input level $\geq -30$ dBm, using only code channel 1 CH, for signal with origin offset $-30$ dBc                          |  |  |  |  |
| Waveform display                    | For single- to multi-channel input signals, displays the following items:                                                                    |  |  |  |  |
|                                     | Constellation<br>Eve diagrams                                                                                                                |  |  |  |  |
|                                     | Vector error vs. chip number                                                                                                                 |  |  |  |  |
|                                     | Phase error vs. chip number                                                                                                                  |  |  |  |  |
|                                     | Amplitude error vs. chip number                                                                                                              |  |  |  |  |

#### MX268703A cdma measurement software specifications

#### Section 1 General

| ltem                           | Specifications                                                                                                                                                        | Remarks |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Code domain analysis           |                                                                                                                                                                       |         |
| Measurement<br>frequency range | 50 MHz to 2.3 GHz                                                                                                                                                     |         |
| Measurement level<br>range     | -30 to +30 dBm (average power during burst)                                                                                                                           |         |
| Code domain power              | When input level: ≥–10 dBm                                                                                                                                            |         |
| accuracy                       | ±0.1 dB (code power ≥–10 dBc)                                                                                                                                         |         |
|                                | ±0.3 dB (code power ≥–25 dBc)                                                                                                                                         |         |
| Display function               | Display code domainpower, code domain timing offset, and code domain phase offset values                                                                              |         |
|                                | Available spread ratios:                                                                                                                                              |         |
|                                | 2 to 32 (reverse link < radio configuration 3 and 4 >)<br>64 (forward link < radio configuration 1 and 2 >)<br>4 to 128 (forward link < radio configuration 3 to 5 >) |         |
|                                | Spread ratio automatic detection function provided, IQ<br>separated display for reverse link (radio configuration<br>3 and 4)                                         |         |
| Amplitude                      |                                                                                                                                                                       |         |
| measurement                    |                                                                                                                                                                       |         |
| Frequency range                | 50 MHz to 2.3 GHz                                                                                                                                                     |         |
| Measurement level              | -30 to +30 dBm (average power during burst)                                                                                                                           |         |
| range                          |                                                                                                                                                                       |         |
| Transmission power             |                                                                                                                                                                       |         |
| measurement                    |                                                                                                                                                                       |         |
| Measurement<br>range           | -20 to +30 dBm (average power during burst)                                                                                                                           |         |
| Accuracy                       | ±2.0 dB typical                                                                                                                                                       |         |
| Power                          | $\pm 0.2$ dB (0 to $-40$ dB) when input level (average power                                                                                                          |         |
| measurement                    | during burst): $\geq -10$ dBm, without changing the reference                                                                                                         |         |
| linearity                      | level settings after range optimization                                                                                                                               |         |
| Burst signal<br>analysis       | Rise/fall characteristics and On/Off-ratio analysis function provided                                                                                                 |         |

| Item                                           | Specifications                                                                                          |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Occupied frequency<br>bandwidth<br>measurement |                                                                                                         |  |  |  |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                       |  |  |  |
| Measurement level<br>range                     | -30 to $+30$ dBm (average power during burst)                                                           |  |  |  |
| Measurement<br>method                          |                                                                                                         |  |  |  |
| Sweeping method                                | Measures the signal with a sweep-type spectrum analyzer<br>and displays the calculated result.          |  |  |  |
| FFT method                                     | Analyzes the signal with FFT and displays the calculated result.                                        |  |  |  |
| Nearby spurious                                |                                                                                                         |  |  |  |
| measurement                                    |                                                                                                         |  |  |  |
| Frequency range                                | 50 MHz to 2.3 GHz                                                                                       |  |  |  |
| Input level range                              | -10 to +30 dBm (average power during burst)                                                             |  |  |  |
| Measurement                                    | Displays the calculated ratio of the transmission power to                                              |  |  |  |
| method                                         | the power measured with the sweep-type spectrum analyzer                                                |  |  |  |
| Transmission power<br>measurement              |                                                                                                         |  |  |  |
| Tx Power method                                | Carrier power measured at 1.23 MHz bandwidth                                                            |  |  |  |
| SPA method                                     | Carrier power measured at RBW 3 MHz, VBW 3 kHz,                                                         |  |  |  |
|                                                | detection mode SAMPLE, frequency span 0 Hz                                                              |  |  |  |
| Measurement range                              | 900 kHz detuning: ≥ 50 dBc                                                                              |  |  |  |
|                                                | 1.98 MHz detuning: ≥60 dBc                                                                              |  |  |  |
|                                                | When input level (average power during burst) ≥0 dBm,<br>RBW: 30 kHz, VBW: 300 kHz, Detection: Positive |  |  |  |

#### Section 1 General

| Item                                         | em Specifications                                                                                                                                                                                                                                                                     |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Spurious<br>measurement                      |                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Measurement<br>frequency range               | 10 MHz to 12.75 GHz, except carrier frequency $\pm 50$ MHz range                                                                                                                                                                                                                      |  |  |  |  |
| Input level range<br>(transmission<br>power) | 0 to +30 dBm (average power during burst)                                                                                                                                                                                                                                             |  |  |  |  |
| Measurement<br>method                        |                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Sweeping method                              | Sweeps the specified frequency range with a spectrum<br>analyzer and displays the detected peak value. For the<br>power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average.                                                                 |  |  |  |  |
| Spot method                                  | Measures at specified frequency with a spectrum analyzer<br>in time domain mode and displays the average value. For<br>the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average                                                         |  |  |  |  |
| Search method                                | Sweeps the specified frequency range with a spectrum<br>analyzer, detects the peak value, measures at the<br>frequency in time domain, and displays the average value.<br>For the power ratio, displays the calculated ratio to the<br>transmission power. Detection mode is Average. |  |  |  |  |
| Transmission power<br>measurement            |                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Tx Power method<br>SPA method                | Carrier power measured at 1.23 MHz bandwidth<br>Carrier power measured at RBW 3 MHz, VBW 3 kHz,<br>detection mode SAMPLE, frequency span 0 Hz                                                                                                                                         |  |  |  |  |
| Measurement range                            | At carrier frequency 800 MHz to 1000 MHz or 1800 to 2200 MHz, power-ratio reference value is Tx power (except the environment of the power)                                                                                                                                           |  |  |  |  |
|                                              | ≥79  dB typical (RBW: 10 kHz) (10  to  30  MHz, band  0)  ≥79  dB typical (RBW: 100 kHz) (30  to  1000  MHz, band  0)  ≥76  f (CH=1 dB typical (CBW) 1 MHz)                                                                                                                           |  |  |  |  |
|                                              | ≥76-I [GHZ] dB typical (RBW: 1 MHZ)<br>(1000 to 3150 MHz, band 0)                                                                                                                                                                                                                     |  |  |  |  |
|                                              | ≥76 dB typical (RBW: 1 MHz) (3150 to 7900 MHz, band 1)<br>With MS2687A                                                                                                                                                                                                                |  |  |  |  |
|                                              | ≥68 dB typical (RBW: 1 MHz) (7900 to 127500 MHz, band 2)<br>With MS2687B                                                                                                                                                                                                              |  |  |  |  |
|                                              | ≥74 dB typical (RBW: 1 MHz) (7900 to 127500 MHz, band 2) <b>Note:</b>                                                                                                                                                                                                                 |  |  |  |  |
|                                              | When the carrier frequency is 2030.354 to 2200<br>MHz, spurious will occur at the following frequency:                                                                                                                                                                                |  |  |  |  |
|                                              | f (spurious) = f (in) –2030.345 MHz                                                                                                                                                                                                                                                   |  |  |  |  |

### **Specifications**

| ltem                               | Specifications                                                                               | Remarks |
|------------------------------------|----------------------------------------------------------------------------------------------|---------|
| Electric performance<br>(IQ input) | This function is available only when MS2687A/B-18 option is installed.                       |         |
| Input method                       | Unbalanced                                                                                   |         |
| Input impedance                    | 1 M $\Omega$ (parallel capacity <100 pF) or 50 $\Omega$ can be selected.                     |         |
| Input level range                  |                                                                                              |         |
| Unbalance input                    | When MS2687A/B-18 is installed:                                                              |         |
|                                    | 0.1 to 1 Vpp (at input connector)                                                            |         |
|                                    | AC/DC coupling can be switched.                                                              |         |
| Measurement items                  | Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), IQ level |         |
| Modulation                         |                                                                                              |         |
| accuracy                           |                                                                                              |         |
| measurement                        |                                                                                              |         |
| Residual vector                    | <2% (rms), DC coupling at Input level: ≥0.1 V (rms)                                          |         |
| error<br>IO level                  |                                                                                              |         |
| IQ level<br>measurement            |                                                                                              |         |
| I evel                             | Measures and displays the L and $\Omega$ input voltages (rms                                 |         |
| measurement                        | and peak-to-peak values).                                                                    |         |
| IQ phase                           | When CW signal is input to the I and Q input connectors,                                     |         |
| difference                         | measures and displays the phase difference between the I-                                    |         |
| measurement                        | and Q-phase signals.                                                                         |         |

Section 1 General

This section describes the front and rear panels, basic operations, how to install the measurement software, change the measurement system and set the screen colors.

| List of Controls on Front and Rear Panels | 2-3  |
|-------------------------------------------|------|
| Basic Operation                           | 2-13 |
| Turning the power ON                      | 2-13 |
| Selecting items                           | 2-13 |
| Setting parameters                        | 2-14 |
| Registering the Installation Key          | 2-15 |
| Installing Core Module Software           | 2-17 |
| Installing Measurement Software           | 2-18 |
| Changing the Measurement System           | 2-19 |
| Setting Screen Colors                     | 2-20 |

# List of Controls on Front and Rear Panels

|     | List d        | of Controls on Fre                                                                                                                                                 | ont and Rear Panels for MS860x                                                           |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| No. | Panel Marking |                                                                                                                                                                    | Description                                                                              |
| 1   | (LCD)         | 6.5" color TFT liquid crystal display (LCD). Displays scales, trace<br>waveforms, parameter settings, measurement values at marker<br>points, soft-key menus, etc. |                                                                                          |
| 2   | Spectrum      | Key to set t<br>analyzer mode                                                                                                                                      | his measurement unit in the ordinary spectrum<br>e.                                      |
| 3   | Tx Tester     | Key to set thi<br>for measureme                                                                                                                                    | s measurement unit in the transmitter tester mode<br>ent software execution.             |
| 4   | Config        | The Key to set                                                                                                                                                     | the interface to GPIB, printer, etc.                                                     |
| 5   | F1 to F6      | Soft keys to s                                                                                                                                                     | elect soft-key menus displayed by pressing a panel                                       |
|     |               | key.<br>[More]                                                                                                                                                     | Key to display the next soft-key menu page.                                              |
| 6   | Freq/Ampl     | Section to inpu                                                                                                                                                    | it data for the frequency and level parameters.                                          |
|     |               | [Freq/Channel                                                                                                                                                      | ]Sets the frequency.                                                                     |
|     |               | [Span]                                                                                                                                                             | Sets the frequency span.                                                                 |
|     |               | [Amplitude]                                                                                                                                                        | Sets the reference level, etc                                                            |
|     |               | [->CF]                                                                                                                                                             | Sets the peak-level signal frequency displayed on the screen as the center frequency.    |
|     |               | [->RLV]                                                                                                                                                            | Sets the peak-level value displayed on the screen as the reference level.                |
| 7   | Marker        | Section to oper                                                                                                                                                    | rate the marker function.                                                                |
|     |               | [Marker]                                                                                                                                                           | Sets a marker.                                                                           |
|     |               | [Multi Mkr]                                                                                                                                                        | Sets multi-markers. Press this key after pressing the [Shift] key.                       |
|     |               | [Peak Search]                                                                                                                                                      | Moves the marker to the peak-level point on the screen.                                  |
|     |               | [Marker->]                                                                                                                                                         | Sets a parameter using the marker value. Press this key after pressing the [Shift] key.  |
| 8   | System        | Key used in t<br>system.                                                                                                                                           | ransmitter tester mode to switch the measurement                                         |
| 9   | Single        | Sets the sweep                                                                                                                                                     | o mode.                                                                                  |
|     |               | [Single]                                                                                                                                                           | Executes single sweep.                                                                   |
|     |               | [Continuous]                                                                                                                                                       | Executes continuous sweep.                                                               |
|     |               |                                                                                                                                                                    | Press this key after pressing the [Shift] key.<br>The continuous mode is set by default. |
| 10  | Recall        | Key to execute                                                                                                                                                     | e recall or save.                                                                        |
|     |               | [Recall]                                                                                                                                                           | Reads measurement parameters and waveform data from internal memory or memory card.      |
|     |               | [Save]                                                                                                                                                             | Saves measurement parameters and waveform data to internal memory or memory card.        |
| 11  | Measure       | Key to measure various items such as frequency, noise, adjacent<br>channel leakage power, etc. depending on the applications.                                      |                                                                                          |

| No. | Panel Marking       |                                                           | Description                                                                                                                                               |
|-----|---------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | Hi Power            | Key to set th<br>MS8609A.                                 | ne input connectors. This key is not provided on                                                                                                          |
|     |                     | [Hi Power]                                                | Enables High Power input connector.                                                                                                                       |
|     |                     | [Low Power]                                               | Enables Low Power input connector.                                                                                                                        |
| 13  | Display             | Section to se domain allows                               | lect the trace waveform. An ordinary frequency displaying of up to two trace waveforms.                                                                   |
|     |                     | [A, B]                                                    | Displays the trace-A or trace-B waveform of frequency domain.                                                                                             |
|     |                     | [A/B, A/BG]                                               | Displays two waveforms at a time; trace-A and trace-B waveforms, or trace-A and trace-BG (background frequency including trace A) waveforms.              |
|     |                     | [Time]                                                    | Switches to zero-span mode displaying the time-domain waveform.                                                                                           |
|     |                     | [A/Time]                                                  | Displays trace-A and time-domain waveforms simultaneously.                                                                                                |
| 14  | Trig/Gate           | Key to execute                                            | the trigger and gate functions.                                                                                                                           |
|     | -                   | [Trig/Gate]                                               | Sets the sweep starting trigger and gate (controlling waveform data write timings) functions.                                                             |
| 15  | Coupled<br>Function | Keys to set the                                           | e RBW, VBW, sweep time and input attenuator.                                                                                                              |
| 16  | Entry               | Section to set                                            | numeric data, units and special functions.                                                                                                                |
|     |                     | [Rotary knob]                                             | Used to move the marker and input data.                                                                                                                   |
|     |                     | [∨, ∧]                                                    | Used to step up or down the input data.                                                                                                                   |
|     |                     | [Shift]                                                   | Used to execute a panel function indicated with<br>blue letters. First press this key, and then press<br>the key indicated with blue letters.             |
|     |                     | [BS]                                                      | Backspace key to correct input errors.                                                                                                                    |
|     |                     | [0 to 9, +/-]                                             | Keys to enter numeric data.                                                                                                                               |
|     |                     | [GHz, MHz, kl                                             | Hz, Hz]                                                                                                                                                   |
|     |                     |                                                           | Keys to set units of frequency, level, time, etc.                                                                                                         |
|     |                     | [Set]                                                     | Key to set parameters.                                                                                                                                    |
|     | _                   |                                                           | key.                                                                                                                                                      |
| 17  | Preset              | Key to reset m                                            | easurement parameters to their default values.                                                                                                            |
| 18  | Local               | Key to place the                                          | lis unit from remote to local mode.                                                                                                                       |
| 19  | Disp On/Off         | Key to set the                                            | LCD UN/UII.                                                                                                                                               |
| 20  | Copy<br>Sthy/On     | Power switch                                              | the screen hardcopy to the printer of memory card.                                                                                                        |
| 21  | Suby/on             | on the rear pa<br>key approxima<br>mode, pressing<br>Off. | nel is On. In Stby mode, pressing and holding this<br>ately 1 second turns the power ON. In power On<br>g this key approximately 1 second turns the power |
| 22  | RF Input            | RF input conn                                             | ector.                                                                                                                                                    |
| 23  | I/Q Input           | IQ input conne<br>for Balance).                           | ectors (I/Q inputs for Unbalance and I, I/Q or Q input                                                                                                    |

| No.      | Panel Marking     | Description                                                                                                                    |
|----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 24       | Prove Power       | Connector to supply ±12V for FET probe.                                                                                        |
|          |                   | The pin assignments are shown below.                                                                                           |
|          |                   | GND No-connection                                                                                                              |
|          |                   | $\times$                                                                                                                       |
|          |                   |                                                                                                                                |
|          |                   | × ×                                                                                                                            |
|          |                   | -12 V +12 V                                                                                                                    |
| 25       | Memory Card       | Slot for a memory card that saves or loads the waveform data.                                                                  |
|          | j                 | measurement parameters, etc.                                                                                                   |
| 50       | (Fan)             | Cooling fan to ventilate the internal heat. Leave at least 10 cm                                                               |
|          |                   | clearance around the fan.                                                                                                      |
| 51       | 10 MHz STD        | Input and output connectors for an external 10 MHz reference                                                                   |
|          |                   | crystal oscillator. Inputting an external Ref In signal                                                                        |
|          |                   | automatically switches the measurement unit from the internal to<br>external signal mode (When an external signal is input the |
|          |                   | internal OCXO heater is switched OFF.)                                                                                         |
| 52       | IF OUT            | IF output connector to output band-limited IF signals.                                                                         |
| 53       | Wideband IF       | IF output connector to output band-unlimited IF signals.                                                                       |
|          | Out               |                                                                                                                                |
| 54       | Sweep (X)         | Connector for sweep output (X).                                                                                                |
| 55       | Video (Y)         | Connector to output Y-axis signal in proportion to the video                                                                   |
|          |                   | detection signal output. This signal is band-limited by the RBW                                                                |
| EC       | Courses Chatra    | set value and logarithmically compressed at log scaling.                                                                       |
| 50       | (7) Sweep Status  | Connector to output sweep status (Z).                                                                                          |
| 57       | Trig/Gate In (±10 | V)                                                                                                                             |
|          | 0                 | Connector to input external trigger/gate signal.                                                                               |
| 58       | Off/On            | Power switch                                                                                                                   |
| 59       | (Inlet)           | AC power inlet to connect the attached power cord. It contains a                                                               |
|          |                   | time-lag fuse.                                                                                                                 |
| 60       | (Ground           | Protective ground terminal. To prevent electric shocks, connect                                                                |
| ~        | terminal)         | this terminal to ground.                                                                                                       |
| 61       | Parallel          | Printer connector                                                                                                              |
| 62       | VGA Out           | VGA signal output connector                                                                                                    |
| 63       |                   | GPIB Interface connector for an external system controller                                                                     |
| 04<br>65 | KS-Z3ZU           | KS-232C connector for an external system controller.                                                                           |
| CO       | Ethernet          | Ethernet 10 Base-1 connector for an external system controller.                                                                |
| 66       | Name plate        | Indicates the serial number and options of this unit.                                                                          |



Section 2 Panel Layout and Operation Overview





|     | List of Controls on Front and Rear Panels for MS268x |                                                                                                                                                              |                                                                                                      |  |  |
|-----|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
| No. | Panel Marking                                        |                                                                                                                                                              | Description                                                                                          |  |  |
| 1   | (LCD)                                                | 6.5" color TFT liquid crystal display (LCD). Displays scales, trace waveforms, parameter settings, measurement values at marker points, soft-key menus, etc. |                                                                                                      |  |  |
| 2   | Spectrum                                             | Key to set this                                                                                                                                              | unit in the ordinary spectrum analyzer mode.                                                         |  |  |
| 3   | Signal Analysis                                      | Key to set this                                                                                                                                              | s measurement unit in the signal anaylsis mode for                                                   |  |  |
|     |                                                      | measurement                                                                                                                                                  | software execution.                                                                                  |  |  |
| 4   | Config                                               | Key to set the                                                                                                                                               | interface to GPIB, printer, etc.                                                                     |  |  |
| 5   | F1 to F6                                             | Soft keys to s                                                                                                                                               | elect soft-key menus displayed by pressing a panel                                                   |  |  |
|     |                                                      | key.<br>Manal Kay to display the part soft has many as to                                                                                                    |                                                                                                      |  |  |
| 6   | Frog/Ampl                                            | Soction to innu                                                                                                                                              | the data for the frequency and lovel parameters                                                      |  |  |
| U   | Pieq/Ampi                                            | [Freq/Channel                                                                                                                                                | It data for the frequency and level parameters.                                                      |  |  |
|     |                                                      | [Snan]                                                                                                                                                       | Sets the frequency span                                                                              |  |  |
|     |                                                      | [Amplitude]                                                                                                                                                  | Sets the reference level, etc                                                                        |  |  |
|     |                                                      | [->CF]                                                                                                                                                       | Sets the peak-level signal frequency displayed on                                                    |  |  |
|     |                                                      |                                                                                                                                                              | the screen as the center frequency.                                                                  |  |  |
|     |                                                      | [->RLV]                                                                                                                                                      | Sets the peak-level value displayed on the screen as<br>the reference level.                         |  |  |
| 7   | Marker                                               | Section to oper                                                                                                                                              | rate the marker function.                                                                            |  |  |
|     |                                                      | [Marker]                                                                                                                                                     | Sets a marker.                                                                                       |  |  |
|     |                                                      | [Multi Mkr]                                                                                                                                                  | Sets multi-markers. Press this key after pressing the [Shift] key.                                   |  |  |
|     |                                                      | [Peak Search]                                                                                                                                                | Moves the marker to the peak-level point on the screen.                                              |  |  |
|     |                                                      | [Marker->]                                                                                                                                                   | Sets a parameter using the marker value. Press<br>this key after pressing the [Shift] key.           |  |  |
| 8   | System                                               | Key used in t<br>system.                                                                                                                                     | ransmitter tester mode to switch the measurement                                                     |  |  |
| 9   | Single                                               | Sets the sweep                                                                                                                                               | ) mode.                                                                                              |  |  |
|     |                                                      | [Single]                                                                                                                                                     | Executes single sweep.                                                                               |  |  |
|     |                                                      | [Continuous]                                                                                                                                                 | Executes continuous sweep.                                                                           |  |  |
|     |                                                      |                                                                                                                                                              | Press this key after pressing the [Shift] key.                                                       |  |  |
| 10  | Recall                                               | Kov to ovecute                                                                                                                                               | recall or save                                                                                       |  |  |
| 10  | Necali                                               | [Recall]                                                                                                                                                     | Reads measurement parameters and waveform                                                            |  |  |
|     |                                                      | [heedin]                                                                                                                                                     | data from internal memory or memory card.                                                            |  |  |
|     |                                                      | [Save]                                                                                                                                                       | Saves measurement parameters and waveform                                                            |  |  |
|     |                                                      | -                                                                                                                                                            | data to internal memory or memory card.                                                              |  |  |
| 11  | Measure                                              | Key to measu<br>channel leakag                                                                                                                               | re various items such as frequency, noise, adjacent<br>ge power, etc. depending on the applications. |  |  |

| No. | Panel Marking       |                                                                                                                                                                                                          | Description                                                                                                                                                             |
|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12  | Display             | Section to se<br>domain allows                                                                                                                                                                           | lect the trace waveform. An ordinary frequency displaying of up to two trace waveforms.                                                                                 |
|     |                     | [A, B]                                                                                                                                                                                                   | Displays the trace-A or trace-B waveform of frequency domain.                                                                                                           |
|     |                     | [A/B, A/BG]                                                                                                                                                                                              | Displays two waveforms at a time; trace-A and trace-B waveforms, or trace-A and trace-BG (background frequency including trace A) waveforms.                            |
|     |                     | [Time]                                                                                                                                                                                                   | Switches to zero-span mode displaying the time-domain waveform.                                                                                                         |
|     |                     | [A/Time]                                                                                                                                                                                                 | Displays trace-A and time-domain waveforms simultaneously.                                                                                                              |
| 13  | Trig/Gate           | Key to execute                                                                                                                                                                                           | e the trigger and gate functions.                                                                                                                                       |
|     |                     | [Trig/Gate]                                                                                                                                                                                              | Sets the sweep starting trigger and gate<br>(controlling waveform data write timings)<br>functions.                                                                     |
| 14  | Coupled<br>Function | Keys to set the                                                                                                                                                                                          | e RBW, VBW, sweep time and input attenuator.                                                                                                                            |
| 15  | Entry               | Section to set                                                                                                                                                                                           | numeric data, units and special functions.                                                                                                                              |
|     |                     | [Rotary knob]                                                                                                                                                                                            | Used to move the marker and input data.                                                                                                                                 |
|     |                     | [∨, ∧]                                                                                                                                                                                                   | Used to step up or down the input data.                                                                                                                                 |
|     |                     | [Shift]                                                                                                                                                                                                  | Used to execute a panel function indicated with<br>blue letters. First press this key, and then press<br>the key indicated with blue letters.                           |
|     |                     | [BS]                                                                                                                                                                                                     | Backspace key to correct input errors.                                                                                                                                  |
|     |                     | [0 to 9, +/-]                                                                                                                                                                                            | Keys to enter numeric data.                                                                                                                                             |
|     |                     | [GHz, MHz, k]                                                                                                                                                                                            | Hz, Hz]                                                                                                                                                                 |
|     |                     |                                                                                                                                                                                                          | Keys to set units of frequency, level, time, etc.                                                                                                                       |
|     |                     | [Set]                                                                                                                                                                                                    | Key to set parameters.                                                                                                                                                  |
|     |                     | [Cancel]                                                                                                                                                                                                 | Key to cancel an entry before setting with the [Set] key.                                                                                                               |
| 16  | Preset              | Key to reset m                                                                                                                                                                                           | easurement parameters to their default values.                                                                                                                          |
| 17  | Local               | Key to place th                                                                                                                                                                                          | nis unit from remote to local mode.                                                                                                                                     |
| 18  | Disp On/Off         | Key to set the                                                                                                                                                                                           | LCD On/Off.                                                                                                                                                             |
| 19  | Сору                | Key to output                                                                                                                                                                                            | the screen hardcopy to the printer or memory card.                                                                                                                      |
| 20  | Stby/On             | on the rear panel is On. In Stby mode, pressing and holding this<br>key approximately 1 second turns the power ON. In power On<br>mode, pressing this key approximately 1 second turns the power<br>Off. |                                                                                                                                                                         |
| 21  | RF Input            | RF input conn                                                                                                                                                                                            | ector.                                                                                                                                                                  |
| 22  | I/Q Input           | IQ input conr<br>input for B<br>MS2681A/MS2                                                                                                                                                              | nectors (I/Q inputs for Unbalance and $I\overline{I}$ and $Q/\overline{Q}$ alance). These connectors are mounted when 2683A-17 or 18, MS2687A/B-18 option is installed. |

| No. | Panel Marking             | Description                                                                                                                    |
|-----|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 23  | Prove Power               | Connector to supply $\pm 12V$ for FET probe.                                                                                   |
|     |                           | The pin assignments are shown below.                                                                                           |
|     |                           | GND No-connection                                                                                                              |
|     |                           | $\times$                                                                                                                       |
|     |                           |                                                                                                                                |
|     |                           | <u>v</u> v                                                                                                                     |
|     |                           | -12 V +12 V                                                                                                                    |
| 24  | Memory Card               | Slot for a memory card that saves or loads the waveform data                                                                   |
|     | Memory Cara               | measurement parameters, etc.                                                                                                   |
| 50  | (Fan)                     | Cooling fan to ventilate the internal heat. Leave at least 10-cm                                                               |
|     |                           | clearance around the fan.                                                                                                      |
| 51  | 10 MHz STD                | Input and output connectors for an external 10 MHz reference                                                                   |
|     |                           | crystal oscillator. Inputting an external Ref In signal                                                                        |
|     |                           | automatically switches the measurement unit from the internal to<br>external signal mode (When an external signal is input the |
|     |                           | internal OCXO heater is switched OFF.)                                                                                         |
| 52  | IF OUT                    | IF output connector to output band-limited IF signals.                                                                         |
| 53  | Wideband IF               | IF output connector to output band-unlimited IF signals.                                                                       |
|     | Out                       | I I O                                                                                                                          |
| 54  | Sweep (X)                 | Connector for sweep output (X).                                                                                                |
| 55  | Video (Y)                 | Connector to output Y-axis signal in proportion to the video                                                                   |
|     |                           | detection signal output. This signal is band-limited by the RBW                                                                |
| FC  | C                         | set value and logarithmically compressed at log scaling.                                                                       |
| 90  | Sweep Status $(7)$        | Connector to output sweep status (Z).                                                                                          |
| 57  | (2)<br>Trig/Gate In (+10  | V)                                                                                                                             |
| •   | 111 <b>9</b> and 111 (=10 | Connector to input external trigger/gate signal.                                                                               |
| 58  | Off/On                    | Power switch                                                                                                                   |
| 59  | (Inlet)                   | AC power inlet to connect the attached power cord. It contains a                                                               |
|     |                           | time-lag fuse.                                                                                                                 |
| 60  | (Ground                   | Protective ground terminal. To prevent electric shocks, connect                                                                |
|     | terminal)                 | this terminal to ground.                                                                                                       |
| 61  | Parallel                  | Printer connector                                                                                                              |
| 62  | VGA Out                   | VGA signal output connector                                                                                                    |
| 63  | GPIB                      | GPIB interface connector for an external system controller                                                                     |
| 64  | KS-232C                   | RS-232C connector for an external system controller.                                                                           |
| 65  | Ethernet                  | Ethernet 10 Base-1 connector for an external system controller.                                                                |
| 66  | Name plate                | Indicates the serial number and options of this unit.                                                                          |



*2-11* 



*2-12* 

# **Basic Operation**

This section describes basic operations and typical parameter settings.

### Turning the power ON

Press the Off/On switch on the rear panel and then press the Stby/On switch on the front panel for 1 second or more.

To prevent the power from being turned On/Off by mistake, the power is turned On/Off only after pressing the Stby/On switch for 1 second or more.

To make full use of the performance of this unit, turn On the Off/On switch on the rear panel at least 30 minutes before using it (the "Stby" power LED on the front panel goes On). It pre-heats the internal reference frequency oscillator for stable unit operation.

### Selecting items

Parameters for items indicated by the cursor can be changed. Some parameters can be set after pressing the related function keys.

Setting an item indicated by the cursor

Move the cursor to the target item using  $[\land]$  and  $[\lor]$  or the rotary knob in the Entry section.

Press Set in the Entry section to confirm the item selected. The parameter setup window opens.

Setting an item indicated by a function label

Press one of the F1 to F6 function keys and the parameter setup window opens.

Some parameters can be set just by pressing the function key.

### Setting parameters

After selecting an item, the parameters can be set in two ways:

- (1) Selecting a parameter from those listed in the window.
- (2) Entering a numeric value.

Selecting a parameter from those listed in the window.

Using  $[\land]$  and  $[\lor]$  or the rotary knob in the Entry section, move the cursor to the parameter to be selected.

Press Set in the Entry section to confirm selection.

Entering a numeric value

Using the ten-key pad or rotary knob, enter a numeric value. Press the Unit key or Set key in the Entry section to confirm the parameter.

The window closes.

# Registering the Installation Key

To install new measurement software in this measurement unit, the installation key for the measurement system must be registered. This section explains how to register the installation key.

- 1. Insert the memory card containing the installation key into the memory card slot.
- 2. Press Config to display the Configuration screen.
- 3. Press F2 (Maintenance Parameter) to display the Maintenance Parameter screen.
- 4. Press F3 (Installation Permission) to display the Installation Permission screen shown below.

| MS8608A<br><< Installation Permission >>                                                                                                                       | Naintenance         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Product Information<br>Product Type : Digital Mobile Radio Tx Tester<br>Product Model : MS8808A<br>Serial Number : 0000000000<br>Spectrum Analyzer Type : 8GHz | Save<br>Base Cal    |
| The System which is possible to be installed                                                                                                                   | Permit              |
| MX860801A U-CDMA<br>MX860802A GSM                                                                                                                              |                     |
|                                                                                                                                                                | →<br>Back<br>Soreen |

- 5. Press F2 (System Permit).
- 6. The new measurement software is registered in the Permission table.
- 7. Press F1 (Save Base Cal).

Note:

Performing Step 5 causes the installation key to be registered in the table, but it is not recorded in internal memory before performing Step 7. The installation key becomes active only after it is recorded in internal memory.

# Installing Core Module Software

This section describes how to install new Core Module software in this unit.

- 1. Insert the memory card containing the new Core Module software into the memory card slot.
- 2. Press [Config] to display the Configuration screen.
- 3. Press F4 (System Install) to display the Install System screen shown below.

| MS8608A<br><< Install System >>                                                                                                                                                               | System install                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Product Information<br>Product Type : Digital Mobile Radio Tx Tester<br>Product Model : MS8608A<br>Serial Number : 0000000000<br>Spectrum Analyzer Type : 8GHz                                | System<br>Install<br>Change<br>Installed |
| System Revision System Revision                                                                                                                                                               | System                                   |
| MX860801A     W-CDMA     V 2.0     MX860802A     GSM     V 1.0       MX860802A     GSM     V 1.0     MX860801A     W-CDMA     V 2.0       MX860802A     GSM     V 1.0     MX860802A     V 2.0 | Change<br>Memory<br>Card                 |
| Core Module<br>System Revision                                                                                                                                                                |                                          |
| SPECTRUM ANALYZER   1.7     MAIN   1.7     IPL   1.3     DSP(CORE)   1.7                                                                                                                      | Core<br>Module<br>Install                |
| Step Up key : Previous Page / Step Down key : Next Page                                                                                                                                       | →<br>Back<br>Screen                      |

- 4. Press F5 (Core Module Install).
- 5. The confirmation window opens. Using the rotary knob, move the cursor to Yes.
- 6. Press Set in the Entry section to start installation.
- 7. After installation, turn the power OFF according to the message displayed.
- 8. Turn the power ON while pressing Preset Continue pressing Preset until beeping starts, that is, approximately 5 seconds

# Installing Measurement Software

This section describes how to install the measurement software required to use this measurement unit in transmitter tester mode (MS860x) or signal analysis mode (MS268x).

- 1. Insert the memory card containing the measurement software to the memory card slot.
- 2. Press Config to display the Configuration screen.
- 3. Press F4 (System Install) to display the Install System screen shown below.

| MS8608A<br><< Install System >>                                                                                                                                                                          | System install              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Product Information<br>Product Type : Digital Mobile Radio Tx Tester<br>Product Model : MS8608A<br>Serial Number : 0000000000<br>Spectrum Analyzer Type : 8GHz                                           | System<br>Install<br>Change |
| Install System Memory Card<br>System Revision System Revision                                                                                                                                            | Installed<br>System         |
| MX860801A     W-CDMA     V 2.0     MX860802A     GSM     V 1.0       MX860802A     GSM     V 1.0     MX860801A     W-CDMA     V 2.0       MX860802A     GSM     V 1.0     MX860801A     W-CDMA     V 2.0 | Change<br>Memory<br>Card    |
| Core Module<br>System Revision                                                                                                                                                                           |                             |
| SPECTRUM ANALYZER 1.7   MAIN 1.7   IPL 1.3   DSP(CORE) 1.7                                                                                                                                               | Core<br>Module<br>Install   |
| Step Up key : Previous Page / Step Down key : Next Page                                                                                                                                                  | →<br>Back<br>Screen         |

- 4. Press F2 (Change Installed System) to activate the Install System box.
- 5. Using the rotary knob, select the installation destination for the new measurement software.
- 6. Press F3 (Change Memory Card) to activate the Memory Card box.
- 7. Using the rotary knob, select the new measurement system.
- 8. Press F1 (System Install) to install the new system.
- 9. The confirmation window opens. Using the rotary knob, move the cursor to Yes.
- **10.** Press Set in the Entry section to start installation.

# Changing the Measurement System

When there are multiple measurement software systems (optional) registered to use this measurement unit in transmitter tester mode (MS860x) or signal analysis mode (MS268x), select the measurement system to be used in the procedure described in this section.

When there is only one measurement software registered, the procedure described in this section cannot be performed.

- 1. Press Tx Tester (MS860x) / Signal Analysis (MS268x) to display the measurement system screen.
- 2. Press System to display System Change function labels shown below.

| MS8608A<br><< Setup Cormon Parameter (U-CDMA) >>                                                                                                                                          | System Change              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Input<br>Terminal : [ <b>]F</b><br>Reference Level & Offset : [ 30.00dBm] [ 0.00dB]                                                                                                       | MX860803A<br>cdma<br>V 1.0 |
| Frequency<br>Channel & Frequency : [ 9680CH] = [ 1928.000800MHz]<br>Channel Spacing : [ 0.200008MHz]<br>Signal                                                                            | MX860802A<br>GSM<br>V 1.0  |
| Filter : [Op Link ]<br>Filter : [Filtering]                                                                                                                                               | 11X8608029                 |
| Synchronization<br>Scrambling Code Sync. & Number : [Long ] = [0800000]<br>Spreading Factor : [DPCCH] = (256)<br>Channelization Codes Number : ( 0)<br>Spreading Factor for DPDCH : [ 64] | GSM<br>V 1.8               |
| Trigger : [Free Run ]                                                                                                                                                                     |                            |
| Input : High Pre-Ampl : Off<br>Ch : 9600CH Level : 30.00dBm Power Cal : Off<br>Freq : 1920.0000001Hz Offset : 0.00dB Correction : Off                                                     | return                     |

- 3. The installed measurement systems are listed at the function labels.
- 4. Press the function key to set the desired measurement system.
- 5. Changing of the measurement system is started.
- 6. When the measurement system is changed, a new system screen appears.

Measurement systems not listed at function labels cannot be selected. For procedures in installing a new measurement system, refer to "Installing Measurement Software

# Setting Screen Colors

This section explains how to set screen colors.

Screen colors can be selected from the four predetermined color patterns or a user-defined one.



- F1 (Color Pattern 1): Sets Color Pattern 1 (default color pattern set before shipment).
- F2 (Color Pattern 2): Sets Color Pattern 2.
- F3 (Color Pattern 3): Sets Color Pattern 3.
- F4 (Color Pattern 4): Sets Color Pattern 4.
- F5 (Define User Color): Sets the user-defined color pattern.

Setting a user-defined color pattern

Pressing [F5] (Define User Color) changes the screen colors to the user-defined color pattern and displays the function labels shown below.

- F1 (Copy Color Ptn from): Displays the function labels to select Color Patterns 1 to 4 as the base colors for setting the user-defined color pattern.
- F2 (Select Item): Selects the item for which the display color is to be set.
- F3 (Red): Sets the intensity of red for the item selected by Select Item.
- F4 (Green): Sets the intensity of green for the item selected by Select Item.
- F5 (Blue): Sets the intensity of blue for the item selected by Select Item.

# Section 3 Measurement

This Section describes the parameters set on each screen and how to set them.

| Setting Measurement Parameters                   | 3-4  |
|--------------------------------------------------|------|
| Signal input terminals (Terminal)                | 3-5  |
| RF input level (Reference Level)                 | 3-6  |
| Level offset factor (Level Offset)               | 3-7  |
| Channel and frequency (Channel & Frequency)      | 3-8  |
| Measurement signals (Measuring Object)           | 3-9  |
| Filter (Filter)                                  | 3-10 |
| Trigger (Trigger)                                | 3-11 |
| PN synchronization (PN Synchronization)          | 3-12 |
| PN Offset (PN Offset)                            | 3-12 |
| Frequency characteristics correction data table  |      |
| (Correction)                                     | 3-13 |
| Preamplifier (Pre Ampl.)                         | 3-13 |
| Analyzing Modulation Accuracy and Code Domain    | 3-14 |
| Description of measurement results               | 3-14 |
| Changing waveform display format (Trace Format)  | 3-22 |
| Setting analysis range (Analysis Mode)           | 3-23 |
| Averaging (Storage Mode)                         | 3-24 |
| Changing constellation display (Scale Mode)      | 3-25 |
| Displaying waveform in Nyquist diagram           |      |
| (Filter to Nyquist)                              | 3-26 |
| Changing waveform display scale (Vertical Scale) | 3-27 |
| Changing active channel threshold (Threshold)    | 3-28 |
| Changing code domain result display              | 3-29 |
| Spread rate automatic detection function         |      |
| (Auto Rate Detection)                            | 3-31 |
| Changing the display mode (Display Mode)         | 3-32 |
| Changing maximum Walsh Length                    |      |
| (Max Walsh Length)                               | 3-32 |
| Displaying the marker                            | 3-33 |
| Measuring timing errors                          | 3-33 |
| Defining modulation accuracy                     | 3-34 |
| Optimizing measurement range (Adjust Range)      | 3-36 |
| Power calibration function (Power Calibration)   | 3-37 |
| Power calibration function                       |      |
| (Multi Carr. Power Calibration)                  | 3-37 |
| Measuring Transmission Power                     | 3-38 |
| Description of measurement results               | 3-38 |
| Changing waveform display range (Window)         | 3-39 |
| Displaying the marker                            | 3-40 |
| Setting the trigger mode                         | 3-40 |

#### Section 3 Measurement

| Setting analysis starting position               | 3-11 |
|--------------------------------------------------|------|
| Averaging (Storage Mode)                         | 3-41 |
| Measuring Occupied Frequency Bandwidth           | 3-43 |
| Description of measurement results               | 3-43 |
| Setting SPA parameters by the Spectrum method    | 3-45 |
| Averaging (Storage Mode)                         | 3-53 |
| Measuring Nearby Spurious                        | 3-54 |
| Description of measurement results               | 3-54 |
| Selecting result display (Measure Method)        | 3-55 |
| Selecting result display (measure method)        | 3-56 |
| Selecting Bof Power (Bef Power)                  | 3-50 |
| Displaying integral wayoform (Integral Wayoform) | 3-50 |
| Selecting massurement result display type        | 3-50 |
| (Display Data Type)                              | 2 57 |
| (Display Data Type)                              | 3-57 |
| (Setup Spectrum Applyzor)                        | 2 57 |
| Sotting a tamplata (Satur Spurious Tamplata)     | 3-57 |
| Averaging (Storage Mede)                         | 3-09 |
| Averagility (Storage Mode)                       | 3-00 |
| Description of monsurement results               | 2 61 |
| Sotting opurious monourement method              | 3-01 |
| (Spurious Mede)                                  | 2 62 |
| (Spurious lovel unit (Linit)                     | 3-0Z |
| Setting Spurious lever unit (Onit)               | 3-03 |
| Selecting Rei Power (Rei Power)                  | 3-03 |
| Setting preselector mode (Preselector)           | 3-04 |
| Setting detection mode (Detection)               | 3-04 |
| Setting measurement nequency for spot method     | 2 65 |
| (Setup Spot Table)                               | 3-05 |
| Setting sweep range for search/sweep method      | 2.67 |
| (Setup Search/Sweep Table)                       | 3-07 |
| Setting frequency and sweep tables in details    | 3-09 |
| Fower Meter                                      | 3-71 |
| Explanation of measurement results               | 3-71 |
| Calibrating zero-point (Zero Set)                | 3-72 |
| Osing relative-value display (Set Relative)      | 3-72 |
| Setting measurement range                        | 0.70 |
| (Range Op/Range Down)                            | 3-72 |
|                                                  | 3-73 |
| Explanation of measurement results               | 3-73 |
| Averaging (Storage Mode)                         | 3-74 |
| Changing measurement value unit (Unit)           | 3-15 |
| Saving and Reading Setup Parameters              | 3-76 |
| Saving parameters (Save)                         | 3-77 |
| Saving under a new name (File Name)              | 3-78 |

#### Section 3 Measurement

| Write-protecting file (Write Protect) | 3-79 |
|---------------------------------------|------|
| Reading parameters (Recall)           | 3-80 |

# **Setting Measurement Parameters**

This section describes how to set measurement parameters such as input terminals and frequencies necessary for measurement.

Set the measurement parameters from the Setup Common Parameter screen.

To display this screen, press Tx Tester (MS860x)/Signal Analysis (MS268x) (If a measurement screen has appeared, press Preset .)

The Setup Common Parameter screen is shown below.

| MS8608A<br><< Setup Common Parameter (cdma)                     | »>                                                                         | Setup<br>Parameter                       |
|-----------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|
| Input<br>Terminal<br>Reference Level & Offset                   | : [ <del>]]]</del> ]<br>: [ 30.00dBm] [ 0.00dB]                            |                                          |
| Frequency<br>Channel & Frequency<br>Channel Spacing             | : [ 1092CH] = [ 887.650000MHz]<br>: [ 1.250000MHz]                         | →<br>Modulation<br>Analysis              |
| Signal<br>Measuring Object<br>Filter                            | : [Reverse(RC1-2)] [Burst ]<br>: [Filtering]                               | →<br>RF<br>Power                         |
| Trigger                                                         | : [Free Run ]                                                              | →<br>Occupied<br>Bandwidth               |
|                                                                 |                                                                            | →<br>Spurious<br>close to the<br>Carrier |
| Input :<br>Ch : 1092CH Level :<br>Freg : 887 650000MHz Offset : | High Pre Ampl : Off<br>30.00dBm Power Cal : Off<br>0.00dB Correction : Off | →<br>Spurious<br>Emission                |

## Signal input terminals (Terminal)

Select the terminals for inputting signals from the device under test (DUT).

- In the Entry section, move the cursor to the Terminal item using
   ∧ and ∨ or the rotary knob.
- 2. Press <u>Set</u> in the Entry section.
- 3. The selection window opens.
- Move the cursor to the item to be selected using △ and or the rotary knob.
- 5. Press Set.

When setup is completed, the set terminal appears in the Terminal item [].

Available terminals are given below.

• RF: Selects the RF input terminal.

For MS8608A, High Power or Low Power input is selected. High Power or Low Power input can be switched as follows:

Setting High Power input: Press [Hi Power].

Setting Low Power input: Press Shift and then Hi Power press.

• IQ-DC: Selects the IQ input terminal.

Of the IQ input terminals, the one grouped and marked as Unbalance is used.

In this case, this terminal is connected to the internal circuit by DC coupling.

• IQ-AC: Selects the IQ input terminal.

Of the IQ input terminals, the one grouped and marked as Unbalance is used.

In this case, this terminal is connected to the internal circuit by AC coupling.

• IQ-Balance: Selects the IQ input terminal. I/I and Q/Q are used to input differential signals.

When IQ input is selected, the Impedance item is displayed on the right, allowing selection of 50  $\Omega$  or 1 M $\Omega$  as the input impedance. Select the appropriate impedance according to the DUT output impedance.

For MS268x, IQ-DC, IQ-AC and IQ-balance inputs are available only when option 17 or 18 is installed.

## RF input level (Reference Level)

Set the RF signal level input from the DUT.

- 1. In the Entry section, move the cursor to the Reference Level item using <u>A</u> and <u>V</u> or the rotary knob.
- 2. Press Set or enter the level correction factor using the ten-key pad.
- 3. The setup window opens.
- 4. In the Entry section, enter a numeric value using  $\land$  and  $\lor$ , the rotary knob or ten-key pad.
- 5. Press Set.

When setup is completed, the set level appears in the Reference Level item [].

When the IQ input terminal has been selected, this item will not appear. This value is changed to the optimum value by using the Adjust Range function from the measurement screen.
# Level offset factor (Level Offset)

Set the user-defined level correction factor.

- 2. Press Set or enter the level correction factor using the ten-key pad.
- 3. The setup window opens.
- 4. In the Entry section, enter a numeric value using [ ^] and [ v ], the rotary knob or ten-key pad.
- 5. Press Set.

When setup is completed, the set level correction factor appears in the Offset item [].

The displayed RF level measurement results are calculated using the following expression:

Measurement value displayed = Measurement value + Offset

#### Example:

When a 20 dB amplifier is inserted between the DUT and this measurement unit, the correction factor for obtaining the measurement result at the DUT output terminal is -20 dB.

When a 10 dB attenuator is inserted between the DUT and this measurement unit, the correction factor for obtaining the measurement result at the DUT output terminal is +10 dB.

When the IQ input terminal has been selected, this item will not appear.

## Channel and frequency (Channel & Frequency)

Set the frequency of the signal from the DUT.

- 1. In the Entry section, move the cursor to the Channel or Frequency item using  $\land$  and  $\lor$  or the rotary knob.
- 2. Press <u>Set</u> or enter the desired numeric value using the ten-key pad.
- 3. The setup window opens.
- 5. Press Set.

When setup is completed, the set value appears in the set item []. In the Channel Spacing item, set the frequency interval for the channel. The setup procedure is the same as that for frequency.

When the channel is changed, the frequency also changes depending on the frequency interval. But, note that changing the frequency does not cause the channel to be changed. Therefore, when associating a frequency to a channel, first set the channel and then set the frequency.

When the IQ input terminal has been selected, this item will not appear.

## Measurement signals (Measuring Object)

Set the signal to e measured.

- 1. In the Entry section, move the cursor to the Measuring Object item  $using \land and \lor$  or the rotary knob.
- 2. Press <u>Set</u> in the Entry section.
- 3. The setup window opens.
- Move the cursor to the item to be selected using △ and ∨ or the rotary knob.
- 5. Press Set.

When the setup is completed, the signal to be measured appears in the Measuring Object item [].

Available selections are given below.

• Forward (RC1-2): Selects spread signals transmitted by base stations based on IS-95 or IS-2000 Standard Radio configurations 1 and 2.

Code-multiplexed signals can also be measured.

- Forward (RC3-5): Selects spread signals transmitted by base stations based on IS-2000 Standard Radio Configurations 3, 4 and 5. Code-multiplexed signals can also be measured.
- Reverse (RC1-2): Selects spread signals transmitted by base stations based on IS-95 or IS-2000 Standard Radio Configurations 1 and 2.
- Reverse (RC3-4): Selects spread signals transmitted by base stations based on IS-2000 Standard Radio Configurations 3, 4 and 5. Code-multiplexed signals can also be measured. Signals should be set so that long-code patterns are all 0's.
- QPSK: Selects 1.2288Mcps QPSK modulation signals. Code-multiplexed signals cannot be measured.
- OQPSK: Selects 1.2288Mcps OQPSK modulation signals. Code-multiplexed signals cannot be measured.

When Reverse, QPSK or OPQSK is selected, set Continuous or Burst depending on the measurement signal.

- To measure a burst wave, select Burst.
- To measure a continuous wave, select Continuous.

### Section 3 Measurement

## Filter (Filter)

Set whether or not to pass a signal from the DUT through the filter.

- 2. Press Set in the Entry section.
- 3. The selection window opens.
- Move the cursor to the item to be selected using △ and ∨ or the rotary knob.
- 5. Press Set.

When setup is completed, the set result appears in the Filter item [].

This setting is valid only for modulation analysis and code domain analysis.

The available selections are given below.

- Filter + EQ: Assumes and analyzes signals passed through the baseband and equalizing filters defined in IS-95 or IS-2000 Standard.
- Filtering: Assumes and analyzes signals passed through the baseband filter defined in IS-95 or IS-2000 Standard.
- No Filter: Analyzes the signal without filtering.

# Trigger (Trigger)

Set the trigger mode.

Setting trigger mode

- 2. **Press** Set in the Entry section.
- 3. The selection window opens.
- Move the cursor to the item to be selected, using △ and or the rotary knob.
- 5. Press Set.

When setup is completed, the set trigger mode appears in the Trigger item [].

- Free Run: Measures the signal detected in the internal timing.
- External: Measures the first signal detected after receiving a trigger signal from Trig/Gate In on the rear panel.

When External is selected, the trigger signal edge and delay must be set.

Setting trigger edge

- In the Entry section, move the cursor to the Trigger Edge item using

   and v
   or the rotary knob.
- 2. Press Set in the Entry section.
- 3. The selection window opens.
- 5. Press [Set].

When setup is completed, the set trigger mode appears in the Trigger Edge item [].

- Rise: Synchronizing with the trigger signal (pulse signal) rising edge.
- Fall: Synchronizing with the trigger signal (pulse signal) falling edge.

Setting trigger delay

- In the Entry section move the cursor to the Trigger Delay item using
   and 
   or the rotary knob.
- 2. Press <u>Set</u> in the Entry section.
- 3. The selection window opens.
- Move the cursor to the item to be selected, using △ and ∨ or the rotary knob.
- 5. Press [Set].

When setup is completed, the set trigger delay value appears in the Trigger Delay item [].

# PN synchronization (PN Synchronization)

Select the PN Synchronization mode to correlate all short-code patterns in the short-code synchronizing period or the Ext Trigger mode to correlate only in the short-code period for 384 chips around the trigger timing. When Ext Trigger is selected, the correct value must be set in the PN Offset (see "PN Offset (PN Offset)"), because only a specific short-code period is correlated to reduce the analyzing time.

This parameter appears only when the Measuring Object is neither QPSK nor OQPSK and Trigger is set to External.

- 1. In the Entry section, move the cursor to the PN Synchronization item using  $\land$  and  $\lor$  or the rotary knob.
- 2. Press Set in the Entry section.
- 3. The selection window opens.
- 5. Press Set.

When setup is completed, the set result appears in the PN Synchronization item [].

## PN Offset (PN Offset)

Input the PN Offset for the signal from the DUT to be measured in the N × 64 PN chips format.

This parameter appears only when the Measuring Object is neither QPSK nor OQPSK and Trigger is set to External.

- In the Entry section, move the cursor to the PN Offset item using
   and 
   or the rotary knob.
- 2. Press Set in the Entry section.
- 3. The selection window opens.
- Move the cursor to the item to be selected using △ and or the rotary knob.
- 5. Press Set.

When setup is completed, the set result appears in the PN Offset item [].

### Frequency characteristics correction data table (Correction)

When correcting frequency-dependent values such as the characteristics or losses of the cable connecting the DUT and transmitter tester, it may be convenient to save the correction factors to the transmitter tester internal memory, which can be added to the measurement values before they are displayed.

By using this function, the required measurement values can be displayed directly on the transmitter tester.

For the procedure to save the frequency characteristics correction factors in transmitter tester internal memory/spectrum analyzer, refer to "MS8608A/MS8609A Digital Mobile Radio Transmitter Tester Operation Manual, Vol. 2 (on Spectrum Analyzer Functions)" or "MS268x Spectrum Analyzer Operation Manual, Vol.2 (Detailed Operation Instruction)".

The transmitter tester/spectrum analyzer internal memory can store five correction factor tables.

The procedure to select the five correction factor tables stored internally is given below.

Selecting correction factor table

- 1. Press (Amplitude) to display the Amplitude function label.
- 2. Press F4 (Correction) to open the correction factor table selection window.
- 4. Press Set.

When setup is completed, the selected correction factor table appears in the Correction display area at the lower-right part of the screen.

## Preamplifier (Pre Ampl.)

This function is available when the main unit option MS8608A-08/MS8609A-08/MS2681A-08/MS2683A-08 is installed.

Setting preamplifier

- 1. Press (Amplitude) to display the Amplitude function label.
- 2. Press F5 (Pre Ampl.) to switch alternately between On and Off.

When setup is completed, On or Off appears in the Pre Ampl display area in the lower-right part of the screen.

# Analyzing Modulation Accuracy and Code Domain

On the Setup Common Parameter screen, pressing  $F_2$  (Modulation Analysis) causes the modulation accuracy/code-domain analysis measurement screen to appear.

This section describes the measurement results displayed on the Modulation Analysis screen (modulation accuracy/code domain analysis), parameter settings and operation precautions.

## Description of measurement results

This section describes the measurement results displayed on the Modulation Analysis screen (modulation accuracy/code domain analysis). To start measurement, press F5 (Adjust Range) to optimize the level settings inside the measurement unit. For range optimization (Adjust Range), see "Optimizing Measurement Range (Adjust Range)."

Modulation accuracy measurement results (when the measured signal is Forward (RC1-2, 3-5))

The screen given below appears when Non is selected for Trace Format. For Trace Format setting, see "Changing Waveform Display Format (Trace Format)."

| MS8608A<br><< Modulation Analysis (cdma | ) >> Measure : Single           | Modulation<br>Analysis<br># |
|-----------------------------------------|---------------------------------|-----------------------------|
| Frequency                               | Trace : Non                     | #<br>Tabaa                  |
| Carrier Frequency                       | · 887 649 943 1 MHz             | Format                      |
| Carrier Frequency Error                 | : -56.9 Hz -0.064 ppm           | *                           |
| Waveform Quality                        |                                 |                             |
| ρ multi-code                            | : 0.99948                       | Storage                     |
|                                         |                                 |                             |
| Veduletion                              |                                 | *                           |
| RMS & Peak FUM                          | · 170% (pms) 4.49%              | Scale                       |
| Phase Error                             | : 0.69 deg. (rms)               | Mode                        |
| Magnitude Error                         | : 1.19 % (rms)                  | *                           |
| Origin Offset(CFT)                      | : −36.38 dB                     |                             |
| Code Domain                             | Total Average Max               | Analysis                    |
| Active CH ( 9CH)                        | : 0.00 dB -9.54 dB -6.97 dB     | Mode                        |
|                                         |                                 |                             |
| Inactive CH                             | : -33.41 dB -53.90 dB -50.71 dB | Adjust                      |
|                                         |                                 | Range                       |
| Tx Power & Pilot,Sync Cl                | : 1.40 dBm -6.97 dB -13.30 dB   |                             |
| Measured PNchip : 640/ 6                | 40 PNchip                       |                             |
| Analy Start: OPNchip An                 | aly Length: 640PNchip           | Back                        |
|                                         | ut : LOW Pre Ampl : Off         | Screen                      |
| Freq : 887.650000MHz Off                | set : 0.00dB Correction : Off   | 123                         |

#### Frequency

- (1) Carrier Frequency Shows the measured signal frequency derived by the phase locus method in MHz.
- (2) Carrier Frequency Error Shows errors in the above carrier frequency against the set frequency in Hz and ppm units.

Waveform Quality

(1)  $\rho$  multi-code (Waveform Quality Factor)

Shows the measured signal waveform quality factor for all active channels. The waveform quality factor is obtained based on the definitions in the IS-95 (cdmaOne) Standard.

(2)  $\tau$  (Timing Error)

Shows the difference between the short-code starting timing and external trigger (including trigger delay) in 64PN Chips and its fraction in  $\mu$ sec. When Even Second Timing Trigger is input to the external trigger, the measurement results for Pilot Time Tolerance are shown. The measurement resolution is 32 nsec. This measurement is available only when the Measuring Object is set to Forward or Reverse on the Setup Common Parameter screen and Trigger is set as External.

Modulation

(1) RMS EVM

Shows the root mean square (RMS) value for the vector error (Error Vector Magnitude in %) at the measured signal chip judgment point.

(2) Peak EVM

Shows the maximum vector error value (in %) at the measured signal chip judgment point.

- (3) Phase Error Shows the RMS value for phase error (in degree) at the measured signal chip judgment point.
- (4) Magnitude Error Shows the RMS value for amplitude error (in %) at the measured signal chip judgment point.
- (5) Origin Offset (CFT: Carrier Feed Through) Shows the measured signal origin offset (carrier leakage component) in dB.

Code Domain

(1) Active Channel

Shows the number of active channels, and their total, average and maximum values in dB.

### (2) Inactive Channel

Show the number of inactive channels, and their total, average and maximum values in dB.

(3) Tx Power & Pilot, Sync Channel

Shows the Tx Power and the code domain power of the pilot and Sync channels in dB. For Tx Power, the measured signal average power for one slot, band limited at 1.23 MHz is shown, which is the same as the value shown on the RF Power screen.

Modulation accuracy measurement results (when the measured signal is Reverse (RC 3-4))

The screen shown below appears when Non is selected for Trace Format. For Trace Format setting, see "Changing Waveform Display Format (Trace Format)."

| MS8608A<br>KK Modulation Analysis (cdm | na) >> Measure : Single         | Modu Lation<br>Analysis |
|----------------------------------------|---------------------------------|-------------------------|
|                                        | Storage : Normal<br>Trace : Non | #                       |
| Frequency                              |                                 | Trace                   |
| Carrier Frequency                      | : 887.649 945 4 MHz             | Format                  |
| Carrier Frequency Erron                | с: -54.6 Hz -0.061 ррл          | *                       |
| Waveform Quality                       |                                 | Storage                 |
| βmulti-code                            | : 0.99960                       | Mode                    |
|                                        |                                 | *                       |
| Modulation                             |                                 |                         |
| RMS & Peak EVM                         | : 1.37 % (rms) 3.32 %           | Scale                   |
| Phase Error                            | : 0.55 deg. (rms)               | Mode                    |
| Magnitude Error                        | : 0.97 % (rms)                  | *                       |
| Origin Offset(CFT)                     | : −36.72 dB                     | -1-                     |
|                                        |                                 | Analysis                |
| Code Domain                            | Total Average Max               | Mode                    |
| Active CH I( 3CH)                      | : −1.61 dB −6.38 dB −5.36 dB    | mode                    |
| Q( 2CH)                                | : −5.09 dB −8.10 dB −5.36 dB    |                         |
| Inactive CH I                          | : -38.38 dB -51.81 dB -49.74 dB |                         |
| Q                                      | : -40.60 dB -52.06 dB -49.78 dB | Adjust                  |
|                                        |                                 | Range                   |
| Tx Power & Pilot CH                    | : 1.39 dBm. −7.02 dB            | →                       |
|                                        |                                 |                         |
| Analy Start: UPNchip H                 | analy Length: 640PMCh1p         | Back                    |
|                                        | nput : Low Pre Ampl : Off       | Screen                  |
| Uh : 1092CH Le                         | evel : -8.00dBm Power Cal : Off | 10.0                    |
| Freq : 887.650000MHz 01                | ffset : 0.00dB Correction : Off | 123                     |

Frequency

(1) Carrier Frequency

Shows the measured signal frequency derived by the phase locus method in MHz.

(2) Carrier Frequency Error Shows errors in the above carrier frequency against the set frequency in Hz and ppm units. Waveform Quality

- ρ multi-code (Waveform Quality Factor) Shows the measured signal waveform quality factor for al active channels. The waveform quality factor is obtained based on the definitions in the IS-95 (cdmaOne) Standard.
- (2) τ (Time Error)

Shows the difference between the short-code starting timing and external trigger (including trigger delay) in 64PN Chips and its fraction in  $\mu$ sec. When Even Second Timing Trigger is input to the external trigger, the measurement results for Pilot Time Tolerance are shown. The measurement resolution is 32 nsec. This measurement is available only when the Measuring Object is set to Forward or Reverse on the Setup Common Parameter screen and Trigger is set as External.

Modulation

(1) RMS EVM

Shows the root mean square (RMS) value for the vector error (Error Vector Magnitude in %) at the measured signal chip judgment point.

(2) Peak EVM

Shows the maximum vector error value (in %) at the measured signal chip judgment point.

(3) Phase Error

Shows the RMS value for phase error (in degree) at the measured signal chip judgment point.

- (4) Magnitude Error Shows the RMS value for amplitude error (in %) at the measured signal chip judgment point.
- (5) Origin Offset (CFT: Carrier Feed Through) Shows the measured signal origin offset (carrier leakage component) in dB.

**Code Domain** 

- Active Channel I, Q Shows the total, average and maximum values of I- and Q-phase active channels in dB.
- (2) Inactive Channel I, Q Shows the total, average and maximum values of I- and Q-phase inactive channels in dB.
- (3) Tx Power & Pilot Channel

Shows the Tx Power (measured signal average power in dBm for one slot, band limited at 1.23 MHz, which is the same as the value shown on the RF Power screen) and the pilot channel code domain power in dB.

The channel is judged to be active or inactive depending on the set threshold and code domain power. For the threshold for judgment, see "Changing Active Channel Threshold (Threshold)."

The described measurement results are obtained by analyzing for the range set in Analysis Mode. For Analysis Mode setting, see "Setting Analysis Range (Analysis Mode)."

Code domain measurement results (when the measured signal is Forward (RC1-2, RC3-5))

The screen given below appears when the signal to be measured (Measuring Object) is set to Forward (RC3-5) and Trace Format is set to Code Domain.



Code domain power waveform display:

Shows the relative power of each code component to the total transmission power with code numbers on the abscissa and relative power on the ordinate. For details on operation, see "Changing Code Domain Result Display."

#### **Tx Power**

Shows the measured signal average power in dBm for one slot, band limited at 1.23 MHz, which is the same as the value shown on the RF Power screen.

**Frequency Error** 

Shows the measured signal frequency derived by the phase locus method in Hz, as an error to the set frequency.

**Pilot Channel Code Domain Power** 

Shows the absolute and relative values of the pilot channel code domain power. The relative value is the same as Code Domain Power when the Code Number for Marker is 0. The pilot channel code domain power absolute value is the Tx power plus the relative value.

 $\tau$  (Time Error)

Shows the difference between the short-code starting timing and the reference timing, similar to  $\tau$  in the modulation accuracy measurement result.

Marker

(1) Signal

Shows On if the marker on the code domain power waveform points to active channel code and Off if not. On (BPSK) is for the IS-95 signal format and On (QPSK) is for IS-2000 Radio Configuration 3, 4 or 5.

(2) Walsh Length

Shows Walsh Length where the marker on the code domain power waveform pints to diffused code.

(3) Code Number

Shows the number of the code pointed to by the marker on the code domain power waveform.

- (4) Code Domain Power Shows the relative power value of the code pointed to by the marker on the code domain power waveform in dB.
- (5) Waveform Quality Shows the waveform quality factor (ρ) of the code pointed to by the marker on the code domain power waveform. This value is obtained based on the definition in the IS-95 (cdmaOne) Standard.
- (6) Time Offset Shows the time-axis offset for each code from the pilot channel (Code Number: 0).
- (7) Phase Offset Shows the phase offset for each code from the pilot channel (Code Number: 0).

When Measuring Object is Forward (3-5) and Auto Rate Detection is On, Appears (1) signal and (2) Walsh Length. Code domain measurement results (when the measured signal is Reverse (RC3-4))

The screen shown below appears when the measured signal (Measuring Object) is set to Reverse (RC3-4) and Trace Format is set to Code Domain.



Code domain power waveform display:

As with Forward, shows the relative power of each code component to the total transmission power with code numbers on the abscissa and relative power on the ordinate. The right graph is for the Q-component measurement results and the left graph is for the I-component measurement results. The markers for the I- and Q-components can be handled independently of each other. For details on operation, see "Changing Code Domain Result Display."

#### **Tx Power**

Shows the measured signal average power in dBm for one slot, band limited at 1.23 MHz, which is the same as the value shown on the RF Power screen.

#### Marker

#### (1) Signal

Shows On if the marker on the code domain power waveform points to active channel code and Off if not.

- (2) Walsh Length Shows Walsh Length where the marker on the code domain power waveform points to diffused code.
- (3) Code Number

Shows the number of the code pointed to by the marker on the code domain power waveform.

- (4) Code Domain Power Shows the relative power value of the code pointed to by the marker on the code domain power waveform in dB.
- (5) Waveform Quality Shows the waveform quality factor (ρ) of the code pointed to by the marker on the code domain power waveform. This value is obtained based on the definitions in the IS-95 (cdmaOne) Standard.
- (6) Time Offset Shows the time-axis offset for each code from the pilot channel (Code Number: 0).
- (7) Phase Offset

Shows the phase offset for each code from the pilot channel (Code Number: 0).

## Changing waveform display format (Trace Format)

This section describes how to change the waveform display format.

Selecting display format

- 1. Press F1 (Trace Format) on the Modulation Analysis screen.
- 2. The format selection window opens.
- 3. Using *∧* and *∨* or the rotary knob, move the cursor to the item to be selected.
- 4. Press Set.

When setup is completed, the displayed waveform changes and the selected format appears in the Trace display area in the upper-right part of the screen. Available formats are listed below.

- Non: Shows only numeric results.
- Constellation: Shows the constellation. (below)
- Eye Diagram: Shows the eye diagram. (below)
- EVM: Shows EVM vs. chips. (below)
- Phase Errors: Shows phase errors vs. chips. (below)
- Magnitude Error: Shows amplitude errors vs. chips.
- Code Domain: Shows code domain power or code domain error.



# Setting analysis range (Analysis Mode)

Set the waveform analysis range.

Setting analysis starting position

- 1. On the Modulation Analysis screen, press F4 (Analysis Mode) to display the Analysis Mode function label.
- 2. Press F1. (Analysis Start) to open the setup window.
- 4. Press Set.

The set value appears in the Anly Start area in the lower part of the screen.

Setting analysis length

- 3. On the Modulation Analysis screen, press F4 (Analysis Mode) to display the Analysis Mode function label.
- 4. Press F2. (Analysis Length) to open the setup window.
- In the Entry section, enter the analysis length using ∧ and
   ✓ , the rotary knob or ten-key pad..
- 4. Press Set.

The set value appears in the Anly Length area in the lower part of the screen.

In any case, completing the setup restarts the measurement. If the values are not changed or changing is canceled, the measurement is not restarted.

### Section 3 Measurement

## Averaging (Storage Mode)

This section describes the storage mode through the measurement result averaging process.

Setting averaging process

- 1. On the Modulation Analysis screen, press F2 (Storage Mode) to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setup window.
- 3. In the Entry section, enter the averaging count using <u></u> and <u></u>, the rotary knob or ten-key pad.
- 4. Press Set.
- 5. On the Storage Mode menu, press [F1] (Storage Mode).
- 6. The selection window opens.
- 7. In the Entry section, select Average using <u></u> and <u></u> or the rotary knob.
- 8. Press Set.

When setup is completed, measurement restarts.

Also when the averaging count is changed with Storage Mode set to Average, the measurement restarts upon completion of setup. If the values are not changed or changing is canceled, measurement is not restarted.

Refresh Interval: Set the interval to update the average display.

- Every: Updates the display at every measurement.
- Once: Updates the display after measurement of the specified averaging count is completed.

Available storage modes are listed below.

- Normal: Updates and displays the measurement results at every measurement.
- Average: Averages and displays the measurement results at every measurement.
- Overwrite: Updates the measurement results and overwrites the waveform at every measurement without averaging. The waveform is not overwritten if the waveform displayformat is Non or Code Domain.

# Changing constellation display (Scale Mode)

This section describes how to change the constellation waveform display.

Setting waveform interpolation display

- 1. On the Modulation Analysis screen, press [F3] (Scale Mode) to display the Scale Mode function label.
- 2. Press (Interpolation) to display the function labels shown below, permitting selection of the interpolation type.
  - (F1) (Non): Shows a chip point with a dot.
  - F2 (Linear): Shows a straight line between two adjacent chip points.
  - F3 (10 points): Interpolates between two chip points with nine dots (interpolating by ten times) and shows a straight line between two adjacent dots.
  - F4 (Linear & Symbol Position): Shows a chip point with a dot and a straight line between two adjacent chip points.
  - [F5] (10 points & Symbol Position): Shows a chip point with a dot and interpolates between two adjacent chip points with a straght line by ten times.
  - F6 (return): Returns to the preceding function label display.

When Measuring Object is Forward(RC1-2) or Forward(RC3-5), [F3] (10 points) and [F5] (10 points & Symbol Position) are not available.



Setting error scale display

- 1. On the Modulation Analysis screen, press [F3] (Scale Mode) to display the Scale Mode function label.
- 2. Press F2 (Error Scale) to display the function labels given below, permitting selection of the error scale.
  - F1 (5%): Draws a circle with 5% error.
  - F2 (10%): Draws a circle with 10% error.
  - F3 (20%): Draws a circle with 20% error.
  - F4 (OFF): Erases the error circle.
  - **F6** (return): Returns to the preceding function label display.



Displaying waveform in Nyquist diagram (Filter to Nyquist)

Setting error scale display

- 1. Press (More) to display the second function label page.
- 2. Press F5 (Filter to Nyquist) to switch alternately between On and Off.

This function is available only when the Measuring Object is set to Reverse (RC1-2) or OQPSK.

No setting is allowed when Trace Format is other than Constellation and Eye Diagram.



When Filter to Nyquist is Off

When Filter to Nyquist is On

## Changing waveform display scale (Vertical Scale)

Change the ordinate scale for the waveform display. This function permits changing of the EVM error, phase error, amplitude error and code domain waveform ordinates.

- 1. On the Modulation Analysis screen, press [F3] (Scale Mode) to display the Scale Mode function label.
- 2. Press F4 (Vertical Scale) to display the function labels shown below, permitting selection of the scale. For EVM error and amplitude error waveforms, the function labels given below are available.
  - F1 (5%): Sets the ordinate scale maximum value to 5%.
  - F2 (10%): Sets the ordinate scale maximum value to 10%.
  - F3 (20%): Sets the ordinate scale maximum value to 20%.
  - F4 (50%): Sets the ordinate scale maximum value to 50%.
  - [F5] (100%): Sets the ordinate scale maximum value to 100%.
  - F6 (return): Returns to the preceding function label display.

For phase error, the function labels are the same except that the unit is degree.

On the Code Domain Power screen, the function labels above change to 20, 40, 60, and 80 dB.

On the Code Domain Timing screen, the function labels above change to 20, 40, 60, 801, and 100 nsec.

On the Code Domain Phase screen, the function labels above change to 0.02, 0.04, 0.06, 0.08, and 0.10 rad.

## Changing active channel threshold (Threshold)

Change the threshold in order to recognize the active channel. Channels with numbers equal to or greater than the set thresholds are recognized as active channels. These are used for modulation accuracy and code domain analysis.

- 1. On the Modulation Analysis screen, press [F3] (Scale Mode) to display the Scale Mode function label.
- **2.** Press  $\overline{F5}$  (Threshold) to open the setup window.
- 3. In the Entry section, enter the threshold using  $\land$  and  $\lor$ , the rotary knob or ten-key pad.

The set threshold is pointed to by the marker on the ordinate of the graph on the code domain power screen.

The threshold should be set based on:

Walsh Length 64 when Measuring Object is Forward (RC1-2) Max Walsh Length set value when Measuring Objet is Forward (RC3-5)

Walsh Length 32 when Measuring Object is Reverse (RC3-4)

The threshold is obtained through analysis at each Walsh Length.

## Changing code domain result display

This section describes how to change the code domain result display. The description is given assuming that Code Domain has been selected as the waveform display format. For the procedure to set the waveform display format, see "Changing Waveform Display Format (Trace Format)."

When Measuring Object is Reverse (RC3-4), two graphs (I- and Q-phases) are displayed. The items given below can be set individually for I- and Q-phase. Therefore, the procedure to select the graph that enables the settings is described first.

Selecting operation trace

- 1. Press (More) to display the second or third function label page.
- 2. Press F1 (Operation Trace) to activate the I- or Q-graph alternately.

This function is available only when the Measuring Object for Setup Common Parameter is set to Reverse (RC3-4).

Selecting code domain power timing phase

- 1. Press (More) to display the second function label page.
- 2. Press F5 (Code Domain) to switch as Power Timing Phase Power. Set the desired display format.

When setup is completed, the set display format appears in the Cdp Wave area in the lower-right part of the screen.



*3-29* 

Selecting display spread rate

- 1. Press (More) to display the third function label page.
- 2. Press [F4] (Walsh Length) to open the selection window.
- 3. In the Entry section, select Walsh Length using <u></u> and <u></u>, the rotary knob.

When setup is completed, the set spread rate appears in the WL area in the upper right part of the graph.

This function is available only when the Measuring Object for Setup Common Parameter is set to Forward (RC3-5) and Auto Rate Detection is Off.

Selecting graph page

- 1. Press (\_\_\_\_) (More) to display the third function label page.
- 4. Press  $F_2$  (Previous Page) or  $F_3$  (Next Page) to change the graph page.
  - Previous Page: Displays the page with the previous code number. When this key is pressed at the first page, the last page appears.
  - Next Page: Displays the page with the next code number. When this key is pressed at the last page, the first page appears.

The number of the page currently displayed appears in the upper-left part of the graph in a function format.

This function is available only when the Measuring Object for Setup Common Parameter is set to Forward (RC3-5) and Auto Rate Detection is Off.

### Spread rate automatic detection function (Auto Rate Detection)

This section describes the spread rate automatic detection function (Auto Rate Detection).

This function helps to immediately understand the code domain power measurement for a signal multiplexed in multi-rate; in addition, it enables accurate modulation analysis on multi-rate signals.

This function is available only when the Measuring Object is set to Forward (RC3-5) or Reverse (RC3-4).

The modulation accuracy is obtained by comparing the measured signal with an ideal signal generated by reverse-diffusing and demodulating the measured signal. Therefore, generating the ideal signal of a multi-rate multiplexed signal requires obtaining the rate of each multiplexing signal and then reverse-diffusing at the obtained rate and demodulating. The diffusion rate automatic detection function allows obtaining the rate of each multiplexing signal, assuring the appropriate modulation accuracy.

Execution spread rate automatic detection function

- 1. On the Modulation Analysis screen, press (More) to display the second function label page.
- 2. Press F2 (Auto Rate detection) to switch alternately between On and Off.



#### Section 3 Measurement

Measurement results of executing the spread rate automatic detection function

Code domain power waveform display:

This graph shows the relative power of each code component to the total transmission power, with the abscissa representing the code number of the spread rate (128 or 64) set in Max Walsh Length and the ordinate representing the relative power. Areas assumed to have no signals are indicated with the spread rate code numbers set in Max Walsh Length and those assumed to have signals are indicated with the number of elements depending on the spread rate.

# Changing the display mode (Display Mode)

This section describes the code domain power display mode.

This function permits the setting of the Walsh mode to display the multiplexed signal code domain power in Walsh series or the Orthogonal Variable Spreading Factor (OVSF) mode in orthogonal hierarchical series.

When Walsh is selected and Max Walsh Length is 128, a signal with spread rate 16 and code number 3 contains elements eight times those of a signal with spread rate 128, and, therefore, is represented with code numbers 3, 19, 35, 51, 67, 83, 99 and 115.

This function is available only when the Measuring Object is set to Forward (RC3-5) or Reverse (RC3-4)

Changing Display Mode

- 1. On the Modulation Analysis screen, press (More) to display the second function label page.
- 2. Press F3 (Display Mode) to switch alternately between Walsh and OVSF.

### Changing maximum Walsh Length (Max Walsh Length)

This section describes how to change the maximum Walsh Length (Max Walsh Length).

The Analysis Start and Analysis Length resolutions of Analysis Mode vary depending on the Max Walsh Length. This function is available only when the Measuring Object is set to Forward (RC3-5).

Changing Max Walsh Length

- 1. On the Modulation Analysis screen, press (More) to display the third function label page.
- 2. Press F5 (Max Walsh Length) to switch alternately between 128 and 64.

