MX269022A LTE TDD Downlink Measurement Software Operation Manual Operation

21st Edition

- For safety and warning information, please read this manual before attempting to use the equipment.
- Additional safety and warning information is provided within the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation), or MS2850A Signal Analyzer Operation Manual (Mainframe Operation). Please also refer to this document before using the equipment.
- Keep this manual with the equipment.

ANRITSU CORPORATION

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

Symbols used in manual

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

WARNING This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

This indicates a note. The contents are described in the box.

These indicate that the marked part should be recycled.

MX269022A

LTE TDD Downlink Measurement Software **Operation Manual** Operation

- 15 May 2009 (First Edition)
- 31 October 2019 (21st Edition)

Copyright © 2009-2019, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice. Printed in Japan

Equipment Certificate

Anritsu Corporation guarantees that this equipment was inspected at shipment and meets the published specifications.

Anritsu Warranty

- During the warranty period, Anritsu Corporation will repair or exchange this software free-of-charge if it proves defective when used as described in the operation manual.
- The warranty period is 6 months from the purchase date.
- The warranty period after repair or exchange will remain 6 months from the original purchase date, or 30 days from the date of repair or exchange, depending on whichever is longer.
- This warranty does not cover damage to this software caused by Acts of God, natural disasters, and misuse or mishandling by the customer.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation shall assume no liability for injury or financial loss of the customer due to the use of or a failure to be able to use this equipment.

Anritsu Corporation Contact

In the event of this equipment malfunctions, contact an Anritsu Service and Sales office. Contact information can be found on the last page of the printed version of this manual, and is available in a separate file on the PDF version.

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as not to be unlawfully used for military purpose.

Software End-User License Agreement (EULA)

Please read this Software End-User License Agreement (hereafter this EULA) carefully before using (includes executing, copying, registering, etc.) this software (includes programs, databases, scenarios, etc., used to operate, set, etc., Anritsu electronic equipment). By reading this EULA and using this software, you are agreeing to be bound by the terms of its contents and Anritsu Corporation (hereafter Anritsu) hereby grants you the right to use this Software with the Anritsu-specified equipment (hereafter Equipment) for the purposes set out in this EULA.

1. Grant of License and Limitations

- 1. Regardless of whether this Software was purchased from or provided free-of-charge by Anritsu, you agree not to rent, lease, lend, or otherwise distribute this Software to third parties and further agree not to disassemble, recompile, reverse engineer, modify, or create derivative works of this Software.
- 2. You may make one copy of this Software for backup purposes only.
- 3. You are not permitted to reverse engineer this software.
- 4. This EULA allows you to install one copy of this Software on one piece of Equipment.

2. Disclaimers

To the extent not prohibited by law, in no event shall Anritsu be liable for personal injury, or any incidental, special, indirect or consequential damages whatsoever, including, without limitation, damages for loss of profits, loss of data, business interruption or any other commercial damages or losses, arising out of or related to your use or inability to use this Software.

3. Limitation of Liability

- a. If a fault (bug) is discovered in this Software, preventing operation as described in the operation manual or specifications whether or not the customer uses this software as described in the manual, Anritsu shall at its own discretion, fix the bug, or exchange the software, or suggest a workaround, free-of-charge. However, notwithstanding the above, the following items shall be excluded from repair and warranty.
 - i) If this Software is deemed to be used for purposes not described in the operation manual or specifications.
 - ii) If this Software is used in conjunction with other non-Anritsu-approved software.
 - iii) Recovery of lost or damaged data.
 - iv) If this Software or the Equipment has been modified, repaired, or otherwise altered without Anritsu's prior approval.
 - v) For any other reasons out of Anritsu's direct control and responsibility, such as but not limited to, natural disasters, software virus infections, etc.
- Expenses incurred for transport, hotel, daily allowance, etc., for on-site repairs by Anritsu engineers necessitated by the above faults shall be borne by you.
- c. The warranty period for faults listed in article 3a above covered by this EULA shall be either 6 months from the date of purchase of this Software or 30 days after the date of repair, whichever is longer.

4. Export Restrictions

You may not use or otherwise export or re-export directly or indirectly this Software except as authorized by Japanese and United States law. In particular, this software may not be exported or re-exported (a) into any Japanese or US embargoed countries or (b) to anyone on the Japanese or US Treasury Department's list of Specially Designated Nationals or the US Department of Commerce Denied Persons List or Entity List. By using this Software, you warrant that you are not located in any such country or on any such list. You also agree that you will not use this Software for any purposes prohibited by Japanese and US law, including, without limitation, the development, design and manufacture or production of missiles or nuclear, chemical or biological weapons of mass destruction.

5. Termination

Anritsu shall deem this EULA terminated if you violate any conditions described herein. This EULA shall also be terminated if the conditions herein cannot be continued for any good reason, such as violation of copyrights, patents, or other laws and ordinances.

6. Reparations

If Anritsu suffers any loss, financial or otherwise, due to your violation of the terms of this EULA, Anritsu shall have the right to seek proportional damages from you.

7. Responsibility after Termination

Upon termination of this EULA in accordance with item 5, you shall cease all use of this Software immediately and shall as directed by Anritsu either destroy or return this Software and any backup copies, full or partial, to Anritsu.

8. Dispute Resolution

If matters of dispute or items not covered by this EULA arise, they shall be resolved by negotiations in good faith between you and Anritsu.

9. Court of Jurisdiction

This EULA shall be interpreted in accordance with Japanese law and any disputes that cannot be resolved by negotiation described in Article 8 shall be settled by the Japanese courts.

Cautions against computer virus infection

Copying files and data
 Only files that have been provided directly from Anritsu or generated
 using Anritsu equipment should be copied to the instrument.
 All other required files should be transferred by means of USB or
 CompactFlash media after undergoing a thorough virus check.
 Adding software

Do not download or install software that has not been specifically recommended or licensed by Anritsu.

Network connections
 Ensure that the network has sufficient anti-virus security protection in place.

About This Manual

Composition of Operation Manuals

The operation manuals for the MX269022A LTE TDD Downlink Measurement Software are comprised as shown in the figure below.

- Signal Analyzer Operation Manual (Mainframe Operation)
- Signal Analyzer Operation Manual (Mainframe Remote Control) These manuals describe basic operating methods, maintenance

procedures, common functions, and common remote control of the signal analyzer mainframe.

 LTE TDD Downlink Measurement Software Operation Manual (Operation) <This document>

This manual describes basic operating methods, and functions of the LTE TDD Downlink Measurement Software. As for signal analyzer hardware and its basic functions and operation outline, refer to *MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual* (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation), or MS2850A Signal Analyzer Operation Manual (Mainframe Operation).

LTE TDD Downlink Measurement Software Operation Manual (Remote Control)

This manual describes remote control of the LTE TDD Downlink Measurement Software. As for signal analyzer application's basic remote control functions and its definitions of common commands, refer to *MS2690A/MS2691A/MS2692A and MS2830A/MS2840A/MS2850A Signal Analyzer Operation Manual (Mainframe Remote Control).*

Convention Used in This Manual

Throughout this document, the use of MS269xA Series is assumed unless otherwise specified. If using MS2830A or MS2850A, change MS269xA to read MS2830A, MS2850A.

In this document, _____ indicates a panel key.

Table of Contents

About This Manual		
Chapter	1 Overview	1-1
1.1	Product Overview	1-2
1.2	Product Configuration	1-3

1.3

Chapter 2 Preparation..... 2-1 2.1 2.2 Signal Path Setup 2-14 2.

Specifications.....

2.3	Application Startup and Selection	2-15
2.4	Initialization and Calibration	2-16

Measurement **Chapter 3** 3-1 Basic Operation 3.1 3-6

3.2	Setting Frequency and Level	3-12
3.3	Setting Trigger	3-15
3.4	Common Settings	3-17
3.5	Setting Modulation Analysis	3-23
3.6	Modulation Analysis Measurement and Results	3-47
3.7	Power vs Time Setting	3-71
3.8	Measurement and Result for Power vs Time	3-84
3.9	MIMO Summary Settings	3-91
3.10	MIMO Summary Measurement Results	3-93
3.11	Setting Batch Measurement	3-95
3.12	Batch Measurement Results	3-131
3.13	Spectrum Measurement	3-133

1 2 3 4 5 6 Index

I

1-4

Chapter 4 Digitizing and Replaying 4-1

4.1	Digitize function	4-2
4.2	Replay Function	4-8

Chapter 5 Performance Test 5-1

5.1	Overview of Performance Test	5-2
5.2	Performance Test Items	5-3

Chapter	6 Other Functions	6-1
6.1	Selecting Other Functions	6-2
6.2	Setting Title	6-2
6.3	Erasing Warmup Message	6-2

Index Index	dex-1
-------------	-------

Chapter 1 Overview

This chapter provides an overview of the MX269022A LTE TDD Measurement Software and describes the product configuration.

1.1	Product Overview1-2		
1.2	Product Configuration1-3		
	1.2.1	Standard configuration1-3	
	1.2.2	Option 1-3	
	1.2.3	Applicable parts 1-3	
1.3	Specifi	cations1-4	

1.1 Product Overview

MS269x Series, MS2830A, or MS2850A Signal Analyzer enables high-speed, high-accuracy, and simple measurements of transmission characteristics of base stations and mobile stations for various mobile communications types. The MS2690A/MS2691A/MS2692A, MS2830A or MS2850A is equipped with high-performance signal analyzer and spectrum analyzer functions as standard, with optional measurement software allowing modulation analysis functionality supporting various digital modulation modes.

The MX269022A LTE TDD Downlink Measurement Software (hereinafter referred to as MX269022A) is a software option for measuring the RF characteristics of LTE TDD (Frame structure type 2) downlink signal specified by 3GPP, TS36.211 V8.6.0 (2009-03) Physical Channels and Modulation (Release 8).

The MX269022A provides the following measurement features.

- Modulation accuracy measurement
- Carrier frequency measurement
- Transmitter power measurement

MS2830A-005/105 and MS2830A-006/106 is required to use the MX269022A on MS2830A.

1.2

1.2 Product Configuration

1.2.1 Standard configuration

Table 1.2.1-1 lists the standard configuration of the MX269022A.

ltem	Model Name/Symbol	Product Name	Q'ty	Remarks
Application	MX269022A	LTE TDD Downlink Measurement Software	1	
Accessory	_	Installation CD-ROM	1	Application software, operation manual CD-ROM

Table 1.2.1-1 Standard configuration

1.2.2 Option

Tables 1.2.2-1 list the option for the MX269022A. This is sold separately.

Table 1.2.2-1 Option

Option No.	Product Name	Remarks
MX269022A-001	LTE-Advanced TDD Downlink Measurement Software	Only for MS269xA, MS2830A, MS2850A

1.2.3 Applicable parts

Table 1.2.3-1 lists the applicable parts for the MX269022A.

Table 1.2.3-1 Applicable parts

Model Name/Symbol	Product Name	Remarks
W3209AE	MX269022A LTE TDD Downlink Measurement Software Operation Manual (Operation)	English, printed version
W3210AE	MX269022A LTE TDD Downlink Measurement Software Operation Manual (Remote Control)	English, printed version

1

1.3 Specifications

Table 1.3-1 shows the specifications for the MX269022A.

When MS2830A, MS2850A is used, this software's specification is specified by the condition below, unless otherwise noted.

Attenuator Mode: Mechanical Atten Only

ltem	Specification
Common Specifications	
Channel bandwidth	1.4, 3, 5, 10, 15, 20 MHz
Target signal	LTE TDD Downlink
Continue time	Capture Time = Auto : 5 frame
	Capture Time = Manual 35 to 150 frame
Modulation/Frequency Meas	urement
	MS269x Series: 600 to 4000 MHz
	MS2830A-041/043/044/045:
Measurement frequency	600 to 4000 MHz
ranges	MS2830A-040: 600 to 3600 MHz
	MS2850A: 600 to 4000 MHz (Analysis bandwidth \leq 31.25 MHz)
	800 to 4000 MHz (Analysis bandwidth > 31.25 MHz)
	–15 to +30 dBm (at Pre-Amp Off, or Pre-Amp not installed.)
Measurement level range	-30 to +10 dBm (at Pre-Amp On)
	After CAL execution at 18 to 28°C
	For a signal of EVM = 1%
	When Downlink 10 Subframe is the measurement target
	MS269x series:
	± (accuracy of reference frequency × carrier frequency + 3 Hz)
	(Excluding the Batch Measurement when MS269xA-004/104 is installed)
	MS2830A:
	\pm (accuracy of reference frequency × carrier frequency + 3.5 Hz)
	(When the center frequency is from 600 MHz to 2700 MHz and MS2830A-078/178 is not installed)
Carrier frequency accuracy	± (accuracy of reference frequency × carrier frequency + 8.0 Hz)
	(When the center frequency is from 2700 MHz to 4000 MHz and MS2830A-078/178 is not installed)
	\pm (accuracy of reference frequency × carrier frequency + 4.0 Hz)
	(In the CC of the center frequency when the center frequency is
	from 600 MHz to 2700 MHz and MS2830A-078/178 is installed)
	(At the input level of -4 dBm when MS2830A-045 is installed)
	\pm (accuracy of reference frequency \times carrier frequency + 8.0 Hz)
	(In the CC of the center frequency when the center frequency is
	from 2700 MHz to 4000 MHz and MS2830A-078/178 is installed)
	(And when $MS2830A-045$ is installed, at the input level of -4 dBm)

1

Overview

Item	Specification
Carrier frequency accuracy	MS2850A: ± (accuracy of reference frequency × carrier frequency + 4.0 Hz) (Center frequency 600 to 2700 MHz (Analysis bandwidth ≤ 31.25 MHz)) (Center frequency 800 to 2700 MHz (Analysis bandwidth > 31.25 MHz)) ± (accuracy of reference frequency × carrier frequency + 8.0 Hz) (Center frequency 2700 to 4000 MHz)
Residual EVM	After CAL execution at 18 to 28°C When Downlink 10 Subframe is the measurement target MS269x series: <1.0% (rms) (When MS269xA-078/178 is not installed. When MS269xA-004/104 is installed, excluding the Batch Measurement.) <pre>< 1.3% (rms) (When MS269xA-078/178 is installed, in the CC of the center frequency.) MS2830A: <1.3% (rms) (When MS2830A-078/178 is not installed. At the input level of -4 dBm when MX2830A-045 is installed) <pre></pre></pre> <pre></pre> <
	MS2850A: <1.3% (rms) After CAL execution at 18 to 28°C, input attenuator > 10 dB.
Transmitter power accuracy	 The signal measured is within the measurement level range and less than or equal to Input Level. MS269x series: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) ±1.1 dB (at Pre-Amp On) (When MS269xA-004/104 is installed, excluding the Batch Measurement.) MS2830A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) MS2850A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) MS2850A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) MS2850A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) MS2850A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.) Ms2850A: ±0.6 dB (at Pre-Amp Off, or Pre-Amp not installed.)
Waveform display	Provides functions for displaying waveforms below. Constellation EVM vs Subcarrier EVM vs Symbol Power vs Resource Block EVM vs Resource Block Spectral Flatness
Adjacent Channel Power Mea	surement
Measurement method	Executes the adjacent channel power measurement function of the Spectrum Analyzer or Signal Analyzer.

Table 1.3-1 Specifications (Cont'd)

Chapter 1 Overview

ltem	Specification	
Occupied Bandwidth Measur	rement	
Measurement method	Executes the occupied bandwidth measurement function of the Spectrum Analyzer or Signal Analyzer.	
Channel Power Measuremen	t	
Measurement method	Executes the channel power measurement function of the Spectrum Analyzer or Signal Analyzer.	
Spectrum Emission Mask Me	easurement	
Measurement method	Executes the spectrum emission mask measurement function of the Spectrum Analyzer.	
Digitize function		
Function overview	Outputs acquired waveform data to the internal storage device or to external storage device.	
	Format: I, Q (32 bit floating point binary format)	
	Level: If 0 dBm is input, the following is assumed:	
Waveform data	$\sqrt{I^2 + Q^2} = 1$	
	Level accuracy:	
	Same as absolute amplitude accuracy and in-band frequency	
	characteristics of signal analyzer.	
Replay Function		
	Analyzes each trace from the saved waveform data.	
Function overview	Format: I, Q (32 bit floating point binary format)	
	Sampling rate: 50 MHz	
Power vs Time		
Function overview	Provides measurements for Transmitter OFF Power, Time Mask, and Transmitter Transient Period.	
	121.4 dB (nominal) *1, *2, *3	
	*1: This is the value when Channel bandwidth is 5 MHz.	
	For the other channel bandwidth, the following formula can be	
Dynamic range	used.	
	$10 \log_{10}($ Channel bandwidth / $5.0 \; \mathrm{MHz}$ $) \; \mathrm{dB}$	
	*2: Wide Dynamic Range = On, Noise Correction = On	
	*3: Applied to only MS269x series	
MIMO Summary		
Function overview	Inputs multiple MIMO signals and measures timing differences.	

Table 1.3-1	Specifications	(Cont'd)
	opounioanono	(00110 0)

Chapter 2 Preparation

This chapter describes the preparations required for using the application you are using. Refer to the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation) or MS2850A Signal Analyzer Operation Manual (Mainframe Operation) for common features not included in this manual.

2.1	Part Names		
	2.1.1	Front panel	2-2
	2.1.2	Rear panel	2-9
2.2	Signal	Path Setup	2-14
2.3	Application Startup and Selection		
	2.3.1	Launching application	2-15
	2.3.2	Selecting application	2-15
2.4	Initializ	zation and Calibration	2-16
	2.4.1	Initialization	2-16
	2.4.2	Calibration	2-16

2.1 Part Names

This section describes the panel keys for operating the instrument and connectors used to connect external devices. For general points of caution, refer to the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation) or MS2850A Signal Analyzer Operation Manual (Mainframe Operation).

2.1.1 Front panel

This section describes the front-panel keys and connectors.

Figure 2.1.1-1 MS269x series front panel

Figure 2.1.1-2 MS2830A/MS2850A front panel (MS2830A Example)

Chapter 2 Preparation

7 Local	Local key Press to return to local operation from remote control via GPIB, Ethernet, or USB (B), and enable panel settings.
8 Remote	Remote lamp Lights when in remote-control state.
9 Preset	Preset key Resets parameters to initial settings.
10 Menu F1 F2 F3 F4 F5 F6 F6 F7 F8 ★	 Function keys Selects or configures function menu displayed on the right of the screen. The function menu is provided in multiple pages and layers. Press () to fetch next function menu page. The current page number is displayed at the bottom of the function menu, as in "1 of 2". Sub-menus may be displayed when a function menu is pressed. Press () to go back to the previous menu. Press () to go back to the top menu.

2

Preparation

Main function	keys 1
---------------	--------

Press to set or execute main functions.

Executable functions vary with the current application. When nothing happens with the press, it indicates that the application in use does not <u>support the key.</u>

[Span] No function is assigned to this key.

- (Trigger/Gate) Press to set trigger parameters.
- BW No function is assigned to this key.
- [Ime/Sweep] Press to set measurement item parameters.

Main function keys 2

Press to set or execute main functions.

Executable functions vary with the current application. When nothing happens with the press, it indicates that the application in use does not <u>support the key.</u>

Press to switch application.

Press to display Configuration screen.

Press to set the trace items or to switch the operation window.

Press to set measurement item parameters.

- Marker Use when switching graph marker operation.
- Peak Search Press to set parameters related to the peak search function.

Press to start single measurement.

Press to start continuous measurements.

12

Chapter 2 Preparation

Rotary knob/Cursor key/Enter key/Cancel key The rotary knob and cursor keys select display items or change settings.

Press (Enter) to set the entered or selected data.

Press Cancel to cancel input or selected data.

15

Shift key

Operates keys with functions in blue characters on panel. Press the Shift key so the key lamp is green and then press the target key.

RF Input connector

input connector is installed.

Enters numbers on parameter setup screens.

Press BS to delete the last entered digit or character.

Inputs RF signal. This is an N type input connector.

[A] to [F] can be entered by pressing keys 4 to 9 while the Shift key lamp o is green.

0

3

Enter

RF Output Control key (when MS269xA-020/120, MS2830A-020/120/021/121 is installed)

For the MS2830A with the MS2830A-045 and the MS2850A, a K type

Press \bigcirc to switch on/off the modulation of RF signal when the Vector Signal Generator option is installed. The RF output control key lamp lights orange when the RF signal output is set to On.

This cannot be installed on the MS2830A with the MS2830A-044/045, or on the MS2850A.

Part Names 2.1

18 SG Output(Opt)

RF Output connector (when MS269xA-020/120, MS2830A-020/120/021/121 installed)

Outputs RF signal, when the Vector Signal Generator option is installed. This is an N type output connector.

This cannot be installed on the MS2830A with the MS2830A-044/045, or on the MS2850A

USB connector (type A)

Connect the accessory USB keyboard, mouse or USB memory.

2

Modulation control key (when MS2830A-020/120/021/121 installed) Press to switch on/off the modulation of RF signal when the Vector Signal Generator option is installed. The lamp \bigcirc on the key lights up in green in the modulation On state.

This cannot be installed on the MS2830A with the MS2830A-044/045, or on the MS2850A.

Application key (MS2830A, MS2850A) Press to switch between applications.

Press to display the Spectrum Analyzer main screen.

Press to display the Signal Analyzer main screen, when MS2830A-005/105/007/006/106/009/109/077/078 or MS2850A are installed.

Press to display the Signal Generator main screen, when Vector Signal Generator option is installed. (MS2830A only)

This is a blank key. Not used. (MS2830A only)

Displays the main screen of the application that is selected using the Application Switch (Auto), or displays that of the pre-selected application (Manual).

For details, refer to 3.5.4 "Changing application layout" in MS2830A Signal Analyzer Operation Manual (Mainframe Operation) or MS2850A Signal Analyzer Operation Manual (Mainframe Operation).

Chapter 2 Preparation

1st Local Output connector (MS2830A, MS2850A)

This is installed with the $\rm MS2830A\text{-}044/045,$ or $\rm MS2850A.$

Supplies local signal and bias current to the external mixer, and receives the IF signal with its frequency converted.

2.1.2 Rear panel

This section describes the rear-panel connectors.

Figure 2.1.2-2 MS2830A/MS2850A rear panel (MS2850A Example)

Monitor Out connector Connects external display.

USB connector (type B)

Ethernet connector

USB connector (type A)

For external control via USB.

Connects PC or Ethernet network.

12 ~ Line Input AC inlet Supplies power.

SA Trigger Input connector (MS2830A, MS2850A) This is a BNC connector for inputting external trigger signal (TTL) for SPA and SA applications.

Used to connect a USB keyboard or mouse or the USB memory supplied.

SA Trigger

Input

13

SG Trigger Input connector (MS2830A) This is a BNC connector for inputting external trigger signal (TTL) for Vector Signal Generator option.

