MS9740A
Optical Spectrum Analyzer
Remote Control
Operation Manual

13th Edition

- For safety and warning information, please read this manual before attempting to use the equipment.
- Additional safety and warning information is provided within the MS9740A Spectrum Analyzer Operation Manual. Please also refer to this document before using the equipment.
- Keep this manual with the equipment.

ANRITSU CORPORATION
Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

Symbols used in manual

⚠️ **DANGER** This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

⚠️ **WARNING** This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

⚠️ **CAUTION** This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

- ⚠️ This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

- 🔊 This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

- 🔴 This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

- ✍️ This indicates a note. The contents are described in the box.

- 🔄 These indicate that the marked part should be recycled.
Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product’s country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as not to be unlawfully used for military purpose.
About This Manual

This operation manual how to perform remote control of the MS9740A Optical Spectrum Analyzer.

This operation manual assumes that:
- the reader has already read the MS9740A Optical Spectrum Analyzer Operation Manual.
- the reader can create C or Basic program.

Refer to the MS9740A Optical Spectrum Analyzer Operation Manual (M-W3328AE) for how to connect the power and peripheral equipment, for the panel operations, and the maintenance procedures.

This manual is configured by the following structures: Chapter 1, Chapter 2, Chapter 3, Chapter 4, and Appendix A to E. Read Chapter 1 and 2 before using the MS9740A. For Chapter 3 or later, read them as needed.

Chapter 1 Outline
This chapter explains the introduction and main uses for remote control and technical terms used in this manual.

Chapter 2 Before Use
This chapter contains the following information you should read before performing remote control of MS9740A: how to perform setup of MS9740A, how to connect cables, message format, register structure, and synchronous control.

Chapter 3 Sample Program
This chapter explains the sample program operating by Visual C++.

Chapter 4 Message Details
This section explains the remote command messages and rules.

Appendix A to E
These appendixes are reference materials when using the remote control.
Table of Contents

About This Manual ... I

Chapter 1 Outline ... 1-1
 1.1 About Remote Control .. 1-2
 1.2 Main Uses for Remote Control 1-3
 1.3 Glossary ... 1-4

Chapter 2 Before Use .. 2-1
 2.1 Preparing Equipment .. 2-2
 2.2 Connecting Equipment .. 2-4
 2.3 Setting Interface .. 2-7
 2.4 Checking Connection ... 2-15
 2.5 Message Format ... 2-16
 2.6 Checking Instrument Status 2-18
 2.7 Controlling Message Sync .. 2-24

Chapter 3 Sample Program ... 3-1
 3.1 Executing Sample Programs 3-2
 3.2 Example 1: Adjusting Optical System 3-6
 3.3 Example 2: Measuring Center Wavelength and Spectrum Width ... 3-8
 3.4 Example 3: Reading Trace Data 3-10

Chapter 4 Message Details ... 4-1
 4.1 Description of Message Explanations 4-2
 4.2 Correspondence between Panel Operation and Message ... 4-3
 4.3 Message Function Category 4-14
 4.4 Device Message Details ... 4-18
Table of Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>[Clear Status]</td>
<td>4-18</td>
</tr>
<tr>
<td>*ESE</td>
<td>[Event Status Enable]</td>
<td>4-19</td>
</tr>
<tr>
<td>*ESR</td>
<td>[Standard Event Status Register]</td>
<td>4-19</td>
</tr>
<tr>
<td>*IDN</td>
<td>[Identification]</td>
<td>4-20</td>
</tr>
<tr>
<td>*OPC</td>
<td>[Operation Complete]</td>
<td>4-20</td>
</tr>
<tr>
<td>*OPT</td>
<td>[Option Identification Query]</td>
<td>4-20</td>
</tr>
<tr>
<td>*RST</td>
<td>[Reset]</td>
<td>4-21</td>
</tr>
<tr>
<td>*SRE</td>
<td>[Service Request Enable]</td>
<td>4-21</td>
</tr>
<tr>
<td>*STB</td>
<td>[Status Byte]</td>
<td>4-22</td>
</tr>
<tr>
<td>*TST</td>
<td>[Self-Test Query]</td>
<td>4-23</td>
</tr>
<tr>
<td>*WAI</td>
<td>[Wait to Continue]</td>
<td>4-23</td>
</tr>
<tr>
<td>ACAL</td>
<td>[Align with Cal]</td>
<td>4-24</td>
</tr>
<tr>
<td>ALIN</td>
<td>[Auto Alignment]</td>
<td>4-24</td>
</tr>
<tr>
<td>ANA</td>
<td>[Spectrum Analysis]</td>
<td>4-25</td>
</tr>
<tr>
<td>ANA ENV</td>
<td>[Spectrum Analysis (Envelope)]</td>
<td>4-26</td>
</tr>
<tr>
<td>ANA NDB</td>
<td>[Spectrum Analysis (NDB)]</td>
<td>4-26</td>
</tr>
<tr>
<td>ANA OFF</td>
<td>[Spectrum Analysis OFF]</td>
<td>4-27</td>
</tr>
<tr>
<td>ANA PWR</td>
<td>[Spectrum Analysis (Spectrum Power)]</td>
<td>4-27</td>
</tr>
<tr>
<td>ANA RMS</td>
<td>[Spectrum Analysis (RMS)]</td>
<td>4-28</td>
</tr>
<tr>
<td>ANA SMSR</td>
<td>[Spectrum Analysis (SMSR)]</td>
<td>4-29</td>
</tr>
<tr>
<td>ANA THR</td>
<td>[Spectrum Analysis (THR)]</td>
<td>4-29</td>
</tr>
<tr>
<td>ANAR</td>
<td>[Spectrum Analysis Result]</td>
<td>4-30</td>
</tr>
<tr>
<td>AOFS</td>
<td>[Auto Offset]</td>
<td>4-31</td>
</tr>
<tr>
<td>AP</td>
<td>[Application]</td>
<td>4-32</td>
</tr>
<tr>
<td>AP AMP</td>
<td>[Application (Optical Amp)]</td>
<td>4-33</td>
</tr>
<tr>
<td>AP AMP,CAL</td>
<td>[Application (Optical AMP Resolution Calibration)]</td>
<td>4-34</td>
</tr>
<tr>
<td>AP AMP,MSL</td>
<td>[Application (Optical AMP Memory Select)]</td>
<td>4-35</td>
</tr>
<tr>
<td>AP AMP,PASE</td>
<td>[Application (Optical AMP Pase)]</td>
<td>4-36</td>
</tr>
<tr>
<td>AP AMP,PIN</td>
<td>[Application (Optical AMP Pin)]</td>
<td>4-36</td>
</tr>
<tr>
<td>AP AMP,POUT</td>
<td>[Application (Optical AMP Pout)]</td>
<td>4-37</td>
</tr>
<tr>
<td>AP AMP,PRM</td>
<td>[Application (Optical AMP Parameter)]</td>
<td>4-38</td>
</tr>
<tr>
<td>AP AMP2</td>
<td>[Application (Optical Amp Multi Channel)]</td>
<td>4-40</td>
</tr>
<tr>
<td>AP AMP2,ASE,AREA</td>
<td>[Application (Optical AMP Multi Channel ASE Area Parameter)]</td>
<td>4-41</td>
</tr>
<tr>
<td>AP AMP2,ASE,AREA,FUNC</td>
<td>[Application (Optical AMP Multi Channel ASE Fitting Curve)]</td>
<td>4-43</td>
</tr>
<tr>
<td>AP AMP2,ASE,POINT</td>
<td>[Application (Optical AMP Multi Channel ASE Point)]</td>
<td>4-44</td>
</tr>
<tr>
<td>AP AMP2,MLSL</td>
<td>[Application (Optical AMP Multi Channel Memory Select)]</td>
<td>4-45</td>
</tr>
<tr>
<td>AP AMP2,OBPF</td>
<td>[Application (Optical AMP Multi Channel Opt. Band Pass Filter)]</td>
<td>4-46</td>
</tr>
<tr>
<td>AP AMP2,PIN</td>
<td>[Application (Optical AMP Multi Channel Pin)]</td>
<td>4-47</td>
</tr>
<tr>
<td>AP AMP2,POUT</td>
<td>[Application (Optical AMP Multi Channel Pout)]</td>
<td>4-47</td>
</tr>
<tr>
<td>AP AMP2,PRM</td>
<td>[Application (Optical AMP Multi Channel Parameter)]</td>
<td>4-48</td>
</tr>
</tbody>
</table>
AP AMP2, SLV [Application (Optical AMP Multi Channel Slice Level)] 4-49
AP AMP2, STHR [Application (Optical AMP Multi Channel Search Threshold)] 4-49
AP AMP2, WL [Application (Optical AMP Multi Channel Wavelength Detection Type)] 4-50
AP DFB [Application (DFB-LD)] ... 4-51
AP DFB, NDW [Application (DFB-LD ndB Width)] .. 4-52
AP DFB, SRES [Application (DFB-LD Search Resolution)] .. 4-53
AP FP [Application (FP-LD)] ... 4-53
AP LD [Application (LD Module)] .. 4-54
AP LD, K [Application (LD Module K)] ... 4-55
AP LD, NDW [Application (LD Module ndB Width)] ... 4-55
AP LD, NNRMZ [Application (LD Module Noise Normalization)] ... 4-56
AP LD, NOISE [Application (LD Module Noise Detection Type)] ... 4-57
AP LD, NOISE, AREA [Application (LD Module Noise Area Parameter)] 4-58
AP LD, NOISE, AREA, CH [Application (LD Module Noise Channel Area Parameter)] 4-59
AP LD, NOISE, AREA, FUNC [Application (LD Module Noise Fitting Curve)] 4-60
AP LD, NOISE, AREA, USER [Application (LD Module Noise User Specify Area Parameter)] ... 4-61
AP LD, NOISE, POINT [Application (LD Module Noise Point)] .. 4-62
AP LD, NP [Application (LD Module Noise Position)] ... 4-63
AP LD, NT [Application (LD Module Noise Type)] .. 4-64
AP LD, SIGNAL, LV [Application (LD Module Signal Level)] ... 4-65
AP LD, SIGNAL, SL [Application (LD Module Signal Level)] ... 4-66
AP LD, SIGNAL, WL [Application (LD Module Signal Wavelength)] .. 4-67
AP LD, SMSR [Application (LD Module SMSR Parameter)] ... 4-68
AP LD, SRES [Application (LD Module Search Resolution)] ... 4-68
AP LD, THR [Application (LD Module Slice Level)] .. 4-69
AP LED [Application (LED)] .. 4-70
AP OFF [Application OFF] .. 4-70
AP PMD [Application (PMD)] .. 4-70
AP WDM [Application (WDM)] .. 4-71
AP WDM, MPK [Application (WDM MultiPeak)] ... 4-72
AP WDM, NNRMZ [Application (WDM Noise Normalization)] .. 4-72
AP WDM, NOISE [Application (WDM Noise Detection Type)] .. 4-73
AP WDM, NOISE, AREA [Application (WDM Noise Area Parameter)] 4-74
AP WDM, NOISE, AREA, CH [Application (WDM Noise Channel Area Parameter)] 4-74
AP WDM, NOISE, AREA, FUNC [Application (WDM Noise Fitting Curve)] 4-75
AP WDM, NOISE, AREA, USER [Application (WDM Noise User Specify Area Parameter)] 4-76
AP WDM, NOISE, POINT [Application (WDM Noise Point)] ... 4-77
AP WDM, PKT [Application (WDM PeakType)] ... 4-78
AP WDM, REL [Application (WDM Relative)] ... 4-78
AP WDM, SIGNAL, LV [Application (WDM Signal Level)] ... 4-79
AP WDM, SIGNAL, WL [Application (WDM Signal Wavelength)] ... 4-80
AP WDM, SLV [Application (WDM Slice Level)] .. 4-80
AP WDM, SNR [Application (WDM SNR)] .. 4-81
AP WDM, STHR [Application (WDM Search Threshold)] ... 4-82
DBI [Memory Data I] ... 4-115
DBJ [Memory Data J] ... 4-115
DCA [Data Condition Trace A] .. 4-116
DCB [Data Condition Trace B] .. 4-116
DCC [Data Condition Trace C] .. 4-116
DCD [Data Condition Trace D] .. 4-116
DCE [Data Condition Trace E] .. 4-116
DCF [Data Condition Trace F] .. 4-116
DCG [Data Condition Trace G] .. 4-116
DCH [Data Condition Trace H] .. 4-116
DCI [Data Condition Trace I] .. 4-116
DCJ [Data Condition Trace J] .. 4-116
DELCOPYDAT [Delete Image Data] .. 4-117
DELC CSV [Delete CSV Data] .. 4-117
DELM [Delimiter] ... 4-118
DELSYSINFO [Delete System Information] 4-118
DELXML [Delete XML Data] .. 4-119
DMA [Memory Data A] ... 4-120
DMB [Memory Data B] ... 4-120
DMC [Memory Data C] ... 4-120
DMD [Memory Data D] ... 4-120
DME [Memory Data E] ... 4-120
DMF [Memory Data F] ... 4-120
DMG [Memory Data G] ... 4-120
DMH [Memory Data H] ... 4-120
DMI [Memory Data I] ... 4-120
DMJ [Memory Data J] ... 4-120
DMK [ΔMarker] ... 4-121
DPS [Dip Search] ... 4-122
DQA [Memory Data A] ... 4-123
DQB [Memory Data B] ... 4-123
DQC [Memory Data C] ... 4-123
DQD [Memory Data D] ... 4-123
DQE [Memory Data E] ... 4-123
DQF [Memory Data F] ... 4-123
DQG [Memory Data G] ... 4-123
DQH [Memory Data H] ... 4-123
DQI [Memory Data I] ... 4-123
DQJ [Memory Data J] ... 4-123
DRG [Dynamic Range Mode] ... 4-124
DSP [Display Mode] .. 4-124
EMK [Erase Marker] .. 4-124
EOV [Erase Overlap] .. 4-124
ERR [Error] ... 4-125
ESE2 [Extended Event Status Enable Register2] ... 4-125
ESE3 [Extended Event Status Enable Register3] ... 4-125
ESR2 [Extended Event Status Enable Register2] ... 4-126
ESR3 [Extended Event Status Enable Register3] ... 4-126
FML [Formula] ... 4-127
GHC [Get Binary Data of Image Data] .. 4-128
ITM [Interval Time] ... 4-129
LISTCOPYDAT [List Image Data] ... 4-130
LISTCSV [List CSV Data] .. 4-131
LISTSYSINFO [List System Information] ... 4-132
LISTXML [List XML Data] ... 4-133
LLV [Linear Scale] .. 4-134
LOFS [Level Offset] .. 4-135
LOG [Log Scale] .. 4-135
LVS [Level Scale] ... 4-136
MDM [Modulation Mode] .. 4-136
MKA [Wavelength Marker A] .. 4-137
MKB [Wavelength Marker B] .. 4-137
MKC [Level Marker C] ... 4-138
MKD [Level Marker D] ... 4-139
MKV [Marker Value Wavelength/Frequency Select] .. 4-139
MMM [Multimode fiber Mode] .. 4-140
MOD [Measure Mode] ... 4-140
MPT [Sampling Points] .. 4-140
MVCOPYDAT [Move Image Data] ... 4-141
MVCSV [Move CSV Data] .. 4-141
MVSYSINFO [Move System Information] ... 4-142
MVXML [Move XML Data] .. 4-142
OPT [Light Output] .. 4-143
PKC [Peak→Center] .. 4-143
PKL [Peak→Level] .. 4-143
PKS [Peak Search] .. 4-144
PMOD [Format of Image File] .. 4-145
PPC [Peak to Peak Calculation] .. 4-145
PPMK [Peak to Peak Maker] .. 4-146
PRE [Preset] .. 4-146
PRINT [Save Image Data] .. 4-147
PRTCOPYDAT [Protect Image Data] .. 4-148
PRTCSV [Protect CSV Data] .. 4-149
RPTSYSINFO [Protect System Information] .. 4-150
PRTXML [Protect XML Data] .. 4-151
PWR [Power Monitor] .. 4-151
PWRR [Power Monitor Result] .. 4-152
RCAL [Resolution Calibration] .. 4-152
RCXML [Recall XML Data] ... 4-153
RES [Resolution] .. 4-153
RLV [Reference Level] .. 4-154
SMD [Storage Mode] .. 4-154
SMT [Smooth] .. 4-155
SOFTWARE [Software Version] ... 4-155
SPC [Spectrum Mode] ... 4-155
SPN [Span Wavelength] .. 4-156
STHR [Search Threshold] .. 4-156
STHRS [Search Threshold Set] ... 4-156
SRT [Repeat Sweep] .. 4-157
SSI [Single Sweep] ... 4-157
SST [Sweep Stop] .. 4-157
STA [Start Wavelength] ... 4-157
STO [Stop Wavelength] ... 4-158
SVCSV [Save CSV Data] ... 4-158
SVCSV [Save CSV All Data] ... 4-159
SVXML [Save XML Data] ... 4-160
SYS [Application Switch] .. 4-161
SYSINFO [System Information] .. 4-162
TDL [Ext-Trigger Delay Time] .. 4-163
TER [Title Erase] .. 4-163
TMD [Trace Display] .. 4-163
TMK [Trace Marker] ... 4-164
TRM [Terminator] .. 4-165
TSL [Trace Select] ... 4-165
TTL [Title] .. 4-166
TTP [Trace Type] ... 4-166
VBW [Video Band Width] .. 4-167
WCAL [Wavelength Calibration] ... 4-168
WDP [Wavelength Display] ... 4-168
WOFS [Wavelength Offset] ... 4-169
WSS [Wavelength Start and Stop] ... 4-169
ZCAL [Zero Calibration] ... 4-170
ZMK [Zone Marker] .. 4-171
ZMK ERS [Zone Marker (Erase)] ... 4-171
ZMK SPN [Zone Marker (Span)] ... 4-172
ZMK WL [Zone Marker (Wavelength)] ... 4-172
ZMK ZOOM [Zone Marker (Zoom In/Out)] .. 4-173
This chapter explains the outline of the remote control, main uses, and glossary.

1.1 About Remote Control .. 1-2
1.2 Main Uses for Remote Control 1-3
1.3 Glossary.. 1-4
1.1 About Remote Control

The remote control function sends commands via the communications interface from the remote control PC to set the measuring instrument and read the measurement results and measuring instrument conditions.

The MS9740A Optical Spectrum Analyzer (hereafter, MS9740A) supports the Ethernet interface and GPIB interface. (When the option 001 is installed, the GPIB interface can be used.)

The character strings for controlling the MS9740A are called program messages; the responses from it are called response messages. Program and response messages are both composed of strings of ASCII code. Program messages are divided into two types: command messages for executing settings at the MS9740A, and query messages for reading data from it.

For example, the following command sets the measurement wavelength Center to 1560 nm:

```
CNT 1560
```

A command for reading data from this instrument is called a query message. A query command has the question symbol (?) appended to the string. For example, sending the following command queries the Span set at the instrument.

```
SPN?
```

The controller PC receives the following response against the query message from the instrument.

```
>10
```

This response message indicates that the Span setting is 10 nm.

The front-panel displays and Local key operations are still enabled even when the instrument is being remotely controlled. This state calls the panel lock. To disable this panel lock state, press the Local key.
1.2 Main Uses for Remote Control

The main uses for remote control are listed below.

Automating Measurements
Instead of key-panel operations, measurement can be automated by controlling the instrument by executing programs.

Remote Control of Instruments
Measuring instruments at remote locations can be controlled over communications lines to collect measurement data.

Controlling Multiple Instruments
The characteristics of multiple DUTs can be measured simultaneously by remote control of multiple instruments.

Figure 1.2-1 Example of Controlling Multiple Instruments

Figure 1.2-1 shows an example of controlling multiple instruments. In this example, the wavelength characteristics of an LD are measured with changes in temperature and LD current. The power supply current and temperature chamber temperature are controlled remotely from the PC and the LD wavelength and spectrum data are read by the spectrum analyzer. Table 1.2-1 shows the LD characteristics obtained from the spectrum data for the set temperatures and current.

Table 1.2-1 Measurement Example of LD Measured with Changes in Temperature
Model: Sample-001 Forward Current = 50 mA

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Wavelength (nm)</th>
<th>Spectral Width RMS (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−10</td>
<td>1308.1</td>
<td>0.93</td>
</tr>
<tr>
<td>0</td>
<td>1309.1</td>
<td>0.92</td>
</tr>
<tr>
<td>10</td>
<td>1310.0</td>
<td>0.94</td>
</tr>
<tr>
<td>20</td>
<td>1311.0</td>
<td>0.95</td>
</tr>
<tr>
<td>30</td>
<td>1311.9</td>
<td>0.94</td>
</tr>
<tr>
<td>40</td>
<td>1312.9</td>
<td>0.95</td>
</tr>
<tr>
<td>50</td>
<td>1313.8</td>
<td>0.96</td>
</tr>
</tbody>
</table>
1.3 Glossary

Table 1.3-1 indicates what abbreviations are used in this operation manual.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Formal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Carriage Return</td>
</tr>
<tr>
<td>ESER</td>
<td>Event Status Enable Register</td>
</tr>
<tr>
<td>ESR</td>
<td>Event Status Register</td>
</tr>
<tr>
<td>GPIB</td>
<td>General Purpose Interface Bus</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LF</td>
<td>Line Feed</td>
</tr>
<tr>
<td>MAV</td>
<td>Message Available summary</td>
</tr>
<tr>
<td>MSS</td>
<td>Master Summary Status</td>
</tr>
<tr>
<td>SESER</td>
<td>Standard Event Status Enable Register</td>
</tr>
<tr>
<td>SESR</td>
<td>Standard Event Status Register</td>
</tr>
<tr>
<td>SRER</td>
<td>Service Request Enable Register</td>
</tr>
<tr>
<td>STB</td>
<td>Status Byte</td>
</tr>
<tr>
<td>VISA</td>
<td>Virtual Instrument Software Architecture</td>
</tr>
</tbody>
</table>
Chapter 2 Before Use

This chapter explains the preparations for using remote control.

2.1 Preparing Equipment .. 2-2
2.2 Connecting Equipment ... 2-4
 2.2.1 Connecting Ethernet ... 2-4
 2.2.2 Connecting GPIB .. 2-5
2.3 Setting Interface .. 2-7
 2.3.1 Setting Ethernet .. 2-7
 2.3.2 Setting GPIB ... 2-14
2.4 Checking Connection .. 2-15
2.5 Message Format ... 2-16
2.6 Checking Instrument Status .. 2-18
 2.6.1 Register Structure ... 2-18
 2.6.2 Status Byte Register 2-20
 2.6.3 Event Register .. 2-21
2.7 Controlling Message Sync .. 2-24
2.1 Preparing Equipment

The following equipment is required to perform remote control.

- PC
- Ethernet interface
- Ethernet cable
- GPIB interface (when installing Option 001)
- GPIB cable (when installing Option 001)
- VISA
- Program development tools

Ethernet Interface
Prepare the interface that conforms to the following specifications:
- 10BASE-T
- 100BASE-TX
- 1000BASE-T
Furthermore, use the cable corresponding to each specification.

GPIB Interface
Procure the GPIB interfaces that conform with IEEE 488.2.

VISA
When controlling the MS9740A remotely using the Ethernet port, a VISA™ driver must be installed in the PC controller. We recommend using NI-VISA™ from National Instruments™ (NI hereafter) as the VISA driver.

Although a license is generally required to use NI-VISA™, the licensed NI-VISA™ driver is provided free-of-charge for use when performing remote control*1,*2 of a MS9740A unit in which the MS9740A-001 GPIB option has been installed.

The NI-VISA™ driver can be downloaded from the NI website at:

Be sure to comply with the NI license agreement for the usage and license scope.

Be sure to uninstall the NI-VISA™ driver when disposing of the MS9740A or transferring it to a third party, etc., or when ceasing to use NI-VISA™.

*1: Although the NI-VISA™ driver itself can be downloaded free-of-charge from the web, an implementation license is required
2.1 Preparing Equipment

for legal reasons if some requirements are not met. (Check the NI web page for the detailed requirements.)

*2: If these requirements are not met, permission is not granted to use NI hardware and software and an NI implementation license must be purchased. However, since the MS9740A-001 GPIB option incorporates NI hardware (GPIB ASIC), the NI-VISA™ driver can be used free-of-charge.

Glossary of Terms:
• VISA: Virtual Instrument Software Architecture
 I/O software specification for remote control of measuring instruments using interfaces such as GPIB, Ethernet, USB, etc.
• NI-VISA™
 World de facto standard I/O software interface developed by NI and standardized by the VXI Plug&Play Alliance.

Trademarks:
• National Instruments™, NI™, NI-VISA™ and National Instruments Corporation are all trademarks of National Instruments Corporation.

Program Development Tools
Prepare some tools for developing and running programs for performing remote control. Refer to the VISA and Interface manuals for the specifications required by the program development tools.

PC
The PC must be able to run the GPIB interface, VISA and program development tools.
2.2 Connecting Equipment

2.2.1 Connecting Ethernet

Connect the Ethernet connector on the rear-panel of the MS9740A and external devices using LAN cables.

Use a LAN crossover cable to connect the MS9740A and an external device. Use a network hub when connecting to multiple external devices.

Note:
Check the network settings of the MS9740A when connecting to multiple external devices.