## Displaying the marker

When the waveform display format is other than Non, a marker can be displayed on the waveform.

**Displaying marker** 

- 1. Press Marker to display the Marker function label.
- **2.** Press [F1] (Marker) to switch alternately between Normal and Off.

When Normal is set, a diamond marker (\*) appears on the waveform.

For a code domain waveform, the color of the code pointed to by the marker changes.

Measuring timing errors

Measure the delay of the short-code (including Pilot PN Sequence Offset) starting position from the External Trigger (including Trigger Delay). The relationships among the parameters are as shown below.



The analysis reference timing is the triggering timing with External Trigger plus the Trigger Delay. The short-code starting position is searched for by internal analysis and the difference between this position and the reference timing is represented in 64\*N (chips) and the fraction is represented in time resolution (0.01 µsec).

When the short-code starting position contains the Pilot PN Sequence Offset, the relationships among the parameters are as shown below.



If Pilot PN Sequence Offset is 64 chips, the short-code starting position is shifted 64 chips; that is, it has a pattern starting at 32704, passing 0, and ending at 32703. In this case, for Pilot PN Sequence Offset of the transmitter tester, set Analysis Start to 64 chips. Thus, Timing Error is calculated assuming that Pilot PN Sequence Offset is 64 chips.

If PN Offset is unknown, set the PN Synchronization item for the Setup Common Parameter to PN Search. If PN Offset is known, set the above item to Ext Trigger to reduce the analysis time.

### Defining modulation accuracy

This section describes definitions of modulation accuracy and code domain errors.

Modulation accuracy

The modulation accuracy indicates the errors that the digitally modulated measured signal have compared to the ideal signal. The measurement items are EVM, amplitude error, phase error, origin offset, etc., which are defined as described below.



The modulation accuracy is described simply using the diagram above.

When the ideal signal is R(1.0, 0.0) and the measured signal is Z(1.1, 0.05), EVM, amplitude error, phase error and origin offset are represented by the following expressions:

EVM:

$$V = \frac{|Z - R|}{|R|} = \frac{\sqrt{(1.1 - 1.0)^2 + (0.05 - 0.0)^2}}{\sqrt{(1.0)^2 + (0.0)^2}} = 0.112 = 11.2\%$$

Amplitude error:

$$M = \frac{|Z| - |R|}{|R|} = \frac{\sqrt{(1.1)^2 + (0.05)^2 - \sqrt{(1.0)^2 + (0.0)^2}}}{\sqrt{(1.0)^2 + (0.0)^2}} = 0.101 = 10.1\%$$

Phase error:

 $\Delta \theta = \theta - \theta_i = \tan^{-1} (0.05 / 1.1) - \tan^{-1} (0.0 / 1.0) = 2.60 \deg$ 

These values are those for one point. The root mean square (RMS) value is obtained by calculating the square root of the average of the sum of squares for all point values.

The origin offset shows the carrier leakage component, with the amplitude represented in dB.

#### Waveform quality factor ( $\rho$ ) and code domain power

The waveform quality factor represents the correlation between waveforms for the ideal and measured signals. The waveform quality factors obtained for all orthogonal codes and represented with codes on the abscissa and power ratio on the ordinate are referred to as the code domain power. For this unit, the code domain power is obtained based on the definitions in the IS-95 Standard (ARIBT53 Standard, cdmaOne). The definition expression is given below.

$$\rho_{1} = \frac{\sum_{j} \left| \sum_{k} Z_{jk} R \right|^{2}}{\sum_{k} \left| R_{ijk} \right|^{2} \sum_{j} \sum_{k} \left| Z_{jk} \right|^{2}}$$

 $Z_{jk}$  is data for the k'th chip for symbol j in the measured signal and  $R_{ijk}$  is data for the k'th chip for symbol j for code number i in the ideal signal.

A specific example of spread with four chips is given for description. In this case, the cdmaOne Channel Codes are as follows:

 Code number 0: -1, -1, -1, -1

 Code number 1: -1, 1, -1, 1

 Code number 2: -1, -1, 1, -1

 Code number 3: -1, 1, -1, -1

When the measured signal contains only signals diffused with code number 1, the ideal signal is "-1, 1, -1, 1." If this signal is changed to "-1.05, 0.9, -0.99, 1.1" because of noise and other factors, the numerator and denominator of the signal reverse-diffused with code number 1 would be:

Numerator:

$$\{(-1.05)\times(-1)+(0.9\times1)+(-0.99\times1)+(1.1\times1)\}^2 = 16.3216$$

**Denominator:** 

$$\left\{ (-1)^2 + (1)^2 + (-1)^2 + (1)^2 \right\} \times \left\{ (-1.05)^2 + (0.9)^2 + (0.9)^2 + (1.1)^2 \right\} = 16.4104$$

Thus, the waveform quality factor is determined as 0.9946.

### Optimizing measurement range (Adjust Range)

Performing measurement range optimization (Adjust Range) is recommended before starting measurement. While inputting signals of mostly the same level, it is not necessary to execute Adjust Range frequently.

Adjust Range automatically modifies the internal level diagram so that the internal AD converter for analysis can be used in the optimum conditions. That is, it adjusts the internal circuit so that the AD converter has the maximum dynamic range (S/N). At the same time, it also adjusts the power meter range.

Because the internal level diagram is modified depending on the measured signal level, the measured signal should be input during measurement range optimization. If the signal has a large fluctuation, Adjust Range may not correctly function.

Adjust Range is not available for IQ input.

## Power calibration function (Power Calibration)

MS860x is equipped with the Power Calibration function using the internal power meter, which allows accurate level measurement. Executing the Power Calibration function is recommended for level measurement. When the temperature condition is stable, it is not necessary to execute the Power Calibration function frequently. If the frequency is significantly changed, it is better to restart Power Calibration.

The Power Calibration function compares the signal measurement value in tester mode with the value measured with the built-in power meter and calibrates the measurement value in tester mode using the power meter measurement value. Therefore, this function can only be executed with the measured signal being input. Before starting Power Calibration, the power meter must be zero-calibrated.

The power meter measurement range is 30 MHz to 3 GHz. For frequencies outside of this range, Power Calibration does not function correctly. This function is not available for IQ input.

For MS268x main body, the power meter is not provided, so this function cannot be used. At level measurement, perform the level calibration using Multi Carr. Power Calibration.

## Power calibration function (Multi Carr. Power Calibration)

This function corrects an internal signal trace based on the internal calibration signal, enabling level measurement without using an internal power meter.

This function should be used when the input signal is Multi Carrie. Due to the difference between the measurement band of the tester mode and that of the power meter, calibration may not be performed properly when power calibration is performed using a power meter while the input signal is Multi Carrier. When the input signal is Single Carrier, perform power calibration using a power meter on account of high accurate calibration.

# Measuring Transmission Power

On the Setup Common Parameter screen, pressing [F3] (RF Power) causes the transmission power measurement screen to be displayed. Here, the measurement results displayed on the RF Power screen (transmission power measurement), parameter settings and operation precautions are discussed.

### Description of measurement results

This section describes the measurement results displayed on the RF Power screen (transmission power measurement).

When starting measurement, press [F5] (Adjust Range) to optimize the measurement unit level setting. To raise the level measurement accuracy, press F4 (Calibration) on the second page and then press F1 (Power Calibration) or F3 (Multi Carr. Power Calibration).

See "Optimizing measurement range (Adjust Range)" for range optimization, and, see "Power calibration function (Power Calibration)" or "Power calibration function (Multi Carr. Power Calibration)" for power calibration.

Measurement results:

The screen below appears when measuring burst wave.



Waveform display:

The screen shows the level measurement waveform with the abscissa representing the time and the ordinate representing the level. Press F4 (Smoothing Filter) to alternately switch the waveform smoothing filter On or Off.

Press [F3] (Level Rel./Abs.) on the second function label page to switch the waveform display alternately between relative and absolute mode.

#### **Tx Power**

shows the measured signal average power for one slot, band-limited at 1.23MHz in dBm and W.

#### Peak Tx power

Shows the maximum value of the above Tx power in dBm and W.

#### **Peak/Average Ratio**

Shows the ratio of Peak Tx Power to Tx Power in dB.

#### **Carrier Off Power**

Shows the measured signal average power in the Off period in dBm and W.

#### **On/Off Ratio**

Shows the ratio of Tx Power to Carrier Off Power in dB.

#### **Power vs Time**

Shows the power at  $-6 \mu$  sec and  $1256 \mu$  sec in dB or dBm.

Of the measurement results above, only Tx Power, Peak Tx Power and Peak/average Ratio are displayed when Measuring Object is Continuous.

## Changing waveform display range (Window)

This section explains how to change the waveform window display range.

#### Setting display range

On the RF Power screen, press [F1] (Window) to display the function labels listed below and then select the desired range.

- F1 (Slot): Shows the waveform for one slot.
- F4 (Leading): Shows the waveform for the burst rising edge
- F5 (Trailing): Shows the waveform for the burst trailing edge.
- F6 (return): Returns to the preceding function label display.

### Section 3 Measurement

### Displaying the marker

When the waveform display is set On, a marker can be displayed on the waveform.

Procedure 1

- **1. Press** Marker to display the Marker function label.
- 2. Press [F1] (Marker) to alternately switch between Normal and Off.

Procedure 2

- 1. Press (More) to display the second function label page.
- 2. Press [F2] (Marker) to alternately switch between Normal and Off.

When Normal is set, a diamond marker (\*) appears on the waveform.

## Setting the trigger mode

Set trigger mode.

On the RF Power screen, press [F5] (Trigger Mode) to display the function labels listed below.

- [F1] (Code Sync): When On is selected, measures the power for one slot at the short-code synchronized timing. When Off is selected and continuous wave is to be measured, measures the power for one slo fetched at an arbitary timing. When Off is selected and burst wave is to be measured, measures thepower for one slot fetched at the timing synchronized with the waveform amplitude.
- [F2] (Video Trigger Edge): This function label is available when Measuring Object is set to Burst.
- F3 (Video Trigger Level): This function label is available when Measuring Object is set to Burst.
- F4 (Video Trigger Delay): This function label is available when Measuring Object is set to Burst.

# Setting analysis starting position

When Code Sync is set to On in the trigger mode, analysis can be initiated at the position offset the set analysis position.

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Analysis Start) to open the setup window.
- 3. In the Entry section, enter the analysis starting position using △ and ○, the rotary knob or ten-key pad.

Averaging (Storage Mode)

This section describes the storage mode through measurement result averaging.

Setting averaging process

- 1. On the RF Power screen, press F2 (Storage Mode) to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setup window.
- 3. In the Entry section, enter the average count using [ ^] and [ v ], the rotary knob or ten-key pad.
- 4. Press [Set].
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. The selection window opens.
- 7. In the Entry section, select Average using  $[\land]$  and  $[\lor]$ , the rotary knob.
- 8. Press Set.

When setup is completed, measurement restarts.

Also when the averaging count is changed with Storage Mode set to Average, the measurement restarts upon completion of setup. If the values are not changed or changing is canceled, the measurement is not restarted.

Refresh Interval: Set the interval to update the average display.

- Every: Updates the display at every measurement.
- Once: Updates the display after measurement of the specified averaging count is completed.

Available storage modes are listed below.

- Normal: Updates and displays the measurement results at every measurement.
- Average: Averages and displays the measurement results at every measurement.

- Overwrite: On the Continuous measurement, overwites and displays the waveform with a broken line.
- Cumulative: On the Continuous measurement, overwrites and displays the waveform with points.
# Measuring Occupied Frequency Bandwidth

On the Setup Common Parameter screen, pressing F4 (Occupied Bandwidth) causes the occupied bandwidth measurement screen to be displayed.

This section describes the measurement results displayed on the Occupied Bandwidth screen (occupied bandwidth measurement), parameter settings and operation precautions.

## Description of measurement results

This section describes the measurement results displayed on the Occupied Bandwidth screen (occupied frequency bandwidth measurement). When starting measurement, press F5 (Adjust Range) to optimize the measurement unit level setting. For range optimization, see "Optimizing Measurement Range (Adjust Range)."

Measurement results:

The screen shown below appears when Spectrum is selected for Measure Method.

| MS860<br><< Oc   | 8A<br>cupied | Bandw    | idth (c | dma) >>  | <b>&gt;</b> | Measure  | : Single   |                 | Occupied<br>Bandwidth |
|------------------|--------------|----------|---------|----------|-------------|----------|------------|-----------------|-----------------------|
|                  |              | 20.22    |         |          |             | Storage  | : Normal   |                 | ж                     |
| [dB]             |              |          |         | ; 1      |             | Method   | : Spectru  | m               | Мозетто               |
| -10              |              |          |         |          |             |          |            |                 | Method                |
| -10              |              |          | h i . h |          |             | OCC B    | W (99%) :  | 1.25 MHz        | *                     |
| -20              |              |          |         | ₩        |             |          |            |                 | <u></u>               |
| -30              |              |          | 1, 1,1  |          |             | Upper    | Limit :    | 0.62 MHz        | Storage<br>Mode       |
|                  |              | <u> </u> |         | 3        |             |          |            |                 |                       |
| -40              |              |          |         |          |             | Lower    | Limit :    | -0.62 MHz       |                       |
| -50              |              |          |         |          |             |          |            |                 |                       |
| -60              |              |          |         |          |             | Cente    | r (Upper+L | ower)/2 :       | ж                     |
|                  |              |          |         |          |             |          |            | 887.650 MHz     |                       |
| -70              |              |          |         | <u> </u> |             |          |            |                 | Calibration           |
| -80              | 4.6          |          |         | 10       |             | S        | pectrum An | alyzer          |                       |
|                  | WIAWAY Y     |          |         | 1        | MAY HAN     |          | Ket : :    | 2.UUdBm<br>19JB |                       |
| -90              |              |          |         |          | 11          |          | RBW :      | 10kHz#          | Adjust                |
| 100              |              |          |         |          |             |          | VBW :      | 10kHz           | Range                 |
| <sup>100</sup> S | pan :        | 4.001    | Hz Data | Points   | s:50        | 1        | SWT :      | 120ms           | →                     |
|                  |              |          |         |          |             |          | DET : Pos  | itive Peak      |                       |
|                  |              |          |         | Input.   | : Lo        | W        | Pre Ampl   | : 0ff           | Back                  |
| Ch               | :            | 10       | 092CH   | Level    | :           | -8.00dBm | Power Cal  | : 0ff           | Screen                |
| Freq             | : 8          | 87.650   | )00MHz  | Offset   | ::          | 0.00dB   | Correction | n : Off         | 12                    |

#### Waveform display:

The screen shows the spectrum waveform with the abscissa representing the frequency and the ordinate representing the level. When Method is set to Spectrum, measurement is carried out in spectrum analyzer mode and the waveform is displayed. The spectrum analyzer mode setting status appears in the lower-right area. When Method is set to FFT, the waveform obtained by FFT operation is displayed. When the input signal is IQ, Method cannot be set to Spectrum, permitting measurement only in FFT mode.

#### OCC BW (99%)

Shows the occupied frequency bandwidth of the signal measured in the 99% method in MHz.

The 99% method is the method to obtain the frequency bandwidth where 99% of the measured signal total power (by measurement) exists. It is calculated using Upper Limit and Lower Limit (noted below) with the following expression:

OCC BW = (Upper Limit) – (Lower Limit)

Upper Limit

Obtains the frequency that provides 0.5% the total power from the measured waveform upper limit and displays the difference between it and the center frequency (set frequency) in MHz.

#### Lower Limit

Obtains the frequency that provides 0.5% the total power from the measured waveform lower limit and displays the difference between it and the center frequency (set frequency) in MHz.

Center (Upper + Lower)/2

As the expression shows, this obtains the center frequency from the upper- and lower-limit frequencies and displays it in MHz.

#### Selecting result display

On the Occupied Bandwidth screen, press F1 (Measure Method) to display the function labels listed below and then select the result display.

- [F1] (Spectrum): Measures in spectrum analyzer mode.
- F2 (FFT): Performs operation in FFT method.
- F6 (return): Returns to the preceding function label display.

Measurement time in the FFT method is shorter than that in the Spectrum method.

# Setting SPA parameters by the Spectrum method

When Measure Method is set to Spectrum, the SPA sweep parameters listed below can be changed.

- ATT, Ref Level Mode Auto/Manual
  - Auto: Sets the attenuator and reference levels to their optimum values inside the measurement unit, depending on the RF input level (Reference Level) for Setup Common Parameter.
  - Manual: Permits manual setting of the attenuator and reference levels.
- Ref Level

Set the reference level for SPA sweep.

Attenuator

Set the attenuator for SPA sweep.

- Attenuator Auto/Manual
  - Auto: Automatically sets the attenuator for SPA sweep depending on the reference level.

Manual Permits manual setting of the attenuator for SPA sweep.

- Span Set the sweep span for SPA sweep.
- RBW
  - Set RBW for SPA sweep.
- VBW
  - Set VBW for SPA sweep.
- VBW Auto/Manual

Set VBW for SPA sweep automatically (Auto) or manually (Manual) depending on RBW.

- VBW/RBW Ratio
  - Set VBW for VBW Auto using this parameter.
- Sweep Time
  - Set the sweep time for SPA sweep.
- Sweep Time Auto/Manual

Set the sweep time for SPA sweep automatically (Auto) or manually (Manual) depending on the related parameter.

• Detection

Set the detection mode for SPA sweep.

- Data Points
  - Set the data count for SPA sweep (501/1001).
- RBW Mode (available only when Opt04 is installed) Set RBW to digital or analog filter. When digital filter is selected, RMS detection is added to detection mode.

- ATT, Ref Level mode, Setting 1
- 1. Press (Amplitude) or (Att).
- 2. Press (More) to display the third function label page.
- 3. Press F1 (SPA ATT, Ref Level) to switch between Auto and Manual.

When setup is completed, measurement restarts.

ATT, Ref Level mode, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press F1 (SPA ATT, Ref Level) to switch between Auto and Manual.

When setup is completed, measurement restarts.

Ref Level, Setting 1

- 1. Press (Amplitude) or (Att).
- 2. Press (More) to display the third function label page.
- 3. Press F2 (Ref Level (SPA)).
- 4. The selection window opens.
- 6. Press Set.

When setup is completed, measurement restarts.

Ref Level, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press F2 (Ref Level (SPA)).
- 4. The selection window opens.
- 5. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 6. Press [Set].

Attenuator, Setting 1

- 1. Press (Amplitude) or (Att).
- 2. Press (\_\_\_\_) (More) to display the third function label page.
- 3. Press F3 (Attenuator (SPA)).
- 4. The selection window opens.
- 5. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 6. Press Set.

When setup is completed, measurement restarts.

Attenuator, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press [F3] (Attenuator (SPA)).
- 4. The selection window opens.
- 5. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 6. Press Set.

When setup is completed, measurement restarts.

Attenuator mode, Setting 1

- 1. Press Amplitude or Att.
- 2. Press (More) to display the third function label page.
- 3. Press [F4] (Attenuator) to switch between Auto and Manual.

When setup is completed, measurement restarts.

Attenuator mode, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press F4 (Attenuator) to alternately switch between Auto and Manual.

Span, Setting 1

- 1. Press Span
- 2. The selection window opens.
- 3. In the Entry section, enter a numeric value using [ ^ ] and [ v ], the rotary knob or ten-key pad.
- 4. Press Set.

When setup is completed, measurement restarts.

Span, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the third function label page.
- **4. Press** [F3] (Span).
- 5. The selection window opens.
- 6. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 7. Press Set.

When setup is completed, measurement restarts.

RBW, Setting 1

- 1. Press (BW).
- 2. The selection window opens.
- 3. In the Entry section, enter a numeric value using  $\land$  and  $\lor$ , the rotary knob or ten-key pad.
- 4. Press Set.

When setup is completed, measurement restarts.

#### RBW, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the second function label page.
- **4. Press** [F1] (**RBW**).
- 5. The selection window opens.
- 6. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 7. Press [Set].

VBW, Setting 1

- 1. Press BW.
- 2. The selection window opens.
- 3. **Press** [F3] (VBW).
- 4. The selection window opens.
- 5. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 6. Press Set.

When setup is completed, measurement restarts.

#### VBW, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the second function label page.
- 4. **Press** [F3] (VBW).
- 5. The selection window opens.
- 6. In the Entry section, enter a numeric value using  $\land$  and  $\lor$ , the rotary knob or ten-key pad.
- 7. Press Set.

When setup is completed, measurement restarts.

VBW automatic, Setting 1

- 1. **Press** [BW].
- 2. The selection window opens.
- 3. Press F4 (VBW) to alternately switch between Auto and Manual.
- 4. When Manual is selected, the mark "#" is added to the VBW set value in the result display area.

VBW automatic, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the second function label page.
- 4. Press F4 (VBW) to alternately switch between Auto and Manual.
- 5. When Manual is selected, the mark "#" is added to the VBW set value in the result display area.

VBW/RBW Ratio, Setting 1

- 1. Press BW.
- 2. The selection window opens.
- 3. Press F5 (VBW/RBW Ratio).
- 4. The selection window opens.
- 5. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or ten-key pad.
- 6. Press Set.

#### VBW/RBW Ratio, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the second function label page.
- 4. Press F5 (VBW/RBW Ratio).
- 5. The selection window opens.
- 6. In the Entry section, enter a numeric value using *∧* and *∨*, the rotary knob or ten-key pad.
- 7. Press Set.

Sweep Time, Setting 1

- 1. Press [Sweep Time].
- 2. The selection window opens.
- 3. In the Entry section, enter a numeric value using  $\land$  and  $\lor$ , the rotary knob or ten-key pad.
- 4. Press Set.

When setup is completed, measurement restarts.

Sweep Time, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F2 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the third function label page.
- 4. **Press** [F1] (Sweep Time).
- 5. The selection window opens.
- 6. In the Entry section, enter a numeric value using [ ^ ] and [ v ], the rotary knob or ten-key pad.
- 7. Press Set

Sweep Time automatic, Setting 1

- 1. Press Sweep Time.
- 2. Press F2 (Sweep Time) to switch between Auto and Manual alternately.

Sweep Time automatic, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the third function label page.
- 4. Press F2 (Sweep Time) to alternately switch between Auto and Manual.

Detection, Setting 1

- 1. **Press** [A,B].
- 2. The selection window opens.
- 3. Press [F5] (Detection).
- 4. The selection window opens.
- 5. In the Entry section, enter the Detection Mode to be set using \_\_\_\_\_ and \_\_\_\_, the rotary knob.
- 6. Press Set.

When setup is completed, measurement restarts.

Detection, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (\_\_\_\_) (More) to display the third function label page.
- 4. Press F5 (Detection).
- 5. The selection window opens.
- 7. Press [Set].

When setup is completed, measurement restarts.

Data Points, Setting 1

- 1. **Press** [A,B].
- 2. The selection window opens.
- 3. Press F4 (Data Points) and select the number of sweep points.

Data Points, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the third function label page.
- 4. Press [F4] (Data Points) and select the number of sweep points.

When setup is completed, measurement restarts.

RBW mode, Setting 1

- 1. Press BW.
- 2. The selection window opens.
- 3. Press F2 (RBW Mode) to switch RBW mode between Digital and Normal alternately.

When setup is completed, measurement restarts.

RBW mode, Setting 2

- 1. Press (More) to display the second function label page.
- 2. Press F1 (Setup Spectrum Analyzer) to display parameter setting keys. Set the parameters.
- 3. Press (More) to display the second function label page.
- 4. Press F2 (RBW Mode) to switch RBW mode between Digital and Normal alternately.

# Averaging (Storage Mode)

This section describes the storage mode through the measurement result averaging process.

Unlike other measurement screens, averaging is performed only on the waveform for the occupied frequency bandwidth measurement. The measurement results are calculated based on the averaged waveform. Note that the numeric results are not averaged.

Setting averaging processing

- 1. On the Occupied Bandwidth screen, press F2 (Storage Mode) to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setup window.
- 3. In the Entry section, enter the averaging count using [ ^ ] and [ V ], the rotary knob or ten-key pad.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. The selection window opens.
- 7. In the Entry section, select Average using  $[\land]$  and  $[\lor]$  or the rotary knob.
- 8. Press Set.

When setup is completed, measurement restarts.

Also when the averaging count is changed when the Storage Mode is set to Average, measurement restarts upon completion of setup. If the values are not changed or changing is canceled, measurement is not restarted.

Refresh Interval: Set the interval for updating the average display.

- Every: Updates the display at every measurement.
- Once: Updates the display after measurement of the specified averaging count is completed.

Available storage modes are listed below.

- Normal: Updates and displays the measurement results at every measurement.
- Average: Averages and displays the measurement results at every measurement.

# Measuring Nearby Spurious

On the Setup Common Parameter screen, pressing [F5] (Spurious close to the Carrier) causes the nearby spurious measurement screen to be displayed.

This section describes the measurement results displayed on the Spurious close to the Carrier screen (nearby spurious measurement), parameter settings and operation precautions.

This measurement is not available for IQ input.

#### Description of measurement results

This section describes the measurement results displayed on the Spurious close to the Carrier screen (nearby spurious measurement).

When starting measurement, press [F5] (Adjust Range) to optimize the measurement unit level setting. To raise the level measurement accuracy, press F4 (Calibration) on the second page and then press F1 (Power Calibration) or F3 (Multi Carr. Power Calibration).

See "Optimizing Measurement Range (Adjust Range)" for range optimization, and see "Power calibration function (Power Calibration)" or "Power calibration function (Multi Carr. Power Calibration)" for power calibration.

Measurement results:

The Screen shown below appears when Normal is selected for Measure Method.



Waveform display

The waveform display area displays the waveform obtained by sweeping with the spectrum analyzer. In addition, a template appears showing the Pass/Fail judgement results.

**Ref Power** 

Shows the signal power used as the reference for the relative values in dBm.

**Offset Freq. vs Power** 

Shows the leakage power at each offset frequency in dBm, W or as the ratio to the carrier power in dB.

Peak (Power), Peak (Margin)

Displays Power/Margin of measured point of minimum margin at each frequency band of the template. When the measured waveform exceeds the template, each Template is indicated by reversing the value. Select Power/Margin in Display Data Type.

Marker

Shows the leakage power at each offset frequency in the unit selected in Unit. This is the value of the waveform swept with the spectrum analyzer set in Power. Displays RBW value of spectrum analyzer at the right of the value.

# Selecting result display (Measure Method)

This section describes how to set a measure method.

- 1. On the Spurious close to the Carrier screen, press F1 (Measure Method) to display the function labels listed below and below and then select the result display.
- F1 (Normal): Displays the waveform obtained by sweeping with the spectrum analyzer.
- **F2** (3GPP2 FWD Band Class 0, 2, 3, 5, 9): In case Forward Band Class 0, 2, 3, 5, and 9 is measured, it measures near the Carrier with high precision.
- F3 (3GPP2 FWD Band Class 1, 4, 6, 8): In case Forward Band Class 1, 4, 6, 8 is measured, it measures near the Carrier with high precision.
- F6 (return): Returns to the preceding function label display.

#### Section 3 Measurement

#### Setting spurious level unit (Unit) **Press** [F3] (Unit) and select the unit to be used for display. 1. It displays by dB. dB: dBm: It displays by dBm. mW: It displays by mW. μW: It displays by $\mu$ W. It displays by nW. nW: dB/dBm(Template): It displays by dB or dBm, which is set up for each Line level.

# Selecting Ref Power (Ref Power)

Select the measurement method to give the reference level for relative values. The absolute value reference level is Tx Power (same as Tx Power of RF Power) regardless of the measurement method.

- 1. Press (More) to display the second function label page.
- 2. Press [F3] (Ref Power) and select SPA or Tx Power.
  - SPA: Average power of the waveform swept with zero-span at RBW = 3 MHz, VBW = 3 kHz and Detect = Sample.
  - Tx Power: Average power of the measured signal for one slot, band-limited at 1.23 MHz. This value is the same as Tx Power for RF Power.

# Displaying integral waveform (Integral Waveform)

- 1. Press (\_\_\_\_) (More) to display the third function label page.
- 2. Press F4 (Integral Waveform) and select On to display a waveform converted at 1.23 MHz.

This function is available only when the Measure Method is Normal.

# Selecting measurement result display type (Display Data Type)

Select the measurement result display type.

Setting averaging processing

- 1. Press (More) to display the second function label page.
- 2. Press F4 (Display Data Type).
- 3. The selection window opens.
- In the Entry section, enter the Display Data Type to be using A
   and V
   , the rotary knob.
- 5. Press Set.

# Setting SPA parameters (Setup Spectrum Analyzer)

The SPA parameters listed below can be changed.

- ATT, Ref Level Mode Auto/Manual
  - Auto: Sets the attenuator and reference levels to their optimum values inside the measurement unit, depending on the RF input level (Reference Level) for Setup Common Parameter.
  - Manual:Permits manual setting of the attenuator and reference levels.
- Ref Level

Set the reference level for SPA sweep.

Attenuator

Set the attenuator for SPA sweep.

- Attenuator Auto/Manual
  - Auto: Automatically sets the attenuator depending on the reference level for SPA sweep.

Manual:Permits manual setting of the attenuator for SPA sweep.

• Span

Set the sweep span for SPA sweep. When Measure Method is 3GPP2 FWD Band Class 0, 2, 3, 5, 9 and 3GPP2 FWD Band Class 1, 4, 6, 8, sweep span is fixed at 8MHz. SPA sweep span setting is available only when the Measure Method is Normal.

• RBW

Set RBW for SPA sweep.

- VBW Sot VBW for SDA or
- Set VBW for SPA sweep.VBW Auto/Manual
  - Set VBW for SPA sweep automatically (Auto) or manually (Manual) depending on RBW.

VBW/RBW Ratio

Set VBW for VBW Auto using this parameter.

• Sweep Time

•

Set the sweep time for SPA sweep. When Measure Method is 3GPP2 FWD Band Class 0, 2, 3, 5, 9 and 3GPP2 FWD Band Class 1, 4, 6, 8, total sweep time is displayed at the right of the sweep time.

- Sweep Time Auto/Manual Set the sweep time for SPA sweep automatically (Auto) or manually (Manual) depending on the related parameter.
- Detection

Set the detection mode for SPA sweep.

• Data Points

Set the data count for SPA sweep (501/1001). When Measure Method is 3GPP2 FWD Band Class 0, 2, 3, 5, 9 and 3GPP2 FWD Band Class 1, 4, 6, 8, a setting value and a display value change with differences in the sweep method.

• RBW Mode (available only when Opt 04 is installed) Set RBW filter to digital or analog filter. When digital filter is selected, RMS detection is added to detection mode.

To setup, see "Setting SPA Parameters in Spectrum Method" in "Measuring Occupied Frequency Bandwidth."

RBW, VBW, VBW Auto/Manual and VBW/RBW Ratio cannot be changed when the Measure Method is 3GPP2 FWD Band Class 1, 4, 6, 8 and Template is Class 6.

# Setting a template (Setup Spurious Template)

When measuring the burst signal, a template can be used for relative level display. This section describes how to set a template.

**Displaying Setup Spurious Template** 

- 1. While the Spurious close to the Carrier screen is being displayed, press F2 (Setup Spurious Template) on the second page of the Spurious close to the Carrier function label.
- 2. The Setup Spurious Template screen shown below appears.

The figure below is the screen when Measurement Method is Normal.



Setting templates

- 2. In the Entry section, set the standard line level using the ten-key pad or press Set.

When <u>Set</u> is pressed:

- 3. The standard line modification line appears.
- 4. In the Entry section, set the standard line modification line to the desired level using <a>interval</a> and <a>interval</a> or the rotary knob.
- 5. Press Set.

#### Section 3 Measurement

When setup is completed, the standard line changes to the set level.

Setting level unit

• F1 (Line Level1), F2 (Line Level2), F3 (Line Level3), or F4 (Line Level4) to alternately switch between Relative (dB) and Absolute (dBm).

Standard template automatic setting

• Press F5 (Standard Template) to display various standards. Selecting a standard displays a template selection window. The selected template is automatically set.

Averaging (Storage Mode)

This section describes the storage mode through the measurement result averaging process.

Setting averaging processing

- 1. On the Spurious close to the Carrier screen, press F2 (Storage Mode) to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setup window.
- 3. In the Entry section, enter the average count using *∧* and *∨*, the rotary knob or ten-key pad.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. The selection window opens.
- 7. In the Entry section, select Average using  $[\land]$  and  $[\lor]$  or the rotary knob.
- 8. Press Set.

When setup is completed, measurement restarts.

Also when the averaging count is changed when the Storage Mode is set to Average, measurement restarts on completion of setup. If the values are not changed or changing is canceled, measurement is not restarted.

Refresh Interval: Set the interval to update the average display.

- Every: Updates the display at every measurement.
- Once: Updates the display after measurement of the specified averaging count is completed.

Available storage modes are listed below.

- Normal: Updates and displays the measurement results at every measurement.
- Average: Averages and displays the measurement results at every measurement.

# Measuring Spurious

This section describes the measurement results displayed on the Spurious Emission screen and the parameter settings.

# Description of measurement results

| MS8608A                                               | Spurious<br>Emission |
|-------------------------------------------------------|----------------------|
| <pre>K&lt; Spurious Emission (cdma) &gt;&gt;</pre>    |                      |
| Spurious : Spot                                       | ж                    |
| Detect : Average                                      |                      |
|                                                       | Spurious             |
|                                                       | Mode                 |
| Ref Power : 1.57 dBm                                  |                      |
|                                                       |                      |
| Frequency Level Judgement(Kelative)                   |                      |
| f 1 = 1 775.300 000 MHz: -44.17 dBm Pass              |                      |
| f 2 = 2 662.950 000 MHz: -57.50 dBm Pass              |                      |
| f 3 = 3 550.600 000 MHz: -75.35 dBn Pass              | \$                   |
| f 4 = 4 438.250 000 MHz: -80.48 dBn Pass              | View                 |
| f 5 = 5325.900000 MHz: -81.23 dBm Pass                | Select               |
| f 6 = 6 213.550 000 MHz: -81.82 dBm Pass              | Judgement            |
| f 7 = 7 101.200 000 MHz: -82.87 dBm Pass              | Ψ                    |
| $f 8 = MH_2: dBm$                                     | -1-                  |
| f 9 = MHz: dBm                                        | Calibration          |
| f10 = MHz: dBm                                        |                      |
| f11 = MHz: dBm                                        |                      |
| f12 = MHz: dBn                                        |                      |
| f13 = MHz: dBn                                        |                      |
| f14 = MHz: dBn                                        | Adjust               |
| f15 = MHz: dBn                                        | Range                |
|                                                       |                      |
| Total Judgement : Pass                                | →                    |
|                                                       | Back                 |
| Input : Low Pre Ampl : Off                            | Screen               |
| Ch : 1092CH Level : -8.00dBm Power Cal : Off          |                      |
| Freq : 887.650000MHz Offset : 0.00dB Correction : Off | 123                  |

#### **Ref Power**

Shows the measurement signal average power for one slot in dBm.

#### Frequency

Shows the spurious frequency.

#### Level

Shows the spurious level.

#### Judgment, Limit

Displays the result of judgement based on the upper limit level set in the Setup Spot o Table or Setup Sweep/Search Table.

This item appears only when Judgment is selected using F3 (View Select).

#### **RBW, VBW, SWT**

Shows the spectrum analyzer RBW, VBW and Sweep Time measurement conditions.

This item appears only when BW or SWT has been selected using  $\boxed{F3}$  (View Select).

#### **Ref.Level**,ATT

Shows the spectrum analyzer Ref.Level, ATT measurement conditions.

This item appears only when RefLvl,ATT has been selected using  $\boxed{F3}$  (View Select).

#### Spurious, Detect, Preselector

These items appear in the upper-right area of the screen.

(1) Spurious

Shows the measurement method selected in Spurious Mode.

(2) Detect

Shows the spectrum analyzer detection mode.

(3) Preselector

Shows the preselector operation mode. This item appears only when the MS8608A-03 option is installed. See "Setting preselector mode (Preselector)."

#### Setting spurious measurement method (Spurious Mode)

Press F1 (Spurious Mode) to display the function labels shown below and then select the measurement method.

- [F1] (Spot): Measures the frequency set in Setup Spot Table using time domain and obtains the average.
- F2 (Search): Sweeps the frequency range set in Setup Search/Sweep Table and measures the spot at the peak-searched frequency.
- F3 (Sweep): Sweeps the frequency range set in Setup Search/Sweep Table and obtains the frequency and level of the peak point.

# Setting spurious level unit (Unit)

Sets a measurement value display unit and judges the standard value in the set unit.

- 1. Press (More) to display the second Spurious function label page.
- 2. Press F4 (Unit) to alternately switch between dBm and dB. Select the unit.

The reference level for dB display is the value obtained in the measurement method set in Ref Power.

# Selecting Ref Power (Ref Power)

Select the measurement method to give the reference level for relative values. The absolute value reference level is Tx Power (same as Tx Power for RF Power) regardless of the measurement method.

- 1. Press (More) to display the third function label page.
- 2. Press [F4] (Ref Power) and select SPA or Tx Power.
  - SPA: Average power of a waveform swept with zero-span at RBW = 3 MHz, VBW = 3 kHz and Detect = Sample.
  - Tx Power: Average power of the measured signal for one slot, band-limited at 1.23 MHz. This value is the same as Tx Power for RF Power.

## Setting preselector mode (Preselector)

This function is available only when the main unit option MS8608A-03/MS2683A03 is installed. (This option can be installed on MS8608A/MS2683A only).

Use this function to select Band 0 (Normal) or Band 1 (Spurious) for measurement of 1.6 to 3 GHz.

Measurement in Spurious mode sweeps 1.6 to 3 GHz with Band 1, and is not effected by harmonic waves from the spectrum analyzer itself.

#### Setting mode

- 1. Press (More) to display the second Spurious function label page.
- 2. Press F5 (Setup Spectrum Analyzer).
- 3. Press F4 (Preselector) to alternately switch between Normal and Spurious. Select Spurious to activate the preselector.

This function is set commonly regardless of the Spurious Mode settings.

## Setting detection mode (Detection)

Setting mode

- 1. Press (More) to display the second Spurious function label page.
- 2. Press F5 (Setup Spectrum Analyzer).
- 3. **Press** [F5] (Detection).
- 4. The selection window opens.
- 6. Press Set.

This function is set commonly for each of the set Spurious Mode.

Setting measurement frequency for spot method (Setup Spot Table)

This section describes how to set items such as measurement frequency for measurement in the spot method.

Use the Setup Spot Table screen for the setting.

Displaying Setup Spot Table screen

1. While the Spurious Emission screen is being displayed, press F1 (Setup Spot Table) on the second Spurious function label page.

| MS8608A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Setup Table |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| << Setup Spot Table (cdma) >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spot        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | View        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Select      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BW,SWT      |
| Frequency RBW VBW SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| f 1 : [ <u>1775.300000MHz</u> ] [ 1MHz][ 1MHz][ 10ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| f 2 : [ 2662.950000MHz] [ 1MHz][ 1MHz][ 10ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| f 3 : [ 3550.600000MHz] [ 1MHz][ 1MHz][ 10ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| f 4 : L 4438.250000MHz ] L 1MHz ] L 1MHz ] L 10ms ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| f 5 : L 5325.900000MHz ] L 1MHz ] L 1MHz ] L 10ms ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| t 6 : L 6213.550000MHz ] L 1MHz ] L 1MHz ] L 10ms ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| f $f$ $f$ $f$ $f$ $f$ $f$ $f$ $f$ $f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Judgement   |
| f 8 : [mHz] [ Hz][ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rel. Abs.   |
| $f = f = \frac{1}{2} + \frac{1}{2$ | ж           |
| $f_{10}$ : [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Setup       |
| $f_{11} : [,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Spectrum    |
| $f_{12}$ : [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyzer    |
| T13 : [mHZ] [ HZ][mS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| 114 : [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| T15 : LmHz] L Hz]L Hz]LmS]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Input Jow Pro Ampl . Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Back        |
| Ch · 1009CH Level · _9 00dBm Pomer Cal · Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Screen      |
| Freg : 887 650000MHz Offset · 0.00dB Correction · Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2         |

2. The Setup Spot Table screen shown below appears.

Setting measurement frequency, RBW, VBW, Sweep Time and Limit Level

- In the Entry section, move the cursor to the item to be set using

   and 
   v
   or the rotary knob.
- 2. Press Set in the Entry section.
- 3. The setup window opens.
- 4. Move the cursor to the item to be set using  $\land$  and  $\lor$ .
- 5. Press Set.

When setup is completed, the set result appears in the set item [].

Setting unit of Limit Level

**Press** [F3] (Judgment) to switch unit of Limit Level.

Setting harmonic wave

- 1. Press (More) to display the second Setup Table Spot function label page.
- 2. Press [F5] (Harmonics) to open a confirmation window. When Yes is selected, harmonic wave with frequency set in Setup Common Parameter is automatically set. All frequencies and RBW set previously are deleted.

Deleting all settings

- 1. Press F2 (Clear) to open a confirmation window asking whether to delete the set values.
- 2. Using the rotary knob, move the cursor to Yes.
- **3.** Press Set in the Entry section to delete all set values.

Deleting cursor line

1. Press F3 (Delete) to delete the line where the cursor is positioned and move all lines below the cursor upward one line.

Inserting empty line at cursor

1. Press F4 (Insert) to move all lines below the cursor downward one line and place a blank line (---) at the line where the cursor is positioned. When f15 has been set, no blank lines can be inserted.

# Setting sweep range for search/sweep method (Setup Search/Sweep Table)

This section describes how to set the sweep range for measurement in the search or sweep method.

Set in the Setup Search/Sweep Table screen.

Displaying Setup Search/Sweep Table screen

- While the Spurious Emission screen is being displayed, press F2 (Setup Search/Sweep Table) on the second Spurious function label page.
- 2. The Setup Search/Sweep Table screen shown below appears.

| MS8608A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Setup Table  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <pre>K&lt; Setup Search/Sweep Table (cdma) &gt;&gt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Search/Sweep |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | View         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Select       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BW,SWT       |
| <u>Start Frequency</u> Stop Frequency RBW VBW SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| f 1 : [ 0.009000MHz][ 0.050000MHz][ 1kHz][ 1kHz][ 1.00s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| f 2 : [ 0.050000MHz][ 0.150000MHz][ 1kHz][ 1kHz][ 1.00s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| f 3 : [ 0.150000MHz][ 10.000000MHz][ 10kHz][ 10kHz][ 500ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| f 4 : [ 10.000000MHz]] 30.000000MHz][ 10kHz][ 10kHz][ 600ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| f 5 : L 30.000000MHz]L 883.650000MHz]L100kHz]L 100kHz]L 260ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| f 6 : [ 891.650000MHz][ 1000.000000MHz][100kHz][ 100kHz][ 200ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| f 7 : [ 1000.000000mHz][ 3200.000000mHz][ 1mHz][ 1mHz][ 200ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Judgement    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rel. Abs.    |
| f 9 : [mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][                                                                                                                                                                                                                                                                                                | ж            |
| fild: [mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][mHz][                                                                                                  | Setup        |
| fil : [mhz][mhz][mhz][ hz][ hz][ms]<br>fil : [mhz][mhz][mhz][mhz][ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Spectrum     |
| 112 : [ Muz][ Muz][ Hz][ | Analyzer     |
| fild : [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
| 114 ; [ WZ][ WZ][ WZ][ VZ][ VZ][ VZ][ WZ][ VZ][ VZ][ VZ][                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 119 : L mazil mazil nzil nzil msi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Input: Low Pre Ampl : Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Back         |
| Ch : 1092CH Level : -8.00dBm Power Cal : Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Screen       |
| Freq : 887.650000MHz Offset : 0.00dB Correction : Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 2          |

Setting start and stop frequencies

- 1. In the Entry section, move the cursor to the Start Frequency or Stop Frequency item using <a> and </a> or the rotary knob.
- 2. Set the frequency using the ten-key pad.

When setup is completed, the set frequency appears in the set item []. The start and stop frequencies are forcibly set at least 1 kHz away from each other. For example, when both of the start and stop frequencies are set to 100 kHz, the start frequency is automatically changed to 99 kHz.

Setting measurement frequency, RBW, VBW, Sweep Time and Limit Level

- In the Entry section, move the cursor to the item to be set using

   and 
   v
   or the rotary knob.
- 2. Press Set in the Entry section.
- 3. The setup window opens.
- 4. Press  $\land$  and  $\lor$  to move the cursor to the item to be set.
- 5. **Press** [Set].

When setup is completed, the set result appears in the set item [].

Setting unit of Limit Level

**Press** [F3] (Judgment) to switch the unit of Limit Level.

Deleting all settings

- 1. Press (More) to display the second Setup Search/Sweep Table function label page.
- 2. Press F2 (Clear) to open a confirmation window asking whether to delete the set values.
- 3. Using the rotary knob, move the cursor to Yes.
- 4. **Press** Set in the Entry section to delete all set values.

#### Deleting cursor line

- 1. Press (More) to display the second Setup Search/Sweep Table function label page.
- 2. Press F3 (Delete) to delete the line where the cursor is positioned and move all lines below the cursor upward one line.

Inserting empty line at cursor

- 1. Press (More) to display the second Setup Search/Sweep Table function label page.
- 2. Press F4 (Insert) to move all lines below the cursor downward one line and place a blank line (---) at the line where the cursor is positioned. When f15 has been set, no blank lines can be inserted.

Setting standard value

- 1. Press (More) to display the second Setup Search/Sweep Table function label page.
- **2.** Press (F5) (Standard) and select the standard.

## Setting frequency and sweep tables in details

This section explains in detail how to set the frequency and sweep tables. While the Setup Spot Table or Setup Search/Sweep Table screen is being displayed, press F4 (Setup Spectrum Analyzer) on the first function label page to display the related setup parameter screen.

**RBW** automatic setting

1. Press F2 (RBW Auto/Manual) to alternately switch between Auto and Manual.

When Auto is selected, RBW is set as shown below depending on the start frequency setting.

- 1 kHz when the frequency is 1 to 150 kHz (150 kHz not included)
- 10 kHz when the frequency is 150 kHz to 30 MHz (30 MHz not included)
- 100 kHz when the frequency is 30 to 1000 MHz (1000 MHz not included)
- 1 MHz when the frequency is 1000 MHz or more

VBW automatic setting

1. Press [F3] (VBW) to switch between Auto and Manual alternately and then select Auto.

When Auto is selected, VBW is set depending on the VBW/RBW Ratio and RBW settings.

Setting VBW/RBW Ratio

- 1. Press F4 (VBW/RBW Ratio) to open the selection window.
- 2. In the Entry section, enter a numeric value using  $[\land]$  and  $[\lor]$ , the rotary knob or numeric keypad.
- 3. Press Set.

Sweep Time automatic setting

- 1. Press F5 (Sweep Time) to alternately switch between Auto and Manual and then select Auto.
- 3. When Auto is selected, values are automatically set for all Sweep Times in the set frequency table.

#### Setting RBW mode

This function is available when the main unit option MS860xA-04 or MS268xA/B-04 is installed.

1. Press F1 (RBW) to alternately switch between Digital and Normal. Select one. When Digital is selected, RMS instead of Average is added to Detection.

When neither MS860xA-04 nor MS268xA/B-04 option is installed, the RBW mode menu does not appear.

Setting ATT, Ref Level mode

- 1. Press (More) to display the second function label page.
- 2. Press F1 (SPA ATT, Ref Level) to alternately switch between Auto and Manual.

Setting Attenuator mode

- 1. Press (More) to display the second function label page.
- 2. Press F4 (Attenuator) to alternately switch between Auto and Manual.

# **Power Meter**

For MS860x, on the Setup Common Parameter screen, pressing F6 (Power Meter) causes the Power Meter screen to be displayed. This section describes the measurement results displayed on the Power Meter screen (power meter), parameter settings and operation precautions. This measurement is not available for IQ input.

For MS268x, this function is not available.

## Explanation of measurement results

This section describes the measurement results displayed on the Power Meter screen (power meter). When starting the measurement, press  $\boxed{F5}$  (Adjust Range) to optimize the measurement unit level settings. For range optimization, see "Optimizing measurement range (Adjust Range)."

| MS8608A<br><< Power Meter (cdma) >> | Measure : Single                                                    | Power Meter     |
|-------------------------------------|---------------------------------------------------------------------|-----------------|
| DOWED                               | 0 <b>71</b> JDm                                                     | Set<br>Relative |
| POWER                               | : -0.71 dbm                                                         | Range Up        |
|                                     | 0.01 dB                                                             |                 |
|                                     | 0.849 mW                                                            | Range Down      |
| (Range :                            | OdBm )                                                              | Adjust<br>Range |
|                                     |                                                                     | Zero Set        |
| Ch : 1092CH<br>Freq : 887.650000MHz | Input : Low<br>Level : -8.00dBm<br>Offset : 0.00dB Correction : Off | Back<br>Screen  |

#### POWER

Measurement results

Shows the power measured with the built-in power sensor in units of dBm, relative level and W.

For the relative level, the measurement value obtained when pressing F1 (Set Relative) is set as the reference level (0 dB).

#### Range

Shows the current measurement range.

# Calibrating zero-point (Zero Set)

Be sure to calibrate the zero-point before using the power meter. To perform zero-point calibration, place the RF input terminal in no-input state and press  $\boxed{F5}$  (Zero Set).

If zero-point calibration is not performed in advance, the power meter may not show correct measurement values.

# Using relative-value display (Set Relative)

This section describes how to use the relative-value display. Pressing F1 (Set Relative) causes the current power value to be set as the reference value (0 dB), permitting display of the relative values.

## Setting measurement range (Range Up/Range Down)

Set the power meter measurement range.

Measurement range

Available measurement ranges are listed below.

For MS8608A high-power input:

0 dBm, +10 dBm, +20 dBm, +30 dBm, +40 dBm

For MS8608A low-power input or MS8609A

-20 dBm, -10 dBm, 0 dBm, +10 dBm, +20 dBm

Setting the range

**Press** [F2] (Range Up) to raise the measurement range.

**Press** [F3] (Range Down) to lower the measurement range.

Press [F4] (Adjust Range) to optimize the measurement range depending on the input signal. For details, see "Optimizing Measurement Range (Adjust Range)."

# Measuring the IQ Level

On the Setup Common Parameter screen, pressing  $F_2$  (IQ Level) causes the IQ level measurement screen to be displayed.

This section describes the measurement results displayed on the IQ Level screen (IQ level measurement), parameter settings and operation precautions.

This measurement is not available for RF input.

For MS268x, this function is available only when MS2681A/MS2683A-17, -18 or MS2687A/B-18 is installed.

# Explanation of measurement results

This section described the measurement results displayed on the IQ Level screen (IQ level measurement).

Measurement results

| MS8608A<br>KK IQ Level (cdma) >> | Measure · Single                         | IQ Level |
|----------------------------------|------------------------------------------|----------|
|                                  | Storage : Normal                         |          |
| Level                            |                                          |          |
| I                                | : 42.83 dBmV (rms)<br>· 43.06 dBmV (rms) |          |
| x                                |                                          | ж        |
| І р-р                            | : 54.07 dBmVp-р                          | Storage  |
| Q p-p                            | : 54.13 dBmVp-p                          | mode     |
|                                  |                                          | *        |
| Phase<br>L/Q difference          | · 71.40 deg.                             | Unit     |
|                                  |                                          |          |
|                                  |                                          |          |
|                                  |                                          |          |
|                                  |                                          |          |
|                                  |                                          |          |
|                                  |                                          |          |
|                                  |                                          | →        |
|                                  |                                          | Back     |
|                                  |                                          | Screen   |

Level (I and Q)

Shows the RMS levels for the I- and Q-phase signal in mV or dBmV.

Level (I p-p and Q p-p)

Shows the peak-to-peak levels for the I- and Q-phase signal in mV or dBmV.

Phase (I/Q difference)

Shows the phase difference in degrees between the I- and Q-phase signals obtained by inputting CW signals with the same frequency to the I- and Q-phase inputs. This function is available in orthogonal and other measurements of an orthogonal demodulator.

# Averaging (Storage Mode)

This section describes the storage mode through the measurement result averaging process.

Setting averaging process

- 1. On the IQ Level screen, press F2 (Storage Mode) to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setup window.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. The selection window opens.
- 7. In the Entry section, select Average using  $[\land]$  and  $[\lor]$  or the rotary knob.
- 8. Press [Set].

When setup is completed, measurement restarts.

Also when the averaging count is changed when the Storage Mode is set to Average, measurement restarts upon completion of setup. If the values are not changed or changing is canceled, measurement is not restarted.

Refresh Interval: Set the interval for updating the average display.

- Every: Updates the display at every measurement.
- Once: Updates the display after measurement of the specified averaging count is completed.

Available storage modes are listed below.

- Normal: Updates and displays the measurement results at every measurement.
- Average: Averages and displays the measurement results at every measurement.

# Changing measurement value unit (Unit)

This section describes how to change the IQ level measurement value unit.

Setting display unit

On the IQ Level screen, press F3 (Unit) to display the function labels listed below and then select the unit to be used.

- F1 (mV): Shows the measurement value in mV.
- F2 (dBmV): Shows the measurement value in dBmV.
- F6 (return): Returns to the preceding function label display.

# Saving and Reading Setup Parameters

This section describes how to save and read parameter settings from the memory card.

Before saving or reading parameter settings, insert the memory card into the memory card slot. The memory card can be inserted or removed while the unit power is ON. Do not remove the memory card while saving or reading.

One memory card can save a maximum of 100 parameter setup files. Save a file under one of the file numbers (0 to 99). If necessary, a file may be assigned a file name consisting of letters and/or numerals and a file may be write-protected.

A file name is in the MS-DOS format; that is, it may contain a maximum of eight characters, which are not case-sensitive.

# Saving parameters (Save)

To save parameters, display the Save Parameter screen in the procedure given below.

- 1. Insert a memory card into the memory card slot.
- 2. Press [Shift] and then press [Recall].
- 3. F2 Press (Display Dir.)
  One memory card can save a maximum of 100 parameter setup files.
  Save a file under a file number (0 to 99).
- 4. In the Entry section, move the cursor and select the file number using  $\land$  and  $\lor$  or the rotary knob. Or press F3 (File No.) to open a setup window and enter the file number using the ten-key pad.
- 5. **Press** Set in the Entry section.
- 6. The confirmation window opens. Select Yes and press Set.

Thus, the parameter settings are saved on the memory card.

When the file is saved under a new number, it is automatically assigned file name "PARAM\*\*.P\*\*" (where, "\*\*" is a file number). When the file is saved under a file number already assigned to an existing file, the parameter settings are overwritten to the file and the file name remains unchanged.

| MS8608A                                                                                                                                                                                                                               | 2<br>Bara | 002/12/16 t | 16:38:23              |             |                 |                                 | Save<br>Parameter |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----------------------|-------------|-----------------|---------------------------------|-------------------|
| <pre>&lt;&lt; Save Parameter &gt;&gt; Directory : \MS8608A\CDMA\PARAM Save File Memory Card Information Save Data : CDMA Tester Volume Label : File Name : PARAMOO Unused Area : 16 117 760 Bytes Total Area : 20 414 464 Bytes</pre> |           |             |                       |             |                 | Previous<br>Page<br>Display Dir |                   |
|                                                                                                                                                                                                                                       | No        | Vane        | Date                  | Tige        | Protect         |                                 | /Next Page        |
|                                                                                                                                                                                                                                       | m         | PARANOO .PO | 10 2002-12-1          | 6 16:33:34  | Off             |                                 | #                 |
|                                                                                                                                                                                                                                       | 01        | PARANO1 .PC | 01 2002-12-1          | 6 16:33:48  | Off             |                                 |                   |
|                                                                                                                                                                                                                                       | 02        | PARAMO2 .PC | ) <b>2 200</b> 2-12-1 | l6 16:33:56 | Off             |                                 | File No.          |
|                                                                                                                                                                                                                                       | 03        |             |                       |             |                 |                                 |                   |
|                                                                                                                                                                                                                                       | 04        |             | -                     |             |                 |                                 | #                 |
|                                                                                                                                                                                                                                       | 05        | PARAMUS .PU | 5 2002-12-1           | 16 16:34:02 | 0 <del>11</del> |                                 |                   |
|                                                                                                                                                                                                                                       | 07        |             |                       |             |                 |                                 | File Name         |
|                                                                                                                                                                                                                                       | ns.       |             |                       |             |                 |                                 |                   |
|                                                                                                                                                                                                                                       | 09        |             |                       |             |                 |                                 |                   |
|                                                                                                                                                                                                                                       | 10        |             |                       |             |                 |                                 |                   |
|                                                                                                                                                                                                                                       | 11        |             |                       |             |                 |                                 | Write             |
|                                                                                                                                                                                                                                       | 12        |             |                       |             |                 |                                 | Protect           |
|                                                                                                                                                                                                                                       | 13        |             |                       |             |                 |                                 | +                 |
|                                                                                                                                                                                                                                       | 14        |             |                       |             |                 |                                 |                   |
|                                                                                                                                                                                                                                       | 10        |             |                       |             |                 |                                 | Back              |
|                                                                                                                                                                                                                                       | 17        |             |                       |             |                 |                                 | Screen            |
|                                                                                                                                                                                                                                       |           |             |                       |             |                 | l                               | 1                 |

#### Section 3 Measurement

### Saving under a new name (File Name)

A file can be saved under a new name by pressing [F4] (File Name) in Step 4 in "Saving Parameters (Save)."

This section describes how to enter a file name after displaying the file name input window by pressing  $\boxed{F4}$  (File Name).



- 1. Using the rotary knob, move the cursor inside the list of characters and select the character to be entered.
- 2. Press Enter . The character selected appears in the entry area.
- 3. Repeat Step 2 above to enter the file name. Characters A to F and 0 to 9 can also be entered from the ten-key pad. A file name may contain a maximum of eight characters. Only those characters given in the list are available; other characters cannot be used.
- 4. After entering the file name, press Set.
- 5. A confirmation window opens. Select Yes and press Set.
Thus, the file is saved under the new name.

- Rotary knob: Moves the cursor inside the list of characters.
- $\land$  and  $\lor$  : Moves the cursor inside the entry area.
- BS : Deletes the character preceding the cursor in the entry area.
- Enter : Overwrites the character pointed to by the cursor in the list of characters to the cursor position in the entry area.
- Set : Determines the character string in the entry area as the file name.

## Write-protecting file (Write Protect)

This section describes how to write-protect a file.

- 2. Press F5 (Write Protect).

Each time [F5] (Write Protect) is pressed, it is alternately switched On and Off.

## Reading parameters (Recall)

To read saved parameters, display the Recall Parameter screen in the procedure given below.

- 1. Insert the memory card into the memory card slot.
- 2. Press Recall ].
- 3. Press F2 (Display Dir.)

| MS8608A<br><< Recal               | 2002/12/16 18:17:49<br>11 Parameter >>                                                                                                                                                                                                                                                                                                                    | Resall<br>Parameter              |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Direct<br>Recall<br>Recal<br>File | tory : \MS8608A\CDMA\PARAM<br>  file Menory Card Information<br>   Data : CDMA Tester Volume Label :<br>Name : PARAMO5 Unused Area : 16 039 936 Bytes<br>Total Area : 20 414 464 Bytes                                                                                                                                                                    | Previous<br>Page<br>Display Dir. |
|                                   | No. Name Date Time Protect                                                                                                                                                                                                                                                                                                                                | /Next Page                       |
|                                   | OC         PARABOO         POO         2002-12-16         16:33:34         Off           O1         PARANO1         PO1         2002-12-16         16:33:48         Off           O2         PARANO2         PO2         2002-12-16         16:33:56         Off           O5         PARANO5         PO5         2002-12-16         16:34:02         Off | *<br>File No.                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                           |                                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                           | +                                |
|                                   |                                                                                                                                                                                                                                                                                                                                                           | Back<br>Screen                   |
|                                   |                                                                                                                                                                                                                                                                                                                                                           | 1                                |

- 5. Press Set in the Entry section.
- 6. A confirmation window opens. Select Yes and press Set.

When parameter reading is completed, the Setup Common Parameter screen appears.

This Section describes the measurement units, and their connections and operations when the performance test is conducted for cdma measurements after installing MX860x03A in MS860x or MX268x03A in MS268x.

In this section, \_\_\_\_\_ represents a panel key.

| About the Performance Test                                | 4-3  |
|-----------------------------------------------------------|------|
| Equipment Required for Performance Test <ms860x></ms860x> | 4-4  |
| Performance Test <ms860x></ms860x>                        | 4-6  |
| Modulation/frequency measurement <ms860x></ms860x>        | 4-6  |
| Code domain measurement <ms860x></ms860x>                 | 4-9  |
| Transmission power measurement accuracy                   |      |
| <ms860x></ms860x>                                         | 4-11 |
| Linearity <ms860x></ms860x>                               | 4-13 |
| Occupied frequency bandwidth measurement                  |      |
| <ms860x></ms860x>                                         | 4-15 |
| Nearby spurious measurement <ms860x></ms860x>             | 4-16 |
| Spurious measurement <ms860x></ms860x>                    | 4-18 |
| IQ input modulation accuracy <ms860x></ms860x>            | 4-21 |
| Power meter accuracy <ms860x></ms860x>                    | 4-22 |
| Evaluation signal <ms860x></ms860x>                       | 4-24 |
| Equipment Required for Performance Test <ms268x></ms268x> | 4-25 |
| Performance Test <ms268x></ms268x>                        | 4-26 |
| Modulation/frequency measurement <ms268x></ms268x>        | 4-26 |
| Code domain measurement <ms268x></ms268x>                 | 4-30 |
| Linearity <ms268x></ms268x>                               | 4-32 |
| Occupied frequency bandwidth measurement                  |      |
| <ms268x></ms268x>                                         | 4-34 |
| Nearby spurious measurement <ms268x></ms268x>             | 4-35 |
| Spurious measurement <ms268x></ms268x>                    | 4-38 |
| IQ input modulation accuracy <ms268x></ms268x>            | 4-41 |
| Evaluation signal <ms268x></ms268x>                       | 4-43 |
| Sample of Entry Forms for Performance Test Results        |      |
| <ms860x></ms860x>                                         | 4-44 |
| Modulation/Frequency measurement <ms860x></ms860x>        | 4-44 |
| Code domain measurement <ms860x></ms860x>                 | 4-46 |
| Transmission power measurement accuracy                   |      |
| <ms860x></ms860x>                                         | 4-47 |
| Linearity <ms860x></ms860x>                               | 4-49 |
| Nearby spurious measurement <ms860x></ms860x>             | 4-52 |
| Spurious measurement <ms860x></ms860x>                    | 4-53 |
| IQ input modulation accuracy <ms860x></ms860x>            | 4-54 |
| Power meter accuracy <ms860x></ms860x>                    | 4-54 |

## 

## About the Performance Test

The performance test described in this section should be carried out as a part of preventive maintenance to check for performance deterioration during cdma measurement with MX860x03A installed in MS860x or MX268x03A in MS268x.

Carry out the performance test on the measurement unit when it is required for acceptance inspection, periodic maintenance or a post-repair performance check.

As preventive maintenance, the items considered to be important should be periodically (one or twice a year) tested.

The performance test should contain the test items listed below when it is carried out on the measurement unit for acceptance inspection, periodic maintenance or post-repair performance check.

- Modulation/frequency measurement
- Code domain measurement
- Transmission power measurement accuracy\*
- Linearity
- Occupied frequency bandwidth measurement
- Nearby spurious measurement
- Spurious measurement\*
- IQ input modulation accuracy
- Power meter accuracy\*
- \* For MS268x , this test is not performed.

If the performance test detects any items that do not satisfy requirements, contact Anritsu or its agency.

# Equipment Required for Performance Test <MS860x>

| Recommended<br>unit name (model)                                                    | Required performance                                                                                                                                                                                                                                                                                                | Test items                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital modulation<br>signal generator<br>(MG3681A/<br>MX368042A)<br>Two units used | <ul> <li>Frequency range: 10 MHz to 3 GHz<br/>Resolution 1 Hz available</li> <li>Output level range<br/>No modulation: -10 to 12 dBm<br/>Modulation: -10 to 4 dBm<br/>Resolution 0.1 dB available</li> <li>External reference input: (10 MHz)<br/>available</li> <li>Residual vector error: 2.5% or less</li> </ul> | Modulation/frequency<br>measurement<br>Code domain measurement<br>Transmission power<br>measurement accuracy<br>Linearity<br>Occupied frequency bandwidth<br>measurement<br>Nearby spurious measurement<br>Spurious measurement<br>IQ input modulation accuracy<br>Power meter accuracy |
| Calibration<br>receiver<br>(ML2530A)                                                | <ul> <li>Frequency range: 100 kHz to 3 GHz<br/>Resolution 1 Hz available</li> <li>Measurement power range: -140 to<br/>20 dBm</li> <li>Measurement accuracy: ±0.04 dB</li> <li>External reference input: (10 MHz)<br/>available</li> </ul>                                                                          | Modulation/frequency<br>measurement<br>Linearity<br>Power meter accuracy                                                                                                                                                                                                                |
| Power meter<br>(ML4803A)                                                            | <ul> <li>Main unit accuracy: ±0.02 dB</li> <li>Frequency range: 100 kHz to 8.5 GHz (depending on power sensor used)</li> </ul>                                                                                                                                                                                      | Transmission power<br>measurement accuracy<br>Linearity<br>Power meter accuracy                                                                                                                                                                                                         |
| Power sensor<br>(MA4601A)                                                           | <ul> <li>Frequency range: 10 MHz to 3 GHz</li> <li>Measurement power range: -30 to<br/>+20 dBm</li> <li>Input connector: N type</li> </ul>                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |
| Fixed attenuator<br>(MP721A)                                                        | <ul><li>Attenuation: 3 dB</li><li>VSWR: 1.2 or less</li></ul>                                                                                                                                                                                                                                                       | Power meter accuracy                                                                                                                                                                                                                                                                    |
| Fixed attenuator<br>(MP721D)                                                        | <ul> <li>Attenuation: 20 dB</li> <li>VSWR: 1.2 or less</li> </ul>                                                                                                                                                                                                                                                   | Transmission power<br>measurement accuracy                                                                                                                                                                                                                                              |
| Programmable<br>attenuator<br>(MN72A)                                               | <ul> <li>Frequency range: DC to 18 GHz</li> <li>Attenuation accuracy: 0.9 dB</li> <li>VSWR: 1.2 or less</li> </ul>                                                                                                                                                                                                  | Modulation/frequency<br>measurement<br>Power meter accuracy<br>Linearity                                                                                                                                                                                                                |
| Power divider                                                                       | • Frequency range: 50 MHz to 3 GHz                                                                                                                                                                                                                                                                                  | Modulation/frequency<br>measurement                                                                                                                                                                                                                                                     |
| Power splitter                                                                      | • Frequency range: 50 MHz to 3 GHz                                                                                                                                                                                                                                                                                  | Modulation/frequency<br>measurement                                                                                                                                                                                                                                                     |
| 2GHz LPF                                                                            | • Available for cutting off harmonic wave of 2 GHz or more generated by signal generator                                                                                                                                                                                                                            | Spurious measurement                                                                                                                                                                                                                                                                    |

The measurement equipment required for the performance test is listed below.

The "Required Performance" column shows excerpts from the performance covering the measurement range of the test items.

## Performance Test <MS860x>

Before starting the performance test, warm up the devices to be tested and measurement units at least 30 minutes or more unless otherwise specified and make sure that they are stabilized.

To exert the highest measurement accuracy, measurement should be performed at room temperature ( $25 \pm 5^{\circ}$ C), with little AC power voltage fluctuation, and in an environment free from noise, vibration, dust, humidity and other problems.

## Modulation/frequency measurement <MS860x>

This section describes the tests on the following items:

- Carrier frequency accuracy
- Residual vector error
- Origin offset accuracy

#### (1) Test specifications

• Carrier frequency accuracy: ± (Reference crystal oscillator accuracy +10 Hz)

Input: Level  $\geq -10$  dBm (High Power input), level  $\geq -30$  dBm (Low Power input), -40 dBm (Low Power input, preamplifier On), with code channel 1 CH only

 Residual vector error: <2.0% (rms) Input: Level ≥ -10 dBm (High Power input), level ≥ -30 dBm (Low

Power input), -40 dBm (Low Power input, preamplifier On), with code channel 1 CH only

- Origin offset accuracy: ±0.5 dB Input: Level ≥ -10 dBm (High Power input), level ≥ -30 dBm (Low Power input), -40 dBm (Low Power input, preamplifier On), with code channel 1 CH only, for a signal with origin offset -30 dBc
- (2) Measurement units for test
  - Digital modulation signal generator (SG1): MG3681A
  - Digital modulation signal generator (SG2): MG3681A
  - Calibration receiver: ML2530A
  - Programmable attenuator: MN72A
  - 2-signal pad
  - Power splitter

### (3) Setup



- (4) Test Procedures
- 1. Set the programmable attenuator (MN72A) to 0 dB.
- 2. Set SG1 as follows:
  - Frequency: (Frequency in following table +307.2 kHz) 307.2 kHz is a quarter of the chip rate.
  - Level: -10 dBm
  - Modulation: No modulation
- 3. Set SG2 as follows (RF Output is Off):
  - Frequency: (Frequency in Table at step 17)
  - Level: SG1 Level –40 dBm
  - Modulation: No modulation
- 4. Set the MS860xA as follows:
  - Input Terminal: RF (High Power input)
  - Reference Level: -10 dBm
  - Frequency: (Frequency in Table at step 17)
  - Measuring Object: QPSK & Continuous
  - Filter: Filtering
  - Trigger: Free Run

- 5. Press (More) to display the second function label page.
- 6. Press F6 (Power Meter) to display the Power Meter screen.
- 7. Set the calibration receiver (ML2530A) frequency to the frequency given in the table below +307.2 kHz and set BW to 100 Hz, Absolute mode.
- 8. Set SG2 RF Output to Off, set SG1 RF Output to On, change the ML2530A frequency to the frequency given in the table below, and adjust the SG1 level so that the indicated value matches the one given in the table below.
- 9. Set SG1 RF Output to Off, SG2 RF Output to On, and ML2530A to Relative mode. Adjust the SG2 level so that the indicated value matches  $-30 \pm 0.1$  dB and record the results (origin offset expected value).
- 10. Set the programmable attenuator (MN72A).
  - For Pre-Ampl On: 30 dB For MS8609A and MS8608A Low input: 20 dB For MS8608A High input: 0 dB
- 11. Return the function label to the first page, and press F2 (Modulation Analysis) on the measurement unit to display the Modulation Analysis screen.
- 12. Execute F5 (Adjust Range).
- 13. Press F4 (Analysis Mode) and then F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 14. Read the measurement results displayed on the screen and check that the origin offset satisfies the Standard.

Origin offset accuracy [dB] = Measurement result – Origin offset expected value

- 15. Set the SG2 output to Off.
- 16. Read the measurement results displayed on the screen and check that the frequency error and residual vector error satisfy the Standard.
- 17. Change the frequency as shown in the table below and repeat Steps 1 to 16.

|           | Level (input level to MS860x)        |                                      |                                      |  |
|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| Frequency | MS860x<br>Pre-Ampl On                | MS8609A and<br>MS8608A Low<br>input  | MS8608A<br>High input                |  |
| 50 MHz    | $-40 \ dBm \pm 0.1 \ dB$             | -30 dBm ±0.1 dB                      | -10 dBm ±0.1 dB                      |  |
| 850 MHz   | $-40~dBm \pm 0.1~dB$                 | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \text{ dBm} \pm 0.1 \text{ dB}$ |  |
| 2000 MHz  | $-40 \text{ dBm} \pm 0.1 \text{ dB}$ | -30 dBm ±0.1 dB                      | -10 dBm ±0.1 dB                      |  |
| 2300 MHz  | $-40 \ dBm \pm 0.1 \ dB$             | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \text{ dBm} \pm 0.1 \text{ dB}$ |  |

## Code domain measurement <MS860x>

This section describes the tests on the following items:

• Code domain power measurement accuracy

This measurement is not completely the same as the shipment inspection done by Anritsu.

- (1) Test specifications
- Code domain power measurement accuracy:

 $\pm 0.2 \text{ dB}$  (Code power $\geq -10 \text{ dBc}$ )

 $\pm 0.4 \ dB$  (Code power $\geq -25 \ dBc$ )

Input level:  $\geq$  +10 dBm (High Power input)

 $\geq$  -10 dBm (Low Power input)

- ≥ -20 dBm (Low Power input, preamplifier On)
- (2) Measurement units for test
  - Digital modulation signal generator (SG1): MG3681A
- (3) Setup



#### (4) Test Procedures

1. Set the evaluation signal data in the digital modulation signal generator (SG1).

For details on the evaluation signal, refer to "Evaluation Signal."

- 2. Set SG1 as follows:
  - Frequency: 50 MHz
  - Level: -10 dBm
- 3. Set the measurement unit as follows:
  - Input Terminal: RF (Low Power input)
  - Reference Level: -10 dBm
  - Frequency: 50 MHz
  - Measuring Object: Forward (RC1-2)
  - Filter: Filtering + EQ
  - Trigger: Free Run
- 4. Press (More) to display the second function label page.
- 5. Press [F6] (Power Meter) to display the Power Meter screen.
- 6. Set SG1 output to Off and execute [F5] (Zero Set).
- 7. Set SG1 output to On and execute F4 (Adjust Range).
  Adjust the SG1 level so that the Power Meter indicates -10 dBm ±0.1 dB. (Be sure to execute Adjust Range after changing the SG1 level.) After level calibration, press F6 (Back Screen).
- 8. Return the function label to the first page, and press F2 (Modulation Analysis) on the measurement unit to display the Modulation Analysis screen.
- 9. Execute F5 (Adjust Range).
- 10. Press F4 (Analysis Mode) and then F1 (Analysis Start) and set Analysis Start to 0. Press F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 11. Press F6 (Return) and then F1 (Trace Format) and set Code Domain.
- 12. Press (More) once to display the second function label page.
- **13.** Press F2 (Auto Rate Detection) to set it Off.
- 14. Press [Single] and wait until measuring is completed.
- **15.** Check that the power of the codes satisfies the Standard. The codes and their expected power values are listed below.
  - Code 0 : -10.0 dB
  - Code 7 : -0.68 dB Code 15 : -15.0 dB
  - Code 31 : -20.0 dB
  - Code 63 : -25.0 dB
- 16. Change the frequency of SG1 and the measurement unit to 850 MHz, 2 GHz, and 2.3 GHz and repeat Steps 1 to 15 above.

## Transmission power measurement accuracy <MS860x>

(1) Test specifications

 $\pm 0.4~dB$  (after calibration using the built-in power meter)

## (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- Power meter: ML4803A
- Power sensor: MA4601A
- 20 dB attenuator: MP721D



- (4) Test Procedures
- 1. Set the evaluation signal data in the digital modulation signal generator (SG1).

For details on the evaluation signal, refer to "Evaluation Signal."

- 2. Set SG1 as follows:
  - Frequency: 50 MHz
  - Level: +0.5 dBm
- 3. Connect power sensor (MA4601A) to Cal Output on power meter (ML4803A) and execute Zero Adjust.
- 4. Set Sensor Input to On and execute ADJ (Cal Adjust).
- 5. Connect SG1 to power sensor (MA4601A).

- 6. Adjust the SG1 output level so that the power meter (ML4803A) indicates +0.5dBm  $\pm 0.1$  dB and record the measurement results (power meter measurement value).
- 7. Connect the SG1 output to the measurement unit.
- 8. Set the measurement unit as follows:
  - Input Terminal: RF (High Power input)
  - Reference Level: +0.5 dBm
  - Frequency: 50 MHz
  - Measuring Object: QPSK & Continuous
- 9. Return the function label to the first page and press F3 (RF Power) to display the RF Power screen.
- 10. Execute F5 (Adjust Range).
- 11. Press F4 (Calibration) and execute F1 (Power Calibration).
- 12. Read the TX Power value in the measurement results (RF Power measurement value).
- 13. Change the frequency of SG1 and the measurement unit to 850 MHz, 2 GHz, and 2.3 GHz and repeat Steps 2 to 13. After measurement at these frequencies is completed, go to Step 13.
- 14. Press Shift and then Hi Power to set Low Power Input mode. Insert the calibrated MP721D 20dB ATT (measure the MP721D attenuation at each measurement frequency in advance) into the input.
- 15. Connect the SG1 output to Low Power Input and repeat Steps 2 to 13 above. The result is the Low Power Input result.
  - For MS8608A High input Measurement accuracy [dB] = RF Power measurement value
     Power meter measurement value
  - For Pre-Ampl On and MS860xA Low input Measurement accuracy [dB] = RF Power measurement value

     (Power meter measurement value – MP721D actual attenuation)

## Linearity <MS860x>

(1) Test specifications

±0.2 dB (0 to -40 dB)

Without changing the reference level setting after range optimization

## (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- Calibration receiver: ML2530A
- Programmable attenuator: MN72A
- Power meter: ML4803A
- Power sensor: MA4601A
- (3) Setup



#### (4) Test Procedures

- 1. Connect power sensor (MA4601A) to Cal Output on power meter (ML4803A) and execute Zero Adjust.
- 2. Set Sensor Input to On and execute ADJ (Cal Adjust).
- 3. Connect SG1 (MN27A output) to power sensor (MA4601A).
- 4. Set the SG1 frequency and then set the programmable attenuator (MN72A) to 0 dB. Adjust the SG1 level so that the power meter (ML4803A) indicates +10 dBm  $\pm$ 0.1 dB. Record the measurement results (Set\_Ref). See the table below for the measured frequencies and levels.

|           | Level (input level to MS860x)        |                                      |                       |  |
|-----------|--------------------------------------|--------------------------------------|-----------------------|--|
| Frequency | MS860x<br>Pre-Ampl On                | MS8609A and<br>MS8608A Low<br>input  | MS8608A<br>High input |  |
| 50 MHz    | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \text{ dBm} \pm 0.1 \text{ dB}$ | +10 dBm ±0.1 dB       |  |
| 850 MHz   | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \ dBm \ \pm 0.1 \ dB$           | +10 dBm ±0.1 dB       |  |
| 2000 MHz  | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \ dBm \ \pm 0.1 \ dB$           | +10 dBm ±0.1 dB       |  |
| 2300 MHz  | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | $-10 \text{ dBm} \pm 0.1 \text{ dB}$ | +10 dBm ±0.1 dB       |  |

- 5. Connect SG1 (MN72A output) to calibration receiver (ML2530A) and set BW to 100Hz, Relative mode (with the range fixed to 1).
- 6. Lower the SG1 output level (for Set\_Ref) in steps of 10 dB until it is -40 dBc and record the measurement value (ML2530A reading) at the calibration receiver (ML2530A) for each step.
- 7. Set measurement unit as follows:
  - Input Terminal: RF (High/Low Power Input)
  - Reference Level: (Level indicated in the table above)
  - Frequency: (Frequency indicated in the table above)
  - Measuring Object: QPSK & Continuous
  - Filter: Filtering
  - Trigger: Free Run
- 8. Set the programmable attenuator (MN72A) as follows:
  - For Pre-Ampl On: 30 dB
  - For MS8609A and MS8608A Low input: 20 dB
  - For MS8608A High input: 0 dB
- 9. Connect SG1 (MN72A output) to the measurement unit and set the SG1 level to Set\_Ref.
- **10.** Press [F3] (RF Power) to display the RF Power screen.
- 11. Execute F5 (Adjust Range).
- **12.** Press [F4] (Calibration) and execute [F1] (Power Calibration).