- 15 HDD or **Primary HDD/SSD**
- 16 HDD(Opt) or Secondary HDD/SSD

HDD slot (MS2830A) SSD slot (MS2850A)

HDD slot for Option (MS2830A) SSD slot (MS2850A)

This is a standard HDD slot. This is a standard SSD slot.

This is a HDD slot for the options. This is a SSD slot for the options.

Chapter 2 Preparation

PCIe X8 connector (MS2850A)

This is available when the MS2850A-053/153 is installed.

2.2 Signal Path Setup

As shown in Figure 2.2-1, connect the instrument and the DUT using an RF cable, so that the signal to be tested is input to the RF Input connector. To prevent an excessive level signal from being input, do not input the signal before setting the input level using this application.

Figure 2.2-1 Signal path setup example

Set the reference signal and/or trigger signal paths from external sources, as required.

Figure 2.2-2 External signal input

2.3 Application Startup and Selection

To use this application, it is necessary to load (start up) and select the application.

2.3.1 Launching application

The application startup procedure is described below.

Note:

The XXX indicates the application name currently in use.

<Procedure>

- 1. Press system to display the Configuration screen.
- 2. Press 📧 (Application Switch Settings) to display the Application Switch Registration screen.
- Press (Load Application Select), and move the cursor to "XXX" in the Unloaded Applications list.
 If "XXX" is displayed in the Loaded Applications list, this means

that the application is already loaded. If "XXX" appears in neither the **Loaded Applications** nor **Unloaded Applications** list, this means that the application has not been installed.

4. Press (Set) to load the application. If "XXX" is displayed in the **Loaded Applications** list, this means that the application is already loaded.

2.3.2 Selecting application

The selection procedure is described below.

<Procedure>

- 1. Press Application to display the Application Switch menu.
- 2. Press the menu function key displaying "XXX".

The application can also be selected with mouse, by clicking "XXX" on the task bar.

2

2.4 Initialization and Calibration

This section describes the parameter settings and the preparations required before starting measurement.

2.4.1 Initialization

After selecting this application, first perform initialization. Initialization returns the settable parameters to their default value in order to clear the measurement status and measurement results.

Note:

When another software application is switched to or this application is unloaded (ended), the application keeps the parameter settings at that time. The parameter values that were last set will be applied when this application is selected next time.

The initialization procedure is as follows.

<Procedure>

- 1. Press to display the Preset function menu.
- 2. Press 🔲 (Preset).

2.4.2 Calibration

Perform calibration before performing measurement. Calibration sets the level accuracy frequency characteristics for the input level to flat, and adjusts level accuracy deviation caused by internal temperature fluctuations. Calibration should be performed when first performing measurement after turning on power, or if beginning measurement when there is a difference in ambient temperature from the last time calibration was performed.

<Procedure>

- 1. Press 👛 to display the Application Cal function menu.
- 2. Press 📧 (SIGANA All).

For details on calibration functionality only executable with this instrument, refer to the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation) or MS2850A Signal Analyzer Operation Manual (Mainframe Operation).

Chapter 3 Measurement

This chapter describes the measurement functions and parameters of the MX269022A, together with descriptions of how to set them.

3.1	Basic (Operation3	6-6
	3.1.1	Screen layout3	6-6
	3.1.2	Types of Measurement Function	-9
	3.1.3	Performing Measurement 3-	10
	3.1.4	Measurement Signals and Troubleshooting	
		Errors	11
3.2	Setting	Frequency and Level3-	12
	3.2.1	Carrier Frequency3-	12
	3.2.2	Input Level 3-	12
	3.2.3	Offset	13
	3.2.4	Pre-Amp 3-	14
	3.2.5	Auto Range3-	14
3.3	Setting	9 Trigger 3	15
	3.3.1	Trigger Switch3-	15
	3.3.2	Trigger Source	15
	3.3.3	Trigger Slope	16
	3.3.4	Trigger Delay	16
	3.3.5	Frame Sync Setup3-	16
3.4	Comm	on Settings3-	17
	3.4.1	Channel Bandwidth 3-	17
	3.4.2	Test Model3-	17
	3.4.3	Test Model Version3-	17
	3.4.4	Uplink-downlink Configuration 3-	18
	3.4.5	Special Subframe Configuration3-	19
	3.4.6	Synchronization Mode 3-2	20
	3.4.7	Cell ID 3-2	20
	3.4.8	Reference Signal Boosting 3-2	21
	3.4.9	Number of Antenna Ports 3-2	21
	3.4.10	Antenna Port	22
3.5	Setting	Modulation Analysis3-2	23
	3.5.1	Starting Subframe Number	23
	3.5.2	Measurement Interval	25
	3.5.3	PDSCH Modulation Scheme 3-2	26
	3.5.4	Total EVM & Constellation Composite	27
	3.5.5	EVM Window Length 3-2	28
	3.5.6	PBCH - On / Off	29
	3.5.7	PBCH - Power Auto/Manual 3-3	30
	3.5.8	PBCH - Power Boosting 3-3	30
	3.5.9	Precautions at Power Auto Setting	31
	3.5.10	P-SS - On/Off	31

	3.5.11	P-SS - Power Auto / Manual	3-32
	3.5.12	P-SS - Power Boosting	3-32
	3.5.13	S-SS - On/Off	3-32
	3.5.14	S-SS - Power Auto/Manual	3-33
	3.5.15	S-SS - Power Boosting	3-33
	3.5.16	PDCCH - On / Off	3-33
	3.5.17	PDCCH - Power Auto / Manual	3-34
	3.5.18	PDCCH - Power Boosting	3-34
	3.5.19	PCFICH - On/Off	3-34
	3.5.20	PCFICH - Power Auto / Manual	3-35
	3.5.21	PCFICH - Power Boosting	3-35
	3.5.22	PHICH - On / Off	3-36
	3.5.23	PHICH - Power Auto / Manual	3-37
	3.5.24	PHICH - Power Boosting	3-37
	3.5.25	PDSCH - Power Auto / Manual	3-38
	3.5.26	PDSCH - Power Boosting	3-38
	3.5.27	PHICH - TDD m i=1(E-TM) On/Off	3-39
	3.5.28	PHICH - Ng	3-39
	3.5.29	PHICH - Duration	3-39
	3.5.30	Number of PDCCH Symbols - Auto/Manual 3	8-40
	3.5.31	Number of PDCCH Symbols	8-41
	3.5.32	PDCCH Mapping	8-41
	3.5.33	PDCCH Format	3-42
	3.5.34	Number of PDCCHs	8-43
	3.5.35	Channel Estimation	8-43
	3.5.36	DwPTS	8-43
	3.5.37	PDSCH EVM Calculation	8-44
	3.5.38	Test Model Starting Frame Type	8-44
	3.5.39	Measurement Filter Type	8-45
	3.5.40	Extended Freq Lock Range	8-45
	3.5.41	Operating Detail Settings Dialog	8-45
	3.5.42	Analysis Frame Position	3-46
	3.5.43	Analysis Offset Time	3-46
3.6	Modula	ation Analysis Measurement and Results	3-47
	3.6.1	Setting Storage Mode/Count	3-48
	3.6.2	Trace Mode	3-49
	3.6.3	Frame Offset	8-50
	3.6.4	Main Numeric Results	8-51
	3.6.5	Setting EVM Display Units and Scale	8-51
	3.6.6	Constellation	3-52
	3.6.7	EVM vs Subcarrier	8-53
	3.6.8	EVM vs Symbol	8-55
	3.6.9	Spectral Flatness	8-57
	3.6.10	PDSCH Constellation	3-59
Chapter 3 Measurement

	3.6.11	Subframe Number	. 3-59
	3.6.12	Resource Block Number	. 3-60
	3.6.13	Power vs RB	. 3-61
	3.6.14	EVM vs RB	. 3-62
	3.6.15	Marker	. 3-63
	3.6.16	Summary	. 3-66
	3.6.17	Test Model Summary	. 3-69
3.7	Power	vs Time Setting	. 3-71
	3.7.1	Wide Dynamic Range	. 3-72
	3.7.2	Noise Correction	. 3-73
	3.7.3	Pre-Amp Mode	. 3-73
	3.7.4	Channel bandwidth	. 3-74
	3.7.5	Setting smoothing (Smoothing)	. 3-74
	3.7.6	Select Mask	. 3-75
	3.7.7	Mask Setup	. 3-75
	3.7.8	Frame Sync	. 3-80
	3.7.9	Limiter Mode	. 3-81
3.8	Measu	rement and Result for Power vs Time	. 3-84
	3.8.1	Averaging (Storage)	. 3-86
	3.8.2	Main Numeric Results	. 3-87
	3.8.3	Marker	. 3-89
3.9	MIMO	Summary Settings	. 3-91
	3.9.1	Number of Antenna Ports	. 3-91
	3.9.2	Antenna Port	. 3-91
	3.9.3	Active Antenna Threshold	. 3-92
3.10	MIMO	Summary Measurement Results	. 3-93
	3.10.1	Numeric Results	. 3-94
3.11	Setting	Batch Measurement	. 3-95
	3.11.1	Common Settings : Storage Mode	. 3-95
	3.11.2	Common Settings : Storage Count	. 3-95
	3.11.3	Common Settings : Storage Mode for	
		Unwanted Emissions	. 3-95
	3.11.4	Common Settings : Storage Count for	
		Unwanted Emissions	. 3-96
	3.11.5	Common Settings : Starting Subframe	
		Number	. 3-96
	3.11.6	Common Settings : Measurement Interval	. 3-97
	3.11.7	Common Settings : Starting OFDM Symbol	
		Number	. 3-97
	3.11.8	Common Settings : Measurement Interval for	r
		Unwanted Emissions	. 3-98
	3.11.9	Common Settings : Modulation Analysis	. 3-98
	3.11.1	0 Common Settings : OBW	. 3-99
	3.11.1	1 Common Settings : ACLR	. 3-99

3.11.12	Common Settings : OBUE
	(Operating Band Unwanted Emissions) 3-99
3.11.13	Band Settings : Measurement Item
3.11.14	Band Settings : Carrier Frequency
3.11.15	Band Settings : Input Level 3-101
3.11.16	Band Settings : Pre-Amp 3-102
3.11.17	Band Settings : Level Offset 3-102
3.11.18	Band Settings : Offset Value 3-102
3.11.19	Band Settings : Contiguous Mode 3-103
3.11.20	Band Settings : OBUE Standard 3-103
3.11.21	Band Settings : OBUE Standard Additional3-104
3.11.22	CC Settings : Measurement Item 3-104
3.11.23	CC Settings : Frequency Band 3-105
3.11.24	CC Settings : Frequency Offset 3-105
3.11.25	CC Settings : Channel Bandwidth 3-106
3.11.26	CC Settings : Test Model 3-106
3.11.27	CC Settings :
	Test Model Starting Frame Type 3-107
3.11.28	CC Settings :
	Uplink-downlink Configuration
3.11.29	CC Settings :
	Special Subframe Configuration 3-108
3.11.30	CC Settings : Synchronization Mode 3-108
3.11.31	CC Settings : Cell ID 3-109
3.11.32	CC Settings : CRS Power Boosting
3.11.33	CC Settings :
	CRS Number of Antenna Ports
3.11.34	CC Settings :
	CSI-RS Number of Antenna Ports 3-110
3.11.35	CC Settings : CRS Antenna Port 3-111
3.11.36	CC Settings : CSI-RS Antenna Port
3.11.37	CC Settings : PDSCH Modulation Scheme3-112
3.11.38	CC Settings : EVM Window Length
3.11.39	CC Settings : Channel Estimation
3.11.40	CC Settings : DwPTS
3.11.41	CC Settings :
0 4 4 4 0	DWP1S for Unwanted Emissions
3.11.42	CC Settings : Measurement Filter Type 3-114
3.11.43	CC Settings : PBCH On/OTT
3.11.44	CC Settings : PBCH Power Auto/Manual 3-115
3.11.45	CC Settings : PBCH Power Boosting 3-115
3.11.46	CC Settings : P-SS Un/Uπ
3.11.47	CC Settings : P-SS Power Auto/Manual 3-116
3.11.48	CC Settings : P-SS Power Boosting

Chapter 3 Measurement

	3.11.49 CC Settings : S-SS On/Off 3-117
	3.11.50 CC Settings : S-SS Power Auto/Manual 3-118
	3.11.51 CC Settings : S-SS Power Boosting 3-118
	3.11.52 CC Settings : PDCCH On/Off 3-119
	3.11.53 CC Settings : PDCCH Power Auto/Manual 3-119
	3.11.54 CC Settings : PDCCH Power Boosting 3-120
	3.11.55 CC Settings : PCFICH On/Off 3-120
	3.11.56 CC Settings : PCFICH Power Auto/Manual3-121
	3.11.57 CC Settings : PCFICH Power Boosting 3-121
	3.11.58 CC Settings : PHICH On/Off 3-122
	3.11.59 CC Settings : PHICH Power Auto/Manual . 3-122
	3.11.60 CC Settings : PHICH Power Boosting 3-123
	3.11.61 CC Settings : PDSCH Power Auto/Manual 3-123
	3.11.62 CC Settings : PDSCH Power Boosting 3-124
	3.11.63 CC Settings : PHICH - Ng 3-124
	3.11.64 CC Settings : PHICH Duration 3-125
	3.11.65 CC Settings : Number of PDCCH Symbols -
	Auto/Manual3-125
	3.11.66 CC Settings : Number of PDCCH Symbols
	for Subframe 1 and 6 3-126
	3.11.67 CC Settings : Number of PDCCH Symbols 3-126
	3.11.68 CC Settings : PDCCH Mapping 3-127
	3.11.69 CC Settings : PDCCH Format 3-127
	3.11.70 CC Settings : Number of PDCCHs
	3.11.71 CC Settings : CSI-RS On/Off 3-128
	3.11.72 CC Settings : CSI-RS Configuration 3-129
	3.11.73 CC Settings : CSI-RS Periodicity T 3-129
	3.11.74 CC Settings : CSI-RS Subframe Offset 3-130
3.12	Batch Measurement Results
	3.12.1 Measurement results 3-131
3.13	Spectrum Measurement 3-133
	3.13.1 Measurement results 3-135
	3.13.2 Advanced Settings

3.1 Basic Operation

3.1.1 Screen layout

This section describes the screen layout of the MX269022A.

Figure 3.1.1-1 Screen Appearance (Modulation Analysis)

1. Title

This displays the title of the application. The title can be changed.

6.2 Setting Title

2. Measurement Parameter

This displays the settings of	the main parameters.
Carrier Freq.	Input signal carrier frequency setting
Modulation	PDSCH modulation method setting
	(Displayed when Test Model set to Off)
Test Model	Test model setting
	(Displayed when Test Model not set to
	Off)
Channel Bandwidth	Channel bandwidth setting
Input Level	Average power setting while input
	signal transmission on
ATT	Internal attenuator setting (automatic)

Offset	Level offset setting (displayed at Offset
	On)
Trigger	Trigger signal type setting
	(displayed at Trigger Switch On)
Delay	Trigger delay setting
	(displayed at Trigger Switch On)
Reference Signal	Reference Signal detection method

3. Measurement Status

This displays the measurement results of status and storage status.

Level Over indicates that the level of the signal input for performing measurement is too large for the settings. When Level Over is displayed, either increase the Input Level value or decrease the level of the input signal and measure again.

3.2.2 Input Level

"Measuring" indicates that measurement is in progress.

3.1.3 Performing Measurement

Signal Abnormal indicates that frame synchronization with the input signal has failed. Measurement results are not displayed on the screen when this happens. When the signal abnormal is displayed, check the status of the input signal and the correct settings for this application.

3.1.4 Measurement Signals and Troubleshooting Errors

The storage status is indicated at the right side of the measurement status field. It is not displayed when Storage Mode is set to Off. The numeric value at the right side of "/" indicates the Storage Count setting and the numeric value at the left side indicates the completed measurement count.

4. Constellation

This field displays the symbol constellation for the specified range. The marker positions and I and Q Coordinates for the marker positions are displayed on the left side of the constellation screen.

The constellation is displayed when Modulation Analysis is selected.

5. Numeric Results/Graph (Upper)

This displays the measurement results for the currently selected Measure function and Trace Mode. Measurement

6.	Graph/Numeric Results (Lower)						
	This displays the measurement results for the currently selected						
	Measure Function and Trace Mode. The Trace Mode contents are						
	displayed when Modulation Analysis is selected.						
7.	Reference Frequency Signal						
	This indicates that type and status of the detected reference						
	frequency signal.						
	Ref.Int	Internal reference frequency signal/lock status					
	Ref.Ext	External reference frequency signal/lock status					
	Ref.Int Unlock	Internal reference frequency signal/unlock					
		status					
	Ref.Ext Unlock	External reference frequency signal/unlock					
		status					
8.	Pre-amplifier Setting						
	This indicates a pre-amplifier settings status.						
	Pre-Amp On	Preamplifier On					
	Pre-Amp Off	Preamplifier Off or not installed					
		3.2.4 Pre-Amp					
9.	Correction Setting						
	This is displayed when the Correction function is On.						
	Refer to the MS2690A/MS2691A/MS2692A Signal Analyzer						
	Operation Manual (Mainframe , Operation), MS2830A Signal						
	Analyzer Operation Manual (Mainframe Operation), or MS2850A						
	Signal Analyzer Operation Manual (Mainframe , Operation).						
10.). Message						
	The indicates the cause of the Signal Abnormal display.						
	"Synchronizing signal cannot be detected" indicates that						
	synchronization with the input signal was lost.						
	3 .	1.4 Measurement Signals and Troubleshooting Errors					
11.	Function Menu						
	This indicates the functions that can be executed by the relevant						
	function keys.						

3.1.2 Types of Measurement Function

This application has the following measurement functions.

(1) Modulation Analysis

Measures the modulation accuracy such as frequency error, EVM, etc.

(2) Power vs Time

Measures the time fluctuations of power of the obtained measured signal.

(3) ACP (FFT)

Recalls the ACP function of the Signal Analyzer function. This function is only enabled when Channel Bandwidth is set to 1.4, 3, and 5 MHz.

(4) ACP (Swept)

Recalls the ACP function of the Spectrum Analyzer function.

(5) Channel Power (FFT)

Calls Signal Analyzer function and Channel Power function

(6) Channel Power (Swept)

Recalls the Channel Power function of the Spectrum Analyzer function.

(7) OBW (FFT)

Recalls the OBW function of the Signal Analyzer function.

(8) OBW (Swept)

Recalls the OBW function of the Spectrum Analyzer function.

 (9) Spectrum Emission Mask (Swept)
 Recalls the spectrum emission mask function of the Spectrum Analyzer function.

3.1.3 Performing Measurement

There are two measurement modes: single and continuous. Measurement is performed once in the single measurement mode, and continuously in the continuous measurement mode.

Single Measurement

After capturing an input signal based upon the settings of Capture Time, the selected measurement items are measured only for the measurement count (Storage Count) before measurement is stopped.

- 1. Press Measure to select the measurement function.
- 2. Press .

Continuous Measurement

After capturing an input signal based upon the settings of Capture Time, the selected measurement items are continuously measured for the measurement count (Storage Count).

- 1. Press Measure to select the measurement function.
- 2. Press \bigcirc

4.1.1 Loading IQ Data

Notes:

• The two measurement modes are not available when the Replay function is executed. For the Replay function, analysis starts when the IQ data file is specified.

4.2 Replay Function

• The continuous measurement cannot be performed at the Power vs Time Measurement. The measurement mode is switched forcefully from the continuous measurement to the single measurement.

3.1.4 Measurement Signals and Troubleshooting Errors

Table 3.1.4-1 lists the minimum requirements for measuring with the MX269022A. To measure with this application, check that the input signal satisfies the conditions listed in Table 3.1.4-1 and that the application settings match these conditions.

ltem	Value					
Wireless standard	3GPP TS36.211 V8.6.0 (2009-03)					
Multiplex method	TDD					
Frame length (1 frame)	10 ms = 10 subframes					
Channel Bandwidth	1.4 / 3 / 5 / 10 / 15 / 20 MHz					
Cyclic prefix (CP)	Normal cyclic prefix					
Uplink-downlink	0 to 6					
configuration	(DL Subframe included in subframe)					
Special subframe	0 to 8					
configuration	(DwPTS included)					
Physical channels	PDSCH (required), PBCH, PCFICH, PDCCH, PHICH					
Physical signals	Reference signal (required), Synchronization signal					
Test Model	E-TM1.1 / 1.2 / 2 / 2a / 3.1 / 3.1a / 3.2 / 3.3					

 Table 3.1.4-1
 Measurement Signals (minimum conditions)

Note:

This application is for frame synchronizing the Reference or Synchronization signals (determined by Synchronization Mode settings) included in 10 Downlink subframes (5 frames max.).

If Signal Abnormal is displayed, consider the following possible causes. Check the input signal parameter settings and try to measure again.

- (1) The Carrier Frequency Settings do not match the input signal carrier frequency.
- (2) The input level is too low for the Input Level setting.
- (3) The Synchronization Mode is set to Synchronization Signal but there is no Synchronization Signal in the input signal.
- (4) The Synchronization Mode is set to Reference Signal but the set Cell ID is different from the input signal.

3.2 Setting Frequency and Level

3.2.1 Carrier Frequency

This sets the carrier frequency of the input signal.

You cannot set Carrier Frequency when the Replay function is executed.

4.2 Replay Function

3.2.2 Input Level

This sets the average power (rms) in the input signal transmission-on period. The difference between the average power and the peak power (crest factor) with this application is 14 dB. When calling the signal analyzer or spectrum analyzer ACP, Channel Power, OBW, and SEM measurement functions from this application, set Input Level +14 dB as Reference Level.

You cannot set Input Level when the Replay function is executed.

4.2 Replay Function

Procedure (Amplitude) > [*] (Input Level) or (Amplitude) > [*] (Input Level) or (Amplitude) > [*] (Input Level) or (Input Level) or (Input Level) or (Input Level) or (Input Level) (Input

3.2.3 Offset

This adds the displayed offset to the Input Level setting. Input the increase or decrease in the level due to devices such as cables, attenuators, amplifiers, etc., between this equipment and the measurement target as the level offset and set the same input level as the output level at the antenna of the DUT.

Figure 3.2.3-1 Setting Input Level and Level Offset

Offset

Procedure

Menu	> F2 (Amplitude) > F7 (Offset	;)
Options	On, Off	
Default	Off	

Note:

Offset is set automatically to on when setting Offset Value.

Offset Value

Note:

The correction set at the System Config. screen is used irrespective of the Offset Value.

3.1.1 Screen layout

3.2.4 Pre-Amp

The MS2690A/MS2691A/MS2692A-008/108 6 GHz Preamplifier, MS2830A-008/108 Preamplifier, or MS2850A-068/168 Preamplifier (hereinafter referred to as "Option 008") is installed in this instrument. The level sensitivity can be increased by setting this pre-amp to On.

You cannot set Pre-Amp when the Replay function is executed.