![Sample Connection with One External Device](image1)

![Sample Connection with Multiple External Devices](image2)

Note:
External devices may experience difficulty in communicating with the MS9740A, depending on the status of communications between them. A LAN crossover-cable connection is recommended to ensure communication stability.
2.2.2 Connecting GPIB

Connect the GPIB connector on the rear panel of the MS9740A and an external device using a GPIB cable.

CAUTION

Be sure to connect the GPIB cable before turning power on the MS9740A. Connecting it while the power is on may damage internal circuits.

Up to 15 devices, including the external controller (PC), can be connected to one MS9740A unit. Be sure to abide by the conditions shown below when connecting devices.

![GPIB Cable Connection 1](image)

- **Total cable length:** Up to 20 m
- **Cable length between devices:** Up to 4 m
- **Number of devices that can be connected:** Up to 15

Figure 2.2.2-1 GPIB Cable Connection 1

Connect cables without forming loops.
Figure 2.2.2-2 GPIB Cable Connection 2

(a) Daisy Chain

(b) Star

(c) Loop
2.3 Setting Interface

2.3.1 Setting Ethernet

Check the IP address and delimiter.

1. Press **F6** to display Config on the horizontal function keys.
2. Press **f1 Interface Setting**.
3. Open the dialog box to display the MS9740A address in the Ethernet setting IP address.
4. Set the terminator.
 Select **CR/LF**, **LF**, or **None (EOI only)** for Terminator in the Terminator Settings field.

The terminator indicates the end of the sent command.

CR/LF: When two characters, ASCII code 13 (carriage return—CR) and 10 (line feed—LF), received
LF: When one character, ASCII code 10 (line feed) , received
EOI: When signal received from GPIB signal line (End or Identity)

![Parameter Settings Dialog Box](image)
Connect a keyboard to the MS9740A, when changing the IP address.

For Windows Embedded Standard 2009
1. Press the Windows key on the connected keyboard.
2. Click Control Panel.
3. The Control Panel window is displayed, and then double-click Network Connections.
4. Right-click Local Area Connection, and then click Properties.

![Network Connections Window]

Figure 2.3.1-2 Network Connections Window
5. The Local Area Connection Properties dialog box is displayed. On the Local Area Connection Properties dialog box, Internet Protocol (TCP/IP) and click Properties.

![Local Area Connection Properties Dialog Box](image)

Figure 2.3.1-3 Local Area Connection Properties Dialog Box
6. Check **Use the following IP address**.

![Internet Protocol (TCP/IP) Properties Dialog Box](image)

Figure 2.3.1-4 Internet Protocol (TCP/IP) Properties Dialog Box

7. Enter **IP address** and **Subnet mask**.
 When creating a program to control the MS9740A, the IP address input here is required.

8. Click **OK**.

9. Click **OK** on the **Local Area Connection Properties**.
For Windows Embedded Standard 7

1. Press the Windows key on the connected keyboard.
2. Click **Control Panel**.
3. The Control Panel window is displayed, and then double-click **Network and Sharing Center**.

![Figure 2.3.1-5 Control Panel Window](image)

4. Click **Channel adapter settings** on the **Network and Sharing Center**.

![Figure 2.3.1-6 Network and Sharing Center Window](image)
5. Right-click **Local Area Connection 2**, and then click **Properties**.

![Network Connections Window](image)

Figure 2.3.1-7 Network Connections Window

6. The Local Area Connection 2 Properties dialog box is displayed. On the list box, click **Internet Protocol Version 4 (TCP/IPv4)** and click **Properties**.

![Local Area Connection 2 Properties Dialog Box](image)

Figure 2.3.1-8 Local Area Connection 2 Properties Dialog Box
7. Select **Use the following IP address**.

![Internet Protocol Version 4 (TCP/IPv4) Properties Dialog Box]

Figure 2.3.1-9 Internet Protocol Version 4 (TCP/IPv4) Properties Dialog Box

8. Enter **IP address** and **Subnet mask**.

When creating a program to control MS9740A, the IP address input here is required.

9. Click **OK**.

10. Click **OK** on the Local Area Connection 2 Properties.
2.3.2 Setting GPIB

Check the MS9740A GPIB address and delimiter with the following procedure.

1. Press **F6** to display Config on the horizontal function keys.
2. Press **f1 Interface Setting**.
3. Open the dialog box. The MS9740A address is displayed in the GPIB setting address.
4. Set the GPIB address in the range from 1 to 30 using the arrow keys or rotary knob.
5. Set the terminator of the response message. Select **CR/LF**, **LF**, or **None (EOI only)** for Terminator in the Terminator Settings field.
2.4 Checking Connection

Check that the link between the PC and MS9740A has been established.

When using Ethernet:

1. Click **Programs** at the Windows Start menu.
2. Click **Accessories**.
3. Click **Command Prompt**.
4. Input `ping` and the MS9740A IP address at the command prompt screen.

 Figure 2.4-1 shows how to set the IP address to 192.168.0.10.

 ![Command Prompt](image)

 Figure 2.4-1 Example of Ping Command

5. If “Request timed out” message is displayed, the link between the PC and MS9740A has not been connected properly. Check that IP address is correct and cable is connected properly.

When using GPIB

1. Install the software supplied with the GPIB interface.
2. Start the software.

 For the software operation method, refer to the GPIB interface operation manual.
3. Confirm that the address for the displayed instrument is the same as the GPIB address set on the MS9740A.
2.5 Message Format

Messages are composed of character strings for executing commands and character strings indicating the message end. The later character strings are set in 2.3 “Setting Interface”.

Messages are composed of the following types:

Program Messages
Messages sent from PC to instrument
These are composed of commands to set the instrument and queries requesting sending of a response message.

Response Messages:
Messages sent from instrument to PC controller
These messages are composed of header and data parts separated by more than a half width space.

The header is composed of alphanumeric characters and underbars while the head string is alphabetic characters. However, common commands defined by IEEE 488.2 have an asterisk (*) appended to the header string. Both upper and lower-case alphabetic characters are supported.

Command with only header:
*RST
AUT
SSI
TER

Command with header and data:
SPN 10
AVT OFF

Messages with multiple data use commas (,) to separate the data parts.

Example:
AP WDM,SNR,HIGHER,1,ON
ZMK WL,1310,20

Queries have a question mark (?) appended to the header.

Example:
DMA?
ZMK? WL
AP? WDM,SNR
When linking multiple program messages, separate the message using semicolons (;).

Example: \texttt{CNT 1550 ; SSI ; *WAI ; DMA?}

The data format is character string data, numeric data, and binary data.

String data is ASCII code enclosed in quotation marks.

An example of the program message when inputting Model ANR-005 at the title is shown below.

Example: \texttt{TTL ’Model ANR-005’, TTL ”Model ANR-005”}

When using numeric data, input numeric values either as integers or floating point representation. Each following example indicates the same value.

Example: \begin{align*}
-90 & \quad -90.00 & \quad -9E1 \\
1310 & \quad 1310.0 & \quad 1.31E3 \\
0.0023 & \quad 2.3E-4 \\
\end{align*}

For the binary data, the head string starts with a sign (#) and continues with data after a numeric value indicating the data length.

The character after the sign (#) indicates the number of digits in the data length.

The binary data follows the number indicating the data length.

Example: \begin{align*}
\texttt{#42002 an%*qe4445+\textbackslash} \\
\text{4 digits} & \quad \text{2002 bytes of binary data} \\
\end{align*}
2.6 Checking Instrument Status

This instrument has registers indicating the status, such as errors and command execution status. This section explains these registers.

2.6.1 Register Structure

Figure 2.6.1-1 shows the structure of the registers indicating the instrument status.

![Figure 2.6.1-1 Register Structure](image-url)
Each register uses 8-bit data. The register output values are the decimal totals for each bit shown in Figure 2.6.1-1.

Table 2.6.1-1 Register Bit Decimal Conversion Values

<table>
<thead>
<tr>
<th>Bit</th>
<th>Decimal value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The service request enable register has a corresponding status byte register. The logical product per bit of these two registers is obtained and the logical sum of this result is output to the MSS (Master Summary Status) bit. When the MSS bit is 1, the data report to the PC controller is displayed on the MS9740A screen; when the MSS bit changes from 0 to 1, an interrupt is generated from the MS9740A to the PC controller. This interrupt is called the service request.

Each standard event register (standard, error, end) has a corresponding enable register. The logical product per bit of the event and enable registers is obtained and the logical sum of this result is output to bit 5, 3 and 2 of the status byte register.
2.6.2 Status Byte Register

The meaning of each bit of the status byte register is shown in the following table.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>6</td>
<td>MSS (Master Summary Register) It is the logical sum of the bit 5 to 0, bit 7 logical product of the status byte register and the service request enable register.</td>
</tr>
<tr>
<td>5</td>
<td>This is the logical sum of each bit of the logical product of the standard event status register and standard event enable register.</td>
</tr>
<tr>
<td>4</td>
<td>MAV (Message Available summary) This is always 1 when there is a response message in the output queue of this instrument</td>
</tr>
<tr>
<td>3</td>
<td>This is the logical sum of each bit of the logical product of the error event register and event enable register.</td>
</tr>
<tr>
<td>2</td>
<td>This is the logical sum of each bit of the logical product of the end event register and event enable register.</td>
</tr>
<tr>
<td>1</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>0</td>
<td>Not used; always 0</td>
</tr>
</tbody>
</table>

The following methods are used to read the status byte register.

- Using common *STB? command
- Using GPIB serial poll (when Option 001 installed)

Read the GPIB interface manual for the serial poll method. When using serial polling, even if bit 6 is 1, it becomes 0 after reading once.

The *SRE and *SRE? common commands can be used for setting and reading the service request enable register for setting reading of the status byte register. To output the status byte register data, set the bit corresponding to the service request enable register to 1.

Bits 5, 3, and 2 of the status byte register can be set to 0 using the *CLS common command.

When *CLS is sent after a command or when a query is sent after *CLS, the send queue is cleared and bit 4 is set to 0.
2.6.3 Event Register

Standard Event Status Register

The meaning of each bit of the standard event status register is listed in the table below.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Power-on</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 at power-on and returns 0 when read.</td>
</tr>
<tr>
<td>6</td>
<td>Not used: always 0</td>
</tr>
<tr>
<td>5</td>
<td>Command Error</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 when received undefined program message, message that cannot executed according to syntax, or message with spelling error</td>
</tr>
<tr>
<td>4</td>
<td>Execution Error</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 when received program message that cannot be executed.</td>
</tr>
<tr>
<td>3</td>
<td>Device Dependent Error</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 at errors other than command, execution and query errors.</td>
</tr>
<tr>
<td>2</td>
<td>Query Error</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 when no data to read in output queue or output queue data fails for some reason.</td>
</tr>
<tr>
<td>1</td>
<td>Not used: always 0</td>
</tr>
<tr>
<td>0</td>
<td>Operation Complete</td>
</tr>
<tr>
<td></td>
<td>Becomes 1 when all command operation completed after the *OPC command operation.</td>
</tr>
</tbody>
</table>

Bit 7 to bit 0 of the standard event register can be read by the *ESR? command. The standard event register returns to 0 when read.

The standard event register enable register can be set and read using the *ESE and *ESE? commands. To output standard event register data, set the bit corresponding to the enable register to 1.

The standard event register can be set to 0 using the *CLS command.
End Event Register
The meaning of each bit of the end event status register is listed in the table below.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>6</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>5</td>
<td>Not used; always 0</td>
</tr>
</tbody>
</table>
| 4 | End Execution 1
 Becomes 1 when calibrating wavelength of resolution and adjusting optical system operations completed. |
| 3 | End Execution 2
 Becomes 1 when sweep averaging or measuring with power monitor operations completed. |
| 2 | Not used; always 0 |
| 1 | Sweep end
 Become 1 when sweeping completed. |
| 0 | Measurement end
 Becomes 1 when one of the following commands has been processed: Auto Measurement, analysis using Analysis function, Peak/Dip Search processing, analysis using Application function.
 To execute multiple commands, send ESR2? for each command to query end event register. |

The commands for checking the completion of end event register execution are shown below.

<table>
<thead>
<tr>
<th>End Event Register Bit</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ALIN, AP AMP, CAL, RCAL, WCAL, ZCAL</td>
</tr>
<tr>
<td>3</td>
<td>PWR, SSI</td>
</tr>
<tr>
<td>1</td>
<td>SSI</td>
</tr>
<tr>
<td>0</td>
<td>ANA, AP (DFB</td>
</tr>
</tbody>
</table>

The end event register can be read by the ESR2?.
The end event register enable register can be set and read using the ESE2 and ESE2? commands. To output end event register data, set the bit corresponding to the enable register to 1.
The end event register can be set to 0 using the *CLS command.
The enable register of the end event register cannot be changed using *CLS.
Error Event Register

The meaning of each bit of the error event status register is listed in the table below.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>6</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>5</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>4</td>
<td>Not used; always 0</td>
</tr>
<tr>
<td>3</td>
<td>Not used; always 0</td>
</tr>
</tbody>
</table>
| 2 | Meas-Condition
Becomes 1 at mismatch between current measurement condition parameters (Active trace measurement conditions) and result measurement condition parameters |
| 1 | Peak/Dip
Becomes 1 when level peak or dip not found when peak or dip search executed. |
| 0 | RES-Uncal
Becomes 1 when resolution setting not appropriate for sweep width and sample count. |

The commands for checking the completion of error event register execution are shown in Table 2.6.3-5.

<table>
<thead>
<tr>
<th>Error Event Register Bit</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MPT, RES, CNT, SPN, STA, STO,</td>
</tr>
<tr>
<td>1</td>
<td>DPS, PKC, PKL, PKS</td>
</tr>
<tr>
<td>0</td>
<td>MPT, RES, SPN, STA, STO</td>
</tr>
</tbody>
</table>

The error event register can be read by the `ESR3?` command. The error event register enable register can be set and read using the `ESE3` and `ESE3?` commands. To output error event register data, set the bit corresponding to the enable register to 1. The error event register can be set to 0 using the `*CLS` command. The enable register of the error event register cannot be changed using the `*CLS` command.
2.7 Controlling Message Sync

There are two message types.

Synchronous message
This message cannot be executed with the next message at the same time while executing the program message.

Asynchronous message
This message can be executed with the next sent message at the same time while executing the program message. The followings are the asynchronous messages for the MS9740A.

ALIN, ANA, AP (DFB|FP|LED|PMD|AMP|WDM|LD), DPS, PKS, RCAL, SSI, WCAL, ZCAL

However, if the next message is sent before the previous asynchronous message processing is completed, the message is discarded and the correct measurement conditions will not be obtained.

The following program message executes the single measurement, detects the peak level and its wavelength, and read its wavelength.

SSI ; PKS PEAK ; TMK?

Figure 2.7-1 shows the message execution sequence when this message is sent to the MS9740A. After executing SSI, sweeping starts. As the peak search is executed during sweeping, PKS PEAK is executed as well. The read peak level and wavelength during sweeping are sometimes different from those after sweeping.

Figure 2.7-1 Message Processing Order

The control for processing the next command after completing processing of the message sent first is called sync control.
Sync control is performed by the following methods.

- Using *WAI command
- Using *OPC? query
- Using *OPC command and *ESR? query
- By querying execution end
- Using ESR2? query

The *WAI command, *OPC? query, *OPC command, and *ESR? query can be used for all messages.

Using *WAI

The *WAI common command instructs processing to wait until processing of the message sent before the *WAI command is completed before executing the next command.

Example: SSI ; *WAI ; PKS PEAK ; TMK?

Using *OPC

The *OPC? common command queries the OPC bit indicating the end of message processing.

Examples of Use:

- SSI: Executes single measurement
- *CLS: Sets OPC bit to 0
- *OPC?: Queries OPC bit
- > 1: SSI execution completed when 1 received
- PKS PEAK: Executes peak search
- *OPC?: Queries OPC bit
- > 1: PKS PEAK execution completed when 1 received
- TMK?: Queries trace marker data
Using *OPC and *ESR?
The *OPC common command sets the standard event status register bit to 1 and displays the OPC bit when completing all command operation.

Examples of Use:

- **OPC**
 - Displays OPC bit in Standard Event Status register
- **ESR?**
 - Standard Event Status register query
- > 0
 - Returns 0, which means that a command is running.
- **ESR?**
 - Standard Event Status register query
- > 1
 - Returns 1, which means that no command is running.

Querying Measurement End
The MS9740A program messages query the end of processing execution. These queries send the following messages after confirming the processing end.

Example of Use:

- **ALIN**
 - Command of auto alignment execution
- **ALIN?**
 - Queries result of auto alignment
- > 1
 - Executing adjustment when 1 read
- **ALIN?**
 - Queries result of auto alignment
- > 0
 - Auto alignment completed when 0 read
- **SSI**
 - Single measurement
2.7 Controlling Message Sync

Using ESR2?
The commands in Table 2.6.3-1 set bit of the end event register when execution is completed.

The following messages are sent after confirming the completion of execution when reading the end event register using the ESE2? query.

Example of Use:

*CLS Sets OPC bit to 0
SSI Performs single measurement
ESR2? Queries end event register
> 0 Executing command when 0 read
ESR2? Queries end event register
> 2 Not executing command and SSI execution completed when 1 read
ANA Executes spectrum analysis by SMSR.
SMSR, 2NDPEAK
ESR2? Queries end event register
> 0 Executing command when 0 read
ESR2? Queries end event register
> 1 Spectrum analysis by SMSR completed when 1 read.
PKS PEAK Executes peak search
ESR2? Queries end event register
> 0 Executing command when 0 read
ESR2? Queries end event register
> 1 Peak search completed when 1 read
TMK? Queries trace marker data
Chapter 3 Sample Program

This chapter explains examples of sample programs and how to execute them.

3.1 Executing Sample Programs .. 3-2
 3.1.1 Setting Sample Program Operating Environment 3-2
 3.1.2 Executing Sample Program ... 3-4
3.2 Example 1: Adjusting Optical System 3-6
3.3 Example 2: Measuring Center Wavelength and Spectrum Width .. 3-8
3.4 Example 3: Reading Trace Data 3-10
Chapter 3 Sample Program

3.1 Executing Sample Programs

3.1.1 Setting Sample Program Operating Environment

The sample program operating environment is as follows.

PC

- OS: Windows XP Professional Service Pack 2
- VISA: NI-VISA Version 4.6
- Program tool: Microsoft Visual C# 2008 Express Edition

MS9740A Optical Spectrum Analyzer

- GPIB Address: 1
- IP Address: 198.168.0.10
- Subnet Mask: 255.255.255.0
- Terminator Settings: CR/LF

Installing NI-VISA

To use VISA at Visual C# 2008, add the following function at installation.

- Development Support .NET Framework 3.5 Language Support
- NI Measurement & Automation Explore — .NET Framework 3.5 Language Support

![Figure 3.1.1-1 Function Selection Screen at VISA Install](image)
Setting Visual C# 2008

To use VISA at Visual C# 2008, operate as follows.

1. Click **Add Reference** at the Project menu.
2. Click the **.NET** tab in the Add Reference dialog box.
3. Select National Instruments Common and National Instruments VisaNS, and click **OK**.

![Add Reference Dialog Box](image)

Figure 3.1.1-2 Add Reference Dialog Box
3.1.2 Executing Sample Program

The executing procedure for the sample program is as follows.

2. Click **New Project** from the File menu.
3. Select the Visual C# Windows Forms Application and click **OK**.

![New Project dialog]

4. Start the screen editor and click **Add Reference** at the Project menu.
5. Click the **.NET** tab in the Add Reference dialog box.
6. Select National Instruments Common and National Instruments VisaNS and click **OK**.

![Add Reference dialog]
7. Referring to the sample program screen design figure arranges control of the buttons in Form1.cs [Design].

8. Double-click the arranged button to open the screen for inputting the source code.

9. Copy the sample program in this document and paste it into the Form1.cs screen.

   ```csharp
   private void button1_Click(object sender, System.EventArgs e)
   {
     //Paste it into this part.
   }
   ```

10. Change the IP address and GPIB address. The part Open ("TCPIP0::192.168.0.10::INSTR"); in the program must be changed to match the operation environment.

 For a LAN connection, the part "192.168.0.10" described above must be changed to the IP address set at the MS9740A.

 For a GPIB connection, the part "TCPIP0::192.168.0.10::INSTR" described above must be changed to "GPIB::1::INSTR" (when MS9740A GPIB address is 1).

11. Click **Open Debug** from the Debug menu.
3.2 Example 1: Adjusting Optical System

This sample program controls the instrument via the Ethernet interface.

Processing Flow

1. Start a session with the MS9740A with IP address setting 192.168.0.10.
2. Since optical axis adjustment takes time, set the receive timeout to 30 s.
3. The optical axis adjustment is executed by the ALIN1 command.
4. Wait for processing to terminate with *OPC? command.
5. The optical axis adjustment is queried by the ALIN? command.
6. The results are read on the console.
// Open session
NationalInstruments.VisaNS.MessageBasedSession mbs =
 (NationalInstruments.VisaNS.MessageBasedSession)
NationalInstruments.VisaNS.ResourceManager.GetLocalManager().
 Open("TCPIP0::192.168.0.10::INSTR");

mbs.Timeout = 30000; // Timeout 30sec

// Write alignment command
mbs.Write("ALIN 1");
// Wait for alignment completion
mbs.Query("*OPC?");
// Get result
string ret = mbs.Query("ALIN?");
Console.WriteLine(ret);
3.3 Example 2: Measuring Center Wavelength and Spectrum Width

This sample program controls the instrument via the GPIB interface.

Processing Flow

1. Start a session with the MS9740A with GPIB address setting 1.
2. Since single sweeping takes time, set the receive timeout to 30 s.
3. The analysis mode is set to the slice level 3 dB Envelope method by the `ANA EVE` and `3` command.
4. The single sweep is executed by the `SSI` command.
5. Wait for processing to terminate with `*OPC?` command.
6. The analysis result by Envelop method is queried by the `ANA?` command.
7. The results are read on the console.
3.3 Example 2: Measuring Center Wavelength and Spectrum Width

// Opens session
NationalInstruments.VisaNS.MessageBasedSession mbs =
 (NationalInstruments.VisaNS.MessageBasedSession)
NationalInstruments.VisaNS.ResourceManager.GetLocalManager().
 Open("GPIB::1::INSTR");

mbs.Timeout = 30000; // Timeout 30sec

// Sets envelope analysis mode
mbs.Write("ANA ENV,3");
// Starts single sweep
mbs.Write("SSI");
// Waits for completion
mbs.Query("*OPC?");
// Acquires result
string ret = mbs.Query("ANAR?");

// Prints result
Console.WriteLine(ret);
3.4 Example 3: Reading Trace Data

This sample program controls the instrument via the Ethernet interface.

Processing Flow

1. Start a session with the MS9740A with IP address setting 192.168.0.10.
2. Since single sweeping takes time, set the receive timeout to 30 s.
3. Execute a single sweep using the SSI command.
4. Wait until measurement is completed by the *OPC? command.
5. Capture the waveform data of Trace A using the DMA? command.
6. Save the waveform data with the file name trace.txt to the D: drive.
// Open session
NationalInstruments.VisaNS.MessageBasedSession mbs =
 (NationalInstruments.VisaNS.MessageBasedSession)
 NationalInstruments.VisaNS.ResourceManager.GetLocalManager().
 Open("TCPIP0::192.168.0.10::INSTR");

mbs.Timeout = 30000; // Timeout 30sec
mbs.Write("SSI");
mbs.Query("*OPC?");
string ret = mbs.Query("DMA?");

// Write to file
System.IO.StreamWriter sr = new System.IO.StreamWriter(
 (new System.IO.FileStream("d:\trace.txt",
 System.IO.FileMode.Create)), System.Text.Encoding.Default);
sr.WriteLine(ret);
sr.Close();
Chapter 4 Message Details

This chapter describes the message details of remote control commands for MS9740A.

4.1 Description of Message Explanations 4-2
4.2 Correspondence between Panel Operation and Message .. 4-3
 4.2.1 Panel key .. 4-3
 4.2.2 Function key ... 4-4
 4.2.3 Messages with No Corresponding Panel Operation .. 4-12
4.3 Message Function Category 4-14
 4.3.1 IEEE488.2 Common Messages and Native Messages ... 4-14
 4.3.2 System Management and Measurement Commands .. 4-14
4.4 Device Message Details ... 4-18
 4.4.1 IEEE488.2 Common Message 4-18
 4.4.2 Instrument dependent commands 4-24
4.1 Description of Message Explanations

The following table shows the rules for describing messages.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><></td>
<td>Parameters in angled bracket are input by the programmer.</td>
</tr>
<tr>
<td>[]</td>
<td>Parameters in square brackets can be omitted.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In the case of A</td>
</tr>
<tr>
<td>()</td>
<td>Group the choices.</td>
</tr>
<tr>
<td></td>
<td>In the case of A</td>
</tr>
<tr>
<td><binary_data></td>
<td>This string is in binary data format.</td>
</tr>
<tr>
<td><user_drive></td>
<td>Select one from E,F,G,H,I,J,K,L,M,N,O,P,</td>
</tr>
<tr>
<td><file_name></td>
<td>Character string within 32 characters enclosed by double quotes (“ ”)</td>
</tr>
<tr>
<td></td>
<td>,/,:,*,?,",,<,>,</td>
</tr>
<tr>
<td></td>
<td>Example "Sample_LD(201)"</td>
</tr>
<tr>
<td><numeric_value></td>
<td>This is a string of numeric code.</td>
</tr>
<tr>
<td></td>
<td>Example 0,1.2E-6,2.35</td>
</tr>
<tr>
<td><string></td>
<td>This is a character string data</td>
</tr>
<tr>
<td><switch></td>
<td>This is a specific selection of message.</td>
</tr>
<tr>
<td></td>
<td>Example 100KHZ, LEFT</td>
</tr>
<tr>
<td><trace></td>
<td>Select one from A,B,C,D,E,F,G,H,I,J.</td>
</tr>
</tbody>
</table>
4.2 Correspondence between Panel Operation and Message

This section explains correspondence between panel operation and message.