- 13. Record the Tx Power value (dBm) (Measure\_Ref).
- 14. Lower the SG1 output level (for Set\_Ref) in steps of 10 dB until it is -40 dBc and record the Tx Power value at each step.
  - \* Note that the SG1 level should be lowered in steps of 10 dB; do not adjust the programmable attenuator (MN72A).
- 15. Check that the linearity error (shown below) satisfies the Standard. Linearity error [dB] = Tx Power value – (Measure\_Ref – ML2530A reading)
- 16. Change the frequency and repeat Steps 3 to 15 above.

Occupied frequency bandwidth measurement <MS860x>

(1) Test specifications

This test is a functional test and therefore has no test specifications.

- (2) Measurement units for test
  - Digital modulation signal generator: MG3681A
- (3) Setup



### (4) Test procedures

1. Set the evaluation signal data in the digital modulation signal generator (SG1).

For details on the evaluation signal, refer to "Evaluation Signal."

- 2. Set SG1 as follows:
  - Frequency: (Given in Table at step 8.)
  - Level: (Given in Table at step 8)
- 3. Set the measurement unit as follows:
  - Input Terminal: RF (High/Low Power Input)
  - Reference Level: 0 dBm (Level given in Table at step 8)

- Frequency: 50 MHz (Frequency given in Table at step 8)
- Measuring Object: QPSK & Continuous
- 4. Press F4 (Occupied Bandwidth) and display the Occupied Bandwidth screen.
- 5. Execute F5 (Adjust Range).
- 6. Press [F1] (Measure Method) and set the measurement method to FFT.
- 7. Check that the occupied frequency bandwidth measurement value is 1.26  $\pm 0.1$  MHz.
- 8. Change the frequency and repeat Steps 2 to 7 above.

|           | Level (SG1 set value) |                                     |                       |
|-----------|-----------------------|-------------------------------------|-----------------------|
| Frequency | MS860x<br>Pre-Ampl On | MS8609A and<br>MS8608A Low<br>input | MS8608A<br>High input |
| 50 MHz    | -30 dBm               | –20 dBm                             | 0 dBm                 |
| 850 MHz   | -30 dBm               | –20 dBm                             | 0 dBm                 |
| 2000 MHz  | -30 dBm               | –20 dBm                             | 0 dBm                 |
| 2300 MHz  | -30 dBm               | -20 dBm                             | 0 dBm                 |

## Nearby spurious measurement <MS860x>

(1) Test specifications

Input level ≥+20 dBm (High Power input), ≥0 dBm (Low Power input) 900 kHz detuning: ≥51 dBc 1.98 MHz detuning: ≥61 dBc

#### (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- (3) Setup



(4) Test Procedures

- 1. Set the digital modulation signal generator (SG1) as follows:
  - Frequency: (Given in table below)
  - Level: (Given in table below)
  - System: IS-95
  - Link: Forward
  - Filter: SPEC + EQ
  - Pat. Number: 9
- 2. Set the measurement unit as follows:
  - Input Terminal: RF (Low Power Input)
  - Reference Level: 0 dBm (Level given in table below)
  - Frequency: (Given in table below)
  - Measuring Object: QPSK & Continuous
  - Trigger: Free Run
- 3. Press (More) to display the second function label page.
- 4. Press [F6] (Power Meter) to display the Power Meter screen.
- 5. Set the SG1 output to Off and execute F5 (Zero Set).
- 6. Set SG1 to the level given in the table below and execute F4 (Adjust Range). Adjust the SG1 level so that the Power Meter indicates the level given in the table below. (Be sure to execute Adjust Range after changing the SG1 level.)
- 7. After level calibration, press F6 (Back Screen).
- 8. Return the function label to the first page, and press F5 (Spurious Close to the Carrier) to display the Spurious Close to the Carrier screen.
- 9. Execute F5 (Adjust Range).
- **10.** Read the measurement results and check that the measurement range satisfies the Standard.

|           | Level (input level to MS860x)    |                                    |  |
|-----------|----------------------------------|------------------------------------|--|
| Frequency | MS8609A and<br>MS8608A Low input | When MS860x<br>Pre-Ampl installed* |  |
| 50 MHz    | 0 dBm ±0.1 dB                    | 0 dBm ±0.1 dB                      |  |
| 850 MHz   | 0 dBm ±0.1 dB                    | 0 dBm ±0.1 dB                      |  |
| 2000 MHz  | 0 dBm ±0.1 dB                    | 0 dBm ±0.1 dB                      |  |
| 2300 MHz  | 0 dBm ±0.1 dB                    | 0 dBm ±0.1 dB                      |  |

\*: Measurement with option 08 installed and Pre-Ampl set to Off

## Spurious measurement <MS860x>

### (1) Test specifications

- Measurement range
  - At CW carrier frequency 800 MHz to 1 GHz or 1.8 to 2.2 GHz  $\,$
  - $\geq \! 79 \text{ dB}$  typical (RBW: 10 kHz)
    - (10 to 30 MHz, band 0)
  - $\geq \! 79 \text{ dB}$  typical (RBW: 100 kHz)
    - (30 MHz to 1 GHz, band 0)
  - $\geq\!\!76-f$  [GHz] dB typical (RBW: 1 MHz)
    - (1 to 3.15 GHz, band 0, normal mode)
  - ≥76 dB typical (RBW: 1 MHz)

(3.15 to 7.8 GHz, band 1, normal mode)

- When option 03 is installed
- ≥76 dB typical (RBW: 1 MHz)
  - (1.6 to 7.8 GHz, band 1, spurious mode)
- \* For carrier frequency 2030.354 to 2200 MHz, spurious occurs at the following frequency:
  - f (Spurious) = f (in) 2030.345 MHz
- (2) Measurement units for test
  - Digital modulation signal generator (SG1): MG3681A
  - LPF switching unit (available for cutting off secondary harmonic wave of 850 MHz and for filter through operation)
  - 2 GHz LPF
- (3) Setup



#### (4) Test Procedures

1. Set the digital modulation signal generator (SG1) frequency and output level. Measure the input level to the measurement unit using the built-in power meter. See the table below for the measured frequencies and levels.

|           | Level (power meter reading) |                                  |  |
|-----------|-----------------------------|----------------------------------|--|
| Frequency | MS860xA<br>with Pre-Ampl *  | MS8609A and<br>MS8608A Low input |  |
| 850 MHz   | 0 dBm ±0.1 dB               | 0 dBm ±0.1 dB                    |  |
| 2000 MHz  | 0 dBm ±0.1 dB               | 0 dBm ±0.1 dB                    |  |

\*: With option 08 installed and Pre-Ampl set to Off

- 2. Set the measurement unit as follows:
  - Input Terminal: RF (Low input only for MS8608A)
  - Reference Level: 0 dBm
  - Frequency: 2000 MHz
  - Measuring Object: QPSK & Continuous
  - Filter: Filtering
  - Trigger: Free Run
- 3. Press (More) to display the second function label page.
- 4. Press [F6] (Power Meter) to display the Power Meter screen
- 5. Set the SG1 output to Off and execute (F5) (Zero Set).
- Set SG1 to the level given in the table above and execute F4 (Adjust Range). Adjust the SG1 level so that the power meter indicates 0 dBm ±0.1 dB. (Be sure to execute Adjust Range after changing the SG1 level.)
- 7. After level calibration, press F6 (Back Screen).
- 8. Return the function label to the first page and press <u>F6</u> (Spurious Emission) to display the Spurious Emission screen.
- 9. Press (More) to display the third function label page.
- **10.** Press F1 (Ref Power) to set Tx Power.
- 11. Press (More) to display the first function label page.
- 12. Press F1 (Spurious Mode) and set F3 (Sweep). After setting, press F6 (return).
- Press F3 (Setup Search/Sweep Table) and set Table 4-1-1. After setting, press F6 (Back Screen).
- 14. Press (More) to display the second function label page. Press
   F4 (Preselector) to set Normal mode.
- 15. Return the function label to the first page.
  - \* Steps 11 and 12 are available only when option 03 is installed.

## 16. Execute F5 (Adjust Range).

- 17. Press F4 (Calibration) and execute F1 (Power Calibration).
- 18. Check that the measurement range satisfies the Standard.
- **19**. When option 03 is installed, set the following.
- 20. Press F3 (Setup Search/Sweep Table) and press (More) to display the second function label page.
- **21. Press** F2 to clear the frequency table.
- 22. Set Table 4-1-1 and press F6 (Back Screen).
- 23. Press (More) to display the second function label page. Press
   F4 (Preselector) to set Spurious mode.
- 24. Return the function label to the first page.
- 25. Repeat Steps 13 to 15 above.

| Table | 4-1-1 |
|-------|-------|
|-------|-------|

|    | Start Frequency | Stop Frequency | RBW     |
|----|-----------------|----------------|---------|
| f1 | 10 MHz          | 30 MHz         | 100 kHz |
| f2 | <b>30 MHz</b>   | 800 MHz        | 100 kHz |
| f3 | 900 MHz         | 1000 MHz       | 100 kHz |
| f4 | 1000 MHz        | 1650 MHz       | 1 MHz   |
| f5 | 1750 MHz        | 2500 MHz       | 1 MHz   |
| f6 | 2600 MHz        | 3200 MHz       | 1 MHz   |
| f7 | 3200 MHz        | 7800 MHz       | 1 MHz   |

Table 4-1-2

|    | Start Frequency | Stop Frequency | RBW   |
|----|-----------------|----------------|-------|
| f1 | 1600 MHz        | 3150 MHz       | 1 MHz |

Table 4-2-1

|    | Start Frequency | Stop Frequency | RBW     |
|----|-----------------|----------------|---------|
| f1 | 10 MHz          | 30 MHz         | 100 kHz |
| f2 | 30 MHz          | 950 MHz        | 100 kHz |
| f3 | 1050 MHz        | 1950 MHz       | 1 MHz   |
| f4 | 2050 MHz        | 3200 MHz       | 1 MHz   |
| f5 | 3200 MHz        | 7800 MHz       | 1 MHz   |

Table 4-2-2

|    | Start Frequency | Stop Frequency | RBW   |
|----|-----------------|----------------|-------|
| f1 | 1600 MHz        | 1950 MHz       | 1 MHz |
| f2 | 2050 MHz        | 3150 MHz       | 1 MHz |

## IQ input modulation accuracy <MS860x>

- (1) Test specifications
- Resisual vector error: <2% (rms), DC coupling
- (2) Measurement units for test
  - Digital modulation signal generator: MG3681A
- (3) Setup



- (4) Test Procedures
- 1. Set the signal data for an arbitrary waveform generator as the evaluation signal.

For details on the evaluation signal, refer to "Evaluation Signal."

- 2. Set the measurement unit as follows:
  - Input Terminal: IQ-DC
  - Impedance: 50  $\Omega$
  - Measuring Object: Forward (RC1-2)
  - Filter: Filtering
  - Trigger: Free Run
- 3. Press F2 (Modulation Analysis) to display the Modulation Analysis screen.
- Press F4 (Analysis Mode) and then F1 (Analysis Start) and set Analysis Start to 0. Press F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 5. Check that the residual vector value satisfies the Standard.

## Power meter accuracy <MS860x>

- (1) Test specifications
- Measurement level accuracy ±10% (after zero-point calibration)
- (2) Measurement units for test
  - Digital modulation signal generator (SG1):MG3681A
  - Calibration receiver: ML2530A
  - Power meter: ML4803A
  - Power sensor: MA4601A
  - Programmable attenuator: MN72A
  - 3 dB ATT × 2: MP721A

(3) Setup



#### (4) Test Procedures

- 1. Connect power sensor (MA4601A) to the Cal Output for power meter (ML4803A) and execute Zero Adjust.
- 2. Set Sensor Input to On and execute ADJ (Cal Adjust).
- 3. Connect SG1 (MN72A output) to the power sensor (MA4601A) with MP721A.
- 4. Set the SG1 frequency. Measurement frequencies: 50 MHz, 2000 MHz, 3000 MHz
- 5. Adjust the SG1 level so that the power meter (ML4803A) indicates +10 dBm ±0.1 dB at the set frequency. Record the SG1 set value (Set\_Ref) and the power meter reading (Read\_Ref).
- 6. Connect the SG1 (MN72A output) to the calibration receiver (ML2530A) with MP721A and set the SG1 level to the Set\_Ref value above.
- Set the calibration receiver (ML2530A) to Relative mode (with range fixed to 1), lower the programmable attenuator (MN72A) in steps of 10 dB until it is -30 dB, and record the measurement value of MS2530A at each step (ATT\_n). After recording, reset the MN72A to 0 dB.
- 8. Press (\_\_\_\_) (More) on the measurement unit to display the second function label page.
- 9. Press [F6] (Power Meter) to display the Power Meter screen.
- 10. With no signals input to the measurement unit, execute F5 (Zero Set).
- 11. Connect SG1 (MN72A output) to the measurement unit with MP721A.
- 12. Set the frequency for the measurement unit to the value set in Step 4 above.
- 13. Lower the programmable attenuator (MN72A) in steps of 10 dB until it is -30 dB. Calculate the measurement accuracy from the measurement value for the measurement unit (tester measurement value) at each attenuation step and the Power meter reading (Read\_Ref) ML2530A measurement value (ATT\_n) (see the expression below). When changing the programmable attenuator settings, execute F4 (Adjust Range) at each step.

Measurement accuracy[%] = 
$$\left(\frac{10^{(Tester measurement value/10)}}{10^{(\text{Re }ad_{Re}f + ATT_n)/10}} - 1\right) \times 100^{10}$$

\* ATT\_n is a minus value.

14. Change the frequency and repeat Steps 3 to 13 above.

## Evaluation signal <MS860x>

Here, the evaluation signal settings are explained. The user will need the evaluation signal to perform the performance test. Based on these settings, set the Digital modulation signal generator.

Outline of evaluation signal

- Walsh Length = 64
- Channelization Code = Multiplexing of five codes: 0, 7, 15, 31, 63
- The power ratio is as follows:

Power ratio of each code

**Power ratio** 

Code 0 : -10.0 dB Code 7 : -0.68 dB Code 15 : -15.0 dB Code 31 : -20.0 dB

Code 63 : -25.0 dB

# Equipment Required for Performance Test <MS268x>

| Recommended<br>unit name (model)                                                    | Required performance                                                                                                                                                                                                                                                                                                | Test items                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital modulation<br>signal generator<br>(MG3681A/<br>MX368042A)<br>Two units used | <ul> <li>Frequency range: 10 MHz to 3 GHz<br/>Resolution 1 Hz available</li> <li>Output level range<br/>No modulation: -10 to 12 dBm<br/>Modulation: -10 to 4 dBm<br/>Resolution 0.1 dB available</li> <li>External reference input: (10 MHz)<br/>available</li> <li>Residual vector error: 2.5% or less</li> </ul> | Modulation/frequency<br>measurement<br>Code domain measurement<br>Transmission power<br>measurement accuracy<br>Linearity<br>Occupied frequency bandwidth<br>measurement<br>Nearby spurious measurement<br>Spurious measurement<br>IQ input modulation accuracy |
| Calibration<br>receiver<br>(ML2530A)                                                | <ul> <li>Frequency range: 100 kHz to 3 GHz<br/>Resolution 1 Hz available</li> <li>Measurement power range: -140 to<br/>20 dBm</li> <li>Measurement accuracy: ±0.04 dB</li> <li>External reference input: (10 MHz)<br/>available</li> </ul>                                                                          | Modulation/frequency<br>measurement<br>Linearity                                                                                                                                                                                                                |
| Power meter<br>(ML4803A)                                                            | <ul> <li>Main unit accuracy: ±0.02 dB</li> <li>Frequency range: 100 kHz to 8.5 GHz (depending on power sensor used)</li> </ul>                                                                                                                                                                                      | Modulation/frequency<br>measurement<br>Code domain measurement<br>Transmission power<br>measurement accuracy                                                                                                                                                    |
| Power sensor<br>(MA4601A)                                                           | <ul> <li>Frequency range: 10 MHz to 3 GHz</li> <li>Measurement power range: -30 to<br/>+20 dBm</li> <li>Input connector: N type</li> </ul>                                                                                                                                                                          | Linearity<br>Nearby spurious measurement<br>Spurious measurement                                                                                                                                                                                                |
| Fixed attenuator<br>(MP721D)                                                        | <ul> <li>Attenuation: 20 dB</li> <li>VSWR: 1.2 or less</li> </ul>                                                                                                                                                                                                                                                   | Transmission power<br>measurement accuracy                                                                                                                                                                                                                      |
| Programmable<br>attenuator<br>(MN72A)                                               | <ul> <li>Frequency range: DC to 18 GHz</li> <li>Attenuation accuracy: 0.9 dB</li> <li>VSWR: 1.2 or less</li> </ul>                                                                                                                                                                                                  | Modulation/frequency<br>measurement<br>Linearity                                                                                                                                                                                                                |
| Power divider                                                                       | • Frequency range: 50 MHz to 3 GHz                                                                                                                                                                                                                                                                                  | Modulation/frequency<br>measurement                                                                                                                                                                                                                             |
| Power splitter                                                                      | • Frequency range: 50 MHz to 3 GHz                                                                                                                                                                                                                                                                                  | Modulation/frequency<br>measurement                                                                                                                                                                                                                             |
| 2GHz LPF                                                                            | • Available for cutting off harmonic<br>wave of 2 GHz or more generated<br>by signal generator                                                                                                                                                                                                                      | Spurious measurement                                                                                                                                                                                                                                            |

The measurement equipment required for the performance test is listed below.

The "Required Performance" column shows excerpts from the performance covering the measurement range of the test items.

## Performance Test <MS268x>

Before starting the performance test, warm up the devices to be tested and measurement units at least 30 minutes or more unless otherwise specified and make sure that they are stabilized.

To exert the highest measurement accuracy, measurement should be performed at room temperature ( $25 \pm 5^{\circ}$ C), with little AC power voltage fluctuation, and in an environment free from noise, vibration, dust, humidity and other problems.

## Modulation/frequency measurement <MS268x>

This section describes the tests on the following items:

- Carrier frequency accuracy
- Residual vector error
- Origin offset accuracy

### (1) Test specifications

- <MS2681A/MS2683A>
- Carrier frequency accuracy: ± (Reference crystal oscillator accuracy +10 Hz)

Input: Level  $\geq -30$  dBm (preamplifier Off), -40 dBm (preamplifier On\*), with code channel 1 CH only

- Residual vector error: <2.0% (rms) Input: Level ≥ -30 dBm (preamplifier Off), -40 dBm (preamplifier On\*), with code channel 1 CH only
- Origin offset accuracy:  $\pm 0.5 \ dB$ Input: Level  $\geq -30 \ dBm$  (preamplifier Off),  $-40 \ dBm$  (preamplifier On\*), with code channel 1 CH only, for a signal with origin offset  $-30 \ dBc$

\*Preamplifier On is available when Main unit option -08 is installed.

<MS2687A/B>

- Carrier frequency accuracy:  $\pm$  (Reference crystal oscillator accuracy +10~Hz)
  - Input: Level  $\geq -30$  dBm, with code channel 1 CH only
- Residual vector error: <2.0% (rms) Input: Level ≥ -30 dBm, with code channel 1 CH only
- Origin offset accuracy:  $\pm 0.5~dB$  Input: Level  $\geq -30~dBm$ , with code channel 1 CH only, for a signal with origin offset -30~dBc

## (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- Digital modulation signal generator (SG2): MG3681A
- Calibration receiver: ML2530A
- Programmable attenuator: MN72A
- Power divider
- Power splitter
- Power meter: ML4803A
- Power sensor: MA4601A

### (3) Setup



#### (4) Test Procedures

- 1. Set the programmable attenuator (MN72A) to 0 dB.
- 2. Set SG1 as follows:
  - Frequency: (Frequency in Table at step 18 +307.2 kHz) 307.2 kHz is a quarter of the chip rate.
  - Level: -10 dBm
  - Modulation: No modulation
- 3. Set SG2 as follows (RF Output is OFF):
  - Frequency: (Frequency in Table at step 18)
  - Level: SG1 Level -40 dBm
  - Modulation: No modulation
- 4. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: -10 dBm
  - Frequency: (Frequency in Table at step 18)
  - Measuring Object: QPSK & Continuous
  - Filter: Filtering
  - Trigger: Free Run
- 5. Connect the splitter output to the power sensor (MA4601A) and switch SG1 output to ON.
- 6. Adjust the SG1 level so that power meter (ML4803A) indicates a value of -10 dBm  $\pm 0.1$ dB.
- 7. Connect the splitter output to RF input of the measurement unit.
- 8. Set the calibration receiver (ML2530A) frequency to the frequency given in Table at step 18 +307.2 kHz and set BW to 100 Hz, Absolute mode
- 9. Set SG2 RF Output to Off, set SG1 RF Output to On, change the ML2530A frequency to the frequency given in Table at step 18, and adjust the SG1 level so that the indicated value matches the one given in Table at step 18.
- 10. Set SG1 RF Output to Off, SG2 RF Output to On, and ML2530A to Relative mode. Adjust the SG2 level so that the indicated value matches  $-30 \pm 0.1$ dB and record the results (origin offset expected value).
- 11. Set the programmable attenuator (MN72A).
  - For Pre-Ampl On: 30dB
  - For Pre-Ampl Off: 20 dB
- 12. Press F2 (Modulation Analysis) on the measurement unit to display the Modulation Analysis screen.
- 13. Execute [F5] (Adjust Range).

- 14. Press F4 (Analysis Mode) and then F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 15. Read the measurement results displayed on the screen and check that the origin offset satisfies the Standard.
  Origin offset accuracy [dB] = Measurement result Origin offset expected value.
- 16. Set the SG2 output to Off.
- 17. Read the measurement results displayed on the screen and check that the frequency error and residual vector error satisfy the Standard.
- Change the frequency as shown in the table below and repeat Steps 1 to 17.

|           | Level (input level to MS268x)        |                                      |                                      |  |
|-----------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| Frequency | MS2681A/3A<br>Pre-Ampl On            | MS2681A/3A<br>Pre-Ampl Off           | MS2687A/B                            |  |
| 50 MHz    | $-40 \text{ dBm} \pm 0.1 \text{ dB}$ | -30 dBm ±0.1 dB                      | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ |  |
| 850 MHz   | $-40 \ dBm \pm 0.1 \ dB$             | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ |  |
| 2000 MHz  | -40 dBm ±0.1 dB                      | -30 dBm ±0.1 dB                      | -30 dBm ±0.1 dB                      |  |
| 2300 MHz  | $-40 \ dBm \ \pm 0.1 \ dB$           | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ | $-30 \text{ dBm} \pm 0.1 \text{ dB}$ |  |

## Code domain measurement <MS268x>

This section describes the tests on the following items:

• Code domain power measurement accuracy

This measurement is not completely the same as the shipment inspection done by Anritsu.

(1) Test specifications

<MS2681A/MS2683A>

• Code domain power measurement accuracy:

 $\pm 0.1 \text{ dB}$  (Code power $\geq -10 \text{ dBc}$ )  $\pm 0.3 \text{ dB}$  (Code power $\geq -25 \text{ dBc}$ )

Input level:  $\geq -10$  dBm (preamplifire Off)

 $\geq$  -20 dBm (preamplifire On)

#### <MS2687A/B>

• Code domain power measurement accuracy:

 $\pm 0.1 \text{ dB}$  (Code power $\ge -10 \text{ dBc}$ )

 $\pm 0.3~dB$  (Code power $\geq -25~dBc)$ 

Input level:  $\geq -10$ 

- (2) Measurement units for test
  - Digital modulation signal generator (SG1): MG3681A
  - Power Meter: ML4803A
  - Power Sensor: MA4601A
- (3) Setup



#### (4) Test Procedures

- 1. Set the evaluation signal data in the digital modulation signal generator (SG1). For details on the evaluation signal, refer to "Evaluation Signal."
- 2. Set SG1 as follows:
  - Frequency: 50 MHz
  - Level: -10 dBm
- 3. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: -10 dBm
  - Frequency: 50 MHz
  - Measuring Object: Forward (RC1-2)
  - Filter: Filtering
  - Trigger: Free Run
- 4. Connect the SG1 output to the power sensor (MA4601A) and switch SG1 output to ON.
- 5. Adjust the SG1 level so that the power meter (ML4803A) indicates a value of  $-10~dBm~\pm0.1~dB.$
- 6. Connect the SG1 output to RF input of the measurement unit.
- 7. Press F2 (Modulation Analysis) on the measurement unit to display the Modulation Analysis screen
- 8. Execute F5 (Adjust Range).
- 9. Press F4 (Analysis Mode) and then F1 (Analysis Start) and set Analysis Start to 0. Press F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 10. Press F6 (Return) and then F1 (Trace Format) and set Code Domain.
- 11. Press (More) once to display the second function lavel page.
- **12.** Press F2 (Auto Rate detection) to set it Off.
- 13. Press Single and wait unit measuring is completed.
- 14. Check that the power of the codes satisfies the Standard. The codes and their expected power values are listed below.
  - Code 0 : -10.0 dB
  - Code 7 : -0.68 dB
  - Code 15 : -15.0 dB
  - Code 31 : -20.0 dB
  - Code 63 : -25.0 dB
- 15. Change the frequency of SG1 and the measurement unit to 850 MHz, 2 GHz, and 2.3 GHz and repeat Steps 1 to 14 above.

## Linearity <MS268x>

(1) Test specifications

<MS2681A/MS2683A> ±0.2 dB (0 to -40 dB) <MS2687A/B> ±0.2 dB (0 to -30 dB)

Without changing the reference level setting after range optimization

(2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- Calibration receiver: ML2530A
- Programmable attenuator: MN72A
- Power meter: ML4803A
- Power sensor: MA4601A
- (3) Setup



#### (4) Test Procedures

- 1. Connect power sensor (MA4601A) to Cal Output on power meter (ML4803A) and execute Zero Cal.
- 2. Connect SG1 (MN72A output) to power sensor (MA4601A).
- 3. Set the SG1 frequency and then set the programmable attenuator (MN72A) to 0 dB. Adjust the SG1 level so that the power meter (ML4803A) indicates +10 dBm  $\pm$ 0.1 dB. Record the measurement results (Set\_Ref). See the table below for the measured frequency and levels.

|           | Level (input level to MS268x)        |                                    |                                    |  |
|-----------|--------------------------------------|------------------------------------|------------------------------------|--|
| Frequency | MS2681A/3A<br>Pre-Ampl On            | MS2681A/3A<br>Pre-Ampl Off         | MS2687A/B                          |  |
| 50 MHz    | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | 0 dBm ±0.1 dB                      | 0 dBm ±0.1 dB                      |  |
| 850 MHz   | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | $0 \text{ dBm} \pm 0.1 \text{ dB}$ | $0 \text{ dBm} \pm 0.1 \text{ dB}$ |  |
| 2000 MHz  | $-20 \text{ dBm} \pm 0.1 \text{ dB}$ | 0 dBm ±0.1 dB                      | $0 \text{ dBm} \pm 0.1 \text{ dB}$ |  |
| 2300 MHz  | -20 dBm ±0.1 dB                      | 0 dBm ±0.1 dB                      | 0 dBm ±0.1 dB                      |  |

- 4. Connect SG1 (MN72A output) to calibration receiver (ML2530A) and set BW to 100Hz, Relative mode (with the range fixed to 1).
- 5. Lower the SG1 output level (for Set\_Ref) in steps of 10 dB until it is -40 dBc and record the measurement value (ML2530A reading) at the calibration receiver (ML2530A) for each step.
- 6. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: (Level indicated in Table at step 3)
  - Frequency: (Frequency indicated in Table at step 3)
  - Measuring Object : QPSK & Continuous
  - Filter: Filtering
  - Trigger: Free Run
- 7. Set the programmable attenuator (MN72A) as follows:
  - When Pre-Ampl is ON: 30 dB
  - When Pre-Ampl is OFF: 20 dB
- 8. Connect SG1 (MN72A) to the measurement unit and set the SG1 level to Set Ref.
- 9. Press F3 (RF Power) to display the RF power screen.
- **10.** Execute F5 (Adjust Range).
- 11. Record the Tx Power value (dBm) (Measure\_Ref).

- 12. Lower the SG1 output level (for Set\_Ref) in steps of 10 dB until it is -40 dBc and record the Tx Power value at each step.
  \*Note that the SG1 level should be lowered in steps of 10 dB; do not adjust the programmable attenuator (MN72A).
- Check that the linearity error (shown below) satisfies the Standard. Linearity error [dB] = Tx Power value – (Measure\_Ref – ML2530A reading)
- 14. Change the frequency and repeat Steps 2 t 13 above.

Occupied frequency bandwidth measurement <MS268x>

- (1) Test specifications
- This test is a functional test and therefore has no test specifications.
- (2) Measurement units for test
  - Digital modulation signal generator: MG3681A
- (3) Setup



- (4) Test procedures
- 1. Set the evaluation signal data in the digital modulation signal generator (SG1). For details on the evaluation signal, refer to "Evaluation signal.
- 2. Set SG1 as follows:
  - Frequency: (Given in Table at step 8)
  - Level: (Given in Table at step 8)
- 3. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: 0 dBm (Level given in Table at step 8)
  - Frequency: 50 MHz (Frequency given in Table at step 8)
  - Measuring Object: QPSK & Continuous
- 4. Press F4 (Occupied Bandwidth) and display the Occupied Bandwidth screen.
- 5. Execute F5 (Adjust Range).
- 6. Press F1 (Measure Method) and set the measurement method to FFT.
- 7. Check that the occupied frequency bandwidth measurement value is 1.26  $\pm 0.1$  MHz.
- 8. Change the frequency and repeat Steps 2 to 7 above.

|           | Level (SG1 set value)     |                            |           |  |  |
|-----------|---------------------------|----------------------------|-----------|--|--|
| Frequency | MS2681A/3A<br>Pre-Ampl On | MS2681A/3A<br>Pre-Ampl Off | MS2687A/B |  |  |
| 50 MHz    | -30 dBm                   | -20 dBm                    | -20 dBm   |  |  |
| 850 MHz   | -30 dBm                   | –20 dBm                    | –20 dBm   |  |  |
| 2000 MHz  | -30 dBm                   | -20 dBm                    | -20 dBm   |  |  |
| 2300 MHz  | -30 dBm                   | -20 dBm                    | -20 dBm   |  |  |

# Nearby spurious measurement <MS268x>

(1) Test specifications

Input level ≥0 dBm (preamplifier Off) 900 kHz detuning: ≥51 dBc 1.98 MHz detuning: ≥61 dBc

## (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- Power meter: ML4803A
- Power sensor: MA4601A



- (4) Test Procedures
- 1. Set the digital modulation signal generator (SG1) as follows:
  - Frequency: (Given in Table at step 8)
  - Level: (Given in Table at step 8)
  - System: IS-95
  - Link: Forward
  - Filter: SPEC + EQ
  - Pat. Number: 9
- 2. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: 0 dBm (Level given in Table at step 8)
  - Frequency: (Given in Table at step 8)
  - Measuring Object: QPSK & Continuous
  - Trigger: Free Run
- 3. Connect the SG1 output to the power sensor (MA4601A).
- 4. Adjust the SG1 level so that the power meter (ML4803A) indicates a value of Table at step 8
- 5. Connect the SG1 output to RF input of the measurement unit.

- 6. Press F5 (Spurious close to the Carrier) to display the Spurious close to the Carrier screen.
- 7. Execute F4 (Adjust Range).
- 8. Read the measurement results and check that the measurement range satisfies the Standard.

|           | Level (input le | vel to MS268x)                     |
|-----------|-----------------|------------------------------------|
| Frequency | MS268x          | When MS268x<br>Pre-Ampl installed* |
| 50 MHz    | 0 dBm ±0.1 dB   | 0 dBm ±0.1 dB                      |
| 850 MHz   | 0 dBm ±0.1 dB   | 0 dBm ±0.1 dB                      |
| 2000 MHz  | 0 dBm ±0.1 dB   | 0 dBm ±0.1 dB                      |
| 2300 MHz  | 0 dBm ±0.1 dB   | 0 dBm ±0.1 dB                      |

\*: Measurement with option 08 installed and Pre-Ampl set to Off

## Spurious measurement <MS268x>

This test is a functional test and test specifications are typical.

#### (1) Test specifications

#### <MS2681A>

- Measurement range
  - At Cw carrie frequency 800MHz to 1 GHz or 1.8 to 2.2 GHz  $\,$
  - ≥79dB typical (RBW: 10 kHz)
    - (10 to 30 MHz)
  - ≥79dB typical (RBW: 100 kHz)
  - (30 MHz to 1 GHz)
  - $\geq$ 76 f [GHz] dB typical (RBW: 1 MHz)
    - (1 to 3.0 GHz)

\*For carrier frequency 2030.354 to 2200 MHz, spurious occurs at the following frequency:

**f(Sprious) = f (in)** -2030.345 MHz

#### <MS2683A/MS2687A/B>

- Measurement range
  - At Cw carrie frequency 800MHz to 1 GHz or 1.8 to 2.2 GHz  $\,$
  - $\geq$ 79dB typical l (RBW: 10 kHz)
    - (10 to 30 MHz, band 0)
  - ≥79dB typical (RBW: 100 kHz)
  - (30 MHz to 1 GHz, band 0)
  - ≥76 –f [GHz] dB typical (RBW: 1 MHz)
    - (1 to 3.15 GHz, band 0, in normal mode)
  - ≥76 dB typical (RBW: 1 MHz)
    - (3.15 to 7.9 GHz, band 1, in normal mode)
  - ≥68 dB typical (RBW: 1 MHz)
    - (7.9 to 12.75 GHz, band 2, in MS2687A)
  - ≥74 dB typical (RBW: 1 MHz)

(7.9 to 12.75 GHz, band 2, in MS2687B)

\*For carrier frequency 2030.354 to 2200 MHz, spurious occurs at the following frequency:

**f(Sprious) = f (in)** -2030.345 MHz

## (2) Measurement units for test

- Digital modulation signal generator (SG1): MG3681A
- LPF switching unit (available for cutting off secondary harmonic wave of 850 MHz and for filter through operation)
- 2 GHz LPF
- Power meter: ML4803A
- Power sensor: MA4601A

(2) Setup



- (4) Test Procedures
- 1. Set the digital modulation signal generator (SG1) frequency and output level. Measure the input level to the measurement unit using the power meter See the table below for the measured frequencies and levels.

|           | Level (power meter reading) |                                    |  |  |
|-----------|-----------------------------|------------------------------------|--|--|
| Frequency | MS268x                      | When MS268x<br>Pre-Ampl installed* |  |  |
| 850 MHz   | 0 dBm ±0.1 dB               | 0 dBm ±0.1 dB                      |  |  |
| 2000 MHz  | 0 dBm ±0.1 dB               | 0 dBm ±0.1 dB                      |  |  |

\*: With option 08 installed and Pre-Ampl set to Off

- 2. Set the measurement unit as follows:
  - Input Terminal: RF
  - Reference Level: 0 dBm
  - Frequency: 2000 MHz
  - Measuring Object: QPSK & Countinuous
  - Filter: Filtering
  - Trigger: Free Run
- 3. Connect the 2 GHz LPF output to the power sensor (MA4601A).
- 4. Adjust the SG1 level so that the power meter (ML4803A) indicates a value of table at step 1.
- 5. Connect the 2 GHz LPF output to RF input of the measurement unit.
- 6. Press F6 (Spurious Emission) to display the Spurious Emission screen.
- 7. Press (More) to display the third function label page.
- 8. Press [F1] (Ref Power) to set Tx Power.
- 9. Press (More) to display the first function label page.
- 10. Press F1 (Sprious Mode) and set F3 (Sweep). After setting, press F6 (Return).
- 11. Press F3 (Setup Search/Sweep Table) and set Table 4-3-1. Agter setting, press F6 (Back Screen).
- 12. Press (More) to display the second function label page. Press [F4] (preselector) to set Nomal mode.
- 13. Return the function label to the first page.\* Steps 9 and 10 are available only when option 03 is installed.
- 14. Execute [F5] (Adjust Range).
- 15. Check that the measurement range satisfies the Standard.
- 16. When option 03 is installed, set the following.
- 17. Press F3 (Setup Search/Sweep Table) and press (More) to display the second function label page.
- **18.** Press [F2] to clear the frequency table.
- **19.** Set Table 4-3-2 and press F6 (Back Screen).
- 20. Press (More) to display the second function label page. Press F4 (preselector) and set Spurious mode.
- 21. Return the function label to the first page.
- 22. Repeat Steps 11 to 13 above.

## Performance Test <MS268x>

|    | Table 4-3-1     |                |         |  |  |  |
|----|-----------------|----------------|---------|--|--|--|
|    | Start Frequency | Stop Frequency | RBW     |  |  |  |
| f1 | 10 MHz          | 30 MHz         | 100 kHz |  |  |  |
| f2 | 30 MHz          | 800 MHz        | 100 kHz |  |  |  |
| f3 | 900 MHz         | 1000 MHz       | 100 kHz |  |  |  |
| f4 | 1000 MHz        | 1650 MHz       | 1 MHz   |  |  |  |
| f5 | 1750 MHz        | 2500 MHz       | 1 MHz   |  |  |  |
| f6 | 2600 MHz        | 3200 MHz       | 1 MHz   |  |  |  |
| f7 | 3200 MHz        | 7800 MHz       | 1 MHz   |  |  |  |

Table 4-3-2

|    | Start Frequency | Stop Frequency | RBW   |
|----|-----------------|----------------|-------|
| f1 | 1600 MHz        | 3150 MHz       | 1 MHz |

Table 4-4-1

|    | Start Frequency | Stop Frequency | RBW     |
|----|-----------------|----------------|---------|
| f1 | 10 MHz          | 30 MHz         | 100 kHz |
| f2 | 30 MHz          | 950 MHz        | 100 kHz |
| f3 | 1050 MHz        | 1950 MHz       | 1 MHz   |
| f4 | 2050 MHz        | 3200 MHz       | 1 MHz   |
| f5 | 3200 MHz        | 7800 MHz       | 1 MHz   |

Table 4-4-2

|    | Start Frequency | Stop Frequency | RBW   |
|----|-----------------|----------------|-------|
| f1 | 1600 MHz        | 1950 MHz       | 1 MHz |
| f2 | 2050 MHz        | 3150 MHz       | 1 MHz |

# IQ input modulation accuracy <MS268x>

## (1) Test specifications

- Resisual vector error: <2% (rms), DC coupling (When MS2681A-17, MS2681A-18, MS2683A-17, MS2683A-18 or MS2687A/B is installed)
- (2) Measurement units for test
  - Digital modulation signal generator: MG3681A

#### (3) Setup



- (4) Test Procedures
- 1. Set the signal data for an arbitrary waveform generator as the evaluation signal. For details on the evaluation signal, refer to "Evaluation Signal."
- 2. Set the measurement unit as follows:
  - Input Terminal: IQ-DC
  - Impedance: 50  $\Omega$
  - Measuring Object: Forward (RC1-2)
  - Filter: Filtering
  - Trigger: Free Run
- 3. Press F2 (Modulation Analysis) to display the Modulation Analysis screen.
- 4. Press F4 (Analysis Mode) and then F1 (Analysis Start) and set Analysis Start to 0. Press F2 (Analysis Length) and set Analysis Length to 1536 chips.
- 5. Check that the residual vector value satisfies the Standard.

# Evaluation signal <MS268x>

Here, the evaluation signal settings are explained. The user will need the evaluation signal to perform the performance test. Based on these settings, set the Digital modulation signal generator.

Outline of evaluation signal

- Walsh Length = 64
- Channelization Code = Multiplexing of five codes: 0, 7, 15, 31, 63
- The power ratio is as follows:

Power ratio of each code

**Power ratio** 

- Code 0 : -10.0 dB Code 7 : -0.68 dB Code 15 : -15.0 dB Code 31 : -20.0 dB
- Code 63 : -25.0 dB

# Sample of Entry Forms for Performance Test Results </br><MS860x>

This section offers sample forms for entering the results of the MS8608A digital mobile radio transmitter tester performance test. Copy these entry forms and use them.

| Test location:                                        |                                 | Report No.:<br>Date:<br>Tested by: |    |
|-------------------------------------------------------|---------------------------------|------------------------------------|----|
| Unit name: MS8608A Digital Mobi<br>MX860803A cdma mea | ile Radio Tran<br>surement soft | smitter Tester<br>ware             |    |
| Serial No.:                                           |                                 | Ambient<br>temperature:            | °C |
| Power frequency:                                      | Hz                              | Relative<br>humidity:              | %  |
| Remarks:                                              |                                 |                                    |    |
|                                                       |                                 |                                    |    |

Modulation/Frequency measurement <MS860x>

|                             |                            | 50 MHz  | 850 MHz  | 2000 MHz | 2300 MHz     |  |
|-----------------------------|----------------------------|---------|----------|----------|--------------|--|
| Residual<br>vector<br>error | Minimum value              |         | 0        | %        |              |  |
|                             | Measurement value          | %       | <u>%</u> | %        | <u>    %</u> |  |
|                             | Maximum value              | 1.8%    |          |          |              |  |
|                             | Measurement<br>uncertainty | 0.2%    |          |          |              |  |
|                             | Minimum value              | –9.9 Hz |          |          |              |  |
| Comion                      | Measurement value          | Hz      | Hz       | Hz       | Hz           |  |
| Carrier<br>frequency        | Maximum value              | +9.9 Hz |          |          |              |  |
|                             | Measurement<br>uncertainty | ±0.1 Hz |          |          |              |  |

#### Frequency/modulation measurement accuracy (High Power input)

# Sample of Entry Forms for Performance Test Results <MS860x>

|                             |                            | 50 MHz   | 850 MHz      | 2000 MHz | 2300 MHz     |  |
|-----------------------------|----------------------------|----------|--------------|----------|--------------|--|
| Residual<br>vector<br>error | Minimum value              |          | 0            | %        |              |  |
|                             | Measurement value          | <u>%</u> | <u>    %</u> | %        | <u>    %</u> |  |
|                             | Maximum value              | 1.8%     |              |          |              |  |
|                             | Measurement<br>uncertainty | 0.2%     |              |          |              |  |
|                             | Minimum value              | –9.9 Hz  |              |          |              |  |
| Comion                      | Measurement value          | Hz       | Hz           | Hz       | Hz           |  |
| Carrier<br>frequency        | Maximum value              | +9.9 Hz  |              |          |              |  |
|                             | Measurement<br>uncertainty | ±0.1 Hz  |              |          |              |  |

#### Frequency/modulation measurement accuracy (Low Power input)

Frequency/modulation measurement accuracy (for Low Power input and Pre-Ampl On)

|                             |                            | 50 MHz       | 850 MHz | 2000 MHz | 2300 MHz |  |
|-----------------------------|----------------------------|--------------|---------|----------|----------|--|
| Residual<br>vector<br>error | Minimum value              | 0%           |         |          |          |  |
|                             | Measurement value          | <u>    %</u> | %       | %        | %        |  |
|                             | Maximum value              | 1.8%         |         |          |          |  |
|                             | Measurement<br>uncertainty | 0.2%         |         |          |          |  |
|                             | Minimum value              | –9.9 Hz      |         |          |          |  |
| Comion                      | Measurement value          | Hz           | Hz      | Hz       | Hz       |  |
| frequency                   | Maximum value              | +9.9 Hz      |         |          |          |  |
|                             | Measurement<br>uncertainty | ±0.1 Hz      |         |          |          |  |

#### Origin offset expected value

|                | 50 MHz    | 850 MHz   | 2000 MHz  | 2300 MHz |
|----------------|-----------|-----------|-----------|----------|
| Expected value | <u>dB</u> | <u>dB</u> | <u>dB</u> | <u> </u> |

## Origin offset (High Power input)

|                            | 50 MHz    | 850 MHz   | 2000 MHz  | 2300 MHz  |  |  |
|----------------------------|-----------|-----------|-----------|-----------|--|--|
| Measurement result         | dB        | dB        | dB        | dB        |  |  |
| Upper limit                | +0.46 dB  |           |           |           |  |  |
| Origin offset<br>accuracy* | <u>dB</u> | <u>dB</u> | <u>dB</u> | <u>dB</u> |  |  |
| Lower limit                | -0.46 dB  |           |           |           |  |  |
| Measurement<br>uncertainty | ±0.04 dB  |           |           |           |  |  |

| Origin offset (Low Power Input) |                                  |           |           |           |  |  |  |
|---------------------------------|----------------------------------|-----------|-----------|-----------|--|--|--|
|                                 | 50 MHz 850 MHz 2000 MHz 2300 MHz |           |           |           |  |  |  |
| Measurement result              | dB                               | dB        | dB        | dB        |  |  |  |
| Upper limit                     | +0.46 dB                         |           |           |           |  |  |  |
| Origin offset<br>accuracy*      | <u>dB</u>                        | <u>dB</u> | <u>dB</u> | <u>dB</u> |  |  |  |
| Lower limit                     | -0.46 dB                         |           |           |           |  |  |  |
| Measurement<br>uncertainty      | ±0.04 dB                         |           |           |           |  |  |  |

Origin offset (Low Power input)

Origin offset (Low Power input and Pre-Ampl On)

|                            | 50 MHz    | 850 MHz   | 2000 MHz  | 2300 MHz  |  |
|----------------------------|-----------|-----------|-----------|-----------|--|
| Measurement result         | <u>dB</u> | dB        | dB        | dB        |  |
| Upper limit                | +0.46 dB  |           |           |           |  |
| Origin offset<br>accuracy* | <u>dB</u> | <u>dB</u> | <u>dB</u> | <u>dB</u> |  |
| Lower limit                | -0.46 dB  |           |           |           |  |
| Measurement<br>uncertainty | ±0.04 dB  |           |           |           |  |

\*: Origin offset accuracy [dB] = Measurement result – Origin offset expected value

# Code domain measurement <MS860x>

| Code No. |                    | 5 MHz        | 850 MHz | 2000 MHz | 2300 MHz |  |
|----------|--------------------|--------------|---------|----------|----------|--|
|          | Upper limit        |              | -2.3    | 6 dB     |          |  |
| 0        | Measurement value  | dB           | dB      | dB       | dB       |  |
|          | Lower limit        |              | -2.5    | 2 dB     |          |  |
|          | Upper limit        |              | -4.9    | 2 dB     |          |  |
| 7        | Measurement value  | dB           | dB      | dB       | dB       |  |
|          | Lower limit        | mit -5.08 dB |         |          |          |  |
|          | Upper limit        | -9.92 dB     |         |          |          |  |
| 15       | Measurement value  | dB           | dB      | dB       | dB       |  |
|          | Lower limit        |              | -10.0   | )8 dB    |          |  |
|          | Upper limit        |              | -19.7   | '2 dB    |          |  |
| 31       | Measurement value  | dB           | dB      | dB       | dB       |  |
|          | Lower limit        |              | -20.2   | 8 dB     |          |  |
|          | Upper limit        |              | -24.7   | '2 dB    |          |  |
| 63       | Measurement value  | dB           | dB      | <u> </u> | dB       |  |
|          | Lower limit        | -25.28 dB    |         |          |          |  |
| Measu    | rement uncertainty | ±0.02 dB     |         |          |          |  |

| Cod      | Code domain power measurement accuracy (Low Power input and Pre-Ampl On) |           |           |           |           |  |
|----------|--------------------------------------------------------------------------|-----------|-----------|-----------|-----------|--|
| Code No. |                                                                          | 5 MHz     | 850 MHz   | 2000 MHz  | 2300 MHz  |  |
|          | Upper limit                                                              |           | -2.3      | 6 dB      |           |  |
| 0        | Measurement value                                                        | <u>dB</u> | <u>dB</u> | dB        | dB        |  |
|          | Lower limit                                                              |           | -2.5      | 2 dB      |           |  |
|          | Upper limit                                                              |           | -4.9      | 2 dB      |           |  |
| 7        | Measurement value                                                        | <u>dB</u> | <u>dB</u> | <u>dB</u> | dB        |  |
|          | Lower limit                                                              | -5.08 dB  |           |           |           |  |
|          | Upper limit                                                              | -9.92 dB  |           |           |           |  |
| 15       | Measurement value                                                        | <u>dB</u> | <u>dB</u> | <u>dB</u> | dB        |  |
|          | Lower limit                                                              |           | -10.0     | 8 dB      |           |  |
|          | Upper limit                                                              | -19.72 dB |           |           |           |  |
| 31       | Measurement value                                                        | dB        | dB        | dB        | dB        |  |
|          | Lower limit                                                              | -20.28 dB |           |           |           |  |
|          | Upper limit                                                              |           | -24.7     | '2 dB     |           |  |
| 63       | Measurement value                                                        | <u>dB</u> | <u>dB</u> | <u>dB</u> | <u>dB</u> |  |
|          | Lower limit                                                              | -25.28 dB |           |           |           |  |
| Measu    | rement uncertainty                                                       |           | $\pm 0.0$ | 2 dB      |           |  |

## Sample of Entry Forms for Performance Test Results <MS860x>

# Transmission power measurement accuracy <MS860x>

#### Power meter reading

|             |             | 50 MHz    | 850 MHz | 2000 MHz  | 2300 MHz |  |
|-------------|-------------|-----------|---------|-----------|----------|--|
|             | Upper limit | +10.1 dBm |         |           |          |  |
| Power meter | Reading     | <u>dB</u> | dB      | <u>dB</u> | dB       |  |
| reaung      | Lower limit |           | +9.9    | dBm       |          |  |

#### Actual attenuation of programmable attenuator (attenuation from +10 dBm)

| ATT set value | 50 MHz | 850 MHz | 2000 MHz | 2300 MHz |
|---------------|--------|---------|----------|----------|
| 20            | dB     | dB      | dB       | dB       |

#### Transmission power measurement accuracy (High Power input)

|             |                            | 50 MHz    | 850 MHz | 2000 MHz  | 2300 MHz |  |
|-------------|----------------------------|-----------|---------|-----------|----------|--|
|             | Minimum value              |           | +0.2    | 3 dB      |          |  |
| Maagumamant | Measurement value          | <u>dB</u> | dB      | <u>dB</u> | dB       |  |
| Measurement | Maximum value              | -0.23 dB  |         |           |          |  |
| uccurucy    | Measurement<br>uncertainty | ±0.17 dB  |         |           |          |  |

Measurement accuracy [dB] = Tx Power value - Power meter reading

|             |                            | 50 MHz    | 850 MHz | 2000 MHz | 2300 MHz |  |
|-------------|----------------------------|-----------|---------|----------|----------|--|
|             | Minimum value              |           | +0.23   | 3 dB     |          |  |
| Maagumamant | Measurement value          | <u>dB</u> | dB      | dB       | dB       |  |
|             | Maximum value              |           | -0.23   | 3 dB     |          |  |
| uccurucy    | Measurement<br>uncertainty | ±0.17 dB  |         |          |          |  |

Transmission power measurement accuracy (Low Power input)

Measurement accuracy [dB] = Tx Power value – (Power meter reading – Actual attenuation for MN72A ATT: 20 dB)

| Transmission power measurement accuracy (Low Power input and Pre-Ampl On) |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

|             |                            | 50 MHz    | 850 MHz   | 2000 MHz  | 2300 MHz  |  |
|-------------|----------------------------|-----------|-----------|-----------|-----------|--|
|             | Minimum value              | +0.23 dB  |           |           |           |  |
| Maasuramant | Measurement value          | <u>dB</u> | <u>dB</u> | <u>dB</u> | <u>dB</u> |  |
| accuracy N  | Maximum value              | -0.23 dB  |           |           |           |  |
|             | Measurement<br>uncertainty | ±0.17 dB  |           |           |           |  |

Measurement accuracy [dB] = Tx Power value – (Power meter reading – Actual attenuation for MN72A ATT: 20 dB)

# Sample of Entry Forms for Performance Test Results <MS860x>

# Linearity <MS860x>

## SG1 set value for +0.5 dBm calibration at each frequency

|              |     |         | 50 MHz | 850 MHz | 2000 MHz | 2300 MHz |
|--------------|-----|---------|--------|---------|----------|----------|
| SG1<br>value | set | Set_Ref | dBm    | dBm     | <u> </u> | dBm      |

## Linearity accuracy (High Power input)

| Frequency<br>(MHz)         | SG level<br>(dBm) | Calibration<br>receiver<br>measurement<br>value (dB) | Tester<br>measurement<br>value (dBm) | Linearity<br>calculation<br>value (dB)*2 | Effective range<br>(dB) |  |  |
|----------------------------|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|--|--|
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | 0                 | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
| 50                         | -10               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -20               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | +10               |                                                      | dBm*1                                |                                          |                         |  |  |
|                            | 0                 | dB                                                   | dBm                                  | <u>dB</u>                                | ±0.16 dB                |  |  |
| 850                        | -10               | <u>dB</u>                                            | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -20               | <u>dB</u>                                            | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | 0                 | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
| 2000                       | -10               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -20               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | 0                 | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
| 2300                       | -10               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -20               | <u>dB</u>                                            | <u> </u>                             | dB                                       | ±0.16 dB                |  |  |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |
| Measurement<br>uncertainty |                   |                                                      | ±0.04 dB                             |                                          |                         |  |  |

| Frequency<br>(MHz)         | SG level<br>(dBm) | Calibration<br>receiver<br>measurement<br>value (dB) | Tester<br>measurement<br>value (dBm) | Linearity<br>calculation<br>value (dB)*2 | Effective range<br>(dB) |  |  |  |
|----------------------------|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|--|--|--|
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |  |
|                            | -20               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |  |  |
| 50                         | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |  |
|                            | -40               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |  |
|                            | -50               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |  |
|                            | -20               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
| 850                        | -30               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -40               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -50               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |  |
|                            | -20               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
| 2000                       | -30               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -40               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -50               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |  |
|                            | -20               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |  |
| 2300                       | -30               | dB                                                   | <u>dBm</u>                           | dB                                       | ±0.16 dB                |  |  |  |
|                            | -40               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |  |
|                            | -50               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |  |  |
| Measurement<br>uncertainty |                   |                                                      | ±0.04 dB                             |                                          |                         |  |  |  |

Linearity accuracy (Low Power input)

Sample of Entry Forms for Performance Test Results <MS860x>

| Frequency<br>(MHz)         | SG level<br>(dBm) | Calibration<br>receiver<br>measurement<br>value (dB) | Tester<br>measurement<br>value (dBm) | Linearity<br>calculation<br>value (dB)*2 | Effective range<br>(dB) |  |  |
|----------------------------|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|--|--|
|                            | -20               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | -30               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
| 50                         | -40               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | <b>-50</b>        | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -60               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -20               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | -30               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
| 850                        | -40               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -50               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -60               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -20               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | -30               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |  |
| 2000                       | -40               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | <b>-50</b>        | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -60               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -20               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |  |
|                            | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
| 2300                       | -40               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -50               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |  |
|                            | -60               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |  |
| Measurement<br>uncertainty |                   |                                                      | ±0.04 dB                             |                                          |                         |  |  |

Linearity accuracy (Low Power input and Pre-Ampl On)

\*1:Measure\_Ref

\*2:Linearity calculation

 $\label{eq:linearity} Linearity \ calculation \ value \ (dB) = Tester \ measurement \ value \ (dBm) - \{Measure\_Ref \ (dBm) - Calibration \ receiver \ measurement \ value \ (dB)\}$ 

# Nearby spurious measurement <MS860x>

| Detuning<br>frequency | 200 MHz   | 2000 MHz | 2300 MHz | Measurement<br>uncertainty | Effective<br>lower limit |
|-----------------------|-----------|----------|----------|----------------------------|--------------------------|
| -10 MHz               | <u>dB</u> | dB       | dB       |                            | 60 dB                    |
| -5 MHz                | <u>dB</u> | dB       | dB       | 1 dP                       | 50 dB                    |
| +5 MHz                | <u>dB</u> | dB       | dB       | IdB                        | 50 dB                    |
| +10 MHz               | dB        | dB       | dB       |                            | 60 dB                    |

## Adjacent channel leakage power measurement range (Low Power input)

## Adjacent channel leakage power measurement range (Low Power input and option 08 installed)\*1

| Detuning<br>frequency | 200 MHz | 2000 MHz | 2300 MHz | Measurement<br>uncertainty | Effective<br>lower limit |
|-----------------------|---------|----------|----------|----------------------------|--------------------------|
| -10 MHz               | dB      | dB       | dB       |                            | 60 dB                    |
| -5 MHz                | dB      | dB       | dB       | 1 dP                       | 50 dB                    |
| +5 MHz                | dB      | dB       | dB       | 1 0.8                      | 50 dB                    |
| +10 MHz               | dB      | dB       | dB       |                            | 60 dB                    |

\*1: Measurement with option 08 installed (Pre-Ampl: Off)

# Spurious measurement <MS860x>

|    | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|----|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1 | 10 to 30 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2 | 30 to 800 MHz                  | Hz                       | <u>dB</u>                 |                            | 73 dB                    |
| f3 | 900 MHz to 1 GHz               | Hz                       | dB                        |                            | 73 dB                    |
| f4 | 1 to 1.65 GHz                  | Hz                       | dB                        | 1 dB                       | (67-f) dB                |
| f5 | 1.75 to 2.5 GHz                | <u> </u>                 | dB                        |                            | (67-f) dB                |
| f6 | 2.6 to 3.2 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f7 | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |

## Measurement range [Carrier Frequency: 850 MHz] (Low Power input)

#### Measurement range [Carrier Frequency: 2000 MHz] (Low Power input)

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 30 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2   | 30 to 950 MHz                  | Hz                       | dB                        |                            | 73 dB                    |
| f3   | 1.05 to 1.95 GHz               | Hz                       | dB                        |                            | 73 dB                    |
| f4   | 2.05 to 3.2 GHz                | Hz                       | dB                        | 1 dB                       | (67-f) dB                |
| f5   | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f1*1 | 1.6 to 1.95 GHz                | Hz                       | dB                        |                            | 67 dB                    |
| f2*1 | 2.05 to 3.15 GHz               | Hz                       | dB                        |                            | 67 dB                    |

## Measurement range [Carrier Frequency: 850 MHz] (Low Power input and Pre-Ampl On)

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 50 MHz                   | Hz                       | <u>dB</u>                 |                            | 73 dB                    |
| f2   | 50 to 500 MHz                  | Hz                       | <u>dB</u>                 |                            | 73 dB                    |
| f3   | 500 to 800 MHz                 | Hz                       | dB                        | Ì                          | 73 dB                    |
| f4   | 900 MHz to 1.65 GHz            | Hz                       | <u> </u>                  | 1 dP                       | (67-f) dB                |
| f5   | 1.75 to 2.5 GHz                | Hz                       | <u>dB</u>                 | TUD                        | (67-f)dB                 |
| f6   | 2.6 to 3.2 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f7   | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |
| f1*1 | 1.6 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |

#### Measurement range [Carrier Frequency: 2000 MHz] (Low Power input and Pre-Ampl On)

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 50 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2   | 50 to 500 MHz                  | Hz                       | <u>dB</u>                 |                            | 73 dB                    |
| f3   | 500 to 850 MHz                 | Hz                       | dB                        |                            | 73 dB                    |
| f4   | 950 MHz to 1.75 GHz            | Hz                       | dB                        | 1 dP                       | (67-f) dB                |
| f5   | 1.85 to 3.2 GHz                | Hz                       | <u>dB</u>                 | I UD                       | (67-f) dB                |
| f6   | 3.2 to 7.8 GHz                 | <u> </u>                 | <u>dB</u>                 |                            | (67-f) dB                |
| f1*1 | 1.6 to 1.75 GHz                | Hz                       | dB                        |                            | 67 dB                    |
| f2*1 | 1.85 to 7.8 GHz                | <u> </u>                 | <u>dB</u>                 |                            | 67 dB                    |

\*1: Option 03 installed

# IQ input modulation accuracy <MS860x>

#### Modulation measurement accuracy (IQ input)

| <b>Residual vector</b> | Minimum value              | 0%   |
|------------------------|----------------------------|------|
| error                  | Measurement value          | %    |
|                        | Maximum value              | 1.8% |
|                        | Measurement<br>uncertainty | 0.2% |

# Power meter accuracy <MS860x>

#### Power meter reading (Set\_Ref)

|                           |             | 50 MHz          | 850 MHz | 2000 MHz | 3000 MHz |  |
|---------------------------|-------------|-----------------|---------|----------|----------|--|
| SG set value<br>(Set_Ref) |             | dBm             | dBm     | dBm      | dBm      |  |
| Power meter               | Upper limit | +10.1 dBm       |         |          |          |  |
| reading<br>(Read_Ref)     | Reading     | dBm dBm dBm dBm |         |          |          |  |
|                           | Lower limit |                 |         |          |          |  |

#### ML2530A measurement value (ATT\_n)\*1 with programmable attenuator varied

| ATT set<br>value | ATT_n  | 50 MHz | 850 MHz | 2000 MHz | 3000 MHz |
|------------------|--------|--------|---------|----------|----------|
| 10 dB            | ATT_10 | dB     | dB      | dB       | dB       |
| 20 dB            | ATT_20 | dB     | dB      | dB       | dB       |
| 30 dB            | ATT_30 | dB     | dB      | dB       | dB       |

# Sample of Entry Forms for Performance Test Results </br><MS268x>

This section offers sample forms for entering the results of the MS268x spectrum analyzer performance test.

Copy these entry forms and use them.

| Test location:                                                      | Report No.:<br>Date:<br>Tested by: |    |
|---------------------------------------------------------------------|------------------------------------|----|
| Unit name:MS268xA Spectrum Analyzer<br>MX268x03A cdma measurement s | software                           |    |
| Serial No.:                                                         | Ambient<br>temperature:            | °C |
| Power frequency: Hz                                                 | Relative<br>humidity:              | %  |
| Remarks:                                                            |                                    |    |
|                                                                     |                                    |    |

Modulation/Frequency measurement <MS268x>

| rrequency/modulation measurement accuracy (rre-Ampi On | Frequency/modulation | measurement accuracy | (Pre-Amp | l Off) |
|--------------------------------------------------------|----------------------|----------------------|----------|--------|
|--------------------------------------------------------|----------------------|----------------------|----------|--------|

|                             |                            | 50 MHz       | 850 MHz      | 2000 MHz     | 2300 MHz |  |  |
|-----------------------------|----------------------------|--------------|--------------|--------------|----------|--|--|
| Residual<br>vector<br>error | Minimum value              |              | 0            | %            |          |  |  |
|                             | Measurement value          | <u>    %</u> | <u>    %</u> | <u>    %</u> | <u>%</u> |  |  |
|                             | Maximum value              | 1.8%         |              |              |          |  |  |
|                             | Measurement<br>uncertainty | 0.2%         |              |              |          |  |  |
|                             | Minimum value              | –9.9 Hz      |              |              |          |  |  |
| Comion                      | Measurement value          | Hz           | Hz           | Hz           | Hz       |  |  |
| Carrier<br>frequency        | Maximum value              | +9.9 Hz      |              |              |          |  |  |
|                             | Measurement<br>uncertainty | ±0.1 Hz      |              |              |          |  |  |

|                             |                            | 50 MHz       | 850 MHz      | 2000 MHz | 2300 MHz     |  |
|-----------------------------|----------------------------|--------------|--------------|----------|--------------|--|
| Residual<br>vector<br>error | Minimum value              | 0%           |              |          |              |  |
|                             | Measurement value          | <u>    %</u> | <u>    %</u> | %        | <u>    %</u> |  |
|                             | Maximum value              | 1.8%         |              |          |              |  |
|                             | Measurement<br>uncertainty | 0.2%         |              |          |              |  |
|                             | Minimum value              | -9.9 Hz      |              |          |              |  |
| Corrier                     | Measurement value          | Hz           | Hz           | Hz       | Hz           |  |
| Carrier<br>frequency        | Maximum value              | +9.9 Hz      |              |          |              |  |
|                             | Measurement<br>uncertainty | ±0.1 Hz      |              |          |              |  |

#### Frequency/modulation measurement accuracy (for Pre-Ampl On)

Origin offset expected value

|                | 50 MHz | 850 MHz | 2000 MHz  | 2300 MHz  |
|----------------|--------|---------|-----------|-----------|
| Expected value | dB     | dB      | <u>dB</u> | <u>dB</u> |

## Origin offset (Pre-Ampl Off)

|                            | 50 MHz    | 850 MHz | 2000 MHz | 2300 MHz  |  |  |
|----------------------------|-----------|---------|----------|-----------|--|--|
| Measurement result         | dB        | DB      | dB       | dB        |  |  |
| Upper limit                | +0.46 dB  |         |          |           |  |  |
| Origin offset<br>accuracy* | <u>dB</u> | DB      | dB       | <u>dB</u> |  |  |
| Lower limit                | -0.46 dB  |         |          |           |  |  |
| Measurement<br>uncertainty | ±0.04 dB  |         |          |           |  |  |

#### **Origin offset (Pre-Ampl On)**

|                            | 50 MHz    | 850 MHz   | 2000 MHz | 2300 MHz  |  |  |
|----------------------------|-----------|-----------|----------|-----------|--|--|
| Measurement result         | dB        | <u>dB</u> | dB       | <u>dB</u> |  |  |
| Upper limit                | +0.46 dB  |           |          |           |  |  |
| Origin offset<br>accuracy* | <u>dB</u> | <u>dB</u> | dB       | <u>dB</u> |  |  |
| Lower limit                |           | -0.4      | 6 dB     |           |  |  |
| Measurement<br>uncertainty | ±0.04 dB  |           |          |           |  |  |

\*: Origin offset accuracy [dB] = Measurement result – Origin offset expected value

# Code domain measurement <MS268x>

| Code No. |                    | 5 MHz     | 850 MHz   | 2000 MHz | 2300 MHz  |  |
|----------|--------------------|-----------|-----------|----------|-----------|--|
|          | Upper limit        |           | -2.3      | 6 dB     |           |  |
| 0        | Measurement value  | dB        | dB        | dB       | dB        |  |
|          | Lower limit        |           | -2.52     | 2 dB     |           |  |
|          | Upper limit        |           | -4.92     | 2 dB     |           |  |
| 7        | Measurement value  | dB        | dB        | dB       | dB        |  |
|          | Lower limit        | -5.08 dB  |           |          |           |  |
| 15       | Upper limit        | -9.92 dB  |           |          |           |  |
|          | Measurement value  | <u>dB</u> | dB        | dB       | <u>dB</u> |  |
|          | Lower limit        | -10.08 dB |           |          |           |  |
|          | Upper limit        |           | -19.7     | '2 dB    |           |  |
| 31       | Measurement value  | <u>dB</u> | dB        | dB       | <u>dB</u> |  |
|          | Lower limit        | -20.28 dB |           |          |           |  |
|          | Upper limit        |           | -24.7     | '2 dB    |           |  |
| 63       | Measurement value  | dB        | <u>dB</u> | dB       | dB        |  |
|          | Lower limit        | -25.28 dB |           |          |           |  |
| Measu    | rement uncertainty |           | ±0.02     | 2 dB     |           |  |

## Code domain power measurement accuracy (Pre-Ampl Off)

| Code domair | power | measurement | accuracy | (Pre-Ampl O | n) |
|-------------|-------|-------------|----------|-------------|----|
|-------------|-------|-------------|----------|-------------|----|

| Code No. |                    | 5 MHz     | 850 MHz   | 2000 MHz | 2300 MHz |  |
|----------|--------------------|-----------|-----------|----------|----------|--|
|          | Upper limit        |           | -2.3      | 6 dB     |          |  |
| 0        | Measurement value  | dB        | dB        | dB       | dB       |  |
|          | Lower limit        |           | -2.5      | 2 dB     |          |  |
|          | Upper limit        |           | -4.9      | 2 dB     |          |  |
| 7        | Measurement value  | dB        | dB        | dB       | dB       |  |
|          | Lower limit        | -5.08 dB  |           |          |          |  |
| 15       | Upper limit        | –9.92 dB  |           |          |          |  |
|          | Measurement value  | dB        | dB        | dB       | dB       |  |
|          | Lower limit        |           | -10.0     | )8 dB    |          |  |
|          | Upper limit        | -19.72 dB |           |          |          |  |
| 31       | Measurement value  | dB        | dB        | dB       | dB       |  |
|          | Lower limit        | -20.28 dB |           |          |          |  |
|          | Upper limit        |           | -24.7     | '2 dB    |          |  |
| 63       | Measurement value  | <u>dB</u> | <u>dB</u> | dB       | dB       |  |
|          | Lower limit        | -25.28 dB |           |          |          |  |
| Measu    | rement uncertainty | ±0.02 dB  |           |          |          |  |

# Linearity <MS268x>

#### SG1 set value for +0.5 dBm calibration at each frequency

|              |     |         | 50 MHz   | 850 MHz | 2000 MHz | 2300 MHz |
|--------------|-----|---------|----------|---------|----------|----------|
| SG1<br>value | set | Set_Ref | <u> </u> | dBm     | <u> </u> | dBm      |

#### Linearity accuracy (Pre-Ampl Off)

| Frequency<br>(MHz)         | SG level<br>(dBm) | Calibration<br>receiver<br>measurement<br>value (dB) | Tester<br>measurement<br>value (dBm) | Linearity<br>calculation<br>value (dB)*2 | Effective range<br>(dB) |
|----------------------------|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |
|                            | 0                 | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
| 50                         | -10               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -20               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
|                            | -30               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |
| 850                        | 0                 | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -10               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -20               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |
|                            | 0                 | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
| 2000                       | -10               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
|                            | -20               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | +10               |                                                      | <u>dBm</u> *1                        |                                          |                         |
| 2300                       | 0                 | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
|                            | -10               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -20               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |
|                            | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |
| Measurement<br>uncertainty |                   |                                                      | ±0.0                                 | 4 dB                                     |                         |

Sample of Entry Forms for Performance Test Results <MS268x>

| Frequency<br>(MHz)         | SG level<br>(dBm) | Calibration<br>receiver<br>measurement<br>value (dB) | Tester<br>measurement<br>value (dBm) | Linearity<br>calculation<br>value (dB)*2 | Effective range<br>(dB) |  |
|----------------------------|-------------------|------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------|--|
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |
|                            | -20               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |
| 50                         | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -40               | <u>dB</u>                                            | <u> </u>                             | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -50               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |
| 850                        | -20               | dB                                                   | dBm                                  | <u> </u>                                 | ±0.16 dB                |  |
|                            | -30               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |
|                            | -40               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |
|                            | <b>-50</b>        | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |
|                            | -20               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
| 2000                       | -30               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -40               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -50               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -10               |                                                      | <u>dBm</u> *1                        |                                          |                         |  |
|                            | -20               | dB                                                   | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
| 2300                       | -30               | <u>dB</u>                                            | <u>dBm</u>                           | <u>dB</u>                                | ±0.16 dB                |  |
|                            | -40               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |
|                            | -50               | dB                                                   | dBm                                  | dB                                       | ±0.16 dB                |  |
| Measurement<br>uncertainty |                   | ±0.04 dB                                             |                                      |                                          |                         |  |

Linearity accuracy (Pre-Ampl On)

\*1:Measure\_Ref

\*2:Linearity calculation

 $\label{eq:linearity} Linearity \ calculation \ value \ (dB) = Tester \ measurement \ value \ (dBm) - \{Measure\_Ref \ (dBm) - Calibration \ receiver \ measurement \ value \ (dB)\}$ 

# Nearby spurious measurement <MS268x>

| Detuning<br>frequency | 200 MHz   | 2000 MHz | 2300 MHz  | Measurement<br>uncertainty | Effective<br>lower limit |
|-----------------------|-----------|----------|-----------|----------------------------|--------------------------|
| -10 MHz               | <u>dB</u> | dB       | dB        |                            | 60 dB                    |
| -5 MHz                | <u>dB</u> | dB       | dB        | 1 dP                       | 50 dB                    |
| +5 MHz                | <u>dB</u> | dB       | dB        | IUD                        | 50 dB                    |
| +10 MHz               | <u>dB</u> | dB       | <u>dB</u> |                            | 60 dB                    |

## Adjacent channel leakage power measurement range (Pre-Ampl Off)

#### Adjacent channel leakage power measurement range

| Detuning<br>frequency | 200 MHz | 2000 MHz | 2300 MHz | Measurement<br>uncertainty | Effective<br>lower limit |
|-----------------------|---------|----------|----------|----------------------------|--------------------------|
| -10 MHz               | dB      | dB       | dB       |                            | 60 dB                    |
| -5 MHz                | dB      | dB       | dB       | 1 JD                       | 50 dB                    |
| +5 MHz                | dB      | dB       | dB       | IUD                        | 50 dB                    |
| +10 MHz               | dB      | dB       | dB       |                            | 60 dB                    |

(option 08 installed)\*1

\*1: Measurement with option 08 installed (Pre-Ampl: Off)

# Spurious measurement <MS268x>

|    | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|----|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1 | 10 to 30 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2 | 30 to 800 MHz                  | Hz                       | <u>dB</u>                 |                            | 73 dB                    |
| f3 | 900 MHz to 1 GHz               | Hz                       | dB                        |                            | 73 dB                    |
| f4 | 1 to 1.65 GHz                  | Hz                       | dB                        | 1 dB                       | (67-f) dB                |
| f5 | 1.75 to 2.5 GHz                | Hz                       | <u>dB</u>                 |                            | (67-f) dB                |
| f6 | 2.6 to 3.2 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f7 | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |

## Measurement range [Carrier Frequency: 850 MHz] (Pre-Ampl Off)

#### Measurement range [Carrier Frequency: 2000 MHz] (Pre-Ampl Off)

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 30 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2   | 30 to 950 MHz                  | Hz                       | dB                        |                            | 73 dB                    |
| f3   | 1.05 to 1.95 GHz               | Hz                       | dB                        |                            | 73 dB                    |
| f4   | 2.05 to 3.2 GHz                | Hz                       | dB                        | 1 dB                       | (67-f) dB                |
| f5   | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f1*1 | 1.6 to 1.95 GHz                | Hz                       | dB                        |                            | 67 dB                    |
| f2*1 | 2.05 to 3.15 GHz               | Hz                       | dB                        |                            | 67 dB                    |

## Measurement range [Carrier Frequency: 850 MHz] (Pre-Ampl On)

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 50 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2   | 50 to 500 MHz                  | Hz                       | dB                        |                            | 73 dB                    |
| f3   | 500 to 800 MHz                 | Hz                       | dB                        |                            | 73 dB                    |
| f4   | 900 MHz to 1.65 GHz            | Hz                       | dB                        | 1 dP                       | (67-f) dB                |
| f5   | 1.75 to 2.5 GHz                | <u> </u>                 | dB                        | I UD                       | (67-f)dB                 |
| f6   | 2.6 to 3.2 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f7   | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |
| f1*1 | 1.6 to 7.8 GHz                 | Hz                       | dB                        |                            | 67 dB                    |

|      | Measurement<br>frequency range | Measurement<br>frequency | Measurement<br>value (dB) | Measurement<br>uncertainty | Effective<br>lower limit |
|------|--------------------------------|--------------------------|---------------------------|----------------------------|--------------------------|
| f1   | 10 to 50 MHz                   | Hz                       | dB                        |                            | 73 dB                    |
| f2   | 50 to 500 MHz                  | Hz                       | dB                        |                            | 73 dB                    |
| f3   | 500 to 850 MHz                 | Hz                       | dB                        |                            | 73 dB                    |
| f4   | 950 MHz to 1.75 GHz            | Hz                       | dB                        | 1 dP                       | (67-f) dB                |
| f5   | 1.85 to 3.2 GHz                | Hz                       | dB                        | I UD                       | (67-f) dB                |
| f6   | 3.2 to 7.8 GHz                 | Hz                       | dB                        |                            | (67-f) dB                |
| f1*1 | 1.6 to 1.75 GHz                | Hz                       | dB                        |                            | 67 dB                    |
| f2*1 | 1.85 to 7.8 GHz                | <u> </u>                 | <u>dB</u>                 |                            | 67 dB                    |

# Measurement range [Carrier Frequency: 2000 MHz] (Pre-Ampl On)

\*1: Option 03 installed

# IQ input modulation accuracy <MS268x>

#### Modulation measurement accuracy (IQ input)

| <b>Residual vector</b> | Minimum value              | 0%           |
|------------------------|----------------------------|--------------|
| error                  | Measurement value          | <u>    %</u> |
|                        | Maximum value              | 1.8%         |
|                        | Measurement<br>uncertainty | 0.2%         |

\* When MS268xA/B-7 or -18 is installed.