4.2 Replay Function

Procedure

Notes:

- If opt-008 is not installed, the Pre-Amp menu is not displayed.
- When Wide Dynamic Range is On at Power vs Time measurement, the Pre-Amp menu is displayed in gray and the function is disabled.

3.2.5 Auto Range

This function adjusts input level according to input signal.

You cannot set Auto Range when the Replay function is executed.

4.2 Replay Function

You cannot set Auto Range when Limiter Mode is On.

3.7.9 Limiter Mode

Procedure

 $\overbrace{\textcircled{f}}^{\text{Menu}} > \overbrace{\textcircled{f2}}^{\text{Menu}} (\text{Amplitude}) > \overbrace{\textcircled{f3}}^{\text{F3}} (\text{Auto Range})$

3.3 Setting Trigger

The trigger signal determining the measurement start timing may be either the external input signal from the Trigger Input connector on the back panel or an internal signal generated from the optional Vector Signal Generator. Using this application, a header-timing signal with a 10-ms frame interval is input.

You cannot set Trigger when the Replay function is executed.

4.2 Replay Function

Measurement

3.3.1 Trigger Switch

This enables/disables the trigger function.

3.3.2 Trigger Source

This sets the trigger signal type.

Procedure Menu > [6] (Trigger) > [2] (Trigger Source) or [100#164] > [2] (Trigger Source)

Options

-							
	Extern	al^{*1}	Measurement starts with external trigger signal input.				
	Extern	nal 2^{*2}	Measurement starts with external trigger 2				
			signal input.				
	SG Ma	ırker	Starts measurement by the timing of internal				
			Vector Signal Generator option.				
	Frame	*3	Starts measurement by the timing of				
			equipment-internal trigger.				
	Frame	Sync Setup	*4 Sets the Frame Trigger starting source if				
	Trigger Source is set to Frame. Frame Sync						
	Setup function menu is displayed.						
			Refer to 3.3.5 "Frame Sync Setup"				
	*1:	External 1	s displayed only for MS2850A.				
	*2: External 2 is selectable only for MS2850A.						
	*3: Frame is selectable only for MS2850A.						
	*4: Frame Sync Setup is selectable only for MS2850A.						
Defa	ult		External				

3.3.3 Trigger Slope

This sets the trigger polarity.

3.3.4 Trigger Delay

This sets the difference between the trigger signal detection timing and the measurement start timing.

Procedure

3.3.5 Frame Sync Setup

Sets the Frame Trigger starting source if Trigger Source is set to Frame.

Procedure

 $\overbrace{r}^{\text{Menu}} > \overbrace{r}^{\text{FG}} (\text{Trigger}) > \overbrace{r}^{\text{F2}} (\text{Trigger Source}) > \overbrace{r}^{\text{F3}} (\text{Frame Sync Setup})$ or $\overbrace{r}^{\text{Trigger}} > \overbrace{r}^{\text{F2}} (\text{Trigger Source}) > \overbrace{r}^{\text{F3}} (\text{Frame Sync Setup})$

Options

Frame Trigger Period	Sets the generation period for the frame
	trigger signal. 10 ms fixed
Frame Sync Offset	Sets the offset time from when a trigger
	signal (the equipment-internal trigger
	signal, Wide IF Video signal, or external
	trigger signal) is generated until a trigger
	actually occurs. 0 s fixed

3.4 Common Settings

This section explains the shade parameters used by all measurement functions of this application. These parameters are mainly referenced for performing synchronization processing related to the input signal.

3.4.1 Channel Bandwidth

This sets the channel width.

3.4.2 Test Model

When the input signal is an E-UTRA Test Model (Test Model hereafter) defined by 3GPP TS36.141, Test Model is set. When Test Model is set, the parameters defined by Test Model are fixed. If there is no Test Model, Off is set.

3.4.3 Test Model Version

This sets the version of 3GPP TS36.141 when the input signal is an E-UTRA Test Model (Test Model hereafter) defined by 3GPP TS36.141.

Procedure	
Measure	> [F1 (Modulation Analysis) > [F7 (Detail Settings)
Options	3GPP TS36.141 V8.2.0 (2009-03),
	3GPP TS36.141 V8.3.0 (2009-05)
Default	3GPP TS36.141 V8.3.0 (2009-05)

3.4.4 **Uplink-downlink Configuration**

This sets the position of the Downlink subframe in the frame.

Table 3.4.4-1 shows the relation between the Uplink-downlink Configuration and subframe type.

Uplink-downlink		Subframe number								
Configuration	0	1	2	3	4	5	6	7	8	9
0	D	S	U	U	U	D	S	U	U	U
1	D	S	U	U	D	D	S	U	U	D
2	D	S	U	D	D	D	S	U	D	D
3	D	S	U	U	U	D	D	D	D	D
4	D	S	U	U	D	D	D	D	D	D
5	D	S	U	D	D	D	D	D	D	D
6	D	S	U	U	U	D	S	U	U	D

Table 3.4.4-1 Relation between Uplink-downlink Configuration and Subframe Type

D: Downlink subframe

U: Uplink subframe

S: Special subframe (DwPTS + GP + UpPTS)

This can be set when Test Model is Off. The setting is fixed to 3 when Test Model is not Off.

Procedure

> 🕞 (Common Setting)

> [13] (Uplink-downlink Configuration)

0 to 6

Range Default 3

Special Subframe Configuration 3.4.5

This sets the configuration of the special subframe.

The special subframe is composed of three parts: the DwPTS (Downlink part of the special subframe), the GP (Guard Period), and the UpPTS (Uplink part of the special subframe). The length of the DwPTS and UpPTS are determined by the Special Subframe Configuration as shown in Table 3.4.5-1.

Table 5.4.5-1 Special Subframe Configuration		
Special Subframe Configuration	DwPTS	UpPTS
0	$6592 \times T_s$	
1	$19760 \times T_s$	
2	$21952 \times T_s$	$2192 \times T_s$
3	24144×T _s	
4	$26366 \times T_s$	
5	$6592 \times T_s$	
6	$19760 \times T_s$	490.4×/T
7	$21952 \times T_s$	4384×1 _s
8	$24144 \times T_s$	

Table 3.4.5-1 Special Subframe Configuration

This can be set when Test Model is Off. It is fixed to 8 when Test Model is not Off.

Procedure

F3 (Common Setting) >

> [4] (Special Subframe Configuration)

Range 0 to 8 Default 8

3.4.6 Synchronization Mode

This sets the type of physical signal used for synchronization processing with the input signal. When Reference Signal is selected, Cell ID must also be set correctly.

3.4.7 Cell ID

This can be set when Test Model is Off. It is fixed to Synchronization Signal when Test Model is not Off.

Procedure Menu > F3 (Common Setting)> F5 (Synchronization Mode) or Messure > F1 (Modulation Analysis) > F7 (Detail Settings) Options Reference Signal, Synchronization Signal Default Synchronization Signal

3.4.7 Cell ID

This sets the Cell ID.

It is used to create the Reference Signal for synchronization and for defining the physical channel depending on the Cell ID value. This parameter is only enabled when Synchronization Mode is set to Reference Signal.

3.4.6 Synchronization Mode

Procedure Menu > F3 (Common Setting) > F6 (Reference Signal) > F4 (Cell ID) or Messure > F1 (Modulation Analysis) > F7 (Detail Settings) Range 0 to 503 Default 0

3

3.4.8 Reference Signal Boosting

This sets the Reference Signal Boosting level.

This application uses the power value for the specified Reference Signal plus the value specified by this parameter as the reference level for each physical channel and the physical signal (0 dB).

Physical Channel / Physical Signal Reference Level = Reference Signal Power - Reference Signal Boosting Level

It can be set when Test Model is Off. It is fixed to 0.000 dB when Test Model is not Off.

3.4.9 Number of Antenna Ports

This sets the number of antennas for the DUT.

It can be set when Test Model is Off. It is fixed to 1 when Test Model is not Off.

3.4.10 Antenna Port

This sets the input signal antenna number.

It can be set when Test Model is Off. It is fixed to 0 when Test Model is not Off.

3.5 Setting Modulation Analysis

This section explains the measurement conditions for modulation analysis. Unless specifically excluded, calculation is performed using the same data without recapturing the input signal when parameters described in this section are changed after Single measurement ends and when the Storage Mode is Off.

3.5.1 Starting Subframe Number

This sets the subframe number for starting analysis based on the synchronized frame header.

Procedure

Table 3.5.1-1 Range of Starting Subframe Number

Uplink-downlink Configuration	Range
0	$0, 5 + 10 \times N$
1	0, 4, 5, 9 + 10×N
2	0, 3, 4, 5, 8, 9 + 10×N
3	0, 5, 6, 7, 8, 9 + 10×N
4	0, 4, 5, 6, 7, 8, 9 + 10×N
5	0, 3, 4, 5, 6, 7, 8, 9 + 10×N
6	$0, 5, 9 + 10 \times N$

Where N = 1 to 4

0

Default

Figure 3.5.1-1 shows the Downlink Subframe to be analyzed when Starting Subframe Number is 5, and Measurement Interval is 12. The analysis target at this time is 3 subframes, such as Subframe 5 of Frame 0, and subframe0 and 5 of Frame 1.

Chapter 3 Measurement

Starting Subframe Number / Measurement Interval

3.5.2 Measurement Interval

This sets the analysis interval in subframe units. The value is set as the interval of contiguous subframes, irrespective of the subframe type.

The subframes for modulation analysis are the Downlink subframe and the Special subframe. The measurement results are unaffected even if the Uplink subframe count including the start to finish measurement interval is changed.

Figure 3.5.1-1 shows an example of setting the Measurement Interval to 12. The measurement results do not change at this time, because only the Uplink subframe is changed when Measurement Interval is between 12 and 15.

3.5.3 PDSCH Modulation Scheme

This sets the modulation mode for the PDSCH.

The value of this parameter is applied to the entire measurement interval. As a result, PDSCH requires the same modulation method for all when QPSK, 16QAM, 64QAM, and 256QAM is selected.

It can be set when test model is Off. The setting is disabled when Test Model is not Off.

Procedure

Measure > [F1] (Modulation Analysis) >

[F2] (PDSCH Modulation Scheme)

Options

QPSK	Analyzes an input signal as a QPSK modulated signal.
16QAM	Analyzes an input signal as a 16QAM modulated signal.
64QAM	Analyzes an input signal as a 64QAM modulated signal.
256QAM	Analyzes an input signal as a 256QAM modulated signal.
AUTO	Analyzes an input signal after judging its modulation
	scheme automatically (Excluding 256QAM) (Default).

Note:

If DwPTS is included in the measurement target, sometimes auto detection is not performed correctly because the PDSCH count included in DwPTS is too small. In this case, set any of QPSK, 16QAM, 64QAM, and 256QAM to the PDSCH Modulation Scheme matching the input signal.

3.5.4 Total EVM & Constellation Composite

This sets whether or not to display the Total EVM measurement results and Constellation graph for each channel (RS, PDSCH, PBCH, P-SS, S-SS, PDCCH, PCFICH, PHICH, DTX).

Procedure

Measure	> [1 (Mo	odula	tion A	nal	ysis)	>
\bigcap			~			~	

[F5] (Total EVM & Constellation Composite) >

Options	Include, Exclude	
Default	RS	Include
	PDSCH	Include
	PBCH	Include
	P-SS	Include
	S-SS	Include
	PDCCH	Include
	PCFICH	Include
	PHICH	Include
	DTX	Exclude

3.5.5 EVM Window Length

This sets the length of EVM Window applied to OFDM symbol as the width from the center position of Cyclic prefix. It can be set either as the FFT sample count W, or in Ts units (time per sample). Refer to Table 3.5.5-1 for the conversion method.

EVM Window is applied to OFDM symbol as shown in Fig. 3.5.5-1.

Assuming EVM Window Length is W, the EVM Window for the FFT size from the point (Cyclic prefix center - W/2) or (Cyclic prefix center + W/2) is applied to OFDM symbol.

EVM Low indicates the measurement result when applying EVM Window from the point (Cyclic prefix center - W/2); EVM High indicates the measurement result when applying EVM Window from the point (Cyclic prefix center + W/2). Finally, the EVM result is uses the larger of the larger of the EVM High and EVM Low values.

Note:

"Cyclic prefix center" actually indicates the next position.

At Cyclic prefix length 144 (OFDM symbol 1 to 6): FFT point 72

At Cyclic prefix length 160 (OFDM symbol 0: FFT point 88

OFDM Symbol # n

Figure 3.5.5-1 Window Length

Procedure		
Measure	> [1] (Modulation Analysis) > [16] (EVM Window	/ Length)
Range		
Ts:	0 to 142	
W :	When Channel Bandwidth is set to 1.4 MHz, 0	to 8
	When Channel Bandwidth is set to 3 MHz: 0	to 17
	When Channel Bandwidth is set to 5 MHz: 0	to 35
	When Channel Bandwidth is set to 10 MHz: 0	to 71
	When Channel Bandwidth is set to 15 MHz: 0	to 106
	When Channel Bandwidth is set to 20 MHz: 0	to 142
Default	See Table 3.5.5-2.	

Table 3.5.5-2 EVM Window Length Defaults and W/Ts Conversion

Channel Bandwidth	EVM Window Length (W)	W/Ts Conversion
1.4 MHz	5	×16
3 MHz	12	×8
$5~\mathrm{MHz}$	32	$\times 4$
10 MHz	66	×2
$15 \mathrm{~MHz}$	102	× (2048/1536)
20 MHz	136	×1

3.5.6 PBCH - On / Off

This enables or disables the PBCH.

PBCH is arranged from the 8th to 11th symbol of Subframe 0.

This is supported when Test Model is set to Off. It is fixed to On when Test Model is set to not Off.

Procedure

3

3.5.7 PBCH - Power Auto/Manual

This sets the method for determining the PBCH Boost level.

This is available when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure >	[F1] (Modulation Analysis) > [F7] (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.8 PBCH - Power Boosting

This sets the PBCH Boost level as a relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

0.000 dB

It can be set when test model is Off. When Test Model is not Off, the defined value for Test Model is fixed.

Procedure

Messure > [F1 (Modulation Analysis) > [F7 (Detail Settings) ge -20.000 dB to +20.000 dB

Default

Range

3.5.9 Precautions at Power Auto Setting

When the Power Auto/Manual setting for the physical channel/physical signal is Auto, this application determines the ideal signal for calculating the EVM based on the measured level. As a result, when there is a difference between the expected boost level and the actual signal level, sometimes this level difference is not reflected in the EVM result.

When the physical channel/physical signal Boost setting level is clear and is the same within the measurement interval, set that Boost level.

Figure 3.5.9-1 Determining Ideal Signal at Power Auto Setting

3.5.10 P-SS - On/Off

This enables/disables P-SS (Primary Synchronization Signal).

P-SS is arranged (aligned) at the 3rd symbol of Subframe 1 and 6.

This can be set when Synchronization Mode is set to Reference Signal. It is fixed to On when Synchronization Mode is set to Synchronization Signal.

Procedure

Measure	F1 (Modulation Analysis) > F7	(Detail Settings)
Range	On (Check box selected)	P-SS on
	Off (Check box not selected)	P-SS off
Default	On	

3.5.11 P-SS - Power Auto / Manual

This sets the method for determining the P-SS Boost level.

This is supported when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure >	[F1] (Modulation Analysis) > [F7] (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.12 P-SS - Power Boosting

This sets the P-SS Boost level as a relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

MessureF1(Modulation Analysis) > F7(Detail Settings)Range-20.000 dB to +20.000 dBDefault0.000 dB

3.5.13 S-SS - On/Off

This enables/disables S-SS (Secondary Synchronization Signal).

S-SS is arranged (aligned) at the last symbol of Slot 0 (Subframe 0) and Slot 11 (Subframe 5).

This can be set when Synchronization Mode is set to Reference Signal. It is fixed to On when Synchronization Mode is set to Synchronization Signal.

Procedure		
Measure	F1 (Modulation Analysis) > F7	(Detail Settings)
Range	On (Check box selected)	S-SS on
	Off (Check box not selected)	S-SS off
Default	On	

3.5.14 S-SS - Power Auto/Manual

This sets the method for determining the S-SS Boost level.

This is supported when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure	[F1] (Modulation Analysis) > [F7] (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.15 S-SS - Power Boosting

This sets the S-SS Boost level as a relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

Range Default

Messure > F1 (Modulation Analysis) > F7 (Detail Settings) -20.000 dB to +20.000 dB 0.000 dB

3.5.16 PDCCH - On / Off

This enables or disables the PDCCH.

PDCCH is arranged (aligned) as the OFDM symbol length determined by Number of PDCCH Symbols from the 0th OFDM symbol of each subframe (1st OFDM symbol only at Channel Bandwidth 1.4 MHz).

This is available when Test Model is set to Off. This is fixed to On when Test Model is not set to Off.

Procedure

Measure	(Modulation Analysis) > [F7]	(Detail Settings)
Range	On (Check box selected)	With PDCCH
	Off (Check box not selected)	Without PDCCH
Default	On	

3.5.17 PDCCH - Power Auto / Manual

This sets the method for determining the PDCCH Boost level.

This is available when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure >	[F1] (Modulation Analysis) > [F7] (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.18 PDCCH - Power Boosting

This sets the PDCCH Boost level as a relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

MessureF1(Modulation Analysis)F7(Detail Settings)Range-20.000 to +20.000 dBDefault0.000 dB

3.5.19 PCFICH - On/Off

This enables or disables the PCFICH.

PCFICH is arranged (aligned) at the header symbol of the Downlink subframe.

This is supported when Test Model is set to Off. This is fixed to On when Test Model is not set to Off.

Procedure

Measure	> [F1] (Modulation Analysis) > [F7]	(Detail Settings)
Range	On (Check box selected)	With PCFICH
	Off (Check box not selected)	Without PCFICH
Default	On	

3.5.20 PCFICH - Power Auto / Manual

This sets the method for determining the PCFICH Boost level.

This is supported when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure >	[1] (Modulation Analysis) > [1] (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.21 PCFICH - Power Boosting

This sets the PCFICH Boost level as a relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

Messure > F1 (Modulation Analysis) > F7 (Detail Settings) ge -20.000 to +20.000 dB

Range Default

0.000 dB

3.5.22 PHICH - On / Off

This enables or disables the PHICH.

PHICH is arranged (aligned) at the head symbol of each Downlink subframe at Normal cyclic prefix.

There may be multiple instances of PHICH in the resource element(s) comprising the PHICH groups. PHICH is separated (differentiated, classified) according to the orthogonal sequence in PHICH group.

The number of PHICH groups included in 1 subframe is determined by the equation $m_i \bullet N_{PHICH}^{group}$. The values of N_{PHICH}^{group} and m_i are determined by the following equation and Table 3.5.22-1.

$$N_{PHICH}^{group} = \left\lceil N_g \left(N_{RB}^{DL} / 8 \right) \right\rceil$$

Table	3.5.22-1	m_i	Value
-------	----------	-------	-------

Uplink-downlink	Subframe No.i									
Configuration	0	1	2	3	4	5	6	7	8	9
0	2	1	-	-	-	2	1	-	-	-
1	0	1	-	-	1	0	1	-	-	1
2	0	0	-	1	0	0	0	-	1	0
3	1	0	-	-	-	0	0	0	1	1
4	0	0	-	-	0	0	0	0	1	1
5	0	0	-	0	0	0	0	0	1	0
6	1	1	-	-	-	1	1	-	-	1

3.5. 28 PHICH - Ng

This is supported when Test Model is set to Off. This is fixed to On when Test Model is not set to Off.

3.5.23 PHICH - Power Auto / Manual

This sets the method for determining the PHICH Boost level.

This is supported when Test Model is set to Off. This is fixed to Manual when Test Model is not set to Off.

3.5.9 Precautions at Power Auto Setting

Procedure

Measure	[F1 (Modulation Analysis) > [F7 (Detail Settings)
Options	Auto, Manual
Default	Auto

3.5.24 PHICH - Power Boosting

This sets the PHICH Boost level as relative value based on the Reference Signal level.

The Power Auto/Manual setting is enabled at Manual.

0.000 dB

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

Messure > F1 (Modulation Analysis) > F7 (Detail Settings) ge -20.000 to +20.000 dB

Range Default

3.5.25 PDSCH - Power Auto / Manual

This sets the method for determining the PDSCH Boost level.

It can be set when test model is Off.

3.5.3 PDSCH Modulation Scheme

3.5.9 Precautions at Power Auto Setting

Procedure

Measure > [F1 (Modulation Analysis) > [F7 (Detail Settings)

Options Au Default Au

Auto, Manual Auto

3.5.26 PDSCH - Power Boosting

This sets the PDSCH Boost level as a relative value based on the Reference Signal level.

The above value is valid when Power is set to Manual.

It can be set when test model is Off. When Test Model is not Off, the defined value for Test Model is fixed.

Procedure

MessureF1(Modulation Analysis) > F7(Detail Settings)Range-20.000 to +20.000 dBDefault0.000 dB
3.5.27 PHICH - TDD m_i=1(E-TM) On/Off

This sets the mi parameter, which is one parameter determining the PHICH group number.

This is supported when Test Model is set to Off. This is fixed to On when Test Model is not set to Off.

Procedure

Measure	> \square (Modulation Analysis) > (F7 (Detail Settings)
Options	On(Check box selected)	The mi parameter is set to 1
		for all subframes.
	Off(Check box not selected)	The mi parameter is set to a
		value defined in 3GPP
		TS36.211.
Default	Off	

3.5.28 PHICH - Ng

This sets the Ng parameter, which is one parameter determining the PHICH group number.

This is supported when Test Model is set to Off. This is fixed to 1/6 when Test Model is not set to Off.

Procedure

3.5.29 PHICH - Duration

This sets PHICH Duration.

It can be set when test model is Off. It is fixed to Normal when Test Model is not set to Off.

Procedure

MessureF1(Modulation Analysis) > F7(Detail Settings)OptionsNormal, ExtendedDefaultNormal

3.5.30 Number of PDCCH Symbols - Auto/Manual

This selects automatic detection and manual setting of the number of OFDM symbols per PDCCH.

When Auto is set, the value is determined from the PCFICH decoded CFI (Control Format Indicator). CFI is information indicating the number of OFDM symbols per PDCCH and is transmitted by PCFICH.

This is enabled when both PDCCH and PCFICH are both on. When PCFICH is Off, the setting changes to Manual.

3.5.16 PDCCH - On/Off

3.5.19 PCFICH - On/Off

This is supported when Test Model is set to Off. It is fixed to Manual when Test Model is not set to Off.

Procedure

Options Auto, Default Auto

3.5.31 Number of PDCCH Symbols

This sets the number of OFDM symbols per PDCCH. There are two types of value: one for Subframe 1 and Subframe 6, and one for other subframes.

This is enabled when Number of PDCCH Symbols - Auto/Manual is set to Manual and PDCCH is set to On.