4.2.1 Panel key

Table 4.2.1-1 shows the corresponding keys to message. “—” in the following table indicates that there is no corresponding message.

Table 4.2.1-1 Correspondence between Panel Operation and Message

<table>
<thead>
<tr>
<th>Key name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>PKC</td>
<td>—</td>
</tr>
<tr>
<td>Ref Lvl</td>
<td>PKL</td>
<td>—</td>
</tr>
<tr>
<td>Auto Measure</td>
<td>AUT</td>
<td>AUT?</td>
</tr>
<tr>
<td>Center</td>
<td>CNT</td>
<td>CNT?</td>
</tr>
<tr>
<td>Copy</td>
<td>PRINT</td>
<td>—</td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Log/(div)</td>
<td>LOG</td>
<td>LOG?</td>
</tr>
<tr>
<td>Marker Select</td>
<td>MKA</td>
<td>MKA?</td>
</tr>
<tr>
<td></td>
<td>MKB</td>
<td>MKB?</td>
</tr>
<tr>
<td></td>
<td>MKC</td>
<td>MKC?</td>
</tr>
<tr>
<td></td>
<td>MKD</td>
<td>MKD?</td>
</tr>
<tr>
<td></td>
<td>TMK</td>
<td>TMK?</td>
</tr>
<tr>
<td></td>
<td>DMK</td>
<td>DMK?</td>
</tr>
<tr>
<td></td>
<td>EMK</td>
<td></td>
</tr>
<tr>
<td>Peak Search</td>
<td>PKS</td>
<td>PKS?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TMK?</td>
</tr>
<tr>
<td>Preset</td>
<td>PRE</td>
<td>—</td>
</tr>
<tr>
<td>Recall</td>
<td>RCXML</td>
<td>—</td>
</tr>
<tr>
<td>Ref</td>
<td>RLV</td>
<td>RLV?</td>
</tr>
<tr>
<td>Repeat</td>
<td>SRT</td>
<td>—</td>
</tr>
<tr>
<td>Res</td>
<td>RES</td>
<td>RES?</td>
</tr>
<tr>
<td>Save*</td>
<td>SVCSV</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>SVCSVA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SVXML</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>SSI</td>
<td>—</td>
</tr>
<tr>
<td>Span</td>
<td>SPN</td>
<td>SPN?</td>
</tr>
<tr>
<td>Stop</td>
<td>SST</td>
<td>—</td>
</tr>
<tr>
<td>VBW</td>
<td>VBW</td>
<td>VBW?</td>
</tr>
<tr>
<td>Zone Marker</td>
<td>ZMK</td>
<td>ZMK?</td>
</tr>
</tbody>
</table>

*: Refer to Table 4.2.2-2.
4.2.2 Function key

Table 4.2.2-1 and Table 4.2.2-2 show the correspondence between panel key and messages.

There is no corresponding message, if — is indicated in the list item.

Table 4.2.2-1 Correspondence Between Function Key and Message

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>CNT</td>
<td>CNT?</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>SPN</td>
<td>SPN?</td>
<td></td>
</tr>
<tr>
<td>Peak->Center</td>
<td>PKC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start</td>
<td>STA</td>
<td>STA?</td>
<td></td>
</tr>
<tr>
<td>Stop</td>
<td>STO</td>
<td>STO?</td>
<td></td>
</tr>
<tr>
<td>MkrValue Wl/Freq</td>
<td>MKV</td>
<td>MKV?</td>
<td></td>
</tr>
<tr>
<td>Value in Air/Vac</td>
<td>WDP</td>
<td>WDP?</td>
<td></td>
</tr>
<tr>
<td>Level Scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (div)</td>
<td>LOG</td>
<td>LOG?</td>
<td></td>
</tr>
<tr>
<td>Ref Level</td>
<td>RLV</td>
<td>RLV?</td>
<td></td>
</tr>
<tr>
<td>Peak->RefLevel</td>
<td>PKL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Level</td>
<td>LLV</td>
<td>LLV?</td>
<td></td>
</tr>
<tr>
<td>Opt.Att On/Off</td>
<td>ATT</td>
<td>ATT?</td>
<td></td>
</tr>
<tr>
<td>Res/VBW/Avg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Res</td>
<td>RES</td>
<td>RES?</td>
<td></td>
</tr>
<tr>
<td>VBW</td>
<td>VBW</td>
<td>VBW?</td>
<td></td>
</tr>
<tr>
<td>Point Average</td>
<td>AVT</td>
<td>AVT?</td>
<td></td>
</tr>
<tr>
<td>Sweep Average</td>
<td>AVS</td>
<td>AVS?</td>
<td></td>
</tr>
<tr>
<td>Smooth</td>
<td>SMT</td>
<td>SMT?</td>
<td></td>
</tr>
<tr>
<td>Sampling Points</td>
<td>MPT</td>
<td>MTP?</td>
<td></td>
</tr>
<tr>
<td>Act-Res On/Off</td>
<td>ARES</td>
<td>ARES?</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak/Dip Search</td>
<td>Peak Search</td>
<td>PKS PEAK</td>
<td>PKS?</td>
</tr>
<tr>
<td></td>
<td>Dip Search</td>
<td>DPS DIP</td>
<td>DPS?</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>EMK</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Next</td>
<td>PKS NEXT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPS NEXT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Last</td>
<td>PKS LAST</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPS LAST</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>PKS LEFT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPS LEFT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Right</td>
<td>PKS RIGHT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPS LIGHT</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Search Threshold</td>
<td>STHRS</td>
<td>STHRS?</td>
</tr>
<tr>
<td></td>
<td>Auto/Manual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Search Threshold</td>
<td>STHR</td>
<td>STHR?</td>
</tr>
<tr>
<td></td>
<td>Peak to Peak</td>
<td>PFC</td>
<td>PFC?</td>
</tr>
<tr>
<td></td>
<td>CalculationOn/Off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Threshold</td>
<td>ANA THR</td>
<td>ANA?</td>
</tr>
<tr>
<td></td>
<td>ndB Loss</td>
<td>ANA NDB</td>
<td>ANAR?</td>
</tr>
<tr>
<td></td>
<td>SMSR</td>
<td>ANA SMSR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Envelop</td>
<td>ANA ENV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMS</td>
<td>ANA RMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spectrum Power</td>
<td>ANA PWR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>ANA OFF</td>
<td></td>
</tr>
<tr>
<td>Trace</td>
<td>Active Trace</td>
<td>TSL</td>
<td>TSL?</td>
</tr>
<tr>
<td></td>
<td>Trace type</td>
<td>TTP</td>
<td>TTP?</td>
</tr>
<tr>
<td></td>
<td>Storage Mode</td>
<td>SMD</td>
<td>SMD?</td>
</tr>
<tr>
<td></td>
<td>Calculation</td>
<td>FML</td>
<td>FML?</td>
</tr>
<tr>
<td></td>
<td>Display On/Off</td>
<td>TMD</td>
<td>TMD?</td>
</tr>
<tr>
<td></td>
<td>Graph</td>
<td>DSP</td>
<td>DSP?</td>
</tr>
<tr>
<td></td>
<td>Erase Overlap</td>
<td>EOV</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>DFB-LD Test</td>
<td>AP DFB</td>
<td>AP?</td>
</tr>
<tr>
<td></td>
<td>FP-LD Test</td>
<td>AP FP</td>
<td>APR?</td>
</tr>
<tr>
<td></td>
<td>LED Test</td>
<td>AP LED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PMD Test</td>
<td>AP PMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WDM Test</td>
<td>AP WDM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD Module Test</td>
<td>AP LD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opt Amp Test</td>
<td>AP AMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Multi Channel) Test</td>
<td>AP AMP2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WDM Filter Test</td>
<td>AP WFIL</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Slice Level</td>
<td>AP DFB</td>
<td>AP? DFB</td>
</tr>
<tr>
<td></td>
<td>Side Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K_0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ndB Width</td>
<td>AP DFB,NDW</td>
<td>AP? DFB,NDW</td>
</tr>
<tr>
<td></td>
<td>Search Resolution</td>
<td>AP DFB,SRES</td>
<td>AP? DFB,SRES</td>
</tr>
<tr>
<td>Application</td>
<td>Display Mode</td>
<td>AP WDM,MPK</td>
<td>AP? WDM,MPK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WDM,SNR</td>
<td>AP? WDM,SNR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WDM,REL</td>
<td>AP? WDM,REL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WDM,TBL</td>
<td>AP? WDM,TBL</td>
</tr>
<tr>
<td>Signal Parameter</td>
<td>AP WDM,SIGNAL,WL</td>
<td>AP? WDM,SIGNAL,WL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AP WDM,SIGNAL,LV</td>
<td>AP? WDM,SIGNAL,LV</td>
<td></td>
</tr>
<tr>
<td>Noise Parameter</td>
<td>AP WDM,NOISE</td>
<td>AP? WDM,NOISE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AP WDM,NNRMZ</td>
<td>AP? WDM,NNRMZ</td>
<td></td>
</tr>
<tr>
<td>Noise Position</td>
<td>AP WDM,NOISE,POINT</td>
<td>AP? WDM,NOISE,POINT</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
</table>
| **Application**
(LD Module) |
| SMSR Parameter | AP LD, SMSR | AP? LD, SMSR |
| \(K_g \) | AP LD, K | AP? LD, K |
| ndB Width | AP LD, NDW | AP? LD, NDW |
| Search Resolution | AP LD, SRES | AP? LD, SRES |
| **Signal Parameter** |
| AP LD, SIGNAL, WL | AP? LD, SIGNAL, WL |
| AP LD, SIGNAL, LV | AP? LD, SIGNAL, LV |
| **Noise Parameter** |
| AP LD, NOISE | AP? LD, NOISE |
| AP LD, NNRMZ | AP? DL, NNRMZ |
| AP LD, THR | AP? LD, THR |
| **Noise Position** |
| AP LD, NOISE, POINT | AP? LD, NOISE, POINT |
| **Application**
(Opt Amp Test) |
| Method | AP AMP, PRM | AP? AMP, PRM |
| Parameter | AP AMP, PRM | AP? AMP, PRM |
| Write to | AP AMP, MSL | AP? AMP, MSL |
| Ext Trigger Delay | TDL | TDL? |
| Res Cal | AP AMP, CAL | AP? AMP, CAL |
| Pin | AP AMP, PIN | AP? AMP, PIN |
| Pout | AP AMP, POUT | AP? AMP, POUT |
| Pase | AP AMP, PASE | AP? AMP, PASE |
Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application (Opt Amp (Multi Channel) Test)</td>
<td>ISS Method</td>
<td>AP AMP2,PRM</td>
<td>AP? AMP2,PRM</td>
</tr>
<tr>
<td></td>
<td>Channel Parameter</td>
<td>AP AMP2,PRM</td>
<td>AP? AMP2,PRM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,WL</td>
<td>AP? AMP2,WL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,SLV</td>
<td>AP? AMP2,SLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,STHR</td>
<td>AP? AMP2,STHR</td>
</tr>
<tr>
<td></td>
<td>Opt Amp Test Parameter</td>
<td>AP AMP2,ASE</td>
<td>AP? AMP2,ASE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,ASE,POINT</td>
<td>AP? AMP2,ASE,POINT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,ASE,AREA,FUNC</td>
<td>AP? AMP2,ASE,AREA,FUNC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,ASE,AREA</td>
<td>AP? AMP2,ASE,AREA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP AMP2,OBPF</td>
<td>AP? AMP2,OBPF</td>
</tr>
<tr>
<td></td>
<td>Write to</td>
<td>AP AMP2,MSL</td>
<td>AP? AMP2,MSL</td>
</tr>
<tr>
<td></td>
<td>Pin</td>
<td>AP AMP2,PIN</td>
<td>AP? AMP2,PIN</td>
</tr>
<tr>
<td></td>
<td>Pout</td>
<td>AP AMP2,FOUT</td>
<td>AP? AMP2,FOUT</td>
</tr>
<tr>
<td>Application (WDM Filter Test)</td>
<td>Test Parameter</td>
<td>AP WFIL,BWCL</td>
<td>AP? WFIL,BWCL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,CHDT</td>
<td>AP? WFIL,CHDT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,LVL</td>
<td>AP? WFIL,LVL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,RPS</td>
<td>AP? WFIL,RPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,SLV</td>
<td>AP? WFIL,SLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,STHR</td>
<td>AP? WFIL,STHR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP WFIL,TCL</td>
<td>AP? WFIL,TCL</td>
</tr>
<tr>
<td>Measure Mode</td>
<td>Dynamic Range</td>
<td>DRG</td>
<td>DRG?</td>
</tr>
<tr>
<td>Ext Trigger Delay</td>
<td>MDM</td>
<td>MDM?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TDL*¹</td>
<td>TDL?</td>
<td></td>
</tr>
<tr>
<td>Interval Time</td>
<td>ITM</td>
<td>ITM?</td>
<td></td>
</tr>
<tr>
<td>Power Monitor</td>
<td>PWR*²</td>
<td>PWR?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPC*³</td>
<td>PWRR?</td>
<td></td>
</tr>
<tr>
<td>MM Mode</td>
<td>MMM</td>
<td>MMM?</td>
<td></td>
</tr>
</tbody>
</table>

*¹: TDL sets the Trigger Delay.
*²: Command for starting power monitoring
*³: Command for stopping power monitoring
4.2 Correspondence between Panel Operation and Message

Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal</td>
<td>WI Offset</td>
<td>WOFS</td>
<td>WOFS?</td>
</tr>
<tr>
<td></td>
<td>Level Offset</td>
<td>LOFS</td>
<td>LOFS?</td>
</tr>
<tr>
<td></td>
<td>WI Cal(Ext)</td>
<td>WCAL 1</td>
<td>WCAL?</td>
</tr>
<tr>
<td></td>
<td>WI Cal(Ref)</td>
<td>WCAL 2</td>
<td>WCAL?</td>
</tr>
<tr>
<td></td>
<td>Align with Cal</td>
<td>ACAL</td>
<td>ACAL?</td>
</tr>
<tr>
<td></td>
<td>WI Cal(Init)</td>
<td>WCAL 0</td>
<td>WCAL?</td>
</tr>
<tr>
<td></td>
<td>Auto Align</td>
<td>ALIN</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Res Cal</td>
<td>RCAL</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Auto Cal On/Off</td>
<td>ZCAL*4</td>
<td>ZCAL*5</td>
</tr>
<tr>
<td></td>
<td>Auto Offset On/Off</td>
<td>AOFS</td>
<td>AOFS?</td>
</tr>
<tr>
<td></td>
<td>Zero Cal</td>
<td>ZCAL</td>
<td>ZCAL?</td>
</tr>
<tr>
<td>Marker</td>
<td>λMkr_A</td>
<td>MKA</td>
<td>MKA?</td>
</tr>
<tr>
<td></td>
<td>λMkr_B</td>
<td>MKB</td>
<td>MKB?</td>
</tr>
<tr>
<td></td>
<td>LMKr_C</td>
<td>MKC</td>
<td>MKC?</td>
</tr>
<tr>
<td></td>
<td>LMKr_D</td>
<td>MKD</td>
<td>MKD?</td>
</tr>
<tr>
<td></td>
<td>TMkr</td>
<td>TMK</td>
<td>TMK?</td>
</tr>
<tr>
<td></td>
<td>ΔMkr</td>
<td>DMK</td>
<td>DMK?</td>
</tr>
<tr>
<td></td>
<td>Erase</td>
<td>EMK</td>
<td>—</td>
</tr>
<tr>
<td>Zone Marker</td>
<td>Zone Center</td>
<td>ZMK WL</td>
<td>ZMK WL</td>
</tr>
<tr>
<td></td>
<td>Zone Width</td>
<td>ZMK WL</td>
<td>ZMK WL</td>
</tr>
<tr>
<td></td>
<td>Zone->Span</td>
<td>ZMK SPN</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Zoom Out/In</td>
<td>ZMK ZOOM</td>
<td>ZMK ZOOM</td>
</tr>
<tr>
<td></td>
<td>Erase</td>
<td>ZMK ERS</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>Optical Output</td>
<td>OPT</td>
<td>OPT?</td>
</tr>
<tr>
<td></td>
<td>On/Off</td>
<td>OPT</td>
<td>OPT?</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>TTL</td>
<td>TTL?</td>
</tr>
<tr>
<td></td>
<td>TER</td>
<td>TTL</td>
<td>TTL?</td>
</tr>
</tbody>
</table>

*4: Auto Cal On/Off cannot be set by the remote control. For details, refer to ZCAL in 4.4.2 “Instrument dependent commands”.

*5: Auto Cal On/Off settings cannot be queried by the remote control. For details, refer to ZCAL in 4.4.2 “Instrument dependent commands”.
Table 4.2.2-1 Correspondence Between Function Key and Message (Cont’d)

<table>
<thead>
<tr>
<th>F1-F8 Key Name</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td>Interface Settings</td>
<td>DELM</td>
<td>DELM?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRM</td>
<td>TRM?</td>
</tr>
<tr>
<td></td>
<td>Copy Settings</td>
<td>COLOR</td>
<td>COLOR?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PMOD</td>
<td>PMOD?</td>
</tr>
<tr>
<td></td>
<td>System Settings</td>
<td>BUZ</td>
<td>BUZ?</td>
</tr>
<tr>
<td></td>
<td>System Info</td>
<td>—</td>
<td>SYSINFO?</td>
</tr>
<tr>
<td></td>
<td>Option Info</td>
<td>—</td>
<td>*OPT?</td>
</tr>
<tr>
<td>File Operation</td>
<td>• Copying file</td>
<td>CPCOPYDAT</td>
<td>• Querying file list</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPCSV</td>
<td>LISTCOPYDAT?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPSYSINFO</td>
<td>LISTSYSINFO?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPXML</td>
<td>LISTXML?</td>
</tr>
<tr>
<td></td>
<td>• Deleting file</td>
<td>DELCOPYDAT</td>
<td>• Querying file protect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELCSV</td>
<td>PRTCOPYDAT?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELSYSINFO</td>
<td>PRTCSV?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELXML</td>
<td>PRTSYSINFO?</td>
</tr>
<tr>
<td></td>
<td>• Moving file</td>
<td>MVCOPYDAT</td>
<td>PRTXML?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MVCSV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MVSYSINFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MVXML</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• File protect</td>
<td>PRTCOPYDAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRTCSV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRTSYSINFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRTXML</td>
<td></td>
</tr>
</tbody>
</table>

*6: Before using the Config screen message, send SYS CONFIG, ACT. Refer to 4.3.2 “System Management and Measurement Commands”.
4.2 Correspondence between Panel Operation and Message

Table 4.2.2-2 Correspondence Between Function Key and Message

<table>
<thead>
<tr>
<th>Panel key</th>
<th>f1-f8 Key Name</th>
<th>Command</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset</td>
<td>Preset</td>
<td>PRE</td>
<td>–</td>
</tr>
<tr>
<td>Save</td>
<td>Device</td>
<td>SVCSV</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SVXML</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Save CSV</td>
<td>SVCSVA</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>All Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Save CSV</td>
<td>SVCSV</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Save XML</td>
<td>SVXML</td>
<td>–</td>
</tr>
<tr>
<td>Recall</td>
<td>Device</td>
<td>RCXML</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Recall XML</td>
<td>RCXML</td>
<td>–</td>
</tr>
</tbody>
</table>
4.2.3 Messages with No Corresponding Panel Operation

Command messages with no corresponding panel operation are listed below.

<table>
<thead>
<tr>
<th>Message</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td>Clears event register</td>
</tr>
<tr>
<td>*ESE</td>
<td>Sets/queries standard event enable register</td>
</tr>
<tr>
<td>*ESR</td>
<td>Queries standard event register</td>
</tr>
<tr>
<td>*IDN</td>
<td>Queries device information</td>
</tr>
<tr>
<td>*OPC</td>
<td>Sets/queries bit display indicating message processing completion</td>
</tr>
<tr>
<td>*RST</td>
<td>Initializes MS9740A setting conditions</td>
</tr>
<tr>
<td>*SRE</td>
<td>Sets/queries service request enable register</td>
</tr>
<tr>
<td>*STB</td>
<td>Queries status byte register</td>
</tr>
<tr>
<td>*TST</td>
<td>Queries results of self-diagnosis</td>
</tr>
<tr>
<td>*WAI</td>
<td>Waits previous sent message completion</td>
</tr>
<tr>
<td>DBA</td>
<td>Queries trace A data (binary format)</td>
</tr>
<tr>
<td>DBB</td>
<td>Queries trace B data (binary format)</td>
</tr>
<tr>
<td>DBC</td>
<td>Queries trace C data (binary format)</td>
</tr>
<tr>
<td>DBD</td>
<td>Queries trace D data (binary format)</td>
</tr>
<tr>
<td>DBE</td>
<td>Queries trace E data (binary format)</td>
</tr>
<tr>
<td>DBF</td>
<td>Queries trace F data (binary format)</td>
</tr>
<tr>
<td>DBG</td>
<td>Queries trace G data (binary format)</td>
</tr>
<tr>
<td>DBH</td>
<td>Queries trace H data (binary format)</td>
</tr>
<tr>
<td>DBI</td>
<td>Queries trace I data (binary format)</td>
</tr>
<tr>
<td>DBJ</td>
<td>Queries trace J data (binary format)</td>
</tr>
<tr>
<td>DCA</td>
<td>Queries trace A wavelength and measurement point</td>
</tr>
<tr>
<td>DCB</td>
<td>Queries trace B wavelength and measurement point</td>
</tr>
<tr>
<td>DCC</td>
<td>Queries trace C wavelength and measurement point</td>
</tr>
<tr>
<td>CDC</td>
<td>Queries trace D wavelength and measurement point</td>
</tr>
<tr>
<td>DCE</td>
<td>Queries trace E wavelength and measurement point</td>
</tr>
<tr>
<td>DCF</td>
<td>Queries trace F wavelength and measurement point</td>
</tr>
<tr>
<td>DCG</td>
<td>Queries trace G wavelength and measurement point</td>
</tr>
<tr>
<td>DCH</td>
<td>Queries trace H wavelength and measurement point</td>
</tr>
<tr>
<td>DCI</td>
<td>Queries trace I wavelength and measurement point</td>
</tr>
<tr>
<td>DCJ</td>
<td>Queries trace J wavelength and measurement point</td>
</tr>
</tbody>
</table>
Table 4.2.3-1 Messages with No Corresponding Panel Operation (Cont’d)

<table>
<thead>
<tr>
<th>Message</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA</td>
<td>Queries trace A data (text format)</td>
</tr>
<tr>
<td>DMB</td>
<td>Queries trace B data (text format)</td>
</tr>
<tr>
<td>DMC</td>
<td>Queries trace C data (text format)</td>
</tr>
<tr>
<td>DMD</td>
<td>Queries trace D data (text format)</td>
</tr>
<tr>
<td>DME</td>
<td>Queries trace E data (text format)</td>
</tr>
<tr>
<td>DMF</td>
<td>Queries trace F data (text format)</td>
</tr>
<tr>
<td>DMG</td>
<td>Queries trace G data (text format)</td>
</tr>
<tr>
<td>DMH</td>
<td>Queries trace H data (text format)</td>
</tr>
<tr>
<td>DMI</td>
<td>Queries trace I data (text format)</td>
</tr>
<tr>
<td>DMJ</td>
<td>Queries trace J data (text format)</td>
</tr>
<tr>
<td>DQA</td>
<td>Queries trace A data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQB</td>
<td>Queries trace B data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQC</td>
<td>Queries trace C data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQD</td>
<td>Queries trace D data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQE</td>
<td>Queries trace E data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQF</td>
<td>Queries trace F data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQG</td>
<td>Queries trace G data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQH</td>
<td>Queries trace H data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQI</td>
<td>Queries trace I data (comma-delimited text format)</td>
</tr>
<tr>
<td>DQJ</td>
<td>Queries trace J data (comma-delimited text format)</td>
</tr>
<tr>
<td>ERR</td>
<td>Queries error code</td>
</tr>
<tr>
<td>ESE2</td>
<td>Sets/queries end event enable register</td>
</tr>
<tr>
<td>ESE3</td>
<td>Sets/queries error event enable register</td>
</tr>
<tr>
<td>ESR2</td>
<td>Queries end event register</td>
</tr>
<tr>
<td>ESR3</td>
<td>Queries error event register</td>
</tr>
<tr>
<td>GHC</td>
<td>Queries screen data</td>
</tr>
<tr>
<td>LVS</td>
<td>Queries whether the level scale is log or linear</td>
</tr>
<tr>
<td>MOD</td>
<td>Queries measurement mode</td>
</tr>
<tr>
<td>PPMK</td>
<td>Obtains Peak to Peak level of trace.</td>
</tr>
<tr>
<td>SOFTVER</td>
<td>Queries the software version.</td>
</tr>
<tr>
<td>SYS</td>
<td>Switches/queries measurement commands and system commands</td>
</tr>
<tr>
<td>WSS</td>
<td>Simultaneously sets/queries start and stop wavelength.</td>
</tr>
</tbody>
</table>
Chapter 4 Message Details

4.3 Message Function Category

4.3.1 IEEE488.2 Common Messages and Native Messages

The device messages are classified by the IEEE488.2 common commands and instrument dependent commands.