MX860803A/MX860903A/ MX268103A/MX268303A/MX268703A cdma Measurement Software (For MS8608A/MS8609A/ MS2681A/MS2683A/MS2687A/B) Operation Manual (Remote Control)

# **Table of Contents**

| Section 1 | General | 1-1 |
|-----------|---------|-----|
| General   |         | 1-3 |

# Section 2 Connecting Device ..... 2-1

| Connecting an External Device with an RS-232C Cable | 2-3 |
|-----------------------------------------------------|-----|
| Connection Diagram of RS-232C Interface Signals     | 2-4 |
| Connecting a Device with a GPIB Cable               | 2-5 |

| Section 3 | Device Message Format | 3-1   |
|-----------|-----------------------|-------|
|           |                       | ~ ~ ~ |

| General Description | 3-3 |
|---------------------|-----|
|---------------------|-----|

| Section 4     | Status Structure                          | 4-1  |
|---------------|-------------------------------------------|------|
| IEEE488.2 S   | tandard Status Model                      | 4-3  |
| Status Byte ( | (STB) Register                            | 4-5  |
| Service Requ  | uest (SRQ) Enabling Operation             | 4-8  |
| Standard Ev   | ent Status Register                       | 4-9  |
| Extended Ev   | ent Status Register                       | 4-11 |
| Synchronizin  | g This Measurement Unit with a Controller | 4-14 |

| Section 5 Initial Settings                     | 5-1 |
|------------------------------------------------|-----|
| Bus Initialization Using the IFC Statement     | 5-4 |
| Initialization for Message Exchange by DCL and |     |
| SDC Bus Commands                               | 5-5 |
| Device Initialization Using the *RST Command   | 5-7 |
| Device Initialization Using the INI/IP Command | 5-8 |
| Device Status at Power-on                      | 5-8 |

| Section 6 Device Message            | e List 6-             | 1  |
|-------------------------------------|-----------------------|----|
| How to Read the Device Message List | t 6·                  | -3 |
| Commands Commonly Used on All Me    | easurement Screens 6- | -5 |
| Setup Common Parameter              |                       | -9 |
| Modulation Analysis                 |                       | 11 |
| RF Power                            |                       | 19 |
| Occupied Bandwidth                  |                       | 21 |
| Spurious close to the Carrier       |                       | 23 |
| Spurious Emission                   |                       | 35 |
| Power Meter                         |                       | 11 |
| IQ Level                            |                       | 12 |
|                                     |                       |    |

| Section 7   | Command Details                      | 7-1 |
|-------------|--------------------------------------|-----|
| How to Read | the Detailed Description of Commands | 7-3 |

# Section 1 General

This section outlines the remote control and gives examples of system upgrades.

| General                                   | 1-3 |
|-------------------------------------------|-----|
| Remote control functions                  | 1-3 |
| Interface port selection functions        | 1-3 |
| Examples of system upgrades using RS-232C |     |
| and GPIB                                  | 1-4 |
| Specifications of RS-232C                 | 1-5 |
| Specifications of GPIB                    | 1-6 |
|                                           |     |

Section 1 General

# General

This measurement unit, when combined with an external controller (host computer, personal computer, etc.), can automate your measurement system. For this purpose, This measurement unit is equipped with an RS-232C interface port, and GPIB interface bus (IEEE std 488.2-1987) as standard compositions. Ethernet interface can be also installed as an option.

# Remote control functions

The remote control functions of this measurement unit are used to do the following:

- (1) Control all functions except a few like the power switch and [LO-CAL] key.
- (2) Read all parameter settings.
- (3) Set the RS-232C interface settings from the panel.
- (4) Set the GPIB address from the panel.
- (5) Set the IP address for Ethernet interface from the panel (Optional).
- (6) Select the interface port from the panel.
- (7) Configure the automatic measurement system when the spectrum analyzer function is combined with a personal computer and other measuring instruments.

# Interface port selection functions

This measurement unit has the standard RS-232C interface, GPIB interface bus and parallel (Centronics) interface. It can also have Ethernet interface as an option. Use the panel to select the interface port to be used to connect external devices as shown below.

Port for the external controller: Select RS-232C, GPIB or Ethernet (Option).

Port for the printer: Parallel interface.

# Examples of system upgrades using RS-232C and GPIB

(1) Stand-alone type 1

Waveforms measured with this measurement unit are output to the printer.



(2) Control by the host computer (1)

This measurement unit is controlled automatically or remotely from the computer.



(3) Control by the host computer (2)

The waveforms measured by controlling this measurement unit automatically or remotely are output to the printer.



1-4
# Specifications of RS-232C

The table below lists the specifications of the RS-232C equipped as standard in this measurement unit.

| ltem                         | Specification                                                   |
|------------------------------|-----------------------------------------------------------------|
| Function                     | Controls from the external controller (except for power-ON/OFF) |
| Communication system         | Asynchronous (start-stop<br>synchronous system), half-duplex    |
| Communication control system | X-ON/OFF control                                                |
| Baud rate                    | 1200, 2400, 4800, 9600, 19.2 k, 38.4<br>k, 56 k, 115 k (bps)    |
| Data bits                    | 7 or 8 bits                                                     |
| Parity                       | Odd number (ODD), even number<br>(EVEN), none (NON)             |
| Start bit                    | 1 bit                                                           |
| Stop bit (bits)              | 1 or 2 bits                                                     |
| Connector                    | D-sub 9-pin, male                                               |

# Specifications of GPIB

The table below lists the specifications of the GPIB provided for this measurement unit.

| ltem                       | Specification and supplementary explanation |                                                                                                                                                       |
|----------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function                   | Confo                                       | rms to IEEE488.2                                                                                                                                      |
|                            | The s                                       | pectrum analyzer is controlled from the nal controller                                                                                                |
|                            | (excep                                      | ot for power-on/off).                                                                                                                                 |
| Interface function<br>(*1) | SH1:                                        | All source handshake functions are provided. Synchronizes the timing of data transmission.                                                            |
|                            | AH1:                                        | All acceptor handshake functions are provided. Synchronizes the timing of data reception.                                                             |
|                            | T6:                                         | The basic talker functions and serial<br>poll function are provided. The talk<br>only function is not provided. The<br>talker can be canceled by MLA. |
|                            | L4:                                         | The basic listener functions are<br>provided. The listen only function is not<br>provided. The listener can be canceled<br>by MTA.                    |
|                            | SR1:                                        | All service request and status byte functions are provided.                                                                                           |
|                            | RL1:                                        | All remote/local functions are provided.<br>The local lockout function is provided.                                                                   |
|                            | PP0:                                        | The parallel poll functions are not provided.                                                                                                         |
|                            | DC1:                                        | All device clear functions are provided.                                                                                                              |
|                            | DT1:                                        | Device trigger functions are provided.                                                                                                                |
|                            | C0:                                         | System controller functions are not provided.                                                                                                         |
|                            | E2:                                         | Output is tri-state.                                                                                                                                  |

# Section 2 Connecting Device

This section describes how to connect external devices such as the host computer, personal computer, and printer to this measurement unit with RS-232C and GPIB cables. This section also describes how to setup the interfaces of this measurement unit.

| Connecting an External Device with an RS-232C Cable | 2-3 |
|-----------------------------------------------------|-----|
| Connection Diagram of RS-232C Interface Signals     | 2-4 |
| Connecting a Device with a GPIB Cable               | 2-5 |

Setting the GPIB Address ...... 2-6

# Connecting an External Device with an RS-232C Cable

Connect the RS-232C connector (D-sub 9-pin, female) on the rear panel of this measurement unit to the RS-232C connector of the external device with an RS-232C cable.



Notes:

RS-232C connectors with 9 pins and 25 pins are available. When purchasing the RS-232C cable, check the number of pins on the RS-232C connector of the external device. Also, the following RS232C cable is provided as peripheral parts of this measurement unit.



# Connection Diagram of RS-232C Interface Signals

The diagram below shows the RS-232C interface signal connections between this measurement unit and devices such as a personal computer.



• Connection with IBM PC/AT Compatible personal computer

# Connecting a Device with a GPIB Cable

Connect the GPIB connector on the rear panel of this measurement unit to the GPIB connector of an external device with a GPIB cable.

#### Note:

Be sure to connect the GPIB cable before turning this measurement unit power on.

Up to 15 devices, including the controller, can be connected to one system. Connect devices as shown below.



Total cable length: Up to 20 m Cable length between devices: Up to 4 m Number of devices that can be connected: Up to 15

### Section 2 Connecting Device

### Setting the GPIB Address

#### Set the GPIB address of this measurement unit as follows.



Use the 10-key pad to enter the GPIB address of This measurement unit, next push set to confirm address.

The initial value is 1.

# Section 3 Device Message Format

This section describes the format of the device messages transmitted on the bus between a controller (host computer) and this measurement unit via the RS-232C GPIB or Ethernet system.

| General Description     | 3-3 |
|-------------------------|-----|
| Program Message Format  | 3-3 |
| Response Message Format | 3-8 |

# **General Description**

The device messages are data messages transmitted between the controller and this measurement unit. It consists of program messages transferred from the controller to this measurement unit, and response messages input from this measurement unit to the controller. There are also two types of program commands and program queries in the program message. The program command is used to set this measurement unit parameters and to instruct it to execute processing. The program query is used to query the values of parameters and measured results.

### Program Message Format

To transfer a program message from the controller program to this instrument using the WRITE statement, the program message formats are defined as follows.



Carriage Return (CR) is ignored and is not processed as a terminator.

#### Section 3 Device Message Format



Multiple program message units van be output sequentially by separating them with a semicolon.

<Example> WRITE #1;"CF 1GHZ;SP 5ØØKHZ"

(3) PROGRAM MESSAGE UNIT



- The program header of an IEEE488.2 common command always begins with an asterisk.
- For numeric program data, the (SP) between the header and data can be omitted.
- The program header of a program query always ends with a question mark.
- (4) PROGRAM DATA



#### (5) CHARACTER PROGRAM

Character program data is specific character string data consisting of the uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, numbers 0 to 9, and underline ( $\_$ ).

<Example> WRITE #1; "ST AUTO"......Sets Sweep Time to AUTO.

(6) NUMERIC PROGRAM DATA

Numeric program data has two types of formats: integer format (NR1) and fixed-point format (NR2).

<Fixed-Point format (NR1)>



<Fixed-Point format (NR2)>



### (7) SUFFIX PROGRAM DATA (unit)

The table below lists the suffixes used for this measurement unit.

| Classification    | Unit      | Suffix code                                          |  |
|-------------------|-----------|------------------------------------------------------|--|
| Classification    | onit      |                                                      |  |
| Frequency         | GHz       | GHZ, GZ                                              |  |
|                   | MHz       | MHZ, MZ                                              |  |
|                   | kHz       | KHZ, KZ                                              |  |
|                   | Hz        | HZ                                                   |  |
|                   | Default   | HZ                                                   |  |
|                   | second    | S                                                    |  |
| Time              | m second  | MS                                                   |  |
| Time              | µ second  | US                                                   |  |
|                   | Default   | MS                                                   |  |
|                   | dB        | DB                                                   |  |
|                   | dBm       | DBM, DM                                              |  |
|                   | dBμV      | DBUV                                                 |  |
| Level (dB system) | dBmV      | DBMV                                                 |  |
|                   | dBµV(emf) | DBUVE                                                |  |
|                   | Default   | Determined in conformance<br>with the set scale unit |  |
|                   | v         | V                                                    |  |
|                   | mV        | MV                                                   |  |
| Level (v system)  | μV        | UV                                                   |  |
|                   | Default   | υv                                                   |  |
|                   | w         | W                                                    |  |
|                   | mW        | MW                                                   |  |
|                   | μW        | UW                                                   |  |
| Level (W system)  | nW        | NW                                                   |  |
|                   | pW        | PW                                                   |  |
|                   | fW        | FW                                                   |  |
|                   | Default   | UW                                                   |  |

**Table of Suffix Codes** 



• String program data must be enclosed with single quotation marks ('...').

WRITE #1:"TITLE'MS8608A'"

A single quotation mark used within a character string must be enclosed with double quotation marks.

WRITE #1;"TITLE'MS8608A''NOISE MEAS'''" MS8608A'NOISE MEAS' is set as the title.

#### Section 3 Device Message Format

### Response Message Format

To transfer the response messages from this measurement unit to the controller using the READ statement, the response message formats are defined as follows.



#### (1) RESPONSE MESSAGE TERMINATOR



The response message terminator to be used depends on the TRM command specification.



When a query is sent by the WRITE statement with one or more program queries, the response message also consists of one or more response message units.

#### (3) Usual RESPONSE MESSAGE UNIT





#### (5) CHARACTER RESPONSE DATA

Character response data is specific character string data consisting of the uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, numbers 0 to 9, and underline (\_).

(6) NUMERIC RESPONSE DATA



< Integer format (NR2) >



### Section 3 Device Message Format



String response data is transmitted as an ASCII character enclosed with double quotation marks.

(8) Response message for input of waveform data using binary data The waveform binary data is two-byte 65536 integer data from -32768 to 32767, as shown below; and sent in the sequence of upper byte and lower byte.

| 16-Bit Binary                           | With Sign | No Sign |
|-----------------------------------------|-----------|---------|
| 1000000000000000                        | -32768    | 32768   |
| 100000000000001                         | -32767    | 32769   |
| 100000000000010                         | -32766    | 32770   |
| 111111111111101                         | -3        | 65533   |
| 111111111111110                         | -2        | 65534   |
| 1111111111111111                        | -1        | 65535   |
| 00000000000000000                       | 0         | 0       |
| 000000000000000000000000000000000000000 | 1         | 1       |
| 000000000000000000000000000000000000000 | 2         | 2       |
| 000000000000011                         | 3         | 3       |
| 011111111111101                         | 32765     | 32765   |
| 011111111111110                         | 32766     | 32766   |
| 011111111111111                         | 32767     | 32767   |
|                                         |           |         |



<sup>&</sup>lt;sup>†</sup> When a negative number is stored in a numeric variable, the sign bit 1 is set in the MSB to indicate the negative value. The value is stored in a numeric variable in a 2's complement format.

For example, to transmit an integer of 16706, the ASCII format is compared with the Binary format, below.

The ASCII format requires 5 bytes. Whereas, the Binary format requires only 2 bytes, and does not need the data format transformation. So, The Binary format is used for a high-speed transmission.



The waveform binary data has a number of bytes for

(Number of points to be specified) X 2 bytes + termination code.

Where, termination code is specified by the TRM command, and is LF(0D(H): 1 byte) or CR+LF(0A0D(H): 2 bytes).

# Section 4 Status Structure

This section describes the device-status reporting and its data structure defined by the IEEE488.2 when the GPIB interface bus is used. This section also describes the synchronization techniques between a controller and device.

These functions are used to control a device from an external controller using the GPIB interface bus. Most of these functions can also be used to control a device from an external controller using the RS-232C or Ethernet interface.

| IEEE488.2 Standard Status Model                       | 4-3  |
|-------------------------------------------------------|------|
| Status Byte (STB) Register                            | 4-6  |
| ESB and MAV summary messages                          | 4-6  |
| Unique summary messages of this measurement unit      | 4-7  |
| Reading and clearing the STB register                 | 4-8  |
| Service Request (SRQ) Enabling Operation              | 4-9  |
| Standard Event Status Register                        | 4-10 |
| Bit definition of Standard Event Status Register      | 4-10 |
| Reading, writing, and clearing the Standard Event     |      |
| Status Register                                       | 4-11 |
| Reading, writing, and clearing the Standard Event     |      |
| Status Enable Register                                | 4-11 |
| Extended Event Status Register                        | 4-12 |
| Bit definition of END Event Status Register           | 4-13 |
| Reading, writing, and clearing the Extended Event     |      |
| Status Register                                       | 4-14 |
| Reading, writing, and clearing the Extended Status    |      |
| Enable Register                                       | 4-14 |
| Synchronizing This Measurement Unit with a Controller | 4-15 |
| Wait for a response after the *OPC? query is sent     | 4-15 |
| Wait for a service request after *OPC is sent         |      |
| (only when the GPIB interface bus is used)            | 4-16 |

The Status Byte (STB) sent to the controller is based on the IEEE488.1 standard. The bits comprising the STB are called status summary messages because they represent a summary of the current data in registers and queues.

# IEEE488.2 Standard Status Model



The diagram below shows the standard model for the status data structures stipulated in the IEEE488.2 standard. In the status model, IEEE488.1 status bytes are used for the lowest grade status. This status byte is composed of seven summary message bits from the higher grade status structure. To create these summary message bits, the status data structure is composed of register and queue models.

| Register model                                                         | Queue model                     |
|------------------------------------------------------------------------|---------------------------------|
| The register model consists of two registers used for recording events | The queue in the queue model    |
| and conditions encountered by a device. These two registers are the    | is used to sequentially record  |
| Event Status Register and Event Status Enable Register. When the       | the waiting status values or    |
| results of the AND operation of both register contents are other than  | information. If the queue is    |
| 0, the corresponding bit of the status bit becomes 1. In other cases,  | not empty, the queue structure  |
| the corresponding bit becomes 0. When the result of their Logical      | summary message becomes 1.      |
| OR is 1, the summary message bit also becomes 1. If the Logical OR     | If the queue is empty, the mes- |
| result is 0, the summary message bit also becomes 0.                   | sage becomes 0.                 |

In IEEE488.2, there are three standard models for the status data structure. Two are register models and one is a queue model based on the register model and queue model described above. The three standard models are:

[1] Standard Event Status Register and Standard Event Status Enable Register

[2] Status Byte Register and Service Request Enable Register Output Queue

[3] Output Queue

### IEEE488.2 Standard Status Model

| Standard Event Status Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Status Byte Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output Queue                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Standard Event Status Register<br>has the same structure as the<br>previously described register model.<br>In this register, the bits for eight types<br>of standard events encountered by a<br>device are set as follows:<br>[1] Power on<br>[2] User request<br>[3] Command error<br>[4] Execution error<br>[5] Device-dependent error<br>[6] Query error<br>[7] Request for bus control right<br>[8] Operation complete<br>The Logical OR output bit is<br>represented by Status Byte Register<br>bit 5 (DIO6) as a summary message | The Status Byte Register is a<br>register in which the RQS bit and<br>the seven summary message bits<br>from the status data structure can<br>be set. This register is used<br>together with the Service Request<br>Enable Register. When the results<br>of the OR operation of both<br>register contents are other than 0,<br>SRQ becomes ON. To indicate<br>this, bit 6 of the Status Byte<br>Register (DIO7) is reserved by the<br>system as the RQS bit. The RQS<br>bit is used to indicate that there is a<br>service request for the external<br>controller. The mechanism of<br>SRQ conforms to the IEEE488.1 | The Output Queue has<br>the structure of the<br>queue model described<br>above. Status Byte<br>Register bit 4 (DIO5) is<br>set as a summary<br>message for Message<br>Available (MAV) to<br>indicate that there is<br>data in the output buffer. |
| for the Event Status Bit (ESB).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |

# Status Byte (STB) Register

The STB register consists of the STB and RQS (or MSS) messages of the device.

### ESB and MAV summary messages

This paragraph describes the ESB and MAV summary messages.

#### (1) ESB summary message

The ESB (Event Summary Bit) is a message defined by IEEE488.2 which uses bit 5 of the STB register. When the setting permits events to occur, the ESB summary message bit becomes 1 if any one of the events recorded in the Standard Status Register becomes 1. Conversely, the ESB summary message bit becomes 0 if one of the recorded events occurs, even if events are set to occur.

This bit becomes 0 when the ESR register is read by the \*ESR? query or when it is cleared by the \*CLS command.

#### (2) MAV summary message

The MAV (Message Available) summary bit is a message defined by IEEE488.2 which uses bit 4 of the STB register. This bit indicates whether the output queue is empty. The MAV summary message bit is set to 1 when a device is ready to receive a request for a response message from the controller. When the output queue is empty, this bit is set to 0. This message is used to synchronize the information exchange with the controller. For example, this message is available when, after the controller sends a query command to a device, the controller waits until MAV becomes 1. While the controller is waiting for a response from the device, other jobs can be processed. Reading the Output Queue without first checking MAV will cause all system bus operations to be delayed until the device responds.

### Unique summary messages of this measurement unit

As shown in the diagram below, this measurement unit does not use bits 0, 1, 3, and 7, and it uses bit 2 as the summary bit of the Event Status Register.



Status Byte Register

### Reading and clearing the STB register

The STB register can be read using serial polling or the \*STB? common query. The IEEE488.1 STB message can be read by either method, but the value sent to bit 6 (position) is different for each method. The STB register contents can be cleared using the \*CLS command.

(1) Reading by serial polling (only when the GPIB interface bus is used) The IEEE488.1 serial polling allows the device to return a 7-bit status byte and an RQS message bit which conforms to IEEE488.1. The value of the status byte is not changed by serial polling. The device sets the RQS message to 0 immediately after being polled.

#### (2) Reading by the \*STB? common query

The \*STB? common query requires the devices to send the contents of the STB register and the integer format response messages, including the MSS (Master Summary Status) summary message. Therefore, except for bit 6, which represents the MSS summary message, the response to \*STB? is identical to that of serial polling.

#### (3) Definition of MSS (Master Summary Status)

MSS indicates that there is at least one cause for a service request. The MSS message is represented at bit 6 response to an \*STB? query, but it is not produced as a response to serial polling. It should not be taken as part of the status byte specified by IEEE488.1. MSS is configured by the overall logical OR in which the STB register and SRQ enable (SRE) register are combined.

(4) Clearing the STB register using the \*CLS common command The \*CLS common command clears all status data structures as well as the summary messages corresponding to them.

The \*CLS command does not affect the settings in the Enable Register.

# Service Request (SRQ) Enabling Operation

Bits 0 to 7 of the Service Request Enable Register (SRE) determine which bit of the corresponding STB register can generate SRQ.

The bits in the Service Request Enable Register correspond to the bits in the Status Byte Register. If a bit in the Status Byte Register corresponding to an enabled bit in the Service Request Enable Register is set to 1, the device makes a service request to the controller with the RQS bit set to 1.



(1) Reading the SRE register

The contents of the SRE register are read using the \*SRE? common query. The response message to this query is an integer from 0 to 255 which is the sum of the bit digit weighted values in the SRE register.

(2) Updating the SRE register

The SRE register is written using the \*SRE common command. An integer from 0 to 255 is assigned as a parameter to set the SRE register bit to 0 or 1. The value of bit 6 is ignored.

## Standard Event Status Register

### Bit definition of Standard Event Status Register

7 7 disabled = 0, enabled = 128(27) Power on (PON) User request(URQ) ···· Not used for MSecosAMSecosA disabled = 0, enabled =  $64 (2^6)$ 6 6 5 5 disabled = 0, enabled = 32 (25) Command error(CME) disabled = 0, enabled = 16 (24) 4 4 Execution(EXE) 3 3 disabled = 0, enabled = 8 (23) Device-dependent(DDE) disabled = 0, enabled = 4 (2<sup>2</sup>) 2 2 Query error(QYE) Request for bus cotrol right(RQC) ···· Not used for 1 1 disabled = 0, enabled = 2 (21) disabled = 0, enabled = 1 (2°) 0 0 Operation complete(OPC) Standard Event Status Standard Event Status Register Enable Register Logical OR Read by\*ESR? Set by \*ESE n Read by \*ESE? EBS summary message bit (to Status Byte register bit 5)

The diagram below shows the operation of the Standard Event Status Register.

The Standard Event Status Enable (ESE) Register on the left is used to select which bits in the corresponding Event Register will cause a TRUE summary message when set.

| Bit | Event name                                             | Description                                                                                                                                 |
|-----|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Power on (PON-Power on)                                | A transition from power-off to power-on occurred during the power-up procedure.                                                             |
| 6   | Not used                                               |                                                                                                                                             |
| 5   | Command error<br>(CME-Command Error)                   | An illegal program message or a misspelled command was received.                                                                            |
| 4   | Execution error<br>(EXE-Execution Error)               | A legal but unexecutable program message was received.                                                                                      |
| 3   | Device-dependent error<br>(DDE-Device-dependent Error) | An error not caused by CME, EXE, or QYE occurred (parameter error, etc.).                                                                   |
| 2   | Query error<br>(QYE-Query Error)                       | An attempt was made to read data in the Output Queue<br>when it was empty. Or, the data in the Output Queue was<br>lost before it was read. |
| 1   | Not used                                               |                                                                                                                                             |
| 0   | Operation complete<br>(OPC-Operation Complete)         | This bit becomes 1 when this instrument has processed the <b>*OPC</b> command.                                                              |

## Reading, writing, and clearing the Standard Event Status Register

| Reading  | The register is read using the <b>*ESR?</b> command query.<br>The register is cleared after being read. The response message is integer-format data<br>with the binary weight added to the event bit and the sum converted to decimal. |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Writing  | With the exception of clearing, data cannot be written to the register from outside.                                                                                                                                                   |
| Clearing | The register is cleared when:<br>[1] A *CLS command is received<br>[2] The power is turned on (Bit 7 is set to ON and the other bits are cleared to 0).<br>[3] An event is read for the *ESR? query command                            |

## Reading, writing, and clearing the Standard Event Status Enable Register

| Reading  | The registers is read using the <b>*ESE</b> ? command.<br>The response message is integer-format data with the binary weight added to the event bit and the sum converted to decimal.                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Writing  | The register is written using the <b>*ESE</b> common command.                                                                                                                                                                                                                                                                          |
| Clearing | The register is cleared when:<br>[1] An *EXE command with a data value of 0 is received<br>[2] The power is turned on ·<br>The Standard Event Enable Register is not affected when:<br>[1] The device clear function status of IEEE488.1 is changed<br>[2] An *RST common command is received<br>[3] A *CLS common command is received |

### Section 4 Status Structure

## **Extended Event Status Register**

For this measurement unit, bits 7, 3, 1, and 0 are unused. Bit 2 is assigned to the END summary bit as the status-summary bit supplied by the extended register model as shown below.



Status Byte Register

### Bit definition of END Event Status Register

The diagram below shows the operation and event-bit names of the END Event Status Register.



The END Event Status Enable Register is used to select which bits in the corresponding Event Register will cause a TRUE summary message when set.

| Bit | Event name                    | Description                                                                                |
|-----|-------------------------------|--------------------------------------------------------------------------------------------|
| 7   | Not used                      | Not used                                                                                   |
| 6   | Max Hold/Min Hold             | Sweeping according to the specified HOLD number has been completed.                        |
| 5   | Measurement completed         | Calculation processing for measurements (frequency count, noise, etc.) has been completed. |
| 4   | Averaging completed           | Sweeping according to the specified AVERAGE number has been completed.                     |
| 3   | Preselector peaking completed | Preselector peaking has been completed                                                     |
| 2   | AUTO TUNE completed           | AUTO TUNE has been completed.                                                              |
| 1   | Calibration completed         | ALL CAL, LEVEL CAL, or FREQ CAL has been completed.                                        |
| 0   | Sweep completed               | A single sweep has been completed or is in standby.                                        |

### Section 4 Status Structure

## Reading, writing, and clearing the Extended Event Status Register

| Reading  | The ESR? common query is used to read the register. The register is cleared after being read. The response message is integer-format data with the binary weight added to the event bit and the sum converted to decimal. |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Writing  | With the exception of clearing, data cannot be written to the register from outside.                                                                                                                                      |  |
| Clearing | The register is cleared when:<br>[1] A *CLS command is received<br>[2] The power is turned on<br>[3] An event is read for the ESR2? query command                                                                         |  |

# Reading, writing, and clearing the Extended Status Enable Register

| Reading  | The ESE2? query is used to read the register.<br>The response message is integer-format data with the binary weight added to the event<br>bit and the sum converted to decimals.                                                                                                                                                                    |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Writing  | The ESE2 program command is used to write the register.<br>Because bits 0 to 7 of the registers are weighted with values 1, 2, 4, 8, 16, 32, 64, and 128, respectively, the write data is transmitted as integer-format data that is the sum of the required bit digits selected from the weighted value.                                           |  |
| Clearing | The register is cleared when:<br>[1] An ESE2 program command with a data value of 0 is received<br>[2] The power is turned on<br>The Extended Event Status Enable register is not affected when:<br>[1] The device clear function status of IEEE488.1 is changed<br>[2] An *RST common command is received<br>[3] A *CLS common command is received |  |

# Synchronizing This Measurement Unit with a Controller

This measurement unit treats program messages as sequential commands that do not process newly-received commands until they complete the processing of the previous command. Therefore, no special consideration is necessary for pair-synchronization between this measurement unit and the controller.

If the controller controls and synchronizes with one or more devices, after all the commands specified for this measurement unit have been processed, the next commands must be sent to other devices.

There are two ways of synchronizing this measurement unit with the controller:

- [1] Wait for a response after the \*OPC? query is sent.
- [2] Wait for SRQ after \*OPC is sent.

### Wait for a response after the \*OPC? query is sent

This measurement unit outputs "1" as the response message when executing the \*OPC? query command. The controller is synchronized with this measurement unit by waiting for the response message to be entered.

< Controller program >



### Section 4 Status Structure

# Wait for a service request after \*OPC is sent (only when the GPIB interface bus is used)

This measurement unit sets the operation-complete bit (bit 0) to 1 when executing the \*OPC command. The controller is synchronized with this measurement unit for SRQ when the operation-complete bit is set for SRQ.


# Section 5 Initial Settings

This measurement unit initializes the GPIB interface system at three levels by the IEEE488.2 specifications. This section describes how these three levels of initialization are processed, and how to instruct initialization from the controller.

| Bus Initialization Using the IFC Statement     |     |  |  |  |
|------------------------------------------------|-----|--|--|--|
| Initialization for Message Exchange by DCL and |     |  |  |  |
| SDC Bus Commands                               | 5-5 |  |  |  |
| Device Initialization Using the *RST Command   | 5-7 |  |  |  |
| Device Initialization Using the INI/IP Command | 5-8 |  |  |  |
| Device Status at Power-on                      | 5-8 |  |  |  |
|                                                |     |  |  |  |

The IEEE488.2 standard has three levels of initialization. The first level is "bus initialization," the second level is "initialization for message exchange," and the third level is "device initialization." This standard also stipulates that a device must be set to a known state when the power is turned on.

| Level | Initialization type                    | Description                                                                                                                                                                                                                                              | Level combination and sequence                                                              |
|-------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1     | Bus initialization                     | The IFC message from the controller initializes<br>all interface functions connected to the bus.                                                                                                                                                         | Level 1 can be combined with<br>other levels, but must be<br>executed before level 2.       |
| 2     | Initialization for<br>message exchange | Message exchanges of all devices and<br>specified devices on the GP-IB are initialized<br>using the SDC and DCL GP-IB bus<br>commands, respectively. These commands<br>also nullify the function that reports operation<br>completion to the controller. | Level 2 can be combined with<br>other levels, but must be<br>executed before level 3.       |
| 3     | Device<br>initialization               | The *RST or INI/IP command returns a specified device to a known device-specific state, regardless of the conditions under which was being used.                                                                                                         | Level 3 can be combined with<br>other levels, but must be<br>executed after levels 1 and 2. |

When using the RS-232C (standard)/Ethernet (Option) interface port to control this measurement unit from the controller, the level-3 device initialization function can be used but the level-2 initialization function. When using the GPIB (Standard) interface bus to control this measurement unit from the controller, all the initialization functions can be used.

The following paragraph describes the commands for initialization at levels 1, 2, and 3 and the items that are initialized. This paragraph also describes the known state which is set when the power is turned on.

### Bus Initialization Using the IFC Statement

#### Example

board% = 0
CALL SendIFC (board%)

#### Explanation

This function is available when using the GPIB interface bus to control this measurement unit from the controller.

The IFC statement initializes the interface functions of all devices connected to the GPIB bus line.

The initialization of interface functions clears the interface function states of devices set by the controller to their initial states. In the table below, the circles indicate the functions which are initialized, and the triangle indicates the function which is partially initialized.

| No | Function Symbol               |         | Initialization by IFC |
|----|-------------------------------|---------|-----------------------|
| 1  | Source handshake              | SH      | 0                     |
| 2  | Acceptor handshake            | AH      | 0                     |
| 3  | Talker or extended talker     | T or TE | 0                     |
| 4  | Listener or extended listener | L or LT | 0                     |
| 5  | Service request               | SR      |                       |
| 6  | Remote/local                  | RL      |                       |
| 7  | Parallel poll                 | PP      |                       |
| 8  | Device clear                  | DC      |                       |
| 9  | Device trigger                | DT      |                       |
| 10 | Controller                    | С       | 0                     |

Bus initialization by the IFC statement does not affect the device operating state (frequency settings, LED on/off, etc.).

## Initialization for Message Exchange by DCL and SDC Bus Commands

#### Example

Initialize all devices on the bus for message exchange (sending DCL).

```
board% = 0
addresslist% = NOADDR
CALL DevClearList(board%, addresslist%)
```

Initialize only the device at address 3 for message exchange (sending SDC).

```
board% = 0
address% = 3
CALL DevClear(board%, address%)
```

#### Explanation

This function can be used when the GPIB interface is used to control this measurement unit from the controller.

This statement executes initialization for message exchange of all devices or a specified device on the GPIB having the specified select code. ■ Items to be initialized for message exchange

When this measurement unit accepts the DCL or SDC bus command, it does the following:

| [1] Input Buffer and Output Queue:    | Clears them and also clears the MAV bit. |
|---------------------------------------|------------------------------------------|
| [2] Parser, Execution Controller, and |                                          |
| <b>Response Formatter:</b>            | Resets them.                             |
| [3] Device commands including         | Clears all commands that pre-            |
| *RST:                                 | vent these commands from being executed. |
| [4] Processing of the *OPC? com-      | Puts a device in OCIS (Operation         |
| mand:                                 | Complete Command Idle State).            |
|                                       | As a result, the operation com-          |
|                                       | plete bit cannot be set in the           |
|                                       | Standard Event Status Register.          |
| [5] Processing of the *OPC? query:    | Puts a device in OQIS (Operation         |
|                                       | Complete Query Idle State).              |
|                                       | As a result, the operation com-          |
|                                       | plete bit 1 cannot be set in the         |
|                                       | Output Queue.                            |
| [6] Device functions:                 | Puts all functions associated with       |
|                                       | message exchange in the idle             |
|                                       | state. The device continues to           |
|                                       | wait for a message from the con-         |
|                                       | troller.                                 |

## CAUTION A

The following are not affected even if the DCL and SDC commands are processed.

- [1] Current data set or stored in the device
- [2] Front panel settings
- [3] Status of status byte other than MAV bit
- [4] A device operation in progress

### Device Initialization Using the \*RST Command

■ Syntax-\*RST

Example

For RS-232C/Ethernet

WRITE #1, "\*RST" Initializes the spectrum analyzer function at address 1 at level 3.

#### For GPIB

SPA%=1
CALL Send(0,SPA,"\*RST",NLend)

#### Explanation

The \*RST (Reset) command is an IEEE488.2 common command that initialize a device at level 3.

The \*RST (Reset) command is used to initialize a device (this measurement unit) to a specific initial state.

Note:

The \*RST command does not affect the following.

- [1] IEEE488.1 interface state
- [2] Device address
- [3] Output Queue
- [4] Service Request Enable register
- [5] Standard Event Status Enable register
- [6] Power-on-status-clear flag setting
- [7] Calibration data affecting device specifications
- [8] Parameters preset for control of external device, etc.

For details of the settings of this measurement unit after initialization, see Appendix A.

### Device Initialization Using the INI/IP Command

| ■ Syntax<br>INI<br>IP                                                                        |
|----------------------------------------------------------------------------------------------|
| Example (program message) For RS-232C/Ethernet                                               |
| WRITE #1, "INI" Initializes the device (spectrum analyzer function) at address 1 at level 3. |
| For GPIB                                                                                     |
| SPA%=1<br>CALL Send(0,SPA%,"INI",NLend)                                                      |
| Explanation                                                                                  |

The INI and IP commands are this measurement unit device-dependent messages that initialize a device at level 3.

## Device Status at Power-on

When the power is turned on:

- [1] The device is set to the status at power-off.
- [2] The Input Buffer and Output Queue are cleared.
- [3] The Parser, Execution Controller, and Response Formatter are initialized.
- [4] The device is put into OCIS (Operation Complete Command Idle State).
- [5] The device is put into OQIS (Operation Complete Query Idle State).
- [6] The Standard Event Status and Standard Event Status Enable Registers are cleared. Events can be recorded after the registers have been cleared.

As the special case of [1], when this measurement unit is powered on for the first time after delivery, this measurement unit settings are those listed in the Initial Settings Table ( Appendix A).

This section describes the device message list of the MX860x03A/ MX268x03A cdma Measurement Software.

For the details of these messages, refer to Section 7 Command Details.

| How to Read the Device Message List               | 6-3  |
|---------------------------------------------------|------|
| Commands Commonly Used on All Measurement Screens | 6-5  |
| Setup Common Parameter                            | 6-9  |
| Modulation Analysis                               | 6-11 |
| RF Power                                          | 6-19 |
| Occupied Bandwidth                                | 6-21 |
| Spurious close to the Carrier                     | 6-23 |
| Spurious Emission                                 | 6-35 |
| Power Meter                                       | 6-41 |
| IQ Level                                          | 6-42 |
|                                                   |      |

## How to Read the Device Message List

- Program message and Query message
- (a) Upper-case letters: Reserved word
- (b) Numeric values: Reserved word (Numeric value code)
- (c) Lower-case letters in argument

| Argument | Meaning                                                     | Туре                                            | Unit/Suffix code                                                                        |
|----------|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------|
| f        | frequency                                                   | Real number with<br>decimal point or<br>integer | GHZ, MHZ, KHZ, HZ,<br>GZ, MZ, KZ, None<br>(HZ)                                          |
| t        | time                                                        | Real number with<br>decimal point or<br>integer | S, SC, MS, US, None<br>(MS)                                                             |
| 1        | level                                                       | Real number with<br>decimal point or<br>integer | DB, DBM, DM,<br>DBMV, DBUV,<br>DBUVE, V, MV, UV,<br>W, MW, UW, NW,<br>None (Fixed unit) |
| n        | Non-unit integer<br>or unit-specified<br>integer            | Decimal integer                                 | None or specified                                                                       |
| 0        | Non-unit integer                                            | Octal integer                                   | None                                                                                    |
| h        | Non-unit integer                                            | Hexadecimal integer                             | None                                                                                    |
| r        | Non-unit real<br>number or<br>unit-specified<br>real number | Real number                                     | None or specified                                                                       |

- Response message
- (a) Upper-case letters: Reserved word
- (b) Numeric values: Reserved word (Numeric value code)
- (c) Lower-case letters in argument

| Argument | Meaning (Unit)                                              | Туре                                                                                                                           | Unit               |
|----------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| f        | frequency                                                   | Real number with<br>decimal point or<br>integer                                                                                | Hz                 |
| t        | time                                                        | Real number with<br>decimal point or<br>integer                                                                                | ms                 |
| 1        | level                                                       | Real number with<br>decimal point or<br>integer                                                                                | Fixed or specified |
| n        | Non-unit integer<br>or unit-specified<br>integer            | Decimal integer,<br>number of digits can<br>be changed. (Integers<br>in effective digits are<br>output.)                       | None or specified  |
| 0        | Non-unit integer                                            | Octal integer                                                                                                                  | None               |
| h        | Non-unit integer                                            | Hexadecimal integer                                                                                                            | None               |
| r        | Non-unit real<br>number or<br>unit-specified<br>real number | Real number with<br>decimal point, number<br>of digits can be<br>changed. (Real<br>numbers in effective<br>digits are output.) | None or specified  |
| j        | Value judgment                                              | PASS (Unit<br>specification) or FAIL<br>(Out of specification)                                                                 | None               |
| u        | Specified unit                                              | DB, DBM, DM,<br>DBMV, DBUV,<br>DBUVE, V, MV, UV,<br>W, MW, UW, NW                                                              | None               |

## **Commands Commonly Used on All Measurement Screens**

This section lists the commands used on all the measurement screens. For more information on external control commands commonly used in all the measurement modes for this measurement unit, refer to the separate MS860x/MS268x operation manual.

| Function                  | ltem             | Program Message       | Query Message | Response Message | Remarks |  |
|---------------------------|------------------|-----------------------|---------------|------------------|---------|--|
| Measurement mode change   |                  |                       |               |                  |         |  |
| Spectrum Analyzer         |                  | PNDMD SPECT           | PNLMD?        | SPECT            |         |  |
| Tx Tester                 |                  | PNDMD SYSTEM          | PNLMD?        | SYSTEM           |         |  |
| Config                    |                  | PNDMD CONFIG          | PNLMD?        | CONFIG           |         |  |
| Measureme                 | nt system change |                       | •             | ·                | ·       |  |
| System-1(F                | 1)               | SYS 1                 | SYS?          | 1                |         |  |
| System-2(F                | 2)               | SYS 2                 | SYS?          | 2                |         |  |
| System-3(F                | 3)               | SYS 3                 | SYS?          | 3                |         |  |
| Output data               | format           |                       |               |                  |         |  |
| Binary code               | 9                | BIN ON                | BIN?          | ON               |         |  |
|                           |                  | BIN 1                 | BIN?          | ON               |         |  |
| ASCII char                | acter string     | BIN OFF               | BIN?          | OFF              |         |  |
|                           |                  | BIN 0                 | BIN?          | OFF              |         |  |
| Input conne               | ctor switching   |                       |               |                  |         |  |
| RF Input High             |                  | <b>RFINPUT HIGH</b>   | RFINPUT?      | HIGH             | *1)     |  |
|                           | Low              | RFINPUT LOW           | RFINPUT?      | LOW              |         |  |
| Initialization            |                  |                       |               |                  |         |  |
| Preset                    |                  | PRE                   |               |                  |         |  |
|                           |                  | INI                   |               |                  |         |  |
|                           |                  | IP                    |               |                  |         |  |
| Switch Scre               | en Layer         |                       |               |                  |         |  |
| Setup Com                 | mon Parameter    | DSPL SETCOM           | DSPL?         | SETCOM           |         |  |
| Modulation Analysis       |                  | DSPL MODANAL          | DSPL?         | MODANAL          |         |  |
| RF Power                  |                  | DSPL RFPWR            | DSPL?         | RFPWR            |         |  |
| Setup Template (RF Power) |                  | DSPL<br>SETTEMP_RFPWR | DSPL?         | SETTEMP_RFPWR    |         |  |
| Occupied<br>Bandwidth     | Spectrum         | DSPL OBW,SPECT        | DSPL?         | OBW,SPECT        |         |  |
|                           | FFT              | DSPL OBW,FFT          | DSPL?         | OBW,FFT          |         |  |

\*1: Valid only when this unit is MS8608A.

| Function               | lter                                    | n              | Program Message          | Query Message | Response Message | Remarks         |
|------------------------|-----------------------------------------|----------------|--------------------------|---------------|------------------|-----------------|
| Spurious               | Normal                                  |                | DSPL ACP                 | DSPL?         | ACP,NRM          |                 |
| close to               |                                         |                | DSPL ACP,NRM             | DSPL?         |                  |                 |
| the<br>Carrier         | 3GPP2 FV<br>Class0,2,3,5                | VD Band<br>5,9 | DSPL<br>ACP,PRECISE1     | DSPL?         | ACP,PRECISE1     |                 |
|                        | 3GPP2 FW<br>Class 1,4,6,                | D Band<br>8    | DSPL<br>ACP,PRECISE2     | DSPL?         | ACP,PRECISE2     |                 |
| Setup Spu              | rious Temp                              | late           | DSPL                     | DGDI 2        | SETTEMP_ACP      |                 |
| (Spurious              | close to the                            | Carrier)       | SETTEMP_ACP              | DSFL!         |                  |                 |
| Spurious<br>Emission   | $\operatorname{Spot}$                   |                | DSPL<br>SETTEMP_SPOT     | DSPL?         | SPURIOUS,SPOT    |                 |
|                        | Search                                  |                | DSPL<br>SETTEMP_SEARCH   | DSPL?         | SPURIOUS,SEARCH  |                 |
|                        | Sweep                                   |                | DSPL<br>SETTEMP_SWEEP    | DSPL?         | SPURIOUS,SWEEP   |                 |
| Setup Spo<br>(Spurious | Setup Spot Table<br>(Spurious Emission) |                | DSPL SETTBL_SPU,<br>SPOT | DSPL?         | SETTBL_SPU,SPOT  |                 |
| Setup Sea              | rch/Sweep T                             | `able          | DSPL SETTBL_SPU,         | DSPL?         | SETTBL_SPU,      |                 |
| (Spurious              | Emission)                               |                | SWEEP                    |               | SWEEP            |                 |
| IQ Level               |                                         |                | DSPL IQLVL               | DSPL?         | IQLVL            | *1)             |
| Power Me               | ter                                     |                | DSPL PWRMTR              | DSPL?         | PWRMTR           | *2)             |
| Back Scre              | en                                      |                | BS                       |               |                  |                 |
| Start Meas             | urement                                 | -              |                          |               |                  |                 |
| Sweep/                 | Single                                  | No Sync        | SNGLS                    |               |                  |                 |
| Measure                |                                         | Sync           | SWP                      |               |                  |                 |
|                        | Continous                               | No Sync        | CONTS                    |               |                  |                 |
| Sweep/                 | Status of re                            | sult           |                          | MSTAT?        | 0                | Normal          |
| Measure                |                                         |                |                          |               | 1                | RF Level Limit  |
| status                 |                                         |                |                          |               | 2                | Level Over      |
|                        |                                         |                |                          |               | 3                | Level Under     |
|                        |                                         |                |                          |               | 6                | Trigger Timeout |
|                        |                                         |                |                          |               | 9                | No Measure      |
|                        | During Mea<br>sweep                     | asurement/     |                          | SWP?          | SWP 1            |                 |
|                        | Measureme<br>Sweep End                  | nt/            |                          | SWP?          | SWP 0            |                 |

\*1: For MS268x, this Command is available when Option–17 or –18 I/Q Input is installed. \*2: Valid only when this unit is MS860x.

| Function                | lt                                                               | em                                         | Program Message          | Query Message | Response Message | Remarks |
|-------------------------|------------------------------------------------------------------|--------------------------------------------|--------------------------|---------------|------------------|---------|
| Switch<br>Screen        | Setup Cor<br>Paramete                                            | mmon<br>er                                 | MEAS SETCOM              | MEAS?         | SETCOM           |         |
| and<br>Measure          | Modulat<br>Analysis                                              | ion                                        | MEAS MODANAL             | MEAS?         | MODANAL          |         |
| Start                   | RF Powe                                                          | er                                         | MEAS RFPWR               | MEAS?         | RFPWR            |         |
|                         | Setup Te<br>(RF Pow                                              | emplate<br>er)                             | MEAS<br>SETTEMP_RFPWR    | MEAS?         | SETTEMP_RFPWR    |         |
|                         | Occupied                                                         | Spectrum                                   | MEAS OBW,SPECT           | MEAS?         | OBW,SPECT        |         |
|                         | Bandwidt                                                         | h FFT                                      | MEAS OBW,FFT             | MEAS?         | OBW,FFT          |         |
| Switch                  | Spurious                                                         | Normal                                     | MEAS ACP                 | MEAS?         | ACP,NRM          |         |
| Screen                  | close to the                                                     | he                                         | MEAS ACP,NRM             | MEAS?         |                  |         |
| and<br>Measure<br>Start | Carrier                                                          | 3GPP2<br>FWD<br>Band<br>Class<br>0,2,3,5,9 | MEAS<br>ACP,PRECISE1     | MEAS?         | ACP,PRECISE1     |         |
|                         |                                                                  | 3GPP2<br>FWD<br>Band<br>Class<br>1,4,6,8   | MEAS<br>ACP,PRECISE2     | MEAS?         | ACP,PRECISE2     |         |
|                         | Setup Spurious<br>Template<br>(Spurious close to<br>the Carrier) |                                            | MEAS<br>SETTEMP_ACP      | MEAS?         | SETTEMP_ACP      |         |
|                         | Spurious<br>Emission                                             | $\operatorname{Spot}$                      | MEAS<br>SPURIOUS,SPOT    | MEAS?         | SPURIOUS,SPOT    |         |
|                         | 5                                                                | Search                                     | MEASU<br>SPURIOUS,SEARCH | MEAS?         | SPURIOUS,SEARCH  |         |
|                         |                                                                  | Sweep                                      | MEAS<br>SPURIOUS,SWEEP   | MEAS?         | SPURIOUS,SWEEP   |         |
|                         | Setup Spot Table<br>(Spurious Emission)                          |                                            | MEAS<br>SETTBL_SPU,SPOT  | MEAS?         | SETTBL_SPU,SPOT  |         |
|                         | Setup Search/<br>Sweep Table<br>(Spurious Emission)              |                                            | MEAS<br>SETTBL_SPU,SWEEP | MEAS?         | SETTBL_SPU,SWEEP |         |
|                         | IQ Level                                                         |                                            | MEAS IQLVL               | MEAS?         | IQLVL            | *1)     |
|                         | Power Me                                                         | eter                                       | MEAS PWRMTR              | MEAS?         | PWRMTR           | *2)     |

\*1: For MS268x, this Command is available when option -17 or -18 I/Q Input is installed.

\*2: Valid only when this unit is MS860x.

| Function   | Item     | Program Message | Query Message | Response Message | Remarks |
|------------|----------|-----------------|---------------|------------------|---------|
| Pre Ampl ( | (option) |                 | -             |                  |         |
| Pre Ampl   | On       | PREAMP ON       | PREAMP?       | ON               | *1)     |
|            | Off      | PREAMP OFF      |               | OFF              |         |
| Correction |          |                 |               |                  |         |
| Correction | Off      | CORR 0          | CORR?         | 0                |         |
|            | Table1   | CORR 1          |               | 1                |         |
|            | Table2   | CORR 2          |               | 2                |         |
|            | Table3   | CORR 3          |               | 3                |         |
|            | Table4   | CORR 4          |               | 4                |         |
|            | Table5   | CORR 5          |               | 5                |         |

\*1: This command is available when main unit option MS8608A-08/MS8609A-08/MS2681A-08/MS2683A-08 is installed.

# Setup Common Parameter

| Function    | ltem         | Program Message | Query Message | Response Message | Remarks                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|--------------|-----------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input       | 1            | l               |               |                  |                                                                                                                                                                                                                                                                                                                                                                                              |
| Terminal    | RF           | TERM RF         | TERM?         | RF               |                                                                                                                                                                                                                                                                                                                                                                                              |
|             | IQ-DC        | TERM IQDC       | TERM?         | IQDC             |                                                                                                                                                                                                                                                                                                                                                                                              |
|             | IQ-AC        | TERM IQAC       | TERM?         | IQAC             |                                                                                                                                                                                                                                                                                                                                                                                              |
|             | IQ-Balance   | TERM IQBAL      | TERM?         | IQBAL            |                                                                                                                                                                                                                                                                                                                                                                                              |
| Impedance   | 50Ω          | IQINZ 50        | IQINZ?        | 50               |                                                                                                                                                                                                                                                                                                                                                                                              |
| -           | 1 <b>M</b> Ω | IQINZ 1M        | IQINZ?        | 1M               | *1)                                                                                                                                                                                                                                                                                                                                                                                          |
| Reference I | .evel        | RFLVL 1         | RFLVL?        |                  | 1:<br><high>(-10.00+offset) dBm<br/>to (42.00+offset) dBm<br/><low> (-30.00 dBm +offset)<br/>to (22.00 dBm + offset)<br/>The ranges above are for<br/>the case of the MS8608A<br/>when the pre-amplifier is<br/>off.<br/>For MS8608A, the setting<br/>range for the Low Power<br/>input can be set.<br/><ms268x> (-30.00 dBm +<br/>offset) to (32.00 dBm +<br/>offset)</ms268x></low></high> |
| Reference I | evel Offset  | RFLVLOFS?       | RFLVLOFS?     | 1                | 1: -99.99 to 99.99 dB                                                                                                                                                                                                                                                                                                                                                                        |
| Frequency   |              |                 |               | -                |                                                                                                                                                                                                                                                                                                                                                                                              |
| Channel     |              | CHAN n          | CHAN?         | n                | n: 0 to 20000                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency   |              | FREQ f          | FREQ?         | f                | f: <ms2681a><br/>100 Hz to 3 GHz<br/><ms8608a> <ms2683a><br/>100 Hz to 7.8 GHz<br/><ms8609a><br/>100 Hz to 13.2 GHz<br/><ms2687a b=""><br/>100 Hz to 30 GHz</ms2687a></ms8609a></ms2683a></ms8608a></ms2681a>                                                                                                                                                                                |
| Channel &   | Frequency    | CHFREQ n,f      |               |                  | n: 1 to 20000<br>f: <ms2681a><br/>100 Hz to 3 GHz<br/><ms8608a> <ms2683a><br/>100 Hz to 7.8 GHz<br/><ms8609a><br/>100 Hz to 13.2 GHz<br/><ms2687a b=""><br/>100 Hz to 30 GHz</ms2687a></ms8609a></ms2683a></ms8608a></ms2681a>                                                                                                                                                               |
| Channel Sp  | oreading     | CHSPC f         | CHSPC?        | f                | f: 0 Hz to 7.8 GHz                                                                                                                                                                                                                                                                                                                                                                           |

| Function            | ltem               | Program Message  | Query Message | Response Message | Remarks                          |
|---------------------|--------------------|------------------|---------------|------------------|----------------------------------|
| Signal              | 1                  |                  |               |                  |                                  |
| Measuring<br>Object | Reverse<br>(RC1-2) | MEASOBJ REVERSE  | MEASOBJ?      | REVERSE          |                                  |
|                     | Reverse<br>(RC3-4) | MEASOBJ REVERSE3 | MEASOBJ?      | REVERSE3         |                                  |
|                     | Forward<br>(RC1-2) | MEASOBJ FORWARD  | MEASOBJ?      | FORWARD          |                                  |
|                     | Forward<br>(RC3-5) | MEASOBJ FORWARD3 | MEASOBJ?      | FORWARD3         |                                  |
|                     | QPSK               | MEASOBJ QPSK     | MEASOBJ?      | QPSK             |                                  |
|                     | OQPSK              | MEASOBJ OQPSK    | MEASOBJ?      | OQPSK            |                                  |
| Wave Type           | Continuous         | WAVETYPE CONT    | WAVETYPE?     | CONT             |                                  |
|                     | Burst              | WAVETYPE BURST   | WAVETYPE?     | BURST            |                                  |
| Filter              | No Filter          | FILTER OFF       | FILTER?       | OFF              |                                  |
|                     | Filtering          | FILTER ON        | FILTER?       | ON               |                                  |
|                     | Filter+EQ          | FILTER EQ        | FILTER?       | EQ               |                                  |
| Trigger             |                    |                  |               |                  |                                  |
| Trigger             | Free Run           | TRG FREE         | TRG?          | FREE             |                                  |
|                     | External           | TRG EXT          | TRG?          | EXT              |                                  |
| Trigger Edge        | Rise               | TRGEDGE RISE     | TRGEDGE?      | RISE             |                                  |
|                     | Fall               | TRGEDGE FALL     | TRGEDGE?      | FALL             |                                  |
| Trigger Delay       |                    | TRGDLY r         | TRGDLY?       | r                | r: −16384.0 to 16384.0<br>PNchip |
| PN                  | PN Search          | PNSYNC SEARCH    | PNSYNC?       | SEARCH           |                                  |
| Synchronization     | Ext Trigger        | PNSYNC EXTTRG    | PNSYNC?       | EXTTRG           |                                  |
| PN offset           |                    | PNOFFSET n       | PNOFFSET?     | n                | n:0 to 511                       |

# Modulation Analysis

| Function       | ltem               | Program Message | Query Message | Response<br>Message | Remarks                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|--------------------|-----------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters     |                    |                 |               | l                   |                                                                                                                                                                                                                                                                                                                                                                               |
| Trace Format   | Non                | TRFORM NON      | TRFORM?       | NON                 |                                                                                                                                                                                                                                                                                                                                                                               |
|                | Constellation      | TRFORM CONSTL   | TRFORM?       | CONSTEL             |                                                                                                                                                                                                                                                                                                                                                                               |
|                | Eye Diagram        | TRFORM EYE      | TRFORM?       | EYE                 |                                                                                                                                                                                                                                                                                                                                                                               |
|                | EVM                | TRFORM VECT     | TRFORM?       | VECT                |                                                                                                                                                                                                                                                                                                                                                                               |
|                | Phase Error        | TRFORM PHASE    | TRFORM?       | PHASE               |                                                                                                                                                                                                                                                                                                                                                                               |
|                | Magnitude<br>Error | TRFORM MAGTD    | TRFORM?       | MAGTD               |                                                                                                                                                                                                                                                                                                                                                                               |
|                | Code Domain        | TRFORM CODE     | TRFORM?       | CODE                |                                                                                                                                                                                                                                                                                                                                                                               |
| Operation      | Ι                  | OPRTTR I        | OPRTTR?       | Ι                   |                                                                                                                                                                                                                                                                                                                                                                               |
| Trace          | Q                  | OPRTTR Q        | OPRTTR?       | Q                   |                                                                                                                                                                                                                                                                                                                                                                               |
| Analysis Start |                    | ANLYSTA_MOD n   | ANLYSTA_MOD?  | n                   | n: 0 to 32768 PNchip<br>Resolution<br>64 (Forward (RC1-2)),<br>32 (Reverse (RC3-4)),<br>1 (Reverse (RC1-2),<br>QPSK, OQPSK),<br>128/64 (Forwaard<br>(RC3-5) Max Depends<br>on Walsh Length.)                                                                                                                                                                                  |
| Analysis Leng  | th                 | ANALYLEN_MOD n  | ANLYLEN_MOD?  | n                   | <ul> <li>n: 320 to 24576</li> <li>PNchip Resolution</li> <li>128 (Forward and n is<br/>under 1536 and Max<br/>walsh length is 128),</li> <li>64 (Forward and n is<br/>under 1536 and Max<br/>walsh length is 64)</li> <li>1536 (Forward and n<br/>is over 1536),</li> <li>32 (Reverse(RC1-2)),</li> <li>1 (Reverse(RC3-4)),</li> <li>64 (QPSK),</li> <li>1 (OQPSK)</li> </ul> |
| Max Walsh      | 64                 | MAXWL 64        | MAXWL?        | 64                  |                                                                                                                                                                                                                                                                                                                                                                               |
| Length         | 128                | MAXWL 128       | MAXWL?        | 128                 |                                                                                                                                                                                                                                                                                                                                                                               |
| Walsh Length   |                    | WLSHLEN n       | WLSHLEN?      | n                   |                                                                                                                                                                                                                                                                                                                                                                               |
| Auto Rate      | On                 | AUTODET ON      | AUTODET?      | ON                  |                                                                                                                                                                                                                                                                                                                                                                               |
| Detection      | Off                | AUTODET OFF     | AUTODET?      | OFF                 |                                                                                                                                                                                                                                                                                                                                                                               |

| Function       | ltem                         | Program Message     | Query Message  | Response<br>Message | Remarks                      |
|----------------|------------------------------|---------------------|----------------|---------------------|------------------------------|
| Display Mode   | OVSF                         | ARDDSPL OVSF        | ARDDSPL?       | OVSF                |                              |
|                | Walsh                        | ARDDSPL WALSH       | ARDDSPL?       | WALSH               |                              |
| Interpolation  | Non                          | INTPOL NON          | INTPOL?        | NON                 |                              |
|                | Linear                       | INTPOL LIN          | INTPOL?        | LIN                 |                              |
|                | 10points                     | INTPOL POINT10      | INTPOL?        | POINT10             |                              |
|                | Linear &                     | INTPOL LINSYM       | INTPOL?        | LINSYM              |                              |
|                | Symbol Position              |                     |                |                     |                              |
|                | 10point &<br>Symbol position | INTPOL P10SYM       | INTPOL?        | P10SYM              |                              |
| Error Scale    | 5%                           | ERRSC 5             | ERRSC?         | 5                   |                              |
|                | 10%                          | ERRSC 10            | ERRSC?         | 10                  |                              |
|                | 20%                          | ERRSC 20            | ERRSC?         | 20                  |                              |
|                | Off                          | ERRSC OFF           | ERRSC?         | OFF                 |                              |
| Vertical Scale | 5% or 5°                     | VSCALE 5            | VSCALE?        | 5                   |                              |
|                | 10% or 10°                   | VSCALE 10           | VSCALE?        | 10                  |                              |
|                | 20% or 20°                   | VSCALE 20           | VSCALE?        | 20                  |                              |
|                | 50% or 50°                   | VSCALE 50           | VSCALE?        | 50                  |                              |
|                | 100% or 100°                 | VSCALE 100          | VSCALE?        | 100                 |                              |
|                | 20 dB 20 ns                  | VSCALE_CDP 20       | VSCALE_CDP?    | 20                  | Wave Class:                  |
|                | 40 dB 40 ns                  | VSCALE_CDP 40       | VSCALE_CDP?    | 40                  | Power or                     |
|                | 60 dB 60 ns                  | VSCALE_CDP 60       | VSCALE_CDP?    | 60                  | Timing Offset                |
|                | 80 dB 80 ns                  | VSCALE_CDP 80       | VSCALE_CDP?    | 80                  |                              |
|                | 100 ns                       | VSCALE_CDP 100      | VSCALE_CDP?    | 100                 | Wave Class:<br>Timing Offset |
|                | 0.02 rad                     | VSCALE_CDP 0.02     | VSCALE_CDP?    | 0.02                |                              |
|                | 0.04 rad                     | VSCALE_CDP 0.04     | VSCALE_CDP?    | 0.04                |                              |
|                | 0.06 rad                     | VSCALE_CDP 0.06     | VSCALE_CDP?    | 0.06                |                              |
|                | 0.08 rad                     | VSCALE_CDP 0.08     | VSCALE_CDP?    | 0.08                |                              |
|                | 0.10 rad                     | VSCALE_CDP 0.10     | VSCALE_CDP?    | 0.10                |                              |
| Filter to      | On                           | WAVFLT ON           | WAVFLT?        | ON                  |                              |
| Nyquist        | Off                          | WAVFLT OFF          | WAVFLT?        | OFF                 |                              |
| Threshold      |                              | THRESH_MOD 1        | THRESH_MOD?    | 1                   | l: -50.00 to<br>-10.00       |
| Code Domain    | Power                        | WAVECLASS_CDP PWR   | WAVECLASS_CDP? | PWR                 |                              |
| Wave Class     | Timing                       | WAVECLASS_CDP TIME  | WAVECLASS_CDP? | TIME                |                              |
|                | Phase                        | WAVECLASS_CDP PHASE | WAVECLASS_CDP? | PHASE               |                              |

| Function            | ltem                                                                         | Program Message     | Query Message | Response Message | Remarks                                                                                                                    |
|---------------------|------------------------------------------------------------------------------|---------------------|---------------|------------------|----------------------------------------------------------------------------------------------------------------------------|
| Storage Mode        | Normal                                                                       | STRG_MOD NRM        | STRG_MOD?     | NRM              |                                                                                                                            |
|                     | Average                                                                      | STRG_MOD AVG        | STRG_MOD?     | AVG              |                                                                                                                            |
|                     | Overwrite                                                                    | STRG_MOD OVER       | STRG_MOD?     | OVER             |                                                                                                                            |
| Average Coun        | it                                                                           | AVG_MOD n           | AVR_MOD?      | n                | n: 2 to 9999                                                                                                               |
| Refresh<br>Interval | Every                                                                        | INTVAL_MOD<br>EVERY | INTVAL_MOD?   | EVERY            |                                                                                                                            |
|                     | Once                                                                         | INTVAL_MOD<br>ONCE  | INTVAL_MOD?   | ONCE             |                                                                                                                            |
| Marker Mode         | Normal                                                                       | MKR_MOD NRM         | MKR_MOD?      | NRM              |                                                                                                                            |
|                     | Off                                                                          | MKR_MOD OFF         | MKR_MOD?      | OFF              |                                                                                                                            |
| Marker<br>Position  | Constellation,<br>Eye Diagram,<br>EVM,<br>Phase Error,<br>Magnitude<br>Error | MKR_CDP r           | MKP_MOD?      | r                | r: 0 to 1535<br>(Forward, QPSK,<br>Reverse (RC3-4))<br>0 to 1535.5<br>(Reverse (RC1-2),<br>OQPSK)                          |
|                     | Code Domain                                                                  | MKP_CDP n           | MKP_CDP?      | n                |                                                                                                                            |
| Calibration         | I                                                                            |                     | I             | 1                |                                                                                                                            |
| Adjust Range        |                                                                              | ADJRNG              |               |                  |                                                                                                                            |
| Power Calibra       | ation                                                                        | PWRCAL              | PWRCAL?       | 1                | l: -10.00 to 10.00 dB<br>*1)                                                                                               |
| Calibration C       | ancel                                                                        | CALCANCEL           |               |                  |                                                                                                                            |
| Multi Carrier       | Calibration                                                                  | MLTCARRCAL          |               |                  |                                                                                                                            |
| Calibration Value   |                                                                              | CALVAL 1            | CALVAL?       | n,l              | n: mode<br>(0: Not calibrated,<br>1: Internal calibration,<br>2: Externally input<br>calibration)<br>1: -10.00 to 10.00 dB |
| Results             |                                                                              |                     |               |                  |                                                                                                                            |
| Tx Power            |                                                                              |                     | TXPWR? u      | 1                |                                                                                                                            |
| Carrier Frequ       | ency                                                                         |                     | CARREF?       | f                |                                                                                                                            |
| Carrier             | Hz                                                                           |                     | CARRFERR?     | f                |                                                                                                                            |
| Frequency           |                                                                              |                     | CARRFERR? HZ  | f                |                                                                                                                            |
| Error               | ppm                                                                          |                     | CARRFERR? PPM | r                | unit: ppm                                                                                                                  |
| Waveforn Qua        | ality                                                                        |                     | WAVQUAL?      | r                |                                                                                                                            |
| Timing Error        |                                                                              |                     | TAU?          | n,t              | n: unit: 64 PNchip<br>t: unit: µsec                                                                                        |
| RMS EVM             |                                                                              |                     | VECTERR?      | r                | unit: %                                                                                                                    |

\*1: Valid only when this unit is MS860x.

| Function             | ltem      | Program<br>Message | Query Message          | Response<br>Message | Remarks              |
|----------------------|-----------|--------------------|------------------------|---------------------|----------------------|
| Peak EVM             |           |                    | PVECTERR?              | r                   | unit: %              |
| Phase Errir          |           |                    | PHASEERR?              | r                   | unit: deg            |
| Peak Phase E         | rror      |                    | PPHASEERR?             | r                   |                      |
| Magnitude Ei         | ror       |                    | MAGTDERR?              | r                   | unit: %              |
| Peak Magnitu         | ıde Error |                    | PMAGTDERR?             | r                   |                      |
| Origin Offset        |           |                    | ORGNOFS?               | 1                   |                      |
| Pilot Channel        | dB        |                    | PLTCDP? DB             | 1                   |                      |
| code Domain<br>Power | dBm       |                    | PLTCDP? DBM            | 1                   |                      |
| Sync Channel         | l Power   |                    | SYNC_CDP?              | 1                   | unit: dB             |
| Active Total         |           |                    | ACTCH_CDP? TOTAL       | 1                   | unit: dB             |
| Channel              |           |                    | ACTCH_CDP? TOTAL,I     | 1                   | unit: dB             |
| Power                |           |                    | ACTCH_CDP? TOTAL,Q     | 1                   | unit: dB             |
|                      | Number    |                    | ACTCH_CDP? NUM         | 1                   | unit: CH             |
|                      |           |                    | ACTCH_CDP? NUM,I       | 1                   | unit: CH             |
|                      |           |                    | ACTCH_CDP? NUM,Q       | 1                   | unit: CH             |
|                      | Average   |                    | ACTCH_CDP? AVERAGE     | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? AVERAGE,I   | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? AVERAGE,Q   | 1                   | unit: dB             |
|                      | Max       |                    | ACTCH_CDP? MAX         | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? MAX,I       | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? MAX,Q       | 1                   | unit: dB             |
|                      | Min       |                    | ACTCH_CDP? MIN         | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? MIN,I       | 1                   | unit: dB             |
|                      |           |                    | ACTCH_CDP? MIN,Q       | 1                   | unit: dB             |
| Inactive             | Total     |                    | INACTCH_CDP? TOTAL     | 1                   | unit: dB             |
| Channel              |           |                    | INACTCH_CDP? TOTAL,I   | 1                   | unit: dB             |
| Power                |           |                    | INACTCH_CDP? TOTAL,Q   | 1                   | unit: dB             |
|                      | Number    |                    | INACTCH_CDP? NUM       | 1                   | unit: CH             |
|                      |           |                    | INACTCH_CDP? NUM,I     | 1                   | unit: CH             |
|                      |           |                    | INACTCH_CDP? NUM,Q     | 1                   | unit: CH             |
|                      | Average   |                    | INACTCH_CDP? AVERAGE   | 1                   | unit: dB             |
|                      |           |                    | INACTCH_CDP? AVERAGE,I | 1                   | unit: dB             |
|                      |           |                    | INACTCH_CDP? AVERAGE,Q | 1                   | unit: dB             |
|                      | Max       |                    | INACTCH_CDP? MAX       | 1                   | unit <sup>:</sup> dB |
|                      |           |                    | INACTCH_CDP? MAX,I     | 1                   | unit: dB             |
|                      |           |                    | INACTCH_CDP? MAX,Q     | 1                   | unit: dB             |
|                      | Min       |                    | INACTCH_CDP? MIN       | 1                   | unit: dB             |
|                      |           |                    | INACTCH_CDP? MIN,I     | 1                   | unit: dB             |
|                      |           |                    | INACTCH_CDP? MIN,Q     | 1                   | unit: dB             |

### Modulation Analysis

| Function | lte                   | m               | Program Message | Query Message | Response Message | Remarks   |
|----------|-----------------------|-----------------|-----------------|---------------|------------------|-----------|
| Marker   | Constella             | Ι               |                 | MKL_MOD? I    | r                |           |
| Level    | -tion, Eye<br>Diagram | Q               |                 | MKL_MOD? Q    | r                |           |
|          | EVM, Pha              | ase Error,      |                 | MKL_MOD       | r                |           |
|          | Magnitud              | e Error         |                 |               |                  |           |
|          | Code                  | Max             |                 | MKPMAX_CDP?   | n                |           |
|          | Domain                | Marker          |                 | MKPMAX_CDP? I | n                |           |
|          |                       | Position        |                 | MKPMAX_CDP? Q | n                |           |
|          |                       | Signal          |                 | MKSGNL?       | n                | n: NOISE, |
|          |                       | Status          |                 | MKSGNL? I     | n                | BPSK,     |
|          |                       |                 |                 | MKSGNL? Q     | n                | QPSK      |
|          |                       | Walsh<br>Length |                 | MKWL?         | r                |           |
|          |                       |                 |                 | MKWL? I       | r                |           |
|          |                       |                 |                 | MKWL? Q       | r                |           |
|          |                       | Code<br>Number  |                 | MKSCNO?       | r                |           |
|          |                       |                 |                 | MKSCNO? I     | r                |           |
|          |                       |                 |                 | MKSCNO? Q     | r                |           |
|          |                       | Code            |                 | MKCDP?        | r                |           |
|          |                       | Domain          |                 | MKCDP? I      | r                |           |
|          |                       | Power           |                 | MKCDP? Q      | r                |           |
|          |                       | Waveform        |                 | MKWAV?        | r                |           |
|          |                       | Quality         |                 | MKWAV? I      | r                |           |
|          |                       |                 |                 | MKWAV? Q      | r                |           |
|          |                       | Time<br>Offset  |                 | MKTIM?        | r                |           |
|          |                       | Phase<br>Offset |                 | MKPHASE?      | r                |           |

| Function                        | ltem                   |        | Program Message                                         | Query Message                                 | Response Message                                                             | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|------------------------|--------|---------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Function</b><br>Wave<br>Data | Item<br>Constellation, | I<br>Q | Program Message         XMC 0,na,nb         XMC 1,na,nb | Query Message<br>XMC? 0,nc,nd<br>XMC? 1,nc,nd | Response Message           ne(1),ne(2),,ne(nd)           ne(1),ne(2),,ne(nd) | <b>Remarks</b><br>na: 0 to 24575<br>(write address for<br>data)<br>nb: $-32768$ to<br>32767 (write data)<br>nc: 0 to 24575 (read<br>address for data)<br>nd: 1 to 24576<br>(number of reading<br>points)<br>ne: $-2147483648$ to<br>2147483647<br>(read-data idal<br>signal "1" = 10000)<br>na: 0 to 24575<br>(write address for<br>data)<br>nb: $-32768$ to<br>32767 (write data)<br>nc: 0 to 24575 (read<br>address for data)<br>nd: 1 to 24576<br>(number of reading<br>points) |
|                                 |                        |        |                                                         |                                               |                                                                              | ne: -2147483648 to<br>2147483647<br>(read-data idal<br>signal "1" = 10000)                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                        | Origin | OXMC na,nb                                              | OXMC? na                                      | nb                                                                           | na: 0 (I), I (Q)<br>nb: –32768 to<br>32767                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Function | ltem        |   | Program Message | Query Message  | Response Message    | Remarks                                                                                                                                                                                                                                                            |
|----------|-------------|---|-----------------|----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Eye Diagram | Ι | XMEYE 0,na,nb   | XMEYE? 0,nc,nd | ne(1),ne(2),,ne(nd) | na: 0 to 15359<br>(write address for<br>data)<br>nb: -32768 to<br>32767 (write data)<br>nc: 0 to 15359 (read<br>address for data)<br>nd: 1 to 15360<br>(number of reading<br>points)<br>ne: -2147483648 to<br>2147483647<br>(read-data idal<br>signal "1" = 10000) |
|          |             | Q | XMC 1,na,nb     | XMC? 1,nc,nd   | ne(1),ne(2),,ne(nd) | na: 0 to 15359<br>(write address for<br>data)<br>nb: -32768 to<br>32767 (write data)<br>nc: 0 to 15359 (read<br>address for data)<br>nd: 1 to 15360<br>(number of reading<br>points)<br>ne: -2147483648 to<br>2147483647<br>(read-data idal<br>signal "1" = 10000) |
|          | EVM         |   | XMV na,nb       | XMV? nc,nd     | ne(1),ne(2),,ne(nd) | na: 0 to 24575<br>(write address for<br>data)<br>nb: -32768 to<br>32767 (write data)<br>nc: 0 to 24575 (read<br>address for data)<br>nd: 1 to 24576<br>(number of reading<br>point)<br>ne: -2147483648 to<br>2147483647<br>(read-data 1 % =<br>100)                |

| Function | lte            | em              | Program Message | Query Message                | Response Message              | Remarks                                                                                                                                                                                                                                            |
|----------|----------------|-----------------|-----------------|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Phase Err      | or              | XMP na,nb       | XMP? nc,nd                   | ne(1),ne(2),,ne(nd)           | na: 0 to 24575 (write<br>address for data)<br>nb: -32768 to<br>32767 (write data)<br>nc: 0 to 24575 (read<br>address for data)<br>nd: 1 to 24576<br>(number of reading<br>point)<br>ne: -2147483648 to<br>2147483647<br>(read-data 1 deg =<br>100) |
|          | Magnitude      | Error           | XMN na,nb       | XMN? nc,nd                   | ne(1),ne(2),,ne(nd)           | na: 0 to 24575 (write<br>address for data)<br>nb: -32768 to<br>32767 (write data)<br>nc: 0 to 24575 (read<br>address for data)<br>nd: 1 to 24576<br>(number of reading<br>point)<br>ne: -2147483648 to<br>2147483647<br>(read-data 1 % =<br>100)   |
|          | Code<br>Domain | Each<br>channel |                 | CODANAL? r                   | r0,r1,r2,,r(n – 1)            | AutoRateDetection:<br>On                                                                                                                                                                                                                           |
|          |                |                 |                 | CODANAL? r,I                 | r0,r1,r2,,r(n-1)              | AutoRateDetection:<br>On                                                                                                                                                                                                                           |
|          |                |                 |                 | CODANAL? r,Q                 | r0,r1,r2,,r(n-1)              | AutoRateDetection:<br>On                                                                                                                                                                                                                           |
|          |                |                 |                 | CODANAL?<br>na.nb            | r1,r2,r3,r4                   | AutoRateDetection:<br>Off                                                                                                                                                                                                                          |
|          |                |                 |                 | CODANAL?<br>na,nb,I          | r1,r2,r3,r4                   | AutoRateDetection:<br>Off                                                                                                                                                                                                                          |
|          |                |                 |                 | CODANAL?<br>na.nb.Q          | r1,r2,r3,r4                   | AutoRateDetection:<br>Off                                                                                                                                                                                                                          |
|          |                |                 |                 | CDPANLY?                     | r1,r2,r3,r4                   |                                                                                                                                                                                                                                                    |
|          |                |                 |                 | na,no<br>CDPANLY?<br>na,nb,I | r1,r2,r3,r4                   |                                                                                                                                                                                                                                                    |
|          |                |                 |                 | CDPANLY?<br>na.nb.Q          | r1,r2,r3,r4                   |                                                                                                                                                                                                                                                    |
|          |                | Each item       |                 | CDALLCH? r.n                 | r0.r1.r2r(n-1)                |                                                                                                                                                                                                                                                    |
|          |                |                 |                 | CDALLCH? r,n,I               | $r_{0,r_{1,r_{2,,r_{(n-1)}}}$ |                                                                                                                                                                                                                                                    |
|          |                |                 |                 | CDALLCH?                     | r0,r1,r2,,r(n – 1)            |                                                                                                                                                                                                                                                    |

## **RF** Power

| Function            | ltem        | Program Message       | Query Message  | Response<br>Message | Remarks                                                                                                                                                    |
|---------------------|-------------|-----------------------|----------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameters          |             |                       |                |                     |                                                                                                                                                            |
| Window              | Slot        | WINDOW SLOT           | WINDOW?        | SLOT                |                                                                                                                                                            |
|                     | Leading     | WINDOW LEAD           | WINDOW?        | LEAD                |                                                                                                                                                            |
|                     | Trailing    | WINDOW TRAIL          | WINDOW?        | TRAIL               |                                                                                                                                                            |
| Storage Mode        | Normal      | STRG_RFPWR NRM        | STRG_RFPWR?    | NRM                 |                                                                                                                                                            |
|                     | Average     | STRG_RFPWR AVG        | STRG_RFPWR?    | AVG                 |                                                                                                                                                            |
|                     | Cumulative  | STRG_RFPWR CUM        | STRG_RFPWR?    | CUM                 |                                                                                                                                                            |
|                     | Overwrite   | STRF_RFPWR OVER       | STRG_RFPWR?    | OVER                |                                                                                                                                                            |
| Average Coun        | it          | AVG_RFPWR n           | AVR_RFPWR?     | n                   | n: 2 to 9999                                                                                                                                               |
| Refresh<br>Interval | Every       | INTVAL_RFPWR<br>EVERY | INTVAL_RFPWR?  | EVERY               |                                                                                                                                                            |
|                     | Once        | INTVAL_RFPWR<br>ONCE  | INTVAL_RFPWR?  | ONCE                |                                                                                                                                                            |
| Analysis Star       | t           | ANLYSTA_RFPWR n       | ANLYSTA_RFPWR? | n                   |                                                                                                                                                            |
| Smoothing           | On          | SMOFLT ON             | SMOFLT?        | ON                  |                                                                                                                                                            |
| Filter              | Off         | SMOFLT OFF            | SMOFLT?        | OFF                 |                                                                                                                                                            |
| Level               | Relative    | LVLREL_RFPWR ON       | LVLREL_RFPWR?  | ON                  |                                                                                                                                                            |
|                     | Absolute    | LVLREL_RFPWR<br>OFF   | LVLREL_RFPWR   | OFF                 |                                                                                                                                                            |
| Code Sync           | On          | CODESYNC ON           | CODESYNC?      | ON                  |                                                                                                                                                            |
|                     | Off         | CODESYNC OFF          | CODESYNC?      | OFF                 |                                                                                                                                                            |
| Video Trigger       | Rise        | VTEDGE RISE           | VTEDGE?        | RISE                |                                                                                                                                                            |
| Edge                | Fall        | VTEDGE FALL           | VTEDGE?        | FALL                |                                                                                                                                                            |
| Video Trigger       | Level       | VTLVL? u              | VTLVL? u       | 1                   |                                                                                                                                                            |
| Video Trigger       | Delay       | RISE,1                | VTDLY? RISE    | 1                   | l: -10.00 to 10.00 PNchip                                                                                                                                  |
|                     |             | FALL,1                | VTDLY? FALL    | 1                   | l: -10.00 to 10.00 PNchip                                                                                                                                  |
| Marker Mode         | Normal      | MKR_RFPWR ON          | MKR_RFPWR?     | NRM                 |                                                                                                                                                            |
|                     | Off         | MKR_RFPWR OFF         | MRR_RFPWR?     | OFF                 |                                                                                                                                                            |
| Marker Positi       | on          | MKR_RFPWR r           | MKP_RFPWR?     | r                   | r: –100.00 to 1636.00 PNchip                                                                                                                               |
| Calibration         |             |                       |                |                     |                                                                                                                                                            |
| Adjust Range        |             | ADJRNG                |                |                     |                                                                                                                                                            |
| Power Calibra       | ation       | PWRCAL?               | PWRCAL?        | 1                   | l: –10.00 to 10.00 dB<br>*1)                                                                                                                               |
| Calibration Ca      | ancel       | CALCANCEL             |                |                     |                                                                                                                                                            |
| Multi Carrier       | Calibration | MLTCARRCAL            |                |                     |                                                                                                                                                            |
| Calibration V       | alue        | CALVAL 1              | CALVAL?        | n,l                 | <ul> <li>n: mode (0: Not calibrated,</li> <li>1: Internal calibration,</li> <li>2: Externally input calibration)</li> <li>1: -10.00 to 10.00 dB</li> </ul> |

\*1:Valid only when this unit is MS860x.

| Function              | ltem         | Program Message         | Query Message           | Response<br>Message      | Remarks                                                                                                                                                                                                                                                |
|-----------------------|--------------|-------------------------|-------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup Templ           | ate          |                         | 1                       | L                        | I                                                                                                                                                                                                                                                      |
| Line Level            |              | TEMPLVL_RFPWR n,l       | TEMPLVL_RFPWR? n        | 1                        |                                                                                                                                                                                                                                                        |
| Template<br>Condition | IS-95        | SLCTTEMP_RFPWR<br>IS95  | SLCTTEMP_RFPWR?         | IS95                     |                                                                                                                                                                                                                                                        |
|                       | 3GPP2        | SLCTTEMP_RFPWR<br>3GPP2 | SLCTTEMP_RFPWR?         | 3GPP2                    |                                                                                                                                                                                                                                                        |
|                       | Not Selected |                         | SLCTTEMP_RFPWR?         | NOT                      |                                                                                                                                                                                                                                                        |
| Results               |              |                         |                         |                          |                                                                                                                                                                                                                                                        |
| Tx Power              |              |                         | TXPWR? u                | 1                        |                                                                                                                                                                                                                                                        |
| Peak Tx Pov           | ver          |                         | PKTXPWR? u              | 1                        |                                                                                                                                                                                                                                                        |
| Peak/Averag           | ge Ratio     |                         | PEAKRATIO?              | 1                        |                                                                                                                                                                                                                                                        |
| Carrier Off           | Power        |                         | OFFPWR?                 | 1                        |                                                                                                                                                                                                                                                        |
| On/Off Ratio          | )            |                         | RATIO?                  | 1                        |                                                                                                                                                                                                                                                        |
| Power vs<br>Time      | IS-95        |                         | PWRVSTIME?<br>n,IS95,u  | 1                        | n:<br>1:6 μs<br>2: 0 μs<br>3: 1250 μs<br>4: 1256 μs                                                                                                                                                                                                    |
|                       | 3GPP2        |                         | PWRVSTIME?<br>n,3GPP2,u | 1                        | n:<br>1:5.5 μs<br>2: 1.5 μs<br>3: 1248.5 μs<br>4: 1255.5 μs                                                                                                                                                                                            |
| Template Ju           | Idgement     |                         | TEMPPASS_RFPWR?         | j                        | · · · · ·                                                                                                                                                                                                                                              |
| Marker Lev            | el           |                         | MKL RFPWR?              | 1                        |                                                                                                                                                                                                                                                        |
| Wave Data             |              | XMD na,nb               | XMD nc,nd               | ne(1),,ne(2),,n<br>e(nd) | na: 0 to 6944<br>(Data writing address)<br>nb: -32768 to 32767<br>(Write data 1 dBm =<br>100)<br>nc: 0 to 6944<br>(Start address for<br>reding Data)<br>nd: 1 to 6945<br>(Number of read data)<br>ne: -21473648 to<br>2147483647<br>(Read data 1 dBm = |

# Occupied Bandwidth

| Function          | Item     | Program Message  | Query Message | Response Message | Remarks     |  |  |
|-------------------|----------|------------------|---------------|------------------|-------------|--|--|
| Parameters        |          |                  |               |                  |             |  |  |
| Measure           | Spectrum | DSPL OBW,SPECT   | DSPL?         | OBW,SPECT        |             |  |  |
| Method            | FFT      | DSPL OBW,FFT     | DSPL?         | OBW,FFT          |             |  |  |
| Storage           | Normal   | STRG_OBW NRM     | STRG_OBW?     | NRM              |             |  |  |
| Mode              | Average  | STRG_OWB AVG     | STRG_OBW?     | AVG              |             |  |  |
| Average Co        | unt      | AVG_OBW n        | AVR_OBW?      | n                | n:2 to 9999 |  |  |
| Refresh           | Every    | INTVAL_OBW EVERY | INTVAL_OBW?   | EVERY            |             |  |  |
| Interval          | Once     | INTVAL_OBW ONCE  | INTVAL_OBW?   | ONCE             |             |  |  |
| Span              |          | FSPAN_OBW f      | FSPAN_OBW?    | f                |             |  |  |
| Ref Level         |          | RL_OBW n         | RL_OBW?       | n                |             |  |  |
| Attenuator        | Auto     | ATTRLMD_OBW AUTO | ATTRLMD_OBW?  | AUTO             |             |  |  |
| Ref Level<br>Mode | Manual   | ATTRLMD_OBW MAN  | ATTRLMD_OBW?  | MAN              |             |  |  |
| Attenuator        |          | ATT_OBW n        | ATT_OBW?      | n                |             |  |  |
| Attenuator        | Auto     | ATTMD_OBW AUTO   | ATTMD_OBW?    | AUTO             |             |  |  |
| Mode              | Manual   | ATTMD_OBW MAN    | ATTMD_OBW?    | MAN              |             |  |  |
| RBW               |          | RBW_OBW n        | RBW_OBW?      | n                |             |  |  |
| RBW Type          | Normal   | RBD_OBW NRM      | RBD_OBW?      | NRM              |             |  |  |
|                   | Digital  | RBD_OBW DGTL     | RBD_OBW?      | DGTL             |             |  |  |
| VBW               |          | VBW_OBW n        | VBW_OBW?      | n                |             |  |  |
| VBW Mode          | Auto     | VBM_OBW AUTO     | VBM_OBW?      | AUTO             |             |  |  |
|                   | Manual   | VBM_OBW MAN      | VBM_OBW?      | MAN              |             |  |  |
| VBW/RBW           | Ratio    | VBR_OBW n        | VBR_OBW?      | n                |             |  |  |
| Sweep Time        | e        | SWT_OBW n        | SWT_OBW?      | n                |             |  |  |
| Sweep             | Auto     | STM_OBW AUTO     | SWM_OBW?      | AUTO             |             |  |  |
| Time Mode         | Manual   | STM_OBW MAN      | SWM_OBW?      | MAN              |             |  |  |
| Detection         | Positive | DET_OBW POS      | DET_OBW?      | POS              |             |  |  |
|                   | Sample   | DET_OBW SMP      | DET_OBW?      | SMP              |             |  |  |
|                   | Negative | DET_OBW NEG      | DET_OBW?      | NEG              |             |  |  |
|                   | Average  | DET_OBW AVG      | DET_OBW?      | AVG              |             |  |  |
|                   | RMS      | DET_OBW RMS      | DET_OBW?      | RMS              |             |  |  |
| Data              | 501      | DPTS_OBW 501     | DPTS_OBW?     | 501              |             |  |  |
| Points            | 1001     | DPTS_OBW 1001    | DETS_OBW?     | 1001             |             |  |  |

| Function            | ltem             | Program Message | Query Message      | Response Message    | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------|------------------|-----------------|--------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Calibration         |                  |                 |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Adjust Rai          | nge              | ADJRNG          |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Power Cal           | ibration         | PWRCAL          | PWRCAL?            | 1                   | l: -10.00 to 10.00 dB<br>*1)                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Calibratio          | n Cancel         | CALCANCEL       |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Multi Cari          | rier Caliblation | MLTCARRCAL      |                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Calibration Value   |                  | CALVAL 1        | CALVAL?            | n,l                 | n:mode<br>(0: Uncalibrated,<br>1: Internally calibrated,<br>2: External writing)<br>1: 10.00 to 10.00 dB                                                                                                                                                                                                                                                                                                                                                      |  |
| Results             |                  |                 |                    |                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Occupied l<br>(99%) | Bandwidth        |                 | OBW?               | f                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Upper Lin           | nit              |                 | OBWFREQ? UPPER     | f                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Lower Lin           | nit              |                 | OBWFREQ? LOWER     | f                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Center (Uj          | pper+Lower)/2    |                 | OBWFREQ?<br>CENTER | f                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Wave Data           | a                | XME na,nb       | XME? nc,nd         | ne(1),ne(2),,ne(nd) | na:<br>0 to 500 (when Data<br>Points = 500),<br>0 to 1000 (when Data<br>Points = 1000)<br>(write address for data)<br>nb:<br>-32768 to $32767(Written Data 1 dB =100)nc:0 to 500 (when DataPoints = 500),0 to 1000 (when DataPoints = 1000)(address for readingData)nd:1 to 501 (when DataPoints = 501),1 to 1001 (when DataPoints = 501),1 to 1001 (when DataPoints = 1001)(Number of readpoints)ne: -21473648 to21473647(read-data Ideal signal1 dB = 100)$ |  |

\*1:Valid only when this unit is MS860x.