3.5.16 PDCCH - On/Off

3.5.30 Number of PDCCH Symbols - Auto/Manual

Procedure Measure >	F1 (Mod	ulation Analysis) > 🖅 (Detail Settin	ngs)
Range	Subfran	ne 1 and 6	
		Channel Bandwidth 1.4 MHz	:2
		Channel Bandwidth not 1.4 MHz	: 1 to 2
	Other S	ubframes	
		Channel Bandwidth 1.4 MHz	$\therefore 2 \text{ to } 4$
		Channel Bandwidth not 1.4 MHz	:1 to 3
Default	1		

3.5.32 PDCCH Mapping

This arranges PDCCH and NIL (Dummy PDCCH) in Control Channels Elements (CCEs).

This is enabled when PDCCH is set to On.

3.5.16 PDCCH - On/Off

It can be set when test model is Off. When Test Model is not Off, the defined value for Test Model is fixed.

Procedure Measure > [F1] (Modulation Analysis) > [F7] (Detail Settings)

Range Default Auto

Auto, Easy

3.5.33 PDCCH Format

This sets the PDCCH format. PDCCH format determines the CCE count supported by PDCCH.

This is enabled when PDCCH is enabled and PDCCH Mapping is set to Easy.

3.5.16 PDCCH - On/Off

3.5.32 PDCCH Mapping

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

 Measure
 > [F1] (Modulation Analysis) > [F7] (Detail Settings)

 Range
 0 to 3

 Default
 0

3.5.34 Number of PDCCHs

This sets the PDCCH number included in 1 subframe.

The PDCCH arrangement (alignment) varies according to the PCFICH/PHICH arrangement (alignment). If the setting value for this parameter is larger than the arrangement (alignment) that can actually be set for PDCCH, the maximum value within this application is used.

This is enabled when PDCCH is enabled and PDCCH Mapping is set to Easy.

3.5.16 PDCCH - On/Off

3.5.32 PDCCH Mapping

This is supported when Test Model is set to Off. It is fixed to the value defined for Test Model when Test Model is not set to Off.

Procedure

Messure > F1 (Modulation Analysis) > F7 (Detail Settings) ge 1 to 88

Default

1

Range

3.5.35 Channel Estimation

This sets OFDM signal Channel Estimation processing On and Off.

When Channel Estimation is On, amplitude and phase estimation is performed based on the Reference Signal.

Procedure

MeasureF1(Modulation Analysis) > F7(Detail Settings)OptionsOn, OffDefaultOn

3.5.36 DwPTS

This sets whether or not to measure DwPTS.

Procedure

Measure >	(Modulation Analysis) > [7] (Detail Settings)
Range	Include, Exclude
Default	Exclude

3.5.37 PDSCH EVM Calculation

This specifies the PDSCH EVM Calculation target resource block. This parameter is applied only to the results for PDSCH ALL EVM, PDSCH QPSK EVM, PDSCH 16QAM, PDSCH 64QAM, and PDSCH 256QAM displayed in Summary.

Procedure

Measure > [F1] (Modulation Analysis) > [F7] (Detail Settings) **3GPP, All PDSCH Resource Elements**

3GPP

Range

This is the measurement method defined by 3GPP. When Channel Bandwidth is 1.4 MHz, the calculation target is only 2 pairs of resource block including 138 resource elements. When Channel Bandwidth is not 1.4 MHz, the calculation target is only 2 pairs of resource blocks including 150 resource elements.

All PDSCH EVM Resource Elements

The calculation target is all resource elements allocated to PDSCH. The PDSCH EVM used in the Total EVM calculation is always calculated by this method. 3GPP

Default

3.5.38 Test Model Starting Frame Type

When the input signal is an E-UTRA Test Model (Test Model hereafter) defined by 3GPP TS36.141, Test Model is set. The Test Model signal E-TM1.2, 2, 2a, 3.2, and 3.3 are composed of frame1 and frame2. This function sets either frame 1 or frame 2 as the header frame for starting analysis. Select Unlock when specifying nothing.

Test Model is enabled only for E-TM1.2, E-TM2, E-TM2a, E-TM3.2, and E-TM3.3.

Procedure

Measure > [F1] (Modulation Analysis) > [F7] (Detail Settings)

Options UnLock, frame1, frame2 Default UnLock

3.5.39 Measurement Filter Type

This selects the type of filter used for signal analysis. Select Normal when using a single carrier. For a multicarrier signal, select Narrow to reduce the impact carriers not targeted for measurement.

Narrow is available when Extended Freq Lock Range is set to Off.

Procedure

Measure	> [F1] (Modulation Analysis) > [F7] (Detail Settings)
Options	Normal, Narrow
Default	Normal

3.5.40 Extended Freq Lock Range

This function is for measuring signals with large frequency errors. Set to On to increase the measurable frequency error range.

On is enabled only when the Measurement Filter Type is Normal.

Procedure Messure > F1 (Modulation Analysis) > F7 (Detail Settings) Options Off, On Default Off

3.5.41 Operating Detail Settings Dialog

The Detail Settings dialog box is opened using the following procedure.

Procedure

Messure > [F1 (Modulation Analysis) > [F7 (Detail Settings)

Inputting each parameter and pressing 🔳 (Set) uses the values for measurement.

When [1] (Restore Default Values) is pressed while the Detail Settings dialog box is displayed, the parameters displayed in the Detail Settings dialog box are returned to the same values as the defaults.

3.5.42 Analysis Frame Position

This sets the analysis start position in frame units. This setting is enabled when Capture Time is set to Manual. If Storage Mode is Off, the setting range is determined assuming Storage Count is 1.

If the value of Capture Time Length or Storage Count changes, Analysis Frame Position is automatically set to a value in the setting range.

3.5.43 Analysis Offset Time

This sets the offset of the analysis start position in seconds based on Analysis Frame Position. This setting is enabled when Capture Time is set to Manual. If Storage Mode is Off, the setting range is determined assuming Storage Count is 1.

If the value of Capture Time Length, Storage Count, or Analysis Frame Position changes, Analysis Offset Time is automatically set to a value in the setting range.

3.6 Modulation Analysis Measurement and Results

Modulation analysis is applied to a maximum of five frame intervals according to the Uplink-downlink Configuration, Starting Subframe Number, and Measurement Interval settings.

Unless otherwise described, the target measurement interval per modulation analysis is the averaged value for the Measurement Interval from Starting Subframe Number based on the synchronized frame header.

Modulation analysis measurement is performed as described below.

Procedure

1. Set frequency, level and trigger.

3.2 Setting Frequency and Level

3.3 Setting Trigger

Measurement

3

2. Set system parameters.

3.4 Common Settings

3. Press Messure > [1] (Modulation Analysis).

4. Set modulation analysis related parameters.

3.5 Setting Modulation Analysis

5. Set Storage-related parameters.

3.6.1 Setting Storage Mode/Count

6. Measure.

3.1.3 Performing Measurement

7. Select display contents.

 3.6.2
 Trace Mode

 3.6.3
 Frame Offset

 3.6.5
 Setting EVM Display Units and Scale

3.6.15 Marker

3.6.1 Setting Storage Mode/Count

The Storage (Averaging) setting can be set when Trace Mode is not set to Power vs RB and EVM vs RB.

This setting is disabled when Capture Time is set to Manual and when Capture Time Length is set to 5.

Storage Mode

This enables Storage (Averaging) and the display method.

Procedure				
$\boxed{T_{race}} > \boxed{F4} (Storage) > \boxed{F1} (Mode)$				
Options	Off	Storage off		
	Average	Display average		
	Average & Max	Display average and max.		
Default	Off			

Storage Count

This sets the Storage count (number of averaging).

Procedure

Trace > F4 (Storage) > F2 (Count)

Range

When Capture Time is Auto:2 to 9999When Capture Time is set to Manual:2 to Capture Time Length / 5

Default 10

3.6.2 Trace Mode

Modulation analysis has six trace types (display modes) as listed below.

(1) EVM vs Subcarrier

This displays the main numeric results, such as IQ constellation, frequency error, transmission power, EVM, etc., for each OFDM symbol, as well as the EVM graph for each Subcarrier.

(2) EVM vs Symbol

This displays the main numeric results, such as IQ constellation, frequency error, transmission power, EVM, etc., for each OFDM symbol, as well as the EVM graph for each OFDM symbol.

(3) Spectral Flatness

This displays the main numeric results, such as IQ constellation, frequency error, transmission power, EVM, etc., for each OFDM symbol, as well as a graph for Spectral Flatness. The type of graph varies with the Spectral Flatness Type.

(4) Power vs RB

This displays the main numeric results, such as IQ constellation, frequency error, transmission power, EVM, etc., for each PDSCH resource element as well as a graph of the PDSCH power per resource block.

(5) EVM vs RB

This displays the main numeric results, such as IQ constellation, frequency error, transmission power, EVM, etc., for each PDSCH resource element, as well as the PDSCH EVM graph per resource block.

(6) Summary

This displays the main numeric results, such as frequency error, transmission power, EVN, etc. The display contents change according to the Page Number.

(7) Test Model Summary

When Test Model is not set to Off, the measurement results for the Test Model signal are displayed.

Procedure

Trace > F1 (Trace Mode)

Options	EVM vs Subcarrier, EVM vs Symbol , Spectral Flatness,
	Power vs RB, EVM vs RB, Summary
	Test Model Summary
Default	EVM vs Subcarrier

3.6.3 Frame Offset

This displays the results for each trace constellation and graph in 1 frame units.

When the analysis target crosses several frames, set the Frame Offset and display frame interval.

In Figure 3.5.1-1, set Frame Offset to 1 to display the Frame 1 interval.

This parameter is not displayed when Trace Mode is set to Summary.

Procedure

3

3.6.4 Main Numeric Results

The main numeric results of modulation analysis are listed below.

(1) Frequency Error [Hz] / [ppm]

This is the difference between the set Carrier Frequency value and the carrier frequency of the input signal specified from the measurement interval Reference Signal. The maximum value is determined by comparing the absolute value of each measurement result.

(2) Output Power [dBm]

This is the average power of the 31.25 MHz band centered on the set Carrier Frequency. It also includes the Cyclic prefix at the measurement target OFDM symbol.

(3) Mean Power [dBm]

This is the average power of the Channel Bandwidth set bandwidth centered on the set Carrier Frequency. It also includes the Cyclic prefix at the measurement target OFDM symbol.

(4) EVM (rms) [%] / [dB]

This is the average value of the EVM for all physical channels and physical signals set at Include at Total EVM Calculation. The larger value determined by comparing the Total EVM High and Total EVM Low for one measurement interval is used.

(5) EVM (peak) [%] / [dB]

This displays the maximum EVM in all Subcarriers and symbols for all physical channels and physical signals set at Include at Total EVM Calculation.

(6) Time Offset [ns]

This displays the time offset between the frame header and trigger. It is displayed only when Trigger Switch is set to On.

3.6.5 Setting EVM Display Units and Scale

The EVM units can be switched between % and dB using the EVM Unit setting.

Procedure Trace > F3 (Scale) > F1 (EVM Unit) Options %, dB Default %

3.6.6 Constellation

The IQ constellation is displayed at the left side of the screen when the Trace Mode is EVM vs Subcarrier, EVM vs Symbol, or Spectral Flatness

The display object is all subcarriers at the OFDM symbol set by Constellation Symbol Number for the frame specified by Frame Offset.

Nothing is displayed at Constellation when the Constellation Symbol Number is Downlink Subframe and the OFDM symbol is not DwPTS.

Constellation Symbol Number

Constellation Symbol Number is the number of the OFDM symbol displayed in Constellation. It is set as the continuous count from the frame header (0) to the last frame.

Procedure

TraceF5(Constellation Symbol Number)Range0 to 139Default0

Constellation Display Range

Select either Symbol or Composite (Frame units) for the Constellation Graph.

Procedure

Trace > F2 (Constellation Display Range)

Options Symbol, Composite Default Symbol

3.6.7 EVM vs Subcarrier

This displays a graph at the bottom of the screen of the EVM for each subcarrier in the frame specified by Frame Offset when Trace Mode is EVM vs Subcarrier.

EVM vs Subcarrier View

This graph displays the averaged EVM value for OFDM symbols included in the Downlink Subframe for analysis when EVM vs Subcarrier View is set to Averaged over all Symbols. Depending on Graph View, the displayed data can be set to either RMS EVM only or to both RMS EVM and Peak EVM.

When EVM vs Subcarrier View is set to Each Symbol, the graph displays the EVM for OFDM symbols specified by Bottom Graph Symbol Number.

Procedure

Trace	• 🕞 (EVM vs Subcarrier View)
Options	Each Symbol, Averaged over all Symbols
Default	Averaged over all Symbols

Graph View

This sets the type of EVM displayed in the graph.

Procedure

Trace	> [F8] (EVM vs Subcarrier View)> [F8] (Graph View)
Options	RMS, RMS&Peak
Default	RMS&Peak

Bottom Graph Symbol Number

This is the number of the OFDM symbol displayed in the graph. It is set as the continuous count from the frame header (0) to the last frame and is enabled only when EVM vs Subcarrier View is set to Each Symbol.

Procedure

Trace > [F6] (Bottom Graph Symbol Number) Range 0 to 139

Default

0

Chapter 3 Measurement

EVM Scale	This sets the maximum value of the graph y-axis (EVM).		
	Procedure Trace > (F3 (Scale) > F2 (EVM Sca	le)
	Range	when EVM Unit is % when EVM Unit is dB	2%, 5%, 10%, 20% 0 dB, -20 dB, -40 dB
	Default	when EVM Unit is % when EVM Unit is dB	5% -40 dB

Marker Results (MKR)

This displays the EVM at the subcarrier selected by the marker.

3.6.8 EVM vs Symbol

This displays a graph of the EVM for the OFDM symbols in the frame specified by Frame Offset at the bottom of the screen when Trace Mode is EVM vs Symbol.

EVM vs Symbol View

This graph displays the averaged EVM value for the subcarrier included in the Downlink Subframe for analysis when EVM vs Symbol View is set to Averaged over all Subcarriers. Depending on Graph View, the displayed data can be set to either RMS EVM only or to both RMS EVM and Peak EVM.

When EVM vs Subcarrier View is set to Each Subcarrier, the graph displays the EVM for the subcarrier set at Subcarrier Number.

Procedure

Trace	E8 (EVM vs Symbol View)
Options	Each Subcarrier, Averaged over all Subcarriers
Default	Averaged over all Subcarriers

Graph View

This sets the type of EVM displayed in the graph.

Procedure

TraceF8(EVM vs Symbol View)>F8(Graph View)OptionsRMS, RMS&PeakDefaultRMS&Peak

Chapter 3 Measurement

Subcarrier Number			
	Subcarrier Number is the number of the subcarrier displayed in the		
	graph. It is only enabled when EVM vs Symbol View is set to Each		
	Subcarrier.		
	Procedure		
	Trace > [F7] (Subcarrier Number)		
	Range		
	Channel Bandwidth 1.4 MHz 0 to 71		
	Channel	Bandwidth 3 MHz	0 to 179
	Channel	Bandwidth 5 MHz	0 to 299
	Channel	Bandwidth 10 MHz	0 to 599
	Channel	Bandwidth 15 MHz	0 to 899
	Channel	Bandwidth 20 MHz	0 to 1199
	Default	0	
EVM Scale			
	This sets the	maximum value of the grap	h y-axis (EVM).
	Procedure		
	$\boxed{\text{Trace}} > \boxed{\text{F3}} (\text{Scale}) > \boxed{\text{F2}} (\text{EVM Scale})$		
	Range	when EVM Unit is %	2%, 5%, 10%, 20%
		when EVM Unit is dB	0 dB, -20 dB, -40 dB
	Default	when EVM Unit is %	5%
		when EVM Unit is dB	-40 dB
Marker Results (MKR)			
· · /	This displays	the EVM at the OFDM sym	bol selected by the marker.

3.6.9 Spectral Flatness

This displays a graph of the Spectral Flatness for the OFDM symbols included in the Downlink Subframe for analysis in the frame specified by Frame Offset at the bottom of the screen when Trace Mode is set to Spectral Flatness.

There are four types of Spectral Flatness graph that are set by Spectral Flatness Type.

(1) Amplitude vs Subcarrier

This displays the relative power of each subcarrier versus the average power of all valid Subcarriers.

(2) Difference Amplitude vs Subcarrier

This displays the difference in power between adjacent Subcarriers.

(3) Phase vs Subcarrier

This displays the phase error of each subcarrier.

(4) Group Delay

This displays the group delay of adjacent Subcarriers.

Spectral Flatness Type

Procedure

Trace > F8 (Spectral Flatness Type)

Options Default Amplitude, Difference Amplitude, Phase, Group Delay Amplitude

Chapter 3 Measurement

Flatness Scale

This sets the display range for the y-axis of the graph.

Procedure Trace > F3 (Scale) > F3) (Flatness Scale)
Range	
Amplitude	±1 dB, ±3 dB, ±10 dB
Difference Amplitude	±0.1 dB, ±0.3 dB, ±1 dB
Phase	± 1 degree, ± 3 degree, ± 60 degree
Group	± 1 ns, ± 10 ns, ± 50 ns, ± 100 ns
Default	
Amplitude	$\pm 0 \text{ dB}$
Difference Amplitude	±1 dB
Phase	±60 degree
Group	±100 ns

Marker Results (MKR)

The value for the subcarrier selected by the marker is displayed according to the graph type.

3.6.10 PDSCH Constellation

This displays the PDSCH IQ constellation at the bottom of the screen when Trace Mode is set to Power vs RB, and EVM vs RB.

The display target is PDSCH at the resource block specified by Subframe Number and Resource Block Number in the frame specified by Frame Offset.

The constellation is not displayed when Subframe Number is at the Uplink Subframe position.

Marker Results (MKR)

The subcarrier for the symbol at the resource element selected by the marker, OFDM symbol, subframe, resource block and IQ coordinates are displayed.

3.6.11 Subframe Number

This sets the subframe for display in the PDSCH constellation when Trace Mode is Power vs RB and EVM vs RB.

Procedure

Trace > F6 (Subframe Number) Range 0 to 9

Default 0

3.6.12 Resource Block Number

This sets the resource block for display in the PDSCH constellation when Trace Mode is Power vs RB and EVM vs RB.

Note:

The definition of the resource block parameter used by Power vs RB and EVM vs RB is the set of 12 subcarriers and 14 OFDM symbols (2 slots).

Procedure

Trace > [F7] (Resource Block Number)

Range

Channel Bandwidth 1.4 MHz	0 to 5
Channel Bandwidth 3 MHz	0 to 14
Channel Bandwidth 5 MHz	0 to 24
Channel Bandwidth 10 MHz	0 to 49
Channel Bandwidth 15 MHz	0 to 74
Channel Bandwidth 20 MHz	0 to 99
Default 0	

3.6.13 Power vs RB

This displays a graph of the PDSCH average power in the frame specified by Frame Offset at the bottom of the screen when Trace Mode is set to Power vs RB.

Power vs RB View

When Power vs RB View is set to Overall, the graph displays the PDSCH power distribution with subframe and resource block as the graph axes. The size of the power is displayed using colors on the right side of the graph.

When EVM vs Symbol View is set to Each Subframe, the graph displays the power vs resource block for the subframe specified by Subcarrier Number.

Procedure Tree > FB (Power vs RB View) Options Each Subframe, Overall Default Overall

Graph View

This sets the type of EVM displayed in the graph.

Procedure

TraceF8(Power vs RB View)F8(Graph View)OptionsRMS, RMS&PeakDefaultRMS&Peak

Marker Results (MKR)

The modulation method for the resource block specified by the marker, average power (relative value of absolute power vs Reference Signal average power) and EVM are displayed.

3.6.14 EVM vs RB

This displays a graph of the PDSCH EVM vs resource block in the frame specified by Frame Offset at the bottom of the screen when Trace Mode is set to EVM vs RB.

Graph View

This sets the type of EVM displayed in the graph.

Procedure

Trace	🕞 (Graph View)
Options	RMS, RMS&Peak
Default	RMS&Peak

EVM Scale

This sets the maximum value of the graph y-axis (EVM).

Procedure

Trace	[F3] (Scale) > $[F2]$ (EVM S	cale)
Range	when EVM Unit is %	2%, 5%, 10%, 20%
	when EVM Unit is dB	0 dB, -20 dB, -40 dB
Default	when EVM Unit is %	5%
	when EVM Unit is dB	-40 dB

Marker Results (MKR)

The PDSCH modulation method for the selected resource block, average power (relative to Reference Signal average power) and EVM are displayed.

3.6.15 Marker

This displays markers in the constellation at the top left of the screen and in the graph at the bottom of the screen.

The procedure for using Marker is explained below.

Marker

This sets marker display/non-display.

Procedure	
Marker	F1 (Marker)
Options	On, Off
Default	On

Constellation Marker Number - Subcarrier

This sets markers in subcarrier units at the constellation displayed when Trace Mode is set to EVM vs Subcarrier, EVM vs Symbol, and Spectral Flatness.

Procedure

- 1. (Marker) > [F2] (Constellation Select)
- 2. [5] (Constellation Marker Number)

Range

Channel Bandwidth 1.4 MHz	0 to 71
Channel Bandwidth 3 MHz	0 to 179
Channel Bandwidth 5 MHz	0 to 299
Channel Bandwidth 10 MHz	0 to 599
Channel Bandwidth 15 MHz	0 to 899
Channel Bandwidth 20 MHz	0 to 1199
Default 0	

Chapter 3 Measurement

Constellation Marker Number - Resource Element

This sets markers in PDSCH resource element units at the constellation displayed when Trace Mode is set to Power vs RB, and EVM vs RB.

Procedure

Marker > [5] (Constellation Marker Number)

RangeNumber of resource elements detected as 0 to PDSCHDefault0

Bottom Graph Marker Number - Subcarrier

This sets markers in subcarrier units at the graph displayed when Trace Mode is EVM vs Subcarrier, and Spectral Flatness.

Procedure

- 1. Marker > F3 (Bottom Graph Select)
- 2. (Bottom Graph Marker Number)

Range

Difference Amplitude and Group Delay of Spectral Flatness

Channel Bandwidth 1.4 MHz	$1 \ {\rm to} \ 70$
Channel Bandwidth 3 MHz	$1 \ {\rm to} \ 178$
Channel Bandwidth 5 MHz	$1 \ {\rm to} \ 298$
Channel Bandwidth 10 MHz	$1 \ {\rm to} \ 598$
Channel Bandwidth 15 MHz	$1 \ {\rm to} \ 898$
Channel Bandwidth 20 MHz	1 to 1198

Except Above

Channel Bandwidth $1.4~\mathrm{MHz}$	0 to 71
Channel Bandwidth 3 MHz	0 to 179
Channel Bandwidth 5 MHz	0 to 299
Channel Bandwidth 10 MHz	0 to 599
Channel Bandwidth 15 MHz	0 to 899
Channel Bandwidth 20 MHz	0 to 1199

Default 0

Bottom Marker Number - Symbol

This sets markers in OFDM symbol units at the graph displayed when Trace Mode is set to EVM vs Symbol.