IEEE488.2 Common Commands and Queries

The device messages are specified by IEEE488.2-1992. The header first letter of these messages is an asterisk symbol (*).

Common messages and queries are defined as required or optional by IEEE standard.

The common messages used with this instrument are only the messages defined as obligatory by the standard.

Native Messages

These are the device messages required for the panel operations and measurement functions of this instrument.

4.3.2 System Management and Measurement Commands

The device messages used by this model are divided into system management commands, measurement commands, and neutral commands that can be used anytime.

This machine has a system management mode and a measurement mode. The mode must be switched (SYS command) for to the type of command to use.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYS CONFIG,ACT</td>
<td>Move to system management mode</td>
</tr>
<tr>
<td>SYS OSA,ACT</td>
<td>Move to measurement mode</td>
</tr>
</tbody>
</table>

Figure 4.3.2-1 Switching System Status
System Management Command
System management commands are the device messages corresponding to the operations set at the F6 Config screen. There are commands for the following operations. These commands are listed in Table 4.3.2-2.

- Listing, saving, copying, deleting, moving and protecting of files
- Reading software version and option information
- Setting communications interface and buzzer

To use system management commands, send SYS CONFIG,ACT. Measurement commands cannot be used during this time.

Measurement Commands
Measurement commands are the device messages for the measurement functions of the optical spectrum analyzer. To use measurement commands, send SYS OSA,ACT. System management commands cannot be used during this time. These commands are listed in Table 4.3.2-3.

Neutral Commands
Neutral commands for switching between system management commands for saving IEEE488.2 common device messages, saving screen image files and initializing parameters, and measurement commands do not belong to either system management commands or measurement commands. These commands can be used at any time. These commands are listed in Table 4.3.2-1.
The following commands can be used at any time.

Table 4.3.2-1 Neutral Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CLS</td>
<td></td>
</tr>
<tr>
<td>*ESE</td>
<td></td>
</tr>
<tr>
<td>*ESR</td>
<td></td>
</tr>
<tr>
<td>*IDN</td>
<td></td>
</tr>
<tr>
<td>*OPC</td>
<td></td>
</tr>
<tr>
<td>*OPT</td>
<td></td>
</tr>
<tr>
<td>*RST</td>
<td></td>
</tr>
<tr>
<td>*SRE</td>
<td></td>
</tr>
</tbody>
</table>

The following system management commands can be used after sending SYS CONFIG,ACT.

Table 4.3.2-2 System Management Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUZ</td>
<td>LISTSYSINFO</td>
</tr>
<tr>
<td>COLOR</td>
<td>LISTXML</td>
</tr>
<tr>
<td>CPCOPYDAT</td>
<td>MVCOPYDAT</td>
</tr>
<tr>
<td>CPCSV</td>
<td>MVCsv</td>
</tr>
<tr>
<td>CPSYSINFO</td>
<td>MVsysINFO</td>
</tr>
<tr>
<td>CPXML</td>
<td>MVXML</td>
</tr>
<tr>
<td>DELCOPYDAT</td>
<td>PRTCOPYDAT</td>
</tr>
<tr>
<td>DELCSV</td>
<td>PRTCSV</td>
</tr>
<tr>
<td>DELM</td>
<td>PRTSYSINFO</td>
</tr>
<tr>
<td>DELSYSINFO</td>
<td>PRTXML</td>
</tr>
<tr>
<td>DELXML</td>
<td>SOFTVER</td>
</tr>
<tr>
<td>LISTCOPYDAT</td>
<td>SYSINFO</td>
</tr>
<tr>
<td>LISTCSV</td>
<td>TRM</td>
</tr>
</tbody>
</table>
The following measurement commands can be used after sending SYS OSA, ACT.

Table 4.3.2-3 Measurement Commands

<table>
<thead>
<tr>
<th>ACAL</th>
<th>DCI</th>
<th>ESE3</th>
<th>SRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIN</td>
<td>DCJ</td>
<td>ESR2</td>
<td>SMD</td>
</tr>
<tr>
<td>AOFS</td>
<td>DMA</td>
<td>ESR3</td>
<td>SMT</td>
</tr>
<tr>
<td>ANA</td>
<td>DMB</td>
<td>GHC</td>
<td>SPC</td>
</tr>
<tr>
<td>ANAR</td>
<td>DMC</td>
<td>FML</td>
<td>SPN</td>
</tr>
<tr>
<td>AP</td>
<td>DMD</td>
<td>ITM</td>
<td>SRT</td>
</tr>
<tr>
<td>APR</td>
<td>DME</td>
<td>LLV</td>
<td>SSI</td>
</tr>
<tr>
<td>ARES</td>
<td>DMF</td>
<td>LOFS</td>
<td>SST</td>
</tr>
<tr>
<td>ATT</td>
<td>DMG</td>
<td>LOG</td>
<td>STA</td>
</tr>
<tr>
<td>AUT</td>
<td>DMH</td>
<td>LVS</td>
<td>STHR</td>
</tr>
<tr>
<td>AVS</td>
<td>DMI</td>
<td>MDM</td>
<td>STHRS</td>
</tr>
<tr>
<td>AVT</td>
<td>DMJ</td>
<td>MKA</td>
<td>STO</td>
</tr>
<tr>
<td>CNT</td>
<td>DMK</td>
<td>MKB</td>
<td>SVCSVVA</td>
</tr>
<tr>
<td>DBA</td>
<td>DFS</td>
<td>MKC</td>
<td>SVCSVV</td>
</tr>
<tr>
<td>DBB</td>
<td>DSP</td>
<td>MKD</td>
<td>SVXML</td>
</tr>
<tr>
<td>DBC</td>
<td>DQA</td>
<td>MKV</td>
<td>TDL</td>
</tr>
<tr>
<td>DBD</td>
<td>DQB</td>
<td>MPT</td>
<td>TER</td>
</tr>
<tr>
<td>DBE</td>
<td>DQC</td>
<td>MMM</td>
<td>TMD</td>
</tr>
<tr>
<td>DBF</td>
<td>DQD</td>
<td>MOD</td>
<td>TMK</td>
</tr>
<tr>
<td>DBG</td>
<td>DQE</td>
<td>OPT</td>
<td>TSL</td>
</tr>
<tr>
<td>DBH</td>
<td>DQF</td>
<td>PKC</td>
<td>TTL</td>
</tr>
<tr>
<td>DBI</td>
<td>DQG</td>
<td>PKL</td>
<td>TTP</td>
</tr>
<tr>
<td>DBJ</td>
<td>DQH</td>
<td>FKS</td>
<td>VBW</td>
</tr>
<tr>
<td>DCA</td>
<td>DQI</td>
<td>PPC</td>
<td>WCAL</td>
</tr>
<tr>
<td>DCB</td>
<td>DQJ</td>
<td>PPKM</td>
<td>WDP</td>
</tr>
<tr>
<td>DCC</td>
<td>DRG</td>
<td>PWR</td>
<td>WOFS</td>
</tr>
<tr>
<td>DCD</td>
<td>DSP</td>
<td>PWRR</td>
<td>WSS</td>
</tr>
<tr>
<td>DCE</td>
<td>EMK</td>
<td>RCAL</td>
<td>ZCAL</td>
</tr>
<tr>
<td>DCF</td>
<td>EOV</td>
<td>RCXML</td>
<td>ZMK</td>
</tr>
<tr>
<td>DCG</td>
<td>ERR</td>
<td>RES</td>
<td></td>
</tr>
<tr>
<td>DCH</td>
<td>ESE2</td>
<td>RLV</td>
<td></td>
</tr>
</tbody>
</table>
4.4 Device Message Details

4.4.1 IEEE488.2 Common Message

This subsection describes the IEEE 488.2 common messages supported by MS9740A.

*CLS [Clear Status]

Function
1. The *CLS common command clears the following registers.
 - Standard event status register
 - Extended event status register
 - Error event register
 Therefore, bits 5, 3, and 2 of status byte register become 0.
 The setting value of each enable register does not vary depending on *CLS.
2. The *CLS common command clears the status byte register when sent before the query after the program message terminator.
 All unread messages in the output queue are cleared at this time.

The relevant message example indicates below.

CNT 1305.8
SPN 1000
CNT?
*CLS

Syntax

*CLS
*ESE [Event Status Enable]

Function
This command sets the standard event status enable register.
The setting of 0 to 255 is equivalent to 8-bit binary.
The standard event status mask bit is set to 0.
The command queries the standard event status enable register value.

Syntax
*ESE <numeric_value>
*ESE?

<numeric_value> = bit0 + bit1 + bit2 + bit3 + bit4 + bit5 + bit6 + bit7
bit7 : 2^7 = 128 Power-on
bit6 : 2^6 = 64 Not used
bit5 : 2^5 = 32 Command error
bit4 : 2^4 = 16 Execution error
bit3 : 2^3 = 8 Unique device error
bit2 : 2^2 = 4 Query error
bit1 : 2^1 = 2 Not used
bit0 : 2^0 = 1 Completion of operation
Range 0 to 255

Example of Use
The following example shows how to mask bits 7 to 4 and permit bits 3 to 0. The command data is specified in decimal.

*ESE 15
*ESE?
>15

*ESR [Standard Event Status Register]

Function
This command queries the standard event status register value.
The standard event status register value is cleared after readout.
This value is the logical product of the 8 bits set by *ESE.

Syntax
*ESR?

Example of Use
The following example queries the value of the standard event status register. The data is the value when an execution error or command error occurs. There are a total of 48 values (bit 5 = 2^5 = 32 and bit 4 = 2^4 = 16) as shown in Table 2.6.3-1.
*ESR?
>48

*IDN [Identification]
Function
This command queries product supplier name, model name, serial number, and firmware.

Syntax
*IDN?

Example of Use
*IDN?
>Anritsu, MS9740A, 6200123456, 1.00.00

*OPC [Operation Complete]
Function
If a *OPC command is received, the operation completion bit (bit 0) is set to 1 once all active processes are completed.

If a *OPC? query is received, 1 is returned once all active processes are complete.

The wait for operation completion set by *OPC/*OPC? is disabled after the following events:
- Power ON
- Reception of DCL or SCL on the IEEE488.1 interface
- Reception of the *CLS command
- Reception of the *RST command
- Completion of all active processing

Syntax
*OPC
*OPC?

Example of Use
*OPC?
>1
4.4 Device Message Details

*OPT [Option Identification Query]

Function
This command queries what options are installed.
The response is a numeric from 1 to 64 corresponding to options 1 to 64.
The returned value is 0 when no options are installed.

<table>
<thead>
<tr>
<th>Option number</th>
<th>Option name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPIB interface</td>
</tr>
<tr>
<td>2</td>
<td>Light Source for Wavelength Calibration</td>
</tr>
<tr>
<td>3 to 6</td>
<td>Not used</td>
</tr>
<tr>
<td>7</td>
<td>OS Upgrade WES7</td>
</tr>
<tr>
<td>8 to 64</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Syntax
*OPT?

Example of Use
*OPT?
>1,1,0,
*SRE [Service Request Enable]

Function
This command sets the service request enable register.
The setting of 0 to 255 is equivalent to 8-bit binary.
The status byte register mask bit is set to 0.
This command queries the service request enable register value.

Syntax
*SRE <numeric_value>
*SRE?

<numeric_value> = bit0 + bit1 + bit2 + bit3 + bit4 + bit5 + bit6 + bit7

- bit7 : 2^7 = 128 Not used
- bit6 : 2^6 = 64 Always 0
- bit5 : 2^5 = 32 Standard event status register
- bit4 : 2^4 = 16 MAV
- bit3 : 2^3 = 8 Error event register
- bit2 : 2^2 = 4 End event register
- bit1 : 2^1 = 2 Not used
- bit0 : 2^0 = 1 Not used

Range 0 to 255

Example of Use
The following example shows how to mask bits 7, 6, 1, and 0 and permit bits 5 and 2.

*SRE 60
*SRE?
>60
4.4 Device Message Details

*STB [Status Byte]

Function
This command queries the status byte register.

Syntax
*STB?

*TST [Self-Test Query]

Function
This command queries the results of self-diagnosis.
0 Error does not occur after completing test
1 Test cannot be executed. Even though test can be executed, error occurs.

Syntax
*TST?

Example of Use
*TST?
>0

*WAI [Wait to Continue]

Function
This command holds execution of the next message until processing of the message sent before *WAI is completed.

Syntax
*WAI

Example of Use
SSI;*WAI;DBA?
4.4.2 Instrument dependent commands

ACAL [Align with Cal]

Function
This command sets and queries whether performing optical alignment using the optional reference light source.

Syntax
ACAL OFF|ON
ACAL?

OFF: Disables performing the optical alignment.
ON: Enables performing the optical alignment.

Response Data
OFF|ON

Example of Use
ACAL ON
ACAL?
>ON

ALIN [Auto Alignment]

Function
This command executes optical alignment. When alignment is complete, bit 4 of the end event status register (execution complete bit) is set to 1. If a command other than ALIN 2 is received during optical alignment, this command displays an execution error.

Syntax
ALIN 0|1|2
ALIN?

0: Restore the data to default value.
1: Execute optical alignment and save the data.
2: Forced shutdown

Response Data
0|1|2|3

0: Normal end
1: During alignment
2: Aborted optical alignment due to lack of optical level
3: Aborted optical alignment due to other abnormality
Example of Use
ALIN 1
ALIN?
>0

ANA [Spectrum Analysis]

Function
This command sets the spectrum analysis method and parameters, and then executes analysis.
When the processing is finished, bit 0 (measurement end bit) of the end event status register is set to 1.
The query command reads the method of spectrum analysis function and parameter.
The parameter details using each analysis method are explained individually as follows.

Syntax
ANA <switch>[,<parameter>,,,…]ANA?

Response Data
<switch>,<parameter>,,,

<switch>=ENV|NDB|OFF|PWR|RMS|SMSR|THR
<parameter>: The number of <parameter> varies depending on the status of <switch>.

<parameter> can be omitted. If <parameter> is omitted, this command executes analysis with the current set parameter.

<table>
<thead>
<tr>
<th><switch></th>
<th>Analysis method</th>
<th>Number of <parameter></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV</td>
<td>Envelope method</td>
<td>1</td>
</tr>
<tr>
<td>NDB</td>
<td>dB-Loss method</td>
<td>1</td>
</tr>
<tr>
<td>PWR</td>
<td>Spectrum analysis for integral power</td>
<td>0</td>
</tr>
<tr>
<td>RMS</td>
<td>RMS method</td>
<td>2</td>
</tr>
<tr>
<td>SMSR</td>
<td>SMSR method</td>
<td>1</td>
</tr>
<tr>
<td>THR</td>
<td>Threshold method</td>
<td>1</td>
</tr>
<tr>
<td>OFF</td>
<td>Closes spectrum analysis display</td>
<td>0</td>
</tr>
</tbody>
</table>
ANA ENV [Spectrum Analysis (Envelope)]

Function
This command sets the envelop method and cut level and executes the spectrum analysis.
This command reads the spectrum analysis method and cut level value.

Syntax
ANA ENV,<numeric_value>
ANA?

Response Data
ENV,<numeric_value>

<numeric_value>: Cut level (dB) 0.1 to 20.0

Example of Use
To set the cut level to 10 dB using the envelop method:
ANA ENV,10
ANA?
>ENV,10.0

ANA NDB [Spectrum Analysis (NDB)]

Function
This command sets the ndB-Loss method and loss and performs spectrum analysis.
This command queries the loss.

Syntax
ANA NDB,<numeric_value>
ANA?

Response Data
NDB,<numeric_value>

<numeric_value>: Loss (dB) 0.1 to 50.0

Example of Use
To set the loss to 20 dB using the ndB Loss method:
ANA NDB,20
ANA?
>NDB,20.0
ANA OFF [Spectrum Analysis OFF]

Function
This command closes the spectrum analysis display.

Syntax
ANA OFF
ANA?

Response Data
OFF

Example of Use
ANA OFF
ANA?
>OFF

ANA PWR [Spectrum Analysis (Spectrum Power)]

Function
This command executes the spectrum analysis of the integral power.
This command reads the spectrum analysis method.

Syntax
ANA PWR
ANA?

Response Data
PWR

Example of Use
ANA PWR
ANA?
>PWR
ANA RMS [Spectrum Analysis (RMS)]

Function
This command sets the RMS method, slice level, and factor K and executes the spectrum analysis method.
This command queries the spectrum analysis method, slice level and factor K.

Syntax
ANA RMS,<numeric_value>,<numeric_value>
ANA?

Response Data
RMS,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Spectrum level (dB)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>1.00 to 10.00</td>
<td>K: Standard deviation factor</td>
</tr>
</tbody>
</table>

Example of Use
To set the cut level to 20 dB and the factor to 2.35 using the RMS method:
ANA RMS,20,2.35
ANA?
>RMS,20.0,2.35
ANA SMSR [Spectrum Analysis (SMSR)]

Function
This command sets the SMSR method and detecting method and performs the spectrum analysis.
This command queries the spectrum analysis method and detecting method.

Syntax
ANA SMSR,<switch>
ANA?

Response Data
SMSR,<switch>

<switch>: Detecting method { 2NDPEAK|LEFT|RIGHT }

Example of Use
To analyze the left side of the SMSR method:
ANA SMSR,LEFT
ANA?
>SMSR,LEFT

ANA THR [Spectrum Analysis (THR)]

Function
This command sets the Threshold method and cut level and performs the spectrum analysis.
This command queries the spectrum analysis method and cut level.

Syntax
ANA THR,<numeric_value>
ANA?

Response Data
THR,<numeric_value>
<numeric_value>: Cut level (dB) 0.1 to 50.0

Example of Use
To set the cut level to 30 dB using the Threshold method:
ANA THR,30
ANA?
>THR,30.0
ANAR [Spectrum Analysis Result]

Function
This command queries the spectrum analysis result.

Syntax
ANAR?

Response Data
<numeric_value>,<numeric_value>[,<numeric_value>]

The details of spectrum analysis method and numeric values are as follows.

<table>
<thead>
<tr>
<th>Analysis method</th>
<th>Numeric value 1</th>
<th>Numeric value 2</th>
<th>Numeric value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Envelope method</td>
<td>Center wavelength (nm</td>
<td>Spectrum width (nm</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>[THz)</td>
<td>[THz)</td>
<td></td>
</tr>
<tr>
<td>ndB Loss method</td>
<td>Center wavelength (nm</td>
<td>Spectrum width (nm</td>
<td>Longitudinal mode</td>
</tr>
<tr>
<td></td>
<td>[THz)</td>
<td>[THz)</td>
<td>count</td>
</tr>
<tr>
<td>Integral power</td>
<td>Power (dBm)</td>
<td>Center wavelength (nm</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[THz)</td>
<td></td>
</tr>
<tr>
<td>RMS method</td>
<td>Center wavelength (nm</td>
<td>Spectrum width (nm</td>
<td>Standard deviation</td>
</tr>
<tr>
<td></td>
<td>[THz)</td>
<td>[THz)</td>
<td>σ</td>
</tr>
<tr>
<td>SMSR method</td>
<td>Wavelength difference</td>
<td>Level difference (dB)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>(nm [THz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold method</td>
<td>Center wavelength (nm</td>
<td>Spectrum width (nm)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>[THz)</td>
<td>[nm)</td>
<td></td>
</tr>
</tbody>
</table>

The center wavelength, spectrum width and wavelength difference are –1 when analysis cannot be performed. The level difference when analysis cannot be performed is –999.99.
4.4 Device Message Details

Example of Use
Queries analysis results at envelope method
ANAR?
>1565.223,1.08
Queries analysis results at ndB Loss method
ANAR?
>1550.100,12.840,9
Queries analysis results at integral power
ANAR?
>-15.44,1550.100
Queries analysis results at RMS method
ANAR?
>1309.330,5.390,2.350
Queries SMSR analysis
ANAR?
>0.920,38.74
Queries SMSR analysis results (when cannot perform analysis)
ANAR?
>-1,-999.99
Queries analysis results at Threshold method
ANAR?
>1298.430,23.52

AOFS [Auto Offset]

Function
This command enables/disables the Auto Offset adjustment.
This command queries the On/Off status of the Auto Offset adjustment.

Syntax
AOFS OFF|ON
AOFS?

ON: Enables the Auto Offset adjustment.
OFF: Disables the Auto Offset adjustment.

Response Data
OFF|ON

Example of Use
AOFS OFF
AOFS?
>OFF
Chapter 4 Message Details

AP [Application]

Function
This command sets the type of application function and parameter and executes the analysis.
When the processing is complete, bit 0 (measurement end bit) of the end event status register is set to 1. Close the display of the application function and read the type of application function and parameter displayed in the screen. The parameter details for each application are described separately below.

Syntax
AP <switch>,<parameter>,…
AP?

Response Data
<switch>,<parameter>,

<switch>=AMP|AMP2|DFB|FP|LD|LED|OFF|PMD|WDM|WFIL

The number of <parameter> varies depending on the status of <switch>.

The parameter for the application function executes analysis with the current parameter.

<switch> Application Type
AMP Optical amplifier
AMP2 Optical amplifier (WDM)
DFB Distributed feedback laser diode
FP Fabry-Perot laser diode
LD Laser diode module
LED Light-emitting diode
OFF End of application function
PMD Polarization mode dispersion
WDM Wavelength division multiplex transmission
WFIL WDM Filter

Example of Use
AP AMP
AP?
>AMP
AP DFB
AP?
>DFB,2NDPEAK,20.0,6.07
AP PMD
AP?
>PMD 1.00,0.2
AP AMP [Application (Optical Amp)]

Function
This command specifies the parameter and analyzes the Optical Amp application.
This command reads the application type and parameter.

Syntax
```
AP AMP,<switch>,<parameter>,
```
The number of `<parameter>` varies depending on the status of `<switch>`.
```
AP? AMP,<switch>
```

Response Data
```
AMP[,<switch>,<parameter>,,]
```
The number of `<parameter>` varies depending on the status of `<switch>`.
The `<parameter>` details are described below.

<table>
<thead>
<tr>
<th><code><switch></code></th>
<th>Processing details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL</td>
<td>Resolution Calibration</td>
</tr>
<tr>
<td>MSL</td>
<td>Memory Select: Specifies save destination for measuring data.</td>
</tr>
<tr>
<td>PASE</td>
<td>Pase: Sets trace for saving ASE spectrum.</td>
</tr>
<tr>
<td>PIN</td>
<td>Pin: Sets trace for saving signal optical spectrum.</td>
</tr>
<tr>
<td>POUT</td>
<td>Pout: Sets trace for saving output optical spectrum.</td>
</tr>
<tr>
<td>PRM</td>
<td>Parameter: Sets parameters used for optical amplifier measurement.</td>
</tr>
</tbody>
</table>
AP AMP,CAL [Application (Optical AMP Resolution Calibration)]

Function
This command calibrates the resolution of the optical spectrum analyzer for the Optical AMP application.
Bit 4 (execution completion bit) of the end event status register (ESR2) is set to 1 after the completion of resolution calibration.
This command queries the status of the resolution calibration in the Optical AMP application.
This command can be used when in the Optical AMP application mode.

Syntax
AP AMP,CAL, {0|1}
AP? AMP,CAL

0: Initializes current resolution calibration data
1: Executes resolution calibration

Response Data
AMP,CAL, {0|1|2|3}

0: Resolution calibration ended normally
1: Resolution calibration suspended due to inadequate optical level
2: Resolution calibration suspended due to other abnormality
3: Resolution calibration ended abnormally

Example of Use
AP AMP,CAL, 1
AP? AMP,CAL
>AMP,CAL, 0
AP AMP,MSL [Application (Optical AMP Memory Select)]

Function
This command selects and queries the saving destination of the measurement data at the Optical AMP application.
This message can be used only when the Optical AMP application mode is set.

Note:
PASE can be specified as the measured data save destination of the measured data when an optical amplifier measurement method is polarization nulling (PLZN Nulling). If another measurement method is set, an error is returned when PASE is specified.

Syntax
AP AMP,MSL,<switch>
AP? AMP,MSL

Response Data
AMP,MSL,<switch>

<switch>: Saving destination of measurement data
{PIN|POUT|PASE}

Example of Use
AP AMP,MSL,PIN
AP? AMP,MSL
>AMP,MSL,PIN
AP AMP,PASE [Application (Optical AMP Pase)]

Function
This command selects and queries the trace memory saving Pase at the Optical AMP application.
This message can be used only when the Optical AMP application mode is set.

Note:
The Pase trace memory can be selected when optical amplifier measurement method is not polarization nulling (PLZN Nulling). However, the Pase trace memory cannot be used when using the measurement method other than PLZN Nulling.

Syntax
AP AMP,PASE,<trace>
AP? AMP,PASE

Response Data
AMP,PASE,<trace>

Example of Use
AP AMP,PASE,C
AP? AMP,PASE
>AMP,PASE,C

AP AMP,PIN [Application (Optical AMP Pin)]

Function
This command selects and queries the trace memory saving Pin at the Optical AMP application.
This message can be used only when the Optical AMP application mode is set.

Syntax
AP AMP,PIN,<trace>
AP? AMP,PIN

Response Data
AMP,PIN,<trace>

Example of Use
AP AMP,PIN,A
AP? AMP,PIN
>AMP,PIN,A
AP AMP,POUT [Application (Optical AMP Pout)]

Function
This command selects and queries the trace memory saving Pout for the Optical AMP application.
This message can be used only when the Optical AMP application mode is set.