# Spurious close to the Carrier

| Function                | ltem                 | Program Message            | Query Message     | Response Message | Remarks                                                     |
|-------------------------|----------------------|----------------------------|-------------------|------------------|-------------------------------------------------------------|
| Parameters              |                      |                            |                   |                  |                                                             |
| Unit                    | dB                   | UNIT_ACP DB                | UNIT_ACP?         | DB               |                                                             |
|                         | dBm                  | UNIT_ACP DBM               | UNIT_ACP?         | DBM              |                                                             |
|                         | mW                   | UNIT_ACP MW                | UNIT_ACP?         | MW               |                                                             |
|                         | μW                   | UNIT_ACP UW                | UNIT_ACP?         | UW               |                                                             |
|                         | nW                   | UNIT_ACP NW                | UNIT_ACP?         | NW               |                                                             |
|                         | dB/dBm<br>(Template) | UNIT_ACP TEMP              | UNIT_ACP?         | ТЕМР             |                                                             |
| Storage                 | Normal               | STRG_ACP NRM               | STRG_ACP?         | NRM              |                                                             |
| Mode                    | Average              | STRG_ACP AVG               | STRG_ACP?         | AVG              |                                                             |
| Average Cou             | nt                   | AVR_ACP n                  | AVR_ACP?          | n                | n: 2 to 9999                                                |
| Refresh<br>Interval     | Every                | INTVAL_ACP<br>EVERY        | INTVAL_ACP?       | EVERY            |                                                             |
|                         | Once                 | INTVAL_ACP<br>ONCE         | INTVAL_ACP        | ONCE             |                                                             |
| Ref Power<br>Mode       | SPA                  | REFPWRMD_ACP<br>SPA        | REFPWRMD_ACP<br>? | SPA              |                                                             |
|                         | Tx Power             | REFPWRMD_ACP<br>TXPWR      | REFPWRMD_ACP<br>? | TXPWR            |                                                             |
| Integral<br>Waveform    | On                   | INTEGRAL_ACP<br>ON         | INTEGRAL_ACP?     | ON               | • Can be set when<br>Measure Method is<br>set to Normal     |
|                         | Off                  | INTEGRAL_ACP<br>OFF        | INTEGRAL_ACP      | OFF              |                                                             |
| Display<br>Data Type    | Freq. vs Power       | DISPTYPE_ACP<br>FREQVSPWR  | DISPTYPE_ACP?     | FREQVSPWR        |                                                             |
|                         | Peak (Power)         | DISPTYPE_ACP<br>PEAKPWR    | DISPTYPE_ACP?     | PEAKPWR          |                                                             |
|                         | Peak (Margin)        | DISPTYPE_ACP<br>PEAKMARGIN | DISPTYPE_ACP?     | PEAKMARGIN       |                                                             |
| Ref Level               |                      | RL_ACP? n                  | RL_ACP?           | n                |                                                             |
| Span                    |                      | FSPAN_ACP f                | FSPAN_OBW?        | f                | • Can be set when<br>Measure Method is<br>set to Normal     |
| Attenuator<br>Ref Level | Auto                 | ATTRLMD_ACP<br>AUTO        | ATTRLMD_ACP?      | AUTO             |                                                             |
| Mode                    | Manual               | ATTRLMD_ACP<br>MAN         | ATTRLMD_ACP?      | MAN              |                                                             |
| Attenuator              |                      | ATT_ACP                    | ATT_ACP?          | n                |                                                             |
| Attenuator              | Auto                 | ATTMD_ACP AUTO             | ATTMD_ACP?        | AUTO             |                                                             |
| Mode                    | Manual               | ATTMD_ACP MAN              |                   | MAN              |                                                             |
| RBW                     |                      | RBW_ACP n                  | RBW_ACP?          | n                | • Can be set when<br>Standard Template<br>is set to Class 6 |
| RBW Type                | Normal               | RBW_ACP NRM                | RBD_ACP?          | NRM              |                                                             |
|                         | Digital              | RBD_ACP DGTL               |                   | DGTL             |                                                             |

| Function    | ltem      | Program Message | Query Message | Response Message | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----------|-----------------|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VBW         |           | VBW_ACP n       | VBW_ACP?      | n                | • Can not be set when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VBW Mode    | Auto      | VBM_ACP AUTO    | VBM_ACP?      | AUTO             | Standard Template is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | Manual    | VBM_ACP MAN     | VBM_ACP?      | MAN              | set to Class 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VBW/RBW I   | Ratio     | VBR_ACP n       | VBR_ACP?      | n                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sweep Time  |           | SWT_ACP n       | SWT_ACP?      | n                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sweep Time  | Auto      | STM_ACP AUTO    | STM_ACP?      | AUTO             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mode        | Manual    | STM_ACP MAN     | STM_ACP?      | MAN              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Detection   | Positive  | DET_ACP POS     | DET_ACP?      | POS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Sample    | DET_ACP SMP     | DET_ACP?      | SMP              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Negative  | DET_ACP NEG     | DET_ACP?      | NEG              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Average   | DET_ACP AVG     | DET_ACP?      | AVG              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | RMS       | DET_ACP RMS     | DET_ACP?      | RMS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data Points | 501       | DPTS_ACP 501    | DPTS_ACP?     | 501              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 1001      | DPTS_ACP 1001   | DPTS_ACP?     | 1001             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Position    |           |                 |               |                  | <ul> <li>n.<sup>11</sup></li> <li>0 to 500 (when Measure Method is set to Normal)</li> <li>0 to 1500 (when Measure Method is set to 3GPP2</li> <li>FWD Band Class 0, 2, 3, 5, 9)</li> <li>0 to 2000 (when Measure Method is set to 3GPP2</li> <li>FWD Band Class 1, 4, 6, 8)</li> <li>(when Data Points = 501)</li> <li>n.<sup>1</sup></li> <li>0 to 1000 (when Mesure Method is set to Normal)</li> <li>0 to 3000 (when Mesure Method is set to 3GPP2</li> <li>FWD Band Class 0, 2, 3, 5, 9)</li> <li>0 to 3500 (when Mesure Method is set to 3GPP2</li> <li>FWD Band Class 0, 2, 3, 5, 9)</li> <li>0 to 3500 (when Mesure Method is set to 3GPP2</li> <li>FWD Band Class 1, 4, 6, 8)</li> <li>(when Data Points = 1001)</li> </ul> |
|             | Frequency | MKN_ACP n       | MKN_ACP?      | f                | f: –(Span/2) to (Span/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Spurious close to the Carrier

| Function            | ltem           | Program Message  | Query Message      | Response Message | Remarks                                                                                                  |  |
|---------------------|----------------|------------------|--------------------|------------------|----------------------------------------------------------------------------------------------------------|--|
| Calibration         |                |                  |                    |                  |                                                                                                          |  |
| Adjust Ran          | ge             | ADJRNG           |                    |                  |                                                                                                          |  |
| Power Calibration   |                | PWRCAL           | PWRCAL?            | 1                | l:-10.00 to 10.00 dB<br>*1)                                                                              |  |
| Calibration         | Cancel         | CALCANCEL        |                    |                  |                                                                                                          |  |
| Multi Carri         | er Calibration | MLTCARRCAL       |                    |                  |                                                                                                          |  |
| Calibration Value   |                | CALVAL 1         | CALVAL?            | n,l              | n:mode<br>(0: Uncalibrated,<br>1: Internally calibrated,<br>2: External writing)<br>l:–10.00 to 10.00 dB |  |
| Setup Temp          | olate          | 1                |                    | I                |                                                                                                          |  |
| Level               | Relative       | LVLREL_ACP ON    | LVLREL_ACP?        | s1,s2,s3,s4      | s: On or Off                                                                                             |  |
|                     |                | LVLREL_ACP ON,1  | LVLREL_ACP? 1      | s                |                                                                                                          |  |
|                     |                | LVLREL_ACP ON,2  | LVLREL_ACP? 2      |                  |                                                                                                          |  |
|                     |                | LVLREL_ACP ON,3  | LVLREL_ACP? 3      |                  |                                                                                                          |  |
|                     |                | LVLREL_ACP ON,4  | LVLREL_ACP? 4      |                  |                                                                                                          |  |
|                     | Absolute       | LVLREL_ACP OFF   | LVLREL_ACP?        | s1,s2,s3,s4      | s: On or Off                                                                                             |  |
|                     |                | LVLREL_ACP OFF,1 | LVLREL_ACP? 1      | s                |                                                                                                          |  |
|                     |                | LVLREL_ACP OFF,2 | LVLREL_ACP? 2      |                  |                                                                                                          |  |
|                     |                | LVLREL_ACP OFF,3 | LVLREL_ACP? 3      |                  |                                                                                                          |  |
|                     |                | LVLREL_ACP OFF,4 | LVLREL_ACP? 4      |                  |                                                                                                          |  |
| Line Level          | Limit-1        | TEMPLVL_ACP 1,1  | TEMPLVL_ACP? 1     | 1                | l: 0 to -100.00                                                                                          |  |
|                     | Limit-2        | TEMPLVL_ACP 2,1  | TEMPLVL_ACP? 2     |                  |                                                                                                          |  |
|                     | Limit-3        | TEMPLVL_ACP 3,1  | TEMPLVL_ACP? 3     |                  |                                                                                                          |  |
|                     | Limit-4        | TEMPLVL_ACP 4,1  | TEMPLVL_ACP? 4     |                  |                                                                                                          |  |
| Offset<br>Frequency | Limit-a        | TEMPFREQ_ACP A,f | TEMPFREQ_ACP?<br>A | f                | f: –(Span/2) to<br>(Span/2)                                                                              |  |
|                     | Limit-b        | TEMPFREQ_ACP B,f | TEMPFREQ_ACP?<br>B |                  |                                                                                                          |  |
|                     | Limit-c        | TEMPFREQ_ACP C,f | TEMPFREQ_ACP?<br>C |                  |                                                                                                          |  |
|                     | Limit-d        | TEMPFREQ_ACP D,f | TEMPFREQ_ACP?<br>D |                  |                                                                                                          |  |

\*1:Valid only when this unit is MS860x.

| Function             | ltem                                  | Program Message               | Query Message | Response<br>Message | Remarks                                |
|----------------------|---------------------------------------|-------------------------------|---------------|---------------------|----------------------------------------|
| Standard<br>Template | IS-95 Forward<br>Relative             | SLCTTEMP_ACP<br>IS95,FWDREL   | SLCTTEMP_ACP? | IS95,FWDREL         | • Can be set when<br>Measure Method is |
|                      | IS-95 Forward<br>Relative f < 1 MHz   | SLCTTEMP_ACP<br>IS95,FWDREL2  | SLCTTEMP_ACP? | IS95,FWDREL2        | set to Normal.                         |
|                      | IS-95 Forward<br>Relative f≥1 MHz     | SLCTTEMP_ACP<br>IS95,FWDREL3  | SLCTTEMP_ACP? | IS95,FWDREL3        |                                        |
|                      | IS-95 Reverse<br>Relative             | SLCTTEMP_ACP<br>IS95,RVSREL   | SLCTTEMP_ACP? | IS95,RVSREL         |                                        |
|                      | IS-95 Reverse<br>Absolute             | SLCTTEMP_ACP<br>IS95,RVSABS   | SLCTTEMP_ACP? | IS95,RVSABS         |                                        |
|                      | ARIB Forward<br>Relative              | SLCTTEMP_ACP<br>ARIB,FWDREL   | SLCTTEMP_ACP? | ARIB,FWDREL         |                                        |
|                      | ARIB Forward<br>Relative              | SLCTTEMP_ACP<br>ARIB,FWDREL2  | SLCTTEMP_ACP? | ARIB,FWDREL2        |                                        |
|                      | ARIB Forward<br>Relative f < 1 MHz    | SLCTTEMP_ACP<br>ARIB,FWDREL3  | SLCTTEMP_ACP? | ARIB,FWDREL3        |                                        |
|                      | ARIB Reverse<br>Relative f ≥ 1 MHz    | SLCTTEMP_ACP<br>ARIB,RVSREL   | SLCTTEMP_ACP? | ARIB,RVSREL         |                                        |
|                      | ARIB Reverse<br>Absolute              | SLCTTEMP_ACP<br>ARIB,ABSREL   | SLCTTEMP_ACP? | ARIB,RVSABS         |                                        |
|                      | TELEC Forward<br>Relative             | SLCTTEMP_ACP<br>TELEC,FWDREL  | SLCTTEMP_ACP? | TELEC,FWDRE<br>L    |                                        |
|                      | TELEC Forward<br>Relative f < 1 MHz   | SLCTTEMP_ACP<br>TELEC,FWDREL2 | SLCTTEMP_ACP? | TELEC,FWDRE<br>L2   |                                        |
|                      | TELEC Forward<br>Relative f≥1 MHz     | SLCTTEMP_ACP<br>TELEC,FWDREL3 | SLCTTEMP_ACP? | TELEC,FWDRE<br>L3   |                                        |
|                      | TELEC Reverse<br>Relative             | SLCTTEMP_ACP<br>TELEC,RVSREL  | SLCTTEMP_ACP? | TELEC,RVSREL        |                                        |
|                      | TELEC Reverse<br>Absolute             | SLCTTEMP_ACP<br>TELEC,RVSABS  | SLCTTEMP_ACP? | TELEC, RVSABS       |                                        |
|                      | IS-95B Forward<br>Relative1           | SLCTTEMP_ACP<br>IS95B,FWDREL1 | SLCTTEMP_ACP? | IS95B,FWDREL<br>1   |                                        |
|                      | IS-95B Forward<br>Relative1 f < 1 MHz | SLCTTEMP_ACP<br>IS95B,FWDREL4 | SLCTTEMP_ACP? | IS95B,FWDREL<br>4   |                                        |
|                      | IS-95B Forward<br>Relative1 f ≥ 1 MHz | SLCTTEMP_ACP<br>IS95B,FWDREL5 | SLCTTEMP_ACP? | IS95B,FWDREL<br>5   |                                        |
|                      | IS-95B Forward<br>Relative2           | SLCTTEMP_ACP<br>IS95B,FWDREL2 | SLCTTEMP_ACP? | IS95B,FWDREL<br>2   |                                        |
|                      | IS-95B Forward<br>Relative2 f < 1 MHz | SLCTTEMP_ACP<br>IS95B,FWDREL6 | SLCTTEMP_ACP? | IS95B,FWDREL<br>6   |                                        |
|                      | IS-95B Forward<br>Relative2 f ≥ 1 MHz | SLCTTEMP_ACP<br>IS95B,FWDREL7 | SLCTTEMP_ACP? | IS95B,FWDREL<br>7   |                                        |

| Function             | ltem                                                                          | Program Message               | Query Message | Response<br>Message | Remarks                                |
|----------------------|-------------------------------------------------------------------------------|-------------------------------|---------------|---------------------|----------------------------------------|
| Standard<br>Template | IS-95B Forward<br>Relative3                                                   | SLCTTEMP_ACP<br>IS95B,FWDREL3 | SLCTTEMP_ACP? | IS95B,FWDREL<br>3   | • Can be set when<br>Measure Method is |
|                      | IS-95B Forward<br>Relative3 f < 1 MHz                                         | SLCTTEMP_ACP<br>IS95B,FWDREL8 | SLCTTEMP_ACP? | IS95B,FWDREL<br>8   | set to Normal.                         |
|                      | IS-95B Forward<br>Relative3 f ≥ 1 MHz                                         | SLCTTEMP_ACP<br>IS95B,FWDREL9 | SLCTTEMP_ACP? | IS95B,FWDREL<br>9   |                                        |
|                      | IS-95B Reverse<br>Relative1                                                   | SLCTTEMP_ACP<br>IS95B,RVSREL1 | SLCTTEMP_ACP? | IS95B,RVSREL1       |                                        |
|                      | IS-95B Reverse<br>Relative2                                                   | SLCTTEMP_ACP<br>IS95B,RVSREL2 | SLCTTEMP_ACP? | IS95B,RVSREL2       |                                        |
|                      | IS-95B Relative<br>Absolute1                                                  | SLCTTEMP_ACP<br>IS95B,RVSABS1 | SLCTTEMP_ACP? | IS95B,RVSABS1       |                                        |
|                      | IS-95B Relative<br>Absolute2                                                  | SLCTTEMP_ACP<br>IS95B,RVSABS1 | SLCTTEMP_ACP? | IS95B,RVSABS1       |                                        |
|                      | J-STD-008 Forward<br>Relative                                                 | SLCTTEMP_ACP<br>JSTD8,FWDREL  | SLCTTEMP_ACP? | JSTD8,FWDREL        |                                        |
|                      | J-STD-008 Reverse<br>Relative                                                 | SLCTTEMP_ACP<br>JSTD8,RVSREL  | SLCTTEMP_ACP? | JSTD8,RVSREL        |                                        |
|                      | J-STD-008 Reverse<br>Absolute                                                 | SLCTTEMP_ACP<br>JSTD8,RVSABS  | SLCTTEMP_ACP? | JSTD8,RVSABS        |                                        |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0, 2, 3, 5, 7<br>Power ≥ 33dBm            | SLCTTEMP_ACP<br>3GPP2,FWDTMP1 | SLCTTEMP_ACP? | 3GPP2,FWDTM<br>P1   |                                        |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0 ,2, 3, 5, 7<br>28dBm ≤ Power<br>< 33dBm | SLCTTEMP_ACP<br>3GPP2,FWDTMP2 | SLCTTEMP_ACP? | 3GPP2,FWDTM<br>P2   |                                        |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0, 2, 3, 5, 7<br>Power < 28dBm            | SLCTTEMP_ACP<br>3GPP2,FWDTMP3 | SLCTTEMP_ACP? | 3GPP2,FWDTM<br>P3   |                                        |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1, 4, 6<br>Power ≥ 33dBm                  | SLCTTEMP_ACP<br>3GPP2,FWDTMP4 | SLCTTEMP_ACP? | 3GPP2,FWDTM<br>P4   |                                        |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1, 4, 6<br>28dBm ≤ Power<br>< 33dBm       | SLCTTEMP_ACP<br>3GPP2,FWDTMP5 | SLCTTEMP_ACP? | 3GPP2,FWDTM<br>P5   |                                        |

| Function             | ltem                                                                          | Program Message                    | Query Message | Response<br>Message | Remarks                                                                                                  |
|----------------------|-------------------------------------------------------------------------------|------------------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------|
| Standard<br>Template | 3GPP2 Reverse<br>Link Band<br>Class 0, 2, 3, 5, 7                             | SLCTTEMP_ACP<br>3GPP2,RVSTMP1      | SLCTTEMP_ACP? | 3GPP2,RVSTMP1       | • Can be set when<br>Measure Method is<br>set to Normal                                                  |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1, 4, 6                                   | SLCTTEMP_ACP<br>3GPP2,RVSTMP2      | SLCTTEMP_ACP? | 3GPP2,RVSTMP2       |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0, 2, 3, 5, 9<br>Power ≥ 33dBm            | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>30 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>30  | • Can be set when<br>Measure Method is<br>set to 3GPP FWD<br>Band Class                                  |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0 ,2, 3, 5, 9<br>28dBm ≤ Power<br>< 33dBm | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>31 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>31  | <ul> <li>Can be set when<br/>Measure Method is<br/>set to 3GPP2 FWD<br/>Banc Class 1, 4, 6, 8</li> </ul> |
|                      | 3GPP2 Forward<br>Link Band<br>Class 0, 2, 3, 5, 9<br>Power < 28dBm            | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>32 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>32  |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 6                                         | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>60 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>60  |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1,4,8<br>Power $\geq$ 36 dBm              | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>61 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>61  |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1,4,8<br>33dBm ≤ Power<br>< 36 dBm        | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>62 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>62  |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1,4,8<br>28dBm ≤ Power<br>≤ 33 dBm        | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>63 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>63  |                                                                                                          |
|                      | 3GPP2 Forward<br>Link Band<br>Class 1,4,8<br>Power ≤ 28dBm                    | SLCTTEMP_ACP<br>3GPP2,FWDTMP<br>64 | SLCTTEMP_ACP? | 3GPP2,FWDTMP<br>64  |                                                                                                          |
| Function            | ltem       |      | Item               | Program Message | Query Message       | Response<br>Message | Remarks |
|---------------------|------------|------|--------------------|-----------------|---------------------|---------------------|---------|
| Results             |            |      |                    |                 |                     |                     |         |
| Ref Power           | dBm        |      |                    |                 | REFPWR_ACP?<br>DBM  | 1                   |         |
|                     | Watt       |      |                    |                 | REFPWR_ACP?<br>WATT |                     |         |
| Adjacent<br>Channel | Lowe<br>r4 | Unit | dBm                |                 | ADJCH?<br>LOW4,DBM  | 1                   |         |
| Power               |            |      | dB                 |                 | ADJCH? LOW4,DB      |                     |         |
|                     |            |      | Watt<br>(mW,uW,nW) |                 | ADJCH?<br>LOW4,WATT |                     |         |
|                     |            |      | Current Value      |                 | ADJCH? LOW4         |                     |         |
|                     | Lowe<br>r3 | Unit | dBm                |                 | ADJCH?<br>LOW3,DBM  | 1                   |         |
|                     |            |      | dB                 |                 | ADJCH? LOW3,DB      |                     |         |
|                     |            |      | Watt<br>(mW,uW,nW) |                 | ADJCH?<br>LOW3,WATT |                     |         |
|                     |            |      | Current Value      |                 | ADJCH? LOW3         |                     |         |
|                     | Lowe<br>r2 | Unit | dBm                |                 | ADJCH?<br>LOW2,DBM  | 1                   |         |
|                     |            |      | dB                 |                 | ADJCH? LOW2,DB      |                     |         |
|                     |            |      | Watt<br>(mW,uW,nW) |                 | ADJCH?<br>LOW2,WATT |                     |         |
|                     |            |      | Current Value      |                 | ADJCH? LOW2         |                     |         |
|                     | Lowe<br>r1 | Unit | dBm                |                 | ADJCH?<br>LOW1,DBM  | 1                   |         |
|                     |            |      | dB                 |                 | ADJCH? LOW1,DB      |                     |         |
|                     |            |      | Watt<br>(mW,uW,nW) |                 | ADJCH?<br>LOW1,WATT |                     |         |
|                     |            |      | Current Value      |                 | ADJCH? LOW1         |                     |         |
|                     | Uppe       | Unit | dBm                |                 | ADJCH? UP1,DBM      | 1                   |         |
|                     | r1         |      | dB                 |                 | ADJCH? UP1,DB       |                     |         |
|                     |            |      | Watt<br>(mW,uW,nW) |                 | ADJCH? UP1,WATT     |                     |         |
|                     |            |      | Current Value      |                 | ADJCH? UP1          |                     |         |

| Function |                | ltem |                    | Program Message | Query Message   | Response<br>Message | Remarks |
|----------|----------------|------|--------------------|-----------------|-----------------|---------------------|---------|
| Adjacent | Upp            | Unit | dBm                |                 | ADJCH? UP2,DBM  | 1                   |         |
| Channel  | er2            |      | dB                 |                 | ADJCH? UP2,DB   |                     |         |
| Power    |                |      | Watt<br>(mW,uW,nW) |                 | ADJCH? UP2,WATT |                     |         |
|          |                |      | Current Value      |                 | ADJCH? UP2      |                     |         |
|          | Up             | Unit | dBm                |                 | ADJCH? UP3,DBM  | 1                   |         |
|          | $\mathbf{per}$ |      | dB                 |                 | ADJCH? UP3,DB   |                     |         |
|          | 3              |      | Watt<br>(mW,uW,nW) |                 | ADJCH? UP3,WATT |                     |         |
|          |                |      | Current Value      |                 | ADJCH? UP3      |                     |         |
|          | Up             | Unit | dBm                |                 | ADJCH? UP4,DBM  | 1                   |         |
|          | $\mathbf{per}$ |      | dB                 |                 | ADJCH? UP4,DB   | 1                   |         |
|          | 4              |      | Watt<br>(mW,uW,nW) |                 | ADJCH? UP4,WATT |                     |         |
|          |                |      | Current Value      |                 | ADJCH? UP4      |                     |         |

| Function      |            |      | ltem               | Program<br>Message | Query Message          | Response<br>Message                          | Remarks                   |
|---------------|------------|------|--------------------|--------------------|------------------------|----------------------------------------------|---------------------------|
| Peak<br>Power | All        | Unit | dBm                |                    | PEAK_ACP?<br>ALL,DBM   | f,l,a,f,l,a,f,l,a,f,<br>l,a,f,l,a,f,l,a,f,l, | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP? ALL,DB       | a,f,l,a                                      |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>ALL,WATT  |                                              |                           |
|               |            |      | Current Value      |                    | PEAK_ACP? ALL          |                                              |                           |
|               | Peak       | Unit | dBm                |                    | PEAK_ACP?<br>PEAK,DBM  | f,l,a                                        | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP?<br>PEAK,DB   |                                              |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>PEAK,WATT |                                              |                           |
|               |            |      | Current Value      |                    | PEAK_ACP? PEAK         |                                              |                           |
|               | Lowe<br>r4 | Unit | dBm                |                    | PEAK_ACP?<br>LOW4,DBM  | f,l,a                                        | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP?<br>LOW4,DB   |                                              |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>LOW4,WATT |                                              |                           |
|               |            |      | Current Value      |                    | PEAK_ACP? LOW4         |                                              |                           |
|               | Lowe<br>r3 | Unit | dBm                |                    | PEAK_ACP?<br>LOW3,DBM  | f,l,a                                        | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP?<br>LOW3,DB   |                                              |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>LOW3,WATT |                                              |                           |
|               |            |      | Current Value      |                    | PEAK_ACP? LOW3         |                                              |                           |
|               | Lowe<br>r2 | Unit | dBm                |                    | PEAK_ACP?<br>LOW2,DBM  | f,l,a                                        | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP?<br>LOW2,DB   |                                              |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>LOW2,WATT |                                              |                           |
|               |            |      | Current Value      |                    | PEAK_ACP? LOW2         |                                              |                           |
|               | Lowe<br>r1 | Unit | dBm                |                    | PEAK_ACP?<br>LOW1,DBM  | f,l,a                                        | a: PASS or FAIL or<br>OFF |
|               |            |      | dB                 |                    | PEAK_ACP?<br>LOW1,DB   |                                              |                           |
|               |            |      | Watt<br>(mW,uW,nW) |                    | PEAK_ACP?<br>LOW1,WATT |                                              |                           |
|               |            |      | Current Value      | 1                  | PEAK_ACP? LOW1         | 1                                            |                           |

| Function       | Item       |      | Program<br>Message Query Message | Query Message | Response<br>Message      | Remarks |                                       |
|----------------|------------|------|----------------------------------|---------------|--------------------------|---------|---------------------------------------|
| Peak<br>Power  | Uppe<br>r1 | Unit | dBm                              |               | PEAK_ACP?<br>UP1,DBM     | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                |            |      | dB                               |               | PEAK_ACP? UP1,DB         |         |                                       |
|                |            |      | Watt                             |               | PEAK_ACP?                |         |                                       |
|                |            |      | (mW,uW,nW)                       |               | UP1,WATT                 |         |                                       |
|                |            |      | Current Value                    |               | PEAK_ACP? UP1            |         |                                       |
|                | Uppe<br>r2 | Unit | dBm                              |               | PEAK_ACP?<br>UP2,DBM     | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                |            |      | dB                               |               | PEAK_ACP? UP2,DB         |         |                                       |
|                |            |      | Watt<br>(mW,uW,nW)               |               | PEAK_ACP?<br>UP2,WATT    |         |                                       |
|                |            |      | Current Value                    |               | PEAK_ACP? UP2            |         |                                       |
|                | Upp<br>er3 | Unit | dBm                              |               | PEAK_ACP?<br>UP3,DBM     | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                |            |      | dB                               |               | PEAK_ACP UP3,DB          |         |                                       |
|                |            |      | Watt<br>(mW,uW,nW)               |               | PEAK_ACP?<br>UP3,WATT    |         |                                       |
|                |            |      | Current Value                    |               | PEAK_ACP? UP3            |         |                                       |
|                | Upp<br>er4 | Unit | dBm                              |               | PEAK_ACP?<br>UP4,DBM     | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                |            |      | dB                               |               | PEAK_ACP? UP4,DB         |         |                                       |
|                |            |      | Watt<br>(mW,uW,nW)               |               | PEAK_ACP?<br>UP4,WATT    |         |                                       |
|                |            |      | Current Value                    |               | ADJCH? UP4               |         |                                       |
| Peak<br>Margin | All        |      |                                  |               | PEAK_ACP?<br>ALL,MARGIN  | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Peak       |      |                                  |               | PEAK_ACP?<br>PEAK,MARGIN | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Lowe       | er4  |                                  |               | PEAK_ACP?<br>LOW4,MARGIN | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Lowe       | er3  |                                  |               | PEAK_ACP?<br>LOW3,MARGIN | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Lowe       | er2  |                                  |               | PEAK_ACP?<br>LOW2,MARGIN | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Lowe       | er1  |                                  |               | PEAK_ACP?<br>LOW1,MARGIN | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Uppe       | er1  |                                  |               | PEAK_ACP?<br>UP1,MARGIN  | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Uppe       | er2  |                                  |               | PEAK_ACP?<br>UP2,MARGIN  | f,l,a   | a: PASS or FAIL or<br>OFF             |
|                | Uppe       | er3  |                                  |               | PEAK_ACP?<br>UP3,MARGIN  | f,l,a   | a <sup>:</sup> PASS or FAIL or<br>OFF |
|                | Uppe       | er4  |                                  |               | PEAK_ACP?<br>UP4,MARGIN  | f,l,a   | a: PASS or FAIL or<br>OFF             |

| Function     |          | ltem                | Program<br>Message | Query Message | Response<br>Message     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|----------|---------------------|--------------------|---------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marker       | Unit     | dBm                 |                    | MKL_ACP DBM   | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Level        |          | dB                  |                    | MKL_ACP DB    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |          | Watt (mW,uW,nW)     |                    | MKL_ACP DBM   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |          | Current Value       |                    | MKL_ACP DBM   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Template d   | Judger   | nent                |                    | TEMPPASS_ACP? | j                       | j: PASS or FAIL or<br>OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wave<br>Data | SPA data |                     | XMB na,nb          | XMB? nc,nd    | ne(1),ne(2),,ne<br>(nd) | When Data Points = 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | 1.23 M   | IHz Integrated data | XMBI na,nb         | XMBI? nc,nd   | ne(1),ne(2),,ne<br>(nd) | na:<br>0 to 500 (when<br>Measure Method =<br>Normal)<br>0 to 1500 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>When Data Point =<br>1000<br>na:<br>0 to 1000 (when<br>Measure Method =<br>Normal)<br>0 to 3000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 3500 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>(Data write address)<br>nb:<br>-32768 to 32767<br>(1 dB = 100)<br>(Written Data)<br>nc:<br>When Data Points =<br>500<br>0 to 500 (when<br>Measure Method =<br>Normal)<br>0 to 1500 (when<br>Measure Method =<br>SGPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8) |

| Function     | ltem                     | Program<br>Message | Query Message | Response<br>Message     | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|--------------------------|--------------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wave<br>Data | SPA data                 | XMB na,nb          | XMB? nc,nd    | ne(1),ne(2),,ne<br>(nd) | When Data Point =<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 1.23 MHz Integrated data | XMBI na,nb         | XMBI? nc,nd   | ne(1),ne(2),,ne<br>(nd) | nc:<br>0 to 1000 (when<br>Measure Method =<br>Normal)<br>0 to 3000 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 3500 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>(Address for reading<br>Data)<br>nd:<br>When Data Points =<br>500<br>1 to 501 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>0 to 2001 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>When Data Point =<br>1000<br>nd:<br>1 to 1001 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>When Data Point =<br>1000<br>nd:<br>1 to 3001 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>1 to 3501 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>1 to 3501 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 0, 2, 3, 5, 9)<br>1 to 3501 (when<br>Measure Method =<br>3GPP2 FWD Band<br>Class 1, 4, 6, 8)<br>(Number of read<br>points)<br>ne:<br>-2147483648 to<br>2147483647<br>(Ideal signal 1 dB =<br>100)<br>(0) |

# Spurious Emission

| Function         | lt                    | em               | Program Message         | Query Message      | Response Message    | Remarks |
|------------------|-----------------------|------------------|-------------------------|--------------------|---------------------|---------|
| Parameters       | 1                     |                  |                         |                    | L                   |         |
| Spurious<br>Mode | $\operatorname{Spot}$ |                  | DSPL<br>SPURIOUS,SPOT   | DSPL?              | SPURIOUS,SPOT       |         |
|                  | Search                |                  | DSPL<br>SPURIOUS,SEARCH |                    | SPURIOUS,<br>SEARCH |         |
|                  | Sweep                 |                  | DSPL<br>SPURIOUS,SWEEP  |                    | SPURIOUS,SWEEP      |         |
| Ref Power        | SPA                   |                  | REFPWRMD_SPU SPA        | REFPWRMD_SPU?      | SPA                 |         |
| Mode             | Tx Powe               | er               | REFPWRMD_SPU<br>TXPWR   | FPWRMD_SPU<br>PWR  |                     |         |
| Detect<br>Mode   | Spot                  | Positive<br>Peak | DET_SPU SPOT,POS        | DET_SPU? SPOT      | POS                 |         |
|                  |                       | Sample           | DET_SPU SPOT,SMP        |                    | SMP                 |         |
|                  |                       | Negative<br>Peak | DET_SPU SPOT,NEG        |                    | NEG                 |         |
|                  |                       | Average          | DET_SPU SPOT,AVG        |                    | AVG                 |         |
|                  |                       | RMS              | DET_SPU SPOT,RMS        |                    | RMS                 |         |
|                  | Search                | Positive<br>Peak | DET_SPU<br>SEARCH,POS   | DET_SPU?<br>SEARCH | POS                 |         |
|                  |                       | Sample           | DET_SPU<br>SEARCH,SMP   | <u>۲</u>           | SMP                 |         |
|                  |                       | Negative<br>Peak | DET_SPU<br>SEARCH,NEG   |                    | NEG                 |         |
|                  |                       | Average          | DET_SPU<br>SEARCH,AVG   |                    | AVG                 |         |
|                  |                       | RMS              | DET_SPU<br>SEARCH,RMS   |                    | RMS                 |         |
|                  | Sweep                 | Positive<br>Peak | DET_SPU SWEEP,POS       | DET_SPU? SWEEP     | POS                 |         |
|                  |                       | Sample           | DET_SPU SWEEP,SMP       |                    | SMP                 |         |
|                  |                       | Negative<br>Peak | DET_SPU SWEEP,NEG       |                    | NEG                 |         |
|                  |                       | Average          | DET_SPU SWEEP,AVG       |                    | AVG                 |         |
|                  |                       | RMS              | DET_SPU SWEEP,RMS       |                    | RMS                 |         |
| Preselector      | Normal                |                  | BAND 0                  | BAND?              | 0                   | *1)     |
|                  | Spuriou               | s                | BAND 1                  |                    | 1                   |         |
| Unit             | dBm                   |                  | UNIT_SPU DBM            | UNIT_SPU?          | DBM                 |         |
|                  | dB                    |                  | UNIT_SPU DB             |                    | DB                  |         |
| View             | Judgem                | ent              | VIEW_SPU JDG            | VIEW_SPU?          | JDG                 |         |
|                  | BW,SW                 | Т                | VIEW_SPU BWSET          |                    | BWSWT               |         |
|                  | Ref Level,ATT         |                  | VIEW_SPU RFATT          |                    | REFATT              |         |

\*1: This Command is available only when main unit option MS8608A–03/MS2683A–03 Preselector Lower-Limit Expansion is installed.

| Function                | ltem           | Program Message             | Query Message           | Response<br>Message | Remarks                                                                                                                                                                     |
|-------------------------|----------------|-----------------------------|-------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration             |                |                             |                         | L                   |                                                                                                                                                                             |
| Adjust Rang             | ge             | ADJRNG                      |                         |                     |                                                                                                                                                                             |
| Power Calib             | oration        | PWRCAL                      | PWRCAL?                 | 1                   | l:-10.00 to 10.00 dB *1)                                                                                                                                                    |
| Calibration             | Cancel         | CALCANCEL                   |                         |                     |                                                                                                                                                                             |
| Multi Carrie            | er Calibration | MLTCARRCAL                  |                         |                     |                                                                                                                                                                             |
| Calibration Value       |                | CALVAL                      | CALVAL?                 | n,l                 | n:mode<br>(0: Not calibrated,<br>1: Internally calibrated,<br>2: External writing)<br>1: -10.00 to 10.00 dB                                                                 |
| Setup Spot              | Fable          |                             |                         |                     |                                                                                                                                                                             |
| Frequency               |                | TBLFREQ_SPU<br>SPOP,Fn,f    | TBLFREQ_SPU?<br>SPOT,Fn | f                   | n: 1 to 15<br>< MS2681A ><br>f: 100 Hz to 3GHz<br>< MS8608A/MS2683A ><br>f: 100 Hz to 7.8 GHz<br>< MS8609A ><br>f: 100 Hz to 13.2 GHz<br>< MS2687A/B ><br>f: 100Hz to 30GHz |
| Harmonics               |                | TBLFREQ_SPU<br>SPOT,HRM     |                         |                     | n: 1 to 15<br>< MS2681A ><br>f: 100 Hz to 3GHz<br>< MS8608A/MS2683A ><br>f: 100 Hz to 7.8 GHz<br>< MS8609A ><br>f: 100 Hz to 13.2 GHz<br>< MS2687A/B ><br>f: 100Hz to 30GHz |
| Attenuator<br>Ref Level | Auto           | TBLATTRLMD_SPU<br>SPOT,AUTO | TBLATTRLMD_SPU?<br>SPOT | AUTO                |                                                                                                                                                                             |
| Mode                    | Manual         | TBLATTRLMD_SPU<br>SPOT,MAN  |                         | MAN                 |                                                                                                                                                                             |
| Attenuator<br>Mode      | Auto           | TBLATTMD_SPU<br>SPOT,AUTO   | TBLATTMD_SPU?<br>SPOT   | AUTO                |                                                                                                                                                                             |
|                         | Manual         | TBLATTMD_SPU<br>SPOT,MAN    |                         | MAN                 |                                                                                                                                                                             |
| Ref Level               |                | TBLRL_SPU SPOT,Fn,l         | TBLRL_SPU?<br>SPOT,Fn   | 1                   | n: 1 to 15                                                                                                                                                                  |
| Attenuator              |                | TBLATT_SPU<br>SPOT,Fn,l     | TBLATT_SPU?<br>SPOT,Fn  | 1                   | n: 1 to 15                                                                                                                                                                  |

\*1:Valid only this unit is MS860x.

### Spurious Emission

| Function  | Item                     | Program Message            | Query Message          | Response<br>Message | Remarks                                                                                                               |
|-----------|--------------------------|----------------------------|------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| RBW       |                          | TBLRBW_SPU SPOT,Fn,l       | TBLRBW_SPU?<br>SPOT,Fn | f                   | n: 1 to 15<br>f: 300 Hz, 1 kHz, 3 kHz,<br>10 kHz, 30 kHz, 100 kHz,<br>300 kHz, 1 MHz, 3 MHz,<br>5 MHz, 10 MHz, 20 MHz |
| RBW Mode  | Auto                     | TBLRBWMD_SPU<br>SPOT,AUTO  | TBLRBWMD_SPU?<br>SPOT  | AUTO                |                                                                                                                       |
|           | Manual                   | TBLRBWMD_SPU<br>SPOT,MAN   | TBLRBWMD_SPU?<br>SPOT  | MAN                 |                                                                                                                       |
| RBW Type  | Normal                   | TBLRBWTP_SPU<br>SPOT,NRM   | TBLRBWTP_SPU?<br>SPOT  | NRM                 |                                                                                                                       |
|           | Digital                  | TBLRBWTP_SPU<br>SPOT,DGTL  | TBLRBWTP_SPU<br>SPOT   | DGTL                |                                                                                                                       |
| VBW       |                          | TBLVBW_SPU<br>SPOT,Fn,fa   | TBLVBW_SPU?<br>SPOT,Fn | fb                  |                                                                                                                       |
| VBW Mode  | Auto                     | TBLVBW_SPU<br>SPOT,AUTO    | TBLVBWMD_SPU?<br>SPOT  | AUTO                |                                                                                                                       |
|           | Manual                   | TBLVBW_SPU<br>SPOT,MAN     | TBLVBWMD_SPU?<br>SPOT  | MAN                 |                                                                                                                       |
| RBW/VBW   | Ratio                    | TBLVBWRT_SPU SPOT,r        | TBLVBWRT_SPU?<br>SPOT  | r                   |                                                                                                                       |
| SWT       |                          | TBLSWP_SPU<br>SPOT,Fn,ta   | TBLSWT_SPU?<br>SPOT,Fn | tb                  |                                                                                                                       |
| SWT Mode  | Auto                     | TBLSWTMD_SPU<br>SPOT,AUTO  | TBLSWTMD_SPU?<br>SPOT  | AUTO                |                                                                                                                       |
|           | Manual                   | TBLSWTMD_SPU<br>SPOT,MAN   | TBLSWTMD_SPU?<br>SPOT  | MAN                 |                                                                                                                       |
| Limit     |                          | SPULMT SPOT,Fn,l           | SPULMT? SPOT,Fn        | 1                   |                                                                                                                       |
| View      | RBW,VBW<br>,SWT          | TBLVIEW_SPU<br>SPOT,BWSWT  | TBLVIEW_SPU?<br>SPOT   | BWSWT               |                                                                                                                       |
|           | Ref Level,<br>Attenuator | TBLVIEW_SPU<br>SPOT,REFATT | TBLVIEW_SPU?<br>SPOT   | REFATT              |                                                                                                                       |
|           | Limit                    | TBLVIEW_SPU<br>SPOT,LMT    | TBLVIEW_SPU?<br>SPOT   | LMT                 |                                                                                                                       |
| Judgement | Unit                     | JUDGUNIT_SPTBL ON          | JUDGUNIT_SPTBL?        | ON                  |                                                                                                                       |
| (Rel/Abs) |                          | JUDGUNIT_SPTBL OFF         | JUDGUNIT_SPTBL?        | OFF                 |                                                                                                                       |

| Function                | ltem     | Program Message              | Query Message            | Response<br>Message | Remarks                                                                                                                                                                                               |
|-------------------------|----------|------------------------------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup Searc             | ch/Sweep | Table                        |                          |                     |                                                                                                                                                                                                       |
| Start Frequency         |          | TBLFREQ_SPU<br>START,Fn,f    | TBLFREQ_SPU?<br>START,Fn | f                   | n: 1 to 15<br>< MS2681A ><br>f: 1 kHz to 2999.999 MHz<br>< MS8608A/MS2683A ><br>f: 1 kHz to 7799.999 MHz<br>< MS8609A ><br>f: 1kHz to 13999.999 MHz<br>< For MS2687A/B ><br>f: 1 kHz to 29999.999 MHz |
| Stop Frequency          |          | TBLFREQ_SPU<br>STOP,Fn,f     | TBLFREQ_SPU?<br>STOP,Fn  | f                   | n:1 to 15<br>< MS2681A ><br>f: 1 kHz to 3.0 GHz<br>< MS8608A/MS2683A ><br>f: 1 kHz to 7.8 GHz<br>< MS8609A ><br>f: 1 kHz to 13.2 GHz<br>< MS2687A/B ><br>f: 1 kHz to 30.0 GHz                         |
| Attenuator<br>Ref Level | Auto     | TBLATTRLMD_SPU<br>SWEEP,AUTO | TBLATTRLMD_SPU?<br>SWEEP | AUTO                |                                                                                                                                                                                                       |
| Mode                    | Manual   | TBLATTRLMD_SPU<br>SWEEP,MAN  | TBLATTRLMD_SPU?<br>SWEEP | MAN                 |                                                                                                                                                                                                       |
| Attenuator<br>Mode      | Auto     | TBLATTMD_SPU<br>SWEEP,AUTO   | TBLATTMD_SPU?<br>SWEEP   | AUTO                |                                                                                                                                                                                                       |
|                         | Manual   | TBLATTMD_SPU<br>SWEEP,MAN    | TBLATTMD_SPU?<br>SWEEP   | MAN                 |                                                                                                                                                                                                       |
| Ref Level               |          | TBLRL_SPU<br>SWEEP,Fn,l      | TBLRL_SPU?<br>SWEEP,Fn   | 1                   | n: 1 to 15                                                                                                                                                                                            |
| Attenuator              |          | TBLATT_SPU<br>SWEEP,Fn,l     | TBLATT_SPU?<br>SWEEP,Fn  | 1                   | n: 1 to 15                                                                                                                                                                                            |
| RBW                     |          | TBLRBW_SPU<br>SWEEP,Fn,f     | TBLRBW_SPU?<br>SWEEP,Fn  | f                   | n: 1 to 15<br>f: 300 Hz, 1 kHz, 3 kHz, 10 kHz,<br>30 kHz, 100 kHz, 300 kHz,<br>1 MHz, 3 MHz, 5 MHz, 10 MHz,<br>20 MHz                                                                                 |
| RBW Mode                | Auto     | TBLRBWMD_SPU<br>SWEEP,AUTO   | TBLRBWMD_SPU?<br>SWEEP   | AUTO                |                                                                                                                                                                                                       |
|                         | Manual   | TBLRBWMD_SPU<br>SWEEP,MAN    | TBLRBWMD_SPU?<br>SWEEP   | MAN                 |                                                                                                                                                                                                       |
| RBW Type                | Normal   | TBLRBWTP_SPU<br>SWEEP,NRM    | TBLRBWTP_SPU?<br>SWEEP   | NRM                 |                                                                                                                                                                                                       |
|                         | Digital  | TBLRBWTP_SPU<br>SWEEP,DGTL   | TBLRBWTP_SPU?<br>SWEEP   | DGTL                |                                                                                                                                                                                                       |

| Function    | ltem                     | Program Message             | Query Message           | Response<br>Message            | Remarks   |
|-------------|--------------------------|-----------------------------|-------------------------|--------------------------------|-----------|
| VBW         |                          | TBLVBW_SPU<br>SWEEP,Fn,fa   | TBLVBW_SPU?<br>SWEEP,Fn | f                              |           |
| VBW<br>Mode | Auto                     | TBLVBW_SPU<br>SWEEP,AUTO    | TBLVBWMD_SPU?<br>SWEEP  | AUTO                           |           |
|             | Manual                   | TBLVBW_SPU<br>SWEEP,MAN     | TBLVBWMD_SPU?<br>SWEEP  | MAN                            |           |
| RBW/VBV     | V Ratio                  | TBLVBWRT_SPU<br>SWEEP,r     | TBLVBWRT_SPU?<br>SWEEP  | r                              |           |
| SWT         |                          | TBLVBWRT_SPU<br>SWEEP,Fn,ta | TBLSWT_SPU?<br>SWEEP,Fn | tb                             |           |
| SWT<br>Mode | Auto                     | TBLSWTMD_SPU<br>SWEEP,AUTO  | TBLSWTMD_SPU?<br>SWEEP  | AUTO                           |           |
|             | Manual                   | TBLSWTMD_SPU<br>SWEEP,MAN   | TBLSWTMD_SPU?<br>SWEEP  | MAN                            |           |
| Limit       |                          | SPULMT SWEEP,Fn,l           | SPULMT? SWEEP,Fn        |                                |           |
| View        | RBW,VBW<br>,SWT          | TBLVIEW_SPU<br>SWEEP,BWSWT  | TBLVIEW_SPU?<br>SWEEP   | BWSWT                          |           |
|             | Ref Level,<br>Attenuator | TBLVIEW_SPU<br>SWEEP,REFATT | TBLVIEW_SPU?<br>SWEEP   | REFATT                         |           |
|             | Limit                    | TBLVIEW_SPU<br>SWEEP,BWSWT  | TBLVIEW_SPU?<br>SWEEP   | LMT                            |           |
| Judgement   | t Unit                   | JUDGUNIT_SWTBL ON           | JUDGUNIT_SWTBL?         | ON                             |           |
| (Rel/Abs)   |                          | JUDGUNIT_SWTBL<br>OFF       | JUDGUNIT_SWTBL?         | OFF                            |           |
| Standard    |                          | 3GPP2FWD_SPU n              |                         |                                | n: 0 to 5 |
|             |                          | 3GPP2RVS_SPU n              |                         |                                | n: 0 to 4 |
|             |                          | TELECFWD_SPU n              |                         |                                | n: 0 to 4 |
|             |                          | TELECRVS_SPU n              |                         |                                | n: 0 to 2 |
| Results     |                          |                             |                         |                                |           |
| Ref Power   |                          |                             | RFPWR_SPU? u            | 1                              |           |
| Frequency   | 7                        |                             | SPUFREQ? Fna,nb         | fa(na),fa(na+1)<br>,,fa(na+nb) |           |
| Level       |                          |                             | SPULVL? Fna,nb,u        | la(na),la(na+1)<br>,,la(na+nb) |           |

| Function            | Item | Program Message | Query Message           | Response Message                                                                                | Remarks |
|---------------------|------|-----------------|-------------------------|-------------------------------------------------------------------------------------------------|---------|
| Frequency and Level |      |                 | SPUFREQLVL?<br>Fna,nb,u | f(na),l(na),f(na+1),l(na+1),.<br>,f(na+nb),<br>l(na+nb)                                         |         |
| Ref Level           |      |                 | SPURL? Fna,nb           | l(na),l(na+1),,l(na+nb)                                                                         |         |
| Attenuator          |      |                 | SPUATT? Fna,nb          | l(na),l(na+1),,l(na+nb)                                                                         |         |
| RBW                 |      |                 | SPURBW? Fna,nb          | f(na),f(na+1),,f(na+nb)                                                                         |         |
| VBW                 |      |                 | SPUVBW? Fna,nb          | f(na),f(na+1),,f(na+nb)                                                                         |         |
| Sweep Time          | )    |                 | SPUSWT? Fna,nb          | t(na),t(na+1),,t(na+nb)                                                                         |         |
| All result          |      |                 | SPUALL? Fna,nb          | fa(na),la(na),fb(na),fc(na),t<br>(na),,fa(na+nb),la(na+nb)<br>,fb(na+nb),fc(na+nb),t(na+<br>nb) |         |
| Judgement           |      |                 | SPUPASS? Fn             | j(n)                                                                                            |         |
|                     | All  |                 | SPUPASS? ALL            | j1,j2,j3,,j15                                                                                   |         |
| Total Judge         | ment |                 | SPUJDG?                 | j                                                                                               |         |

# Power Meter

| Function     | ltem    | Program Message | Query Message | Response Message | Remarks |
|--------------|---------|-----------------|---------------|------------------|---------|
| Parameters   |         |                 |               |                  |         |
| Set Relative |         | SETREL          |               |                  |         |
| Range        | Up      | RNG UP          |               |                  |         |
|              | Down    | RNG DN          |               |                  |         |
|              | Range 1 | RNG1            |               |                  |         |
|              | Range 2 | RNG2            |               |                  |         |
|              | Range 3 | RNG3            |               |                  |         |
|              | Range 4 | RNG4            |               |                  |         |
|              | Range 5 | RNG5            |               |                  |         |
| Calibration  |         |                 |               |                  |         |
| Adjust Ra    | nge     | ADJRNG          |               |                  |         |
| Zero Set     |         | ZEROSET         |               |                  |         |
| Results      |         |                 |               |                  |         |
| Power        | dBm     |                 | POWER? DBM    | 1                |         |
|              | dB      |                 | POWER? DB     | 1                |         |
|              | Watt    |                 | POWER? WATT   | 1                |         |

# IQ Level

| Function  |       | ltem       | Program Message  | Query Message | Response Message | Remarks     |
|-----------|-------|------------|------------------|---------------|------------------|-------------|
| Parameter | s     |            | 1                |               |                  |             |
| Storage   | Nor   | mal        | STRG_IQL NRM     | STRG_IQL?     | NRM              |             |
| Mode      | Ave   | rage       | STRG_IQL AVG     |               | AVG              |             |
| Average C | ount  |            | AVG_IQL n        | AVR_IQL?      | n                | n:2 to 9999 |
| Refresh   | Eve   | ry         | INTVAL_IQL EVERY | INTVAL_IQL?   | EVERY            |             |
| Interval  | Onc   | e          | INTVAL_IQL ONSE  |               | ONCE             |             |
| Unit      | mV    |            | UNIT_INQ MV      | UNIT_IQL?     | MV               |             |
|           | dBn   | ηV         | UNIT_INQ DBMV    |               | DBMV             |             |
| Results   |       |            | •                |               |                  |             |
| Level     | Ι     |            |                  | ILVL? u       | 1                |             |
|           | Q     |            |                  | QLVL u        | 1                |             |
|           | I p-p | )          |                  | IPPLVL? u     | 1                |             |
|           | Q p-  | р          |                  | QPPLVL? u     | 1                |             |
|           | All   | current    |                  | IQLVL?        | la,lb,lc,ld      | la: I Level |
|           |       | unit       |                  |               |                  | lb: Q Level |
|           |       |            |                  |               |                  | lc: I-pp    |
|           |       |            |                  |               |                  | ld: Q-pp    |
|           |       | mV         |                  | IQLVL? MV     | la,lb,lc,ld      | la: I Level |
|           |       |            |                  |               |                  | lb: Q Level |
|           |       |            |                  |               |                  | lc: I-pp    |
|           |       |            |                  |               |                  | ld: Q-pp    |
|           | 1     | dBmV       |                  | IQLVL? DBMV   | la,lb,lc,ld      | la: I Level |
|           |       |            |                  |               |                  | lb: Q Level |
|           |       |            |                  |               |                  | lc: I-pp    |
|           |       |            |                  |               |                  | ld: Q-pp    |
| Phase     | I/Q ] | Difference |                  | IQPHASE?      | r                | unit: deg   |

For MS268x, these Commands are available when Option -17, 18 I/Q Input installed.

This Section explains the details of device messages and response messages used in the MX860803A/MX860903A/MX268103A/MX268303A/MX268703A cdma Measurement Software in alphabetical order.

For the list of these messages, see Section 6 Device Message List.

| How to Read the Detailed |      | INTEGRAL_ACP | 7-64    |
|--------------------------|------|--------------|---------|
| Description of Commands  | 7-3  | INTPOL       | 7-65    |
| 3GPP2FWD_SPU             | 7-4  | INTVAL_ACP   | 7-66    |
| 3GPP2RVS SPU             | 7-5  |              | 7-67    |
|                          | 7-6  |              | 7-68    |
| ADJCH                    | 7-8  |              | 7-69    |
| ADJRNG                   | 7-9  | INTVAL RFPWR | 7-70    |
| ANLYLEN MOD              | 7-10 | IP           | 7-71    |
| ANI YSTA MOD             | 7-11 | IPPI VI      | 7-72    |
| ANI YSTA REPWR           | 7-12 | IQINZ        | 7-73    |
| ARDDSPI                  | 7-13 |              | 7-74    |
|                          | 7-14 |              | 7-75    |
|                          | 7-1- |              | 7-76    |
|                          | 7-16 |              | 7-77    |
|                          | 7-10 |              | 7-78    |
|                          | 7 10 |              | 7 70    |
|                          | 7 10 |              | 7-19    |
|                          | 7-19 |              | 7-00    |
|                          | 7-20 |              | 7-01    |
|                          | 7-21 |              | 7-82    |
| AVR_IQL                  | 7-22 | MEASOBJ      | 7-83    |
| AVR_MOD                  | 7-23 | MKCDP        | 7-84    |
| AVR_OBW                  | 7-24 | MKL_ACP      | 7-85    |
| AVR_RFPWR                | 7-25 | MKL_MOD      | 7-87    |
| BAND                     | 7-26 | MKL_RFPWR    | 7-89    |
| BIN                      | 7-27 | MKP_ACP      | 7-91    |
| BS                       | 7-28 | MKP_CDP      | 7-93    |
| CALCANCEL                | 7-29 | MKP_MOD      | 7-95    |
| CALVAL                   | 7-30 | MKP_RFPWR    | 7-97    |
| CARRF                    | 7-31 | MKPHASE      | 7-98    |
| CARRFERR                 | 7-32 | MKPMAX_CDP   | 7-99    |
| CDALLCH                  | 7-33 | MKR_MOD      | 7-100   |
| CDANAL                   | 7-35 | MKR_RFPWR    | 7-101   |
| CDPANLY                  | 7-38 | MKSCNO       | 7-102   |
| CHAN                     | 7-40 | MKSGNL       | 7-103   |
| CHFREQ                   | 7-41 | MKTIM        | 7-105   |
| CHSPC                    | 7-42 | MKWAV        | 7-106   |
| CODESYNC                 | 7-43 | MKWL         | 7-107   |
| CONTS                    | 7-44 | MLTCARRCAL   | 7-108   |
| CORR                     | 7-45 | MSTAT        | 7-109   |
| DET ACP                  | 7-46 | OBW          | 7-110   |
| DET OBW                  | 7-47 | OBWFREQ      | 7-111   |
| DET SPU                  | 7-48 | OFFPWR       | 7-112   |
| DISPTYPE ACP             | 7-50 | OPRTTR       | 7-113   |
| DPTS ACP                 | 7-51 | ORGNOES      | 7-114   |
| DPTS OBW                 | 7-52 | OXMC         | 7-115   |
| DSPI                     | 7-53 | PEAK ACP     | 7-117   |
| ERRSC                    | 7-55 |              | 7-110   |
| FILTER                   | 7-56 | PHASEERR     | 7-120   |
|                          | 7 57 |              | 7 120   |
|                          | 7 50 |              | 7 1 2 2 |
|                          | 7 50 |              | 7 1 2 2 |
|                          | 7-59 |              | 7 104   |
|                          | 7-60 |              | 7-124   |
|                          | 7-61 |              | 7-125   |
| IINI                     | 1-63 |              | 7-126   |

| POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-127                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 1 2 9                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 4 2 0                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-129                                                                                                                                                                                                                                                                                                                                                       |
| PREAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-130                                                                                                                                                                                                                                                                                                                                                       |
| PVECTERR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-131                                                                                                                                                                                                                                                                                                                                                       |
| PWRCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-132                                                                                                                                                                                                                                                                                                                                                       |
| PWRVSTIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7-133                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-135                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-136                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 4 2 7                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-13/                                                                                                                                                                                                                                                                                                                                                       |
| RBD_ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-138                                                                                                                                                                                                                                                                                                                                                       |
| RBD_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-139                                                                                                                                                                                                                                                                                                                                                       |
| RBW_ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-140                                                                                                                                                                                                                                                                                                                                                       |
| RBW_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7-141                                                                                                                                                                                                                                                                                                                                                       |
| REFPWR ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-142                                                                                                                                                                                                                                                                                                                                                       |
| REEPWRSPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7-143                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-1//                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 1 4 5                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 1 4 0                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-140                                                                                                                                                                                                                                                                                                                                                       |
| RFLVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-147                                                                                                                                                                                                                                                                                                                                                       |
| RFLVLOFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-149                                                                                                                                                                                                                                                                                                                                                       |
| RL_ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-150                                                                                                                                                                                                                                                                                                                                                       |
| RL_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-151                                                                                                                                                                                                                                                                                                                                                       |
| RNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-152                                                                                                                                                                                                                                                                                                                                                       |
| RNG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-153                                                                                                                                                                                                                                                                                                                                                       |
| RNG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-154                                                                                                                                                                                                                                                                                                                                                       |
| RNG3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-155                                                                                                                                                                                                                                                                                                                                                       |
| PNC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 156                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 157                                                                                                                                                                                                                                                                                                                                                       |
| RINGD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-107                                                                                                                                                                                                                                                                                                                                                       |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-158                                                                                                                                                                                                                                                                                                                                                       |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 4 5 0                                                                                                                                                                                                                                                                                                                                                     |
| S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-159                                                                                                                                                                                                                                                                                                                                                       |
| S2<br>SETREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-159<br>7-160                                                                                                                                                                                                                                                                                                                                              |
| S2<br>SETREL<br>SLCTTEMP_ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-159<br>7-160<br>7-161                                                                                                                                                                                                                                                                                                                                     |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-159<br>7-160<br>7-161<br>7-166                                                                                                                                                                                                                                                                                                                            |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-159<br>7-160<br>7-161<br>7-166<br>7-167                                                                                                                                                                                                                                                                                                                   |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168                                                                                                                                                                                                                                                                                                          |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169                                                                                                                                                                                                                                                                                                 |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171                                                                                                                                                                                                                                                                                        |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALL<br>SPUATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-171                                                                                                                                                                                                                                                                               |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALL<br>SPUFREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-171<br>7-172                                                                                                                                                                                                                                                                      |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALT<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173                                                                                                                                                                                                                                                                      |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALL<br>SPUFREQ<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175                                                                                                                                                                                                                                                             |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUALT<br>SPUFREQ<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-170<br>7-172<br>7-173<br>7-175<br>7-176                                                                                                                                                                                                                                           |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-170<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177                                                                                                                                                                                                                                  |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUJASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178                                                                                                                                                                                                                                  |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUJASS<br>SPURBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-179                                                                                                                                                                                                                         |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUJASS<br>SPURBW<br>SPURL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-179<br>7-180                                                                                                                                                                                                                |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181                                                                                                                                                                                                       |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-181                                                                                                                                                                                              |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUVBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-182                                                                                                                                                                   |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183                                                                                                                                                                   |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULVL<br>SPUJDG<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-170<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-184                                                                                                                                        |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULVL<br>SPUJDG<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-170<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185                                                                                                                                        |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULVL<br>SPUJDG<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186                                                                                                                                        |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL<br>STRG_MOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-170<br>7-170<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187                                                                                                                      |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULVL<br>SPUJDG<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STM_ACP<br>STRG_ACP<br>STRG_IQL<br>STRG_OBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188                                                                                                                      |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL<br>STRG_IQL<br>STRG_OBW<br>STRG_RFPWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189                                                                                                             |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPURA<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL<br>STRG_IQL<br>STRG_OBW<br>STRG_RFPWR<br>SWP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190                                                                                                    |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUJDG<br>SPULMT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPURL<br>SPUSWT<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL<br>STRG_IQL<br>STRG_OBW<br>STRG_RFPWR<br>SWP.<br>SWT ACP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-176<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191                                                                                  |
| S2<br>SETREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191<br>7-192                                                                                  |
| S2<br>SETREL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191<br>7-192<br>7-193                                                                         |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT.<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQL<br>SPUFREQLVL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUFREQL<br>SPUF                                           | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191<br>7-192<br>7-193<br>7-194                                                                |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT.<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>SPUFREQ<br>STRG_ACP<br>STRG_ACP<br>STRG_ACP<br>STRG_OBW<br>STRG_RFPWR<br>SWF_<br>SWT_ACP<br>SVT_OBW<br>SYNC_CDP<br>SYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-175<br>7-176<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-190<br>7-191<br>7-192<br>7-193<br>7-194<br>7-105                                              |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUJDG<br>SPULW<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQ<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLVL<br>SPUFREQLS<br>SPURE<br>SPUFREQLS<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>STR_ACP<br>ST | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191<br>7-192<br>7-193<br>7-194<br>7-195<br>7-106          |
| S2<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULWT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STRG_ACP<br>STRG_IQL<br>STRG_IQL<br>STRG_OBW<br>STRG_COBW<br>STRG_COBW<br>STRG_RFPWR<br>SWP<br>SWT_ACP<br>SWT_OBW<br>SYNC_CDP<br>SYS<br>TAU<br>TBLATT_SPU<br>SCT<br>SCT<br>SCT<br>SCT<br>SCT<br>SCT<br>SCT<br>SCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-188<br>7-189<br>7-190<br>7-191<br>7-192<br>7-193<br>7-194<br>7-195<br>7-196          |
| S2<br>SETREL<br>SETREL<br>SLCTTEMP_ACP<br>SLCTTEMP_RFPWR<br>SMOFLT<br>SNGLS<br>SPUALL<br>SPUATT<br>SPUFREQ<br>SPUFREQLVL<br>SPUJDG<br>SPULWT<br>SPULVL<br>SPUPASS<br>SPURBW<br>SPURL<br>SPUSWT<br>SPURBW<br>SPURL<br>SPUSWT<br>SPUVBW<br>STM_ACP<br>STM_OBW<br>STM_ACP<br>STRG_IQL<br>STRG_IQL<br>STRG_IQL<br>STRG_OBW<br>STRG_CDBW<br>STRG_RFPWR<br>SWP<br>SWT_ACP<br>SWT_OBW<br>SYNC_CDP<br>SYS<br>TAU<br>TBLATT_SPU<br>TBLATT_SPU<br>TBLATTMD_SPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7-159<br>7-160<br>7-161<br>7-166<br>7-167<br>7-168<br>7-169<br>7-171<br>7-172<br>7-173<br>7-175<br>7-176<br>7-177<br>7-178<br>7-177<br>7-178<br>7-177<br>7-178<br>7-179<br>7-170<br>7-177<br>7-178<br>7-179<br>7-180<br>7-181<br>7-182<br>7-183<br>7-184<br>7-185<br>7-186<br>7-187<br>7-190<br>7-191<br>7-192<br>7-193<br>7-194<br>7-195<br>7-198<br>7-198 |

| TBLFREQ SPU    | 7-200  |
|----------------|--------|
| TBLRBW SPU     | 7-204  |
| TBLRBWMD SPU   | 7-206  |
| TBLRBW/TP SPLI | 7-207  |
|                | 7 200  |
|                | 7-200  |
|                | 7-210  |
| TBLSWTMD_SPU   | 7-212  |
| TBLVBW_SPU     | 7-214  |
| TBLVBWMD_SPU   | 7-215  |
| TBLVBWRT_SPU   | 7-216  |
| TBLVIEW_SPU    | 7-217  |
| TELECFWD SPU   | 7-218  |
| TELECRVS SPU   | 7-219  |
| TEMPEREQ ACP   | 7-220  |
|                | 7-222  |
|                | 7-224  |
|                | 7 224  |
|                | 7-220  |
| TEMPPASS_RFPWR | 1-221  |
| IERM           | 7-228  |
| THRESH_MOD     | 7-230  |
| TRFORM         | 7-231  |
| TRG            | 7-232  |
| TRGDLY         | 7-233  |
| TRGEDGE        | 7-234  |
| TS             | 7-235  |
| TXPWR          | 7-236  |
|                | 7-237  |
|                | 7 220  |
|                | 7-230  |
|                | 7-239  |
| VBM_ACP        | 7-240  |
| VBM_OBW        | 7-241  |
| VBR_ACP        | 7-242  |
| VBR_OBW        | 7-243  |
| VBW_ACP        | 7-244  |
| VBW OBW        | 7-245  |
| VECTERR        | 7-246  |
| VIEW SPU       | 7-247  |
|                | 7-2/18 |
|                | 7 240  |
| VTDI V         | 7 249  |
|                | 7-250  |
| VIEDGE         | 7-251  |
| VILVL          | 7-252  |
| WAVECLASS_CDP  | 7-254  |
| WAVETYPE       | 7-255  |
| WAVEFLT        | 7-256  |
| WAVQUAL        | 7-257  |
| WINDOW         | 7-258  |
| WI SHI EN      | 7-259  |
| YMB            | 7-260  |
|                | 7 200  |
|                | 7-202  |
|                | 7-264  |
| XMD            | 7-266  |
| XME            | 7-268  |
| XMEYE          | 7-270  |
| XMN            | 7-272  |
| XMP            | 7-274  |
| XMV            | 7-276  |
| ZEROSET        | 7-278  |
|                |        |

# How to Read the Detailed Description of Commands

Example: Setting impedance

### IQINZ [1]

IQ Impedance [2]

[3]

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| IQINZ a         | IQINZ?        | a                |

### ■ Function [4]

Sets the IQ signal input impedance on the Setup Common Parameter screen.