Procedure

(Bottom Graph Select)
om Graph Marker Number)
0 to 139
0

Peak Search / Next Peak / Dip Search / Next Dip

These functions move markers to the maximum (Peak) and minimum (Dip) points on the graph displayed at the bottom of the screen. Next Peak and Next Dip move the markers to the next point based on the current marker positions.

3.6.16 Summary

When the Trace Mode is set to Summary, this displays the numeric results on the multiple pages at the bottom of the screen. The pages are switched using Page Number.

Page Number

This switches the type of results displayed in Summary.

Procedure

Trace	(Page Number)
Range	1 to 17
Default	1

The following types of results are displayed in Summary.

Screen Top (always displayed)

(1) Symbol Clock Error [ppm]

This is the Symbol Clock Error.

Refer to section 3.6.4 Main Numeric Results for results other than the above.

3.6.4 Main Numeric Results

Page 1: List of EVM and Power for Each Channel

This is the averaged EVM and Power in the analyzed interval. The target is all physical channels and physical signals set by Include at Total EVM Calculation and DwPTS.

Page 2: Total EVM

This is the averaged EVM is the analysis interval. The target is all physical channels and physical signals set by Include at Total EVM Calculation and DwPTS.

Page 3: PDSCH ALL EVM

This is the averaged EVM is the analysis interval. The target is all QPSK, 16QAM, 64QAM and 256QAM-modulated PDSCH.

Page 4: PDSCH QPSK EVM This is the averaged EVM is the analysis interval. The target is PDSCH modulated by QPSK.

Page 5: PDSCH 16QAM EVM

This is the averaged EVM is the analysis interval. The target is PDSCH modulated by 16QAM.

Page 6: PDSCH 64QAM EVM	This is the averaged EVM in the analysis interval. The target is PDSCH modulated by 64QAM.	
Page 7: PDSCH 256QAM EVM	1	
	This is the averaged EVM in the analysis interval. The target is PDSCH modulated by 256QAM.	
Page 8: PDCCH EVM	This is the averaged EVM in the analysis interval. The target is PDCCH.	
Page 9: RS EVM	This is the averaged EVM in the analysis interval. The target is the Reference Signal.	
Page 10: P-SS EVM		
·	This is the averaged EVM in the analysis interval. The target is the Primary Synchronization Signal.	
Page 11: S-SS EVM		
	This is the averaged EVM in the analysis interval. The target is the Secondary Synchronization Signal.	
Page 12: PBCH EVM		
	This is the averaged EVM in the analysis interval. The target is PBCH.	
Page 13: PCFICH EVM	This is the averaged EVM in the analysis interval. The target is PCFICH.	
Page 14: PHICH EVM		
C .	This is the averaged EVM in the analysis interval. The target is PHICH.	
Page 15: Power vs Slot		
	This is the slot power in the analysis interval. If the analysis target crosses several frames, it is the averaged value at the same position in slots of different frames.	
Page 16 : Channel Power, and	others	
	This is the average power of each physical channel and physical signal in the analysis interval.	
	(1) RS Power [dBm]	
	This is the average power of the Reference Signal. (2) P-SS Power [dBm] / [dB]	
	This displays the average power of the Primary Synchronization Signal as the absolute value and value relative to RS Power.	

(3) S-SS Power [dBm] / [dB]

This displays the average power of the Secondary Synchronization Signal as the absolute value and value relative to RS Power.

- (4) PBCH Power [dBm] / [dB]
 This displays the average power of PBCH as the absolute value and value relative to RS Power.
- (5) PDCCH Power [dBm] / [dB]

This displays the average power of PDCCH as the absolute value and value relative to RS Power.

(6) PCFICH Power [dBm] / [dB]

This displays the average power of PCFICH as the absolute value and value relative to RS Power.

(7) PHICH Group Power [dBm] / [dB]

This displays the average power of PHICH Group as the absolute value and value relative to RS Power.

(8) Cell ID

This is the Cell ID of the input signal. It is detected from Synchronization Signal of the input signal when Synchronization Mode is set to SS. The value of Cell ID set by the parameter when Synchronization Mode is set to Reference Signal is displayed.

(9) Number of PDCCH Symbols (Subframe 1 and 6) Number of PDCCH Symbols (Other Subframes)

> This is the number of symbols forming PDCCH of the input signal. It is detected from CFI of PCFICH when Number of PDCCH Symbols is set to Auto. The value of Number of PDCCH symbols set by the parameter when Number of PDCCH Symbols is set to Auto is displayed.

Page 17: RS Power and OFDM Symbol Tx Power

This is the Reference Signal Power and OFDM Symbol TX Power (OSTP) for each subframe in the analysis interval. If the analysis target crosses several frames, it is the averaged value at the same subframe position of different frames.

OFDM Symbol Tx Power is the total of all subcarrier powers at the fourth OFDM symbol included only in PDSCH of the subframe.

3.6.17 Test Model Summary

When the Trace Mode is set to Test Model Summary, this displays the numeric results on the multiple pages at the bottom of the screen. The pages are switched using Page Number.

Page Number

This switches the type of results displayed in Test Model Summary.

Procedure Trace > F8 (Page Number) Range 1 to 10 Default 1

The following types of results are displayed in Test Model Summary.

Screen Top (Always displayed)

Refer to 3.6.4 "Main Numeric Results" for the results at the screen top.

3.6.4 Main Numeric Results

Page 1, 2: Frame Type/RS boosting value per subframe

Either Frame Type or RS booting is displayed for the Subframe setting interval of Measurement Interval starting from the position specified at Starting Subframe. When the Measurement Interval is 20 or more, the result for 20Subframe is displayed.

Page 3, 4: EPRE/Ers value per subframe

The EPRE/Ers value for each channel is displayed for the Subframe setting interval of Measurement Interval starting from the position specified at Starting Subframe.

Page 5, 6 : EPRE/Ers value for PDSCH per subframe The EPRE/Ers value for each modulation method/boosting value of PDSCH is displayed for the Subframe setting interval of Measurement

Interval starting from the position specified at Starting Subframe.

Page 7 : EVM value for each channel per frame1/frame2

The EVM value for each channel is displayed per frame1/frame2 for the analysis section specified at Measurement Interval.

This is enabled only when Test Model is E-TM1.2, E-TM2a, E-TM2, E-TM3.2 or E-TM3.3.

Chapter 3 Measurement

Page 8 : Power value for each slot per frame1/frame2

The power value for each slot is displayed per frame1/frame2 for the analysis section specified at Measurement Interval.

This is enabled only when Test Model is E-TM1.2, E-TM2, E-TM2a, E-TM3.2 or E-TM3.3.

Page 9 : RS Power value for each slot per frame1/frame2

The RS power value for each slot is displayed per frame1/frame2 for the analysis section specified at Measurement Interval.

This is enabled only when Test Model is E-TM1.2, E-TM2, E-TM2a, E-TM3.2 or E-TM3.3.

Page 10 : OSTP value for each slot per frame1/frame2

The OSTP value for each slot is displayed per frame1/frame2 for the analysis section specified at Measurement Interval.

This is enabled only when Test Model is E-TM1.2, E-TM2, E-TM2a, E-TM3.2 or E-TM3.3.

3.7 Power vs Time Setting

The Power vs Time function displays the time fluctuations of power of the measured signal to perform the mask judgment.

Notes:

- The replay function cannot be used.
- The power of the measured signal in the On interval is from -30 dBm to +30 dBm when Pre-Amp Mode is Off. On the other hand, when Pre-Amp Mode is On, set it from -30 dBm to +10 dBm (Peak value).

Figure 3.7-1 Power vs Time Setting Screen

3.7.1 Wide Dynamic Range

This sets whether to enable or disable Wide Dynamic Range.

When Wide Dynamic Range is set to On, the measurement parameter is changed internally at the Off Power measurement to improve the measurement accuracy.

Procedure

Measure >	[12] (Power vs Time) > [11] (Wide Dynamic Range)
Options	On (Enabled), Off (Disabled)
Default	Off

When Wide Dynamic Range is set to On, Pre-Amp is switched to Off forcefully.

If the measurement function is changed from Power vs Time to the other one, Wide Dynamic Range is switched to Off.

3.2.4 Pre-Amp

3.7.2 Noise Correction

This sets whether to perform the noise correction.

Procedure

Noise Correction can be set only when Wide Dynamic Range is set to On.

When Wide Dynamic Range is set to Off, the Noise Correction menu is displayed in gray and the function is disabled.

When Limiter Mode is On, Both Noise Correction and Pre-Amp Mode can be set to On at the same time.

When Limiter Mode is Off, Both Noise Correction and Pre-Amp Mode cannot be set to On at the same time.

If the measurement function is changed from Power vs Time to the other one, Noise Correction is switched to Off.

3.7.3 Pre-Amp Mode

This sets whether to use Pre-Amp at the Off power measurement.

Procedure

This can be set only when Wide Dynamic Range is On and Trigger Switch is On.

When Wide Dynamic Range or Trigger Switch is set to Off, the Pre-Amp Mode menu is displayed in gray and the function is disabled.

When Limiter Mode is On, Both Noise Correction and Pre-Amp Mode can be set to On at the same time.

When Limiter Mode is Off, Both Noise Correction and Pre-Amp Mode cannot be set to On at the same time.

When Pre-Amp Mode is On, input the trigger.

If the measurement function is changed from Power vs Time to the other one, Pre-Amp Mode is switched to Off.

Note:

When the option 008 is not enabled, the Pre-Amp menu is not displayed.

3.3.1 Trigger Switch

3.7.4 Channel bandwidth

Refer to Section 3.4.1 Channel Bandwidth.

3.7.5 Setting smoothing (Smoothing)

Smoothing

This sets whether to perform the smoothing for the waveform.

	Procedure	
	Trace >	[3] (Smoothing) > [3] (Smoothing)
	Options	On, Off
	Default	On
Smoothing Length		
	This sets the	smoothing length (time).
	Procedure	
	Trace >	[3] (Smoothing) > [2] (Smoothing Length)
	Range	1 to 2151 Ts
	Default	2151
	Resolution	1
Smoothing Range		
	This sets the	smoothing range.
	Procedure	
	Trace >	[3] (Smoothing) > [3] (Smoothing Range)
	Options	
	Mask	Only between the Mask lines set by Mask Setup
	Entire	Entire waveform

Default Mask

3.7.7 Mask Setup
3

Measurement

3.7.6 Select Mask

This selects the Mask line.

Procedure

\mathbb{F}_{2} (Power vs Time) > \mathbb{F}_{5} (Select Mask)
Uses Mask line defined by 3GPP
Uses Mask line set by user
Standard

3.7.7 Mask Setup

This sets the setting method of the Mask line.

Procedure

Measure > F2 (Power vs Time) > F6 (Mask Setup)

This selects Gap to be set.

Procedure

When Uplink-downlink Configuration is 3, 4, or 5, Gap2 cannot be used.

The Downlink subframe is defined depending on the Uplink-downlink Configuration settings (see Table 3.4.4-1).

At this time, GP and UpPTS in Uplink and Special subframes become Off sections in which there is no signal output.

Depending on the Uplink-downlink Configuration setting, there can be one or two Off sections in a frame.

Mask Setup sets a mask line in each Off section (Gap1, Gap2).

Gap

Start Time

This sets Start Time on the Mask line.

Procedure

Messure > F2 (Power vs Time) > F6 (Mask Setup) > F2 (Start Time)

Range

Time Reference = Abs.(Both Gap1 and 2)

0 to 10 ms

Time Reference = Rel.

Setting	Range	GAP1
U/D Config ^{*1}	SS Config ^{*2}	Start Time[ms]
0,1,2,3,4,5,6	0,5	-1.21458 to 8.78542
	1,6	-1.64323 to 8.35677
	2,7	-1.71458 to 8.28542
	3,8	-1.78594 to 8.21406
	4	-1.85729 to 8.14271
Setting	Range	GAP2
Setting U/D Config	Range SS Config	GAP2 Start Time[ms]
Setting U/D Config 0,1,2,6	Range SS Config 0,5	GAP2 Start Time[ms] -6.21458 to 3.78542
Setting U/D Config 0,1,2,6	Range SS Config 0,5 1,6	GAP2 Start Time[ms] -6.21458 to 3.78542 -6.64323 to 3.35677
Setting U/D Config 0,1,2,6	SS Config 0,5 1,6 2,7	GAP2 Start Time[ms] -6.21458 to 3.78542 -6.64323 to 3.35677 -6.71458 to 3.28542
Setting U/D Config 0,1,2,6	SS Config 0,5 1,6 2,7 3,8	GAP2 Start Time[ms] -6.21458 to 3.78542 -6.64323 to 3.35677 -6.71458 to 3.28542 -6.78594 to 3.21406

*1: U/D Configuration

1 3.4.4 Uplink-downlink Configuration

*2: SS Configuration

1 3.4.5 Special Subframe Configuration

Default

 $52.00\ \mu s$ (When U/D Config is 3, SS Config is 8 and Time Reference is Relative)

Stop Time

This sets Stop Time on the Mask line.

Procedure

(Measu	re) >	F2	(Power	vs Time	e) > (F6) (Mask S	Setup) >	>
ĺ	F3	(Sto	p Ti	me)						

Range

Time Reference = Abs. (Both Gap1 and 2)

0 to 10 ms

Time Reference = Rel.

Setting Range	GAP1
U/D Config	Stop Time[ms]
0	-5.00000 to 5.00000
1	-4.00000 to 6.00000
2	-3.00000 to 7.00000
3	-5.00000 to 5.00000
4	-4.00000 to 6.00000
5	-3.00000 to 7.00000
6	-5.00000 to 5.00000
Setting	
Range	GAP2
Range U/D Config	GAP2 Stop Time[ms]
Range U/D Config 0	GAP2 Stop Time[ms] -10.00000 to 0.00000
Range U/D Config 0 1	GAP2 Stop Time[ms] -10.00000 to 0.00000 -9.00000 to 1.00000
RangeU/DConfig012	GAP2 Stop Time[ms] -10.00000 to 0.00000 -9.00000 to 1.00000 -8.00000 to 2.00000
RangeU/DConfig0123	GAP2 Stop Time[ms] -10.00000 to 0.00000 -9.00000 to 1.00000 -8.00000 to 2.00000 -
RangeU/DConfig01234	GAP2 Stop Time[ms] -10.00000 to 0.00000 -9.00000 to 1.00000 -8.00000 to 2.00000
Range U/D Config 0 1 2 3 4 5	GAP2 Stop Time[ms] -10.00000 to 0.00000 -9.00000 to 1.00000 -8.00000 to 2.00000

Default

 $-52.00~\mu s$ (When U/D Config is 3, SS Config is 8 and Time Reference is Relative)

Chapter 3 Measurement

Time Reference			
	This selects the reference time to be set when setting Start Time and		
	Stop Time.		
	Procedure		
	Measure > (F4) (Time	F2 (Power vs Time) > F6 (Mask Setup) > e Reference)	
	Options		
	Abs.	Sets absolute time from 0 header of Subframe0	
	Rel.	Sets relative time using boundary of On/Off switching of	
		signal calculated from Uplink-downlink Configuration	
		and Special Subframe Configuration setting as reference	
		time	
	Default	Rel.	
Off Power Limit			
	This sets the C	Off origin of Mask rise and fall.	
	Procedure		
	Measure > (^{r_2} (Power vs Time) > ^{r_6} (Mask Setup) >	
	F5 (Off F	Power Limit)	
	Range	-110.00 to -40.00 dBm/MHz	
	Default	-85.00 dBm/MHz	

Load Standard setting

This sets same value at Mask Setup as when Select Mask is set to Standard.

Procedure

Measure > F2 (Power vs Time) > F6 (Mask Setup) > F6 (Load Standard Setting)

The applied values are as shown below.

Start Time

Time Reference = Abs.

Default		GAP1	Defa	ault	GAP2
U/D Config	SS Config	Start Time[ms]	U/D Config	SS Config	Start Time[ms]
0,1,	0,5	1.23158	0,1,2	0,5	6.23158
2,3,	1,6	1.66023	,6	1,6	6.66023
4,5, 6	2,7	1.73158		2,7	6.73158
0	3,8	1.80294		3,8	6.80294
	4	1.87429		4	6.87429

Time Reference = Rel. (Both Gap1 and 2) $52.00 \ \mu s$

Stop Time

Time Reference = Abs.

Default	GAP1	GAP2
U/D Config	Stop Time[ms]	Stop Time[ms]
0	4.983	9.983
1	3.983	8.983
2	2.983	7.983
3	4.983	-
4	3.983	-
5	2.983	-
6	4.983	8.983

Time Reference = Rel. (Both Gap1 and 2) $-52.00 \ \mu s$

3.7.8 Frame Sync

This sets whether to perform frame synchronization by modulation analysis. If this function is set to Off, Power vs Time measurement is performed in synchronization with a trigger signal, without performing frame synchronization by modulation analysis. If Trigger Switch is set to Off, this function is fixed to On.

If Limiter Mode is set to On, this function is fixed to Off.

This function is displayed in the Detail Settings dialog box for Power vs Time measurement.

Procedure

Measure > F2 (Power vs Time) > F7 (Detail Settings)

Options Off, On Default On

3.7.9 Limiter Mode

This configures the settings for performing each On Power and Off Power measurement with measurement path switched. This function is available on the MS2690A/MS2691A/MS2692A, and is not available on the MS2830A or MS2850A.

Limiter Mode

This sets whether or not to switch the measurement path in each On Power and Off Power measurement.

Procedure

This can be set only when Wide Dynamic Range is On and Trigger Switch is On. If the measurement function is changed from Power vs Time to the other one, Limiter Mode is switched to Off.

3.3.1 Trigger Switch

Limiter Mode ATT

This sets the attenuator for noise level and Off Power measurements.

Procedure

 Measure
 > F2 (Power vs Time) > F8 (Limiter Mode)

 > F2 (Limiter Mode ATT)

 Range
 0 to 60 dB

 Default
 2 dB

Resolution 2 dB

Limiter Mode ATT can be set only when Limiter Mode is set to On.

Note:

When Limiter Mode is On, the attenuator set by Limiter Mode ATT is set to noise level measurement and Off Power measurement, regardless of Input Level. The signal to input to the MS2690A/MS2691A/MS2692A must be lower than its maximum input level. Especially when Pre-AMP Mode is set to On, pay attention to the maximum input level of MS2690A/MS2691A/MS2692A because Pre-Amp is turned on accordingly. 3

Chapter 3 Measurement

Limiter Mode Offset This sets whether or not to add the offset when displaying the Off Power measurement result. Procedure Measure > F2 (Power vs Time) > F8 (Limiter Mode) > [F3] (Limiter Mode Offset) Off, On Options Default Off Limiter Mode Offset can be set only when Limiter Mode is set to On. Limiter Mode Offset Value This sets the offset to be added when displaying the Off Power measurement result. The offset value is an increase or decrease that occurs in the input signal level when the signal passes through cables, attenuators and amplifiers in a measurement path. Procedure Measure > F2 (Power vs Time) > F8 (Limiter Mode) > [F2] (Limiter Mode Offset Value) Range -99.99 to 99.99 dB Default $0.00 \ dB$ Resolution 0.01 dB Limiter Mode Offset Value can be set only when Limiter Mode Offset is set to On. Noise Correction Mode This sets the timing to perform noise level measurement. Procedure Measure > F2 (Power vs Time) > F8 (Limiter Mode) > [F6] (Noise Correction Mode) Options Auto, Manual Auto Performs noise level measurement for Noise Correction every time Power vs Time is performed. Manual Performs noise level measurement for Noise Correction only when [7] (Noise Calculate) is pressed. Default Auto

Noise Correction Mode can be set only when Noise Correction is set to On and Limiter Mode is set to On.

Noise Calculate

This executes the noise level measurement.

Procedure

Noise Calculate can be set only when Noise Correction Mode is set to Manual.

Noise level measurement is performed by pressing [7] (Noise Calculate). The measured noise level is stored in the memory area for the MX269022A and is used by the Off Power measurement if Noise Correction is set to On. The measured noise level is initialized by turning off the power of the MS2690A/MS2691A/MS2692A or quitting the MX269022A, but is not initialized by pressing [7] or switching the measurement function.

3.8 Measurement and Result for Power vs Time

Power vs Time measurement is performed in accordance with the Uplink-downlink Configuration setting targeting 1 frame section.

Power vs Time measurement is performed as described below.

Procedure

1. Set frequency, level and trigger.

3.2 Setting Frequency and Level

3.3 Setting Trigger

2. Set the system parameters.

3.4 Shared Settings

- 3. Press Measure > F2 (Power vs Time).
- Set the parameters related with the Power vs Time measurement.
 3.7 Power vs Time Setting

5. Set the parameters for averaging.

6. Perform the measurement.

3.1.3 Performing Measurement

3.8.1 Averaging (Storage)

7. Select the displayed details.

3.8.3 Marker

If Limiter Mode is On, Power vs Time measurement is performed in the following sequence.

1. Noise Level Measurement

This is performed when Noise Correction is set to On. Note that if Noise Correction Mode is set to Manual, this measurement is not performed upon start of Power vs Time measurement but is performed only when [7] (Noise Calculate) is pressed.

3.7.8 Limiter Mode

- 2. Off Power Measurement
- 3. On Power Measurement

Before proceeding with each of these measurement items, Power vs Time measurement pauses and prompts you to press [1] (Continue) to continue. Measurement results are displayed when On Power measurement is completed.

▲ MS2692A LTE-TDD I	Downlink			_0	6/4/2015 14:40:02
Carrier Freq. 35	00 000 000 Hz Input Leve	l -10.00 dBm	Trigger	SG Marker	LTE-TDD Downlink
Modulation	AUTO ATT	4 dB	Delay	0.000 µs	
Channel Bandwidth	20MHz Offset	20.00 dB	Reference Signal	Auto	Continue
Result	Trigger Wait		Average	0/10	
Off Power	^{at} .≏ dBm ^{at} .≏ dBm/MHz atta	On Power	**.** dBm		
Transient Period		Power at Mask Edg	e (Time Ref:Rel)		
Gap1 Ramp down Ramp up	n **.** µs ****	Gap1 52.0 -52.0	0µs **.** dBm 0µs **.** dBm	****	
Gap2 Ramp down Ramp up	n **.** µs **** **.** µs ****	Gap2	n°µs ^{**} .** dBm ™µs ^{**} .** dBm	****	
Mask Judge	Total	wnlink	× 2	****	
MKR ^(dBm)	Pres Noise Note send	s F1 to start the me e Correction . that the measureme ing a remote comma	easurement of ent stops when nd.	[Symbol]	
Power vs Time					
MKR	™Ts (**.*µs)	**.** dBm	**.** dBm/MHz	****	
[dBm]					
Ref.Int Pre-An	np Off			[]	

Figure 3.8-1 Continue Screen

3.8.1 Averaging (Storage)

Storage Mode

This sets whether to set averaging.