Syntax
AP AMP,POUT,<trace>
AP? AMP,POUT

Response Data
AMP,POUT,<trace>

Example of Use
AP AMP,POUT,B
AP? AMP,POUT
>AMP,POUT,B
Chapter 4 Message Details

AP AMP,PRM [Application (Optical AMP Parameter)]

Function
This command sets and queries the measurement parameter at the Optical AMP application.
This message can be used only when the Optical AMP application is set.

Syntax
AP AMP,PRM,<switch>,<switch>,<switch>,<numeric_value>,,
AP? AMP,PRM

Response Data
AMP,PRM,<switch>,<switch>,<switch>,<numeric_value>,,

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: NF(Total)</td>
</tr>
<tr>
<td>2</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Spect Div On: Spectrum division on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: PLZN Nulling: Polarization nulling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3: Pulse Method: Pulse method</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4: WDM Measure: WDM measurement</td>
</tr>
<tr>
<td>3</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Mean Fitting ASE Level found by averaging value</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>0.10 to 100.00</td>
<td>Fitting Span (nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wavelength range for calculating ASE level</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>0.10 to 100.00</td>
<td>Masked Span (nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wavelength range excluded from ASE level calculation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Set a small value than Fitting Span.</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>−10.00 to 10.00</td>
<td>Pin Loss (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optical signal level loss correction coefficient</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>−10.00 to 10.00</td>
<td>Pout Loss (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optical signal level loss correction coefficient</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>0.100 to 10.000</td>
<td>NF Calibration (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Noise figure calibration coefficient</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>0.00 to 30.00</td>
<td>O.BPF Level Calibration (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optical filter loss correction coefficient</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>0.01 to 999.99</td>
<td>O.BPF Band Width (nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Optical filter passband width</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>−10.00 to 10.00</td>
<td>Pol Loss (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polarization controller loss correction coefficient</td>
</tr>
</tbody>
</table>
Note:
Parameters 5th to 11th are common parameters at optical amplifier measurement depending on the second <switch> (measurement method) setting.

Depending on the measurement method, the 5th to 11th <numeric_value> is an unnecessary parameter but it cannot be omitted. In this case, set any in-range value at the 5th to 11th <numeric_value>.

Example of Use

AP AMP,PRM,0,2,0,20,2,0,0,1,0,30,0
AP? AMP,PRM
>AMP,PRM,0,2,0,20,2,0,0,1,0,30,0
Chapter 4 Message Details

AP AMP2 [Application (Optical Amp Multi Channel)]

Function
This command specifies the parameters and executes the Optical AMP (WDM) application analysis.
This command reads the parameters for the Optical AMP (WDM) application.

Syntax
AP AMP2,<switch>,<parameter>,,
The number of <parameter> elements differs with the <switch>.

AP? AMP2

Response Data
AMP2

<switch> Processing details
ASE Sets the ASE Parameter.
MSL Memory Select: Specifies the save destination for the measured data.
OBPF Sets the optical band pass filter settings.
PIN Pin: Sets the trace that saves the signal spectrum.
POUT Pout: Sets the trace that saves the output spectrum.
PRM Parameter: Sets the parameters used with the Optical AMP (WDM) application.
SLV Sets the slice level.
STHR Sets the threshold value for detecting the peak (channel).
WL Sets the wavelength detection method.

Examples of Use:
AP AMP2
AP?
>AMP2
AP AMP2,ASE [Application (Optical AMP Multi Channel ASE Detection Type)]

Function
This command sets the ASE parameters for the Optical AMP (WDM) application.
Settings and queries for each parameter are explained separately later.
This command queries the ASE Interpolation Detection Type for the Optical AMP (WDM) application.

Syntax
AP AMP2,ASE,<switch>[,<parameter>]
AP? AMP2,ASE

Response Data
AMP2,ASE,{AREA|POINT}

AREA: The Detection Type is set to Area.
POINT: The Detection Type is set to Point.

<table>
 <tr><th><switch></th><th>Process</th><th>Number of <parameter></th></tr>
 <tr><td>AREA</td><td>Sets Detection Type to Area</td><td>0</td></tr>
 <tr><td></td><td>Sets/queries Fitting Span and Masked Span</td><td>1</td></tr>
 <tr><td>AREA,FUNC</td><td>Sets/queries Fitting Curve</td><td>1</td></tr>
 <tr><td>POINT</td><td>Sets Detection Type to Point</td><td>0</td></tr>
 <tr><td></td><td>Sets/queries Noise Position</td><td>1</td></tr>
</table>

Examples of Use:
AP AMP2,ASE,AREA
AP? AMP2,ASE
>AMP2,ASE,AREA
AP AMP2,ASE,AREA [Application (Optical AMP Multi Channel ASE Area Parameter)]

Function
This command sets the ASE Area Parameter for the Optical AMP (WDM) application.
This command queries the ASE Area Parameter for the Optical AMP (WDM) application.

Syntax
AP AMP2,ASE,AREA,<CENTER|numeric_value>,<numeric_value>
AP? AMP2,ASE,AREA

Response Data
AMP2,ASE,AREA,<CENTER|numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CENTER</td>
<td>–</td>
<td>Sets the halfway point between channels as the interpolation range.</td>
</tr>
<tr>
<td></td>
<td><numeric_value></td>
<td>0.10 to 100.00</td>
<td>Fitting Span (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.10 to 100.00</td>
<td>Masked Span (nm)</td>
</tr>
</tbody>
</table>

Examples of Use:
AP AMP2,ASE,AREA,10.00,8.00
AP? AMP2,ASE,AREA
>AMP2,ASE,AREA,10.00,8.00
AP AMP2,ASE,AREA,FUNC [Application (Optical AMP Multi Channel ASE Fitting Curve)]

Function
This command sets the Fitting Curve for the Optical AMP (WDM) application.
This command queries the Fitting Curve setting for the Optical AMP (WDM) application.

Syntax
AP AMP2,ASE,AREA,FUNC,<switch>
AP? AMP2,ASE,AREA,FUNC

Response Data
AMP2,ASE,AREA,FUNC,<switch>

<switch> = 3RD|4TH|5TH|GAUSS|LINEAR
3 RD: 3rdPOLY
4 TH: 4thPOLY
5TH: 5thPOLY
GAUSS: GAUSS
LINEAR: LINEAR

Examples of Use:
AP AMP2,ASE,AREA,FUNC,GAUSS
AP? AMP2,ASE,AREA,FUNC
>AMP2,ASE,AREA,FUNC,GAUSS
AP AMP2,ASE,POINT [Application (Optical AMP Multi Channel ASE Point)]

Function
This command sets the Noise Position for the Optical AMP (WDM) application.
This command queries the Noise Position for the Optical AMP (WDM) application.

Syntax
AP AMP2,ASE,POINT,<switch>|<numeric_value>
AP? AMP2,ASE,POINT

Response Data
AMP2,ASE,POINT <switch>|<numeric_value>

<switch> = CENTER|RES
CENTER: Sets the center point between peaks as the Noise Position.
RES: Sets a value dependent on Resolution when the waveform is measured as the Noise Position.

<numeric_value>: Uses the set value as the Noise Position.
0.01 to 100.00 (nm)

Examples of Use:
AP AMP2,ASE,POINT,CENTER
AP? AMP2,ASE,POINT
>AMP2,ASE,POINT,CENTER
Device Message Details

AP AMP2,MSL [Application (Optical AMP Multi Channel Memory Select)]

Function
This command selects the saving destination for measurement data from the Optical AMP (WDM) application.
This command queries the saving destination for measurement data from the Optical AMP (WDM) application.
This message can be used when in Optical AMP (WDM) application mode.

Syntax
AP AMP2,MSL,<switch>

AP? AMP2,MSL

Response Data
AMP2,MSL,<switch>

<switch>: Measurement data saving destination {PIN|POUT}

Examples of Use:
AP AMP2,MSL,PIN
AP? AMP2,MSL
>AMP2,MSL,PIN
AP AMP2,OBPF [Application (Optical AMP Multi Channel Opt. Band Pass Filter)]

Function
This command sets the O.BPF Lvl Cal/BW for the Optical AMP (WDM) application.
This command queries the O.BPF Lvl Cal/BW setting for the Optical AMP (WDM) application.

Syntax

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP AMP2,OBPF</td>
<td>AP AMP2,OBPF,<numeric_value>,<numeric_value></td>
</tr>
<tr>
<td>AP? AMP2,OBPF</td>
<td>AP? AMP2,OBPF</td>
</tr>
</tbody>
</table>

Response Data

AP AMP2,OBPF,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.00 to 30.00</td>
<td>O.BPF Level Calibration (dB) Optical filter loss correction coefficient</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.00 to 999.99</td>
<td>O.BPF Band Width (nm) Optical filter pass band width</td>
</tr>
</tbody>
</table>

Examples of Use:

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP AMP2,OBPF</td>
<td>AP AMP2,OBPF,0,0</td>
</tr>
<tr>
<td>AP? AMP2,OBPF</td>
<td>AP? AMP2,OBPF</td>
</tr>
<tr>
<td>>AMP2,OBPF</td>
<td>>AMP2,OBPF,0.00,0.00</td>
</tr>
</tbody>
</table>
4.4 Device Message Details

AP AMP2,PIN [Application (Optical AMP Multi Channel Pin)]

Function
This command selects the trace memory for saving the Pin of the Optical AMP (WDM) application.
This command queries the trace memory for saving the Pin of the Optical AMP (WDM) application.
This message can be used when in Optical AMP (WDM) application mode.

Syntax
AP AMP2,PIN,<trace>
AP? AMP2,PIN

Response Data
AMP2,PIN,<trace>

Examples of Use:
AP AMP2,PIN,A
AP? AMP2,PIN
>AMP2,PIN,A

AP AMP2,POUT [Application (Optical AMP Multi Channel Pout)]

Function
This command selects the trace memory that saves Pout for the Optical AMP (WDM) application.
This command queries the trace memory that saves Pout for the Optical AMP (WDM) application.
This message can be used when in Optical AMP (WDM) application mode.

Syntax
AP AMP2,POUT,<trace>
AP? AMP2,POUT

Response Data
AMP2,POUT,<trace>

Examples of Use:
AP AMP2,POUT,B
AP? AMP2,POUT
>AMP2,POUT,B
AP AMP2,PRM [Application (Optical AMP Multi Channel Parameter)]

Function
This command sets the measurement parameters for the Optical AMP (WDM) application.
This command queries the measurement parameters for the Optical AMP (WDM) application.
This message can be used when in Optical AMP (WDM) application mode.

Syntax
AP
AMP2,PRM,<switch>,<switch>,<numeric_value>,<numeric_value>,<numeric_value>,<switch>,<switch>
AP? AMP2,PRM

Response Data
AMP2,PRM,<switch>,<switch>,<numeric_value>,<numeric_value>,<numeric_value>,<switch>,<switch>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: NF (Total)</td>
</tr>
<tr>
<td>2</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: ISS Method (Advanced)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2: Off</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>–10.00 to 10.00</td>
<td>Pin Loss(Offset) (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss correction factor for signal level</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>–10.00 to 10.00</td>
<td>Pout Loss(Offset) (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Loss correction factor for optical level output</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>0.100 to 10.000</td>
<td>NF Calibration (dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Correction factor for noise figure</td>
</tr>
<tr>
<td>6</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1: Actual Resolution (Initial)</td>
</tr>
<tr>
<td>7</td>
<td><switch></td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON: Fitting curve displayed</td>
</tr>
</tbody>
</table>

Examples of Use:
AP AMP2,PRM,0,2,10,5,10,0,ON
AP? AMP2,PRM
>AMP2,PRM,0,2,10,5,10,0,ON
AP AMP2,SLV [Application (Optical AMP Multi Channel Slice Level)]

Function
This command sets the slice level for the Optical AMP (WDM) application.
This command queries the slice level for the Optical AMP (WDM) application.

Syntax
AP AMP2,SLV,<numeric_value>
AP? AMP2,SLV

Response Data
AMP2,SLV,<numeric_value>

<numeric_value>: Slice level (dB) 0.1 to 50.0

Examples of Use:
AP AMP2,SLV,0.1
AP? AMP2,SLV
>AMP2,SLV,0.1

AP AMP2,STHR [Application (Optical AMP Multi Channel Search Threshold)]

Function
This command sets the threshold value for detecting the peak (channel) in the Optical AMP (WDM) application.
This command reads the threshold value for detecting the peak (channel) in the Optical AMP (WDM) application.

Syntax
AP AMP2,STHR,<numeric_value>
AP? AMP2,STHR

Response Data
AMP2,STHR,<numeric_value>

<numeric_value>: Peak (channel) detection threshold value 0.01 to 10.00 (dB)

Examples of Use:
AP AMP2,STHR,0.5
AP? AMP2,STHR
>AMP2,STHR,0.5
Chapter 4 Message Details

AP AMP2,WL [Application (Optical AMP Multi Channel Wavelength Detection Type)]

Function
This command sets the wavelength detection method for the Optical AMP (WDM) application.
This command queries the wavelength detection method for the Optical AMP (WDM) application.

Syntax
AP AMP2,WL,PEAK|THRESHOLD[,<numeric_value>]
AP? AMP2,WL

Response Data
AMP2,WL,PEAK|THRESHOLD,<numeric_value>

No. 1 parameter Detection Type setting
PEAK
THRESHOLD

No. 2 parameter Threshold Cut Level (dB)
<numeric_value>: 0.1 to 50.0
If No. 2 parameter is omitted, the Threshold Cut Level is not changed.

Examples of Use:
AP AMP2,WL,THRESHOLD,25
AP? AMP2,WL
>AMP2,WL,THRESHOLD,25
AP DFB [Application (DFB-LD)]

Function
This command sets the parameters and performs DFB-LD application analysis.
This command queries the parameters for the DFB-LD application.

Syntax

```plaintext
AP DFB,<switch>,<numeric_value>,<numeric_value>

AP? DFB
```

Response Data

```
DFB,<switch>,<numeric_value>,<numeric_value>
```

The parameters are as follows.

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>2NDPEAK</td>
<td>Detecting method of SMSR analysis rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RIGHT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Slice level (dB)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>1.00 to 10.00</td>
<td>k: Standard deviation factor</td>
</tr>
</tbody>
</table>

Example of Use

```plaintext
AP DFB,2NDPEAK,25.0,6.07
AP? DFB
>DFB,2NDPEAK,25.0,6.07
```
AP DFB,NDW [Application (DFB-LD ndB Width)]

Function
This command sets the ndB Width parameter for the DFB-LD application.
This command queries the ndB Width parameter for the DFB-LD application.
If application other than DFB-LD is selected, it switches to DFB-LD application display.

About n value:
"n" indicates the spectrum width at the designated cute level, which inputs/outputs down to 1 decimal point.
Data range:
0.1≤d≤50.0

Syntax
AP DFB,NDW, n
AP? DFB,NDW
>DFB,NDW, n

Example of Use
AP DFB,NDW,20.0
AP? DFB,NDW
>20.0
4.4 Device Message Details

AP DFB,SRES [Application (DFB-LD Search Resolution)]

Function
This command sets and reads the level resolution to detect the side mode in DFB-LD application.

Syntax
AP DFB,SRES,<numeric_value>
AP? DFB,SRES

Response Data
DFB,SRES,<numeric_value>

The parameters are as follows:
<numeric_value>: Level resolution 0.10 to 10.00 (dB)

Example of Use
AP DFB,SRES,2.0
AP? DFB,SRES
>DFB,SRES,2.0

AP FP [Application (FP-LD)]

Function
This command sets the parameter and performs FP-LD application analysis.
This command queries the parameter.

Syntax
AP FP[,<numeric_value>]
AP?

Response Data
FP,<numeric_value>

<numeric_value>: Cut Level (dB) 0.1 to 50.0

Example of Use
AP FP,30
AP?
>FP,30.0
AP LD [Application (LD Module)]

Function
This command specifies the parameter and analyzes the LD Module application.
This command reads the application type and parameter.

Syntax
AP LD,<switch>,<parameter>,,
The number of <parameter> varies depending on <switch>.
AP? LD,<switch>

Response Data
LD,<switch>,<parameter>,,
The number of <parameter> varies depending on <switch>.

The <parameter> details are described below.

<table>
<thead>
<tr>
<th><switch></th>
<th>Processing details</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Sets magnification for standard deviation at spectrum width measurement using RMS method</td>
</tr>
<tr>
<td>NNRMZ</td>
<td>Sets Noise Level normalization display</td>
</tr>
<tr>
<td>NOISE</td>
<td>Sets Noise Parameter</td>
</tr>
<tr>
<td>NP</td>
<td>Sets Noise Position (nm)</td>
</tr>
<tr>
<td>NT</td>
<td>Sets Noise Type</td>
</tr>
<tr>
<td>SIGNAL</td>
<td>Sets Signal Parameter</td>
</tr>
<tr>
<td>SMSR</td>
<td>SMSR Parameter: Sets detection method of side mode suppression ratio</td>
</tr>
<tr>
<td>SRES</td>
<td>Sets level resolution to detect side mode</td>
</tr>
<tr>
<td>THR</td>
<td>Slice level (dB): 0.1 to 50.0</td>
</tr>
</tbody>
</table>

Example of Use
AP LD,THR,20
AP? LD,THR
>LD,THR,20
AP LD,K [Application (LD Module K)]

Function
This command sets and reads the magnification for standard deviation in the LD Module application.

Syntax
AP LD,K,<numeric_value>
AP? LD,K

Response Data
LD,K,<numeric_value>

<numeric_value>:
- k Standard deviation multiplier 1.00 to 10.00

Example of Use
AP LD,K,1.00
AP? LD,K
>LD,K,1.00

AP LD,NDW [Application (LD Module ndB Width)]

Function
This command sets and queries the ndB Width parameter for the LD Module application.
If application other than LD Module is selected, it switches to LD Module application display.

About n value:
"n" indicates the spectrum width at the designated cute level, which inputs/outputs down to 1 decimal point.
Data range:
0.1≤d≤50.0

Syntax
AP LD,NDW,n
AP? LD,NDW
>DFB,LD,n

Example of Use
AP LD,NDW,20.0
AP? LD,NDW
>20.0
AP LD,NNRMZ [Application (LD Module Noise Normalization)]

Function
This command sets and queries the Noise BW of Noise Parameter for LD Module application.

Syntax
AP LD,NNRMZ,<numeric_value>
AP? LD,NNRMZ

Response Data
LD,NNRMZ,<numeric_value>

<nemonic_value>: Noise BW setting value 0.1 to 1.0 (nm)

Example of Use
AP LD,NNRMZ,0.3
AP? LD,NNRMZ
>LD,NNRMZ,0.3
AP LD,NOISE [Application (LD Module Noise Detection Type)]

Function
This command sets the Noise measurement parameter for LD Module application.
For how to set and query each parameter, refer to the latter pages described in details.
This command queries the Detection Type of the Noise parameter for LD Module application.

Syntax
AP LD,NOISE,<switch>[,<parameter>]
AP? LD,NOISE

Response Data
LD,NOISE,{AREA|NOISE}

<table>
<thead>
<tr>
<th>AREA:</th>
<th>Sets Detection Type to Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>POINT:</td>
<td>Sets Detection Type to Point</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><switch></th>
<th>Procedures</th>
<th>Number of <parameter></th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>Sets Detection Type to Area</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sets/queries Area Type to Channel or User Specify</td>
<td>1</td>
</tr>
<tr>
<td>AREA,CH</td>
<td>Sets/queries Fitting Span and Masked Span</td>
<td>2</td>
</tr>
<tr>
<td>AREA,FUNC</td>
<td>Sets/queries Fitting Curve</td>
<td>2</td>
</tr>
<tr>
<td>AREA,USER</td>
<td>Sets/queries Noise Position and Span</td>
<td>4</td>
</tr>
<tr>
<td>POINT</td>
<td>Sets Detection Type to Point</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sets/queries detection position and wavelength difference</td>
<td>2</td>
</tr>
</tbody>
</table>

Example of Use
AP LD,NOISE,AREA
AP? LD,NOISE
>LD,NOISE,AREA
AP LD,NOISE,AREA [Application (LD Module Noise Area Parameter)]

Function
This command sets the Noise Parameter for LD Module application to Channel or User Specify.
When the parameter is omitted, the Detection Type in Noise Parameter is set to Area.
This command queries the Noise Parameter Area Type for LD Module application.

Syntax
AP LD,NOISE,AREA,<switch>
AP? LD,NOISE,AREA

Response Data
LD,NOISE,AREA,<switch>

<switch>: CH|USER

CH: Sets Area Type to Channel
USER: Sets Area Type to User Specify

Example of Use
AP LD,NOISE,AREA,CH
AP? LD,NOISE,AREA
>LD,NOISE,AREA,CH
AP LD,NOISE,AREA,CH [Application (LD Module Noise Channel Area Parameter)]

Function
This command sets and queries the Channel Area in Noise Parameter for LD Module application.

Syntax
AP LD,NOISE,AREA,CH,<numeric_value>,<numeric_value>
AP? LD,NOISE,AREA,CH

Response Data
LD,NOISE,AREA,CH,<numeric>,<numeric>

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.01 to 20.00</td>
<td>Fitting Span (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.01 to 20.00</td>
<td>Masked Span (nm)</td>
</tr>
</tbody>
</table>

Example of Use
AP LD,NOISE,AREA,CH,10.00,8.00
AP? LD,NOISE,AREA,CH
>LD,NOISE,AREA,CH,10.00,8.00
AP LD,NOISE,AREA,FUNC [Application (LD Module Noise Fitting Curve)]

Function
This command sets and queries the Fitting Curve in Noise Parameter for LD Module application.

Syntax
AP LD,NOISE,AREA,FUNC,<switch>,OFF|ON
AP? LD,NOISE,AREA,FUNC

Response Data
LD,NOISE,AREA,FUNC,<switch>,OFF|ON

<switch>=3 RD|4 TH|5TH|GAUSS|LINEAR
Parameter 1: Fitting Curve Type
3 RD: 3rdPOLY
4 TH: 4thPOLY
5 TH: 5thPOLY
GAUSS: GAUSS
LINEAR: LINEAR

Parameter 2: Fitting Curve Display
OFF: Does not display fitting curve
ON: Displays fitting curve

Example of Use
AP LD,NOISE,AREA,FUNC,GAUSS,ON
AP? LD,NOISE,AREA,FUNC
>LD,NOISE,AREA,FUNC,GAUSS,ON
AP LD,NOISE,AREA,USER [Application (LD Module Noise User Specify Area Parameter)]

Function
This command sets and queries the User Specify Area in Noise Parameter for LD Module application.

Syntax
AP LD,NOISE,AREA,USER,<numeric_value>,<numeric_value>,
 <numeric_value>,<numeric_value>
AP? LD,NOISE,AREA,USER

Response Data
LD,NOISE,AREA,USER,<numeric_value>,<numeric_value>,
 <numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Left Noise Position (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Left Span (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Right Noise Position (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Right Span (nm)</td>
</tr>
</tbody>
</table>

Example of Use
AP LD,NOISE,AREA,USER,50.00,10.00,60.00,15.00
AP? LD,NOISE,AREA,USER
>LD,NOISE,AREA,USER,50.00,10.00,60.00,15.00
AP LD,NOISE,POINT [Application (LD Module Noise Point)]

Function
This command sets and queries Point and Noise Position in Noise Parameter for LD Module application.
When the parameter is omitted, the Detection Type in Noise Parameter is set to Point.

Syntax
AP LD,NOISE,POINT <switch>,<numeric_value>
AP? LD,NOISE,POINT

Response Data
LD, NOISE,POINT <switch>,{<numeric_value>|OFF}

<switch>: AVERAGE|HIGHER|LEFT|RIGHT
<numeric_value>:
Sets noise level for the Wavelength difference between 0.01 and 20.0 (nm)
OFF: Level dip regarded as noise level

Example of Use
AP LD,NOISE,POINT,AVERAGE
AP? LD,NOISE,POINT
>LD,NOISE,POINT,AVERAGE
AP LD,NP [Application (LD Module Noise Position)]

Function
This command sets Noise Position for the LD Module application. This command reads the settings of Noise Position for the LD Module application.

Syntax
```
AP LD,NP,<{numeric_value}|OFF}
AP? LD,NP
```

Response Data
```
LD,NP,<{numeric_value}|OFF}
```

<numeric_value>: Noise Position (nm) 0.01 to 20.00
OFF: Auto-detects Noise Position

Example of Use
```
AP LD,NP,OFF
AP? LD,NP
>LD,NP,OFF
```
Chapter 4 Message Details

AP LD,NT [Application (LD Module Noise Type)]

Function
The command sets the Detection Type in Noise Parameter for LD Module application to Point and sets the measurement method. This command reads the Point for LD Module application.

This command has the following restrictions. We recommend using AP LD,NOISE,POINT as a substitute for this command.

The settings for Signal Parameter is changed as follows:

• Wavelength Detection Type: Peak
• Level Detection Type: Point

The settings for Noise Parameter is changed as follows:

• Detection Type: Point
• Noise BW: 1.0

Syntax
AP LD,NT,<switch>
AP? LD,NT

Response Data
LD,NP,<switch>

<switch>: Noise measurement method
{HIGHER|LEFT|RIGHT|AVERAGE}

Example of Use
AP LD,NT,LEFT
AP? LD,NT
>LD,NT,LEFT
AP LD, SIGNAL, LV [Application (LD Module Signal Level)]

Function
This command sets and queries the level detection method in Signal Parameter for LD Module application.