■ Value of a [5]

Impedance

| а   | Impedance     | Initial value |
|-----|---------------|---------------|
| 50  | $50 \ \Omega$ | *             |
| 1 M | 1 M Ω         |               |

### ■ Restriction [6]

• No setting is allowed when the Terminal is other than IQ-AC, IQ-DC or IQ-Balance.

■ Initialization of setting [7] PRE, INI, IP, \*RST

■ Example of use [8] "Sets the impedance to 50 Ω."

<Program> TERM IQAC IQINZ 50 IQINZ?

<Response>

50

- [1] Message header for Program Message and Query Message
- [2] Name of Setup/Recall item (Note: This is not always the same as that on the screen of measuring equipment.)
- [3] Syntax for Program Message, Query Message and Response Message. Upper-case letters represent the reserved words. Lower-case letters represent the argument for the device message described in [5] or the response data.
- [4] Outline of Setup/Recall function in Program Message and Query Message
- [5] Description of lower-case letters in table of [3]. In case of set value; each argument includes the meaning of set item, initial value, range, resolution and restrictions.

In case of Response Message, each argument includes the meaning of output data, resolution, unit, etc.

- [6] Description of restrictions and precautions in using the command. The command is not properly set or recalled if these restrictions are not met.
- [7] A Program Message that initializes the items set by this command.
- [8] An example of command use. The example of <Program> is given here only to show the examples of Program Message, Query Message and their order. It is not an actual program code. (Program code depends on the environment.) The values in <Response> differ from the actual measured values.

# 3GPP2FWD\_SPU

3GGP2 Standard (Forward Link)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| 3GPP2FWD_SPU a  | _             | _                |

### Function

Sets the Forward Link setting specification to 3GGP2 standard for spurious measurement.

### Value of a

Specification selection

| а | Selected specification | Band                 | Maximum level | RBW               |
|---|------------------------|----------------------|---------------|-------------------|
| 0 | ITU Category A         | 9 to 150 kHz         | - 13 dBm      | 1 kHz             |
|   |                        | 150 kHz to 30 MHz    |               | $10 \mathrm{kHz}$ |
|   |                        | 30 MHz to 1 GHz      |               | 100 kHz           |
|   |                        | 1 to 5 GHz           |               | $1 \mathrm{MHz}$  |
| 1 | ITU Category A         | 9 to 150 kHz         | - 36 dBm      | 1 kHz             |
|   |                        | 150 kHz to 30 MHz    |               | $10 \mathrm{kHz}$ |
|   |                        | 30 MHz to 1 GHz      |               | 100 kHz           |
|   |                        | 1 to 5 GHz           | - 30 dBm      | 1MHz              |
| 2 | PHS                    | 1893.5 to 1919.6 MHz | - 41 dBm      | 300 kHz           |
| 3 | GSM 900                | 921 to 960 MHz       | - 57 dBm      | 100 kHz           |
|   |                        | 876 to 915 MHz       | - 98 dBm      | 100 kHz           |
| 4 | DCS 1800               | 1805 to 1880 MHz     | - 47 dBm      | 100 kHz           |
|   |                        | 1710 to 1785 MHz     | - 98 dBm      | 100 kHz           |
| 5 | UTRA-TDD               | 2010 to 2025 MHz     | - 52 dBm      | 1 MHz             |
|   |                        | 1900 to 1920 MHz     | - 86 dBm      | 1 MHz             |

Example of use

"Setting ITU Category A."

<Program> 3GGP2FWD\_SPU 0

# 3GPP2RVS\_SPU

### 3GGP2 Standard (Forward Link)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| 3GPP2RVS_SPU a  | _             | _                |

### Function

Sets the Reverse Link setting specification to 3GGP2 standard for spurious measurement.

### Value of a

Specification selection

| а | Selected specification | Band                        | Maximum level | RBW               |
|---|------------------------|-----------------------------|---------------|-------------------|
| 0 | ITU Category A         | 9 to 150 kHz                | - 13 dBm      | 1 kHz             |
|   |                        | 150 kHz to 30 MHz           |               | 10 kHz            |
|   |                        | 30 MHz to 1 GHz             |               | 100 kHz           |
|   |                        | 1 to 5 GHz                  |               | $1 \mathrm{MHz}$  |
| 1 | ITU Category A         | 9 to 150 kHz                | - 36 dBm      | 1 kHz             |
|   |                        | 150 kHz to 30 MHz           |               | $10 \mathrm{kHz}$ |
|   |                        | 30 MHz to 1 GHz             |               | 100 kHz           |
|   |                        | 1 to 5 GHz                  | - 30 dBm      | 1MHz              |
| 2 | PHS setting value      | 1893.5 to 1919.6 MHz        | - 41 dBm      | 300 kHz           |
| 3 | GSM 900                | $935$ to $960~\mathrm{MHz}$ | - 57 dBm      | 100 kHz           |
|   |                        | 925 to 935 MHz              | - 98 dBm      | 100 kHz           |
| 4 | DCS 1800               | 1805 to 1880 MHz            | - 47 dBm      | 100 kHz           |

### Example of use

"Setting ITU Category A."

<Program> 3GGP2RVS\_SPU 0

## ACTCH\_CDP

Active Channel Power

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| _               | ACTCH_CDP? a,b | с                |

### Function

Outputs the number of channels, total power, averaged power, maximum power, and minimum power of the channels which have the averaged of code-domain power more than the threshold.

#### Value of a

Output type specification

| а     | Output type                                                  |
|-------|--------------------------------------------------------------|
| NUM   | Outputs the number of channels.                              |
| TOTAL | Outputs by the total relative power to Tx Power.             |
| AVG   | Outputs the average power by the relative power to Tx Power. |
| MAX   | Outputs the maximum power by the relative power to Tx Power. |
| MIN   | Outputs the minimum power by the relative power to Tx Power. |

#### Value of b

Measuring Object: Relative (RC3-4) only can specify b.

| а    | Type of marker signal                |
|------|--------------------------------------|
| None | Signal specified by Operation Trace. |
| Ι    | I signal                             |
| Q    | Q signal                             |

### Value of c

Active Channel

| а     | Resolution | Unit |
|-------|------------|------|
| NUM   | 1          | СН   |
| TOTAL | 0.01       | DB   |
| AVG   |            |      |
| MAX   |            |      |
| MIN   |            |      |

#### Resolution

• Measuring Object: Reverse (RC1-2), QPSK, and OQPSK cannot use this command (*cf.* MEASOBJ).

Example of use

"Reading out the total power of Active Channel Power of Measuring Object: Forward (RC 232-C)."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL SWP ACTCH\_CDP? NUM

### ADJCH

Offset freq. vs Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | ADJCH? a, b   | с                |

### Function

Outputs electric power at inflection point of template.

### Value of a

Frequency position



### Value of b

Read out unit

| b    | Unit                                                         |
|------|--------------------------------------------------------------|
| None | In accordance with unit set by "Unit" ( <i>cf.</i> UNIT_ACP) |
| DBM  | dBm                                                          |
| DB   | dB                                                           |
| WATT | W                                                            |

### ■ Value of c

Electric power at each inflection point of template

| Resolution                                            | Unit |
|-------------------------------------------------------|------|
| 0.01                                                  | dBm  |
| 0.01                                                  | dB   |
| Significant digits, four places (floating point type) | W    |

### Example of use

"Read out LOW1 electric power on dB unit basis" <Program> ADJCH? LOW1, DB

<Response> -43.8

## ADJRNG

### Adjust Range

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ADJRNG          | _             | _                |

### Function

Performs optimization of internal ATT and A/D levels, etc.

### Restriction

- The following are executable screens (*cf.* DSPL).
  - Modulation Analysis
  - RF Power
  - Occupied Bandwidth
  - Spurious close to the Carrier
  - Spurious Emission
  - Power Meter
  - CCDF
- Where the Terminal is other than RF, execution cannot be performed (*cf.* TERM).
- Where the Frequency is less than 20 MHz, execution cannot be performed (*cf.* FREQ).

### Example of use

"Perform optimization of internal ATT and A/D levels, etc."

<Program> DSPL MODANAL ADJRNG

<Response> None

### ANLYLEN\_MOD

Analysis Length

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ANLYLEN_MOD a   | ANLYLEN_MOD?  | a                |

### Function

Sets the analysis length of the modulation signal on the Modulation Analysis screen.

### Value of a

Analysis length

| Measuring Object       | Range         | Resolution        | Initial value | Unit   |
|------------------------|---------------|-------------------|---------------|--------|
| Forward (RC3-5)        | 294 + 94576   | 1536/128/64 *1 *2 | -             |        |
| Forward (RC1-2)        | 384 10 24376  | 1536/64 *2        |               |        |
| Reverse (RC-3-4)       |               | 32                | 640           | PNchip |
| Reverse (RC1-2), OQPSK | 384 to $1536$ | 1                 |               |        |
| QPSK                   |               | 64                |               |        |

\*1 When Max Walsh Length is 128 or 64, the relative becomes 128 or 64, respectively.

\*2 When value of a is 1536 or more, resolution is 1536.

□ Suffix code None

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the analysis length to 1536 PNchip when performing modulation analysis of Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD ANLYLEN\_MOD 1536 ANLYLEN\_MOD?

# ANLYSTA\_MOD

### Analysis Start

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ANLYSTA_MOD a   | ANLYSTA_MOD?  | a                |

### Function

Sets the position for starting analysis on the Modulation Analysis screen.

### Value of a

Position for starting analysis

| Measuring Object             | Range      | Resolution | Initial value | Unit   |
|------------------------------|------------|------------|---------------|--------|
| Forward (RC3-5)              |            | 128/64*    | 0             | PNchip |
| Forward (RC1-2)              | 0 +0 22640 | 64         |               |        |
| Reverse (RC-3-4)             | 0 10 32640 | 32         |               |        |
| Reverse (RC1-2), OQPSK, QPSK |            | 1          |               |        |

\* When Max Walsh Length is 128 or 64, the relative becomes 128 or 64, respectively.

### □ Suffix code

None

### Restriction

• No setting is allowed when Wave Type is Burst (cf. WAVETYPE).

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Set the position for starting analysis to 512 PNchip when performing modulation analysis of Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD ANLYSTA\_MOD 512 ANLYSTA\_MOD?

### ANLYSTA\_RFPWR

### Analysis Start RF Power

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| ANLYSTA_RFPWR a | ANLYSTA_RFPWR? | a                |

#### Function

Sets analysis start position on the RF Power screen.

### Value of a

Analysis start position

|            | Resolution              |                                  |                 | Initial |        |
|------------|-------------------------|----------------------------------|-----------------|---------|--------|
| Range      | Forward (RC1-2),RC(3-5) | Reverse(RC1-2),RC,QPSK,<br>OQPSK | Reverse (RC1-2) | value   | Unit   |
| 0 to 32768 | 64                      | 1                                | 32              | 0       | PNchip |

□ Suffix code

None

### Restriction

- No setting is allowed when Wave Type is Burst (cf. WAVETYPE).
- No setting is allowed when Code Sync is Off (*cf.* CODESYNC).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the analysis start position to 32640 slots."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL RFPWR TRG EXT CODESYNC ON ANLYSTA\_RFPWR 32640 ANLYSTA\_RFPWR?

## ARDDSPL

Display Mode: Walsh/OVSF

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ARDDSPL a       | ARDDSPL?      | a                |

### Function

Switched the Walsh/OVSF display in Code Domain on the Modulation Analysis screen.

### ■ Value of a

Walsh/OVSF of Display Mode

| а     | On/Off of Display Mode    | Initial value |
|-------|---------------------------|---------------|
| WALSH | Set Display Mode to Walsh | *             |
| OVSF  | Set Display Mode to OVSF  |               |

### Restriction

- No setting is allowed when Measuring Object is other than Forward (RC3-5) or Reverse (RC3-4) (*cf.* MEASOBJ).
- No setting is allowed when Trace Format is other than Code Domain (cf. TRFORM)
- No setting is allowed when Auto Rate Detection is Off (*cf.* AUTODET).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Display Mode to WALSH."

<Program> DSPL SETCOM DSPL MEASOBJ TRFORM CODE ARDDSPL WALSH ARDDSPL?

<Response> WALSH

## ATT\_ACP

Attenuator for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATT_ACP a       | ATT_ACP?      | a                |

### Function

Sets the attenuator for Spurious close to the Carrier measurement.

### Value of a

Attenuator

| Range    | Resolution | Initial value | Unit | RF Input |
|----------|------------|---------------|------|----------|
| 20 to 82 | 2          | 50            | dB   | High     |
| 0 to 62  | 2          | 30            | dB   | Low      |

□ Suffix code None: dB DB: dB

Restriction

• Attenuator setting range depends on Ref Level (cf. RL\_ACP).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Attenuator to 20 dB."

<Program> DSPL ACP,NRM RL\_ACP -30DBM ATT\_ACP 20DB ATT\_ACP?

# ATT\_OBW

Attenuator for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATT_OBW a       | ATT_OBW?      | a                |

### Function

Sets the attenuator for occupied bandwidth measurement with spectrum analyzer.

Value of a

| Attenuator range | Resolution | Initial value | Unit | RF Input |
|------------------|------------|---------------|------|----------|
| 20 to 82         | 2          | 50            | dB   | High     |
| 0 to 62          | 2          | 30            | dB   | Low      |

□ Suffix code x code None: dB DB: dB

### Restriction

• Attenuator setting range depends on Ref Level (*cf.* RL\_OBW).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Attenuator to 20 dB."

<Program> RL\_OBW -30DBM ATT\_OBW 20DB ATT\_OBW?

# ATTMD\_ACP

Attenuator Mode: Manual/Auto for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTMD_ACP a     | ATTMD_ACP?    | a                |

### Function

Selects manual or automatic attenuator setting of spectrum analyzer for Spurious close to the Carrier screen.

### Value of a

#### Attenuator setting mode

| а    | Mode                              | Initial value |
|------|-----------------------------------|---------------|
| MAN  | Attenuator manual setting mode    |               |
| AUTO | Attenuator automatic setting mode | *             |

### Restriction

- When attenuator is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator is set automatically.

■ Initialization of setting PRE, INI, IP, \*RST

Example of use
"Setting attenuator to Auto mode."

<Program> ATTMD\_ACP AUTO ATTMD\_ACP?

# ATTMD\_OBW

Attenuator Mode: Manual/Auto for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTMD_OBW a     | ATTMD_OBW?    | a                |

### Function

Selects manual or automatic attenuator setting of spectrum analyzer for Occupied Bandwidth screen.

### Value of a

Attenuator setting mode

| а    | On/Off of Display Mode                  | Initial value |
|------|-----------------------------------------|---------------|
| MAN  | Sets Attenuator setting mode to manual. |               |
| AUTO | Sets Attenuator setting mode to auto.   | *             |

### Restriction

- When attenuator is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator is set automatically.

Initialization of setting

PRE, INI, IP, \*RST

Example of use "Setting attenuator to Auto mode."

<Program> ATTMD\_OBW AUTO ATTMD\_OBW?

# ATTRLMD\_ACP

Attenuator Ref Level Mode: Manual/Auto for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTRLMD_ACP a   | ATTRLMD_ACP?  | a                |

### Function

Selects manual or automatic Attenuator/Ref-level settings of spectrum analyzer for Spurious close to the Carrier screen.

### Value of a

### Attenuator/Ref-level setting mode

| а    | Mode                                        | Initial value |
|------|---------------------------------------------|---------------|
| MAN  | Attenuator/Ref-level manual setting mode    |               |
| AUTO | Attenuator/Ref-level automatic setting mode | *             |

### Restriction

- When attenuator or Ref level is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator and Ref level are set automatically.

■ Initialization of setting PRE, INI, IP, \*RST

Example of use
"Setting attenuator/Ref-level to Auto mode."

<Program> ATTRLMD\_ACP AUTO ATTRLMD\_ACP?

# ATTRLMD\_OBW

Attenuator Ref Level Mode: Manual/Auto for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTRLMD_OBW a   | ATTRLMD_OBW?  | a                |

### Function

Selects manual or automatic attenuator/Ref-level setting of spectrum analyzer for Occupied Bandwidth screen.

### Value of a

Attenuator/Ref-level setting mode

| а    | On/Off of Display Mode                            | Initial value |
|------|---------------------------------------------------|---------------|
| MAN  | Sets Attenuator/Ref-level setting mode to manual. |               |
| AUTO | Sets Attenuator/Ref-level setting mode to Auto.   | *             |

### Restriction

- When attenuator or Ref level is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator and Ref level are set automatically.

■ Initialization of setting PRE, INI, IP, \*RST

Example of use"Setting attenuator and Ref level to Auto mode."

<Program> ATTRLMD\_OBW AUTO ATTRLMD\_OBW?

### AUTODET

Auto Rate Detection: On/Off

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AUTODET a       | AUTODET?      | a                |

### Function

Sets the Auto Rate Detection function to On or Off at Code Domain of Modulation Analysis measurement.

### Value of a

Setting Auto Rate Detection to On or Off

| а   | On/Off of Display Mode           | Initial value |
|-----|----------------------------------|---------------|
| ON  | Sets Auto Rate Detection to On.  | *             |
| OFF | Sets Auto Rate Detection to Off. |               |

### Resolution

• No setting is allowed when Measuring Object is other than Forward (RC3-5) or Reverse (RC3-4) (*cf.* MEASOBJ).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use
"Set Auto Rate Detection to On."

<Program> DSPL SETCOM MEASOBJ REVERSERC3 DSPL MODANAL AUTODET ON AUTODET?

# AVR\_ACP

Average Count for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_ACP a       | AVR_ACP?      | a                |

### Function

On the Spurious close to the Carrier screen, sets the average (measurement) count when the Storage Mode is set to Average.

### Value of a

Average (measurement) count

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 2 to 9999 | 1          | 10            |

■ Initialization of setting PRE, INI, IP, \*RST

### Example of use

"Setting Average Count at 500."

<Program> AVR\_ACP 500 AVR\_ACP?

## AVR\_IQL

Average Count for IQ Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_IQL a       | AVR_IQL?      | a                |

### Function

Sets the measuring (average) count on the IQ Level screen when the Storage Mode is set to Average.

### Value of a

Average (measurement) count

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 2 to 9999 | 1          | 10            |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Average Count at 500."

<Program> AVR\_IQL 500 AVR\_IQL?

<Response> 500

Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.
# AVR\_MOD

Average Count for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_MOD a       | AVR_MOD?      | a                |

# Function

Sets the average (measurement) count on the Modulation Analysis screen when the Storage Mode is set to Average.

### Value of a

Average (measurement) count

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 2 to 9999 | 1          | 10            |

■ Initialization of setting PRE, INI, IP, \*RST

#### Example of use

"Setting Average Count at 500."

<Program> AVR\_MOD 500 AVR\_MOD?

# AVR\_OBW

Average Count for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_OBW a       | AVR_OBW?      | a                |

### Function

Sets the average (measurement) count (number of averaging processes) when Storage Mode is set to Average at Occupied Bandwidth measurement.

#### Value of a

Average (measurement) count

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 2 to 9999 | 1          | 10            |

■ Initialization of setting PRE, INI, IP, \*RST

#### Example of use

"Sets Average Count to 500."

<Program> AVR\_OBW 500 AVR\_OBW?

# AVR\_RFPWR

Average Count for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_RFPWR a     | AVR_RFPWR?    | a                |

### Function

Sets the average (measurement) count on the RF Power screen when the Storage Mode is set to Average.

### Value of a

Average (measurement) count

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 2 to 9999 | 1          | 10            |

■ Initialization of setting PRE, INI, IP, \*RST

### Example of use

"Sets Average Count to 500."

<Program> AVR\_RFPWR 500 AVR\_RFPWR?

# BAND

Preselector for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BAND a          | BAND?         | a                |

#### Function

On the Spurious Emission Measurement, set the Preselector route for use or non-use.

### Value of a

Route selection

| а | Route selection                      | Initial value |
|---|--------------------------------------|---------------|
| 0 | No use of Preselector route (Normal) | *             |
| 1 | Use of Preselector route (Spurious)  |               |

# ■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Use Preselector route."

<Program> BAND 1 BAND?

<Response>

1

Restrictions according to model type and options

This command is valid when main unit is MS8608A/MS2683A.

If Option MS8608A-03/MS2683A-03 Preselector Lower-Limit Expansion is not installed, this command is invalid.

# BIN

Binary/ASCII mode

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BIN a           | BIN?          | а                |

# Function

Sets ASCII or binary format to read the waveform data.

# Value of a

Specification of ASCII or binary format

| Value | ASCII / Binary | Initial Value |
|-------|----------------|---------------|
| ON    | Rinamy format  | ste           |
| 1     | Dinary format  | *             |
| OFF   | ASCII format   |               |
| 0     | ASCII Iormat   |               |

Use example

"Read the waveform data in binary format."

<Program> BIN ON BIN?

# BS

Back Screen

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BS              | _             | _                |

### Function

Switches to the upper screen of the currently displayed screen. The relationship among each of the screens is as follows:

Example of use

"Shifting to the upper screen."

<Program> BS

# CALCANCEL

**Power Calibration Cancel** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CALCANCEL       | _             | _                |

### Function

Cancels Power Calibration and resets the calibration value to 0.00.

### Restriction

- Executable screens are as follows (*cf.* DSPL).
  - Modulation Analysis
  - RF Power
  - Occupied Bandwidth
  - Spurious close to the Carrier
  - Spurious Emission
- When the Terminal is other than RF, execution cannot be performed (*cf.* TERM).

# Example of use

"Canceling Power Calibration."

<Program> DSPL SETCOM TERM RF DSPL MODANAL CALVAL 10.00DB CALVAL? CALCANCEL CALVAL?

<Response> 2,10.00 0,0.00

# CALVAL

Power Calibration Value

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CALVAL a        | CALVAL?       | b, a             |

#### Function

Sets the calibration value for Power Calibration.

### Value of a

Calibration value

| Range           | Resolution | Initial value | Unit |
|-----------------|------------|---------------|------|
| -10.00 to 10.00 | 0.01       | 0.00          | dB   |

# □ Suffix code

None: dB

DB: dB

# Value of b

Type of calibration

| b | Type of calibration   | Initial value |
|---|-----------------------|---------------|
| 0 | Yet to be calibration | *             |
| 1 | Internal calibration  |               |
| 2 | External calibration  |               |

#### Restriction

• No setting is allowed when Terminal is other than RF (cf. TERM).

### Example of use

"Setting the calibration value at 5 dB."

<Program> DSPL SETCOM CALVAL 5.00 CALVAL?

<Response> 2,5.00

# CARRF

**Carrier Frequency** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | – CARRF?      |                  |

# Function

Outputs the carrier frequency on the Modulation Analysis screen.

# Value of a

Carrier frequency

| Resolution | Unit |
|------------|------|
| 0.1        | Hz   |

### Restriction

• When the Terminal is other than RF, measurement is not performed (*cf.* TERM).

# Example of use

"Reading out the carrier frequency."

<Program> MEAS MODANAL CARRF?

<Response> 1922499857.2

# CARRFERR

Carrier Frequency Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| – CARRFERR? a   |               | b                |

### Function

Outputs the carrier frequency error on the Modulation Analysis screen.

### Value of a

Output unit

| а    | Output unit |
|------|-------------|
| None | Hz          |
| HZ   | Hz          |
| PPM  | ppm         |

# Value of b

Frequency error

| Resolution | Unit |
|------------|------|
| 0.1        | Hz   |
| 0.001      | ppm  |

Restriction

• No setting is allowed when the Terminal is other than RF (*cf.* TERM).

#### Example of use

"Read out the carrier frequency error."

<Program> MEAS MODANAL CARRFERR? HZ

<Response> -14.5

# CDALLCH

Code Domain Results

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| _               | CDALLCH? a,b,c | d1,d2,d3,,dn     |

# Function

On the Modulation Analysis screen, outputs all of the measurement results of Code Domain Power, Waveform Quality, Time Offset or Phase Offset at one time.

### Value of a

Measurement result to be output

| а    | Measurement result to be output |
|------|---------------------------------|
| PWR  | Code Domain Power               |
| WAVE | Waveform Quality                |
| ТО   | Time Offset                     |
| PH   | Phase Offset                    |

# Value of b

Walsh Length

| Range                              | Measuring Object |
|------------------------------------|------------------|
| Fixed at 64 (No setting permitted) | Forward (RC1-2)  |
| 4, 8, 16, 32, 64, 128              | Forward (RC3-5)  |
| 2, 4, 8, 16, 32                    | Reverse (RC3-4)  |

### Value of c

Operation Trace

| С    | Signal type |
|------|-------------|
| Ι    | I signal    |
| Q    | Q signal    |
| None |             |

#### Value of d

Code Domain Power

| Range                      | Resolution |
|----------------------------|------------|
| - 2147483648 to 2147483647 | 1          |

• Read out as integer of 0.01 dB unit, with 1 dB at 100.

Waveform Quality

| Range                      | Resolution |
|----------------------------|------------|
| - 2147483648 to 2147483647 | 1          |

• Read out as integer of 0.0001 unit, with 1 unit for 100000.

Time Offset

| Range                      | Resolution |
|----------------------------|------------|
| - 2147483648 to 2147483647 | 1          |

• Read out as integer of 0.000000001 sec (1 nsec) unit, with 1 sec at 100000000.

Phase Offset

| Range                      | Resolution |
|----------------------------|------------|
| - 2147483648 to 2147483647 | 1          |

• Read out as integer of 0.001 radian unit, with 1 radian at 1000.

Restriction

- Enable only when the measuring object is Forward (RC1-2), Forward (RC3-5), and Reverse (RC3-4).
- Walsh Length or Operation Phase cannot be set when Measuring Object is Forward(RC1-2).
- Input for Operation Phase can be omitted.
- Output results follow the current Operation Phase when Reverse (RC3-4) is set and Operation Phase is omitted.
- The value of Operation Phase Q for Reverse (RC3-4) is output when other than Reverse (RC3-4) is specified in Operation Phase.

#### Example of use

"Read out the measurement result of Code Domain Power from Channelization Code Number of 0 to 63."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL SWP CDALLCH? PWR, 64

<Response> -18.58, -7.86, -8.49,..., -0.28, -13.40

# CDANAL

### Code Domain Results

### When Auto Rate Detection is set to Off

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | CDANAL? a,b,c | d,e,f,g          |

### When Measuring Object is set to Reverse Link

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | CDANAL? h,c   | i1,i2,i3,,in     |

### Function

Outputs the measurement results of Code Domain Power, Waveform Quality Time Offset, or Phase Offset in specified Walsh Length, Code Number or Operation Phase on the Modulation Analysis screen.

# Value of a

Walsh Length

| Range                              | Measuring Object |
|------------------------------------|------------------|
| Fixed at 64 (No setting permitted) | Forward (RC1-2)  |
| 4, 8, 16, 32, 64, 128              | Forward (RC3-5)  |
| 2, 4, 8, 16, 32                    | Reverse (RC3-4)  |

# Value of b

Channelization Code Number

| b            | Resolution |
|--------------|------------|
| 0 to (a - 1) | 1          |

# Value of c

**Operation Phase** 

| С    | Resolution                         |
|------|------------------------------------|
| Ι    | I signal                           |
| Q    | Q signal                           |
| None | Depends on Operation Trace setting |

# Value of d

Code Domain Power

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

### ■ Value of e

Waveform Quality

| Resolution | Unit |
|------------|------|
| 0.00001    | None |

### Value of f

Time offset

| Resolution | Unit |
|------------|------|
| 1          | nsec |

# Value of g

#### Phase offset

| Resolution | Unit   |
|------------|--------|
| 0.001      | radian |

# Value of h

Selection readout data

| Н    | Measured results to be outputted                                   |  |
|------|--------------------------------------------------------------------|--|
| PWR  | Code Domain Power                                                  |  |
| WAVE | Waveform Code Number                                               |  |
| ТО   | Time Offset                                                        |  |
| РО   | Phase Offset                                                       |  |
| ALL  | Code Domain Power, Waveform Code Number, Time Offset, Phase Offset |  |

# Value of i

Code Domain Power

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

### Waveform Quality

| Resolution | Unit |
|------------|------|
| 0.00001    | None |

# Time Offset

| Resolution | Unit |
|------------|------|
| 0.01       | nsec |

# Phase Offset

| Resolution | Unit   |
|------------|--------|
| 0.001      | radian |

- Restriction
- Input for Operation Phase can be omitted.
- Output results follow the current Operation Phase when Reverse (RC3-4) is set and Operation is omitted.
- The value of Operation Phase Q for Reverse (RC3-4) is output when other than Reverse(RC3-4) is specified is Operation Phase.

Example of use

"Output the measurement results of Code Domain Power, Waveform Quality, Time Offset or Phase Offset when Walsh Length is 16, Code Number is 3 and Operation Trace is Q."

<Program> DSPL SETCOM MEASOBJ REVERSERC3 DSPL MODANAL AUTODET OFF SWP CDANAL? 16,3,Q

<Response> -12.75, 0.88991, 0.762

# CDPANLY

Code Domain Results

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| _               | CDPANLY? a,b,c | d,e,f,g          |

### Function

Outputs the measurement results of Code Domain Power, Waveform Quality, Time Offset or Phase Offset in specified Channelization Code Number, Walsh Length or Operation Trace on the Modulation Analysis screen.

### ■ Value of a

Channelization Code Number

| а            | Resolution |
|--------------|------------|
| 0 to (b - 1) | 1          |

# Value of b

Walsh Length

| Range                              | Measuring Object |
|------------------------------------|------------------|
| No setting permitted (Fixed at 64) | Forward (RC1-2)  |
| 4, 8, 16, 32, 64, 128              | Forward (RC3-5)  |
| 2, 4, 8, 16, 32                    | Reverse (RC3-4)  |

#### Value of c

**Operation Trace** 

| С    | Signal type |
|------|-------------|
| Ι    | I signal    |
| Q    | Q signal    |
| None | -           |

#### Value of d

Code Domain Power

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

# Value of e

Waveform Quality

| Resolution | Unit |
|------------|------|
| 0.00001    | None |

■ Value of f

Time Offset

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

### Value of g

Phase Offset

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

Restriction

- Enable only when the measuring object is Forward (RC1-2), Forward (RC3-5), and Reverse (RC3-4).
- Walsh Length or Operation Phase cannot be set when Measuring Object is Forward (RC1-2).
- Output results follow the current Operation Phase when Reverse (RC3-4) is set and Operation Phase is omitted.
- The value of Operation Phase Q for Reverse (RC3-4) is output when other than Reverse (RC3-4) is set and Q is specified in Operation Phase.

# Example of use

"Output the measurement results of Code Domain Power, Waveform Quality, Time Offset or Phase Offset when Channelization Code Number is 3, Walsh Length is 16 and Operation Phase is Q."

<Program> DSPL SETCOM MEASOBJ REVERSERC3 DSPL MODANAL SWP CDPANLY? 3,16,Q

<Response> -12.75, 0.88991, 0.762

# CHAN

Channel

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CHAN a          | CHAN?         | a                |

### Function

Setting of channel number.

### Value of a

Channel

| Value                         | Resolution | Initial value |
|-------------------------------|------------|---------------|
| 0 to 20000 (See Restrictions) | 1          | 1092          |

### Restriction

- The terminal must be set to RF (*cf.* TERM).
- If the frequency goes beyond the setting range when changing the channel, the channel cannot be changed even within the setting range (*cf.* FREQ). For example, the channel cannot be changed when channel = 0, frequency = 7.8 GHz and Channel Spacing = 0.2 MHz.

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting the channel to 500."

<Program> DSPL SETCOM TERM RF CHAN 500 CHAN?

# CHFREQ

Channel and Frequency

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CHFREQ a, b     | _             | _                |

# Function

Sets the channel and the frequency of the channel concurrently on the Setup Common Parameter screen.

Value a

Channel Same as "CHANa" (*cf.* CHAN).

■ Value b : Carrier frequency Same as "FREQb" (*cf.* FREQ).

Restriction

• No setting is allowed when the terminal is one other than RF (cf. TERM).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting the carrier frequency of Channel 2 to 1 GHz."

<Program> DSPL SETCOM TERM RF CHFREQ 2,1 GHZ CHAN? FREQ?

# CHSPC

**Channel Spacing** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CHSPC a         | CHSPC?        | a                |

#### Function

Sets the one-channel frequency band on the Setup Common Parameter screen.

#### Value of a

One-channel Frequency Band.

| Range                      | Resolution | Initial value | Unit |
|----------------------------|------------|---------------|------|
| -10000000000 to 1000000000 | 1          | 1250000       | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

Restriction

• No setting is allowed when the terminal is other than RF (*cf.* TERM).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting the inter-channel frequency band to 300 kHz."

<Program> DSPL SETCOM TERM RF CHAN 501 FREQ 400MHZ CHSPC 300KHZ CHSPC? CHAN 502 FREQ?

# CODESYNC

Code Sync

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CODESYNC a      | CODESYNC?     | a                |

# Function

Sets the RF power screen so that the Measuring Object does or does not indicate the position of the waveform by means of code synchronization, in the case of Forward (RC1-2), Forward (RC3-5), Reverse (RC3-4).

### Value of a

On/Off of Code Synchronization

| а   | On/Off of Code Synchronization            | Initial value |
|-----|-------------------------------------------|---------------|
| ON  | Performs synchronization by code.         |               |
| OFF | Does not perform synchronization by code. | *             |

#### Restriction

• No setting is allowed where the Measuring Object is QPSK or OQPSK (cf. MEASOBJ).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set so that the position of the waveform is indicated by means of synchronization."

<Program> DSPL SETCOM MEASOBJ REVERSE DSPL RFPWR CODESYNC ON CODESYNC?

# CONTS

### Continuous Sweep

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CONTS           | _             | _                |

#### Function

Executes continuous measurement (sweep).

### Restriction

• Executable screens are as follow (*cf.* DSPL).

| Executable screen             | Remarks                      |
|-------------------------------|------------------------------|
| Modulation Analysis           | _                            |
| RF Power                      | _                            |
| Occupied Bandwidth            | _                            |
| Spurious close to the Carrier | at Average, Single operation |
| Spurious Emission             | Single operation             |
| IQ Level                      | _                            |
| Power Meter                   | _                            |

#### Example of use

"Execute continuous measurement (sweep)".

<Program> CONTS

# CORR

Correction

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CORR a          | CORR?         | a                |

# Function

Selects the Correction data table for level correction.

# ■ Value of a

Correction data table

| а | Correction data table                       | Initial value |
|---|---------------------------------------------|---------------|
| 0 | No data correction is carried out.          | *             |
| 1 | Use Table 1 for performing data correction. |               |
| 2 | Use Table 2 for performing data correction. |               |
| 3 | Use Table 3 for performing data correction. |               |
| 4 | Use Table 4 for performing data correction. |               |
| 5 | Use Table 5 for performing data correction  |               |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Selecting Correction Data Table 3."

<Program> CORR 3 CORR?

<Response>

3

# DET\_ACP

**Detection Mode** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_ACP a       | DET_ACP?      | a                |

### Function

Sets the wave-detection mode in Spurious Close to the Carrier measurement.

#### Value of a

Wave-detection mode

| а   | Wave-detection mode                                                                                                                                                 | Initial value |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| POS | Sets the wave-detection mode to Positive Peak.<br>Makes the maximum value during one sampling period to the data of the<br>point thereof.                           | *             |
| NEG | Sets the wave-detection mode to Negative Peak.<br>Makes the minimum value during one sampling period to the data of the<br>point thereof.                           |               |
| SMP | Sets the wave-detection mode to Sample.<br>Makes the instantaneous data at the point of when the hardware executes<br>sampling operation to the data of that point. |               |
| AVG | Sets the wave-detection mode to Average.<br>Makes the average value between sampling points to the data of the points.                                              |               |
| RMS | Sets the wave-detection mode to RMS.<br>Makes the RMS value between the sampling points to the data of the points.                                                  |               |

Restriction

- RMS can be set when Digital is set for RBW Mode. (*cf.* RBD\_ACP)
- If RBW Mode is set to Digital when Average is set for detection mode, detection mode will be set to RMS. (*cf.* RBD\_ACP)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set the wave-detection mode to Average."

<Program> DET\_ACP AVG DET\_ACP?

<Response> AVG

■ Notes RMS is an option.

7-46

# DET\_OBW

**Detection Mode** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_OBW a       | DET_OBW?      | a                |

# Function

Sets the wave-detection mode respective of Occupied Bandwidth measurement using a spectrum analyzer.

### Value of a

Wave-detection mode

| а   | Wave-detection mode                                                                                                                                                 | Initial value |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| POS | Sets the wave-detection mode to Positive Peak.<br>Makes the maximum value during one sampling period to the data of the<br>point thereof.                           | *             |
| NEG | Sets the wave-detection mode to Negative Peak.<br>Makes the minimum value during one sampling period to the data of the<br>point thereof.                           |               |
| SMP | Sets the wave-detection mode to Sample.<br>Makes the instantaneous data at the point of when the hardware executes<br>sampling operation to the data of that point. |               |
| AVG | Sets the wave-detection mode to Average.<br>Makes the average value between sampling points to the data of the points.                                              |               |
| RMS | Sets the wave-detection mode to RMS.<br>Makes the RMS value between the sampling points to the data of the points.                                                  |               |

Restriction

• RMS can be set when Digital is set for RBW Mode. (cf. RBD\_OBW)

• If RBW Mode is set to Digital when Average is set for detection mode, detection mode will be set to RMS. (*cf.* RBD\_OBW)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set the wave-detection mode to Average."

<Program> DET\_OBW AVG DET\_OBW?

<Response> AVG

■ Notes RMS is an option.

# DET\_SPU

### **Detection Mode**

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_SPU a,b     | DET_SPU? a    | b                |

#### ■ Function

Sets the wave-detection mode of Spurious Emission measurement.

#### Value of a

Detection Mode

| а      | Detection Mode                                                                      |
|--------|-------------------------------------------------------------------------------------|
| SPOT   | The wave-detection mode used in the Spot measurement method is the object hereof.   |
| SEARCH | The wave-detection mode used in the Search measurement method is the object hereof. |
| SWEEP  | The wave-detection mode used in the Sweep measurement method is the object hereof.  |

### Value of b

Wave-detection mode

| b   | Wave-detection mode                                                        | Initial value |
|-----|----------------------------------------------------------------------------|---------------|
| POS | Sets the wave-detection mode to Positive Peak.                             |               |
|     | Makes the maximum value during one sampling period to the data of the      |               |
|     | point thereof.                                                             |               |
| NEG | Sets the wave-detection mode to Negative Peak.                             |               |
|     | Makes the minimum value during one sampling period to the data of the      |               |
|     | point thereof.                                                             |               |
| SMP | Sets the wave-detection mode to Sample.                                    |               |
|     | Makes the instantaneous data at the point of when the hardware executes    |               |
|     | sampling operation to the data of that point.                              |               |
| AVG | Sets the wave-detection mode to Average.                                   | *             |
|     | Makes the average value between sampling points to the data of the points. |               |
| RMS | Sets the wave-detection mode to RMS.                                       |               |
|     | Makes the RMS value between the sampling points to the data of the points. |               |

#### Restriction

- RMS can be set when Digital is set for RBW Mode. (cf. TBLRBWTP\_SPU)
- If RBW Mode is set to Digital when Average is set for detection mode, detection mode will be set to RMS. (*cf.* TBLRBWTP\_SPU)

■ Initialization of setting PRE, INI, IP, \*RST Example of use

"Set the wave-detection mode of the Sweep method to Positive Peak."

<Program> DET\_SPU SWEEP,POS DET\_SPU? SWEEP

<Response> POS

■ Notes RMS is an option.

# DISPTYPE\_ACP

Display Data Type for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DISPTYPE_ACP a  | DISPTYPE_ACP? | a                |

#### Function

Sets the display type of measurement result in the Spurious close to the Carrier screen.

#### Value of a

Measurement result type selection

| а          | Display format                                                                                  | Initial value |
|------------|-------------------------------------------------------------------------------------------------|---------------|
| FREQVSPWR  | Shows the leakage power at each offset frequency.                                               |               |
| PEAKPWR    | Displays level of measured point of minimum margin at each fre-<br>quency band of the template. | *             |
| PEAKMARGIN | Displays margin of measured point of minimum margin at each frequency band of the template.     |               |

#### Initialization command

PRE, INI, IP, \*RST

#### Example of use

"Sets the display type of measurement result to Freq. vs Power."

<Program> DSPL ACP,NRM SWP DISPTYPE\_ACP FREQVSPWR DISPTYPE\_ACP?

<Response> FREQVSPWR

# DPTS\_ACP

Data Points:1001/501

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DPTS_ACP a      | DPTS_ACP?     | a                |

### Function

Sets the number of data points received from Spectrum-Analyzer sweeping on the Spurious Close to the Carrier screen.

### Value of a

Data number

| а    | Data number                                 | Initial value |
|------|---------------------------------------------|---------------|
| 1001 | Sets so that 1001 data points are received. | *             |
| 501  | Sets so that 501 data points are received.  |               |

# ■ Initialization of setting

PRE, INI, IP, \*RST

# Example of use

"Set Spectrum Analyzer sweeping data to 1001 points."

<Program> DPTS\_ACP 1001 DPTS\_ACP?

<Response> 1001

# ■ Notes

A setting value differs from a display value when Measure Method is 3GPP2 FWD Band Class 0, 2, 3, 5, 9 or 3GPP2 FWD Band Class 1, 4, 6, 8.

display value

| Moosuro Mothod                 | setting value |      |  |
|--------------------------------|---------------|------|--|
| Measure Method                 | 501           | 1001 |  |
| Normal                         | 501           | 1001 |  |
| 3GPP2 FWD Band Class 0,2,3,5,9 | 1501          | 3001 |  |
| 3GPP2 FWD Band Class 1,4,6,8   | 2001          | 3501 |  |

# DPTS\_OBW

Data Points:1001/501

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DPTS_OBW a      | DPTS_OBW?     | a                |

### Function

On the Occupied Bandwidth screen, set the number of data points received from Spectrum Analyzer sweeping.

#### Value of a

Data number

| а    | Data number                                 | Initial value |
|------|---------------------------------------------|---------------|
| 1001 | Sets so that 1001 data points are received. |               |
| 501  | Sets so that 501 data points are received.  | *             |

### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set Spectrum Analyzer sweeping data to 1001 points."

<Program> DPTS\_OBW 1001 DPTS\_OBW?

# DSPL

Change Screen

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DSPL a          | DSPL?         | a                |
| DSPL a,b        | DSPL?         | a,b              |

# Function

Changes the screen. Measurement is not performed even if the screen to which one is changing is a measurement screen.

# ■ Value of a, b

# a: Name of screen

b: Measurement method or table selection

| а                  | b              | Name of screen Measurement<br>or table sele                    |                                  | Initial value | Change condition |
|--------------------|----------------|----------------------------------------------------------------|----------------------------------|---------------|------------------|
| SETCOM             | —              | Setup Common Parameter                                         | -                                | *             |                  |
| MODANAL            | —              | Modulation Analysis                                            | -                                |               |                  |
| RFPWR              | _              | RF Power                                                       | _                                |               |                  |
| SET-<br>TEMP_RFPWR | _              | Setup Template (for RF<br>Power)                               | _                                |               |                  |
| OPW                | SPECT          | Occurried Pandwidth                                            | Spectrum                         |               | А                |
| OBW                | $\mathbf{FFT}$ | Occupied Bandwidth                                             | FFT                              |               |                  |
|                    | NRM            |                                                                | Normal                           |               |                  |
|                    | None           |                                                                | Normai                           |               |                  |
| ACP                | PRECISE1       | Spurious close to<br>the Carrier                               | 3GPP2 FWD Band<br>Class0,2,3,5,9 |               | А                |
|                    | PRECISE2       |                                                                | 3GPP2 FWD Band<br>Class 1,4,6,8  |               |                  |
| SETTEMP_ACP        | _              | Setup Spurious Template<br>(for Spurious close to the Carrier) | _                                |               | A,C              |
|                    | SPOT           |                                                                | Spot                             |               | А                |
| SPURIOUS           | SEARCH         | Spurious Emission                                              | Search                           |               | А                |
|                    | SWEEP          |                                                                | Sweep                            |               | А                |
| SETTRI SPU         | SPOT           | Setup Table                                                    | Spot                             |               | А                |
| SETTBL_STC         | SWEEP          | (for Spurious Emission)                                        | Search & Sweep                   |               | А                |
| IQLVL              | _              | IQ Level                                                       | _                                |               | В                |
| PWRMTR             | —              | Power Meter                                                    | _                                |               | А                |

Change conditions

- A: Change is not allowed when the Terminal is other than RF.
- B: Change is not allowed when the Terminal is RF.
- C: Change is not allowed when Measure Method is 3GPP2 FWD Band Class 1, 4, 6, 8 and than Template is Band Class 6 (*cf.* SLCTEMP\_ACP).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use[1] "Changing to the Modulation Analysis screen."

<Program> DSPL MODANAL DSPL?

<Response> MODANAL

[2] "Changing to sweep measurement on the Spurious Emission screen."

<Program> DSPL SPURIOUS,SWEEP DSPL?

<Response> SPURIOUS, SWEEP

- Restrictions according to model type and options
- For MS268x, changing to IQ Level Screen is not allowed when Option-17 or -18 I/Q Input is not installed.
- For MS268x, changing to Power Meter Screen is not allowed.

# ERRSC

Error Scale for Constellation

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| ERRSC a         | ERRSC?        | a                |  |

### Function

Sets a circle indicating the error range of each symbol on the constellation display of the Modulation Analysis screen.

### ■ Value of a

Error Range

| а   | Error Range | Initial value |
|-----|-------------|---------------|
| 5   | 5 %         |               |
| 10  | 10 %        |               |
| 20  | 20 %        |               |
| OFF | Off         | *             |

#### Restriction

• No setting is allowed when the Trace Format is other than Constellation (*cf.* TRFORM).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Sets the error scale to 20%."

<Program> TRFORM CONSTEL ERRSC 20 ERRSC?

# FILTER

Filter

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FILTER a        | FILTER?       | a                |

### Function

Set up on the Setup Common Parameter screen to indicate whether filter processing has been performed on the signal subject to analysis.

#### Value of a

#### Specification of filtering On/Off

| а   | Specification of filtering On/Off                          | Initial value |
|-----|------------------------------------------------------------|---------------|
| OFF | Analyzes without filter processing.                        |               |
| ON  | Analyzes with filter processing.                           | *             |
| EQ  | Analyzes with filter processing and equalizing processing. |               |

#### Restriction

• This setting is disabled when the displayed measurement screen is other than the Setup Common Parameter screen.

#### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Performing filter processing for analysis."

<Program> DSPL SETCOM FILTER ON FILTER?

# FREQ

Frequency

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FREQ a          | FREQ?         | a                |

# Function

Sets the carrier frequency to be measured on the Setup Common Parameter screen.

### Value of a

Carrier frequency

| Range             | Resolution | Initial value | Unit | Remarks       |
|-------------------|------------|---------------|------|---------------|
| 100 to 780000000  | 1          | 887650000     | Hz   | For MS8608A   |
| 100 to 1320000000 | 1          | 887650000     | Hz   | For MS8609A   |
| 100 to 300000000  | 1          | 887650000     | Hz   | For MS2681A   |
| 100 to 780000000  | 1          | 887650000     | Hz   | For MS2683A   |
| 100 to 3000000000 | 1          | 887650000     | Hz   | For MS2687A/B |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

- Restriction
- No setting is allowed when the terminal is one other than RF (cf. TERM).
- When the channel value changes only by Ch, carrier frequency Fnew after changing is found by Fnew = Fold + {(Channel Spacing) × Ch}, where Fold is carrier frequency before changing(*cf*. CHAN).

■ Initialization of setting PRE, INI, IP, \*RST

• Example of use "Setting the carrier frequency to 1 GHz."

<Program> DSPL SETCOM TERM RF FREQ 1GHZ

# FSPAN\_ACP

Frequency Span for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FSPAN_ACP a     | FSPAN_ACP?    | a                |

#### Function

Sets the measurement frequency bandwidth on the Spurious Close to the Carrier screen.

#### Value of a

Frequency bandwidth

| Range               | Resolution | Initial value | Unit |
|---------------------|------------|---------------|------|
| 1000000 to 10000000 | 1          | 8000000       | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### Restriction

- No setting is allowed when the Measure Method is other than Normal. (cf. DSPL)
- 8 MHz is returned always when Measure Method is one other than Normal. The setting cannot be changed when Measure Method is one other than Normal.

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting the measurement frequency bandwidth to 3 MHz on the Spurious close to the Carrier screen."

<Program> DSPL ACP,NRM FSPAN\_ACP 3MHZ FSPAN\_ACP?
# FSPAN\_OBW

Frequency Span for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FSPAN_OBW a     | FSPAN_OBW?    | a                |

#### Function

Sets the measurement frequency bandwidth on the Occupied Bandwidth screen.

#### Value of a

Frequency bandwidth

| Range               | Resolution | Initial value | Unit |
|---------------------|------------|---------------|------|
| 1000000 to 10000000 | 1          | 4000000       | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### Restriction

- When the method is FFT, fixed 3.91 MHz is set. Namely, when the bandwidth is read out during FFT method, "3,910,000" is read out always.
- Regardless of the method, setting is performed depending on Span during Spectrum method. Moreover, there is no relation of dependence between Span of Spectrum and Span of FFT.

#### Example of use

"Set Span on the Occupied Bandwidth screen."

<Program> DSPL OBW,SPECT FSPAN\_OBW 2MHZ FSPAN\_OBW? DSPL OBW,FFT FSPAN\_OBW 5MHZ FSPAN\_OBW? DSPL OBW,SPECT FSPAN\_OBW?

<Response> 2000000 3910000 5000000

# ILVL

I Level (RMS)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | ILVL? a       | b                |

#### Function

Reads out the measured results of the RMS value of Signal I on the IQ Level screen.

## Value of a

Readout unit

| а    | Readout unit                                                |
|------|-------------------------------------------------------------|
| None | Conforms to the unit set by the Unit <i>(cf.</i> UNIT_IQL). |
| MV   | mV                                                          |
| DBMV | dBmV                                                        |

## Value of b

RMS value of Signal I

| Resolution | Unit |
|------------|------|
| 0.01       | mV   |
|            | dBmV |

#### Example of use

"Reading out the RMS value of Level I."

<Program> DSPL SETCOM TERM IQAC DSPL IQLVL SWP ILVL? MV

<Response>
1.42

Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# INACTCH\_CDP

Inactive Channel Power

| Program Message | Query Message    | Response Message |
|-----------------|------------------|------------------|
|                 | INACTCH_CDP? a,b | с                |

## Function

Outputs the number of channels, averaged power, maximum power, and minimum power of the channels which have the averaged power of code-domain power less then the threshold

## Value of a

Output type specification

| а     | Output type                                                   |
|-------|---------------------------------------------------------------|
| NUM   | Outputs the number of channels.                               |
| TOTAL | Outputs the total power relative power to Tx Power.           |
| AVG   | Outputs the averaged power by the relative power to Tx Power. |
| MAX   | Outputs the maximum power by the relative power to Tx Power.  |
| MIN   | Outputs the minimum power by the relative power to Tx Power.  |

## Value of b

Measuring Object: Reverse (RC3-4) only can specify b.

| b    | Output type                          |
|------|--------------------------------------|
| None | Signal specified by Operation Trace. |
| Ι    | I signal.                            |
| Q    | Q Signal                             |

# Value of c

Output type specification

| а     | Resolution | Unit |
|-------|------------|------|
| NUM   | 1          | СН   |
| TOTAL | 0.01       | dB   |
| AVG   |            |      |
| MAX   |            |      |
| MIN   |            |      |

## Restriction

• Measuring Object: Reverse (RC1-2), QPSK, and OQPSK cannot use this command (cf. MEASOBJ).

#### Example of use

"Reading out the total power of Inactive Channel Power of Measuring Object: Forward (RC1-2).

<Program> DSPL SETCOM MEASOBJ FOWARD DSPL MODANAL SWP INACTCH\_CDP? NUM

<Response> 123

# INI

Initialize

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INI             | _             | _                |

# Function

Initializes all the measurement control parameters to be initialized. This function has the same effect as the PRE and IP commands (*cf.* PRE, IP).

# Example of use

"Initializing the parameters to be initialized."

<Program> INI

# INTEGRAL\_ACP

# Integral Waveform

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTEGRAL_ACP a  | INTEGRAL_ACP? | a                |

#### Function

Sets the integral waveform display On/Off.

## Value of a

On/Off for the integral waveform display

| а   | Initial value |
|-----|---------------|
| ON  |               |
| OFF | *             |

#### Restriction

• No setting is allowed when the Measure Method is other than Normal. (cf. DSPL)

# Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set the integral waveform display to On."

<Program> DSPL ACP,NRM SWP INTEGRAL\_ACP ON INTEGRAL\_ACP?

# INTPOL

Interpolation for Constellation

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTPOL a        | INTPOL?       | a                |

# Function

Sets the interpolation display on the Modulation Analysis screen when Trace Format is set at Constellation.

## Value of a

Interpolation display

| а       | Interpolation mode                                                                                                       | Initial value |
|---------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| NON     | Non: Displays only the symbol points.                                                                                    | *             |
| LIN     | Linear: Displays the linearly interpolated symbol points.                                                                |               |
| POINT10 | 10points: Display the interval between the 2 symbol points interpolated by 10 segments.                                  |               |
| LINSYM  | Linear & Symbol Position: Displays the symbol points and the linearly interpolated symbol points.                        |               |
| P10SYM  | 10points & Symbol Position: Displays the symbol points and the interval<br>between 2 symbol interpolated by 10 segments. |               |

## Restriction

• No setting is allowed when Trace Format is set to other than Constellation (*cf.* TRFORM).

• No setting is allowed when Measuring Object is set to other than Forward(RC1-2) or Forward(RC3-5) (*cf.* MEASOBJ).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use
"Linearly interpolating the symbol points."

<Program> TRFORM CONSTEL INTPOL LIN INTPOL?

<Response> LIN

# INTVAL\_ACP

Refresh Interval for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTVAL_ACP a    | INTVAL_ACP?   | a                |

#### Function

Sets the display renewal interval on the Spurious close to the Carrier screen when the storage mode is Average.

#### Value of a

Updating interval

| а     | Updating interval                                                        | Initial value |
|-------|--------------------------------------------------------------------------|---------------|
| EVERY | Updated after every sweep. An average is obtained based on the times of  | *             |
|       | measurements conducted.                                                  |               |
| ONCE  | Updated after every averaging. An average is obtained based on the times |               |
|       | specified by Average Count.                                              |               |

■ Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Setting the updating interval to Once."

<Program> INTVAL\_ACP ONCE INTVAL\_ACP?

# INTVAL\_IQL

Refresh Interval for IQ Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTVAL_IQL a    | INTVAL_IQL?   | a                |

#### Function

Sets the display renewal interval on the IQ Level screen when the Storage Mode is Average.

#### ■ Value of a

Updating interval

| а     | Updating interval                                                       | Initial value |
|-------|-------------------------------------------------------------------------|---------------|
| EVERY | Displays the average value of the measured results obtained after every | *             |
|       | measurement.                                                            |               |
| ONCE  | Displays the average value of the measurement results after measure-    |               |
|       | ment of Average Count is completed.                                     |               |

# ■ Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Setting the updating interval to Once."

<Program> INTVAL\_IQL ONCE INTVAL\_IQL?

<Response>
ONCE

#### Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# INTVAL\_MOD

Refresh Interval for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTVAL_MOD a    | INTVAL_MOD?   | a                |

## Function

Sets the display updating interval on the Modulation Analysis screen when the Storage Mode is set to Average.

#### Value of a

Updating interval

| а     | Updating interval                                                                                    | Initial value |
|-------|------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updated after every sweep. An average is obtained based on the times of measurements conducted.      | *             |
| ONCE  | Updated after every averaging. An average is obtained based on the times specified by Average Count. |               |

■ Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Setting the updating interval to Once."

<Program> INTVAL\_MOD ONCE INTVAL\_MOD?

# INTVAL\_OBW

Refresh Interval for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTVAL_OBW a    | INTVAL_OBW?   | a                |

#### Function

Sets the display updating interval when Storage Mode is set to Average at Occupied Bandwidth measurement.

#### Value of a

Updating interval

| а     | Updating interval                                                      | Initial value |
|-------|------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the | *             |
|       | average value by the number of measurements repeated by that sweep.    |               |
| ONCE  | Updates the display once after completion of averaging. Calculates the |               |
|       | average value by the times specified with Average Count.               |               |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use
"Sets the updating interval to Once."

<Program> INTVAL\_OBW ONCE INTVAL\_OBW?

# INTVAL\_RFPWR

#### Refresh Interval for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INTVAL_RFPWR a  | INTVAL_RFPWR? | a                |

#### Function

Sets the display updating interval on the RF Power screen obtained when the Storage Mode is set to Average.

#### Value of a

#### Updating interval

| а     | Updating interval                                                                                    | Initial value |
|-------|------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updated after every sweep. An average is obtained based on the times of measurements conducted.      | *             |
| ONCE  | Updated after every averaging. An average is obtained based on the times specified by Average Count. |               |

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Setting the updating interval to Once."

<Program> INTVAL\_RFPWR ONCE INTVAL\_RFPWR?

# IP

Preset

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| IP              | _             | _                |

# Function

Initializes all the measurement control parameters to be initialized. This function has the same effect as the PRE and INI commands (*cf.* PRE, INI).

# Example of use

"Initializing the parameters to be initialized."

<Program> IP

# **IPPLVL**

I Level(Peak to Peak)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | IPPLVL? a     | b                |

#### Function

Reads out the measured results of the Peak to Peak value of Signal I on the IQ Level screen.

#### Value of a

Readout unit

| а    | Readout unit                                             |
|------|----------------------------------------------------------|
| None | Conforms to the unit set by Unit ( <i>cf.</i> UNIT_IQL). |
| MV   | mV                                                       |
| DBMV | dBmV                                                     |

#### Value of b

Peak to Peak value of Signal I

| Resolution | Unit |
|------------|------|
| 0.01       | mV   |
|            | dBmV |

#### Example of use

"Reading out the Peak to Peak value of Level I."

<Program> DSPL SETCOM TERM IQAC DSPL IQLVL SWP IPPLVL? MV

<Response> 4.07

■ Restrictions according to model type and options For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# IQINZ

Impedance

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| IQINZ a         | IQINZ?        | a                |

## Function

Sets the input impedance of Signals I/Q on the Setup Common Parameter screen.

## ■ Value of a

Impedance

| а   | Impedance                               | Initial value |
|-----|-----------------------------------------|---------------|
| 50  | Sets input impedance to 50 $\Omega$ .   | *             |
| 1 M | Sets input impedance to $1 \ M\Omega$ . |               |

## Restriction

- The measurement screen must be set to Setup Common Parameter (cf. DSPL).
- The Terminal must be set to IQ-AC, IQ-DC or IQ-Balance (cf. TERM).

Initialization of setting

PRE, INI, IP, \*RST

Example of use"Setting the impedance value at 50 Ω."

<Program> DSPL SETCOM TERM IQAC IQINZ 50 IQINZ?

<Response> 50

## Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# IQLVL

IQ Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | IQLVL? a      | b, c, d, e       |

## Function

Reads out the measured results of the RMS values and Peak to Peak values of Signal I and Signal Q on the IQ Level screen.

#### Value of a

#### Readout unit

| а    | Readout unit                                             |
|------|----------------------------------------------------------|
| None | Conforms to the unit set by Unit ( <i>cf.</i> UNIT_IQL). |
| MV   | mV                                                       |
| DBMV | dBmV                                                     |

#### Value of b

Same as result of "ILVL? a" (cf. ILVL).

#### Value of c

Same as result of "QLVL? a" (cf. QLVL).

## ■ Value of d

Same as result of "IPPLVL? a" (cf. IPPLVL).

■ Value of e

Same as result of "QPPLVL? a" (cf. QPPLVL).

Example of use
 "Read out all IQ Level values"
 <Program>
 DSPL SETCOM
 TERM IQAC
 DSPL IQLVL
 SWP
 IQLVL? MV

<Response> 1.42, 0.53, 4.07, 3.55

■ Restrictions according to model type and options For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# IQPHASE

IQ Phase Difference

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | IQPHASE?      | a                |

## Function

Reads out the measurement results of phase difference of Signals I/Q on the IQ Level screen.

#### ■ Value of a

Phase difference of I/Q

| Resolution | Unit |
|------------|------|
| 0.01       | o    |

Example of use

"Reading out the phase difference of I/Q."

<Program> DSPL SETCOM TERM IQAC DSPL IQLVL SWP IQPHASE?

<Response> 99.97

Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# JUDGUNIT\_SPTBL

Judge Unit

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| JUDGUNIT_SPTBL a | JUDGUNIT_SPTBL? | a                |

#### Function

Switches the judgment unit for Spot method of Spurious Measurement.

#### Value of a

Relative/Absolute

| а   | Judge Unit Relative/Absolute | Initial value |
|-----|------------------------------|---------------|
| ON  | Relative: Judge in dBm       | *             |
| OFF | Absolute: Judge in dB        |               |

## □ Suffix code

None

#### Restriction

None

# Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set Unit Judge to Relative."

<Program> DSPL SPURIOUS,SPOT JUDGUNIT\_SPTBL ON JUDGUNIT\_SPTBL?

# JUDGUNIT\_SWTBL

## Judge Unit

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| JUDGUNIT_SWTBL a | JUDGUNIT_SWTBL? | a                |

## Function

Switches the judgment item.

# Value of a

Relative/Absolute

| а   | Judge Unit Relative/Absolute | Initial value |
|-----|------------------------------|---------------|
| ON  | Relative: Judge in dBm       | *             |
| OFF | Absolute: Judge in dB        |               |

# □ Suffix code

None

## Restriction

None

# Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set Unit Judge to Relative."

<Program> DSPL SPURIOUS,SWEEP JUDGUNIT\_SWTBL ON JUDGUNIT\_SWTBL?

# LVLREL\_ACP

#### **Relative Level**

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| LVLREL_ACP a    | LVLREL_ACP?   | a,a,a,a          |
| LVLREL_ACP a,1  | LVLREL_ACP? 1 | a                |
| LVLREL_ACP a,2  | LVLREL_ACP? 2 |                  |
| LVLREL_ACP a,3  | LVLREL_ACP? 3 |                  |
| LVLREL_ACP a,4  | LVLREL_ACP? 4 |                  |

#### Function

Sets the units that will serve as reference, based on the template judgment of the Spurious Close to the Carrier measurement. In the event of relative value, the average power of the carrier is the reference value.

#### Value of a

#### Judgment Criteria

| а   | Judgment reference                                                                 |
|-----|------------------------------------------------------------------------------------|
| ON  | Relative: Judges with the average power of the carrier as the reference (dB unit). |
| OFF | Absolute: Judges with absolute value (dBm Unit).                                   |

#### Restriction

• No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)

#### Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set dBm unit system."

<Program> LVLREL\_ACP OFF LVLREL\_ACP?

<Response> OFF,OFF

# LVLREL\_RFPWR

#### **Relative Level**

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| LVLREL_RFPWR a  | LVLREL_RFPWR? | a                |

## Function

Sets the relative display of the waveform on the RF Power screen. When displaying the relative value, burst average power becomes the reference value. When displaying the absolute value, template indication and Pass/Fail judgment is not performed.

#### Value of a

#### On/Off of Relative Value Display

| а   | On/Off of relative value display                                                                        | Initial value |
|-----|---------------------------------------------------------------------------------------------------------|---------------|
| ON  | Relative Level: Displays the relative value (dB unit) of the vertical axis graduation of the waveform.  | *             |
| OFF | Absolute Level: Displays the absolute value (dBm unit) of the vertical axis graduation of the waveform. |               |

■ Initialization of setting PRE, INI, IP, \*RST

## Example of use

"Display the absolute value of the waveform."

<Program> LVLREL\_RFPWR OFF LVLREL\_RFPWR?

<Response> OFF

# MAGTDERR

**RMS Magnitude Error** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MAGTDERR?     | a                |

#### Function

Outputs the measurement results of the RMS value of Magnitude Error on the Modulation Analysis screen.

#### Value of a

RMS value of Magnitude Error

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

#### Example of use

"Reading out the measurement results of Magnitude Error."

<Program> DSPL MODANAL SWP MAGTDERR?

<Response> 16.67

# MAXWL

Maximum Walsh Length

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MAXWL a         | MAXWL?        | a                |

#### Function

Switch Max Walsh Length.

## Value of a

Waveform range specification

| а   | Max Walsh Length 64/128               | Initial Value |
|-----|---------------------------------------|---------------|
| 64  | Walsh Length: 128 cannot be selected. | *             |
| 128 | Walsh Length: 128 can be selected.    |               |

□ Suffix Code None

- Restriction
- Setting is allowed only when Measuring Object is Forward (RC3-5) (*cf.* MEASOBJ).
- Setting is allowed only when Trace Format is Code Domain (cf. TRFORM)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Max Walsh Length to 64."

<Program> DSPL SETCOM MEASOBJ FORWARDRC3 TRFORM CODE MAXWL 64 MAXWL?

<Response> 64

# MEAS

Change screen and measure

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MEAS a          | MEAC2         | a                |
| MEAS a,b        | MEAS:         | a,b              |

#### Function

Switches the screen. Measurement is started when the screen to be transferred to is the measurement screen.

■ Value of a, b Same as DSPL command (*cf.* DSPL).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use[1] "Executing a measurement on the Modulation Analysis screen."

<Program> MEAS MODANAL MEAS?

<Response> MODANAL

[2] "Executing sweep measurement on the Spurious Emission screen."

<Program> MEAS SPURIOUS,SWEEP MEAS?

<Response> SPURIOUS,SWEEP

# MEASOBJ

Measuring Object

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MEASOBJ a       | MEASOBJ?      | a                |

## Function

Sets the signal type of the object for analysis on the Setup Common Parameter screen.

# Value of a

Type of burst signal

| а          | On/Off of Display Mode            | Initial value |
|------------|-----------------------------------|---------------|
| REVERSE    | Reverse (RC1-2): IS95 equivalent  | *             |
| REVERSERC3 | Reverse (RC3-4): IS95 equivalent  |               |
| FORWARD    | Forward (RC1-2): IS95 equivalent  |               |
| FORWARDRC3 | Forward (RC3-5): 1xRRT equivalent |               |
| QPSK       | QPSK                              |               |
| OQPSK      | Offset QPSK                       |               |

## Restriction

• No setting is allowed when the measurement screen is other than Setup Common Parameter.

# Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Set the object of analysis to Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD MEASOBJ?

<Response> FORWARD

# **MKCDP**

Marker Level (Code Domain Power)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKCDP? a      | b                |

#### Function

Reads out the Code Domain Power at the marker position when Trace Format is set to Code Domain at Modulation Analysis measurement.

#### Value of a

Measuring Object: Relative (RC3-4) only can be specified.

| а    | Type of marked signal               |  |
|------|-------------------------------------|--|
| None | Signal specified by Operation Trace |  |
| Ι    | I signal                            |  |
| Q    | Q signal                            |  |

#### Value of b

Code Domain Power

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

#### Restriction

• Measuring Object: Reverse (RC1-2), QPSK and OQPSK cannot use this command (cf. MEASOBJ).

#### Example of use

"Read Code Domain Power of 35 CH when the Measuring Object is Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FOWARD DSPL MODANAL TRFORM CODE MKR\_MOD NRM MKP\_CDP 35 SWP MKCDP?

<Response> -22.08

# MKL\_ACP

Marker Level for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKL_ACP? a    | b,c              |

## Function

Outputs the measurement value of the marker position of the Spurious close to the Carrier screen.

## Value of a

#### Output unit

| а    | Readout unit                                         |
|------|------------------------------------------------------|
| None | Conforms to the Unit setting ( <i>cf.</i> UNIT_ACP). |
| DB   | dB                                                   |
| DBM  | dBm                                                  |
| WATT | W                                                    |

## Value of b

Marker Level (Level value of specified RBW)

| Resolution                                                    | Unit |
|---------------------------------------------------------------|------|
| 0.01                                                          | dBm  |
| 0.01                                                          | dB   |
| Significant digits, four places (floating decimal-point type) | W    |

## Value of c

Marker level (RBW: 1.23 MHz equivalent level value)

| Resolution                                                    | Unit |
|---------------------------------------------------------------|------|
| 0.01                                                          | dBm  |
| 0.01                                                          | dB   |
| Significant digits, four places (floating decimal-point type) | W    |

#### Restriction

• In RBW: 1.23 MHz data, some data is invalid due to arithmetic computation. In the case of invalid data, the following values are output.

| Resolution | Output value |  |
|------------|--------------|--|
| dBm        | -2147483648  |  |
| dB         |              |  |
| W          | 0.00E-12     |  |

Example of use

"Read out the level at offset frequency  $1.25~\mathrm{MHz."}$ 

<Program> DSPL ACP MKN\_ACP 1.25MHZ SWP MKL\_ACP? DB

<Response> -34.08, -22.77

# MKL\_MOD

Marker Level for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKL_MOD? a    | b                |

## Function

On the Modulation Analysis screen, outputs each measurement value of marker positions when Trace Format is Constellation, Eye Diagram, EVM, Phase Error, or Magnitude Error.

## Value of a

Type of marked signal

| Trace Format                      | а    | Marked signal |
|-----------------------------------|------|---------------|
| Constellation Eye Diagram         | Ι    | I signal      |
| Constenation, Eye Diagram         | Q    | Q signal      |
| EVM, Phase Error, Magnitude Error | None | _             |

## Value of b

Marker Level

| Trace Format               | Resolution | Unit |
|----------------------------|------------|------|
| Constellation, Eye Diagram | 0.0001     | None |
| EVM, Magnitude Error       | 0.01       | %    |
| Phase Error                | 0.01       | deg. |

## Restriction

- In the following cases, \*\*\*\* is output.
  - Where Trace Format is other than Constellation, Eye Diagram, EVM, Phase Error, Magnitude Error (*cf.* TRFORM).
  - Where Marker Mode is Off (*cf.* MKR\_MOD).
- In the following cases, Insufficient data error results.
- Where Parameter (a) has not been specified, when Trace Format is Constellation or Eye Diagram.
- Where Parameter (a) has been specified, when Trace Format is EVM, Phase Error, or Magnitude Error.

## Example of use

"Read out the value at the 320.0 chip point at the Constellation I signal."

<Program> DSPL MODANAL TRFORM CONSTEL MKR\_MOD NRM MKP\_MOD 320.0 SWP MKL\_MOD? I

<Response> -0.2889

# MKL\_RFPWR

Marker Level for RF Power

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| _               | MKL_RFPWR? a  | b                |  |

#### Function

Outputs the measurement value of the Marker position on the RF Power screen.

#### ■ Value of a

Output unit

| а    | Output unit                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None | When the Relative Level is On (Relative), it is deemed that dB has been specified, and in the event of Off (Absolute) it is deemed that dBm has been specified ( <i>cf.</i> LVLREL_RFPWR). |
| DB   | dB                                                                                                                                                                                         |
| DBM  | dBm                                                                                                                                                                                        |

## Value of b

Marker Level

| Resolution | Unit |
|------------|------|
| 0.1        | dB   |
|            | dBm  |

#### Restriction

• \*\*\* is output when the Marker Mode is off (*cf.* MKR\_RFPWR).

#### Example of use

"Read out power at position of 80.00 PNchip."

<Program> DSPL RFPWR WINDOW SLOT MKR\_RFPWR NRM MKP\_RFPWR 80.00 SWP MKL\_RFPWR?

<Response> -10.62

# MKN\_ACP

Marker Position for Spurious close to the Carrier (in frequency)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKN_ACP a       | MKN_ACP?      | a                |

#### Function

Uses the frequency to specify the Marker position of the Spurious close to the Carrier screen. The function is the same as that of MKP\_ACP.

#### Value of a

Frequency position

| Range                 | Initial value | Unit |
|-----------------------|---------------|------|
| -(Span/2) to (Span/2) | 0             | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### Restriction

• When the Data Points are changed from 1001 to 501, the value of resolution is rounded down to 10 kHz (*cf.* DPTS\_ACP).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the marker position to 1 MHz."

<Program> DSPL ACP,NRM MKN\_ACP 1MHZ MKN\_ACP? DPTS\_ACP 501 DPTS\_ACP?

<Response> 885000 880000

# MKP\_ACP

Marker Position for Spurious close to the Carrier (in points)

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| MKP_ACP a       | MKP_ACP?      | a                |  |

## Function

Specifies the Marker position of the Spurious Close to the Carrier screen with the point number. The function is the same as that of MKN\_ACP.

## Value of a

Point position

When Measure Method is set to Normal

| Data Points | Range     | Resolution | Initial value |
|-------------|-----------|------------|---------------|
| 501         | 0 to 500  | 1          | 250           |
| 1001        | 0 to 1000 |            | 500           |

## When Measure Method is set to 3GPP2 FWD Band Class 0, 2, 3, 5, 9

| Data Points | Range     | Resolution | Initial value |
|-------------|-----------|------------|---------------|
| 501         | 0 to 1500 | 1          | 750           |
| 1001        | 0 to 3000 | 1          | 1500          |

## When Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8

| Data Points | Range     | Resolution | Initial value |
|-------------|-----------|------------|---------------|
| 501         | 0 to 2000 | 1          | 1000          |
| 1001        | 0 to 3500 | 1          | 1750          |

# □ Suffix code

None

## Restriction

• When the Data Points are changed, the number of points equivalent to the Marker position (frequency) is set.

Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Set the marker position to 250 points."

<Program> DPTS\_ACP 501 MKP\_ACP 250 MKP\_ACP? DPTS\_ACP 1001 MKP\_ACP?

<Response> 250 500

# MKP\_CDP

Marker Position for Modulation Analysis (Code Domain)

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| MKP_CDP a,b     | MKP_CDP? b    | a                |  |

## Function

On the Modulation Analysis screen, specifies the Marker position when the Trace Format is Code Domain.

# Value of a

Number of bars counted from the origin of the Code Domain bar graph.

| Range                     | Resolution | Initial value | Range                                    |
|---------------------------|------------|---------------|------------------------------------------|
| 0 to (Walsh Length - 1)   | 1          | 1             | At Auto Rate Detection: Off or Auto Rate |
|                           |            |               | Detection: On, Display Mode: Walsh       |
| 0 to (Depends on measured |            |               | At Auto Rate Detection: On, Display      |
| results)                  |            |               | Mode: OVSF.                              |

# Value of b

Signal of operation object

| b    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I Signal                            |
| Q    | Q Signal                            |

# Restriction

• When the Marker position goes out of range due to a change of the Walsh Length the Marker position goes to the center of the setting range (*cf.* WLSHLEN).

■ Initialization of setting PRE, INI, IP, \*RST

## Example of use

"Set marker on the 6th bar."

<Program> DSPL SETCOM MEASOBJ FOWARDRC3 DSPL MODANAL TRFORM CODE MKR\_MOD NRM SWP MKP\_CDP 6 MKP\_CDP?

<Response>

6
# MKP\_MOD

Marker Position for Modulation Analysis (Constellation, Eye Diagram, EVM, Phase Error, Magnitude Error)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_MOD a       | MKP_MOD?      | a                |

## Function

On the Modulation Analysis screen, specifies Marker position when Trace Format is Constellation, Eye Diagram, EVM, Phase Error, or Magnitude Error.

#### Value of a

Position of PNchip

| Trac          | e Format                       | Range                                    | Resolution | Initial value | Unit   |
|---------------|--------------------------------|------------------------------------------|------------|---------------|--------|
| Non           |                                |                                          |            |               |        |
| EVM           |                                |                                          |            |               |        |
| Phase Error   |                                |                                          | See Table  |               |        |
| Magnitude Err | or                             |                                          |            |               |        |
|               | Non                            |                                          | below      |               |        |
| Constellation | Linear                         | 0.0 to<br>(Analysis Length - Resolution) |            | Screen center | PNchip |
|               | Linear &<br>Symbol Position    |                                          |            |               |        |
|               | 10 points                      |                                          | 0.1        |               |        |
|               | 10 points &<br>Symbol Position |                                          |            |               |        |
| Eye Diagram   |                                |                                          |            |               |        |

#### Measuring object and resolution

| Measuring Object | Resolution |
|------------------|------------|
| Reverce (RC3-4)  | 1.0        |
| Forward (RC1-2)  |            |
| Forward (RC3-5)  |            |
| QPSK             |            |
| Reverse (RC3-4)  | 0.5        |
| OQPSK            |            |

 $\Box$  Suffix Code

None

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set the Marker position at 600 PNchip on the EVM display of Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL TRFORM EVM MKR\_MOD NRM MKP\_MOD 600 MKP\_MOD?

<Response> 600

# MKP\_RFPWR

Marker Position for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_RFPWR a     | MKP_RFPWR?    | a                |

#### Function

Specifies the Marker position on the RF Power Screen.

### Value of a

PNchip position

| Window   | Range               | Resolution | Initial Value | Unit   |
|----------|---------------------|------------|---------------|--------|
| Slot     | - 100.00 to 1636.00 |            |               |        |
| Leading  | - 20.00 to 15.00    | 0.25       | Screen center | PNchip |
| Trailing | 1521.00 to 1556.00  |            |               |        |

□ Suffix Code

None

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the marker on the 1530.25 PNchip of the Slot display."

<Program> DSPL RFPWR WINDOW SLOT MKR\_RFPWR NRM MKP\_RFPWR 1530.25 MKP\_RFPWR?

<Response> 1530.25

## **MKPHASE**

Marker Level for Phase Offset

| Program Message Query Message |          | Response Message |  |
|-------------------------------|----------|------------------|--|
|                               | MKPHASE? | a                |  |

#### Function

On the Modulation Analysis screen, reads out the Phase Offset at the Marker position when the Trace Format is Code Domain

#### Value of a

Phase Offset

| Resolution | Unit   |
|------------|--------|
| 0.001      | radian |

#### Restriction

• Measuring Object: Reverse (RC1-2), Reverse (RC3-4), QPSK, and OPQSK cannot use this command (*cf.* MEASOBJ).