Procedure		
Trace > (F4 (Stora	(ge) > [F1] (Mode)
Options	Off	Disables averaging
	Average	Enables averaging
Default	Off	

Storage Count

This sets the averaging count.

Procedure

Trace	[F4] (Storage) > [F2] (Count)
Range	2 to 999
Default	10
Resolution	1

3.8.2 Main Numeric Results

The main numeric results of Power vs Time measurement are listed below:

(1) Off Power [dBm]

Displays average power for Off section specified by Mask line in dBm units

(2) Off Power [dBm/MHz]

Displays average power for Off section specified by Mask line in dBm/MHz units

(3) Off Power [dBm/MHz] – judgment

Displays Pass/Fail evaluation by comparison with Off Power Limit [dBm/MHz] setting

(4) On Power [dBm]

Displays average power on dBm of on Power section specified by Uplink-downlink Configuration and Special Subframe Configuration

(5) Transient Period [µs]

Displays signal rise/fall time for On/Off boundary specified by Uplink-downlink Configuration and Special Subframe Configuration settings

At rising signal, displays time to On/Off boundary after signal becomes higher than Off Power Limit setting

At falling signal, displays time until signal power falls from On/Off boundary to below Off Power Limit setting

(6) Transient Period $[\mu s] - judgment$

Evaluates whether or not each Transient Period value is within selected Mask setting time range

(7) Power at Mask Edge [dBm]Displayer size al neuron (dBm) at Star

Displays signal power (dBm) at Start and Stop times of each Mask

(8) Power at Mask Edge [dBm] - judgement

Evaluates whether or not Power at Mask Edge value is within Off Power Limit setting range

(9) Mask Judge – Total

Evaluates whether or not signal in Gap1 and Gap2 sections within set level range for selected Mask

(10) Mask Judge – Gap1

Evaluates whether or not signal in Gap1 section within set level range for selected Mask

(11) Mask Judge – Gap2

Evaluates whether or not signal in Gap2 section within set level range for selected Mask

(12) Top Graph

Displays time variation of signal in 1 Frame section

(13) Bottom Graph

Displays time variation of signal in following range centered on time period selected by Top Graph Marker

Range: Sts - 1536 to Sts + 1535 Ts

Sts is the header position (Ts) of the Symbol selected by TopGraphMarker.

3.8.3 Marker		
	The marker is displayed in the graph on the screen.	
	Procedure Marker Or Monu To (Marker)	
	The procedures using Marker is described below.	2
Marker		J
	This sets the marker on/off.	
	Procedure Marker > F1 (Marker) Options On, Off Default On	Measuremen
Graph Select		Ct.
	This selects the marker specified graph. The graph marker to be set here can be set only.	
	Procedure Marker > F2 (Top Graph Select) Or Marker > F3 (Bottom Graph Select) Options Top Graph Select, Bottom Graph Select Default Top Graph Select	
Top Graph Marker Number		
	This sets the marker position displayed on the Top Graph.	
	Procedure Marker > [7] (Top Graph Marker Number)	
	Range0 to 139.75 symbolDefault0	

3

Chapter 3 Measurement

Bottom Graph Marker Number	
	This sets the marker position displayed on the Bottom Graph.
	Procedure Marker > [F8] (Bottom Graph Marker Number)
	RangeSts-1536 to Sts +1535 TsDefault0
	Sts is the header position (Ts) of the Symbol selected by TopGraphMarker.
Top Graph Marker to Transient	
	This moves the marker displayed at Top Graph to the signal transient (on/Off boundary) determined by the Uplink-downlink Configuration, and Special Subframe Configuration settings.
	Procedure Marker > [F5] (Top Graph Marker to Transient)
Top Graph Marker to Fail	This moves the marker displayed at Top Graph to the fail part.
	Procedure Marker > F6 (Top Graph Marker to Fail)
Peak Search (Margin)	This moves the marker to the peak point of the Margin result calculated using the measurements and Mask setting for the Off section specified at Mask Setup. If there are several peak points, the marker moves to the smallest point on the Time axis.
	Margin = Measured value (dBm/MHz) – Mask setting (dBm/MHz)
	Procedure $Marker$ > \rightarrow > fi (Peak Search (Margin))
	Or
	(Peak Search (Margin))
Next Peak	
	This moves the marker to the point with the next largest margin relative to Margin of the current marker point in the measurement range.
	Procedure $Marker$ > \rightarrow > $=$ (Next Peak) Or
	PeakSearch > F2 (Next Peak)

3.9 MIMO Summary Settings

At MIMO Summary measurements for Tx Diversity and MIMO signals, the mixed signal from multiple antennas is input and the time difference between each antenna is measured.

For parameters that are not explained in this section, refer to the explanations of parameters with the same name in the modulation analysis measurement section.

I 3.4 Common Settings

Setting Modulation Analysis

3.9.1 Number of Antenna Ports

This sets the number of antennas for the DUT. RS analysis is performed for each antenna port of the set number of antennas.

3.9.2 Antenna Port

This sets the antenna number for the input signal used as the reference for the measurement results.

3

3.9.3 Active Antenna Threshold

This sets the threshold value for On/Off evaluation of the Antenna Port signal. The RS power of the set Antenna Port signal is used as the reference to evaluate the RS power of the signal of each Antenna Port.

3.10 MIMO Summary Measurement Results

At MIMO Summary measurement, the timing, etc., between each antenna is measured by inputting signals from each antenna simultaneously and analyzing the RS of each signal.

MIMO Summary measurement is performed as described below:

Procedure

 $\mathbf{2}$.

4.

1. Set frequency, level and trigger.

3.2 Setting Frequency and Level

Set system parameters.

3.4 Common Settings

3. Set the parameters for averaging.

Perform the measurement.

3.1.3 Performing Measurement

3.6.1 Setting Storage Mode/Count

3

3.10.1 Numeric Results

The main numeric results for MIMO Summary are as follows:

(1) RS Power (dB)

The difference in the RS Power between the antenna signal specified at Antenna Port and the signal for each antenna specified at Number of Antenna Ports is displayed in dB units.

(2) RS Power (dBm)

This displays each absolute RS Power value in dBm unit for the number of antennas specified at Number of Antenna Ports.

(3) RS EVM

This displays each RS EVM value for the number of antennas specified at Number of Antenna Ports.

(4) RS Timing Offset

This displays the RS time difference between the antenna signal specified at Antenna Port and each of the number of antennas specified at Number of Antenna Ports.

(5) RS Freq

This displays the frequency difference between the antenna signal specified at Antenna Port and each of the number of antennas specified at Number of Antenna Ports.

(6) RS Phase

This displays the phase difference between the antenna signal specified at Antenna Port and each of the number of antennas specified at Number of Antenna Ports.

3.11 Setting Batch Measurement

This section explains the measurement conditions for Batch Measurement.

3.11.1 Common Settings : Storage Mode

This sets the storage mode of Modulation Analysis.

3.11.2 Common Settings : Storage Count

This sets the measurement count of Modulation Analysis.

3.11.3 Common Settings : Storage Mode for Unwanted Emissions

This sets the storage mode of Modulation Analysis for Unwanted Emissions.

Procedure

3.11.4 Common Settings : Storage Count for Unwanted Emissions

This sets the measurement count of Modulation Analysis for Unwanted Emissions.

Procedure

3.11.5 Common Settings : Starting Subframe Number

This sets the analysis starting position.

Procedure

> [F1] (Common Settings)

Range Refer to Table 3.11.5-1

Table 3.11.5-1 Common Settings : Starting Subframe Number setting Range

Uplink-downlink Configuration	Range
0	$0, 5 + 10 \times N$
1	0, 4, 5, 9 + 10 × N
2	0, 3, 4, 5, 8, $9 + 10 \times N$
3	0, 5, 6, 7, 8, $9 + 10 \times N$
4	0, 4, 5, 6, 7, 8, 9 + $10 \times N$
5	$0, 3, 4, 5, 6, 7, 8, 9 + 10 \times N$
6	$0, 5, 9 + 10 \times N$

CC Settings : When Test Model Starting Frame Type is Unlock. N = 0 to 4

CC Settings : When Test Model Starting Frame Type is Frame1 or Frame2.

N = 0 to 3

The values usable for all CC items to measure can be set.

Default 0

3.5.1 Starting Subframe Number

3.11.6 Common Settings : Measurement Interval

This sets the analysis interval in subframe units. The value is set as the interval of contiguous subframes, irrespective of the subframe type.

The subframes for modulation analysis are the Downlink subframe and the Special subframe. The measurement results are unaffected even if the Uplink subframe count including the start to finish measurement interval is changed.

Procedure

1 1 0 0 0 0 0 0 0 0	
Measure	> \rightarrow > [F1] (Batch Measurement) > [F1] (Batch Settings)
> [F1]	(Common Settings)
Range	When CC Settings : Test Model Starting Frame Type is Unlock
	1 to (50 – Common Settings : Starting Subframe Number)
	Subframes When CC Settings : Test Model Starting Frame Type is
	Frame1 or Frame2.
	1 to (40 – Common Settings : Starting Subframe Number)
	Subframes
Default	10

3.11.7 Common Settings : Starting OFDM Symbol Number

This sets the analysis starting position of Unwanted Emissions.

Procedure Measure > (\rightarrow > [F1] (Batch Measurement) > [F1] (Batch Settings)
> [F1] (Cc	ommon Settings)
Range	(0 to 13) + 14 × (Common Settings : Range of Starting Subframe Number) OFDM Symbol
Default	3

3.11.8 Common Settings : Measurement Interval for Unwanted Emissions

This sets the analysis interval for Unwanted Emissions in OFDM Symbol units. The value is set as the interval of contiguous OFDM Symbols, irrespective of the subframe type.

The subframes for modulation analysis are the Downlink subframe and the Special subframe. The measurement results are unaffected even if the Uplink subframe count including the start to finish measurement interval is changed.

Procedure

Measure > (\rightarrow > [F1] (Batch Measurement) > [F1] (Batch Settings)	
> [F1] (Co	ommon Settings)	
Range	When CC Settings : Test Model Starting Frame Type is	
	Unlock.	
1 to (700 – Common Settings : Starting OFDM Symbol		
Number) OFDM Symbol		
	When CC Settings : Test Model Starting Frame Type is	
	Frame1 or Frame2.	
	1 to (560 – Common Settings : Starting OFDM Symbol	
	Number) OFDM Symbol	
Default	1	

3.11.9 Common Settings : Modulation Analysis

This enables/disables Modulation Analysis.

3.11.10 Common Settings : OBW

This enables/disables OBW measurement. The measurement is not executed if the required frequency bandwidth exceeds the analysis bandwidth.

3.11.11 Common Settings : ACLR

This enables/disables ACLR measurement. The measurement is not executed if the required frequency bandwidth exceeds the analysis bandwidth.

Procedure

3.11.12 Common Settings : OBUE (Operating Band Unwanted Emissions)

This enables/disables OBUE measurement. The measurement is not executed if the required frequency bandwidth exceeds the analysis bandwidth.

Procedure

3.11.13 Band Settings : Measurement Item

This sets the measurement items for every Band.

Procedure

Measure > > F1	(Batch Measurement) > 🕞 (Batch Settings)		
> 🖅 (Band Settin	ngs)		
Options			
Band #0	Measures the Band 0.		
Band #1	Measures the Band 1.		
Band #2	Measures the Band 2.		
Default			
Band #0	On		
Band #1	Off		
Band #2	Off		

Notes:

- When the MX269022A-001 is not installed, it is fixed to Band 0.
- When the MS2830A-078 is installed, this is fixed to Band 0.

3.11.14 Band Settings : Carrier Frequency

This sets a carrier frequency.

Procedure

Measure > > > F1	(Batch Measurement) > [F1] (Batch Settings)	
> [52] (Band Settings)		
Range		
	300 MHz to the upper limit of the main unit	
	(MS2830A-078, MS2850A)	
	100 MHz to the upper limit of the main unit	
	(MS269xA, MS2830A other than above.)	
Default		
Band #0	$2140 \mathrm{~MHz}$	
Band #1	1960 MHz	
Band #2	1842.5 MHz	

3.11.15 Band Settings : Input Level

This sets the input level from the target DUT.

Procedure
$(\text{Measure} > \bigcirc > \bigcirc 1) (\text{Batch Measurement}) > \bigcirc 1) (\text{Batch Settings})$
> [F2] (Band Settings)
Range
For Pre-Amp: On
(–80.00 + Offset Value) to (10.00 + Offset Value) dBm
For Pre-Amp: Off
(–60.00 + Offset Value) to (30.00 + Offset Value) dBm
Default
Band #0,1,2 –10.00 dBm

3.11.16 Band Settings : Pre-Amp

This sets On/Off for the Pre-Amp function.

Procedure

Measure >	\rightarrow > [F1] (Batch Measurement) > [F1] (Batch Settings)
> [F2] (Ba	and Settings)
Options	
On	Enables the Pre-Amp function.
Off	Disables the Pre-Amp function.
Default	
Band #0,1	,2 Off

3.11.17 Band Settings : Level Offset

This sets On/Off for the offset function.

Procedure	
Measure > (\rightarrow > \square (Batch Measurement) > \square (Batch Settings)
> [F2] (Ba	nd Settings)
Options	
On	Enables the offset function.
Off	Disables the offset function.
Default	
Band #0,1	,2 Off

3.11.18 Band Settings : Offset Value

This sets the level offset coefficient.

This sets On/Off for the contiguous mode.

Procedure

 $(Measure > \bigcirc > [F1] (Batch Measurement) > [F1] (Batch Settings)$

> [2] (Band Settings)

Options

-	
On	Enables the Contiguous Mode.
Off	Disables the Contiguous Mode.
Default	

Band #0,1,2 Off

Note:

When the MX269022A-001, and MS269xA-004/104/078/178 or MS2830A-078 is not installed, it is fixed to Off. When the MX269022A-001 is not installed, it is fixed to Off on the MS2850A.

3.11.20 Band Settings : OBUE Standard

This sets the standard template for OBUE measurement.

Procedure

 $(\texttt{Messure} > \bigcirc > \texttt{F1} (Batch Measurement) > \texttt{F1} (Batch Settings)$

```
> [2] (Band Settings)
```

Options

- 1		
	WideBS Cat.A<1G	Wide Area BS Category A <1G
	WideBS Cat.A 1-3G	Wide Area BS Category A 1-3G
	WideBS Cat.A>3G	Wide Area BS Category A >3G
	WideBS Cat.B Opt.1 <1G	Wide Area BS Category B Option 1 <1G
	WideBS Cat.B Opt.1 1-3G	Wide Area BS Category B Option 1 1-3G
	WideBS Cat.B Opt.1 >3G	Wide Area BS Category B Option 1>3G
	WideBS Cat.B Opt.2	Wide Area BS Category B Option 2
	LocalBS Cat.A&B $\leq 3G$	Local Area BS Category A&B ≤3G
	LocalBS Cat.A&B>3G	Local Area BS Category A&B>3G
	HomeBS Cat.A&B ≤3G	Home BS Category A&B ≤3G
	HomeBS Cat.A&B>3G	Home BS Category A&B >3G
Def	ault	
	Band #0,1,2 WideB	S Cat.A <1G

3.11.21 Band Settings : OBUE Standard Additional

This sets the additional standard template for OBUE measurement.

Procedure

 Image: > > = > = (Batch Measurement) > = (Batch Settings)

 > = (Band Settings)

 Options

 Off
 Not use the additional standard template

 Band 2,4,10,23,25,35,36,41

 Band 40,1,2

3.11.22 CC Settings : Measurement Item

This sets the measurement items for every CC.

Procedure Messure > \rightarrow > [F1] (Batch Measurement) > [F1] (Batch Settings) > [F3] (CC Settings) Options CC #0 Measures the CC 0. CC #1 Measures the CC 1. CC #2 Measures the CC 2. CC #3 Measures the CC 3. CC #4 Measures the CC 4. Default When the MX269022A-001 is installed: CC #0 On CC #1,2,3,4 Off When the MX269022A-001 is not installed: CC #0 On fixed Off fixed CC #1,2,3,4

This sets the frequency band for every CC.

Procedure

Measure > > F1) (Batch Measurement) > 📧 (Batch Settings)
> 🕞 (CC Setting	s)
Options	
Band #0	Measures as the CC of Band 0.
Band #1	Measures as the CC of Band 1.
Band #2	Measures as the CC of Band 2.
Default	
CC #0,1,2,3,4	Band #0

Notes:

- When the MX269022A-001 is not installed, it is fixed to Band 0.
- When the MS2830A-078 are installed to the mainframe, this is fixed to Band 0.

3.11.24 CC Settings : Frequency Offset

This sets the frequency offset for every CC.

Procedure

> [F3] (CC Settings)

Range

When the MS269xA-004/104/078/178 or MS2830A-078 is installed, or MS2850A.

–50000000 + (CC Settings : Channel Bandwidth/2) to 50000000 – (CC Settings : Channel Bandwidth/2) Hz

When the MS269xA-004/104/078/178, MS2830A-078 is not installed. -15625000 + (CC Settings : Channel Bandwidth/2)

to 15625000 – (CC Settings : Channel Bandwidth/2) Hz

Notes:

- When the MX269022A-001 is not installed, it is fixed to 0 Hz.
- The resolution is 300 kHz when Band Settings: Contiguous Mode is set to On.
- The resolution is 1 kHz when Band Settings: Contiguous Mode is set to Off.

Default

CC #0,1,2,3,4 0 Hz

3.11.25 CC Settings : Channel Bandwidth

Selects a band of an input signal for every CC.

Procedure

Measure > > F1	(Batch Measurement) > 🗊 (Batch Settings)
> 🕞 (CC Setting	(s)
Options	
1.4 MHz Analyze	es an input signal as a 1.4-MHz band.
3 MHz Analyze	es an input signal as a 3-MHz band.
5 MHz Analyze	es an input signal as a 5-MHz band.
10 MHz Analyze	es an input signal as a 10-MHz band.
15 MHz Analyze	es an input signal as a 15-MHz band.
20 MHz Analyze	es an input signal as a 20-MHz band
Default	
CC #0,1,2,3,4	$5 \mathrm{~MHz}$

3.11.26 CC Settings : Test Model

Selects the type of the test model defined in 3GPP TS36.141.

Procedure $(Measure > \implies > [F1] (Batch Measurement) > [F1] (Batch Settings)$ > [3] (CC Settings) Options Off Select when measuring signals other than the test model. E-TM1.1 Select when measuring E-TM1.1 signals. E-TM1.2 Select when measuring E-TM1.2 signals. E-TM2 Select when measuring E-TM2 signals. E-TM2a Select when measuring E-TM2a signals. E-TM3.1 Select when measuring E-TM3.1 signals. E-TM3.1a Select when measuring E-TM3.1a signals. E-TM3.2 Select when measuring E-TM3.2 signals. E-TM3.3 Select when measuring E-TM3.3 signals. Default CC #0,1,2,3,4 Off

3.11.27 CC Settings : Test Model Starting Frame Type

When the input signal is an E-UTRA Test Model (Test Model hereafter) defined by 3GPP TS36.141, Test Model is set. The Test Model signal E-TM1.2, 2, 2a, 3.2, and 3.3 are composed of frame1 and frame2. This function sets either frame 1 or frame 2 as the header frame for starting analysis. Select Unlock when specifying nothing.

This is enabled when CC Settings: Test Model is E-TM1.2, E-TM2, E-TM2a, E-TM3.2 or E-TM3.3.

Procedure

3.11.28 CC Settings : Uplink-downlink Configuration

This sets the position of the Downlink subframe in the frame for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed 3 when CC Settings: Test Model is not Off.

3.11.29 CC Settings : Special Subframe Configuration

This sets the configuration of the special subframe for each CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed 8 when CC Settings: Test Model is not Off.

Procedure Messure > > F1 (Batch Measurement) > F1 (Batch Settings) > F3 (CC Settings) Range 0 to 8 Default CC #0,1,2,3,4 8

3.11.30 CC Settings : Synchronization Mode

This sets the type of physical signal used for synchronization processing with the input signal for every CC. When Reference Signal is selected, Cell ID must also be set correctly.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed Synchronization Signal when CC Settings: Test Model is not Off.

Procedure

RS Sets Reference Signal for the synchronized signal.

Default

CC #0,1,2,3,4 SS

This sets the Cell ID for every CC

3.11.31 CC Settings : Cell ID

This is enabled when CC Settings : Synchronization Mode is Reference Signal.

Procedure

Messure > → > F1 (Batch Measurement) > F1 (Batch Settings)
> F3 (CC Settings)

Range 0 to 503

Default

CC #0,1,2,3,4 0

3.11.32 CC Settings : CRS Power Boosting

This sets the boost level of the CRS for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed 0.000 dB when CC Settings: Test Model is not Off.

Procedure

3.11.33 CC Settings : CRS Number of Antenna Ports

This sets the number of antennas for the CRS for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed 1 when CC Settings: Test Model is not Off.

Procedure

Measure	> \implies > [F1] (Batch Measurement) > [F1] (Batch Settings)
> [F3]	(CC Settings)
Options	
1	Analyzes under the condition that the number of
	antennas used for transmission is 1.
2	Analyzes under the condition that the number of
	antennas used for transmission is 2.
4	Analyzes under the condition that the number of
	antennas used for transmission is 4.
Default	

CC #0,1,2,3,4 1

3.11.34 CC Settings : CSI-RS Number of Antenna Ports

This sets the number of antennas for the CSI-RS for every CC.

This is enabled when the MX269022A-001 is installed and CC Settings: CSI-RS On/Off is On. This parameter is fixed 1 when CC Settings: Test Model is not Off.

Procedure

Messure > → > F1 (Batch Measurement) > F1 (Batch Settings) > F3 (CC Settings)

- Ei (CC Settings)

Options

1	Analyzes under the condition that the number of
	antennas used for transmission is 1.
2	Analyzes under the condition that the number of
	antennas used for transmission is 2.
4	Analyzes under the condition that the number of
	antennas used for transmission is 4.
8	Analyzes under the condition that the number of
	antennas used for transmission is 8.
Default	
CC #0,1,	2,3,4 1
3.11.35 CC Settings : CRS Antenna Port

This sets the CRS antenna port number for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed 0 when CC Settings: Test Model is not Off.

Procedure

 $(\texttt{Messure} > \bigcirc > \bigcirc \texttt{F1} (Batch Measurement) > \bigcirc \texttt{F1} (Batch Settings)$

> [3] (CC Settings)

Range

0 to (CC CRS Number of Antenna Ports - 1)

Default

CC #0,1,2,3,4 0

3.11.36 CC Settings : CSI-RS Antenna Port

This sets the CSI-RS antenna port number for every CC.

This is enabled when the MX269022A-001 is installed and CC Settings: CSI-RS On/Off is On. This parameter is fixed 15 when CC Settings: Test Model is not Off.