Syntax
AP LD, SIGNAL, LV,{INTG[,<numeric_value>]|POINT}
AP? LD, SIGNAL, LV

Response Data
LD, SIGNAL, LV, INTG|POINT,<numeric_value>

Parameter 1: Sets Detection Type
INTG: \(\sum \text{Power} \)
POINT: Point

Parameter 2: Signal Span (nm)
<numeric_value>: 0.01 to 50.00
When the second parameter is omitted, Signal Span is not changed.

Example of Use
AP LD, SIGNAL, LV, INTG, 0.50
AP? LD, SIGNAL, LV
>LD, SIGNAL, LV, INTG, 0.50
AP LD, SIGNAL, SL [Application (LD Module Signal Level)]

Function
This command sets and queries the signal level in Signal Parameter for LD Module application.

Syntax
AP LD, SIGNAL, SL, {SIGNOI} | SIG
AP? LD, SIGNAL, SL

Response Data
LD, SIGNAL, SL, SIGNOI | SIG

Signal Level
SIGNOI: Signal - Noise
SIG: Signal

Example of Use
AP LD, SIGNAL, SL, SIG
AP? LD, SIGNAL, SL
>LD, SIGNAL, SL, SIG
AP LD, SIGNAL, WL [Application (LD Module Signal Wavelength)]

Function
This command sets and queries the wavelength detection method in Signal Parameter for LD Module application.

Syntax
AP LD, SIGNAL, WL, {PEAK|THRESHOLD[,<numeric_value>]}
AP? LD, SIGNAL, WL

Response Data
LD, SIGNAL, LV, PEAK|THRESHOLD, <numeric_value>

Parameter 1: Sets Detection Type
PEAK
THRESHOLD

Parameter 2: Threshold Cut Level(dB)
<numeric_value>: 0.1 to 50.0
When the second parameter is omitted, Threshold Cut Level is not changed.

Example of Use
AP LD, SIGNAL, WL, THRESHOLD, 25
AP? LD, SIGNAL, WL
>LD, SIGNAL, WL, THRESHOLD, 25
Chapter 4 Message Details

AP LD,SMSR [Application (LD Module SMSR Parameter)]

Function
This command sets and reads the detection method of the side mode suppression ratio for LD module application.

Syntax
AP LD,SMSR,<switch>
AP? LD,SMSR

Response Data
LD,SMSR,<switch>

<switch>: Detection method of side mode oppression rate
{2NDPEAK|LEFT|RIGHT}

Example of Use
AP LD,SMSR,LEFT
AP? LD,SMSR
>LD,SMSR,LEFT

AP LD,SRES [Application (LD Module Search Resolution)]

Function
This command sets and reads the level resolution to detect the side mode for LD module application.

Syntax
AP LD,SRES,<numeric_value>
AP? LD,SRES

Response Data
LD,SRES,<numeric_value>

<numeric_value>: Level resolution 0.10 to 10.00 (dB)

Example of Use
AP LD,SRES,0.5
AP? LD,SRES
>LD,SRES,0.5
AP LD,THR [Application (LD Module Slice Level)]

Function
This command sets the slice level in Signal Parameter in the LD Module application.
This command reads the slice level in Signal Parameter in the LD Module application.

Syntax
AP LD,THR,<numeric_value>
AP? LD,THR

Response Data
LD,THR,<numeric_value>

<numeric_value>: Slice level (dB) 0.1 to 50.0

Example of Use
AP LD,THR,3.0
AP? LD,THR
>LD,THR,3.0

AP LED [Application (LED)]

Function
This command executes the LED application and specifies the parameters.
This command queries the parameters for the LED application.

Syntax
AP LED,<numeric_value>,<numeric_value>,<numeric_value>
AP? LED

Response Data
LED,<numeric_value>,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Cut Level (dB)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>-10.00 to 10.00</td>
<td>Total power correction value (dB)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>1.00 to 10.00</td>
<td>K: Standard deviation factor</td>
</tr>
</tbody>
</table>

Example of Use
AP LED,35,0,2.35
AP? LED
>LED,35.0,0.00,2.35
Chapter 4 Message Details

AP OFF [Application OFF]

Function
This command closes display of the application function.

Syntax
AP OFF

Example of Use
AP OFF
AP?
>OFF

AP PMD [Application (PMD)]

Function
This command sets the parameters and performs the PMD application. This command queries the parameters for the PMD application. When the second parameter measurement method is set to Manual, the 1stPeak Marker and LastPeak Marker remote operations use the MKA and MKB command, respectively.

Syntax
AP PMD,<numeric_value>,<switch>,[<numeric_value>]
AP? PMD

Response Data
AP PMD,<numeric_value>,<switch>,[<numeric_value>]

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.01 to 1.00</td>
<td>Mode Coupling factor (dB)</td>
</tr>
<tr>
<td>2</td>
<td><switch></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0: Auto 1: Manual</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>2 to 99</td>
<td>Peak Count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measurement method 0: can be omitted when Auto is set.</td>
</tr>
</tbody>
</table>

Example of Use
AP PMD,0.8,1,8
AP? PMD
>PMD,0.8,1,8
AP WDM [Application (WDM)]

Function
This command specifies the parameter and analyzes the WDM application.
This command reads the display method for the WDM application.

Syntax
AP WDM,<switch>,<parameter>,,

The number of <parameter> varies depending on the status of <switch>.

AP? WDM

Response Data
WDM, {MPK|REL|SNR|TBL}

- **<switch>** Processing details
- **MPK** Multi Peak: Sets Multi Peak display
- **REL** Relative: Displays relative value
- **SNR** SNR: Displays signal vs. noise
- **TBL** Table: Displays list
- **PKT** Selects signal wavelength detection method.
- **SIGNAL** Sets Signal Parameter
- **SLV** Sets slice level
- **TCL** Sets cut level at signal wavelength calculation using Threshold analysis
- **NNRMZ** Sets Noise Level normalization display
- **NOISE** Sets Noise Parameter

Example of Use
AP WDM
AP?
>WDM
AP WDM,MPK [Application (WDM MultiPeak)]

Function
This command changes display to MultiPeak for the WDM application. This command reads the screen display type for the WDM application.

Syntax
AP WDM,MPK
AP? WDM,MPK

Response Data
WDM,MPK

Example of Use
AP WDM,MPK
AP? WDM,MPK
>WDM,MPK

AP WDM,NNRMZ [Application (WDM Noise Normalization)]

Function
This command sets and queries the Normalization and Noise BW for WDM application.

Syntax
AP WDM,NNRMZ,{OFF|ON}[,<numeric_value>]
AP? WDM,NNRMZ

Response Data
WDM,NNRMZ,OFF|ON,<numeric_value>

OFF|ON: Normalization setting
<numeric_value>: Noise BW setting value 0.1 to 1.0 (nm)

Example of Use
AP WDM,NNRMZ,ON,0.5
AP? WDM,NNRMZ
>WDM,NNRMZ,ON,0.5
AP WDM,NNRMZ,OFF
AP? WDM,NNRMZ
>WDM,NNRMZ,OFF,0.5
AP WDM,NOISE [Application (WDM Noise Detection Type)]

Function
This command sets the Noise Parameter for WDM application.
For how to set and query each parameter, refer to the latter pages described in details.
This command queries the Noise Parameter Detection Type for WDM application.

Syntax
AP WDM,NOISE,<switch>
AP? WDM,NOISE

Response Data
WDM,NOISE,AREA|POINT

AREA: Sets Detection Type to Area
POINT: Sets Detection Type to Point

<switch> Procedures Number of <parameter>
AREA Sets Detection Type to Area 0
Sets/queries Area Type to Channel or User Specify 1
AREA,CH Sets/queries Fitting Span and Masked Span 2
AREA,FUNC Sets/queries Fitting Curve 2
AREA,USER Sets/queries Noise Position and Span 4
POINT Sets Detection Type to Point 0
Sets/queries detection position and wavelength difference 2

Example of Use
AP WDM,NOISE,AREA
AP? WDM,NOISE
>WDM,NOISE,AREA
Chapter 4 Message Details

AP WDM,NOISE,AREA [Application (WDM Noise Area Parameter)]

Function
This command sets the Area Type in Noise Parameter for WDM application to Channel or User Specify and queries the Area Type. When the parameter is omitted, the Noise Parameter Detection Type is set to Area.

Syntax
AP WDM,NOISE,AREA,<switch>
AP? WDM,NOISE,AREA

Response Data
WDM,NOISE,AREA,<switch>

<switch>: CH|USER

CH: Sets Area Type to Channel
USER: Sets Area Type to User Specify

Example of Use
AP WDM,NOISE,AREA,CH
AP? WDM,NOISE,AREA
>WDM,NOISE,AREA,CH

AP WDM,NOISE,AREA,CH [Application (WDM Noise Channel Area Parameter)]

Function
This command sets and queries the Channel Area in Noise Parameter for WDM application.

Syntax
AP WDM,NOISE,AREA,CH,<numeric_value>,<numeric_value>
AP? WDM,NOISE,AREA,CH

Response Data
WDM,NOISE,AREA,CH,<numeric>,<numeric>

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric></td>
<td>0.01 to 20.00</td>
<td>Fitting Span (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric></td>
<td>0.01 to 20.00</td>
<td>Masked Span (nm)</td>
</tr>
</tbody>
</table>

Example of Use
AP WDM,NOISE,AREA,CH,10.00,8.00
AP? WDM,NOISE,AREA,CH
>WDM,NOISE,AREA,CH,10.00,8.00
AP WDM,NOISE,AREA,FUNC [Application (WDM Noise Fitting Curve)]

Function
This command sets and queries the Fitting Curve in Noise Parameter for WDM application.

Syntax
AP WDM,NOISE,AREA,FUNC,<switch>,OFF|ON
AP? WDM,NOISE,AREA,FUNC

Response Data
WDM,NOISE,AREA,FUNC,<switch>,OFF|ON

<switch>=3RD|4TH|5TH|GAUSS|LINEAR
Parameter 1: Fitting curve type
3RD: 3rdPOLY
4TH: 4thPOLY
5TH: 5thPOLY
GAUSS: GAUSS
LINEAR: LINEAR

Parameter 2: Fitting curve display
OFF: Does not display fitting curve
ON: Displays fitting curve

Example of Use
AP WDM,NOISE,AREA,FUNC,GAUSS,ON
AP? WDM,NOISE,AREA,FUNC
>WDM,NOISE,AREA,FUNC,GAUSS,ON
AP WDM,NOISE,AREA,USER [Application (WDM Noise User Specify Area Parameter)]

Function
This command sets and queries the User Specify Area in Noise Parameter for WDM application.

Syntax
AP WDM,NOISE,AREA,USER,<numeric_value>,<numeric_value>,
 <numeric_value>,<numeric_value>
AP? WDM,NOISE,AREA,USER

Response Data
WDM,NOISE,AREA,USER,<numeric_value>,<numeric_value>,
 <numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Left Noise Position (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Left Span (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Right Noise Position (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>0.01 to 100.00</td>
<td>Right Span (nm)</td>
</tr>
</tbody>
</table>

Example of Use
AP WDM,NOISE,AREA,USER,50.00,10.00,60.00,15.00
AP? WDM,NOISE,AREA,USER
>WDM,NOISE,AREA,USER,50.00,10.00,60.00,15.00
AP WDM, NOISE, POINT [Application (WDM Noise Point)]

Function
This command sets and queries the Noise Position and Point in Noise Parameter for WDM application.
When the parameter is omitted, the Detection Type in Noise Parameter is set to Point.

Syntax
AP WDM, NOISE, POINT[,<switch>,{<numeric_value>|OFF}]
AP? WDM, NOISE, POINT

Response Data
WDM, NOISE, POINT,<switch>,{<numeric_value>|OFF}

<switch>:
ARVERAGE | HIGHER | LEFT | RIGHT
<numeric_value>:
Sets noise level for the Wavelength difference between 0.01 and 20.0 (nm)

OFF: Level dip regarded as noise level

Example of Use
AP WDM, NOISE, POINT, AVERAGE, OFF
AP? WDM, NOISE, POINT
>WDM, NOISE, POINT, AVERAGE, OFF
AP WDM,PKT [Application (WDM PeakType)]

Function
This command sets and queries the signal wavelength detection method at WDM application.
Setting is the same as AP WDM,SIGNAL WL.

This command has the following restrictions. We recommend using AP WDM,SIGNAL WL as a substitute for this command.
The settings for Signal Parameter are changed as follows:
- Level Detection Type: Point

Syntax
AP WDM,PKT,<switch>
AP? WDM,PKT

Response Data
WDM,PKT,<switch>

<switch>: MAX | THRESHOLD

Example of Use
AP WDM,PKT,MAX
AP? WDM,PKT
>WDM,PKT,MAX

AP WDM,REL [Application (WDM Relative)]

Function
This command changes display to Relative at the WDM application and sets the reference wavelength number.
When the parameter is omitted, the wavelength number is not changed.

Syntax
AP WDM,REL,<numeric_value>
AP? WDM,REL

Response Data
WDM,REL,<numeric_value>

<numeric_value>: Sets Peak No. (1 to 300) used as Ref No
Reference wavelength number

Example of Use
AP WDM,REL,1
AP? WDM,REL
>WDM,REL,1
AP WDM,SIGNAL,LV [Application (WDM Signal Level)]

Function
This command sets and queries the level detection method in Signal Parameter for WDM application.

Syntax
AP WDM,SIGNAL,LV,{INTG[,<numeric_value>]}|POINT
AP? WDM,SIGNAL,LV

Response Data
WDM,SIGNAL,LV,INTG|POINT,<numeric_value>

Parameter 1: Sets Detection Type
INTG: \(\Sigma \) Power
POINT: Point

Parameter 2: Signal Span
<numeric_value>: 0.01 to 50.00 (nm)
When the second parameter is omitted, Signal Span is not changed.

Example of Use
AP WDM,SIGNAL,LV,INTG,0.50
AP? WDM,SIGNAL,LV
>WDM,SIGNAL,LV,INTG,0.50
Chapter 4 Message Details

AP WDM,SIGNAL, WL [Application (WDM Signal Wavelength)]

Function
This command sets and queries the wavelength detection method in Signal Parameter for WDM application.

Syntax
AP WDM,SIGNAL,WL,{PEAK|THRESHOLD[,<numeric_value>]}
AP? WDM,SIGNAL,WL

Response Data
WDM,SIGNAL,LV,PEAK|THRESHOLD,<numeric_value>

Parameter 1: Sets Detection Type
PEAK
THRESHOLD

Parameter 2: Threshold Cut Level
<numeric_value>: 0.1 to 50.0 (dB)
When the second parameter is omitted, Threshold Cut Level is changed.

Example of Use
AP WDM,SIGNAL,WL,THRESHOLD,25
AP? WDM,SIGNAL,LWL
>WDM,SIGNAL,WL,THRESHOLD,25.0

AP WDM,SLV [Application (WDM Slice Level)]

Function
This command sets and queries Slice Level in Signal Parameter at WDM application.

Syntax
AP WDM,SLV,<numeric_value>
AP? WDM, SLV

Response Data
WDM,SLV,<numeric_value>

<numeric_value>: Sets Slice Level (dB) 0.1 to 50.0 dB

Example of Use
AP WDM,SLV,0.1
AP? WDM,SLV
>WDM,SLV,0.1
4.4 Device Message Details

AP WDM,SNR [Application (WDM SNR)]

Function
This command changes the screen display to SNR at the WDM application.
To set the signal and noise measurement parameter, use AP WDM,NNRMZ, AP WDM,NOISE, AP WDM,SIGNAL,LV, and AP WDM,SIGNAL,WL.
This command queries the noise parameter for WDM application. However, the following data cannot be read:
- Noise Parameter: Normalization
- Noise Parameter: Point
- Noise Position

To read other measurement parameters, use AP WDM,NNRMZ, AP WDM,NOISE, AP WDM,SIGNAL,LV, and AP WDM,SIGNAL,WL.

When the WDM application parameter is set using this command, the Noise Parameter is set as follows:
- Detection Type: Point
- Noise BW: 1.0
To avoid changing the Noise Parameter settings, omit the parameter and use AP WDM, or SNR.

Syntax
AP WDM,SNR,<switch>,<numeric_value>,[<switch>]
AP? WDM,SNR

Response Data
WDM,SNR,<switch>,<numeric_value>,<switch>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><switch></td>
<td>AVERAGE</td>
<td>HIGH</td>
</tr>
<tr>
<td>2.</td>
<td><numeric_value></td>
<td>0.01 to 20.00</td>
<td>Off</td>
</tr>
<tr>
<td>3.</td>
<td><switch></td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>
Example of Use
AP WDM
AP WDM,NNRMZ ON,0.5
AP WDM,NOISE,POINT,HIGHER,0.8
AP? WDM,SNR
>WDM,SNR,HIGHER,0.80,ON

AP WDM,STHR [Application (WDM Search Threshold)]

Function
This command sets or queries the threshold to detect peak (channel) in the WDM measurement.

Syntax
AP WDM,STHR,<numeric_value>
AP? WDM,STHR

Response Data
WFIL,SDM,<numeric_value>

<numeric_value>: Search Threshold (dB) 0.01 to 10.00

Example of Use
AP WDM,STHR,0.1
AP? WDM,STHR
>WDM,STHR,0.10
AP WDM, TBL [Application (WDM Table)]

Function

This command changes the screen display to Table at the WDM application.

To set the signal and noise measurement parameter, use AP WDM, NNRMZ, AP WDM, NOISE, AP WDM, SIGNAL, LV, and AP WDM, SIGNAL, WL. This command queries the noise parameter for WDM application.

However, the following data cannot be read:
- Noise Parameter: Normalization
- Noise Parameter: Point
- Noise Position

To read other measurement parameters, use AP WDM, NNRMZ, AP WDM, NOISE, AP WDM, SIGNAL, LV, and AP WDM, SIGNAL, WL.

When the WDM application parameter is set using this command, the Noise Parameter is set as follows:
- Detection Type: Point
- Noise BW: 1.0

To avoid changing the Noise Parameter settings, omit the parameter and use AP WDM, or TBL.

Syntax

```
AP WDM, TBL [, <switch>, <numeric_value> [, <switch> ] ]
AP? WDM, TBL
```

Response Data

```
WDM, TBL, <switch>, <numeric_value>, <switch>
```

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>AVERAGE</td>
<td>HIGHER</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.01 to 20.00</td>
<td>Off</td>
</tr>
<tr>
<td>3</td>
<td><switch></td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

Example of Use

```
AP WDM, TBL
AP WDM NOISE, POINT
AP WDM NOISE, POINT, HIGHER, 0.8
```
Chapter 4 Message Details

AP WDM,NNRMZ,ON,0.2
AP? WDM,TBL
>WDM,TBL,HIGHER,0.80,ON

AP WDM,TCL [Application (WDM ThresholdCutLevel)]

Function
This command sets and queries the cut level of the Signal Parameter Threshold method at WDM application.

Syntax
AP WDM,TCL,<numeric_value>
AP? WDM,TCL

Response Data
WDM,TCL,<numeric_value>

<numeric_value>: Sets Cut Level (0.1 to 50.0 dB) for signal wavelength calculation at Threshold analysis

Example of Use
AP WDM,TCL,10
AP? WDM,TCL
>WDM,TCL,10.0
AP WFIL [Application (WDM Filter)]

Function
This command specifies parameters and executes the WDM filter application.

Syntax
AP WFIL,<switch>,<parameter>,,
The number of <parameter> varies depending on the status of <switch>.
AP? WFIL

Response Data
WFIL

<table>
<thead>
<tr>
<th><switch></th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWCL</td>
<td>Selects the measurement method of bandwidth.</td>
</tr>
<tr>
<td>CHDT</td>
<td>Selects the detection type of channel wavelength.</td>
</tr>
<tr>
<td>LVL</td>
<td>Selects the channel level measurement method.</td>
</tr>
<tr>
<td>RPS</td>
<td>Sets the ripple span.</td>
</tr>
<tr>
<td>SLV</td>
<td>Sets the slice level for detecting channel.</td>
</tr>
<tr>
<td>STHR</td>
<td>Sets the threshold value for detecting channel.</td>
</tr>
<tr>
<td>TCL</td>
<td>Sets the cut level for calculating wavelength by threshold analysis.</td>
</tr>
</tbody>
</table>

Example of Use
AP WFIL
AP? WFIL
>WFIL
Chapter 4 Message Details

AP WFIL,BWCL [Application (WDM Filter BW/Pass Band)]

Function
This command sets and queries the BW/Pass Band parameters in Test Parameter for WDM filter application.

Syntax
AP WFIL,BWCL,<switch>,<numeric_value>,<numeric_value> [,<numeric_value>]
AP? WFIL,BWCL

Response Data
WFIL,BWCL <switch>,<numeric_value>,<numeric_value> [,<numeric_value>]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>BW</td>
<td>PASSBAND</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Cut Level A (dB)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Cut Level B (dB)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>0.01 to 999.99</td>
<td>Pass Band Span (nm)</td>
</tr>
</tbody>
</table>

If No. 4 parameter is omitted when setting, the Pass Band Span is not changed.

Example of Use
AP WFIL,BWCL, PASSBAND, 3.00, 20.00, 0.05
AP? WFIL,BWCL
>WFIL,BWCL, PASSBAND, 3.00, 20.00, 0.05
4.4 Device Message Details

AP WFIL,CHDT [Application (WDM Filter Channel Detection)]

Function
This command sets and queries the channel wavelength detection method in Test Parameter for WDM filter application.

Syntax
AP WFIL,CHDT,<switch>[,<numeric_value>]
AP? WFIL,CHDT

Response Data
WFIL,CHDT,<switch>[,<numeric_value>]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><switch></td>
<td>PEAK</td>
<td>RMS</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.1 to 50.0</td>
<td>Cut Level (dB)</td>
</tr>
</tbody>
</table>

If No. 2 parameter is omitted when setting, the Cut Level is not changed.

Example of Use
AP WFIL,CHDT,PEAK,10
AP? WFIL,CHDT
>WFIL,CHDT,PEAK
AP WFIL,CHDT,THRESHOLD,3
AP? WFIL,CHDT
>WFIL,CHDT,THRESHOLD,3.0
Chapter 4 Message Details

AP WFIL,LVL [Application (WDM Filter Channel Detection)]

Function
This command sets and queries the channel level detection method in Test Parameter for WDM filter application.

Syntax
AP WFIL,LVL,{INTG|POINT[,<numeric_value>] }
AP? WFIL,LVL

Response Data
WFIL,LVL,{INTG,<numeric_value>|POINT}

Parameter 1: Sets Detection Type
INTG: \(\Sigma \)Power
POINT: Point

Parameter 2: Signal Span (nm)
<numeric_value>: 0.01 to 50.00
If No. 2 parameter is omitted when setting, Signal Span is not changed.

Example of Use
AP WFIL,LVL,INTG,0.50
AP? WFIL,LVL
>WFIL,LVL,INTG,0.50

AP WFIL,RPS [Application (WDM Filter Ripple Span)]

Function
This command sets and queries the ripple span in Test Parameter for WDM filter application.

Syntax
AP WFIL,RPS,<numeric_value>
AP? WFIL,RPS

Response Data
WFIL,RPS,<numeric_value>

<numeric_value>: Ripple Span 0.01 to 999.99 (nm)

Example of Use
AP WFIL,RPS,1.5
AP? WFIL,RPS
>WFIL,RPS,1.50
AP WFIL,SLV [Application (WDM Filter Slice Level)]

Function
This command sets and queries the slice level for detecting channel at WDM filter application.

Syntax
AP WFIL,SLV,<numeric_value>
AP? WFIL,SLV

Response Data
WFIL,SLV,<numeric_value>

<numeric_value>: Slice level (dB) 0.1 to 50.0

Example of Use
AP WFIL,SLV,32
AP? WFIL,SLV
>WFIL,SLV,32.0

AP WFIL,STHR [Application (WDM Filter Search Threshold)]

Function
This command sets and queries the threshold value for detecting channel at WDM filter application.

Syntax
AP WFIL,STHR,<numeric_value>
AP? WFIL,STHR

Response Data
WFIL,STHR,<numeric_value>

<numeric_value>: Search Threshold (dB) 0.01 to 10.00

Example of Use
AP WFIL,STHR,0.1
AP? WFIL,STHR
>WFIL,STHR,0.10
AP WFIL,TCL [Application (WDM Filter Threshold Cut Level)]

Function
This command sets and queries the threshold value for detecting wavelength at WDM filter application.

Syntax
AP WFIL,TCL,<numeric_value>,<numeric_value>
AP? WFIL,TCL

Response Data
WFIL,TCL,<numeric_value>,<numeric_value>

Parameter 1: Cut Level A (dB)
Parameter 2: Cut Level B (dB)
<numeric_value>: Cut Level 0.1 to 50.0 (dB)

Example of Use
AP WFIL,TCL,3,20
AP? WFIL,TCL
>WFIL,TCL,3.0,20.0
APR [Application Result]

Function
This command queries the analysis results for the last application executed by the AP command.

Syntax
APR?

Response Data
<numeric_value>

The response data varies with the application function. The details of the response for each application are described separately below.