## Example of use

"Reads out Phase Offset of 35 CH when the Measuring Object is Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL TRFORM CODE MKR\_MOD NRM MKP\_CDP 35 SWP MKPHASE?

<Response> 3.169

# MKPMAX\_CDP

Max Marker Position for Code Domain

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKPMAX_CDP? a | b                |

#### Function

Reads out the maximum possible value of Marker Position when Trace Format is Code Domain on the Modulation Analysis screen.

#### Value of a

Measuring Object: Reverse (RC3-4) only can be specify a.

| а    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I signal                            |
| Q    | Q signal                            |

### Value of b

Maximum value of Marker Position + 1

| Resolution | Unit |
|------------|------|
| 1          | None |

Restriction

• Measuring Object: Reverse (RC1-2), QPSK and OQPSK cannot use this command (cf. MEASOBJ).

#### Example of use

"Read out the Max Marker Position value of I signal when Measuring Object is Reverse (RC3-4)."

<Program> MEASOBJ REVERSERC3 DSPL MODANAL TRFORM CODE AUTODET ON MKR\_MOD NRM SWP MKPMAX\_CDP? I

```
<Response>
31
```

## MKR\_MOD

Marker Mode for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_MOD a       | MKR_MOD?      | a                |

#### Function

Sets the marker on/off of each Trace on the Modulation Analysis screen.

#### Value of a

On/Off of Marker

| а   | On/Off of Marker                                                          | Initial value |
|-----|---------------------------------------------------------------------------|---------------|
| NRM | Normal (On): Displays the marker and sets the marker position to the      |               |
|     | entry state.                                                              |               |
| OFF | Off: Deletes the marker display and cancels the entry state of the marker | *             |
|     | position.                                                                 |               |

#### Restriction

• No setting is allowed when the Trace Format is set to Non (cf. TRFORM).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Display the marker on the EVM display of the Modulation Analysis screen."

<Program> DSPL MODANAL TRFORM EVM MKR\_MOD NRM MKR\_MOD?

<Response> NRM

# MKR\_RFPWR

### Marker Mode for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_RFPWR a     | MKR_RFPWR?    | a                |

#### Function

Sets the marker on/off on the RF Power screen.

## Value of a

On/Off of Marker

| а   | On/Off of Marker                                                     | Initial value |
|-----|----------------------------------------------------------------------|---------------|
| NRM | Normal (On): Displays the marker and sets the marker position to the |               |
|     | entry state.                                                         |               |
| OFF | Off: Deletes the marker display and cancels the entry state of the   | *             |
|     | marker position.                                                     |               |

## ■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Display of marker on the RF Power Screen."

<Program> DSPL RFPWR MKR\_RFPWR NRM MKR\_RFPWR?

<Response> NRM

## MKSCNO

Code Number of Marker Position

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKSCNO? a     | b                |

### Function

Reads out the Channelization Code at Marker Position when Trace Format is Code Domain on the Modulation Analysis screen.

#### Value of a

Measuring Object: Reverse (RC3-4) only can be specify a.

| а    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I signal                            |
| Q    | Q signal                            |

Value of b

Channelization Code Number

| Trace Format            | Resolution | Unit |
|-------------------------|------------|------|
| 0 to (Walsh Length - 1) | 1          | None |

Restriction

• Measuring Object: Reverse (RC1-2), QPSK and OQPSK cannot use this command (cf. MEASOBJ)

Example of use

"Read out the Channelization Code at 20th I signal when Measuring Object is Reverse (RC3-4)."

<Program> MEASOBJ REVERSERC3 DSPL MODANAL TRFORM CODE AUTODET ON MKR\_MOD NRM MKP\_CDP 20,I SWP MKSCNO? I

<Response>

17

# MKSGNL

Signal Status of Marker Position

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKSGNL? a     | b                |

## Function

Reads out whether the signal at Marker Position is noise when Trace Format is Code Domain on the Modulation Analysis screen.

## Value of a

| а    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I signal                            |
| Q    | Q signal                            |

## Value of b

Signal

| b Signal |       |
|----------|-------|
| BPSK     | BPS   |
| QPSK     | QPSK  |
| NOISE    | Noise |

## Restriction

- Measuring Object: Forward (RC1-2), Reverse (RC1-2), QPSK and OQPSK cannot use this command (*cf.* AUTODET)
- Auto Rate Detection: Off cannot use this command (cf. AUTODET).

## Example of use

"Read out the Signal status at 10th I signal when Measuring Object is Reverse (RC3-4)."

<Program> MEASOBJ REVERSE3 DSPL MODANAL TRFORM CODE AUTODET ON MKR\_MOD NRM MKP\_CDP 10,I SWP MKSGNL? I

<Response>
SIGNAL

## MKTIM

Marker Level for Time Offset

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MKTIM?        | a                |

## Function

Reads out the Time Offset at the Marker position on the Modulation Analysis screen, when the Trace Format is Code Domain.

## Value of a

Time Offset

| Resolution | Unit |
|------------|------|
| 1          | ns   |

## Restriction

• Measuring Object: Reverse (RC1-2), Reverse (RC3-4), QPSK, and OPQSK cannot use this command (*cf.* MEASOBJ).

## Example of use

"Reads out Time Offset of 35 CH when the Measuring Object is Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL TRFORM CODE MKR\_MOD NRM MKP\_CDP 35 SWP MKTIM?

<Response> 515

## MKWAV

Waveform Quality ( $\rho$ ) of Marker Position

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKWAV? a      | b                |

#### Function

Reads out Waveform Quality ( $\rho$ ) at Marker position on Modulation Analysis screen when Trace Format is Code Domain.

#### Value of a

Measuring Object: Reverse (RC3-4) only can be specify a.

| а    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I signal                            |
| Q    | Q signal                            |

#### Value of b

Waveform Quality ( $\rho$ )

| Resolution | Unit |
|------------|------|
| 0.00001    | None |

Restriction

• Measuring Object: Reverse (RC1-2), QPSK and OQPSK cannot use this command (cf. MEASOBJ).

#### Example of use

"Read out of Waveform Quality ( $\rho$ ) of 35 CH when the Measuring Object is Forward (RC1-2)."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL TRFORM CODE MKR\_MOD NRM MKP\_CDP 35 SWP MKWAV?

<Response> 0.00355

# MKWL

Walsh Length of Marker Position

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MKWL? a       | b                |

## Function

Reads out the Walsh Length at Marker Position when Trace Format is Code Domain on the Modulation Analysis screen.

## ■ Value of a

Measuring Object: Reverse (RC3-4) only can be specify a.

| а    | Type of marked signal               |
|------|-------------------------------------|
| None | Signal specified by Operation Trace |
| Ι    | I signal                            |
| Q    | Q signal                            |

## Value of b

Walsh Length

| Range                 | Measuring Object |
|-----------------------|------------------|
| 64                    | Forward (RC1-2)  |
| 4, 8, 16, 32, 64, 128 | Reverse (RC3-5)  |
| 2, 4, 8, 16, 32       | Reverse (RC3-4)  |

## Restriction

• Measuring Object: Reverse (RC1-2), QPSK and OQPSK cannot use this command (cf. MEASOBJ).

## Example of use

"Read out the Walsh Length at 76th I signal when Measuring Object is Forward (RC3-5)."

<Program> MEASOBJ FORWARDRC3 DSPL MODANAL TRFORM CODE AUTODET ON MKR\_MOD NRM MKP\_CDP 76 SWP MKWL?

<Response> 16

## **MLTCARRCAL**

#### Multi Carrier Power Calibration

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MLTCARRCAL      | _             | _                |

### Function

Multi Carrier Power Calibration Executes multi carrier calibration.

#### Restriction

- This command is enabled only when the measurement screen is set to Modulation Analysis, RF Power
   Occupied Bandwidth
   Spurious close to the Carrier
   Spurious Emission
- Terminal must be set to RF. (cf. TERM)

### Example of use

"Executes Multi Carrier Calibration."

<Program> DSPL MODANAL MLTCARRCAL

# MSTAT

Status of Result

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | MSTAT?        | a                |

## Function

Queries about status of measurement just performed.

## ■ Value of a

Measurement Status

| а | Measurement Status |
|---|--------------------|
| 0 | Normal             |
| 1 | RF Level Limit     |
| 2 | Level Over         |
| 3 | Level Under        |
| 6 | Trigger Timeout    |
| 9 | No Measure         |

## Example of use

"Execute Modulation Analysis measurement and reads out measurement status."

<Program> DSPL MODANAL SWP MSTAT?

<Response>

0

## OBW

Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | OBW?          | a                |

## Function

On the Occupied Bandwidth screen, reads out the range of frequency that remains 99 % of the total power of carrier frequency.

#### Value of a

99 % occupied bandwidth

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

## Example of use

"Reads out the 99 % occupied bandwidth."

<Program> DSPL OBW,SPECT SWP OBW?

<Response> 1152750

# OBWFREQ

Occupied Bandwidth Limit and Center

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | OBWFREQ? a    | b                |

## Function

On the Occupied Bandwidth screen, reads out upper and lower frequency bands from the center frequency.

#### Value of a

Frequency bands from center

| а      | Frequency bands from center                                                                                                                                        |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| UPPER  | Upper Limit: Displays the bandwidth accounting for 49.5 % of the total power in the upper frequency area from the displayed waveform center frequency in MHz unit. |  |
| LOWER  | Lower Limit: Displays the bandwidth accounting for 49.5 % of the total power in the lower frequency area from the displayed waveform center frequency in MHz unit. |  |
| CENTER | (Upper + Lower)/2: Displays the half-value of the sum of the upper-limit fre-<br>quency and lower-limit frequency.                                                 |  |

## Value of b

Bandwidth

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

## Example of use

"Reads out the Upper Limit of the occupied bandwidth."

<Program> DSPL OBW,FFT SWP OBWFREQ? UPPER

<Response>
807124

## OFFPWR

Carrier Off Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | OFFPWR? a     | b                |

#### Function

Displays average power when transmission is set to Off on the RF Power screen.

#### Value of a

Output unit

| а    | Output unit |
|------|-------------|
| DBM  | dBm         |
| WATT | W           |

#### Value of b

Average power when transmission is set to off.

| Resolution                                                    | Unit |
|---------------------------------------------------------------|------|
| 0.01                                                          | dBm  |
| Significant digits, four places (floating decimal-point type) | W    |

#### Restriction

• Setting is valid only when Wave Type is set to Burst (cf. WAVETYPE).

#### Example of use

"Reading out average power when transmission is set to off."

<Program> DSPL RFPWR SWP OFFPWR? DBM

<Response> -4.89

# OPRTTR

**Operation Trace** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| OPRTTR a        | OPRTTR?       | a                |

## Function

On the Code Domain of the Modulation Analysis screen, selects the I/Q signal for the marker, page change and Walsh Length operation.

#### Value of a

Signal targeted for operation

| а | Signal Targeted for Operation | Initial value |
|---|-------------------------------|---------------|
| Ι | I signal                      | *             |
| Q | Q signal                      |               |

#### Restriction

- No setting is allowed when the Measuring Object is other than Reverse (RC3-4) (cf. MEASOBJ).
- No setting is allowed when the Trace Format is other then Code Domain (cf. TRFORM).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Make the Q Signal the object of operation."

<Program> DSPL SETCOM MEASOBJ REVERSERC3 DSPL MODANAL TRFORM CODE OPRTTR Q OPRTTR?

<Response>

Q

# ORGNOFS

Origin Offset

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | ORGNOFS?      | a                |

## ■ Function

Outputs the measurement results for Origin-offset (carrier leak component) of the signal to be measured on the Modulation Analysis screen.

#### Value of a

Origin Offset value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

## Example of use

"Read out the measurement result of Origin Offset."

<Program> DSPL MODANAL SWP ORGNOFS?

<Response> -34.33

# OXMC

Wave Data for Origin I-Q Signal

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| OXMC a,b        | OXMC? c       | d                |

## ■ Function

Reads out and processes IQ signal at origin on the Modulation Analysis screen.

## ■ Value of a

Selection of IQ

| а | Selection of IQ |
|---|-----------------|
| 0 | I signal        |
| 1 | Q signal        |

## Value of b

16 bit data for input

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in 0.0001 units so that ideal signal "1" is shown as 10,000.

## Value of c

Selection of IQ

| С      | Trace Slot         |
|--------|--------------------|
| SYMBOL | Symbol             |
| None   | Current Trace Slot |

## Value of d

Read out 32 bit waveform data

| Range                     | Resolution |
|---------------------------|------------|
| -2147483648 to 2147483647 | 1          |

• Reading out is made by using an integer in 0.0001 units so that ideal signal "1" is shown as 10,000.

## Example of use

"Read out I and Q signals at origin point."

<Program> DSPL MODANAL SWP OXMC? 0 OXMC? 1

## <Response>

0

0

# PEAK\_ACP

Peak Data for Spurious close to the Carrier

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
| _               | PEAK_ACP? a,b,c | d,e,f            |

## Function

Outputs the peak value and the results of pass/fail judgment at specified template on Spurious close to the Carrier screen.

#### Value of a

Selection of readout data

| а                       | Display Format                                              |
|-------------------------|-------------------------------------------------------------|
| ALL                     | Reads out value at the point of minimum margin for the tem- |
|                         | plate of each frequency band.                               |
| PEAK                    | Reads out value at the point of minimum margin among the    |
|                         | template of all frequency bands.                            |
| LOW1, LOW2, LOW3, LOW4, | Reads out value at the point of minimum margin for the      |
| UP1, UP2, UP3, UP4      | specified template among the template of frequency band.    |

## Value of b

Data type of readout data

| b      | Data Type                                        |
|--------|--------------------------------------------------|
| PWR    | Reads out level at the point of minimum margin.  |
| MARGIN | Reads out margin at the point of minimum margin. |

#### Value of c

Unit setting of readout data

| С    | Unit of Leakage Power                    |  |
|------|------------------------------------------|--|
| None | Set value of unit ( <i>cf.</i> UNIT_ACP) |  |
| DB   | dB                                       |  |
| DBM  | dBm                                      |  |
| WATT | W                                        |  |

When display type is set to MARGIN, value of c is fixed to dB.

## Value of d

Frequency at the point of minimum margin

| Resolution | Unit |
|------------|------|
| 0.01       | kHz  |

#### ■ Value of e

Measuring Result

| Resolution                                           | Unit |
|------------------------------------------------------|------|
| 0.01                                                 | dBm  |
| 0.01                                                 | dB   |
| Significant digits: 4 digits (floating point format) | W    |

### ■ Value of f

Judgment result

| f    | Judgment result |
|------|-----------------|
| PASS | Pass: Passed    |
| FAIL | Fail: Failed    |
| OFF  | No judge        |

#### Restriction

• Valid of c is fixed to DB when Display Type is set to Margin (*cf.* DSPLTYPE\_ACP)

Example of use

"Reads out the peak value at the point of minimum margin."

<Program> DSPL ACP,NRM SWP PEAK\_ACP? PEAK PWR,DBM

<Response> - 13.08.75, - 65.78, PASS

# PEAKRATIO

Peak/Average Ratio

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PEAKRATIO?    | a                |

## Function

Outputs the ratio of the instantaneous peak power in one slot (Peak Tx Power) to in-burst average power in one slot (Tx Power) on RF Power screen.

#### Value of a

Peak/Average Ratio

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

Example of use

"Reading out Peak/Average Ratio"

<Program> DSPL RFPWR SWP PEAKRATIO

<Response> 77.26

## PHASEERR

**RMS Phase Error** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | PHASEERR? a   | b                |

### Function

Outputs the measurement result of the RMS value of the Phase Error on the Modulation Analysis screen.

#### Value of a

RMS value of Phase Error

| Resolution | Unit |
|------------|------|
| 0.01       | deg  |

### Example of use

"Read out of result of measurement of Phase Error."

<Program> DSPL MODANAL SWP PHASEERR?

<Response> 11.58

# PKTXPWR

Peak Tx Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PKTXPWR? a    | b                |

## Function

Reads out the maximum value of instantaneous power in one slot.

#### Value of a

Specification of output unit

| Unit | Resolution |  |
|------|------------|--|
| DBM  | DBm        |  |
| WATT | W          |  |

### Value of b

Peak Tx Power

| Resolution                      | Unit |
|---------------------------------|------|
| 0.01                            | dBm  |
| Significant digits, four places | W    |
| (floating decimal)              |      |

## Example of use

"Reading out the measurement result of Peak Tx Power"

<Program> DSPL RFPWR SWP PKTXPWR? DBM

<Response>

- 18.53

# PLTCDP

Pilot Channel Code Domain Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| – PLTCDP? a     |               | b                |

## Function

Outputs the result of measurement for code domain power in pilot channel (0 CH), on the Modulation Analysis screen.

#### Value of a

Output unit specification

| a Output unit |     |
|---------------|-----|
| DB            | dB  |
| DBM           | dBm |

#### Value of b

Pilot Channel Code Domain Power value

| Resolution | Unit    |
|------------|---------|
| 0.01       | dB, dBm |

#### Example of use

"Read out the measurement result of Pilot Channel Code Domain Power."

<Program> DSPL MODANAL SWP PLTCDP? DB

<Response> -25.81

# PMAGTDERR

Peak Magnitude Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| – PMAGTDERR? a  |               | b                |

### Function

Outputs maximum instantaneous value of Magnitude Error on Modulation Analysis screen.

#### Value of a

Positive and negative code of Magnitude Error

| а    | Positive and negative code   |  |
|------|------------------------------|--|
| None | Absolute value at peak value |  |
| +    | Positive peak value          |  |
| _    | Negative peak value          |  |

## Value of b

The maximum value of Magnitude Error for the code specified in "a."

| b    | Unit |
|------|------|
| 0.01 | %    |

## Example of use

"Read out the maximum value of Magnitude Error."

<Program> DSPL MODANAL SWP PMAGTDERR?

<Response> 7.05

## PNLMD

Panel Mode

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PNLMD a         | PNLMD?        | a                |

## Function

Switches the measurement mode for the Tx Tester.

## Value of a

Measurement mode

| Value  | Measurement mode       |  |
|--------|------------------------|--|
| SPECT  | Spectrum Analyzer mode |  |
| SYSTEM | Tx Tester mode         |  |
| CONFIG | Config mode            |  |

Example of use

"Switches to the Tx Tester mode."

<Program> PNLMD SYSTEM PNLMD?

<Response>
SYSTEM

## PNOFFSET

### Offset Index

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PNOFFSET a      | PNOFFSET?     | a                |

#### Function

Sets offset of PN Sequence

## Value of a

PN Sequence Offset

| Range    | Resolution | Initial value | Unit              |
|----------|------------|---------------|-------------------|
| 0 to 511 | 1          | 0             | None (*64 PNchip) |

## □ Suffix Code

None

## Restriction

• No setting is allowed when the Measuring Object is QPSK or OQPSK (*cf.* MEASOBJ).

• No setting is allowed when Trigger is Free Run(*cf.* TRG)

■ Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set PN Sequence offset to 511\*64PNchip."

<Program> DSPL SETCOM MEASOBJ FORWARD TRG EXT PNOFFSET 511 PNOFFSET?

<Response> 511

## PNSYNC

**PN** Synchronization

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PNSYNC          | PNSYNC?       | a                |

#### Function

Sets the search range for PN synchronization at Ext Trigger.

#### Value of a

Search range for PN synchronization

| а      | Search range for PN synchronization               | Initial value |
|--------|---------------------------------------------------|---------------|
| SEARCH | Searches all 32768 PNchips regardless of Trigger. |               |
| EXTTRG | Searches 384 PNchips before and after Trigger.    | *             |

#### Restrictions

- No setting is allowed when Trigger is Free Run (*cf.* TRG).
- No setting is allowed when Measuring Object is QPSK ( cf. MEASOBJ ).

#### Initialization of setting

PRE, INI, IP,\*RST

Example of use

"Set PN search range to all sections."

<Program> DSPL SETCOM TRG EXT PNSYNC SEARCH PNSYNC?

<Response>
SEARCH

## POWER

#### Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | POWER? a      | b                |

## Function

Outputs the absolute value or relative value of RF average power measured by the power meter.

#### ■ Value of a

Readout unit

| а    | Unit |
|------|------|
| DBM  | dBm  |
| DB   | dB   |
| WATT | W    |

### Value of b

Absolute value or relative value of RF average power

| Resolution                                                    | Unit |
|---------------------------------------------------------------|------|
| 0.01                                                          | dBm  |
| 0.01                                                          | dB   |
| Significant digits, four places (floating decimal-point type) | W    |

#### Example of use

"Reading out RF average power in dBm units."

<Program> DSPL PWRMTR SWP POWER? DBM

<Response> -1.43

■ Restrictions according to model type and options For MS268x, this command is not available.

## **PPHASEERR**

Peak Phase Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | PPHASEERR? a  | b                |

#### Function

Outputs the maximum instantaneous value of phase error on the Modulation Analysis screen.

#### ■ Value of a

Positive and negative codes for phase error

| а    | Positive and negative codes  |  |
|------|------------------------------|--|
| None | Absolute value of peak value |  |
| +    | Positive peak value          |  |
| _    | Negative peak value          |  |

### Value of b

The maximum value of phase error for the code specified in "a."

| Resolution | Unit |
|------------|------|
| 0.01       | deg  |

## Example of use

"Read out the maximum value of phase error."

<Program> MEAS MODANAL PPHASEERR? +

<Response> 4.18

## PRE

Preset

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PRE             | _             | _                |

## Function

Initializes all the measurement control parameters to be initialized. This function has the same effect as the INI and IP commands (*cf.* INI, IP).

## Example of use

"Initializing the parameters to be initialized."

<Program> PRE

## PREAMP

Pre Amplifier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PREAMP a        | PREAMP?       | a                |

#### Function

Sets Pre Ampl On/Off.

#### Value of a

On/Off setting of Pre Ampl

| а   | Pre Ampl              | Initial value |
|-----|-----------------------|---------------|
| ON  | Sets Pre Ampl to On.  |               |
| OFF | Sets Pre Ampl to Off. | *             |

#### Restriction

- No setting is allowed when a value in excess of 3 GHz is set for the frequency (cf. FREQ).
- Setting is allowed when Terminal is set to RF (*cf.* TERM ).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Pre Ampl to On."

<Program> PREAMP ON PREAMP?

<Response> ON

#### Restrictions according to model type and options

This command is available when main unit option MS8608A-08/MS8609A-08/MS2681A-08/MS2683A-08 Pre-amplifier is installed.
# **PVECTERR**

### Peak EVM

| Program Message | Program Message Query Message |  |
|-----------------|-------------------------------|--|
| _               | – PVECTERR?                   |  |

### Function

Outputs the result of measurement for the EVM maximum instantaneous value on the Modulation Analysis screen.

### Value of a

Peak EVM

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

Example of use

"Reads out the peak EVM value."

<Program> DSPL MODANAL SWP PVECTERR?

<Response> 45.23

### **PWRCAL**

**Power Calibration** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PWRCAL          | PWRCAL?       | a                |

### Function

Performs calibration during the power measurement with "PWRCAL" and reads out the calibration value with "PWRCAL?". The calibration value can be set only by external control with "CALVAL" (*cf.* CALVAL).

### Value of a

Calibration value

| Range           | Resolution | Initial value | Unit |
|-----------------|------------|---------------|------|
| -10.00 to 10.00 | 0.01       | 0.00          | dB   |

### Restriction

- Executable screens are as follows (*cf.* DSPL):
  - Modulation Analysis
  - RF Power
  - Occupied Bandwidth
  - Spurious close to the Carrier
  - Spurious Emission
- Where the Terminal is other than RF, execution cannot be performed (*cf.* TERM).
- Where the Frequency is less than 50 MHz, execution cannot be performed (cf. FREQ).

### Example of use

"Performing calibration during the power measurement."

<Program> DSPL SETCOM TERM RF FREQ 1920MHZ DSPL RFPWR CALVAL 2.33 PWRCAL? PWRCAL

<Response> 2.33

■ Restrictions according to model type and options For MS268x, this command is not available.

# PWRVSTIME

Power vs Time for RF Power

| Program Message      | Query Message | Response Message |
|----------------------|---------------|------------------|
| – PWRVSTIME? a, b ,c |               | d                |

### Function

Reads burst signal power at rise or fall time on RF Power screen.

The top of the burst signal depends on Code Sync (*cf.* CODESYNC), Video Trigger Edge (*cf.* VTEDGE), Video Trigger Level (*cf.* VTLVL), Video Trigger Delay (*cf.* VTDLY) etc. settings.

Value of a

Readout position

| b     | а | Readout position |
|-------|---|------------------|
| IS 95 | 1 | - 6 µs           |
|       | 2 | 0 μs             |
|       | 3 | 1250 μs          |
|       | 4 | 1256 μs          |
| 3GPP2 | 1 | - 5.5 μs         |
|       | 2 | 1.5 μs           |
|       | 3 | 1248.5 μs        |
|       | 4 | 1255.5 μs        |

Value of b

Standard

| b     | Output unit                                                |
|-------|------------------------------------------------------------|
| None  | Reads out value depends on the current selected standard.  |
| IS95  | Read out value at the template position of IS-95 standard. |
| 3GPP2 | Read out value at the template position of 3GPP2 standard. |

Value of c

Unit for output level

| С    | Output unit                                                                                            |
|------|--------------------------------------------------------------------------------------------------------|
| None | dB at Relative Level On (Relative),<br>dB at Relative Level Off (Absolute) ( <i>cf.</i> LVLREL_RFPWR). |
| DB   | dB                                                                                                     |
| DBM  | dBm                                                                                                    |

Value of d

Power at the specified time.

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |
|            | dBm  |

Restriction

• Measuring Object is performed only when Wave Type is Burst (cf. WAVETYPE).

Example of use

"Read the power at +1256  $\mu s$  apart from burst signal top."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST DSPL RFPWR SWP PWRVSTIME? IS95,3,DBM

<Response>

- 38.31

# QLVL

Q Level (RMS)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | QLVL? a       | b                |

### Function

Reads out the measurement results of the RMS value for Signal Q on the IQ Level screen.

### Value of a

Readout unit

| а    | Readout unit                                                |
|------|-------------------------------------------------------------|
| None | In accordance with unit set by Unit ( <i>cf.</i> UNIT_IQL). |
| MV   | mV                                                          |
| DBMV | dBmV                                                        |

### Value of b

RMS value for Signal Q

| Resolution | Unit |
|------------|------|
| 0.01       | mV   |
|            | dBmV |

Example of use

"Reading out the RMS value for Level Q."

<Program> DSPL SETCOM TERM IQAC DSPL IQLVL SWP QLVL? MV

<Response> 0.53

Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# QPPLVL

Q Level (Peak to Peak)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | QPPLVL? a     | b                |

### Function

Reads out the measurement results of the Peak to Peak value for Signal Q on the IQ Level screen.

### Value of a

Readout unit

| а    | Readout unit                                                |
|------|-------------------------------------------------------------|
| None | In accordance with unit set by Unit ( <i>cf.</i> UNIT_IQL). |
| MV   | mV                                                          |
| DBMV | dBmV                                                        |

### Value of b

Peak to Peak value for Signal Q

| Resolution | Unit |
|------------|------|
| 0.01       | mV   |
|            | dBmV |

Example of use

"Reading out the Peak to Peak value for Level Q."

<Program> DSPL SETCOM TERM IQAC DSPL IQLVL SWP QPPLVL? MV

<Response> 3.55

■ Restrictions according to model type and options For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# RATIO

On/Off Ratio

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | RATIO?        | a                |

### Function

Outputs the ratio of average intra-burst power (Tx Power) to average power (Carrier Off Power) when transmission is set to off on the RF Power screen.

### Value of a

On/Off Ratio

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

Example of use

"Reading out Peak/Average Ratio"

<Program> DSPL RFPWR SWP PKTXPWR

<Response> 77.26

# RBD\_ACP

RBW Mode: Digital/Normal

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBD_ACP a       | RBD_ACP?      | a                |

### Function

Makes setting to or not to digital filter sweeping mode, for the Spurious Close to the Carrier measurement.

### Value of a

### Sweeping Mode

| а    | Sweeping Mode                                  | Initial value |
|------|------------------------------------------------|---------------|
| DGTL | Set to digital filter sweeping mode (Digital). |               |
| NRM  | Set to normal sweeping mode (Normal).          | *             |

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Set to digital filter sweeping mode."

<Program> RBD\_ACP DGTL RBD\_ACP?

<Response> DGTL

### Note

This function is an option. If the option is invalid, it is deemed that Normal has been set.

# RBD\_OBW

RBW Mode: Digital/Normal

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBD_OBW a       | RBD_OBW?      | a                |

### Function

Make setting to or not to digital filter sweeping mode, for the Occupied Bandwidth measurement using Spectrum Analyzer.

### Value of a

### Sweeping Mode

| а    | Sweeping Mode                                  | Initial value |
|------|------------------------------------------------|---------------|
| DGTL | Set to digital filter sweeping mode (Digital). |               |
| NRM  | Set to normal sweeping mode (Normal).          | *             |

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Set to digital filter sweeping mode."

<Program> RBD\_OBW DGTL RBD\_OBW?

<Response> DGTL

### Note

This function is an option. If the option is invalid, it is deemed that Normal has been set.

# RBW\_ACP

Resolution Bandwidth for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBW_ACP a       | RBW_ACP?      | a                |

#### Function

Sets the RBW (Resolution Bandwidth) in the Spurious close to the Carrier measurement.

#### Value of a

RBW

| Range           | Resolution | Initial value | Unit | Remarks               |
|-----------------|------------|---------------|------|-----------------------|
| 10 to 1000000   | 1          | 30000         | Hz   | For RBW Mode: Digital |
| 300 to 20000000 | 1          | 30000         | Hz   | For RBW Mode: Analog  |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

### Restriction

• Any value may be input into the setting range. However, the value that is actually set is the value, as shown in the Table below.

| Set value                                                    | Remarks               |
|--------------------------------------------------------------|-----------------------|
| 10, 30, 100, 300, 1000, 3000, 10000, 100000, 300000, 1000000 | For RBW Mode: Digital |
| 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000,      | For RBW Mode: Analog  |
| 3000000, 5000000, 10000000, 20000000                         |                       |

• No setting is allowed when Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8 and Template is set to Band Class 6.(*cf.* DSPL)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set RBW to 30 kHz."

<Program> RBW\_ACP 30KHZ RBW\_ACP?

<Response> 30000

7-140

# RBW\_OBW

Resolution Bandwidth for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBW_OBW a       | RBW_OBW?      | a                |

### Function

Sets RBW (Resolution Bandwidth) in Occupied Bandwidth measurement using a Spectrum Analyzer.

### Value of a

RBW

| Range           | Resolution | Initial value | Unit | Remarks               |
|-----------------|------------|---------------|------|-----------------------|
| 10 to 1000000   | 1          | 10000         | Hz   | For RBW Mode: Digital |
| 300 to 20000000 | 1          | 10000         | Hz   | For RBW Mode: Analog  |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

Restriction

• Any value may be input into the setting range. However, the value that is actually set is the value, as shown in the Table below.

| Set value                                                                                    | Remarks               |
|----------------------------------------------------------------------------------------------|-----------------------|
| 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000                          | For RBW Mode: Digital |
| 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000, 3000000, 5000000, 10000000, 20000000 | For RBW Mode: Analog  |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set RBW to 30 kHz."

<Program> RBW\_OBW 30KHZ RBW\_OBW?

<Response> 30000

# REFPWR\_ACP

### Ref Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | REFPWR_ACP? a | b                |

### Function

Reads out the average power in one slot.

### Value of a

Specification of output unit

| а    | Output unit |
|------|-------------|
| DBM  | dBm         |
| WATT | W           |

### Value of b

Ref Power

| Resolution                      | Unit |
|---------------------------------|------|
| 0.01                            | dBm  |
| Significant digits, four places | W    |
| (floating decimal)              |      |

### Example of use

"Read out the Ref Power measurement result."

<Program> DSPL ACP SWP REFPWR\_ACP? DBM

<Response> -18.53

# REFPWR\_SPU

### Ref Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | REFPWR_SPU? a | b                |

### Function

Reads out the average power in one slot.

### Value of a

Specification of output unit

| а    | Output unit |
|------|-------------|
| DBM  | dBm         |
| WATT | W           |

### Value of b

Ref Power

| Resolution                      | Unit |
|---------------------------------|------|
| 0.01                            | dBm  |
| Significant digits, four places | W    |
| (floating decimal)              |      |

### Example of use

"Read out the Ref Power measurement result."

<Program> DSPL SPURIOUS,SPOT SWP REFPWR\_SPU? DBM

<Response> -18.53

# REFPWRMD\_ACP

Ref Power Mode for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| REFPWRMD_ACP a  | REFPWRMD_ACP? | a                |

### Function

Sets the measurement method for Reference Power to calculate the relative value on the Spurious close to the Carrier screen.

#### Value of a

#### Measurement method

| а     | Measurement method                                               | Initial value |
|-------|------------------------------------------------------------------|---------------|
| SPA   | Measurement method that sets Ref Power to be a Power at the zero |               |
|       | span for RBW = 3MHz.                                             |               |
| TXPWR | Measurement method that sets Ref Power to be a Total Power.      | *             |

# ■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the measurement method that sets Ref Power to be a Total Power."

<Program> REFPWRMD\_ACP TXPWR REFPWRMD\_ACP?

<Response> TXPWR

# REFPWRMD\_SPU

Ref Power Mode for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| REFPWRMD_SPU a  | REFPWRMD_SPU? | a                |

### Function

Set the measurement method for Reference Power to calculate the relative value on the Spurious Emission screen.

### Value of a

### Measurement method

| а     | Measurement method                                               | Initial value |
|-------|------------------------------------------------------------------|---------------|
| SPA   | Measurement method that sets Ref Power to be a Power at the zero | *             |
|       | span for RBW = 3MHz.                                             |               |
| TXPWR | Measurement method that sets Ref Power to be a Total Power.      |               |

# ■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the measurement method that sets Ref Power to be a Total Power."

<Program> REFPWRMD\_SPU TXPWR REFPWRMD\_SPU?

<Response> TXPWR

### RFINPUT

**RF Input Connector** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFINPUT a       | RFINPUT?      | a                |

### Function

Sets the connector of the RF signal to be input.

### Value of a

RF signal level

| а    | RF signal level | Initial value |
|------|-----------------|---------------|
| HIGH | High Power      | *             |
| LOW  | Low Power       |               |

### Restriction

• The terminal must be set to RF (*cf.* TERM).

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting the RF signal level to High Power."

<Program> RFINPUT HIGH RFINPUT?

<Response> HIGH

# Restrictions according to model type and options

This command is available only when main unit is  ${\rm MS8608A}.$ 

# RFLVL

Reference Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFLVL a         | RFLVL?        | a                |

### Function

Sets the Reference Level.

### Value of a

Reference Level

| а                | Initial value | Resolution | Unit  | RF Input |
|------------------|---------------|------------|-------|----------|
| Soo Bostrictions | 30.00         | 0.01       | dBm   | High     |
| 000 100011000115 | 10.00         | 0.01       | uDili | Low      |

□ Suffix code

None: dBm

DBM: dBm

### Restriction

- The terminal must be set to RF (*cf.* TERM).
- The setting range of the reference level becomes as follows depending on the status of RF Input: High/Low (*cf.* RFINPUT) and Pre Ampl: On/Off (*cf.* PREAMP). Please see RFLVLOFS regarding RefLevelOffset.

|          |     |                         | RF Input                                                 |                                                          |  |
|----------|-----|-------------------------|----------------------------------------------------------|----------------------------------------------------------|--|
|          |     |                         | High                                                     | Low                                                      |  |
| Pre Ampl | On  |                         | (-30.00 + RefLevelOffset) to<br>(32.00 + RefLevelOffset) | (-50.00 + RefLevelOffset) to<br>(12.00 + RefLevelOffset) |  |
|          | Off | With Power<br>Sensor    | (-10.00 + RefLevelOffset) to<br>(42.00 + RefLevelOffset) | (-30.00 + RefLevelOffset) to<br>(22.00 + RefLevelOffset) |  |
|          |     | Without Power<br>Sensor | (-10.00 + RefLevelOffset) to<br>(52.00 + RefLevelOffset) | (-30.00 + RefLevelOffset) to<br>(32.00 + RefLevelOffset) |  |

• When the reference level goes out of the setting range due to a change of the RF Input or the Pre Ampl, round off to the nearest value.

■ Initialization of setting PRE, INI, IP, \*RST

### Example of use

"Setting the Reference Level to -10.00 dBm."

<Program> DSPL SETCOM TERM RF RFINPUT HIGH RFLVLOFS 0 RFLVL -10.00 RFLVL?

<Response> -10.00

# RFLVLOFS

**Reference Level Offset** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFLVLOFS a      | RFLVLOFS?     | a                |

### Function

Sets Offset value of the Reference Level. The Reference Level setting range expands only for the portion of the offset value.

### Value of a

Reference Level Offset

| Range           | Resolution | Initial value | Unit |
|-----------------|------------|---------------|------|
| -99.99 to 99.99 | 0.01       | 0.00          | dB   |

□ Suffix code None: dB DB: dB

# Restriction

• The Terminal must be set to RF (*cf.* TERM).

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Setting the Reference Offset Level to 0.00 dB."

<Program> DSPL SETCOM TERM RF RFLVLOFS 0.00 RFLVLOFS?

<Response> 0.00

# RL\_ACP

Ref Level for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RL_ACP a        | RL_ACP?       | a                |

#### Function

Sets the Ref Level for Spurious close to the Carrier measurement.

### Value of a

Ref Level

| Range            | Resolution | Initial value | Unit | RF Input |
|------------------|------------|---------------|------|----------|
| See Restriction. | 0.01       | 40.00         | dBm  | High     |
| See Restriction. | 0.01       | 20.00         | dBm  | Low      |

□ Suffix code None: dBm

DBM: dBm

### Restriction

• Reference level setting range depends on RF Input: High/Low (*cf.* RFINPUT), Pre Ampl: On/Off (*cf.* PREAMP), as follows. Refer to RFLVLOFS for RefLevelOffset.

|                  |              | RF Input                                                  |                                                           |
|------------------|--------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                  |              | High                                                      | Low                                                       |
| Attenuator Mode: | Pre Ampl:On  | (-120.00 + RefLevelOffset) to<br>(30.00 + RefLevelOffset) | (-140.00 + RefLevelOffset) to<br>(20.00 + RefLevelOffset) |
| Auto             | Pre Ampl:Off | (-100.00 + RefLevelOffset) to<br>(50.00 + RefLevelOffset) | (-120.00 + RefLevelOffset) to<br>(40.00 + RefLevelOffset) |

If the reference level will become out of range due to RF Input or Pre Ampl. change, the level is rounded to the nearest value within the range.

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Ref Level to -30 dBm."

<Program> ATTMD\_ACP AUTO RL\_ACP -30DBM RL\_ACP?

<Response> -30.00

# RL\_OBW

Ref Level for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RL_OBW a        | RL_OBW?       | a                |

### Function

Sets the Ref Level for Occupied Bandwidth measurement using spectrum analyzer.

### Value of a

Ref Level

| Range                 | Resolution | Initial value | Unit | RF input |
|-----------------------|------------|---------------|------|----------|
| Refer to Restriction. | 0.01       | 40.00         | dBm  | High     |
| Refer to Restriction. | 0.01       | 20.00         | dBm  | Low      |

□ Suffix code None: dBm DBM: dBm

### Restriction

• Reference level setting range depends on RF Input: High/Low (*cf.* RFINPUT), Pre Ampl: On/Off (*cf.* PREAMP), as follows. Refer to RFLVLOFS for RefLevelOffset.

|                  |              | RF Input                      |                               |  |
|------------------|--------------|-------------------------------|-------------------------------|--|
|                  |              | High                          | Low                           |  |
|                  | Pre Ampl:On  | (-120.00 + RefLevelOffset) to | (-140.00 + RefLevelOffset) to |  |
| Attenuator Mode: |              | (30.00 + RefLevelOffset)      | (20.00 + RefLevelOffset)      |  |
| Auto             | Pre Ampl:Off | (-100.00 + RefLevelOffset) to | (-120.00 + RefLevelOffset) to |  |
|                  |              | (50.00 + RefLevelOffset)      | (40.00 + RefLevelOffset)      |  |

If the reference level will become out of range due to RF Input or Pre Ampl. change, the level is rounded to the nearest value within the range.

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Setting Ref Level to -30 dBm."

<Program> ATTMD\_OBW AUTO RL\_OBW -30DBM RL\_OBW?

<Response> -30.00

## RNG

Range

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG a           | _             | _                |

### Function

Increases and decreases the power meter measurement range.

### Value of a

Operation of the power meter range

| а  | Operation of the power meter range           |
|----|----------------------------------------------|
| UP | Increases the measurement range by one step. |
| DN | Decreases the measurement range by one step. |

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Increasing the power meter measurement range by one step."

<Program> DSPL PWRMTR RNG UP

■ Restrictions according to model type and options For MS268x, this command is not available.

## RNG1

Range1

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG1            | _             | _                |

### Function

Sets the power meter measurement range to the lowest level.

For MS8608A, the range value is 0 dBm when the RF Input is High, and -20 dBm when Low (*cf.* RFINPUT).

For MS8609A, the range value is - 20 dBm.

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Setting the power meter measurement range to the lowest level."

<Program> DSPL PWRMTR RNG1

Restrictions according to model type and options

### RNG2

Range2

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG2            | _             | _                |

### Function

Sets the power meter measurement range to the second lowest level.

For MS8608A, the range value is +10 dBm when RF Input is High, and -10 dBm when Low (*cf.* RFIN-PUT).

For ME8609A, the range value is  $\,$  - 10 dBm  $\,$ 

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Setting the power meter measurement range to the second lowest level."

<Program> DSPL PWRMTR RNG2

Restrictions according to model type and options

## RNG3

Range3

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG3            | _             | _                |

### Function

Sets the power meter measurement range to the intermediate level.

For MS8608A, the range value is +20 dBm when the RF Input is High, and 0 dBm when Low (*cf.* RFINPUT).

For MS8609A, the range value is 0 dBm.

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Setting the power meter measurement range to the intermediate level."

<Program> DSPL PWRMTR RNG3

Restrictions according to model type and options

### RNG4

Range4

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG4            | _             | _                |

### Function

Sets the power meter measurement range to the fourth lowest level.

For MS8608A, the range value is +30 dBm when the RF Input is High, and +10 dBm when Low (*cf.* RFINPUT).

For MS8609A, the range value is +10 dBm.

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Setting the power meter measurement range to the fourth lowest level."

<Program> DSPL PWRMTR RNG4

Restrictions according to model type and options

# RNG5

Range5

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG5            | _             | _                |

### Function

The measurement range of the power meter is set at the highest level.

For MS8608A, the range value is +40 dBm when the RF Input in High, and +20 dBm when Low (*cf.* RFINPUT).

For MS8609A, the range value is +20 dBm.

### Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power Meter

### Example of use

"Setting the power meter measurement range to the highest level."

<Program> DSPL PWRMTR RNG5

Restrictions according to model type and options

### S1

### Continuous Measure/Sweep

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| S1              | -             | -                |

### Function

Executes a measurement and sweeping continuously.

Accepts a command even during measurement.

This command functions the same as the CONTS command.

Stops the current measurement and starts with a new measurement when a measurement execution command, such as CONTS command, is received during measurement.

When an operation command not related to the measurement, for an example, the INTPOL command or query message, is received during measurement; the current measurement is continued while responding to the received command.

However, when a measurement-related command is received during measurement, the current measurement is stopped and the command is executed.

### Example of use

"Continuously executes a measurement and sweeping."

<Program> S1

# S2

Single Measure/Sweep

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| S2              | -             | -                |

### Function

Executes a measurement and sweeping once.

Accepts a command even during measurement.

This command functions the same as the SNGLS command.

Stops the current measurement and starts with a new measurement when a measurement execution command, such as SNGLS command, is received for the second time during measurement.

When an operation command not related to the measurement, for example, the INTPOL command or query message, is received during measurement; the current measurement is continued while responding to the command.

However, when a measurement-related command is received during measurement, the current measurement is stopped and command is executed.

### Example of use

"Executes a measurement and sweeping once."

<Program> S2

## SETREL

Set Relative level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SETREL          | _             | _                |

### Function

Sets the power value displayed on the Power Meter screen to the reference value for relative value display.

### Restriction

- Executed screen is as follows. (cf. DSPL)
  - Power Meter

### Example of use

"Setting the currently displayed power value to the reference value for relative value display."

<Program> MEAS PWRMTR SETREL

■ Restrictions according to model type and options For MS268x, this command is not available.

# SLCTTEMP\_ACP

### Standard Template

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| SLCTTEMP_ACP a,b | SLCTTEMP_ACP? | a,b              |

### Function

Set the specified template for standard.

### Value of a and b

Standard and type specifications When Measure Method is set to Normal

| а     | b           | Standard | Туре                           | Set Offset | Set Offset | Set Line          | Set Line  | Remarks |
|-------|-------------|----------|--------------------------------|------------|------------|-------------------|-----------|---------|
| IS95  | FWDREL      | IS-95    | Forward<br>Relative            | 0.750 MHz  | 1.980 MHz  | -45.00 dB         | -60.00 dB |         |
|       | FWDREL<br>2 |          | Forward<br>Relative<br>F<1 MHz | 0.750 MHz  |            | -45.0             |           |         |
|       | FWDREL<br>3 |          | Forward<br>Relative<br>F≥1 MHz | 1.000 MHz  | 1.980 MHz  | -45.00 dB         | -60.00 dB |         |
|       | RVSREL      |          | Reverse<br>Relative            | 0.900 MHz  | 1.980 MHz  | -42.00 dB         | -54.00 dB |         |
|       | RVSABS      |          | Reverse<br>Absolute            | 0.900 MHz  |            | -60.00 dB         |           |         |
| ARIB  | FWDREL      | ARIB     | Forward<br>Relative            | 0.750 MHz  | 1.980 MHz  | -45.00 dB         | -60.00 dB |         |
|       | FWDREL<br>2 |          | Forward<br>Relative<br>F<1 MHz | 0.750 MHz  |            | -45.00 dB         |           |         |
|       | FWDREL<br>3 |          | Forward<br>Relative<br>F≥1 MHz | 1.000 MHz  | 1.980 MHz  | −45.00 dB         | -60.00 dB |         |
|       | RVSREL      |          | Reverse<br>Relative            | 0.900 MHz  | 1.980 MHz  | -42.00 dB         | -54.00 dB |         |
|       | RVSABS      |          | Reverse<br>Absolute            | 0.900 MHz  |            | 00 MHz –60.00 dBm |           |         |
| TELEC | FWDREL      | TELEC    | Forward<br>Relative            | 0.750 MHz  | 1.980 MHz  | -45.00 dB         | -60.00 dB |         |
|       | FWDREL<br>2 |          | Forward<br>Relative<br>F<1 MHz | 0.750 MHz  |            | -45.00 dB         |           |         |

| а     | b           | Standard      | Туре                            | Set Offset               | Set Offset               | Set Line             | Set Line             | Remarks |
|-------|-------------|---------------|---------------------------------|--------------------------|--------------------------|----------------------|----------------------|---------|
| TELEC | FWDREL      | TELEC         | Forward                         | Frequency A<br>1.000 MHz | Frequency B<br>1.980 MHz | Level 1<br>-45.00 dB | Level 2<br>-60.00 dB |         |
|       | 3           |               | Relative<br>F≥1 MHz             |                          |                          |                      |                      |         |
|       | RVSREL      | 1             | Reverse<br>Relative             | 0.900 MHz                | 1.980 MHz                | -42.00 dB            | -54.00 dB            |         |
|       | RVSABS      | 1             | Reverse<br>Absolute             | 0.900                    | MHz                      | -60.0                |                      |         |
| IS95  | FWDREL<br>1 | IS-95         | Forward<br>Relative1            | $0.750 \mathrm{~MHz}$    | 1.980 MHz                | $-45.00~\mathrm{dB}$ | -60.00 dB            |         |
|       | FWDREL<br>4 |               | Forward<br>Relative1<br>F<1 MHz | 0.750 MHz                |                          | -45.0                |                      |         |
|       | FWDREL<br>5 | -             | Forward<br>Relative1<br>F≥1 MHz | 1.000 MHz                | 1.980 MHz                | -45.00 dB            | -60.00 dB            |         |
|       | FWDREL<br>2 |               | Forward<br>Relative2            | 0.750 MHz                | 1.980 MHz                | -45.00 dB            | –55.00 dB            |         |
|       | FWDREL<br>6 |               | Forward<br>Relative2<br>F<1 MHz | 0.750 MHz                |                          | -45.00 dB            |                      |         |
|       | FWDREL<br>7 |               | Forward<br>Relative2<br>F>1 MHz | 1.000 MHz                | 1.980 MHz                | -45.00 dB            | −55.00 dB            |         |
|       | FWDREL<br>3 |               | Forward<br>Relative3            | 0.750 MHz                | 1.980 MHz                | -45.00 dB            | -50.00 dB            |         |
|       | FWDREL<br>8 |               | Forward<br>Relative3<br>F<1 MHz | 0.750 MHz                |                          | -45.0                |                      |         |
|       | FWDREL<br>9 |               | Forward<br>Relative3<br>F≥1 MHz | 1.000 MHz                | 1.980 MHz                | -45.00 dB            | –50.00 dB            |         |
|       | RVSREL1     |               | Reverse<br>Relative1            | 0.885 MHz                | 1.980 MHz                | -42.00 dB            | -54.00 dB            |         |
|       | RVSREL2     |               | Reverse<br>Absolute1            | 1.250 MHz                | 1.980 MHz                |                      | –50.00 dB            |         |
|       | RVSABS1     |               | Reverse<br>Relative2            | 0.885 MHz                |                          | -54.00 dBm           |                      |         |
|       | RVSABS2     |               | Reverse<br>Absolute2            | $1.250~\mathrm{MHz}$     |                          |                      |                      |         |
| JSTD8 | FWDREL      | J-STD-<br>008 | Forward<br>Relative             | 0.885                    | MHz                      | -45.0                |                      |         |
|       | RVSREL      |               | Reverse<br>Relative             | $1.250 \mathrm{~MHz}$    |                          | -54.00 dB            |                      |         |

### How to Read the Detailed Description of Commands

| а     | b       | Standard | Туре                  | Set Offset              | Set Offset           | Set Line        | Set Line             | Remarks |
|-------|---------|----------|-----------------------|-------------------------|----------------------|-----------------|----------------------|---------|
|       |         |          |                       | Frequency A Frequency B |                      | Level 1 Level 2 |                      |         |
| JSTD8 | RVSABS  | J-STD-   | Reverse               | 1.250                   | MHz                  | -60.0           |                      |         |
|       |         | 008      | Absolute              |                         |                      |                 | [                    |         |
| 3GPP2 | FWDTMP  | 3GPP2    | Class                 | $0.750 \mathrm{~MHz}$   | $1980 \mathrm{~MHz}$ | -45.00  dB      | –60.00 dB            |         |
|       | 1       | (Forward | 0,2,3,5,7             |                         |                      |                 |                      |         |
|       |         | Link)    | Power $\geq$          |                         |                      |                 |                      |         |
|       |         |          | 33 dBm                |                         |                      |                 |                      |         |
|       | FWDTMP  |          | Class                 |                         |                      |                 | –27.00 dBm           |         |
|       |         |          | 0,2,3,5,7             |                         |                      |                 |                      |         |
|       |         |          | $28 \text{ dBm} \leq$ |                         |                      |                 |                      |         |
|       |         |          | Power <               |                         |                      |                 |                      |         |
|       |         | -        | 33 dBm                |                         |                      |                 |                      |         |
|       | FWDTMP  |          | Class                 |                         |                      |                 | $-55.00~\mathrm{dB}$ |         |
|       |         |          | 0,2,3,5,7             |                         |                      |                 |                      |         |
|       |         |          | Power <               |                         |                      |                 |                      |         |
|       |         |          | 28 dBm                |                         |                      |                 |                      |         |
|       | FWDTMP  |          | Class 1,4,6           | $0.885~\mathrm{MHz}$    |                      |                 | $-55.00~\mathrm{dB}$ |         |
|       |         |          | $Power \ge$           |                         |                      |                 |                      |         |
|       |         |          | 33 dBm                |                         |                      |                 |                      |         |
|       | FWDTMP  |          | Class 1,4,6           |                         |                      |                 | –22.00 dBm           |         |
|       |         |          | 28 dBm ≤              |                         |                      |                 |                      |         |
|       |         |          | Power <               |                         |                      |                 |                      |         |
|       |         |          | 33 dBm                |                         |                      |                 |                      |         |
|       | FWDTMP  |          | Class 1,4,6           |                         |                      |                 | -50.00 dB            |         |
|       |         |          | Power <               |                         |                      |                 |                      |         |
|       |         |          | 28 dBm                |                         |                      |                 |                      |         |
|       | RVSTMP1 | 3GPP2    | Class                 |                         |                      | -42.00 dB       | –54.00 dB            |         |
|       |         | (Reverse | 0,2,3,5,7             |                         |                      |                 |                      |         |
|       | RVSTMP2 | Link)    | Class 1,4,6           | $1250~\mathrm{MHz}$     |                      | -42.00 dB       | –50.00 dB            |         |
| NOT   | -       | Not Se-  | -                     |                         |                      |                 |                      | Query   |
|       |         | lected   |                       |                         |                      |                 |                      | Only    |

| а     | b            | Stan-<br>dard              | Туре                                             | Set<br>Offset<br>Fre-<br>quency<br>A | Set<br>Offset<br>Fre-<br>quency<br>B | Set<br>Offset<br>Fre-<br>quency<br>C | Set Line<br>Level 1   | Set Line<br>Level 2 | Set Line<br>Level 3 | Re-<br>marks  |
|-------|--------------|----------------------------|--------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|---------------------|---------------------|---------------|
|       | FWDTM<br>P30 |                            | Class<br>0,2,3,5,9<br>Power ≥<br>33dBm           |                                      |                                      |                                      |                       | -60.9               | 00dB                |               |
| 3GPP2 | FWDTM<br>P31 | 3GPP2<br>(Forward<br>Link) | Class<br>0,2,3,5,9<br>28dBm ≤<br>Power<<br>33dBm | 0.750<br>MHz                         | 1.980MHz                             |                                      | 1.980MHz -45.00<br>dB |                     | 0dBm                |               |
|       | FWDTM<br>P32 |                            | Class<br>0,2,3,5,9<br>Power<<br>28dBm            |                                      |                                      |                                      |                       | -55.                | 00dB                |               |
| NOT   |              | -                          | Not<br>Selected                                  |                                      |                                      |                                      | -                     |                     |                     | Query<br>only |

When Measure Method is set to 3GPP2 FWD Band Class 0,2,3,5,9

### How to Read the Detailed Description of Commands

| When Measure Method is set to 3GPP2 FWD Band Class 1,4,6,8 |              |                                |                                                 |                                            |                                            |                                            |                                            |                           |                           |                           |                           |                  |
|------------------------------------------------------------|--------------|--------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------|
| а                                                          | b            | Stan-<br>dard                  | Туре                                            | Set<br>Off-<br>set<br>Fre-<br>quen<br>cy A | Set<br>Off-<br>set<br>Fre-<br>quen<br>cy B | Set<br>Off-<br>set<br>Fre-<br>quen<br>cy C | Set<br>Off-<br>set<br>Fre-<br>quen<br>cy D | Set<br>Line<br>Level<br>1 | Set<br>Line<br>Level<br>2 | Set<br>Line<br>Level<br>3 | Set<br>Line<br>Level<br>4 | Re-<br>mark<br>s |
|                                                            | FWDT<br>MP60 |                                | Class6                                          | 0.885<br>MHz                               | 1.250<br>MHz                               | 1.450<br>MHz                               | 2.250<br>MHz                               | - 45.00<br>dB             | - 13.00<br>dBm            | - 26.60<br>dBm            | - 13.00<br>dBm            |                  |
|                                                            | FWDT<br>MP61 |                                | Class<br>1,4,8<br>Power≥<br>36dBm               |                                            |                                            |                                            |                                            |                           | - 9.00<br>dBm             | - 55.00<br>dB             |                           |                  |
| H<br>3GPP2 <sup>№</sup>                                    | FWDT<br>MP62 | 3GPP2<br>(Forwa<br>rd<br>Link) | Class<br>1,4,8<br>33dBm<br>≤Power<br><<br>36dBm | 0.885                                      | 1.250                                      | 1.980                                      | 2 250                                      | - 45.00                   |                           | - 55.00<br>dB             | - 13.00                   |                  |
|                                                            | FWDT<br>MP63 |                                | Class<br>1,4,8<br>28dBm<br>≤Power<br><<br>33dBm | MHz                                        | MHz                                        | MHz                                        | MHz                                        | dB                        | - 45.00<br>dB             | - 22.00<br>dBm            | dBm                       |                  |
|                                                            | FWDT<br>MP64 |                                | Class<br>1,4,8<br>Power<<br>28dBm               |                                            |                                            |                                            |                                            |                           |                           | - 50.00<br>dB             |                           |                  |
| NOT - Not<br>Selected - C                                  |              |                                |                                                 |                                            |                                            |                                            |                                            |                           | Query<br>only             |                           |                           |                  |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set 3GPP2 Forward Link Band Class0,2,3,5,9 f ≥ 1MHz Power ≥ 33dBm."

<Program> DSPL ACP,NRM SLCTTEMP\_ACP 3GPP2,FWDTMP2 SLCTTEMP\_ACP?

<Response> 3GPP2,FWDTMP2

# SLCTTEMP\_RFPWR

### Select Template for RF Power

| Program Message  | Query Message   | Response Message |  |  |
|------------------|-----------------|------------------|--|--|
| SLCTTEMP_RFPWR a | SLCTTEMP_RFPWR? | a                |  |  |

### Function

Sets the template used on the RF Power screen to the value prescribed by the standard IS-95 or 3GPP2.

#### Value of a

Status of Template

| а     | Status of template                 | Initial value |
|-------|------------------------------------|---------------|
| NOT   | Level value has been changed       |               |
| IS95  | Value prescribed by IS95 standard  | *             |
| 3GPP2 | Value prescribed by 3GPP2 standard |               |

• When the Line Level is changed, the status becomes "NOT," and "NOT" is retained until "SLCTTEMP\_RFPWR STD" is executed.

### Restriction

• Setting is valid only when Wave Type is set to Burst (cf. WAVETYPE).

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Return of template to standard value."

<Program> SLCTTEMP\_RFPWR IS95 SLCTTEMP\_RFPWR?

<Response> IS95
# SMOFLT

Smoothing Filter

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SMOFLT a        | SMOFLT?       | a                |

#### Function

On the RF Power screen, sets whether or not to smoothen the waveform.

#### Value of a

On/Off of smoothing of waveform

| а   | On/Off of smoothing of waveform | Initial value |
|-----|---------------------------------|---------------|
| ON  | Smoothing of waveform           |               |
| OFF | No smoothing of waveform        | *             |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Smooth the waveform."

<Program> DSPL RFPWR SMOFLT ON SMOFLT? SWP

<Response> ON

## **SNGLS**

Single Sweep

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SNGLS           | _             | _                |

#### Function

Performs measurement one time. The subsequent command is processed without waiting for the completion of measurement.

#### Restriction

- Executable screens are as follows (*cf.* DSPL).
  - Modulation Analysis
  - RF Power
  - Occupied Bandwidth
  - Spurious close to the Carrier
  - Spurious Emission
  - IQ Level
  - Power Meter

#### Example of use

"Perform measurement one time."

<Program> SNGLS

# SPUALL

Frequency, Level, RBW, VBW, Sweep Time

| Program Message | Query Message  | Response Message                     |
|-----------------|----------------|--------------------------------------|
| _               | SPUALL? Fa,b,c | d(a),e(a),f(a),g(a),h(a),            |
|                 |                | d(a+1),e(a+1),f(a+1),g(a+1),h(a+1),, |
|                 |                | d(a+b),e(a+b),f(a+b),g(a+b),h(a+b)   |

#### Function

Outputs simultaneously the measurement result of Frequency, Level, RBW, VBW and Sweep Time, on the Spurious Emission screen.

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### ■ Value of c

Output unit

| С    | Unit                                                 |
|------|------------------------------------------------------|
| None | Conforms to unit set by Unit. ( <i>cf.</i> UNIT_SPU) |
| DBM  | dBm                                                  |
| DB   | dB                                                   |

■ Value of d: Frequency measurement result Same as c of SPUFREQ

■ Value of e: Level measurement result Same as d of SPULVL

■ Value of f: RBW

Same as c of SPURBW

■ Value of g: VBW Same as c of SPUVBW

■ Value of h: Sweep Time Same as c of SPUSWT

■ Example of use: "Read out all results of f1 to f2."

<Program> DSPL SPURIOUS,SEARCH SWP SPUALL? F1,2

<Response> 1775300000, -33.97, 1000, 3000, 200000, 2162950000, -37.87, 10000, 30000, 600000

# SPUATT

Attenuator for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | SPUATT? Fa,b  | с                |

#### Function

Outputs Attenuator during measurement at Spurious Emission measurement.

In Spurious Mode of Spot, outputs Attenuator set on Setup Spot Table screen.

In Spurious Mode of Search or Sweep, outputs Attenuator set on Setup Search/Sweep Table screen (*cf.* TBLATT\_SPU).

#### ■ Value of a

Frequency point of readout start

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of frequency points of readout start

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Attenuator

| Resolution | unit |
|------------|------|
| 1          | dB   |

□ Suffix Code None

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Reading out Attenuator from f1 to f3."

<Program> SPUATT? F1,3

<Response> 60, 61 ,62

## SPUFREQ

#### Frequency

| Program Message | Query Message | Response Message  |
|-----------------|---------------|-------------------|
| _               | SPUFREQ? Fa,b | c(a),c(a+1),,c(b) |

#### Function

Outputs the measurement result for Frequency on the Spurious Emission screen.

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

| Result | of | Frequency | Measurement |
|--------|----|-----------|-------------|
|        |    |           |             |

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

#### Restriction

• When the Spurious Mode is Spot, the result of output always matches the Frequency set up on the Setup Spot Table screen (*cf.* DSPL).

#### Example of use

"Read out of frequencies of f1 to f3."

<Program> DSPL SPURIOUS,SPOT SWP SPUFREQ? F1,3

<Response> 1775300000, 2162950000, 2550600000

# SPUFREQLVL

Frequency and Level

| Program Message | Query Message      | Response Message                   |
|-----------------|--------------------|------------------------------------|
| _               | SPUFREQLVL? Fa,b,c | d(a),e(a),d(a+1),e(a+1),,d(b),e(b) |

#### Function

Simultaneously outputs the measurement results of Frequency and Level, on the Spurious Emission screen.

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Level output unit

| С    | Unit                                                 |
|------|------------------------------------------------------|
| None | Conforms to unit set by Unit. ( <i>cf.</i> UNIT_SPU) |
| DBM  | dBm                                                  |
| DB   | dB                                                   |

#### Value of d

Result of Frequency Measurement

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

#### ■ Value of e

Result of Level Measurement

| Resolution | Unit      |
|------------|-----------|
| 0.01       | dB or dBm |

■ Example of use "Read out of Frequency and Level at f1 to f3"

<Program> DSPL SPURIOUS,SPOT SWP SPUFREQLVL? F1,3,DB

<Response> 1775300000, -33.97, 2162950000, -37.87, 2550600000, -68.69

# SPUJDG

**Total Judgment** 

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | SPUJDG?       | a                |

#### Function

Reads out the total result of Level pass/fail judgment by means of the Limit value on the Spurious Emission screen. If the Spurious Mode is Spot, judge with the Limit value set on the Setup Spot Table screen as the reference, and if Search or Sweep, use the Limit value set on the Setup Search / Sweep Table screen.

#### Value of a

Judgment result

| а    | Pass/fail judgment |
|------|--------------------|
| PASS | Pass               |
| FAIL | Fail               |
| OFF  | Unmeasured         |

#### Restriction

- In order to pass, all valid measurements from f1 to f15 must be completed, and the result of judgment of each point must be Pass.
- Fail would result if the judgment result is Fail on any voluntary valid measurement from f1 to f15.

#### Example of use

"Read out of total result of pass/fail judgment."

<Program> DSPL SPURIOUS,SWEEP SWP SPUJDG?

<Response> PASS

## SPULMT

Limit for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SPULMT a,Fb,c   | SPULMT? a,Fb  | с                |

#### Function

Sets the Limit value on the Pass/Fail judgment during Spurious Emission measurement.

#### Value of a

 $Selection \ of \ means \ of \ measurement$ 

| а     | Means of measurement                                                         |
|-------|------------------------------------------------------------------------------|
| SPOT  | The Limit value used in the Spot method measurement is subjected.            |
| SWEEP | The Limit value used in the Search or Sweep method measurement is subjected. |

#### Value of b

Frequency point

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Limit value

| Range             | Resolution | Initial value                                 | Unit |
|-------------------|------------|-----------------------------------------------|------|
| -100.00 to 100.00 | 0.01       | Refer to initial value column of TBLFREQ_SPU. | dBm  |

□ Suffix code None

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Limit value of f1 of Search method measurement to -13.00 dBm."

<Program> SPULMT SWEEP,F1, -13.00 SPULMT? SWEEP,F1

<Response> -13.00

## SPULVL

#### Level

| Program Message | Query Message  | Response Message  |
|-----------------|----------------|-------------------|
| _               | SPULVL? Fa,b,c | d(a),d(a+1),,d(b) |

#### Function

Outputs the result of Level measurement on the Spurious Emission screen.

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Output unit

| с    | Unit                                                 |
|------|------------------------------------------------------|
| None | Conforms to unit set by Unit ( <i>cf.</i> UNIT_SPU). |
| DBM  | dBm                                                  |
| DB   | dB                                                   |

#### Value of d

Result of Level measurement

| Resolution | Unit      |
|------------|-----------|
| 0.01       | dB or dBm |

#### Example of use

"Read out of Levels from f1 to f3."

<Program> DSPL SPURIOUS,SEARCH SWP SPULVL? F1,3,DB

<Response> -33.97, -37.87, -68.69

## **SPUPASS**

#### Judgment

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | SPUPASS? a    | b                |

#### Function

On the Spurious Emission screen, reads out the pass/fail judgment result of Level by means of Limit value. When the Spurious Mode is Spot, the Limit value set on the Setup Spot Table screen is used as the reference for judgment, and when the Search or Sweep, the Limit value set on the Setup Search/Sweep Table screen is used.

#### Value of a

#### Frequency point

| а   | Frequency point                                           |
|-----|-----------------------------------------------------------|
| Fn  | Reads out result of certain frequency point (n: 1-15).    |
| ALL | Reads out the result of all frequency points at one time. |

#### Value of b

Judgment Result

| b    | Pass/Fail Judgment |
|------|--------------------|
| PASS | Pass               |
| FAIL | Fail               |
| OFF  | Unmeasured         |

#### Example of use

"Read out the result of Pass/Fail judgment of f3."

<Program> DSPL SPURIOUS,SWEEP SWP SPUPASS? F3

<Response> PASS

## **SPURBW**

#### RBW

| Program Message | Query Message | Response Message  |
|-----------------|---------------|-------------------|
| _               | SPURBW? Fa,b  | c(a),c(a+1),,c(b) |

#### Function

Outputs the RBW value at the measurement on the Spurious Emission screen.

When the Spurious Mode is Spot, the RBW set on the Setup Spot Table screen is output, and when the Search or Sweep, the RBW set on the Setup Search/Sweep Table screen is output (*cf.* TBLRBW\_SPU).

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

RBW

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

#### Example of use

"Read out of RBW from f1 to f3."

<Program> DSPL SPURIOUS,SEARCH SWP SPURBW? F1,3

<Response> 1000, 10000, 100000

## **SPURL**

Ref Level for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | SPURL? Fa,b   | с                |

#### Function

Outputs Ref Level during measurement at Spurious Emission measurement.

In Spurious Mode of Spot, outputs Ref Level set on Setup Spot Table screen.

In Spurious Mode of Search or Sweep, outputs Ref Level set on Setup Search/Sweep Table screen (*cf.* TBLARL\_SPU).

#### Value of a

Frequency point of readout start

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of frequency points of readout

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Ref Level

| Resolution | Unit |
|------------|------|
| 0.01       | dBm  |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Reading out Ref Level from f1 to f3."

<Program> SPURL? F1,3

<Response> 50.00,51.00,52.00

## SPUSWT

#### Sweep Time

| Program Message | Query Message | Response Message    |
|-----------------|---------------|---------------------|
| _               | SPUSWT? Fa,b  | c(a), c(a+1),, c(b) |

#### Function

Outputs the Sweep Time value at the time of measurement on the Spurious Emission screen. When the Spurious Mode is Spot, the Sweep Time set on the Setup Spot Table screen is output, and when Search or Sweep, the Sweep Time set on the Setup Search/Sweep Table screen is output (*cf.* TBLSWT\_SPU).

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

Sweep Time

| Resolution | Unit |
|------------|------|
| 1          | μs   |

Example of use

"Read out Sweep Time from f1 to f3."

<Program> DSPL SPURIOUS,SEARCH SWP SPUSWT? F1,3

<Response> 200000, 600000, 500000

## **SPUVBW**

VBW

| Program Message | Query Message | Response Message    |
|-----------------|---------------|---------------------|
| _               | SPUVBW? Fa,b  | c(a), c(a+1),, c(b) |

#### Function

Outputs the VBW value at the measurement on the Spurious Emission screen.

When the Spurious Mode is Spot, outputs VBW set on the Setup Spot Table screen, and when Search or Sweep, outputs VBW set on the Setup Search/Sweep Table screen (*cf.* TBLVBW\_SPU).

#### Value of a

Start frequency point for reading out

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of b

Number of readouts

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

VBW

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

#### Example of use

"Read out VBW from f1 to f3."

<Program> DSPL SPURIOUS,SEARCH SWP SPUVBW? F1,3

<Response> 3000, 30000, 300000

# STM\_ACP

Sweep Time: Manual/Auto

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STM_ACP a       | STM_ACP?      | a                |

#### Function

On the Spurious Close to the Carrier screen, sets either manual or automatic operation for the Sweep Time setting.

#### Value of a

Sweep Time setting mode

| а    | Mode                                          | Initial value |
|------|-----------------------------------------------|---------------|
| MAN  | Putting Sweep Time on manual setting mode.    |               |
| AUTO | Putting Sweep Time on automatic setting mode. | *             |

Restriction

- When Sweep Time is changed during Auto, the system compulsorily becomes Manual.
- In the Auto, the value of Sweep Time is automatically set from the values of RBW, VBW and others.
- With the automatic setting where the Slot Type is Idle, the value more than the value from the table below is set, automatically (*cf.* SLOTTYPE).

| Data Points ( <i>cf.</i> DPTS_ACP) | Sweep Time |
|------------------------------------|------------|
| 501                                | 10 s       |
| 1001                               | 20 s       |

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set the Sweep Time to automatic setting mode."

<Program> STM\_ACP AUTO STM\_ACP?

<Response> AUTO

## STM\_OBW

Sweep Time: Manual/Auto

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STM_OBW a       | STM_OBW?      | a                |

#### Function

On the Occupied Bandwidth screen, sets either manual or automatic operation for the Sweep Time setting.

#### Value of a

Sweep Time setting mode

| а    | Mode                                          | Initial value |
|------|-----------------------------------------------|---------------|
| MAN  | Putting Sweep Time on manual setting mode.    |               |
| AUTO | Putting Sweep Time on automatic setting mode. | *             |

Restriction

- When Sweep Time is changed during Auto, the system compulsorily becomes Manual.
- In the Auto, the value of Sweep Time is automatically set from the values of RBW, VBW and others.
- With the automatic setting where the Slot Type is idle, the value more than the value from the table below is set, automatically (*cf.* SLOTTYPE).

| Data Point ( <i>cf.</i> DPTS_OBW) | Sweep Time |
|-----------------------------------|------------|
| 501                               | 10 s       |
| 1001                              | 20 s       |

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set the Sweep Time to automatic setting mode."

<Program> STM\_OBW AUTO STM\_OBW?

<Response> AUTO

# STRG\_ACP

Storage Mode for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_ACP a      | STRG_ACP?     | a                |

#### Function

Sets the display mode on the Spurious Close to the Carrier screen.

#### ■ Value of a

Display mode

| а   | Display mode                                                                                                             | Initial value |
|-----|--------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM | Normal: Performs Normal display (single measurement).                                                                    | *             |
| AVG | Average: Measures by the number of times specified by Average Count, and then displays the average value of the results. |               |

#### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set to the average value display."

<Program> STRG\_ACP AVG STRG\_ACP?

# STRG\_IQL

Storage Mode for IQ Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_IQL a      | STRG_IQL?     | a                |

#### Function

Sets the display mode on the IQ Level screen.

#### Value of a

Display mode

| а   | Display mode                                                                                                                | Initial value |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM | Normal: Performs Normal display (single measurement).                                                                       | *             |
| AVG | Average: Measures by the number of times specified by Average Count,<br>and then displays the average value of the results. |               |

#### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set to the average value display."

<Program> STRG\_IQL AVG STRG\_IQL?

<Response> AVG

Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.

# STRG\_MOD

Storage Mode for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_MOD a      | STRG_MOD?     | a                |

#### Function

Sets the display mode on the Modulation Analysis screen.

#### ■ Value of a

Display mode

| а    | Display mode                                                                                                             | Initial value |
|------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM  | Normal: Normal display (single measurement).                                                                             | *             |
| AVG  | Average: Measures by the number of times specified by Average Count, and then displays the average value of the results. |               |
| OVER | Overwrite: Displays the plotted measurement results to be overwritten successively during continuous measurement.        |               |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use"Set to the average value display."

<Program> STRG\_MOD AVG STRG\_MOD?

# STRG\_OBW

Storage Mode for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_OBW a      | STRG_OBW?     | a                |

#### Function

Sets the mode of display on the Occupied Bandwidth screen.

#### Value of a

Display mode

| а   | Display mode                                                       | Initial value |
|-----|--------------------------------------------------------------------|---------------|
| NRM | Normal: Gives an ordinary display (single measurement).            | *             |
| AVG | Average: Repeats a measurement by the number of times specified by |               |
|     | Average Count, and displays the average value as the result.       |               |

#### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set to average value display."

<Program> STRG\_OBW AVG STRG\_OBW?

# STRG\_RFPWR

Storage Mode for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_RFPWR a    | STRG_RFPWR?   | a                |

#### Function

Sets the display mode on the RF Power screen.

#### ■ Value of a

Display mode

| а    | Display mode                                                                                                             | Initial value |
|------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM  | Normal: Normal display (single measurement).                                                                             | *             |
| AVG  | Average: Measures by the number of times specified by Average Count, and then displays the average value of the results. |               |
| OVER | Overwrite: On the Continuous measurement, overwrites and displays the waveform with a broken line.                       |               |
| CUM  | Cumulative: On the Continuous measurement, overwrites and displays the waveform with points.                             |               |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set to average value display."

<Program> STRG\_RFPWR AVG STRG\_RFPWR?

## SWP

Single Sweep or Sweep Status

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWP             | SWP?          | SWP a            |

#### Function

The "SWP" command performs measurement one time. Processing of the subsequent command must wait until measurement is completed.

The "SWP?" command makes an inquiry about the current measurement status (i.e. measurement completion/measurement in process).

#### Value of a

Measurement status

| а | measurement status     |
|---|------------------------|
| 0 | measurement completion |
| 1 | measurement in process |

#### Restriction

- Executable screens are as follows (*cf.* DSPL).
  - Modulation Analysis
  - RF Power
  - Occupied Bandwidth
  - Spurious close to the Carrier
  - Spurious Emission
  - IQ Level
  - Power Meter

#### Example of use

"Perform measurement once."

<Program> SWP

#### Note

Even if the "SWP?" command is sent immediately after the "SWP" command, processing thereof must wait until measurement is completed, therefore response is always 0.

# SWT\_ACP

Sweep Time for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWT_ACP a       | SWT_ACP?      | b                |

#### Function

Sets the Sweep Time of the Spurious Close to the Carrier measurement.

#### Value of a

Sweep Time

| Range         | Resolution | Initial value | Unit |
|---------------|------------|---------------|------|
| 10 to 1000000 | 1          | 70            | ms   |

#### □ Suffix code

None: ms S: s MS: ms US: µs

#### Value of b

| Sweep Time |      |
|------------|------|
| Resolution | Unit |
| 1          | μs   |

#### Restriction

• Any value may be input within the set range. However, please see the table below for the actually set value.

| Input value  | Set value                                           |  |
|--------------|-----------------------------------------------------|--|
| 10 ms to 1 s | Value in 5 ms resolution (rounded up value)         |  |
| 1 to 1000 s  | Effective 3 digits (4th digit from top is rounded.) |  |

# ■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Sweep Time to 100 ms."

<Program> SWT\_ACP 100MS SWT\_ACP?

<Response> 100000

## SWT\_OBW

Sweep Time for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWT_OBW a       | SWT_OBW?      | b                |

#### Function

Sets Sweep Time of Occupied Bandwidth measurement using a Spectrum Analyzer.

#### Value of a

Sweep Time

| Range         | Resolution | Initial value | Unit |
|---------------|------------|---------------|------|
| 10 to 1000000 | 1          | 120           | ms   |

#### □ Suffix code

None: ms S: s MS: ms US: µs

#### Value of b

Sweep Time

| Resolution | Unit |
|------------|------|
| 1          | μs   |

#### Restriction

• Any value may be input within the set range. However, please see the table below for the actually set value.

| Input value     | Set value                                           |  |
|-----------------|-----------------------------------------------------|--|
| 10  ms to  1  s | Value in 5 ms resolution (rounded up value)         |  |
| 1 to 1000 s     | Effective 3 digits (4th digit from top is rounded.) |  |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Sweep Time to 100 ms."

<Program> SWT\_OBW 100MS SWT\_OBW?

<Response> 100000

*7-192* 

# SYNC\_CDP

Sync Channel Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | SYNC_CDP?     | a                |

#### Function

Outputs the Sync-channel average power as the relative power to all-code channel power.

#### Value of a

Sync Channel Power value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

Example of use

"Reading out the measured results of Sync Channel Power."