3.11.37 CC Settings : PDSCH Modulation Scheme

This sets PDSCH Modulation Scheme.

This is enabled when CC Settings: Test Model is Off.

Procedure

 $(Messure > \rightarrow > fi) (Batch Measurement) > fi) (Batch Settings)$

> [F3] (CC Settings)

Options

QPSK	Analyzes an input signal as a QPSK modulated signal.
16QAM	Analyzes an input signal as a 16QAM modulated signal.
64QAM	Analyzes an input signal as a 64QAM modulated signal.
256QAM	Analyzes an input signal as a 256QAM modulated signal.
AUTO	Analyzes an input signal after judging its modulation
	scheme automatically (Excluding 256QAM).

Default

CC #0,1,2,3,4 AUTO

3.11.38 CC Settings : EVM Window Length

This sets the length of EVM Window applied to OFDM symbol as the width from the center position of Cyclic prefix. It can be set either as the FFT sample count W, or in Ts units (time per sample).

Procedure

 $(Messure > \bigcirc > [F1] (Batch Measurement) > [F1] (Batch Settings)$

> [F3] (CC Settings)

Range

- Ts: 0 to 142
- W: When CC Settings: Channel Bandwidth is 1.4 MHz: 0 to 8

When CC Settings: Channel Bandwidth is 3 MHz: 0 to 17

When CC Settings: Channel Bandwidth is 5 MHz: 0 to 35

When CC Settings: Channel Bandwidth is 10 MHz: 0 to 71

When CC Settings: Channel Bandwidth is 15 MHz: 0 to 106

When CC Settings: Channel Bandwidth is 20 MHz: 0 to 142

Default

CC #0,1,2,3,4

When CC Settings: Channel Bandwidth is 1.4 MHz: 5W, 80Ts When CC Settings: Channel Bandwidth is 3 MHz: 12W, 96Ts When CC Settings: Channel Bandwidth is 5 MHz: 32W, 128Ts When CC Settings: Channel Bandwidth is 10 MHz: 66W, 132Ts When CC Settings: Channel Bandwidth is 15 MHz: 102W, 136Ts When CC Settings: Channel Bandwidth is 20 MHz: 136W, 136Ts

3.11.39 CC Settings : Channel Estimation

This sets the Channel Estimation function for the CC to On/Off.

When CC Settings : Channel Estimation is On, amplitude and phase estimation is performed based on the Reference Signal.

Procedure

 $(Measure > \implies > [F1] (Batch Measurement) > [F1] (Batch Settings)$ > [F3] (CC Settings) Options

On	Enables the Channel Estimation function.
Off	Disables the Channel Estimation function.

Default

CC #0,1,2,3,4 On

3.11.40 CC Settings : DwPTS

This sets whether or not to measure DwPTS for every CC.

Procedure

Measure > > F1 (Batch Measurement) > F1 (Batch Settings) > [F3] (CC Settings) Options Include Target measurement includes DwPTS. Exclude Target measurement does not include DwPTS. Default

CC #0,1,2,3,4 Exclude

3.11.41 CC Settings : DwPTS for Unwanted Emissions

This sets whether to include/exclude CC DwPTS for Unwanted Emissions.

Procedure

 $(Measure > \bigcirc > [F1] (Batch Measurement) > [F1] (Batch Settings)$ > [F3] (CC Settings) Options Include DwPTS for Unwanted Emissions is included. DwPTS for Unwanted Emissions is excluded. Exclude Default

CC #0,1,2,3,4 Include

3.11.42 CC Settings : Measurement Filter Type

This sets the filter type used for modulation analysis for every CC.

This is enable when Band Settings : Contiguous Mode is Off.

Procedure

 $(\text{Messure} > \bigcirc > \bigcirc = (\text{Batch Measurement}) > \bigcirc = (\text{Batch Settings})$

> [F3] (CC Settings)

Options

Normal For measuring single carrier signal.

Narrow For measuring multi-carrier signal.

Default

CC #0,1,2,3,4 Normal

3.11.43 CC Settings : PBCH On/Off

This enables or disables the PBCH for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed On when CC Settings: Test Model is not Off.

Procedure

Measure >	→ > [F1] (Batch Measurement) > [F1] (Batch Settings)
> [F3] (C(C Settings)
Options	
On	Target measurement includes PBCH.
Off	Target measurement does not include PBCH.
Default	
CC #0,1,2	.3,4 On

3-114

3.11.44 CC Settings : PBCH Power Auto/Manual

This sets the method for determining the PBCH Boost level for every CC.

This is enabled when CC Settings: Test Model is set to Off and CC Settings: PBCH On/Off is set to On.

Procedure

 $(\text{Measure} > \bigcirc > \bigcirc 1 (\text{Batch Measurement}) > \bigcirc 1 (\text{Batch Settings})$

> [3] (CC Settings)

Options

Auto Automatic detection Manual Manual detection Default CC #0,1,2,3,4 Auto

3.11.45 CC Settings : PBCH Power Boosting

This sets the PBCH Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is OFF, CC Settings: PBCH On/Off is On and CC Settings: PBCH Power Auto/Manual is Manual.

Procedure $Messure > \implies > [F1]$ (Batch Measurement) > [F1] (Batch Settings) > [F3] (CC Settings) Range -20.000 to +20.000 dB Default CC #0,1,2,3,4 0.000 dB

3.11.46 CC Settings : P-SS On/Off

This enables/disables P-SS (Primary Synchronization Signal) for every CC.

This is enabled when CC Settings : Synchronization Mode is Reference Signal. This parameter is fixed On when CC Settings : Synchronization Mode is Synchronization Signal.

Procedure

Messure > → > F1 (Batch Measurement) > F1 (Batch Settings)
> F3 (CC Settings)
Options
On The measurement target includes P-SS.
Off The measurement target does not include P-SS.
Default
CC #0,1,2,3,4 On

3.11.47 CC Settings : P-SS Power Auto/Manual

This sets the method for determining the P-SS Boost level for every CC.

This is enabled when CC Settings: Test Model is set to Off and CC Settings: P-SS On/Off is set to On.

Procedure

Options

Auto Automatic detection Manual Manual detection Default CC #0,1,2,3,4 Auto

3.11.48 CC Settings : P-SS Power Boosting

This sets the P-SS Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is OFF, CC Settings: P-SS On/Off is On and CC Settings: P-SS Power Auto/Manual is Manual.

3.11.49 CC Settings : S-SS On/Off

This enables/disables S-SS (Secondary Synchronization Signal) for every CC.

This is enabled when CC Settings: Synchronization Mode is Reference Signal. This parameter is fixed On when CC Settings: Synchronization Mode is Synchronization Signal.

3.11.50 CC Settings : S-SS Power Auto/Manual

This sets the method for determining the S-SS Boost level for every CC.

This is enabled when CC Settings: Test Model is OFF and CC Settings: S-SS On/Off is On.

Procedure

 Image: Point Point
 Image: Point Point

 Image: Point Point
 Image: Point Point

 Image: Point Point Point
 Image: Point Point

 Image: Point Point Point Point Point Point Point
 Image: Point Poi

3.11.51 CC Settings : S-SS Power Boosting

This sets the S-SS Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is Off, CC Settings: S-SS On/Off is On and CC Settings: S-SS Power Auto/Manual is Manual.

Procedure

-20.000 to +20.000 dB

Default

CC #0,1,2,3,4 0.000 dB

3.11.52 CC Settings : PDCCH On/Off

This enables or disables the PDCCH for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed On when CC Settings: Test Model is not Off.

Procedure

Messure > > F1 (Batch Measurement) > F1 (Batch Settings) > F3 (CC Settings) Options On The measurement target includes PDCCH.

Off The measurement target does not include PDCCH.

Default

CC #0,1,2,3,4 On

3.11.53 CC Settings : PDCCH Power Auto/Manual

This sets the method for determining the PDCCH Boost level for every CC.

This is enabled when CC Settings: Test Model is Off and CC Settings: PDCCH On/Off is On.

Procedure

Auto Automatic detection Manual Manual detection Default

CC #0,1,2,3,4 Auto

3.11.54 CC Settings : PDCCH Power Boosting

This sets the PDCCH Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is Off, CC Settings: PDCCH On/Off is On and CC Settings: PDCCH Power Auto/Manual is Manual.

Procedure

Measure > → > F1 (Batch Measurement) > F1 (Batch Settings)
F3 (CC Settings)

Range

–20.000 to +20.000 dB

Default

CC #0,1,2,3,4 0.000dB

3.11.55 CC Settings : PCFICH On/Off

This enables or disables the PCFICH for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed On when CC Settings: Test Model is not Off.

Procedure

Options

On The measurement target includes PCFICH

Off The measurement target does not include PCFICH Default

CC #0,1,2,3,4 On

3.11.56 CC Settings : PCFICH Power Auto/Manual

This sets the method for determining the PCFICH Boost level for every CC.

This is enabled when CC Settings: Test Model is Off and CC Settings: PCFICH On/Off is On.

3.11.57 CC Settings : PCFICH Power Boosting

This sets the PCFICH Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is Off, CC Settings: PCFICH On/Off is On and CC Settings: PCFICH Power Auto/Manual is Manual.

Procedure

Range

-20.000 to +20.000 dB

Default

CC #0,1,2,3,4 0.000dB

3.11.58 CC Settings : PHICH On/Off

This enables or disables the PHICH for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed On when CC Settings: Test Model is not Off.

Procedure

 Measure
 > → > F1 (Batch Measurement) > F1 (Batch Settings)

 > F3 (CC Settings)

 Options

 On
 The measurement target includes PHICH

 Off
 The measurement target does not include PHICH

 Default

CC #0,1,2,3,4 On

3.11.59 CC Settings : PHICH Power Auto/Manual

This sets the method for determining the PHICH Boost level for every CC.

This is enable when CC Settings: Test Model is Off and CC Settings: PHICH On/Off is On.

3.11.60 CC Settings : PHICH Power Boosting

This sets the PHICH Boost level for every CC as relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is Off, CC Settings: PHICH On/Off is On and CC Settings: PHICH Power Auto/Manual is Manual.

Procedure

Messure > → > F1 (Batch Measurement) > F1 (Batch Settings)
> F3 (CC Settings)

Range

-20.000 to +20.000 dB

Default

CC #0,1,2,3,4 0.000 dB

3.11.61 CC Settings : PDSCH Power Auto/Manual

This sets the method for determining the PDSCH Boost level for every CC.

This is enabled when CC Settings: Test Model is Off and CC Settings: PDSCH Modulation Scheme is not AUTO.

Procedure

Options

Auto Automatic detection

Manual Manual detection

Default

CC #0,1,2,3,4 Auto

3.11.62 CC Settings : PDSCH Power Boosting

This sets the PDSCH Boost level for every CC as a relative value based on the Reference Signal level.

This is enabled when CC Settings: Test Model is Off and CC Settings: PDSCH Power Auto/Manual is Manual.

```
Procedure
```


3.11.63 CC Settings : PHICH - Ng

This sets the Ng parameter for every CC, which is one parameter determining the PHICH group number.

This is enabled when CC Settings: Test Model is Off and CC Settings: PHICH On/Off is On.

3.11.64 CC Settings : PHICH Duration

This sets the PHICH duration.

This is enabled when CC Settings: Test Model is Off and CC Settings: PHICH On/Off is On.

Procedure

Options

Normal Normal

Extended Extended

Default

CC #0,1,2,3,4 Normal

3.11.65 CC Settings : Number of PDCCH Symbols - Auto/Manual

This selects automatic detection and manual setting of the number of OFDM symbols per PDCCH.

This is enabled when CC Settings: Test Model is Off, CC Settings: PDCCH On/Off is On and CC Settings: PCFICH On/Off is On.

3.11.66 CC Settings : Number of PDCCH Symbols for Subframe 1 and 6

This sets the Symbol number of PDCCH of subframe 1 and 6 for every CC.

This is enabled when CC Settings: Number of PDCCH Symbols -Auto/Manual is Manual and CC Settings: PDCCH On/Off is On.

Procedure

3.11.67 CC Settings : Number of PDCCH Symbols

This sets the Symbol number of PDCCH except subframe 1 and 6 for every CC.

This is enabled when CC Settings: Number of PDCCH Symbols -Auto/Manual is Manual and CC Settings: PDCCH On/Off is On.

Procedure

Messure > > F1 (Batch Measurement) > F1 (Batch Settings) > F3 (CC Settings)

Range

When CC Settings: Channel Bandwidth is 1.4 MHz: 2 to 4

When CC Settings: Channel Bandwidth is not 1.4 MHz: 1 to 3 Default

1

CC #0,1,2,3,4

3.11.68 CC Settings : PDCCH Mapping

This sets mapping of PDCCH and NIL (dummy PDCCH) to the control channel elements (CCEs) for every CC.

This is enabled when CC Settings: Test Model is Off and CC Settings: PDCCH On/Off is On.

Procedure

Measure	$ \rightarrow $ F1 (Batch Measurement) > F1 (Batch Settings)
> [F3] ((CC Settings)
Options	
Auto	Automatically evaluates and measures PDCCH and NIL
Easy	Performs measurement for all subframes according to the
	PDCCH mapping that is determined by the PDCCH
	Format and Number of PDCCHs parameters.
	Measurement is performed assuming that PDCCHs are
	mapped sequentially from the first CCE for the number
	specified by Number of PDCCHs in the unit specified by
	PDCCH Format.

```
Default
```

CC #0,1,2,3,4 Auto

3.11.69 CC Settings : PDCCH Format

This sets the PDCCH format for every CC.

This is enabled when CC Settings: Test Model is Off, CC Settings: PDCCH On/Off is On and CC Settings: PDCCH Mapping is Easy.

3.11.70 CC Settings : Number of PDCCHs

This sets the PDCCH number included in 1 subframe for every CC.

This is enabled when CC Settings: Test Model is Off, CC Settings: PDCCH On/Off is On and CC Settings: PDCCH Mapping is Easy.

Procedure

Messure > → > □ (Batch Measurement) > □ (Batch Settings) > □ (CC Settings)
Range
1 to 88
Default
CC #0,1,2,3,4 1

3.11.71 CC Settings : CSI-RS On/Off

This enables or disables the CSI-RS for every CC.

This is enabled when CC Settings: Test Model is Off. This parameter is fixed Off when CC Settings: Test Model is not Off. When the MX269022A-001 is not installed, it is fixed to Off.

Measure	> $ > $ $ (Batch Measurement) > $ $ > $ $ (Batch Settings)$
> [F3] ((C Settings)
Options	
On	The measurement target includes CSI-RS.
Off	The measurement target does not include CSI-RS.
Default	
CC #0,1,	2,3,4 On

3.11.72 CC Settings : CSI-RS Configuration

This sets the CSI-RS Configuration for every CC.

This is enabled when the MX269022A-001 is installed and CC Settings: CSI-RS On/Off is On.

Procedure

(Measurement) > (F1 (Batch Measurement) > ([1] (Batch Settings)
> [F3] (CC Settings)	
Range	
When CSI-RS Number of Antenna Ports is 8	0 to 4, 20 to 22
When CSI-RS Number of Antenna Ports is 4	0 to 9, 20 to 25
When CSI-RS Number of Antenna Ports is 2	0 to 31
When CSI-RS Number of Antenna Ports is 1	0 to 31
Default	
CC #0,1,2,3,4 0	

3.11.73 CC Settings : CSI-RS Periodicity T

This sets CSI-RS Periodicity T for every CC.

This is enabled when the MX269022A-001 is installed and CC Settings: CSI-RS On/Off is On.

Procedure

• P	
5	Measures with CSI-RS Periodicity T set to 5.
10	Measures with CSI-RS Periodicity T set to 10.
Default	

CC #0,1,2,3,4 5

3.11.74 CC Settings : CSI-RS Subframe Offset

This sets CSI-RS Subframe Offset for every CC.

This is enabled when the MX269022A-001 is installed and CC Settings: CSI-RS On/Off is On.

Procedure

 Messure
 > Image

 Particular
 When CSI-RS Periodicity T is 10:
 0 to 9

 When CSI-RS Periodicity T is 5:
 0 to 4

 Default
 CC #0,1,2,3,4
 0

3.12 Batch Measurement Results

Batch Measurement is performed as below.

Procedure

1. Sets the parameters for Batch Measurement.

3.11 Setting Batch Measurement

2. Starts Batch Measurement.

3.1.3 Performing Measurement

3.12.1 Measurement results

The numeric results of Batch Measurement are as below.

(1) Band : Frequency Error

Displays the average frequency error of the CC included in Band.

(2) Band : PDSCH EVM

Displays the average frequency error of the CC included in Band.

(3) Band : Band Power

Displays the RF level of the Band. When the MS269xA-004/104/078/178 or MS2830A-078 is not installed, no measurement results are displayed. When the MS269xA-004/104/078/178, MS2830A-078 is installed, the measurement result of 125 MHz bandwidth is displayed.

(4) Band : RS Power

Displays the average RS power value of the CC included in Band.

(5) Band : OSTP

Displays the average OSTP of the CC included in Band.

(6) Band : OBW (Cont.CA)

Displays the OBW when Band Settings : Contiguous Mode is On. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(7) Band : ACLR UTRA

Displays the ACLR UTRA. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(8) Band : ACLR E-UTRA

Displays the ACLR E-UTRA. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(9) Band : OBUE Margin

Displays the OBUE worst peak level relative to the standard template. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(10) Band : OBUE Peak Absolute Level

Displays the OBUE worst peak absolute level. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(11) Band : OBUE Peak Frequency

Displays the OBUE worst peak frequency. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

(12) CC : Frequency Error

Displays the average frequency error of the CC.

(13) CC : PDSCH EVM

Displays the average PDSCH EVM of the CC.

(14) CC : CC Power

Displays the average RF level of the CC.

(15) CC : RS Power

Displays the RS power value of the CC.

(16) CC : OSTP

Displays the OSTP of the CC

(17) CC : Time Offset

Displays the time difference between the CCs in the band. The reference is the CC with the smallest number in the band.

(18) Band : OBW (CC)

Displays the OBW of the CC when Band Settings : Contiguous Mode is Off. When the measurement bandwidth exceeds the analysis bandwidth, no measurement results are displayed.

3.13 Spectrum Measurement

Adjacent channel leakage power measurement (ACP), Channel Power measurement, Occupied bandwidth measurement (OBW), Spectrum Emission Mask measurement (SEM) of the Signal Analyzer function and Spectrum Analyzer function

and Spectrum Emission Mask measurement (SEM) of the Spectrum Analyzer function is available.

To select the measurement items, press [4] (Measure) on the main function menu or Measure to display the Measure function menu.

3.6.2 "Recalling parameters" of the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation), MS2830A Signal Analyzer Operation Manual (Mainframe Operation) or MS2850A Signal Analyzer Operation Manual (Mainframe Operation) cannot be executed when these function is being recalled.

ACP (FFT)

Summary

The ACP function of the Signal Analyzer function is called, and the adjacent channel leakage power is measured according to the handed over parameter settings. This function is only enabled when Channel Bandwidth is set to 1.4, 3, and 5 MHz.

ACP (Swept)

Summary

The ACP function of the Spectrum Analyzer function is called, and the adjacent channel leakage power is measured according to the handed over parameter settings.

Channel Power (FFT)

Summary

The Channel Power function of the Signal Analyzer function is called, and the channel power is measured according to the handed over parameter settings.

Channel Power (Swept)

Summary

The Channel Power function of the Spectrum Analyzer function is called, and the channel power is measured according to the handed over parameter settings.

OBW (FFT)

Summary

The OBW function of the Signal Analyzer function is called, and the occupied bandwidth is measured according to the handed over parameter settings.

OBW (Swept)

Summary

The OBW function of the Spectrum Analyzer function is called, and the occupied bandwidth is measured according to the handed over parameter settings.

Spectrum Emission Mask (Swept)

Summary

The Spectrum Emission Mask function of the Spectrum Analyzer function is called, and the spectrum emission mask is measured according to the handed over parameter settings.

3.13.1 Measurement results

The Carrier Frequency, Input Level, Offset, Offset Value, and Pre-Amp settings are handed over automatically to the relevant parameter of Signal Analyzer function and Spectrum Analyzer function.

The trigger settings are handed over automatically to the relevant parameters of Signal Analyzer function.

When Frame Timing Sync in Swept is On,

the Trigger and Gate settings are automatically handed over to the relevant parameters of Spectrum Analyzer function according to Table 3.13.1-1.

The Gate Delay and Gate Length values must be measured by the Modulation Analysis measurement of the MX269022A before using Spectrum Analyzer function.

 Table 3.13.1-1
 Handing over MX269022A Trigger Setting to Spectrum Analyzer Function

Model Name	MX269022A		Spectrum Analyzer function					
	Trigger Switch	Trigger Source	Trigger Switch	Trigger Source	Gate	Gate Source	Gate Delay	Gate Length
	Off	-			Off	-	-	-
MS2850A	On	-	Off	-	-	Same as trigger source of MX269022A	Results*	Results*
Others	-	-			Off	-	-	-

*: The results measured by the MX269022A.

3-135

3.13.2 Advanced Settings

This function configures settings related to spectrum measurement.

Coupled Ref & ATT in Swept & FTT

	This sets whether to handover Reference Level and ATT setting when switching function among the followings:ACP (Swept), ACP (FFT), Channel Power (Swept), Channel Power (FFT), OBW(FFT), OBW (Swept), Spectrum Emission Mask (Swept)
	Procedure Messure > F8 (Advanced Settings) >
	[1] (Coupled Ref & ATT in Swept & FTT)
	OptionsOn, OffDefaultOff
Coupled Gate in Swept	This sets whether to handover the Gate sweep settings when switching function among the followings: ACP (Swept), Channel Power (Swept), OBW (Swept), Spectrum Emission Mask (Swept)
	This function is available only on the MS2850A.
	Procedure Messure > F8 (Advanced Settings) > F2 (Coupled Gate in Swept) Options On, Off Default Off
Frame Timing Sync in Swept	This sets whether to handover the frame timing when switching function among the followings: ACP (Swept), Channel Power (Swept), OBW (Swept), Spectrum Emission Mask (Swept)
	This function is available only on the MS2850A.
	Procedure Measure > [F8] (Advanced Settings) > [F5] (Frame Timing Sync in Swept)
	Options On, Off Default Off

Chapter 4 Digitizing and Replaying

This chapter describes how to set up the method for capturing input signals, how to save captured signals in a file as digitized data, and how to use the saved digitized data to reproduce measurements.

4.1	Digitize	e function
	4.1.1	Loading IQ Data4-2
	4.1.2	Saving IQ Data 4-4
	4.1.3	Format of data information file 4-5
	4.1.4	Format of data file4-7
4.2	Replay	/ Function
	4.2.1	Starting Replay Function 4-8
	4.2.2	Display During Replay Function Execution 4-8
	4.2.3	Restrictions When Executing the Replay
		Function
	4.2.4	Characteristics of Replayable IQ Data Files . 4-9
	4.2.5	Stopping Replay 4-9

Digitizing and Replaying

4.1 Digitize function

4.1.1 Loading IQ Data

There are two modes for setting the method for determining the signal capturing interval.