When executing the Optical Amp application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Gain: Gain (dB)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>NF: Noise figure (dB)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Signal Wl: Peak wavelength of amplified light (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>ASE Lvl/(Res): ASE level of amplified light (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Res: Actual resolution use used for the NF calculation (nm)</td>
</tr>
</tbody>
</table>
Chapter 4 Message Details

When executing the Optical AMP (WDM) application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Peak Count: Number of peaks</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Gain Slope: The gain slope (dB/nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Gain Vari: Difference between the maximum and the minimum gain values in the entire signal spectrum (dB)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Wl: 1st peak wavelength (nm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Pin: 1st optical level input (dBm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>Pout: 1st optical level output (dBm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>ASE: 1st amplified spontaneous emission level (dBm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Res: 1st actual resolution (nm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>Gain: 1st gain (dB)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>NF: 1st Noise Figure (dB)</td>
</tr>
</tbody>
</table>

When executing the DFB-LD application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>ko: Spectrum width used by RMS method (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Mode Offset: Differences between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Stop Band: Wavelength difference of both side modes of peak wavelength (nm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>Center Offset: Difference of means of peak wavelength and both side modes wavelength (nm)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>o: Standard deviation (nm)</td>
</tr>
</tbody>
</table>
4.4 Device Message Details

When executing the FP-LD application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>numeric_value</td>
<td>FWHM: Spectrum width using RMS method (nm)</td>
</tr>
<tr>
<td>2</td>
<td>numeric_value</td>
<td>Mean Wl: Center wavelength (nm)</td>
</tr>
<tr>
<td>3</td>
<td>numeric_value</td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td>numeric_value</td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td>numeric_value</td>
<td>Mode (n dB): Number of longitudinal modes</td>
</tr>
<tr>
<td>6</td>
<td>numeric_value</td>
<td>Mode Spacing: Longitudinal mode interval (gap) (nm)</td>
</tr>
<tr>
<td>7</td>
<td>numeric_value</td>
<td>Total Power: Spectrum integral power (dBm)</td>
</tr>
<tr>
<td>8</td>
<td>numeric_value</td>
<td>σ: Standard deviation using RMS method (nm)</td>
</tr>
</tbody>
</table>

When executing the LD Module application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>numeric_value</td>
<td>Kσ: Spectrum width (nm)</td>
</tr>
<tr>
<td>2</td>
<td>numeric_value</td>
<td>σ: Standard deviation (nm)</td>
</tr>
<tr>
<td>3</td>
<td>numeric_value</td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td>numeric_value</td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td>numeric_value</td>
<td>Mode Offset: Differences between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td>numeric_value</td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>7</td>
<td>numeric_value</td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td>numeric_value</td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>9</td>
<td>numeric_value</td>
<td>SNR (/1nm): Signal to noise ratio (per nm) (dB)</td>
</tr>
<tr>
<td>10</td>
<td>numeric_value</td>
<td>SNR (Res **nm): Signal to noise ratio (true value) (dB)</td>
</tr>
</tbody>
</table>
When executing the LED application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Mean Wl (FWHM): Center wavelength of spectrum half width (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Mean Wl (dB): Center wavelength using dB Loss method (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>FWHM (n σ): Spectrum half width for RMS (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>n dB Width: Spectrum width using dB Loss method (nm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>PkDens (/1nm): Spectrum density max. value (dBm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Total Power: Spectrum integral power (dBm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>σ: Standard deviation differences using RMS method (nm)</td>
</tr>
</tbody>
</table>

When executing the PMD application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Diff Group Delay: Δt differential group delay time (fs)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>1st Peak Wl: Wavelength of 1st peak (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Last Peak Wl: Wavelength of last peak (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Peak Count</td>
</tr>
</tbody>
</table>

When executing the WDM application (MultiPeak)

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>PeakCount</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Wl: First peak wavelength (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Level: First peak level (dBm)</td>
</tr>
<tr>
<td>2n</td>
<td><numeric_value></td>
<td>Wl: n th peak wavelength (nm)</td>
</tr>
<tr>
<td>2n+1</td>
<td><numeric_value></td>
<td>Level: n th peak level (dBm)</td>
</tr>
</tbody>
</table>
When executing the WDM application (SNR)

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Peak Count</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Wl: First peak wavelength (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Level: First peak level (dBm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>SNR: First signal to noise ratio (dB)</td>
</tr>
<tr>
<td>5</td>
<td><switch> =</td>
<td>L/R: First noise detection method</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td>ERR when noise position off screen at noise detection</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>FITTING when Noise Parameter Detection Type is Area</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
4n-2 & \text{<numeric_value> Wl: n th peak wavelength (nm)} \\
4n-1 & \text{<numeric_value> Level: n th peak level (dBm)} \\
4n & \text{<numeric_value> SNR: n th peak signal to noise ratio (dB)} \\
4n+1 & \text{<switch> = AVERAGE | L/R: n th peak noise detection method} \\
& \text{LEFT | ERR | FITTING when Noise Parameter Detection Type is Area} \\
\end{align*}
\]

When executing the WDM application (Relative)

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Peak Count</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Ref: Reference peak number</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Wl: First peak wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Spacing: Spacing of first peak wavelength (nm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Wl-Ref: Wavelength difference between first peak and reference peak (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>Level: First peak level (dBm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Level-Ref: First relative level (dB)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
5n-2 & \text{<numeric_value> Wl: n th peak wavelength (nm)} \\
5n-1 & \text{Spacing: Spacing of n th peak wavelength (nm)} \\
5n & \text{Wl-Ref: Differences between n th peak and reference peak wavelength (nm)} \\
5n+1 & \text{Level: n th peak level (dBm)} \\
5n+2 & \text{Level-Ref: n th relative level (dB)} \\
\end{align*}
\]

The first peak wavelength spacing is normally 0.
When executing the WDM application (Table)

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>PeakCount</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>SignalWl: First peak wavelength (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Signal Frq: First peak frequency (THz)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Level: First peak level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>SNR: First peak signal to noise ratio (dB)</td>
</tr>
<tr>
<td>6</td>
<td><switch>=</td>
<td>L/R: First peak noise detection method</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td>ERR when noise position off screen at noise detection</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>FITTING when Noise Parameter Detection Type is Area</td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td>ERR when noise position off screen at noise detection</td>
</tr>
<tr>
<td></td>
<td>ERR</td>
<td>FITTING when Noise Parameter Detection Type is Area</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Spacing Wl: First peak wavelength spacing (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Spacing Frq: First peak frequency spacing (GHz)</td>
</tr>
<tr>
<td>7n–5</td>
<td><numeric_value></td>
<td>Signal Wl: nth peak wavelength (nm)</td>
</tr>
<tr>
<td>7n–4</td>
<td><numeric_value></td>
<td>Signal Frq: nth peak frequency (THz)</td>
</tr>
<tr>
<td>7n–3</td>
<td><numeric_value></td>
<td>Level: nth peak level (dBm)</td>
</tr>
<tr>
<td>7n–2</td>
<td><numeric_value></td>
<td>SNR: nth peak signal to noise ratio (dB)</td>
</tr>
<tr>
<td>7n–1</td>
<td><switch>=</td>
<td>L/R: nth peak noise detection method</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td>ERR when noise position off screen at noise detection</td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td>FITTING when Noise Parameter Detection Type is Area</td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td>ERR when noise position off screen at noise detection</td>
</tr>
<tr>
<td>7n</td>
<td><numeric_value></td>
<td>Spacing Wl: nth peak wavelength spacing (nm)</td>
</tr>
<tr>
<td>7n+1</td>
<td><numeric_value></td>
<td>Spacing Frq: nth peak frequency spacing (GHz)</td>
</tr>
</tbody>
</table>

If there is no peak, the returned values are wavelength $\lambda = -1$, level $L = -999.99$ or 999.99.
When executing the WDM Filter application

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>PeakCount: Channel count</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>No: Channel number</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>CH WI: 1st channel wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Spacing: 1st channel spacing (nm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>PK WI: 1st peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>CH Lvl: 1st channel level (dBm) or 1st channel loss (dB)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>x dB BW: 1st channel bandwidth (Cut Level A) (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>y dB BW: 1st channel bandwidth (Cut Level B) (nm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>x dB WI: Threshold wavelength of the 1st channel (Cut Level A) (nm)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>y dB WI: Threshold wavelength of the 1st channel (Cut Level B) (nm)</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>PK Lvl: Peak level (dBm) or minimum loss (dB) of the 1st channel</td>
</tr>
<tr>
<td>12</td>
<td><numeric_value></td>
<td>Ripple: 1st channel ripple (dB)</td>
</tr>
<tr>
<td>11n–9</td>
<td><numeric_value></td>
<td>No: Channel number</td>
</tr>
<tr>
<td>11n–8</td>
<td><numeric_value></td>
<td>CH WI: nth channel wavelength (nm)</td>
</tr>
<tr>
<td>11n–7</td>
<td><numeric_value></td>
<td>Spacing: nth channel interval (nm)</td>
</tr>
<tr>
<td>11n–6</td>
<td><numeric_value></td>
<td>PK WI: nth peak wavelength (nm)</td>
</tr>
<tr>
<td>11n–5</td>
<td><numeric_value></td>
<td>CH Lvl: nth channel level (dBm) or nth channel loss (dB)</td>
</tr>
<tr>
<td>11n–4</td>
<td><numeric_value></td>
<td>x dB BW: nth channel bandwidth (Cut Level A) (nm)</td>
</tr>
<tr>
<td>11n–3</td>
<td><numeric_value></td>
<td>y dB BW: nth channel bandwidth (Cut Level B) (nm)</td>
</tr>
<tr>
<td>11n–2</td>
<td><numeric_value></td>
<td>x dB WI: nth channel threshold wavelength (Cut Level A) (nm)</td>
</tr>
<tr>
<td>11n–1</td>
<td><numeric_value></td>
<td>y dB WI: nth channel threshold wavelength (Cut Level B) (nm)</td>
</tr>
<tr>
<td>11n</td>
<td><numeric_value></td>
<td>PK Lvl: Peak level (dBm) or minimum loss (dB) of nth channel</td>
</tr>
<tr>
<td>11n+1</td>
<td><numeric_value></td>
<td>Ripple: nth channel ripple (dB)</td>
</tr>
</tbody>
</table>

The spacing of the 1st peak wavelength is always “0”.
Chapter 4 Message Details

APR AMP2,TBL [Application Result (Optical Amp Multi Channel Application)]

Function
This command the analysis results by the Optical AMP (WDM) application function, specifying the peak No.

Syntax
APR? AMP2,TBL,<numeric_value>

<n借用value>: Peak No. to queries the analysis results

Response Data
AMP2,TBL,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>WI: Peak wavelength (nm) for the specified peak No.</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Pin: Optical level input (dBm) for the specified peak No.</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Pout: Optical level output (dBm) for the specified peak No.</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>ASE: Amplified spontaneous emission level (dBm) for the specified peak No.</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Res: Actual resolution (nm) for the specified peak No.</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>Gain: Gain (dB) for the specified peak No.</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>NF: Noise Figure (dB) for the specified peak No.</td>
</tr>
</tbody>
</table>

Examples of Use:
APR? AMP2,TBL,1
>AMP2,TBL,1546.815,-34.06,-8.72,-25.29,0.089,25.88,7.26
Device Message Details

4.4 APR DFBNDW [Application Result (DFB-LD ndB Width)]

Function

This command queries the DFB-LD application analysis results executed by the AP command.

This command queries the ndB-Width analysis result, which cannot be queried with the APR.

Syntax

APR? DFBNDW

Response Data

DFBNDW,<numeric_value>,,,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Ko: Spectrum width (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Mode Offset: Difference between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Stop Band: Wavelength difference of both side modes of peak wavelength (nm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>Center Offset: Difference of means of peak wavelength and both side modes wavelength (nm)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>σ: Standard deviation (nm)</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>NDW: Spectrum wavelength width at cut level (nm)</td>
</tr>
</tbody>
</table>

Example of Use

APR? DFBNDW
>DFBNDW,33.05,2.337,1551.458,-3.45,1553.664,-36.50,2.206,7.897,0.1134,0.761,0.994
Chapter 4 Message Details

APR LDNDW [Application Result (LD Module ndB Width)]

Function
This command queries the LD Module application results executed by
the AP command.
The APR command response plus the below data is returned to this
command.
Signal, NDW

Syntax
APR? LDNDW

Response Data
LDNDW,<numeric_value>,,,,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Kσ: Spectrum width (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>σ: Standard deviation (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Mode Offset: Difference between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>SNR (*.*nm): Signal-noise ratio (noise level per noise bandwidth) (dB)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>SNR(Res **nm): Signal-noise ratio (actual value) (dB)</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>Signal: Signal wavelength (nm)</td>
</tr>
<tr>
<td>12</td>
<td><numeric_value></td>
<td>Signal: Signal level (dBm)</td>
</tr>
<tr>
<td>13</td>
<td><numeric_value></td>
<td>NDW: Spectrum wavelength width at cut level (nm)</td>
</tr>
</tbody>
</table>

Example of Use
APR? LDNDW
>DFBNWD,0.125,0.053,1546.119,-33.31,2.104,39.56,1548.223,6.25,44.61,41.65,1548.209,5.22,0.086
4.4 Device Message Details

APR LDSBCO [Application Result (LD Module Stop Band and Center Offset)]

Function
This command queries the LD Module application results executed by the AP command.
The APR command response plus the below data is returned to this command.
Signal, NDW, Stop Band, Center Offset

Syntax
APR? LDSBCO

Response Data
LDSBCO,<numeric_value>,,,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Kσ: Spectrum width (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>σ: Standard deviation (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Mode Offset: Difference between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>SNR(*.nm): Signal-noise ratio (noise level per noise bandwidth) (dB)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>SNR(Res**nm): Signal-noise ratio (actual value) (dB)</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>Signal: Signal wavelength (nm)</td>
</tr>
<tr>
<td>12</td>
<td><numeric_value></td>
<td>Signal: Signal level (dBm)</td>
</tr>
<tr>
<td>13</td>
<td><numeric_value></td>
<td>NDW: Spectrum wavelength width at cut level (nm)</td>
</tr>
<tr>
<td>14</td>
<td><numeric_value></td>
<td>Stop Band: Wavelength difference of both side modes of peak wavelength (nm)</td>
</tr>
<tr>
<td>15</td>
<td><numeric_value></td>
<td>Center Offset: Difference of means of peak wavelength and both side modes wavelength (nm)</td>
</tr>
</tbody>
</table>

Example of Use
APR? LDSBCO
>LDSBCO,0.204,0.034,1554.34,-42.94,0.62,47.39,1554.96,4.45,43.83,54.05,1554.96,4.45,0.198,1.56,0.16
Chapter 4 Message Details

APR LDSNR [Application Result (LD Module SNR)]

Function
This command queries the SNR measurement result after LD module application. This command queries optical signal wavelength and level, which cannot be queried with the APR.

Syntax
APR? LDSNR

Response Data
LDSNR,<numeric_value>,,,,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>K_o: Spectrum width (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>σ: Standard deviation (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode wavelength (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>2nd Peak: Side mode level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Mode Offset: Difference between side mode wavelength and peak wavelength (nm)</td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>SMSR: Side mode suppression ratio (dB)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Peak: Peak wavelength (nm)</td>
</tr>
<tr>
<td>8</td>
<td><numeric_value></td>
<td>Peak: Peak level (dBm)</td>
</tr>
<tr>
<td>9</td>
<td><numeric_value></td>
<td>SNR (.*,*nm): Signal-noise ratio (noise level per noise bandwidth) (dB)</td>
</tr>
<tr>
<td>10</td>
<td><numeric_value></td>
<td>SNR(Res **nm): Signal-noise ratio (actual value) (dB)</td>
</tr>
<tr>
<td>11</td>
<td><numeric_value></td>
<td>Signal: Signal wavelength (nm)</td>
</tr>
<tr>
<td>12</td>
<td><numeric_value></td>
<td>Signal: Signal level (dBm)</td>
</tr>
</tbody>
</table>

Example of Use
APR? LDSNR
>LDNR,23.721,3.908,1359.2,-16.44,8.9,4.12,1350.3,-12.31,31.01,30.59,1350.3,-12.31
4.4 Device Message Details

APR MPKC [Application Result (Multi Peak Counter)]

Function
This command queries the number of the detected multi peaks.

Syntax
APR? MPKC

Response Data
MPKC,<numeric_value>

<numeric_value>: Multi peak count

Example of Use
APR? MPKC
>MPKC,1

APR WDM [Application Result (WDM Application)]

Function
This command queries the analysis results of the WDM application function for the specified peak No.

Syntax
APR? WDM[,<switch>,<parameter>,,]

The number of <parameter> varies depending on the status of <switch>.

Response Data
[WDM,<switch>,,<parameter>,,,]
The number of <parameter> varies depending on the status of <switch>. If the query <switch> is omitted, the response data is <parameter> only.

<switch> Processing
None Captures analysis results as batch
MPK Multi Peak: Captures analysis results at multi-peak display for specified peak No.
REL Relative: Captures analysis results at relative display for specified peak No.
SNR SNR: Captures analysis results at SNR display for specified peak No.
TBL Table: Captures analysis results at list display for specified peak No.

Example of Use
APR? WDM,MPK,1
>WDM,MPK,1552.76,-1.9
APR WDM,MPK [Application Result (WDM Application MultiPeak Display)]

Function
This command queries the analysis results at the MultiPeak display of the WDM application function for the specified peak No.

Syntax
APR? WDM,MPK,<numeric_value>

<numeric_value>: No. of peak to query analysis results

Response Data
WDM,MPK,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Peak wavelength of specified peak (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Peak level of specified peak (dBm)</td>
</tr>
</tbody>
</table>

Example of Use
APR? WDM,MPK,1
>WDM,MPK,1552.76,-1.9
APR WDM, REL [Application Result (WDM Application Relative Display)]

Function
This command queries the analysis results at the Relative display of the WDM application function for the specified peak No.

Syntax
APR? WDM, REL, <numeric_value>

<numeric_value>: No. of peak to query analysis results

Response Data
WDM, REL, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>, <numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Peak wavelength of specified peak No. (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Specified peak No. peak wavelength spacing (nm)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Wavelength difference between specified No. peak wavelength and reference peak (nm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Specified peak No. peak level (dBm)</td>
</tr>
<tr>
<td>5</td>
<td><numeric_value></td>
<td>Specified peak No. relative level (dB)</td>
</tr>
</tbody>
</table>

Example of Use
APR? WDM, REL, 1
>WDM, REL, 1552.76, 0, 0, -1.9, 0
APR WDM,SNR [Application Result (WDM Application SNR Display)]

Function
This command queries the analysis results at the SNR display of the WDM application function for the specified peak No.

Syntax
APR? WDM,SNR,<numeric_value>

<numeric_value>: No. of peak to query analysis results

Response Data
WDM,SNR,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,
<numeric_value>

No.	Parameter type	Description
1 | <numeric_value>| Peak wavelength of specified peak (nm) |
2 | <numeric_value>| Peak level of specified peak (dBm) |
3 | <numeric_value>| Signal to noise ratio of specified peak (dB) |
4 | <switch>= | Noise detection method for specified peak |
 | AVERAGE| ERR when noise position off screen at noise detection |
 | LEFT | FITTING when Noise Parameter Detection Type is Area |
 | RIGHT|

Example of Use
APR? WDM,SNR,1
> WDM,SNR,1552.76,-1.9,51.54,RIGHT
APR WDM,SNR,GAV [Application Result (WDM Application SNR Display GAV)]

Function
This command queries the gain variation results at the SNR display of the WDM application function.

Syntax
APR? WDM,SNR,GAV

Response Data
<numeric_value>

<numeric_value>: Gain variation (dB)
Difference between max and min values of peaks in full signal spectrum

Example of Use
APR? WDM,SNR,GAV
>10.23
Chapter 4 Message Details

APR WDM,TBL [Application Result (WDM Application Table Display)]

Function
This command queries the analysis results at the Table display of the WDM application function for the specified peak No.

Syntax
APR? WDM,TBL,<numeric_value>

<numeric_value>: No. of peak to query analysis results

Response Data
WDM,REL,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Specified peak No. peak wavelength (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Specified peak No. peak frequency (THz)</td>
</tr>
<tr>
<td>3</td>
<td><numeric_value></td>
<td>Peak level of specified peak (dBm)</td>
</tr>
<tr>
<td>4</td>
<td><numeric_value></td>
<td>Signal to noise ratio of specified peak (dB)</td>
</tr>
<tr>
<td>5</td>
<td><switch>=</td>
<td>Specified peak No. noise detection method</td>
</tr>
<tr>
<td></td>
<td>AVERAGE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LEFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RIGHT</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><numeric_value></td>
<td>Specified peak No. peak wavelength spacing (nm)</td>
</tr>
<tr>
<td>7</td>
<td><numeric_value></td>
<td>Specified peak No. peak frequency spacing (GHz)</td>
</tr>
</tbody>
</table>

Example of Use
APR? WDM,TBL,1
>WDM,TBL,1552.76,193.0707,-1.9,51.54,RIGHT,0,0

ARED [Actual Resolution Data]

Function
This command queries the actual resolution.

Syntax
ARED?

Response Data
<numeric_value> Actual resolution (nm)
ARES [Actual Resolution]

Function
This command sets display of the actual resolution. The actual resolution display status is queried.

Syntax
ARES OFF|ON
ARES?

Response Data
OFF|ON
OFF: Does not display the actual resolution.
ON: Displays the actual resolution.

ATT [Optical Attenuator]

Function
This command sets the internal optical attenuator. This command queries the internal optical attenuator status.

Syntax
ATT OFF|ON
ATT?

Response Data
OFF|ON
OFF: Does not use the optical attenuator.
ON: Uses the optical attenuator.
AUT [Auto Measure]

Function
This command performs the measurement automatically. Bit 0 of the end event status register is set to 1 when measurement ends. This command queries the automatic measurement status.

Syntax
AUT
AUT?

Response Data
0|1
0: Measurement end (Both successful end and failed end)
1: Measurement in progress

Confirm whether the measurement ends successfully or not using the query command ERR. If the measurement succeeds, the message code is 0. On the other hand, if the measurement fails, the message code is 100.

Example of Use
AUT?
> 0
ERR?
> 0

AVS [Sweep Average]

Function
This command sets the average processing (sweep averaging) count. This command queries the average processing (sweep averaging) count.

Syntax
AVS <numeric_value>
AVS?

Response Data
<numeric_value>

<numeric_value>: Sweep averaging setting count 1 to 1000
AVT [Point Average]

Function
This command sets and queries the average processing (point averaging) count.

Syntax
AVT <numeric_value>|OFF
AVT?

Response Data
<numeric_value>|OFF

<numeric_value>: Point averaging setting count 2 to 1000
OFF: Point averaging OFF

BUZ [Buzzer]

Function
This command sets and queries the On/Off status of the buzzer. This message is a system management command.

Syntax
BUZ OFF|ON
BUZ?

OFF: Disable the buzzer.
ON: Enable the buzzer.

Response Data
BUZ OFF|ON
CNT [Center Wavelength]

Function
This command sets and queries the center wavelength.

Syntax
CNT <numeric_value>
CNT?

Response Data
<nemonic_value>

<nemonic_value>: The center wavelength can include up to two
digits following the values from 600.00 to
1750.00.

COLOR [Image Color Setting]

Function
Pressing Copy sets and queries the color of the image file to be saved.
This message is a system management command.

Syntax
COLOR NORMAL|REVERSE
COLOR?

NORMAL: Creates graphics file using same colors as screen display.
REVERSE: Creates graphics file using reverse screen colors.

Response Data
NORMAL|REVERSE
CPCOPYDAT [Copy Image Data]

Function
This command copies the graphics file from drives E to Z to drive D. The extension (bmp or png) of the copied file is specified at Copy Settings.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The copy source graphics file should be saved to the following folder of the specified drive.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Screenshot
This message is a system management command.

Syntax
CPCOPYDAT <file_name>,<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
CPCOPYDAT "LED_125M(025)",E

CPCSV [Copy CSV Data]

Function
This command copies the trace CSV file from drives E to Z to drive D. If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The copy source CSV file should be saved to the following folder of the specified drive.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV Data
This message is a system management command.

Syntax
CPCSV <file_name>,<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
CPCSV "PMD_Coupler-03",E
CPSYSINFO [Copy System Information]

Function
This command copies the system information file from drives E to Z to drive D.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The copy source system information file should be saved to the following folder of the specified drive.
`x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\System Information`
This message is a system management command.

Syntax
`CPSYSINFO <file_name>,<user_drive>`
It is not necessary to add the extension to `file_name`. Remember to enclose the file name in double quotation marks.

Example of Use
`CPSYSINFO "SystemInfo-20090723_001",E`

CPXML [Copy XML Data]

Function
This command copies the XML file from drives E to Z to drive D.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The copy source XML file should be saved to the following folder of the specified drive.
`x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\All Trace Data`
This message is a system management command.

Syntax
`CPXML <file_name>,<user_drive>`
It is not necessary to add the extension to `file_name`. Remember to enclose the file name in double quotation marks.

Example of Use
`CPXML "Trace-OPT_AMP",E`
Function
This command specifies the Response Data in binary format and queries the trace data.

Syntax
- DBA?
- DBB?
- DBC?
- DBD?
- DBE?
- DBF?
- DBG?
- DBH?
- DBI?
- DBJ?

Response Data
<binary_data>

Data formation: Double Precision Floating Point

- Linear scale absolute value display: $0.1000E - 8$ to $1.0000E + 3$ Unit mW
- Linear scale relative value display: $0.1000E - 3$ to $1.0000E + 3$ Unit %
- Log scale absolute value display: -120.00 to 30.00 Unit dBm
- Log scale relative value display: -100.00 to 100.00 Unit dB

The binary data is the character after the number sign (#) indicating the number of digits in the data.
The binary data follows the number indicating the data length.