<Program> DSPL MODANAL SWP SYNC\_CDP?

<Response> -25.81

## SYS

System Change

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SYS a           | SYS?          | a                |

#### Function

Switches the measurement software in the TX tester mode.

#### Value of a

Storage area for measurement software

| а | Storage Area for Measurement Software |
|---|---------------------------------------|
| 1 | area1 (F1 key)                        |
| 2 | area2 (F2 key)                        |
| 3 | area3 (F3 key)                        |

#### Example of use

"Switches to the software stored in Area 1."

<Program> SYS 1 SYS?

<Response>

1

# TAU

Timing Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | TAU?          | a,b              |

#### Function

Outputs measurement result of Timing Error of Modulation Analysis screen.

#### Value of a

Timing Error of 64 PNchip resolution

| Resolution | Unit      |
|------------|-----------|
| 1          | 64 PNchip |

#### Value of b

Timing Error of less than 64 PNchip resolution

| Resolution | Unit |
|------------|------|
| 0.01       | μs   |

#### Restriction

• Where trigger is other than External, measurement is not performed (*cf.* TRG).

Example of use

"Read out of measurement result of Timing Error."

<Program> DSPL SETCOM TRG EXT DSPL MODANAL SWP TAU?

<Response> 12, 27.5

# TBLATT\_SPU

Attenuator for Spurious Emission

| Program Message   | Query Message    | Response Message |
|-------------------|------------------|------------------|
| TBLATT_SPU a,Fb,c | TBLATT_SPU? a,Fb | с                |

#### Function

Sets attenuator for Spurious Emission measurement.

#### Value of a

Measurement method selection

| а     | Measurement method                                    |  |
|-------|-------------------------------------------------------|--|
| SPOT  | Target attenuator for Spot method measurement         |  |
| SWEEP | Target attenuator for Search/Sweep method measurement |  |

#### Value of b

Frequency point

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

#### Attenuator

| Range    | Resolution | Initial value | Unit | RF Input |
|----------|------------|---------------|------|----------|
| 20 to 82 | 1          | 44            | dB   | High     |
| 0 to 62  | 1          | 24            | dB   | Low      |

#### □ Suffix code

None: dB DB: dB

#### Restriction

• Attenuator setting range depends on Ref Level (cf. TBLRL\_SPU).

## Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set the f10 attenuator of Spot method measurement to 20 dB."  $\,$ 

<Program> TBLATT\_SPU SPOT,F10,20DB TBLATT\_SPU? SPOT,F10

<Response> 20

# TBLATTMD\_SPU

Attenuator Mode: Manual/Auto for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLATTMD_SPU a,b | TBLATTMD_SPU? a | b                |

#### Function

Selects manual or automatic attenuator setting of spectrum analyzer for Spurious Emission screen.

#### Value of a

Selection of measurement method

| а     | Measurement method                                    |  |
|-------|-------------------------------------------------------|--|
| SPOT  | Target attenuator for Spot method measurement         |  |
| SWEEP | Target attenuator for Search/Sweep method measurement |  |

#### Value of b

Attenuator setting mode

| b    | Mode                                    | Initial value |
|------|-----------------------------------------|---------------|
| MAN  | Sets Attenuator setting mode to manual. |               |
| AUTO | Sets Attenuator setting mode to auto.   | *             |

#### Restriction

- When attenuator is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator is set automatically.

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Setting attenuator of Spot method measurement to Auto mode."

<Program> TBLATTMD\_SPU SPOT,AUTO TBLATTMD\_SPU? SPOT

<Response> AUTO

# TBLATTRLMD\_SPU

Attenuator Ref Level Mode: Manual/Auto for Spurious Emission

| Program Message    | Query Message     | Response Message |
|--------------------|-------------------|------------------|
| TBLATTRLMD_SPU a,b | TBLATTRLMD_SPU? a | b                |

#### Function

Selects manual or automatic Attenuator and Ref-Level settings of spectrum analyzer for Spurious Emission screen.

#### Value of a

#### Selection of measurement method

| а     | Measurement method                                    |  |
|-------|-------------------------------------------------------|--|
| SPOT  | Target attenuator for Spot method measurement         |  |
| SWEEP | Target attenuator for Search/Sweep method measurement |  |

#### Value of b

Attenuator and Ref-Level setting mode

| b    | Mode                                                  | Initial value |
|------|-------------------------------------------------------|---------------|
| MAN  | Sets Attenuator and Ref-Level setting mode to manual. |               |
| AUTO | Sets Attenuator and Ref-Level setting mode to auto.   | *             |

#### Restriction

- When attenuator or Ref Level is changed in Auto, the mode becomes Manual, forcibly.
- When Auto, attenuator or Ref Level is set automatically.

## Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Setting attenuator or Ref Level of Spot method measurement to Auto mode."

<Program> TBLATTRLMD\_SPU SPOT,AUTO TBLATTRLMD\_SPU? SPOT

<Response> AUTO

# TBLFREQ\_SPU

Frequency for Spurious Emission

| Program Message           | Query Message            | Response<br>Message | Function                                                        |
|---------------------------|--------------------------|---------------------|-----------------------------------------------------------------|
| TBLFREQ_SPU<br>SPOT,Fa,b  | TBLFREQ_SPU?<br>SPOT,Fa  | b                   | Sets the frequency of Spot method measurement.                  |
| TBLFREQ_SPU<br>SPOT,HRM   | _                        | _                   | Sets the frequency of Spot method measurement to Harmonics.     |
| TBLFREQ_SPU<br>START,Fa,c | TBLFREQ_SPU?<br>START,Fa | с                   | Sets the sweep starting frequency of<br>Search or Sweep method. |
| TBLFREQ_SPU<br>STOP,Fa,d  | TBLFREQ_SPU?<br>STOP,Fa  | d                   | Sets the sweep ending frequency of<br>Search or Sweep method.   |

#### Function

Sets frequency of Spurious Emission Measurement.

Harmonics is a function that automatically sets the nth (n:2,3,4...) frequency of carrier frequency until the frequency reaches the maximum value. See Spurious Mode for the means of measurement.

#### Value of a

Frequency point

| Range   | Resolution |  |  |  |
|---------|------------|--|--|--|
| 1 to 15 | 1          |  |  |  |

#### Value of b

Frequency (Spot)

| Range   | Resolution | Initial value | Unit |  |
|---------|------------|---------------|------|--|
| Note 1: | 1          | Note 2:       | Hz   |  |

• Note 1: Same as FREQ. However, the maximum value is not affected by Pre Ampl.

• Note 2: Respective of the initial value of FREQ, the same value as in the case of Harmonics operation. For details please see the column of initial values.

• If the Frequency is set to 0 Hz, it becomes not-set state.

#### $\Box$ Suffix code

None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### Value of c

Start Frequency (Search/Sweep)

| Range   | Resolution | Initial value                 | Unit |  |
|---------|------------|-------------------------------|------|--|
| Note 3: | 1          | See the initial value column. | Hz   |  |

• Note 3: The lower limit is 1 kHz, and upper limit is (upper limit of FREQ -1 kHz). The upper limit is not affected by the Pre Ampl.

• If the Stop Frequency < (Start Frequency +1 kHz), the Stop Frequency is automatically changed to (Start Frequency + 1 kHz). So, the frequency sweep span always becomes 1 kHz or more.

• If the Start Frequency is set to 0 Hz, it becomes not-set state.

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### Value of d

Stop Frequency (Search/Sweep)

| Range   | Resolution | Initial value                 | Unit |
|---------|------------|-------------------------------|------|
| Note 4: | 1          | See the initial value column. | Hz   |

• Note 4: The same as FREQ, the lower limit is 2 kHz. The upper limit is not affected by the Pre Ampl.

• If the Start Frequency > (Stop Frequency -1 kHz), the Start Frequency is automatically changed to (Stop Frequency -1 kHz). So, the frequency sweep span always becomes 1 kHz or more.

• If the Stop Frequency is set to 0 Hz, it becomes not-set state.

#### □ Suffix code

None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

■ Initialization of setting PRE, INI, IP, \*RST

#### Example of use

"Set the f1 sweep interval of Search method measurement from 846 to 860 MHz."

## <Program>

TBLFREQ\_SPU START,F1,846MHZ TBLFREQ\_SPU STOP,F1,860MHZ TBLFREQ\_SPU? START,F1 TBLFREQ\_SPU? STOP,F1

<Response> 846000000 860000000

#### Initial value

The initial values of each parameter are as follows. "---" indicates not-set status.

|     | Frequency                     | RBW              | VBW              | SWT    | Ref Level | ATT     | Limit    |
|-----|-------------------------------|------------------|------------------|--------|-----------|---------|----------|
| f1  | $1775.300000 { m MHz}$        | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms | cf.       | cf.     | 0.00 dBm |
| f2  | $2662.950000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms | TBLRL_S   | TBLATT_ | 0.00 dBm |
| f3  | $3550.600000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms | 10        | 510     | 0.00 dBm |
| f4  | $4438.250000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f5  | $5532.590000 \; \mathrm{MHz}$ | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f6  | $6213.550000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f7  | $7101.200000 \ \mathrm{MHz}$  | $1 \mathrm{MHz}$ | $1 \mathrm{MHz}$ | 20  ms |           |         | 0.00 dBm |
| f8  | $7988.850000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f9  | $8876.500000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f10 | $9764.150000~\mathrm{MHz}$    | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f11 | 10651.800000  MHz             | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f12 | $11539.450000 \mathrm{~MHz}$  | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f13 | 12427.100000 MHz              | $1 \mathrm{MHz}$ | 1 MHz            | 20  ms |           |         | 0.00 dBm |
| f14 | MHz                           | Hz               | Hz               | ms     |           |         | 0.00 dBm |
| f15 | MHz                           | Hz               | Hz               | ms     |           |         | 0.00 dBm |

For Spot of Spurious mode
| For Search/Sweep of Spurious mode |                 |                |     |     |     |           |     |       |
|-----------------------------------|-----------------|----------------|-----|-----|-----|-----------|-----|-------|
|                                   | Start Frequency | Stop Frequency | RBW | VBW | SWT | Ref Level | ATT | Limit |
| f1                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f2                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f3                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f4                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f5                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f6                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f7                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f8                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f9                                | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f10                               | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f11                               | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f12                               | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f13                               | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f14                               | ····· MHz       | ····· MHz      | Hz  | Hz  | ms  | dBm       | dB  | dBm   |
| f15                               | MHz             | MHz            | Hz  | Hz  | ms  | dBm       | dB  | dBm   |

How to Read the Detailed Description of Commands

# TBLRBW\_SPU

**RBW for Spurious Emission** 

| Program Message   | Query Message    | Response Message |
|-------------------|------------------|------------------|
| TBLRBW_SPU a,Fb,c | TBLRBW_SPU? a,Fb | с                |

### Function

Sets RBW of the Spurious Emission measurement.

#### Value of a

Selection of measurement method

| а     | Measurement method                                           |
|-------|--------------------------------------------------------------|
| SPOT  | RBW used in Spot method measurement is subjected.            |
| SWEEP | RBW used in Search or Sweep method measurement is subjected. |

### Value of b

Frequency points

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

## RBW

| Range           | Resolution | Initial value | Unit | Remarks               |
|-----------------|------------|---------------|------|-----------------------|
| 10 to 1000000   | 1          | 1000000       | Hz   | For RBW Mode: Digital |
| 300 to 20000000 | 1          | 1000000       | Hz   | For RBW Mode: Analog  |

#### □ Suffix code

None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

■ Initialization of setting PRE, INI, IP, \*RST ■ Example of use "Set the f2 RBW of Search method Measurement to 30 kHz."

<Program> TBLRBW\_SPU SWEEP,F2,30KHZ TBLRBW\_SPU? SWEEP,F2

<Response> 30000

## TBLRBWMD\_SPU

RBW: Manual/Auto for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLRBWMD_SPU a,b | TBLRBWMD_SPU? a | b                |

#### Function

Sets either the manual or automatic operation of the RBW setting of the Spurious Emission screen.

#### Value of a

Selection of measurement method

| а     | Measurement method                                      |
|-------|---------------------------------------------------------|
| SPOT  | RBW of Spot method measurement is subjected.            |
| SWEEP | RBW of Search or Sweep method measurement is subjected. |

#### Value of b

RBW setting mode

| b    | Mode                                | Initial value |
|------|-------------------------------------|---------------|
| MAN  | Sets RBW to manual setting mode.    |               |
| AUTO | Sets RBW to automatic setting mode. | *             |

## Restriction

- When RBW is changed during Auto, the system compulsorily goes to Manual.
- In the Auto, the value of RBW is automatically set from the frequency value, as shown in the table below.

| Frequency                                         | RBW     |
|---------------------------------------------------|---------|
| $9 \text{ kHz} \le \text{f} \le 150 \text{ kHz}$  | 1 kHz   |
| $150 \text{ kHz} \le \text{f} \le 30 \text{ MHz}$ | 10 kHz  |
| $30 \text{ MHz} \le f < 1 \text{ GHz}$            | 100 kHz |
| $1 \text{ GHz} \leq f$                            | 1 MHz   |

■ Initialization of setting PRE, INI, IP, \*RST

#### Example of use

"Set RBW of Spot method measurement to automatic setting mode."

<Program> TBLRBWMD\_SPU SPOT,AUTO TBLRBWMD\_SPU? SPOT

<Response> AUTO

*7-206* 

# TBLRBWTP\_SPU

RBW Mode: Digital/Normal for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLRBWTP_SPU a,b | TBLRBWTP_SPU? a | b                |

## Function

Sets to or not to digital filter Sweeping mode for Spurious Emission measurement.

## Value of a

Selection of measurement method

| а     | Measurement method                                                    |
|-------|-----------------------------------------------------------------------|
| SPOT  | The Sweeping mode of Spot method measurement is subjected.            |
| SWEEP | The Sweeping mode of Search or Sweep method measurement is subjected. |

## Value of b

Sweeping Mode

| b    | Sweeping Mode                                   | Initial value |
|------|-------------------------------------------------|---------------|
| DGTL | Sets to digital filter Sweeping Mode (Digital). |               |
| NRM  | Sets to ordinary Sweeping Mode (Normal).        | *             |

## Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Setting Sweep method measurement to digital filter Sweeping mode."

<Program> TBLRBWTP\_SPU SWEEP,DGTL TBLRBWTP\_SPU? SWEEP

<Response> DGTL

■ Note

This function is an option

## TBLRL\_SPU

Ref Level for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLRL_SPU a,Fb,c | TBLRL_SPU? a,Fb | с                |

### Function

Sets Ref Level for Spurious Emission measurement.

#### Value of a

Selection of measurement method

| а     | Measurement method                                    |
|-------|-------------------------------------------------------|
| SPOT  | Target attenuator for Spot method measurement         |
| SWEEP | Target attenuator for Search/Sweep method measurement |

#### Value of b

Frequency point

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

## Value of c

#### Ref Level

| Range                 | Resolution | Initial value | Unit | RF Input |
|-----------------------|------------|---------------|------|----------|
| Refer to Restriction. | 0.01       | 14.00         | dBm  | High     |
| Refer to Restriction. | 0.01       | - 6.00        | dBm  | Low      |

## □ Suffix code

None: dBm DBM: dBm

#### Restriction

• Ref Level setting range depends on RF Input: High/Low (*cf.* RFINPUT) and Pre Ampl: On/Off (*cf.* PREAMP), as follows. For RefLevelOffset, refer to RFLVLOFS.

|                  |              | RF Input                    |                                      |
|------------------|--------------|-----------------------------|--------------------------------------|
|                  |              | High                        | Low                                  |
| Attenuator Mode: | Pre Ampl:On  | (-120.00 + RefLevelOffset)  | (-140.00 + RefLevelOffset)           |
| Auto             |              | to (30.00 + RefLevelOffset) | to (20.00 + RefLevelOffset)          |
|                  | Pre Ampl:Off | (-100.00 + RefLevelOffset)  | (-120.00 + RefLevelOffset)           |
|                  |              | to (50.00 + RefLevelOffset) | to $(40.00 + \text{RefLevelOffset})$ |

• If the reference level will become out of range due to RF Input or Pre Ampl. change, it is rounded to the nearest value within range.

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set the f10 Ref Level of Spot method measurement to - 30dBm."

<Program> TBLRL\_SPU SPOT,F10,·30DBM TBLRL\_SPU? SPOT,F10

<Response>

- 30.00

## TBLSWT\_SPU

Sweep Time for Spurious Emission

| Program Message   | Query Message    | Response Message |
|-------------------|------------------|------------------|
| TBLSWT_SPU a,Fb,c | TBLSWT_SPU? a,Fb | с                |

#### Function

Sets Sweep Time of the Spurious Emission measurement.

#### Value of a

Selection of measurement method

| а     | Measurement method                                                      |
|-------|-------------------------------------------------------------------------|
| SPOT  | The Sweep Time used in Spot method measurement is subjected.            |
| SWEEP | The Sweep Time used in Search or Sweep method measurement is subjected. |

### Value of b

**Frequency Points** 

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

## Value of c

Sweep Time

| Resolution | Unit |
|------------|------|
| 1          | μs   |

#### □ Suffix code

None: ms S: s MS: ms US: µs

#### Restriction

• Any value may be input within the setting range. However, see the table below for the actually set values. See the initial value column of TBLFREQ\_SPU for the initial value.

| Input value  | Set value                                           |
|--------------|-----------------------------------------------------|
| 10 ms to 1 s | Value in 5 ms resolution (rounded up value)         |
| 1 to 1000 s  | Effective 3 digits (4th digit from top is rounded.) |

■ Initialization of setting PRE, INI, IP, \*RST

## 7-210

■ Example of use "Setting f3 Sweep Time of Search method measurement to 100 msec."

<Program> TBLSWT\_SPU SWEEP,F3,100MS TBLSWT\_SPU? SWEEP,F3

<Response> 100000

## TBLSWTMD\_SPU

Sweep Time: Manual/Auto for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLSWTMD_SPU a,b | TBLSWTMD_SPU? a | b                |

#### Function

On the Spurious Emission Screen, sets either the manual or automatic operation of Sweep Time setting.

#### Value of a

Selection of measurement method

| а     | Measurement method                                                 |
|-------|--------------------------------------------------------------------|
| SPOT  | The Sweep Time of Spot method measurement is subjected.            |
| SWEEP | The Sweep Time of Search or Sweep method measurement is subjected. |

## Value of b

Sweep Time setting mode

| b    | Mode                                       | Initial value |
|------|--------------------------------------------|---------------|
| MAN  | Sets Sweep Time to Manual setting mode.    |               |
| AUTO | Sets Sweep Time to Automatic setting mode. | *             |

#### Restriction

- When Sweep Time is changed during Auto, the system compulsorily becomes Manual.
- In the Auto, Sweep Time has the following value.

|             |              | Wave Type ( <i>cf</i> . WAVETYPE)    |                                     |  |
|-------------|--------------|--------------------------------------|-------------------------------------|--|
|             |              | Burst Continuous                     |                                     |  |
| Measurement | Spot         | 20 ms (Note 1)                       | 10 ms (Note 1)                      |  |
| method      | Search Sweep | Automatic setting at more than 10 s. | Automatic setting at more than 5 s. |  |

Note 1: When the RBW Mode is Digital, the value is the larger of this value hereof or the smallest value of Table below.

#### Initialization of setting

PRE, INI, IP, \*RST

|                     | Sweep Time (in ms unit) |                    |  |
|---------------------|-------------------------|--------------------|--|
| RDVV                | Minimum value           | Setting resolution |  |
| 10 Hz               | 50                      | 50                 |  |
| 30 Hz               | 50                      | 50                 |  |
| $100 \ \mathrm{Hz}$ | 50                      | 50                 |  |
| $300 \ Hz$          | 10                      | 10                 |  |
| 1 kHz               | 10                      | 10                 |  |
| $3 \mathrm{kHz}$    | 10                      | 5                  |  |
| $10 \mathrm{kHz}$   | 10                      | 5                  |  |
| $30 \mathrm{kHz}$   | 10                      | 5                  |  |
| 100  kHz            | 10                      | 5                  |  |
| 300 kHz             | 10                      | 5                  |  |
| 1 MHz               | 10                      | 5                  |  |

Minimum value and setting resolution in RBW Mode: Digital For 501 Data Points For 1001 Data Points

|                     | Sweep Time (in ms unit) |                    |  |
|---------------------|-------------------------|--------------------|--|
| NDW                 | Minimum value           | Setting resolution |  |
| $10~\mathrm{Hz}$    | 100                     | 100                |  |
| 30 Hz               | 100                     | 100                |  |
| 100 Hz              | 100                     | 100                |  |
| 300  Hz             | 20                      | 20                 |  |
| $1 \mathrm{kHz}$    | 20                      | 20                 |  |
| $3  \mathrm{kHz}$   | 10                      | 10                 |  |
| $10 \mathrm{kHz}$   | 10                      | 5                  |  |
| $30 \mathrm{kHz}$   | 10                      | 5                  |  |
| $100 \mathrm{~kHz}$ | 10                      | 5                  |  |
| 300 kHz             | 10                      | 5                  |  |
| 1 MHz               | 10                      | 5                  |  |

## Example of use

"Setting Sweep Time of Spot method measurement to Manual setting mode."

<Program> TBLSWTMD\_SPU SPOT,MAN TBLSWTMD\_SPU? SPOT

<Response> MAN

# TBLVBW\_SPU

VBW for Spurious Emission

| Program Message   | Query Message    | Response Message |
|-------------------|------------------|------------------|
| TBLVBW_SPU a,Fb,c | TBLVBW_SPU? a,Fb | с                |

#### Function

Sets the VBW of Spurious Emission measurement.

#### Value of a

Selection of measurement method

| а     | Measurement method                                               |
|-------|------------------------------------------------------------------|
| SPOT  | The VBW used in Spot method measurement is subjected.            |
| SWEEP | The VBW used in Search or Sweep method measurement is subjected. |

## Value of b

Frequency point

| Range   | Resolution |
|---------|------------|
| 1 to 15 | 1          |

#### Value of c

VBW

| Range                                         | Resolution | Initial value           | Unit |
|-----------------------------------------------|------------|-------------------------|------|
| 0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000, | 1          | See TBLFREQ_SPU initial | Hz   |
| 30000, 100000, 300000, 1000000, 3000000       |            | value column.           |      |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set f2 VBW of Search method measurement to 30 kHz."

<Program> TBLVBW\_SPU SWEEP,F2,30KHZ TBLVBW\_SPU? SWEEP,F2

<Response> 30000

7-214

## TBLVBWMD\_SPU

VBW: Manual/Auto for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLVBWMD_SPU a,b | TBLVBWMD_SPU? a | b                |

## Function

On the Spurious Emission screen, sets manual or automatic setting for VBW setting.

## Value of a

Selection of measurement method

| а     | Measurement method                                         |
|-------|------------------------------------------------------------|
| SPOT  | The VBW of Spot method measurement is subjected            |
| SWEEP | The VBW of Search or Sweep method measurement is subjected |

## Value of b

VBW setting mode

| b    | Mode                                | Initial value |
|------|-------------------------------------|---------------|
| MAN  | Sets VBW to manual setting mode.    |               |
| AUTO | Sets VBW to automatic setting mode. | *             |

■ Initialization of setting

PRE, INI, IP, \*RST

Restriction

- When VBW is changed during Auto, the system compulsorily changes to Manual.
- In the Auto, VBW value is set automatically from the RBW value and the VBW/RBW Ratio value.

## Example of use

"Set VBW of Spot method measurement to automatic setting mode."

<Program> TBLVBWMD\_SPU SPOT,AUTO TBLVBWMD\_SPU? SPOT

<Response> AUTO

## TBLVBWRT\_SPU

VBW/RBW Ratio for Spurious Emission

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLVBWRT_SPU a,b | TBLVBWRT_SPU? a | b                |

#### Function

Sets VBW and RBW ratio used in VBW automatic setting on the Spurious Emission screen.

#### Value of a

Selection of measurement method

| а     | Measurement method                                      |
|-------|---------------------------------------------------------|
| SPOT  | VBW of Spot method measurement is subjected.            |
| SWEEP | VBW of Search or Sweep method measurement is subjected. |

#### Value of b

**VBW/RBW** Ratio

| Range         | Resolution | Initial value |
|---------------|------------|---------------|
| 0.0001 to 100 | 0.0001     | 1             |

#### Restriction

• Any value may be input within setting range. However, actually set values are as shown in Table below.

| Setting value |        |       |       |      |      |     |     |   |   |    |    |     |
|---------------|--------|-------|-------|------|------|-----|-----|---|---|----|----|-----|
| 0.0001        | 0.0003 | 0.001 | 0.003 | 0.01 | 0.03 | 0.1 | 0.3 | 1 | 3 | 10 | 30 | 100 |

#### Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Set the Search method measurement VBW/RBW Ratio to 3."  $\,$ 

<Program> TBLVBWRT\_SPU SWEEP,3 TBLVBWRT\_SPU? SWEEP

<Response>
3

# TBLVIEW\_SPU

## View for Setup Search/Sweep Table

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TBLVIEW_SPU a,b | TBLVIEW_SPU?  | b                |

## Function

On the Setup Search/Sweep Table screen, selects whether to display RBW/VBW/SWT, Ref-Level/ATT, or Limit on the right side of the screen.

#### Value of a

#### Selection of measurement method

| а     | Measurement method                                      |
|-------|---------------------------------------------------------|
| SPOT  | VBW of Spot method measurement is subjected.            |
| SWEEP | VBW of Search or Sweep method measurement is subjected. |

## Value of b

## Display items

| b      | Display items                                                                                                         | Initial value |
|--------|-----------------------------------------------------------------------------------------------------------------------|---------------|
| None   | Displays RBW, VBW, SWT $\rightarrow$ Ref Level, ATT $\rightarrow$ Limit $\rightarrow$ RBW, VBW, SWT in this sequence. |               |
| BWSWT  | Displays RBW, VBW, and SWT.                                                                                           | *             |
| REFATT | Displays Ref Level and ATT.                                                                                           |               |
| LMT    | Displays Limit.                                                                                                       |               |

## Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Displays Limit."

<Program> DSPL SETTBL\_SPU,SWEEP TBLVIEW\_SPU SWEEP,LMT TBLVIEW\_SPU?

<Response> LMT

## TELECFWD\_SPU

TELEC standard (Forward Link)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TELECFWD_SPU a  | _             | _                |

#### Function

Sets the Forward Link setting specification to TELEC standard spurious measurement.

#### Value of a

Specification selection

| а | Selected Specification | Band                                | Maximum level | RBW                |
|---|------------------------|-------------------------------------|---------------|--------------------|
| 0 | In Band 1 Relative     | $810$ to $885~\mathrm{MHz}$         | -60 dB        | 30 kHz             |
| 1 | In Band 2 Absolute     | 810 to 832 MHz                      | –16 dBm       | 30 kHz             |
|   |                        | 834 to 838 MHz                      |               |                    |
|   |                        | $846$ to $860 \mathrm{~MHz}$        |               |                    |
|   |                        | $870$ to $885~\mathrm{MHz}$         |               |                    |
| 2 | Out Band 3 Absolute    | 10 to 30 MHz                        | −16 dBm       | $10 \mathrm{kHz}$  |
|   |                        | 30 to 810 MHz                       |               | $100 \mathrm{kHz}$ |
|   |                        | $885 \ {\rm to} \ 1000 \ {\rm MHz}$ |               | $100 \mathrm{kHz}$ |
|   |                        | 1000 to 3000 MHz                    |               | $1 \mathrm{MHz}$   |
| 3 | Out Band 4 Relative    | 10 to 30 MHz                        | -60 dB        | $10 \mathrm{kHz}$  |
|   |                        | 30 to 810 MHz                       |               | $100 \mathrm{kHz}$ |
|   |                        | 885 to 1000 MHz                     |               | 100 kHz            |
|   |                        | 1000 to 3000 MHz                    |               | $1 \mathrm{MHz}$   |
| 4 | Out Band 5 Absolute    | 10 to 30 MHz                        | 13 dBm        | $10 \mathrm{kHz}$  |
|   |                        | 30 to 810 MHz                       |               | 100 kHz            |
|   |                        | 885 to 1000 MHz                     |               | 100 kHz            |
|   |                        | 1000 to 3000 MHz                    |               | 1 MHz              |

#### Execution of use

"Setting In Band 1 Relative."

<Program> TELECFWD\_SPU 0

# TELECRVS\_SPU

TELEC standard (Reverse Link)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TELECRVS_SPU a  | _             | _                |

## Function

Sets the Reverse Link setting specification to TELEC standard spurious measurement.

## ■ Value of a

Specification selection

| а | Selected Specification | Band                         | Maximum level | RBW                |
|---|------------------------|------------------------------|---------------|--------------------|
| 0 | In Band 1 Relative     | 893 to 901 MHz               | -54 dB        | 30 kHz             |
|   |                        | $915$ to $925~\mathrm{MHz}$  |               |                    |
| 1 | In Band 2 Absolute     | 885 to 887 MHz               | –16 dBm       | 30 kHz             |
|   |                        | 889 to 893 MHz               |               |                    |
|   |                        | 901 to 915 MHz               |               |                    |
|   |                        | 925 to 958 MHz               |               |                    |
| 2 | Out Band 3 Absolute    | 10 to 30 MHz                 | –16 dBm       | 10 kHz             |
|   |                        | 30 to $885$ MHz              |               | $100 \mathrm{kHz}$ |
|   |                        | $955$ to $1000~\mathrm{MHz}$ |               | $100 \mathrm{kHz}$ |
|   |                        | 1000 to 3000 MHz             |               | 1 MHz              |

#### Execution of use

"Setting In Band 1 Relative."

<Program> TELECRVS\_SPU 0

## TEMPFREQ\_ACP

Offset Frequency for Spurious Template

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TEMPFREQ_ACP a,b | TEMPFREQ_ACP? a | b                |

## Function

Sets offset frequency for template lines (Offset Frequencies a, b, c and d in the following diagram) on the Setup Spurious Template screen.



#### Value of a

Selection of template line subjected to operation

| а | Selection of template line subjected to operation |
|---|---------------------------------------------------|
| А | Offset Frequency-a is subjected.                  |
| В | Offset Frequency-b is subjected.                  |
| С | Offset Frequency-c is subjected.                  |
| D | Offset Frequency-d is subjected.                  |

## Value of b

Offset frequency

| Range Resolution |      | Unit |
|------------------|------|------|
| 0 to (Span/2)    | 1000 | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

- Restriction
- Offset Frequency is set to Frequency-a  $\leq$  Frequency-b  $\leq$  Frequency-c  $\leq$  Frequency-d all the time.
- No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Offset Frequency-a to 1 MHz."

<Program> TEMPFREQ\_ACP A,1MHZ TEMPFREQ\_ACP? A

<Response> 1000000

## TEMPLVL\_ACP

Level Modify for Spurious Template

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| TEMPLVL_ACP a,b | TEMPLVL_ACP? a | b                |

#### Function

Sets levels of template lines (Line Levels 1, 2, 3 and 4 in the following diagram) on the Setup Spurious Template screen.



#### Value of a

Selection for level of template line

| а | Selection for level of template line |
|---|--------------------------------------|
| 1 | Line Level 1 is subjected            |
| 2 | Line Level 2 is subjected            |
| 3 | Line Level 3 is subjected            |
| 4 | Line Level 4 is subjected            |

## Value of b

Level value based on Tx Power as reference

| Range         | Resolution | Unit      |
|---------------|------------|-----------|
| -100.0 to 0.0 | 0.1        | dB or dBm |

- Restriction
- The display unit is dB and dBm at Line level: Relative and Absolute, respectively. When the Line level is changed between Relative and Absolute; the display unit is changed, but the actual data is not changed. (*cf.* LVLREL\_ACP)
- No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set Line Level 1 to -49.5 dB."

<Program> TEMPLVL\_ACP 1, -49.5 TEMPLVL\_ACP? 1

<Response> -49.5

## TEMPLVL\_RFPWR

Level Modify for RF Power Template

| Program Message   | Query Message    | Response Message |
|-------------------|------------------|------------------|
| TEMPLVL_RFPWR a,b | TEMPLVL_RFPWR? a | b                |

## Function

Sets levels of template lines (Line Levels 1 and 2 in the following diagram) on the Setup Template screen.



## Value of a

Selection for level of template line

| а | Selection for level of template line |
|---|--------------------------------------|
| 1 | Line Level 1 is subjected            |
| 2 | Line Level 2 is subjected            |

## Value of b

Level value based on Tx Power as reference

| Range         | Resolution | Unit |
|---------------|------------|------|
| -90.0 to 10.0 | 0.1        | dB   |

□ Suffix code None: dB

DB: dB

## □ Initial value (Standard)

| Level of template line | Initial value (Standard) |
|------------------------|--------------------------|
| Line Level 1           | –20.0 dB                 |
| Line Level 2           | -3.0 dB                  |

## Restriction

• No setting is allowed when Wave Type is Continuous (*cf.* WAVETYPE).

## Initialization of setting

PRE, INI, IP, \*RST

■ Example of use "Set Line Level 1 to -49.5 dB."

<Program> TEMPLVL\_RFPWR 1, -49.5 TEMPLVL\_RFPWR? 1

<Response> -49.5

## TEMPPASS\_ACP

### **Template Pass**

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | TEMPPASS_ACP? | a                |

#### Function

Reads out the pass/fail evaluation result for measurement waveform by Template on the Spurious close to the Carrier screen. Evaluation criteria is as follows: it passes if it is within Template at all the points, and fails if it misses Template even at 1 point.

#### Value of a

**Evaluation** result

| а    | Pass/fail evaluation |
|------|----------------------|
| PASS | Pass: Pass           |
| FAIL | Fail: Fail           |
| OFF  | Off: Not judged.     |

#### Restriction

• When integral waveform is displayed, reads out the pass/fail evaluation result for integration measurement waveform by Template.

#### Example of use

"Read out the pass/fail evaluation result for Spurious close to the Carrier measurement waveform."

<Program> DSPL ACP SWP TEMPPASS\_ACP?

<Response> PASS

## TEMPPASS\_RFPWR

**Template Pass** 

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| – TEMPPASS_RFPWR? |               | a                |

## Function

Reads out the pass/fail evaluation result for measurement waveform by Template on the RF Power screen.

Evaluation criteria follows: it passes; if it is within Template at all the points, and fails if it misses Template even at 1 point.

## Value of a

Pass/fail evaluation

| а    | Pass and fail judgment |  |
|------|------------------------|--|
| PASS | Pass: Passed           |  |
| FAIL | Fail: Not passed       |  |
| OFF  | Off: Not judged.       |  |

## Restriction

• Evaluation is performed only when Wave Type (*cf.* WAVETYPE) is Burst and Relative Level (*cf.* LVLRFPWR) is On (Relative).

## Example of use

"Read out the pass/fail evaluation result for RF Power measurement waveform."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST DSPL RFPWR LVLREL\_RFPWR ON SWP TEMPPASS\_RFPWR?

<Response> PASS

## TERM

Terminal

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TERM a          | TERM?         | a                |

#### Function

Sets connector for input signal to be measured.

#### Value of a

Connector for input signal to be measured

| а     | Meaning            | Initial value |
|-------|--------------------|---------------|
| RF    | Set to RF.         | *             |
| IQDC  | Set to IQ-DC.      |               |
| IQAC  | Set to IQ-AC.      |               |
| IQBAL | Set to IQ-Balance. |               |

#### Restriction

- Measurement screen must be set to Setup Common Parameter (cf. DSPL).
- Following restrictions are applied depending on validity/invalidity of IQ Balance and IQ Unbalance options.
  - When IQ Balance option is valid, all items can be selected regardless of validity/invalidity of IQ Unbalance option.
  - When IQ Unbalance option is valid, IQ Balance cannot be selected.
  - When both IQ Balance and IQ Unbalance options are invalid, no items except RF can be selected.

■ Initialization of setting PRE, INI, IP, \*RST

Example of use "Setting the input signal to IQ-DC."

<Program> DSPL SETCOM TERM IQDC TERM?

<Response> IQDC

- Restrictions according to model type and options
- For MS268x, IQ input is Option.
- For MS2687A/B, IQ-Balance can not be installed.

## THRESH\_MOD

Threshold Level for Modulation Analysis

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| THRESH_MOD a    | THRESH_MOD?   | a                |

## Function

Sets the Threshold Level to discriminate the active channel for modulation analysis.

#### Value of a

Threshold level

| Measuring Object | Max Walsh Length | Range          | Resolution | Initial value | Unit |
|------------------|------------------|----------------|------------|---------------|------|
| Forward (RC1-2)  | _                | -50.0 to -10.0 | 0.1        | -27.0         | dB   |
| Forward (RC3-5)  | 64               |                |            |               |      |
|                  | 128              |                |            | -30.0         |      |
| Reverse (RC3-4)  | -                |                |            | -23.0         |      |

#### Restriction

• Valid only when the Measuring Object is set to Forward (RC1-2), Forward (RC3-5) and Reverse (RC3-4) (*cf.* MEASOBJ)

Initialization of setting

PRE, INI, IP, \*RST

#### Example of use

"Setting the Threshold Level for Measuring Object: Reverse (RC1-2) to  $-20.0~\mathrm{dB}$ "

<Program> MEASOBJ REVERSE THRESH\_MOD -20.0 THRESH\_MOD?

<Response> -20.0

## TRFORM

Trace Format

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRFORM a        | TRFORM?       | a                |

## Function

Sets waveform display format on the Modulation Analysis screen.

## Value of a

Waveform Format

| а       | Waveform Format                                                       | Initial Value |
|---------|-----------------------------------------------------------------------|---------------|
| NON     | None: Displays the numeric results only. Does not display a waveform. | *             |
| CONSTEL | Constellation: Displays the IQ diagram.                               |               |
| EYE     | Eye Diagram: Displays the change in the IQ signals via the elapse of  |               |
|         | time.                                                                 |               |
| VECT    | EVM: Displays the EVM.                                                |               |
| PHASE   | Phase Error: Displays the phase error.                                |               |
| MAGTD   | Magnitude: Displays the amplitude error.                              |               |
| CODE    | Code Domain: Displays the code domain.                                |               |

## Restriction

- When the Measuring Object is Reverse (RC1-2), QPSK or OQPSK, Code domain cannot be set (*cf.* MEASOBJ)
- If Measuring Object is changed to Reverse (RC1-2), QPSK or OQPSK while Code Domain is selected, a is forcibly set to Non.

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the waveform display format to Phase Error."

<Program> TRFORM PHASE TRFORM?

<Response> PHASE

## TRG

Trigger

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRG a           | TRG?          | a                |

## Function

Selects whether to start measurement with internal timing or with an external trigger on the Setup Common Parameter screen.

### Value of a

Trigger setting

| а    | Trigger setting | Initial value |
|------|-----------------|---------------|
| FREE | Free Run        | *             |
| EXT  | External        |               |

## Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Inputting a trigger from the outside."

<Program> DSPL SETCOM TRG EXT TRG?

<Response> EXT

## TRGDLY

## Trigger Delay

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRGDLY a        | TRGDLY?       | a                |

## Function

Sets the time difference from when a trigger is input to when timing is actually set, on the Setup Common Parameter screen.

## Value of a

Trigger delay value

| Range                 | Resolution | Initial value | Unit   |
|-----------------------|------------|---------------|--------|
| -16384.0 to $16384.0$ | 0.1        | 0.0           | PNchip |

## Restriction

• No setting is allowed when Trigger is set to Free Run (*cf.* TRG).

## Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Setting the trigger delay value to 50.0 PNchip."

<Program> DSPL SETCOM TRG EXT TRGDLY 50.0 TRGDLY?

<Response> 50.0

## TRGEDGE

## Trigger Edge

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRGEDGE a       | TRGEDGE?      | a                |

#### Function

Sets either the rising or falling edge as reference trigger timing, on the Setup Common Parameter screen.

## Value of a

#### Trigger reference

| а    | Trigger reference                               | Initial value |
|------|-------------------------------------------------|---------------|
| RISE | Sets the rising edge as the trigger reference.  | *             |
| FALL | Sets the falling edge as the trigger reference. |               |

#### Restriction

• No setting is allowed when Trigger is set to Free Run (*cf.* TRG).

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set the rising edge as the trigger reference."

<Program> DSPL SETCOM TRG EXT TRGEDGE RISE TRGEDGE?

<Response> RISE

## ΤS

Single Measure/Sweep

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TS              | -             | -                |

## Function

Executes a measurement and sweeping once.

This command functions the same as the SWP command.

Unlink the SNGLS command, when the Tx Tester accepts a command during measurement, the command is not processed immediately but is queued until the current measurement is completed.

Since the command following the TS command is processed after the current measurement is completed, this means that the synchronization (between the Tx Tester operation and the program to send the command) is ensured.

Example of use

"Executes a measurement and sweeping once."

<Program> TS

## **TXPWR**

Tx Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| -               | TXPWR? a      | b                |

Function

Reads out the average power of 1 slot (PCG).

#### Value of a

Specification for output unit

| а    | Output unit |
|------|-------------|
| DBM  | dBm         |
| WATT | W           |

Value of b

Tx Power

| Resolution                                                    | Unit |
|---------------------------------------------------------------|------|
| 0.01                                                          | dBm  |
| Significant digits, four places (floating decimal-point type) | W    |

Restriction

- Tx Power measurement result can be obtained from the measurement in the next screen (cf. MEAS).
  - Modulation Analysis
  - RF Power

Example of use

"Reading out the measurement results of Tx Power."

<Program> DSPL RFPWR SWP TXPWR? DBM

<Response> -18.53

# UNIT\_ACP

Unit for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_ACP a      | UNIT_ACP?     | a                |

## Function

Sets the unit of measurement result for Offset frequency vs Power on the Spurious close to the Carrier screen.

## Value of a

Unit for Offset frequency vs Power

| а    | Unit for Offset frequency vs Power | Initial value |
|------|------------------------------------|---------------|
| DB   | dB                                 |               |
| DBM  | dBm                                |               |
| MW   | mW                                 |               |
| UW   | μW                                 |               |
| NW   | nW                                 |               |
| TEMP | dB/dBm (Template) (Note)           | *             |

Note: Unit is displayed by dB or dBm, set for every Line Level. (  $\it cf. LVLREL\_ACP$  )

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set the unit for Offset frequency vs Power to mW."

<Program> UNIT\_ACP MW UNIT\_ACP?

<Response> MW

# UNIT\_IQL

Unit for IQ Level

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_IQL a      | UNIT_IQL?     | a                |

## Function

Sets the measured results unit for the IQ Level on the IQ Level screen.

## Value of a

Unit of the IQ Level

| а    | Unit of the IQ Level | Initial value |
|------|----------------------|---------------|
| MV   | mV                   |               |
| DBMV | dBmV                 | *             |

## ■ Initialization of setting

PRE, INI, IP, \*RST

## Example of use

"Setting the IQ Level unit to mV."

<Program> UNIT\_IQL MV UNIT\_IQL?

<Response> MV

■ Restrictions according to model type and options

For MS268x, if Option -17 or -18 I/Q Input is not installed, this command is invalid.
# UNIT\_SPU

Unit for Spurious Emission

| Program Message | Query Message | Response Message |  |  |  |  |
|-----------------|---------------|------------------|--|--|--|--|
| UNIT_SPU a      | UNIT_SPU?     | a                |  |  |  |  |

### Function

Sets the unit for each measurement result of level at f1 to f15 on the Spurious Emission screen.

### Value of a

Unit for each level

| а   | Unit for each level | Initial value |
|-----|---------------------|---------------|
| DB  | dB                  |               |
| DBM | dBm                 | *             |

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Set dB for the unit for each level at f1 to f15."

<Program> UNIT\_SPU DB UNIT\_SPU?

<Response> DB

# VBM\_ACP

VBW: Manual/Auto

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBM_ACP a       | VBM_ACP?      | a                |

### Function

Sets either manual or automatic for setting VBW on the Spurious close to the Carrier screen.

### Value of a

VBW setting mode

| а    | a Mode                                  |   |  |  |  |  |
|------|-----------------------------------------|---|--|--|--|--|
| MAN  | Sets VBW to the manual setting mode.    |   |  |  |  |  |
| AUTO | Sets VBW to the automatic setting mode. | * |  |  |  |  |

### Initialization of setting

PRE, INI, IP, \*RST

### Restriction

- When VBW is changed while Auto is set, the setting is forcibly set to Manual.
- When Auto is set, the VBW value is automatically set from the values of RBW and VBW/RBW Ratio.
- No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)

### Example of use

"Set VBW to the automatic setting mode."

<Program> VBM\_ACP AUTO VBM\_ACP?

<Response> AUTO

# VBM\_OBW

VBW: Manual/Auto

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBM_OBW a       | VBM_OBW?      | a                |

### Function

Sets either manual or automatic for setting VBW on the Occupied Bandwidth screen.

### Value of a

VBW setting mode

| а    | Mode                                    | Initial value |
|------|-----------------------------------------|---------------|
| MAN  | Sets VBW to the manual setting mode.    |               |
| AUTO | Sets VBW to the automatic setting mode. | *             |

### Initialization of setting

PRE, INI, IP, \*RST

### Restriction

- When VBW is changed while Auto is set, the setting is forcibly set to Manual.
- When Auto is set, the VBW value is automatically set from the values of RBW and VBW/RBW Ratio.

### Example of use

"Set VBW to the automatic setting mode."

<Program> VBM\_OBW AUTO VBM\_OBW?

<Response> AUTO

# VBR\_ACP

VBW/RBW Ratio for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBR_ACP a       | VBR_ACP?      | a                |

### Function

Sets the ratio of VBW to RBW use in VBW automatic setting on Spurious close to the Carrier measurement.

#### Value of a

VBW/RBW Ratio

| Range         | Resolution | Initial value |  |  |  |
|---------------|------------|---------------|--|--|--|
| 0.0001 to 100 | 0.0001     | 0.1           |  |  |  |

#### Restriction

- No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)
- Any value may be input into the setting range. However, the value that is actually set is the value in Table below.

| Setting value |        |       |       |      |      |     |     |   |   |    |    |     |
|---------------|--------|-------|-------|------|------|-----|-----|---|---|----|----|-----|
| 0.0001        | 0.0003 | 0.001 | 0.003 | 0.01 | 0.03 | 0.1 | 0.3 | 1 | 3 | 10 | 30 | 100 |

### Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set VBW/RBW Ratio to 3."

<Program> VBR\_ACP 3 VBR\_ACP?

<Response>

3

# VBR\_OBW

VBW/RBW Ratio for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBR_OBW a       | VBR_OBW?      | a                |

### Function

Sets the ratio of VBW to RBW used in VBW automatic setting on Occupied Bandwidth measurement.

### Value of a

VBW/RBW Ratio

| Range         | Resolution | Initial value |  |  |  |  |
|---------------|------------|---------------|--|--|--|--|
| 0.0001 to 100 | 0.0001     | 1             |  |  |  |  |

### Restriction

• Any value may be input into the setting range. However, the value that is actually set is the value in Table below.

| Setting value                                             |  |  |  |  |  |  |  |  |     |
|-----------------------------------------------------------|--|--|--|--|--|--|--|--|-----|
| 0.0001 0.0003 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10 30 100 |  |  |  |  |  |  |  |  | 100 |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Set VBW/RBW Ratio to 3."

<Program> VBR\_OBW 3 VBR\_OBW?

<Response>

3

# VBW\_ACP

Video Bandwidth for Spurious close to the Carrier

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBW_ACP a       | VBW_ACP?      | a                |

### Function

Sets VBW (Video Bandwidth) of Spurious close to the Carrier measurement.

### Value of a

VBW

| Range              | Resolution | Initial value | Unit |
|--------------------|------------|---------------|------|
| 0 (OFF) to 3000000 | 1          | 3000          | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

- Restriction
- No setting is allowed when Template is set to Band Class 6 while Measure Method is set to 3GPP2 FWD Band Class 1, 4, 6, 8. (*cf.* DSPL, SLCTEMP\_ACP)
- No setting is allowed when RBW Mode is Digital (*cf.* RBD\_ACP).
- Any value may be input into the setting range. However, the value that is actually set is the value in Table below.

| Setting value |      |      |       |       |        |        |       |       |        |        |         |         |       |       |
|---------------|------|------|-------|-------|--------|--------|-------|-------|--------|--------|---------|---------|-------|-------|
| 0 Hz<br>(OFF) | 1 Hz | 3 Hz | 10 Hz | 30 Hz | 100 Hz | 300 Hz | 1 kHz | 3 kHz | 10 kHz | 30 kHz | 100 kHz | 300 kHz | 1 MHz | 3 MHz |

■ Initialization of setting PRE, INI, IP, \*RST

■ Example of use "Set VBW to 30 kHz."

<Program> VBW\_ACP 30KHZ VBW\_ACP?

<Response> 30000 **7-244** 

# VBW\_OBW

Video Bandwidth for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBW_OBW a       | VBW_OBW?      | a                |

### Function

Sets VBW (Video Bandwidth) of Occupied Bandwidth measurement using a spectrum analyzer.

### Value of a

VBW

| Range              | Resolution | Initial value | Unit |
|--------------------|------------|---------------|------|
| 0 (OFF) to 3000000 | 1          | 10000         | Hz   |

□ Suffix code None: Hz HZ: Hz KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

### Restriction

- No setting is allowed when RBW Mode is Digital (cf. RBD\_OBW).
- Any value may be input into the setting range. However, the value that is actually set is the value in Table below.

| Setting value |                 |                 |    |    |     |     |     |     |     |     |     |     |     |     |
|---------------|-----------------|-----------------|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 Hz          | $1 \mathrm{Hz}$ | $3~\mathrm{Hz}$ | 10 | 30 | 100 | 300 | 1   | 3   | 10  | 30  | 100 | 300 | 1   | 3   |
| (OFF)         |                 |                 | Hz | Hz | Hz  | Hz  | kHz | kHz | kHz | kHz | kHz | kHz | MHz | MHz |

Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Set VBW to 30 kHz."

<Program> VBW\_OBW 30KHZ VBW\_OBW?

<Response> 30000

# VECTERR

### RMS EVM

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | VECTERR?      | a                |

### Function

Outputs the RMS value measurement results for EVM on the Modulation Analysis screen.

### Value of a

RMS EVM

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

Example of use

"Read measurement result for RMS EVM."

<Program> DSPL MODANAL SWP VECTERR?

<Response> 23.48

# VIEW\_SPU

View for Spurious Emission

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VIEW_SPU a      | VIEW_SPU?     | a                |

### Function

Selects RBW/VBW/SWT, Ref-Level/ATT, or Judgment result to display on the right of the Spurious Emission screen.

### Value of a

Display item

| а      | Display item                                                                                          | Initial value |
|--------|-------------------------------------------------------------------------------------------------------|---------------|
| None   | Displays judgment $\rightarrow$ RBW, VBW, SWT $\rightarrow$ Rel Level, ATT $\rightarrow$ Judgment, in |               |
|        | this sequence.                                                                                        |               |
| JDG    | Displays Judgment.                                                                                    | *             |
| BWSWT  | Displays RBW, VBW and SWT.                                                                            |               |
| REFATT | Displays Ref Level and ATT.                                                                           |               |

■ Initialization of setting PRE, INI, IP, \*RST

Example of use

"Display RBW, VBW and SWT."  $\!\!\!$ 

<Program> DSPL SPURIOUS,SPOT VIEW\_SPU BWSWT VIEW\_SPU?

<Response> BWSWT

# VSCALE

Vertical Scale for EVM, Phase Error and Magnitude Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VSCALE a        | VSCALE?       | a                |

### Function

Sets the upper limit value of the vertical scale on the coordinate displayed on the Modulation Analysis screen when the Trace Format is set to EVM, Phase Error or Magnitude Error.

### Value of a

Upper limit value of the vertical scale

| а   | Upper limit value of the vertical scale         | Initial value |
|-----|-------------------------------------------------|---------------|
| 5   | 5% (EVM, Magnitude Error), 5° (Phase Error)     |               |
| 10  | 10% (EVM, Magnitude Error), 10° (Phase Error)   |               |
| 20  | 20% (EVM, Magnitude Error), 20° (Phase Error)   | *             |
| 50  | 50% (EVM, Magnitude Error), 50° (Phase Error)   |               |
| 100 | 100% (EVM, Magnitude Error), 100° (Phase Error) |               |

### Restriction

• No setting is allowed when the Trace Format is set to other than EVM, Phase Error and Magnitude Error (*cf.* TRFORM).

Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Setting the upper limit value of the vertical scale for Phase Error to  $50^{\circ}$ ."

<Program> TRFORM PHASE VSCALE 50 VSCALE?

<Response> 50

# VSCALE\_CDP

### Vertical Scale for Code Domain

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VSCALE_CDP a    | VSCALE_CDP?   | a                |

### Function

Sets the vertical scale range when Trace Format is set to Code Domain on the Modulation Analysis screen.

### Value of a

Vertical scale range

| Code Domain Display | Command | Vertical Scale Range | Initial Value |
|---------------------|---------|----------------------|---------------|
| Power               | 20      | –20 to 0 dB          |               |
|                     | 40      | -40 to 0 dB          |               |
|                     | 60      | –60 to 0 dB          |               |
|                     | 80      | -80 to 0 dB          | *             |
| Timing Offset       | 20      | –20 to 20 ns         |               |
|                     | 40      | -40 to 40 ns         |               |
|                     | 60      | -60 to 60 ns         |               |
|                     | 80      | –80 to 80 ns         | *             |
|                     | 100     | –100 to 100 ns       |               |
| Phase Offset        | 0.02    | –0.02 to 0.02 rad    |               |
|                     | 0.04    | –0.04 to 0.04 rad    |               |
|                     | 0.06    | –0.06 to 0.06 rad    |               |
|                     | 0.08    | –0.08 to 0.08 rad    | *             |
|                     | 0.10    | –0.10 to 0.10 rad    |               |

### Restriction

• No setting is allowed when Trace Format is other than Code Domain (cf. TRFORM).

### Initialization of setting

PRE, INI, IP, \*RST

### Example of use

"Sets the Code Domain display range to 0 dB through 40 dB."

<Program> DSPL SETCOM MEASOBJ FORWARD DSPL MODANAL TRFORM CODE VSCALE\_CDP 40 VSCALE\_CDP?

<Response> 40

# VTDLY

Vertical Scale (Code Domain of Data)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VTDLY a         | VTDLY? a      | b                |

### Function

Sets the time difference between the waveform position (decided by Video Trigger Edge and Video Trigger Level) and actual timing on the RF Power screen.

### Value of a

#### Display mode of code domain power

| а    | Time difference reference                                           |
|------|---------------------------------------------------------------------|
| None | Conforms to the unit set in Video Trigger Edge ( <i>cf.</i> VTEDGE) |
| RISE | Sets the rising edge as the reference                               |
| FALL | Sets the falling edge as the reference                              |

### Value of b

Time difference

| Range           | Resolution | Initial Value | Unit   |
|-----------------|------------|---------------|--------|
| -10.00 to 10.00 | 0.25       | 0.00          | PNchip |

### □ Suffix Code

None

Restriction

• No setting is allowed when Wave Type is Continuous (*cf.* WAVETYPE).

### Initialization of setting

PRE,INI,IP,\*RST

### Example of use

"Sets the time difference at the rising edge to -10.00 PNchip."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST VTDLY RISE,-10.00 VTDLY? RISE

<Response> -10.00

7-250

# VTEDGE

Video Trigger Edge

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VTEDGE a        | VTEDGE?       | a                |

### Function

Sets either the rising or falling edge as reference for the burst waveform positioning on the RF Power screen.

### Value of a

Waveform positioning reference

| а    | Waveform positioning reference          | Initial Value |
|------|-----------------------------------------|---------------|
| RISE | Sets the rising edge as the reference.  | *             |
| FALL | Sets the falling edge as the reference. |               |

### Restriction

• No setting is allowed when Wave Type is Continuous (*cf.* WAVETYPE).

Initialization of setting

PRE,INI,IP,\*RST

Example of use

"Set the falling edge as the reference of burst wave."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST DSPL RFPWR VTEDGE FALL VTEDGE?

<Response> FALL

# VTLVL

Video Trigger Edge

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VTLVL a         | VTLVL? b      | с                |

### Function

Sets threshold for the burst waveform positioning on the RF Power screen.

### Value of a

Threshold

| Range    | Resolution | Initial Value | Unit    |
|----------|------------|---------------|---------|
| -60 to 0 | 1          | -15           | dB, dBm |

• Unit can be omitted. In this case, the unit conforming to the Relative Level is deemed to be specified (*cf.* LVLREL\_RFPWR). See RFLVL for RefLevel.

### Value of b

#### Threshold unit

| b    | Threshold unit                                                                                    |
|------|---------------------------------------------------------------------------------------------------|
| None | Deemed as dB is specified when Relative Level is On (Relative) and dBm when it is Off (Absolute). |
| DB   | DB: Deemed as a relative value setting average power inside the burst as a reference.             |
| DBM  | DBM: Deemed as an absolute value.                                                                 |

### Value of c

Threshold

| Resolution | Unit |
|------------|------|
| 1          | dB   |
|            | dBm  |

### Restriction

• No setting is allowed when Wave Type is Continuous (*cf.* WAVETYPE).

### Initialization of setting

PRE,INI,IP,\*RST

### Example of use

"Sets the video trigger level to -30 dB."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST DSPL RFPWR VTLVL –30DB VTLVL?

<Response> -30

# WAVECLASS\_CDP

Code Domain Display

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| WAVECLASS_CDP a | WAVECLASS_CDP? | a                |

### Function

Selects the code domain display among Power, Timing Offset, and Phase Offset on Modulation Analysis screen.

### Value of a

#### Code domain display

| а     | Code Domain display                                                                                          | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------|---------------|
| None  | Displays Power $\rightarrow$ Timing Offset $\rightarrow$ Phase Offset $\rightarrow$ Power, in this sequence. | *             |
| PWR   | Displays Code Domain screen with Power.                                                                      |               |
| TIME  | Displays Code Domain screen with Timing Offset.                                                              |               |
| PHASE | Displays Code Domain screen with Phase Offset.                                                               |               |

### Restriction

• Measuring Object: Forward (RC1-2) and Forward (RC3-5) only can use this command.

■ Initialization of setting

PRE,INI,IP,\*RST

Example of use

"Displaying Code Domain screen with Power"

<Program> DSPL SETCOM MEASOBJ REVERSE3 DSPL MODANAL TRFORM CODE WAVECLASS\_CDP PWR WAVECLASS\_CDP?

<Response> PWR

# WAVETYPE

### Wave Type

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| WAVETYPE a      | WAVETYPE?     | a                |

### Function

Sets the type of waveform to be analysis on the Setup Common Parameter.

### Value of a

Waveform type

| а     | Waveform type | Initial Value |
|-------|---------------|---------------|
| CONT  | Continuous    |               |
| BURST | Burst         | *             |

### Restriction

- No setting is allowed when the measurement screen is other than Setup Common Parameter.
- When measuring object is Forward (RC1-2) or Forward (RC3-5), the setting is fixed to Continuous and cannot be changed to Burst (*cf.* MEASOBJ).

■ Initialization of setting PRE,INI,IP,\*RST

■ Example of use "Set Signal to be Burst."

<Program> DSPL SETCOM MEASOBJ REVERSE WAVETYPE BURST WAVETYPE?

<Response> BURST

# WAVEFLT

Filter to Nyquist

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| WAVEFLT a       | WAVEFLT?      | a                |

### Function

Sets whether Nyquist status is set for Constellation and Eye Diagram on the Modulation Analysis screen.

#### Value of a

On/Off of Nyquist status

| а   | On/Off of Nyquist status   | Initial Value |
|-----|----------------------------|---------------|
| ON  | Set Nyquist status to On.  |               |
| OFF | Set Nyquist status to Off. | *             |

#### Restriction

- No setting is allowed when Measuring Object is other than Reverse (RC1-2) or OQPSK (cf. MEASOBJ).
- No setting is allowed when Trace Format is other than Constellation and Eye Diagram (*cf.* TRFORM).

■ Initialization of setting PRE,INI,IP,\*RST

■ Example of use "Set Nyquist Status to On."

<Program> DSPL SETCOM MEASOBJ REVERSE DSPL MODANAL TRFORM CONSTEL WAVEFLT ON WAVEFLT?

<Response> ON

# WAVQUAL

Waveform Quality Factor

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| _               | WAVQUAL?      | a                |

### Function

Outputs the measurement result for Waveform Quality Factor on Modulation Analysis screen.

### Value of a

Waveform Quality Factor

| Resolution | Unit |
|------------|------|
| 0.00001    | None |

Example of use

"Reads out the measured results for Waveform Quality Factor."

<Program> DSPL MODANAL SWP WAVQUAL?

<Response> 0.98801

## WINDOW

Window

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| WINDOW a        | WINDOW?       | a                |

### Function

Sets the interval to display the waveform on the RF Power screen.

### Value of a

Interval to display the waveform

| а     | Interval to display the waveform                          | Initial value |
|-------|-----------------------------------------------------------|---------------|
| SLOT  | Slot: Displays the waveform for the interval of one slot. | *             |
| LEAD  | Leading: Displays the waveform of burst rising edge.      |               |
| TRAIL | Trailing: Displays the waveform of burst falling edge.    |               |

### Initialization of setting

PRE, INI, IP, \*RST

Example of use

"Display the waveform of the burst rising edge."

<Program> DSPL RFPWR WINDOW LEAD WINDOW? SWP

<Response> LEAD

# WLSHLEN

Walsh Length

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| WLSHLEN a       | WLSHLEN?      | a                |

### Function

Sets Walsh Length displayed when Trace Format is Code Domain on the Modulation Analysis screen.

### Value of a

Walsh Length

| Range                 | Walsh Length    | Initial Value |
|-----------------------|-----------------|---------------|
| 4, 8, 16, 32, 64, 128 | Forward (RC3-5) | 64            |
| 2, 4, 8, 16, 32       | Reverse (RC3-4) | 32            |

### Restriction

- No setting is allowed when Measuring Object is other than Forward (RC3-5) and Reverse (RC3-4) (*cf.* MEASOBJ).
- No setting is allowed when Trace Format is other than Code Domain (cf. TRFORM).
- No setting is allowed when Auto Rate Detection is On (*cf.* AUTODET).

■ Initialization of setting PRE,INI,IP,\*RST

■ Example of use "Set Walsh Length to 16 when Reverse (RC3-4) is set."

<Program> DSPL SETCOM MEASOBJ REVERSE DSPL MODANAL TRFORM CONSTEL WAVEFLT ON WAVEFLT?

<Response> ON

## XMB

Wave Data for Spurious close to the Carrier (Spectrum Analyzer)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMB a,b         | XMB? c,d      | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data by spectrum analyzer on the Spurious close to the Carrier screen.

Use XMBI to access to the digital signal processed data (RBW: 1.23 MHz).

### Value of a

### Data writing address

| Measure Method                 | Data Point | Range     | Resolution |
|--------------------------------|------------|-----------|------------|
| Normal                         | 501        | 0 to 500  | 1          |
|                                | 1001       | 0 to 1000 |            |
| 3GPP2 FWD Band Class 0,2,3,5,9 | 501        | 0 to 1500 |            |
|                                | 1001       | 0 to 3000 |            |
| 3GPP2 FWD Band Class 1,4,6,8   | 501        | 0 to 2000 |            |
|                                | 1001       | 0 to 3500 |            |

### Value of b

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in 0.01 dB units so that 1 dB is shown as 100.

### ■ Value of c

Start address for reading out the data

| Measure Method                 | Data Point | Range     | Resolution |
|--------------------------------|------------|-----------|------------|
| Normal                         | 501        | 0 to 500  | 1          |
|                                | 1001       | 0 to 1000 |            |
| 3GPP2 FWD Band Class 0,2,3,5,9 | 501        | 0 to 1500 |            |
|                                | 1001       | 0 to 3000 |            |
| 3GPP2 FWD Band Class 1,4,6,8   | 501        | 0 to 2000 |            |
|                                | 1001       | 0 to 3500 |            |

### Value of d

Number of data read out

| Measure Method                 | Data Point | Range     | Resolution |
|--------------------------------|------------|-----------|------------|
| Normal                         | 501        | 1 to 501  | 1          |
|                                | 1001       | 1 to 1001 |            |
| 3GPP2 FWD Band Class 0,2,3,5,9 | 501        | 1 to 1501 |            |
|                                | 1001       | 1 to 3001 |            |
| 3GPP2 FWD Band Class 1,4,6,8   | 501        | 1 to 2001 |            |
|                                | 1001       | 1 to 3501 |            |

### ■ Value of e (n)

32-bit waveform data to be read out

| Range                       | Resolution |
|-----------------------------|------------|
| -2147483648 to $2147483647$ | 1          |

• Reading out is made by using an integer in 0.01 dB units so that 1 dB is shown as 100.

### Example of use

"Read out the 10 waveform data of Spurious close to the Carrier, starting from the memory address 0."

<Program> DSPL ACP SWP XMB? 0,10

<Response>

-8829, -8925, -8776, -8771, -8735, -8636, -8882, -8806, -8700, -8846

## XMBI

Wave Data for Spurious close to the Carrier (RBW: 1.23 MHz)

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMBI a,b        | XMBI? c,d     | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data (RBW: 1.23 MHz) by digital signal process on the Spurious close to the Carrier screen.

Use XMB to access to the processed data of spectrum analyzer.

### Value of a

Data writing address

| Range     | Resolution |
|-----------|------------|
| 0 to 1000 | 1          |

### Value of b

 $\underline{16\text{-bit}}$  waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in 0.01 dB units so that 1 dB is shown as 100.

### Value of c

Start address for reading out the data

| Range     | Resolution |
|-----------|------------|
| 0 to 1000 | 1          |

Value of d

Number of data read out

| Range     | Resolution |
|-----------|------------|
| 1 to 1001 | 1          |

### ■ Value of e (n)

32-bit waveform data to be read out

| Range                       | Resolution |
|-----------------------------|------------|
| -2147483648 to $2147483647$ | 1          |

• Reading out is made by using an integer in 0.01 dB units so that 1 dB is shown as 100.

Restriction

- In relation to the calculation, some part of the data is invalid. -2147483648 is output if the data is invalid.
- Enable when Normal is set for Measure Method. (cf. DSPL)

Example of use

"Read out the 10 waveform data of Spurious close to the Carrier, starting from the memory address 0."

<Program> DSPL ACP,NRM SWP XMBI? 0,10

<Response> -8829, -8925, -8776, -8771, -8735, -8636, -8882, -8806, -8700, -8846

## XMC

Wave Data for I-Q Signal

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMC a,b,c       | XMC? d,e,f    | g(1),g(2),,g(f)  |

### Function

Reads out and processes the waveform data for Signal IQ on the Modulation Analysis screen.

### Value of a

Selection of IQ

| а | Selection of IQ |
|---|-----------------|
| 0 | Signal I        |
| 1 | Signal Q        |

### Value of b

Data writing address

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### Value of c

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in the unit of 0.0001 with the ideal signal "1" set at 10000.

### Value of d

Selection of IQ

| d | Selection of IQ |
|---|-----------------|
| 0 | Signal I        |
| 1 | Signal Q        |

### Value of e

Address from which to start data readout

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### Value of f

Number of data readouts

| Range      | Resolution |
|------------|------------|
| 1 to 24576 | 1          |

### ■ Value g (n)

32-bit waveform data to be read out

| Range                       | Resolution |
|-----------------------------|------------|
| -2147483648 to $2147483647$ | 1          |

• Data are read out by using an integer in the unit of 0.0001 with the ideal signal "1" set at 10000.

### Example of use

"Making five readouts of the waveform data for Signal IQ starting from memory address 0."

<Program> DSPL MODANAL SWP XMC? 0,0,5

<Response> 0, -10000, 0, -10000, 10000

## XMD

Wave Data for RF Power

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMD a,b         | XMD? c,d      | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data on the RF Power screen.

### Value of a

Data writing address

| Range     | Resolution |
|-----------|------------|
| 0 to 6944 | 1          |

### • Relation between data storage address and Marker Position is shown below.

| Data storage address        | 0       | 1      | 2      | 399   | 400  | 401  | 6943    | 6944    |
|-----------------------------|---------|--------|--------|-------|------|------|---------|---------|
| Marker Position<br>[PNchip] | -100.00 | -99.75 | -99.50 | -0.25 | 0.00 | 0.25 | 1635.75 | 1636.00 |

### Value of b

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in the unit of 0.01 dBm with 1 dB set at 100.

### Value of c

Address from which to start data readout

| Range       | Resolution |   |
|-------------|------------|---|
| 0 to $6944$ | 1          | Ī |

### Value of d

Number of data readouts

| Range     | Resolution |
|-----------|------------|
| 1 to 6945 | 1          |

### ■ Value e (n)

32-bit waveform data to be read out

| Range                       | Resolution |
|-----------------------------|------------|
| -2147483648 to $2147483647$ | 1          |

• Data are read out by using an integer in the unit of 0.01 dB with 1 dB set at 100.

Example of use

"Making five readouts of the waveform data of RF Power starting from memory address 0."

<Program> DSPL RFPWR SWP XMD? 0,5

<Response> -1012, -1746, -1823, -1272, -1055

## XME

Wave Data for Occupied Bandwidth

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XME a,b         | XME? c,d      | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data at Occupied Bandwidth screen.

### Value of a

Write address for data

| Data Points | Range     | Resolution |
|-------------|-----------|------------|
| 501         | 0 to 500  | 1          |
| 1001        | 0 to 1000 | 1          |

### Value of b

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Data are set using integers in 0.01 dB units, where 1 dB becomes 100.

### Value of c

Read start address for data

| Data Points | Range     | Resolution |
|-------------|-----------|------------|
| 501         | 0 to 500  | 1          |
| 1001        | 0 to 1000 | 1          |

Value of d

Number of read-out data

| Data Points | Range     | Resolution |
|-------------|-----------|------------|
| 501         | 1 to 501  | 1          |
| 1001        | 1 to 1001 | 1          |

### ■ Value of e (n)

32-bit waveform data to be read out

| Range                       | Resolution |
|-----------------------------|------------|
| -2147483648 to $2147483647$ | 1          |

• Data are read out using integers in 0.01 dB units, where 1 dB becomes 100.

### Restriction

• When Measure Method is Spectrum, waveform data by Spectrum method is operated; and When Measure Method is FFT, waveform data by FFT method is operated.

Example of use

"Reads out ten waveform data of Occupied Bandwidth starting from memory address 0."

<Program> DSPL OBW,FFT SWP XME? 0,10

<Response> -8829, -8925, -8776, -8771, -8735, -8636, -8882, -8806, -8700, -8846

7-269

# XMEYE

Wave Data for Eye Diagram

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMEYE a,b,c     | XMEYE? a,d,e  | f(1),f(2),,f(e)  |

### Function

Reads out and processes the waveform data for eye diagram on the Modulation Analysis screen.

### Value of a

Selection of IQ

| a Selection of IQ |          |
|-------------------|----------|
| 0                 | Signal I |
| 1                 | Signal Q |

### Value of b

Data writing address

| Range      | Resolution |
|------------|------------|
| 0 to 15359 | 1          |

### Value of c

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

• Setting is made by using an integer in the unit of 0.0001 with the ideal signal "1" set at 10000.

### Value of d

Address from which to start data readout

| Range      | Resolution |
|------------|------------|
| 0 to 15359 | 1          |

### Value of e

Number of data readouts

| Range      | Resolution |
|------------|------------|
| 1 to 15360 | 1          |

### ■ Value of f(n)

32-bit waveform data to be read out

| Range                     | Resolution |
|---------------------------|------------|
| -2147483648 to 2147483647 | 1          |

• Data are read out by using an integer in the unit of 0.0001 with the ideal signal "1" set at 10000.

### Example of use

"Making five readouts of the waveform data for Signal IQ starting from memory address 0."

<Program> DSPL MODANAL SWP XMEYE? 0,0,5

<Response> 0, -10000, 0, -10000, 10000

## XMN

Wave Data for Magnitude Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMN a,b         | XMN? c,d      | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data of Magnitude Error on the Modulation Analysis screen.

### Value of a

Data write address

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### • Relation between data storage address and Marker Position is shown below

| 0                  | Data Storage address                                | 0   | 1   | 1535   | 1536   | 3071   | 3072   | 24575   |
|--------------------|-----------------------------------------------------|-----|-----|--------|--------|--------|--------|---------|
| Marker<br>Position | When Measuring Object is<br>Forward(RC1-2),         | 0.0 | 1.0 | 1535.0 | 1536.0 | 3071.0 | 3072.0 | 24575.0 |
| [PNchip]           | Forward(RC3-5)                                      |     |     |        |        |        |        |         |
|                    | When Measuring Object is<br>Reverse(RC3-4) or QPSK  | 0.0 | 1.0 | 1535.0 |        |        |        |         |
|                    | When Measuring Object is<br>Reverse(RC1-2) or OQPSK | 0.0 | 0.5 | 767.5  | 768.0  | 1535.5 |        |         |

### Value of b

16-bit waveform data to be written

| Range           | Resolution |
|-----------------|------------|
| –32768 to 32767 | 1          |

• Setting is made by using an integer in 0.01% units so that 1% is shown as 100.

### Value of c

Start address for reading out the data

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### Value of d

Number of data read out

| Range      | Resolution |
|------------|------------|
| 1 to 24576 | 1          |

### ■ Value of e (n)

32-bit waveform data to be read out

| Range                     | Resolution |
|---------------------------|------------|
| -2147483648 to 2147483647 | 1          |

• Data are read out using integers in 0.01% units, where 1% becomes 100.

### Example of use

"Reads out five waveform data of Magnitude Error starting from memory address 0."

<Program> DSPL MODANAL SWP XMN? 0,5

<Response> 0, 1413, -1, -7415, -1

## XMP

Wave Data for Phase Error

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| XMP a,b         | XMP? c,d      | e(1),e(2),,e(d)  |

### Function

Reads out and processes the waveform data of Phase Error on the Modulation Analysis screen.

### Value of a

Data write address

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### • Relation between data storage address and Marker Position is shown below

| Data Storage address |                                                     | 0   | 1   | 1535   | 1536   | 3071   | 3072   | 24575   |
|----------------------|-----------------------------------------------------|-----|-----|--------|--------|--------|--------|---------|
| Marker<br>Position   | When Measuring Object is<br>Forward(RC1-2),         | 0.0 | 1.0 | 1535.0 | 1536.0 | 3071.0 | 3072.0 | 24575.0 |
| [PNchip]             | Forward(RC3-5)                                      |     |     |        |        |        |        |         |
|                      | When Measuring Object is<br>Reverse(RC3-4) or QPSK  | 0.0 | 1.0 | 1535.0 |        |        |        |         |
|                      | When Measuring Object is<br>Reverse(RC1-2) or OQPSK | 0.0 | 0.5 | 767.5  | 768.0  | 1535.5 |        |         |

### Value of b

16-bit waveform data to be written

| Range           | Resolution |  |  |  |  |
|-----------------|------------|--|--|--|--|
| –32768 to 32767 | 1          |  |  |  |  |

• Setting is made by using an integer in 0.01 deg units so that 1 deg is shown as 100.

### Value of c

Start address for reading out the data

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

### Value of d

Number of data read out

| Range      | Resolution |  |  |  |  |
|------------|------------|--|--|--|--|
| 1 to 24576 | 1          |  |  |  |  |
# ■ Value of e (n)

32-bit waveform data to be read out

| Range                     | Resolution |
|---------------------------|------------|
| -2147483648 to 2147483647 | 1          |

• Data are read out using integers in 0.01 deg units, where 1 deg becomes 100.

## Example of use

"Reads out five waveform data of Phase Error starting from memory address 0."

<Program> DSPL MODANAL SWP XMP? 0,5

<Response> -1, -1660, 0, 8679, 0

# Section 7 Command Details

# XMV

Wave Data for EVM

| Program Message | Query Message | Response Message |  |  |
|-----------------|---------------|------------------|--|--|
| XMV a,b         | XMV? c,d      | e(1),e(2),,e(d)  |  |  |

## Function

Reads out and processes the waveform data of EVM on the Modulation Analysis screen.

## Value of a

Data write address

| Range      | Resolution |  |  |  |
|------------|------------|--|--|--|
| 0 to 24575 | 1          |  |  |  |

## • Relation between data storage address and Marker Position is shown below

| [                              | Data Storage address                                          | 0   | 1   | 1535   | 1536   | 3071   | 3072   | 24575   |
|--------------------------------|---------------------------------------------------------------|-----|-----|--------|--------|--------|--------|---------|
| Marker<br>Position<br>[PNchip] | When Measuring Object is<br>Forward(RC1-2),<br>Forward(RC3-5) | 0.0 | 1.0 | 1535.0 | 1536.0 | 3071.0 | 3072.0 | 24575.0 |
|                                | When Measuring Object is<br>Reverse(RC3-4) or QPSK            | 0.0 | 1.0 | 1535.0 |        |        |        |         |
|                                | When Measuring Object is<br>Reverse(RC1-2) or OQPSK           | 0.0 | 0.5 | 767.5  | 768.0  | 1535.5 |        |         |

## Value of b

16-bit waveform data to be written

| Range           | Resolution |  |  |  |
|-----------------|------------|--|--|--|
| –32768 to 32767 | 1          |  |  |  |

• Setting is made by using an integer in 0.01% units so that 1% is shown as 100.

## Value of c

Start address for reading out the data

| Range      | Resolution |
|------------|------------|
| 0 to 24575 | 1          |

#### Value of d

Number of data read outs

| Range      | Resolution |  |  |  |
|------------|------------|--|--|--|
| 1 to 24576 | 1          |  |  |  |

# ■ Value of e (n)

32-bit waveform data to be read out

| Range                     | Resolution |
|---------------------------|------------|
| -2147483648 to 2147483647 | 1          |

• Data are read out using integers in 0.01% units, where 1% becomes 100.

## Example of use

"Reads out five waveform data of EVM starting from memory address 0."

<Program> DSPL MODANAL SWP XMV? 0,5

<Response> 10, 3743, 20, 9272, 30

# Section 7 Command Details

# ZEROSET

Zero Set

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ZEROSET         | _             | —                |

## Function

Executes zero-point calibration of the power meter.

## Restriction

- Executable screen is as follows (*cf.* DSPL).
  - Power meter
- Example of use

<Program> DSPL PWRMTR ZEROSET

■ Restrictions according to model type and options For MS268x, this command is not available.