Auto

The data necessary to measure five frames for each measurement is always captured.

Manual

In this mode, the number of frames measured for each measurement can be specified. Specify the number of frames for Capture Time Length. The frames in the interval specified for Capture Time Length must always be continuous.

The analysis interval for one measurement is the time it takes for five frames, starting at the beginning of a frame. If Capture Mode is set to Auto and Storage Mode is set to Average or Average & Max to average the results, the analysis interval is not continuous. If Capture Mode is set to Manual, the results can be averaged over a continuous interval.

Figure 4.1.1-1 Differences in the signal capturing interval and analysis interval due to Capture Time

	Figure 4.1.1-1 shows the relationship between the signal capturing interval and analysis interval for different Capture Time settings. The scale of the figure is based on the length of one measurement, which is equivalent to five frames.*
	*: The actual amount of time it takes to capture an input signal is slightly longer than the value specified for Capture Time Length because internal processing such as frame synchronization processing is performed.
	When measuring ACP, Channel Power, and OBW using the Replay function, save the IQ data in the Manual mode.
Capture Time	
	Sets the method for determining the signal capturing interval.
	If Capture Time Length is specified, the Manual mode is automatically used.
	Procedure $ \overset{\text{Menu}}{\widehat{\sigma}} > \text{Capture (F7)} > \text{Capture Time (F1)} $
	OptionsAuto, ManualDefaultAuto
Capture Time Length	Sets the signal capturing time.
	If Capture Time is set to Auto, Capture Time Length is automatically changed to five frames.
	Procedure $\overbrace{\widehat{e}}^{Menu}$ > Capture (F7) > Capture Time Length (F2)
	Range 5 to 150 frame
	Default 5 frame

4.1.2 Saving IQ Data

After a measurement, captured signals can be saved to an external device file in the IQ data format.

Procedure

- 1. Press **Capture** (**F7**) on the main function menu.
- 2. Press Save Captured Data (
- 3. Press **Device** () on the **Save Captured Data** function menu to select a data file for saving the IQ data.
- 4. Press **File Name** (**F2**) to set the file name.
- 5. Press **Exec Digitize** (**F7**) to save.

When save processing is executed, the following files are created.

- "[File Name].dgz" Data file (binary format)
- "[File Name].xml" Data information file (XML format)

The IQ data row is saved to the data file. The information on the saved data is saved to the data information file.

If the file name is not specified, a file name with the following format is used: Digitize *date_consecutive-number*

Here, *consecutive-number* is a value in the range from 000 to 999.

Files are saved to the following directory of the target drive specified using **Device** (F1). \Anritsu Corporation\Signal Analyzer\User Data\Digitized Data\LTETDD Downlink Up to 1000 files can be made within the folder.

4.1.3 Format of data information file

The information on the saved IQ data is recorded in the data information file. Table 4.1.3-1 shows the details of the recorded parameters.

ltem	Explanation
CaptureDate	Day/Month/Year of the captured data in the "DD/MM/YYYY" format.
CaptureTime	Data captured time in "HH/MM/SS" format
FileName	Data file name
Format	Data format, fixed to "Float"
CaptureSample	Number of samples of the recorded data [Sample]
	Error status of the recorded data
Condition	"Normal": Normal status
	"OverLoad": Level over
Twiggon Desition	Trigger occurrence position [Sample]
TriggerPosition	The start point of the recorded data is 0.
CenterFrequency	Center frequency [Hz]
SpanFrequency	Frequency span [Hz]
SamplingClock	Sampling rate [Hz]
DueselesterDeudMede	Frequency band switch mode.
rreselectorbandwode	"Normal": Normal mode (fixed)
	Reference level [dBm]
ReferenceLevel	Note that this value does not include the reference level offset.
AttenuatorLevel	Attenuator value [dB]
T . 10 .	Internal gain value [dB]
InternalGain	This is an internal parameter.
D A	Value of the gain (in dB) due to the 6 GHz
PreAmp	preamp
IQReverse	IQ reverse setting, fixed to "Normal"
	Trigger On/Off setting
TriggerSwitch	"FreeRun":Trigger is not used
	"Triggered":Trigger is used

Table 4.1.3-1 Format of data information file

Chapter 4 Digitizing and Replaying

Item	Explanation
	Trigger source
TriggerSource	"External":External trigger
	"SGMarker": SG marker trigger
	Trigger level [dBm]
TriggerLevel	Note that this value does not include the
	reference level offset. It is in dBm units,
	even if the scale mode is Lin.
	Trigger delay time [s]
TriggerDelay	It is the relative time from the trigger input
	data.
IQReference0dBm	Reference IQ amplitude that indicates 0
	dBm
	Fixed to "1".
-	Reference signal information
	"Ref.Int":Internal reference signal
	"Ref.Ext":External reference signal
ExternalReferenceDisp	"Ref.Int Unlock":Internal reference signal
	is unlocked.
	"Ref.Ext Unlock":External reference signal
	is unlocked.
	Value of correction by the Correction function (in dB)
	Correction Factor is added to the IQ data in
Correction Factor	data files.
	This item is 0.000 if the Correction function
	is set to Off.
Terminal	Signal input terminal
	"RF": RF terminal
ReferencePosition	0-second reference position
	Indicates the 0-second reference position
	During Replay function execution the
	reference position is displayed as 0 s.
Trigger Slope	Edge where the trigger is generated (rise or
	fall).
	"Rise": Rising edge
	"Fall": Falling edge

Table 4.1.3-1	Formatting the data information file ((Cont'd)
---------------	--	----------

4.1.4 Format of data file

The data file is created in binary format. From the beginning of the file, I-phase data and Q-phase data are recorded by 4 bytes. The I-phase data and Q-phase data are recorded as a float type (IEEE real*4).

I-phase data 1 (4 bytes)
Q-phase data 1 (4 bytes)
I-phase data 2 (4 bytes)
Q-phase data 2 (4 bytes)
I-phase data 3 (4 bytes)
Q-phase data 3 (4 bytes)
:

Figure 4.1.4-1 Format of data file

The IQ data can be converted to power based on the following formula:

$$P = 10 Log_{10} (I^2 + Q^2)$$

where

Q : Q-phase data

4.2 Replay Function

The Replay function enables the saved IQ data to be reanalyzed.

4.2.1 Starting Replay Function

Start the Replay function using the following procedure:

Procedure

- 1. Press **Capture** (1970) on the main function menu.
- 2. Press **Replay** (on the Capture function menu.
- 3. Press **Device** (1) on the Replay function menu and select the drive in which the target file is stored.
- 4. Press (Application), and then select the name of the application used to save the replay target file.
- 5. Press **Select File (D)** to display a file selection dialog. The Replay function starts after selecting a file. Then, **Replaying** is displayed on the screen.

Note:

- 1 This function is executed only for an IQ data file whose sampling rate is 50 MHz.
- 2 Once Replay starts, the settings are initialized except for the parameters specified in Table 4.1.3-1.

4.2.2 Display During Replay Function Execution

Replay Error Info. is displayed if the target IQ data file meets the following conditions:

- Frequency reference is Unlocked when IQ data is saved.
- Level Over occurs when IQ data is saved

4.2.3 Restrictions When Executing the Replay Function

The functions that are restricted during a replay are shown in Table 4.2.3-1.

Function		
Center Frequency		
Input Level		
Pre Amp		
Trigger Switch		
Trigger Source		
Trigger Slope		
Trigger Delay		
Continuous Measurement		
Single Measurement		
Capture Time Auto/Manual		
Capture Time Length		

4.2.4 Characteristics of Replayable IQ Data Files

The characteristics of IQ data files for which replay analysis is available are shown in Table 4.2.4-1.

Table 4.2.4-1	Replayable	IQ data	files

ltem	Value
Format	I, Q (32-bit Float Binary format)
Sampling rate	$50 \mathrm{~MHz}$
Number of samples	Equivalent to one frame or more Modulation Analysis: 3,100,000 or more ACP, OBW, and Channel Power: 3,230,000 or more

4.2.5 Stopping Replay

Stop the Replay function using the following procedure:

- 1. Press **Capture** (**F7**) on the main function menu.
- 2. Press **Stop Replaying** (**F5**) to stop the Replay function.
Chapter 5 Performance Test

This chapter describes measurement devices, setup methods, and performance test procedures required for performing performance tests as preventive maintenance.

5.1	Overview of Performance Test	5-2
	5.1.1 Performance test	5-2
5.2	Performance Test Items	5-3
	5.2.1 Testing methods	5-3

5.1 Overview of Performance Test

5.1.1 Performance test

Performance tests are performed as part of preventive maintenance in order to prevent the performance degradation before it occurs.

Use performance tests when required for acceptance inspection, routine inspection and performance verification after repairs. Perform items deemed critical at regular intervals as preventive maintenance. Perform the following performance tests for acceptance inspection, routine inspection and performance verification after repairs.

- Carrier frequency accuracy
- Residual EVM

Perform items deemed critical at regular intervals as preventive maintenance. A recommended cycle for routine tests of once or twice a year is desirable.

If items that do not meet the required level are detected during performance testing, contact an Anritsu Service and Sales office. Contact information can be found on the last page of the printed version of this manual, and is available in a separate file on the PDF version.

5.2 Performance Test Items

Warm up the subject testing device and measuring instruments for at least 30 minutes except where directed, in order to stabilize them sufficiently before running performance tests. Demonstrating maximum measurement accuracy requires, in addition to the above, conducting performance tests under ambient temperatures, little AC power supply voltage fluctuations, as well as the absence of noise, vibrations, dust, humidity or other problems.

Testing methods 5.2.1

- (1) Test target standards
 - Carrier frequency accuracy
 - Residual EVM

• Power meter

- (2) Measuring instrument for tests
 - Vector signal generator
 - Frequency standard device
- Unnecessary if signal source has sufficient frequency accuracy Unnecessary if signal source has sufficient transmitter power accuracy

5

Chapter 5 Performance Test

Figure 5.2.1-1 Performance test

- (4) Test procedure
 - (a) Signal source adjustment
 - 1. Input the 10-MHz reference signal output from the frequency standard device into the Reference Input connector of the vector signal generator.
 - 2. Input the 10 MHz reference signal output from the signal generator to the Reference Input connector.
 - 3. Output an LTE TDD Downlink modulation signal from the vector signal generator.
 - 4. Input the vector signal generator output signal into the power meter and measure the power.
 - (b) Settings of the main unit
 - 1. Turn On the power switch on the front panel then wait until the internal temperature stabilizes (approx. 1.5 hours after the temperature in the thermostatic bath stabilizes).
 - 2. Press (), then press the menu function key displaying the character string "LTE-TDD Downlink."
 - 3. Press _____.
 - 4. Press 🗊 (Preset) to perform initialization.
 - 5. Press $\overset{Cal}{\square}$
 - 6. Press [1] (SIGANA All) to perform calibration.
 - 7. Press [13] (Close).
 - 8. Press Frequency, enter the frequency output by the vector signal generator using the numeric keypad, then press (Enter).
 - 9. Press (anothed), enter the power meter measurement result using the numeric keypad, then press (Enter).
 - 10. Press Trace then press f4 (Storage) and press f1 (Mode) to choose Average using the cursor key or the rotary knob, then press fine.
 - 11. Press 😰 (Count), enter the measurement count, using the numeric keypad, then press (Enter).

12. Press $\overset{\text{Single}}{\frown}$ to perform measurement.

When measuring the carrier frequency accuracy, select **Auto** for **Reference Signal**. When measuring the residual vector error, select **Fixed to Internal**.

Press (System Settings) after pressing (System Settings) to display the System Settings screen. Select and set Reference Signal with cursor key, and then press (Set).

- 13. Confirm whether the measured Frequency Error (carrier frequency accuracy) is within the specifications.
- 14. Confirm whether the measured EVM (rms) (residual vector error) value is within the specifications.
- (5) Test Result

Table 5.2.1-1 Carrier frequency accuracy

Frequency	Min. limit	Deviation (Hz)	Max. limit	Uncertainty	Pass/Fail
$600 \mathrm{~MHz}$	MS269xA -3 Hz		MS269xA +3 Hz	MS269xA ±1 Hz	
$1500 \mathrm{~MHz}$	MS2830A -3.5 Hz		MS2830A +3.5 Hz	MS2830A ±0.2 Hz	
2000 MHz	MS2830A-078 -4 Hz		MS2830A-078 +4 Hz	MS2830A-078 ±0.8 Hz	
2700 MHz	$\begin{array}{c} \mathrm{MS2850A}\\ -4~\mathrm{Hz} \end{array}$		MS2850A +4 Hz	MS2850A ±0.8 Hz	
	MS269xA -3 Hz		MS269xA +3 Hz	MS269xA ±1 Hz	
4000 MHz	$\begin{array}{c} \mathrm{MS2830A} \\ \mathrm{-8~Hz} \end{array}$		MS2830A +8 Hz	MS2830A ±1.1 Hz	
3600 MHz (MS2830A-040)	MS2830A-078 8 Hz		MS2830A-078 +8 Hz	MS2830A-078 ±1.1 Hz	
	$\begin{array}{c} \mathrm{MS2850A} \\ \mathrm{-8~Hz} \end{array}$		MS2850A +8 Hz	MS2850A +1.1 Hz	

Frequency	Measured value [% (rms)]	Max. limit	Uncertainty	Pass/Fail
$600 \mathrm{~MHz}$		MS269xA	MS269xA	
$1500 \mathrm{~MHz}$		MS269xA-x78	MS269xA-x78	
2000 MHz		1.3 % (rms)	0.1 % (rms)	
2700 MHz		MS2830A 1.3 % (rms)	MS2830A 0.2 % (rms)	
4000 MHz		MS2830A-078 1.3 % (rms)	MS2830A-078 0.1 % (rms)	
3600 MHz (MS2830A-040)		MS2850A 1.3 % (rms)	MS2850A 0.1 % (rms)	

Chapter 6 Other Functions

This chapter describes other functions of this application.

6.1	Selecting Other Functions	6-2
6.2	Setting Title	6-2
6.3	Erasing Warmup Message	6-2

6.1 Selecting Other Functions

Pressing [16] (Accessory) on the main function menu displays the Accessory function menu.

Function Keys	Menu Display	Function		
F1	Title	Sets the title character string.		
F2	Title (On/Off)	Displays (On) or hides (Off) the title character string.		
F4	Erase Warm Up Message	Erases the warmup message display.		

Table 6.1-1 Accessory function menu

6.2 Setting Title

A title of up to 32 characters can be displayed on the screen. (Character strings of up to 17 characters can be displayed on a function menu. The maximum number of characters to be displayed on the top of the function menu varies according to character string.)

<Procedure>

- 1. Press [F8] (Accessory) on the main function menu.
- Press [F] (Title) to display the character string input screen. Select a character using the rotary knob, and enter it by pressing [Enter.]
 Enter the title by repeating this operation. When the title is entered, press [F] (Set).
- 3. Press [12] (Title) and then select "Off" to hide the title.

6.3 Erasing Warmup Message

The warmup message (\mathbf{X} warm Up), which is displayed upon power-on and indicates that the level and frequency are not stable, can be deleted.

<Procedure>

- 1. Press (Accessory) on the main function menu.
- 2. Press F (Erase Warm Up Message) to erase the warmup message.

References are to page numbers.

Symbol and Numbers

1

1st Local Output connector	
Α	
AC inlet	2-11
Accessory	
ACLR	3-99
ACLR E-UTRA	
ACLR UTRA	3-131
ACP	
Amplitude	3-12, 3-14, 3-57
AMPLitude	
Analysis Time	
Application key	
Application Switch	
Auto Range	
AUX connector	

В

Band Power	3-131
Bottom Graph Marker Number	3-64, 3-90
Bottom Graph Select	3-65
Bottom Graph Symbol Number	3-53
Buffer Out Connector	2-10

С

Cal key	
CAL Port	
Calibration	
Cancel key	
Carrier Frequency	
CC Power	
Cell ID	
Channel Bandwidth	
	3-60, 3-63, 3-64, 3-106
Channel Estimation	
Channel Power	
Common Setting	
Constellation	
Constellation Marker Nur	nber 3-63

Constellation Select	3 - 63
Constellation Symbol Number	3-52
Contiguous Mode	3-103
Continuous	3-10
Copy key	2 - 3
Count	3-48
Coupled Gate in Swept	3 - 136
Coupled Ref & ATT in Swept & FTT	3-136
CRS Antenna Port	3-111
CRS Number of Antenna Ports	3-110
CRS Power Boosting	3-109
CSI-RS Antenna Port	3-111
CSI-RS Configuration	3-129
CSI-RS Number of Antenna Ports	3-110
CSI-RS On/Off	3-128
CSI-RS Periodicity T	3-129
CSI-RS Subframe Offset	3 - 130
Cursor key	

D

Detail Settings	
DwPTS	3-113

Ε

Erase Warm Up Message	Enter key	
Ethernet connector	Erase Warm Up Message	6-2
Ethernet: 2-4 EVM vs RB. 3-62 EVM vs Subcarrier 3-49, 3-53 EVM vs Subcarrier View. 3-53 EVM vs Symbol 3-55 EVM vs Symbol View 3-55 EVM Window Length 3-28, 3-29, 3-112 Extended Freq Lock Range 3-45	Ethernet connector	2-11
EVM vs RB	Ethernet:	2-4
EVM vs Subcarrier	EVM vs RB	3-62
EVM vs Subcarrier View	EVM vs Subcarrier	. 3-49, 3-53
EVM vs Symbol	EVM vs Subcarrier View	3-53
EVM vs Symbol View	EVM vs Symbol	. 3-49, 3-55
EVM Window Length3-28, 3-29, 3-112 Extended Freq Lock Range3-45	EVM vs Symbol View	3-55
Extended Freq Lock Range	EVM Window Length 3-28, 3	3-29, 3-112
	Extended Freq Lock Range	3-45

F

Frame Timing Sync in Swept	3-136
Frequency	3-12
Frequency Band	3-105
Frequency Error 3-51, 3-87, 3-131,	3-132
Frequency Offset	3-105

Index

Front panel	2-2
Function keys	2-4
Function menu	3-8
0	

G

Gap	3-75
GPIB	
GPIB connector	
Graph Select	3-89
Graph View	. 3-53, 3-55, 3-61

Н

Hard disk access lamp	2 - 3
HDD slot	2-11
I	

IF Out connector	2-10
IF output connector	2-12
Input Level	-101

L

Limiter Mode 3-	81
Limiter Mode ATT 3-	81
Limiter Mode Offset 3-	82
Limiter Mode Offset Value	82
Load Application Select	$\cdot 15$
Load Standard setting 3-	79
Local key	2-4

Μ

Main function keys	
Marker	3-63, 3-89
Measure	3-7
Measurement Filter Type	3-45, 3-114
Measurement Interval	3-25, 3-97
Measurement Interval for Unwant	ted Emissions
	3-98
Measurement Item	3-100, 3-104
Measurement Parameter	3-6
mi	3-39
Modulation Analysis	3-9, 3-98
Modulation control key	
Monitor Out connector	2-11

Ν

Next Peak	3-90
Noise Calculate	3-83
Noise Correction	3-73
Noise Correction Mode	3-82
Noise Source	2-12
Number of PDCCH Symbols	3-125
Number of PDCCHs	3-128
Numeric keypad	

0

OBUE	3-99
OBUE Margin	
OBUE Peak Absolute Level	
OBUE Peak Frequency	
OBUE Standard	
OBUE Standard Additional	
OBW	
OBW (CC)	
OBW (Cont.CA)	
Off Power Limit	
Offset	3-13, 3-102
Offset Value	3-13, 3-102
OSTP	3-131, 3-132

Ρ

Page Number 3-66, 3-69
PBCH On/Off
PBCH Power Auto/Manual 3-115
PBCH Power Boosting 3-115
PCFICH On/Off 3-120
PCFICH Power Auto/Manual 3-121
PCFICH Power Boosting
PCIe X8
PDCCH Format 3-127
PDCCH Mapping 3-127
PDCCH On/Off 3-119
PDCCH Power Auto/Manual 3-119
PDCCH Power Boosting
PDSCH EVM
PDSCH Modulation Scheme
PDSCH Power Auto/Manual3-123
PDSCH Power Boosting
Peak Search (Margin)

PHICH - Ng 3-124
PHICH Duration 3-125
PHICH On/Off
PHICH Power Auto/Manual 3-122
PHICH Power Boosting 3-123
Power Boosting
Power Switch 2-3
Power vs RB 3-49
Power vs RB View
Power vs Time 3-9
Pre-Amp
Pre-Amp Mode
Preset key 2-4
P-SS On/Off3-116
P-SS Power Auto/Manual3-116
P-SS Power Boosting3-117

R

Rear panel
Recall key 2-3
Ref Input connector 2-10
reference frequency signal 2-10
Reference Signal
Remote lamp
Resource Block Number
RF Input connector
RF Output connector
RF Output Control key 2-6
Rotary knob 2-6
RS EVM
RS Freq
RS Phase
RS Power
RS Timing Offset 3-94

S

SA Trigger Input connector	2-11
Save key	2 - 3
Scale	3-51
Select Mask	3-75
SG Trigger Input connector	2-11
Shift key	2-6
Single	3-10
Smoothing	3-74

Smoothing Length	4
Smoothing Range	4
Special Subframe Configuration 3-100	8
Spectral Flatness	7
Spectral Flatness Type	7
Spectrum Emission Mask 3-	9
SSD access lamp	3
SSD slot	1
S-SS On/Off	7
S-SS Power Auto/Manual	8
S-SS Power Boosting	8
Start Time	6
Starting OFDM Symbol Number 3-9	7
Starting Subframe Number 3-23, 3-9	6
Stop Time	7
Storage	8
Storage Count	5
Storage Count for Unwanted Emissions 3-9	6
Storage Mode	5
Storage Mode for Unwanted Emissions 3-9	5
Subcarrier Number	6
Subframe Number	9
Summary	6
Sweep Status Out connector	0
Synchronization Mode	8

Т

Test Model	7, 3-106
Test Model Starting Frame Type3-4	4, 3-107
Test Model Summary3-	49, 3-69
Test Model Version	3-17
Time Offset	3-132
Time Reference	3-78
Title	6-2
Title (On/Off)	6-2
Top Graph Marker Number	3-89
Top Graph Marker to Fail	3-90
Top Graph Marker to Transient	3-90
Total EVM & Constellation Composite	3-27
Trace Mode	3-49
Trigger Delay	3-16
Trigger Input	2-12
Trigger Input connector	2-10
Trigger Output	2-12

trigger signal	2-14
Trigger Slope	3-16
Trigger Source	3-15
Trigger Switch	3-15

U

Uplink-downlink Configuration	3-107
USB 3.0	2-12
USB connector	
Туре А	2-11
Type B	2-11
14/	

W

Wide Dynamic Range	72
--------------------	----