Example:
```
#42002an%*qe4445+...
```

4 digits 2002 bytes of binary data
Chapter 4 Message Details

DCA [Data Condition Trace A]
DCB [Data Condition Trace B]
DCC [Data Condition Trace C]
DCD [Data Condition Trace D]
DCE [Data Condition Trace E]
DCF [Data Condition Trace F]
DCG [Data Condition Trace G]
DCH [Data Condition Trace H]
DCI [Data Condition Trace I]
DCJ [Data Condition Trace J]

Function
This command queries wavelength and sampling points of the trace.

Syntax
DCA?
DCB?
DCC?
DCD?
DCE?
DCF?
DCG?
DCH?
DCI?
DCJ?

Response Data
<numeric_value>,<numeric_value>,<switch>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Data range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>600.00 to 1750.00</td>
<td>Start wavelength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–999.99</td>
<td>(nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>600.00 to 1800.00</td>
<td>Stop wavelength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–999.99</td>
<td>(nm)</td>
</tr>
<tr>
<td>3</td>
<td><switch></td>
<td>51</td>
<td>101</td>
</tr>
</tbody>
</table>

In following case, response data is "–999.99, –999.99, –999"
Trace type is "Calculate", and parameters of trace to be calculated are not same.
Example of Use
DCA?
>1100.00,1800.00,501
DCJ?
>-999.99,-999.99,-999

DELCOPYDAT [Delete Image Data]

Function
This command deletes the screen image file saved in the specified device. The extension (bmp or png) of the deleted graphics file is the extension specified at Copy Settings. If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
DELCOPYDAT <file_name>, D|<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
DELCOPYDAT "LED_125M(025)",E

DELCSV [Delete CSV Data]

Function
This command deletes the trace CSV file saved in the specified device. If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
DELCSV <file_name>, D|<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
DELCSV "PMD_Coupler-03",E
DELM [Delimiter]

Function
This command sets and queries the remote control terminator. This message is a system management command.

Syntax
DELM 0|1|2
DELM?

0: Sets remote control terminator to Line Feed (LF)
1: Sets remote control terminator to Carriage Return and Line Feed (CR/LF)
2: Sets remote control terminator to None (None EOI only) and uses EOI only

Response Data
0|1|2

This is the same processing as message TRM.

DELSYSINFO [Delete System Information]

Function
This command deletes the system information file saved in the specified device. If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
DELSYSINFO <file_name>, D|<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
DELSYSINFO "SystemInfo-20090723_003",D
DELXML [Delete XML Data]

Function
This command deletes the trace XML file saved in the specified device. If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
DELXML <file_name>, D|<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
DELXML "PMD_Coupler-03",E
Chapter 4 Message Details

DMA [Memory Data A]
DMB [Memory Data B]
DMC [Memory Data C]
DMD [Memory Data D]
DME [Memory Data E]
DMF [Memory Data F]
DMG [Memory Data G]
DMH [Memory Data H]
DMI [Memory Data I]
DMJ [Memory Data J]

Function
This command specifies the response data numeric format and queries the trace data sampling points, which is displayed on the screen. Data is output with the following string separators.
Communication I/F terminator LF or NONE: LF (Line Feed)
Communication I/F terminator CR/LF or NONE: CR (Carriage Return) + LF (Line Feed)

Syntax
DMA?
DMB?
DMC?
DMD?
DME?
DMF?
DMG?
DMH?
DMI?
DMJ?

Response Data

<numeric_value>
Linear scale absolute value display 0.1000E – 8 to 1.0000E + 3 Unit mW
Log scale absolute value display –120.00 to 30.00 Unit dBm
Log scale relative value display –100.00 to 100.00 Unit dB
4.4 Device Message Details

Example of Use

DMA?
> -83.23

DMB?
> 0.362E-3

DMK [ΔMarker]

Function
This command displays the delta marker and sets its wavelength. This command queries the difference in wavelength and level between the delta and trace markers.

Syntax

DMK <numeric_value>
DMK?

<numeric_value>: Wavelength or frequency difference (nm/THz) Rounded to 4 decimal places at wavelength marker display and to 5 places at frequency display. The range is between the start and stop wavelengths.

Response Data

DMK <numeric_value>,<numeric_value>

<numeric_value>:

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Wavelength difference between delta and trace markers (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Level differences between delta and trace markers (dB)</td>
</tr>
</tbody>
</table>
DPS [Dip Search]

Function
This command detects the spectrum level dip point and moves the trace marker to that point. The level dip point detection method is queried. When processing is completed, bit 0 of the end event status register (ESR2) is set to 1.

Syntax
DPS <switch>
DPS?

<switch>=DIP|LAST|LEFT|NEXT|RIGHT

DIP: Detects minimum level point and moves trace marker to point
LAST: Detects next lowest dip point after current point and moves trace marker to point
LEFT: Detects next dip point on the left after current point and moves trace marker to point
NEXT: Detects next highest dip point after current point and moves trace marker to point
RIGHT: Detects next dip point on the right after current point and moves trace marker to point

Response Data
<switch>|ERR

ERR: The dip point detection results are not displayed.
Use TMK? to query the dip point wavelength and level.
4.4 Device Message Details

DQA [Memory Data A]
DQB [Memory Data B]
DQC [Memory Data C]
DQD [Memory Data D]
DQE [Memory Data E]
DQF [Memory Data F]
DQG [Memory Data G]
DQH [Memory Data H]
DQI [Memory Data I]
DQJ [Memory Data J]

Function
This command specifies the numeric format of the response data and queries the sampling count for trace A to J data. The data are output with comma separators.

Syntax
DQA?
DQB?
DQC?
DQD?
DQE?
DQF?
DQG?
DQH?
DQI?
DQJ?

Response Data
<numeric_value>,<numeric_value>,<numeric_value>,…
Sampling count <numeric_value>

Linear scale absolute value display 0.1000E – 8 to 1.0000E + 3 Unit mW
Linear scale relative value display 0.1000E – 3 to 1.0000E + 3 Unit %
Log scale absolute value display –120.00 to 30.00 Unit dBm
Log scale relative value display –100.00 to 100.00 Unit dB

Example of Use
DQA?
> -83.23,-83.15,-83.05,-81.55,-80.32,…
DQB?
> 0.362E-3,0.389E-3,0.401E-3,0.48E-3,…
**Chapter 4 ** Message Details

DRG [Dynamic Range Mode]

Function
This command sets and queries the dynamic range High/Normal.

Syntax
- DRG HIGH|NORMAL
- DRG?

Response Data
- HIGH: High dynamic range mode
- NORMAL: Normal dynamic range mode

DSP [Display Mode]

Function
This command sets and queries the level display to the absolute or relative values.

Syntax
- DSP NRM|NRMZ
- DSP?

Response Data
- NRM|NRMZ
 - NRM: Absolute value display (Normal)
 - NRMZ: Relative value display (Normalize)

EMK [Erase Marker]

Function
This command erases display of the wavelength, level, trace and delta markers.

Syntax
- EMK

EOV [Erase Overlap]

Function
This command erases the overlap display of the specified traces.

Syntax
- EOV <trace>
4.4 Device Message Details

ERR [Error]

Function
This command queries the message code described in Appendix B. The message code is a value other than under the following conditions:

- Command error bit (bit 5) of standard event status register is 1
- Execution error bit (bit 4) is 1
- Equipment-dependent error bit (bit 3) is 1.

Syntax
ERR?

Response Data
<nemonic_value>

<nemonic_value>: Message code

ESE2 [Extended Event Status Enable Register2]

Function
This command sets and queries the enable register value of the end event status register.

Syntax
ESE2 <numeric_value>
ESE2?

Response Data
<nemonic_value>

<nemonic_value>: Enable register value 0 to 255

ESE3 [Extended Event Status Enable Register3]

Function
This command sets and queries the enable register value of the error event status register.

Syntax
ESE3 <numeric_value>
ESE3?

Response Data
<nemonic_value>

<nemonic_value>: Enable register value 0 to 255
ESR2 [Extended Event Status Enable Register2]

Function
This command queries the end event status register value.

Syntax
ESR2?

Response Data
<numeric_value>

<numeric_value>: End event register value 0 to 255

ESR3 [Extended Event Status Enable Register3]

Function
This command queries the error event status register value.

Syntax
ESR3?

Response Data
<numeric_value>

<numeric_value>: Error event status register 0 to 255
FML [Formula]

Function
This command sets the calculation formula for the active trace whose trace type is CALC.
This command queries the calculation formula for the active trace whose trace type is CALC.

Syntax
FML <trace>,<trace>,-,<trace>
FML? <trace>

Command parameter
First: Trace with set calculation
Second: Calculated trace
Third: Negative operator (–)
Fourth: Calculating

Query parameter
Trace with query calculation

Response Data
<trace>,<trace>,-,<trace>

Example of Use
FML C,A,–,B
FML? C
>C,A,–,B

Set the first parameter of the active trace with the Calculate trace type.
When setting three traces, set different traces. The following setting causes an error.
FML A,A,–,B

Set traces with the Write or Fix trace type for traces set at the second or fourth command parameter.
Setting a trace with the Calculate trace type causes the error.
Chapter 4 Message Details

GHC [Get Binary Data of Image Data]

Function
This command reads the graphics file in binary format.
The command target is a file in the following folder.
\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Trace
Data\Screenshot
The size of the binary data is about 1.4 MB for bmp files and 46 KB for
png files.

Syntax
GHC? <file_name_ext>,D|<user_drive>

<file_name_ext>
File name including extension
Example:"Spectrum-Peak.png","Sample-23.bmp"

Response Data
<binary_data>

Example of Use
GHC? "Sample-23.bmp",D
>#541056Avdl-++;E4"as...

The binary data is the character after the number sign (#) indicating the
number of digits in the data.
The binary data follows the number indicating the data length.

Example:
\[\#42002an%*qe4445+\ldots\]
4 digits 2002 bytes of binary data
ITM [Interval Time]

Function
This command sets and queries the time interval of the sweep start.

Syntax
ITM <numeric_value>[SEC]
ITM?

<numeric_value>: time interval (s) 0 to 5940
Set numeric values.

Response Data
<time_value>SEC

Example of Use
ITM 30 SEC
ITM?
>ITM 30SEC

ITM 20
ITM?
>ITM 20SEC
LISTCOPYDAT [List Image Data]

Function
This command queries the image file list saved in the specified device.
The extension (bmp or png) of the search target graphics file is specified
at Copy Settings.
Files are arranged in alphabetic order and up to 1000 files can be read.
Graphics files in the following folder of the specified device are output as
a list.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User
Data\Screenshot
If the specified device or file cannot be found and an error is generated,
the standard event status execution error bit becomes 1.
This message is a system management command.

Syntax
LISTCOPYDAT? D|<user_drive>

Response Data
<numeric_value>[,<file_name>,<file_name>,<file_name>,…]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Number of files: 0 to 1000</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>File name without extension (No. of files)</td>
</tr>
</tbody>
</table>

Example of Use
LISTCOPYDAT? D
>3,Copy_000,Copy_001,Copy_002
LISTCSV [List CSV Data]

Function
This command queries the CSV file list saved in the specified device. Files are arranged in alphabetic order and up to 1000 files can be read. CSV files in the following folder of the specified device are output as a list.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV Data

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
LISTCSV? D|<user_drive>

Response Data
<numeric_value>[,<file_name>,<file_name>,<file_name>,…]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Number of files: 0 to 1000</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>File name without extension (No. of files)</td>
</tr>
</tbody>
</table>

Example of Use
LISTCSV? D
>3,Trce_000,Trce_001,Trce_002
LISTSYSINFO [List System Information]

Function
This command queries the system information file list saved in the specified device.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\System Information
Files are arranged in alphabetic order and up to 1000 files can be read.
System information files in the following folder of the specified device are output as a list.

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
This message is a system management command.

Syntax
LISTSYSINFO? D<user_drive>

Response Data
<numeric_value>[,<file_name>,<file_name>,<file_name>,…]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Number of files: 0 to 1000</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>File name without extension (No. of files)</td>
</tr>
</tbody>
</table>

Example of Use
LISTSYSINFO? D
>5,Sys_000,Sys_001,Sys_002,Sys_003,Sys_004
LISTXML [List XML Data]

Function
This command queries the XML file list saved in the specified device. Files are arranged in alphabetic order and up to 1000 files can be read. XML files in the following folder of the specified device are output as a list.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Trace Data
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. This message is a system management command.

Syntax
LISTXML D|<user_drive>

Response Data
<numeric_value>[,<file_name>,<file_name>,<file_name>,…]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Number of files: 0 to 1000</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>File name without extension (No. of files)</td>
</tr>
</tbody>
</table>

Example of Use
LISTXML? D
>0
LLV [Linear Scale]

Function
The command sets the level scale to the linear and sets the Linear Level value.
The command queries the Linear Level value.

Syntax

```
LLV <numeric_value> [MW|NW|PW|UW|W|PCT]
LLV?
```

<numeric_value>:
- The units for absolute value display are from 1 pW to 1 W as follows:
 If the units are omitted, mW is assumed.
 The numeric value is set in the range 0.1 to 999.9.
- The units for relative value display are from 1 to 1 200 by PCT (%) unit follows:
 The unit can be omitted.

Response Data

```
<numeric_value> MW|NW|PW|UW|W|PCT
```

Example of Use

```
LLV 25.6UW
LLV 50PCT
LLV?
>50PCT
```
LOFS [Level Offset]

Function
This command sets the level offset and moves the screen waveform by the level offset amount.
This command queries the level offset.

Syntax
LOFS <numeric_value>
LOFS?

Response Data
<numeric_value>

<numeric_value>: Level offset value (dB) –30.00 to 30.00

Example of Use
LOFS –0.2
LOFS?
>–0.2

LOG [Log Scale]

Function
This command sets the level scale to Log and scale division (dB/div)
This command queries the Log scale.

Syntax
LOG <numeric_value>
LOG?

Response Data
<numeric_value>

<numeric_value>: Log scale value (dB) 0.1 to 10.0

Example of Use
LOG 1.5
LOG?
>1.5
LVS [Level Scale]

Function
This command queries whether the level scale is set to Log or Linear.

Syntax
LVS?

Response Data
LVS LIN|LOG
LIN: Linear scale
LOG: Log scale

MDM [Modulation Mode]

Function
This command sets and queries the trigger of the modulation measurement mode.

Syntax
MDM NORMAL|TRIGGER
MDM?

NORMAL: Does not use external trigger.
TRIGGER: Uses external trigger.

Response Data
MDM NORMAL|TRIGGER
MKA [Wavelength Marker A]

Function
This command sets and displays the value of wavelength marker A. Also, this queries the value of wavelength marker A.

Syntax
MKA <numeric_value>
MKA?

Response Data
<numeric_value>

<numeric_value>:
 Wavelength marker value (nm/THz)
 Rounded to 4 decimal places at wavelength marker display and to 5 places at frequency display. The range is between the start and stop wavelengths.

Example of Use
MKA 632.82
MKA?
>632.8200

MKB [Wavelength Marker B]

Function
This command sets and displays the value of the wavelength marker B. Also, this queries the value of the wavelength marker B.

Syntax
MKB <numeric_value>
MKB?

Response Data
<numeric_value>

<numeric_value>:
 Wavelength marker value (nm/THz)
 Rounded to 4 decimal places at wavelength marker display and to 5 places at frequency display. The range is between the start and stop wavelengths.
MKC [Level Marker C]

Function
This command sets and displays the value of the level marker C. Also, this queries the level marker C.

Syntax
MKC <numeric_value> {DB|DBM|MW|NW|PW|UW|W|PCT}
MKC?

<numeric_value>:
The units for absolute value display are as follows:
DBM: dBm, MW: mW, UW: µW, NW: nW, PW: pW, W
The units for relative value display are as follows:
Set from 1% to 200% for DB: dB, PCT: %.

Data range:
-190.000 to +50.000: LOG scale, Absolute value display (dBm)
-160.000 to +160.000: LOG scale, not normalized relative value display (dB)
-200.000 to +120.000: Linear scale, not normalized relative value display (dB)
0.001 pW to 1.200 W: Linear scale, Absolute value display (dB)
0 to 240 %: Linear scale, relative value display (PCT %)

Response Data
<numeric_value>{DB|DBM|MW|NW|PW|UW|W|PCT}

Example of Use
MKC -20.55DBM
MKC?
>-20.550DBM
MKD [Level Marker D]

Function
This command sets and displays the value of the level marker D. Also, this queries the level marker D.

Syntax
MKD <numeric_value>{DB|DBM|MW|NW|PW|UW|W|PCT}
MKD?

<numeric_value>: Log scale down to 3 decimal points; Linear scale up to 7 digits
The units for absolute value display are as follows:
The units for relative value display are as follows:
Set from 1 to 200% for DB: dB, PCT: %.

Data range:
-190.000 to +50.000: LOG scale, Absolute value display (dBm)
-160.000 to +160.000: LOG scale, not normalized relative value display (dB)
-200.000 to +120.000: Linear scale, not normalized relative value display (dB)
0.0000 pW to 1.2000 W: Linear scale, Absolute value display
0 to 240%: Linear scale, relative value display

Response Data
<numeric_value> {DB|DBM|MW|NW|PW|UW|W|PCT}

MKV [Marker Value Wavelength/Frequency Select]

Function
This command sets the maker display to either wavelength or frequency. Also, this queries whether the maker display is set to wavelength or frequency.

Syntax
MKV FREQ|WL
MKV?

FREQ: Frequency
WL: Wavelength

Response Data
FREQ|WL
Chapter 4 Message Details

MMM [Multimode fiber Mode]

Function
This command sets and queries the multimode fiber mode.

Syntax
MMM OFF|ON
MMM?

Response Data
OFF|ON

OFF: Releases multimode fiber mode
ON: Sets multimode fiber mode

MOD [Measure Mode]

Function
This command queries the measurement mode.

Syntax
MOD?

Response Data
0|1|2|3

0: Spectrum not measured
1: Measuring spectrum (single sweep)
2: Measuring spectrum (repeat sweep)
3: Power meter

MPT [Sampling Points]

Function
This command sets and queries the number of the sampling point.

Syntax
MPT 51|101|251|501|1001|2001|5001|10001|20001|50001
MPT?

Response Data
51|101|251|501|1001|2001|5001|10001|20001|50001
MVCOPYDAT [Move Image Data]

Function
This command moves the screen image files from drives E to Z to internal hard disk.
The extension (bmp or png) of the moved file is specified at Copy Settings.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.

The graphics file should be moved to the following folder of the specified drive.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Screenshot
This message is a system management command.

Syntax
MVCOPYDAT <file_name>,<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
MVCOPYDAT "LED_125M(025)",F

MCSV [Move CSV Data]

Function
This command moves the trace CSV file from drives E to Z to drive D.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The copy source CSV file should be moved to the following folder of the specified drive.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV Data
This message is a system management command.

Syntax
MVCOPYDAT <file_name>,<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
MVCOPYDAT "FMD_Coupler-03",F
MVSYSINFO [Move System Information]

Function
This command moves the system information file from drive D to drives E to Z.

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.

The system information file should be moved to the following folder of the specified drive.

\x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\System Information

This message is a system management command.

Syntax
MVSYSINFO <file_name>,<user_drive>

It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
MVSYSINFO "SystemInfo-20090723_001",F

MVXML [Move XML Data]

Function
This command moves the trace XML file from drive D to drives E to Z.

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.

The XML file should be moved to the following folder of the specified drive.

\x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Trace Data

This message is a system management command.

Syntax
MVXML <file_name>,<user_drive>

It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
MVXML "Trace-OPT_AMP",F
OPT [Light Output]

Function
This command sets output of the light source option.
This command queries the output setting of the light source option.

Syntax
OPT OFF|ON
OPT?

OFF: Obstructs light output
ON: Outputs light

Response Data
OFF|ON

PKC [Peak→Center]

Function
This command sets the peak wavelength of spectrum to the center wavelength.

Syntax
PKC

PKL [Peak→Level]

Function
This command sets the peak level of spectrum to the reference level.

Syntax
PKL
PKS [Peak Search]

Function
This command detects the spectrum peak level point and moves the trace marker to it.
The peak level detection method is queried.
When processing is completed, bit 0 of the end event status register (ESR2) is set to 1.

Syntax
PKS <switch>
PKS?

<switch>=LAST|LEFT|NEXT|PEAK|RIGHT

LAST: Detects next highest peak level after current point and moves traces marker to that point
LEFT: Detects next peak on the left after current point and moves traces marker to that point
NEXT: Detects next shortest peak level after current point and moves traces marker to that point
PEAK: Detects point with highest level and moves trace marker to that point
RIGHT: Detects next peak on the right after current point and moves trace marker to that point

Response Data
<switch>|ERR

ERR: The peak level detection (search) results are not displayed.
Use the TMK? to query the peak wavelength and level.
PMOD [Format of Image File]

Function
This command sets the file extension for the graphics data saved by Copy.
The command queries the graphics data file extension.

Syntax
PMOD [BMP | PNG]
PMOD?

BMP: bmp format
PNG: png format
When omitted: bmp format

Response Data
BMP | PNG

PPC [Peak to Peak Calculation]

Function
This command sets the Peak to Peak display setting of trace.
This command queries the Peak to Peak display setting of trace.

Syntax
PPC OFF | ON
PPC?

OFF: Displays Peak to Peak.
ON: Does not display Peak to Peak.

Response Data
OFF | ON
Chapter 4 Message Details

PPMK [Peak to Peak Maker]

Function
This command queries the Peak to Peak display result of trace.

Syntax
PPMK?

Response Data
<numeric_value>

<numeric_value>: Peak to Peak measurement result (dB/W)

When Peak to Peak Calculation is NOT set to On, the response data for PPMK? command is –999.99.

PRE [Preset]

Function
This command initializes the measurement parameter.
As for the initialized parameters and default values, refer to Appendix B, "Initial Values" in the MS9740A Optical Spectrum Analyzer Operation Manual.

Syntax
PRE
PRINT [Save Image Data]

Function
This command saves the screen image files. The name of the file to be saved and the save destination device can be specified. However, the file extension (bmp or png) is specified in Copy Settings.

When omitted, the file is automatically named in the following format: "Copydate_Sequential number.bmp". Here, a number from 000 to 999 is sequentially affixed to the name. Since the file number returns to 000 after 999, files with the same name are overwritten.

Files are saved to the following directory in the specified drive. \Anritsu Corporation\Optical Spectrum Analyzer\User Data\Screenshot
Up to 1000 files can be saved in the folder.

Syntax
PRINT [<file_name>]|[D|<user_drive>]|
 [<file_name>,D|<user_drive>]

When <file_name> omitted, the file is automatically named in the following format: "Copydate_Sequential number.bmp".
When D|<user_drive> omitted, the drive is D.
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
PRINT "TEST", D
PRTCOPYDAT [Protect Image Data]

Function
This command prohibits deletion of screen image files saved in the specified device.
The extension (bmp or png) of the target graphics file is the extension specified at Copy Settings.
When an error occurs because the specified device or file is not found, the execution error bit of the standard event status register is set to 1.
The screen image files in the following folder of the specified device can be set to "write protect":
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Screenshot

This message is a system management command.

Syntax
PRTCOPYDAT <file_name>,OFF|ON,D|<user_drive>
PRTCOPYDAT? <file_name>,D|<user_drive>

OFF: Permits deletion
ON: Prohibits deletion

It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Response Data
OFF|ON

Example of Use
PRTCOPYDAT "LED_125M(025)",ON,E
PRTCOPYDAT? "LED_125M(025)",E
>ON
PRTCSV [Protect CSV Data]

Function
This command prohibits deletion of CSV files saved in the specified device.

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.

CSV files in the following folder of the specified device can be set to write protect.

```
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV Data
```

This message is a system management command.

Syntax

```
PRTCSV <file_name>,OFF|ON,<user_drive>
PRTCSV? <file_name>,<user_drive>
```

- **OFF:** Permits deletion
- **ON:** Prohibits deletion

It is not necessary to add the extension to `file_name`. Remember to enclose the file name in double quotation marks.

Example of Use

```
PRTCSV "PMD_Coupler-03",OFF,E
PRTCSV? "PMD_Coupler-03",E
>OFF
```
PRTSYSINFO [Protect System Information]

Function
This command prohibits deletion of system information files saved at the specified device.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The system information files in the following folder of the specified device can be set to write protect.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\System Information
This message is a system management command.

Syntax
PRTSYSINFO <file_name>,OFF|ON,<user_drive>
PRTSYSINFO? <file_name>,<user_drive>

OFF: Permits deletion
ON: Prohibits deletion
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
PRTSYSINFO "SystemInfo-20090723_001",ON,E
PRTSYSINFO? "SystemInfo-20090723_001",E
>ON
PRTXML [Protect XML Data]

Function
This command prohibits deletion of XML files saved in the specified device.

If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1. XML files in the following folder of the specified device can be set to "write protect".

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Trace Data
This message is a system management command.

Syntax
PRTXML <file_name>,OFF|ON,<user_drive>
PRTXML? <file_name>,<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
PRTXML "Trace-OPT_AMP",OFF,E
PRTXML? "Trace-OPT_AMP",E
>OFF

PWR [Power Monitor]

Function
This command sets and queries the power monitor wavelength. When processing is completed, bit 3 of the end event status register (ESR2) is set to 1.

Syntax
PWR 632.8|850|1300|1550
PWR?

Response Data
632.8|850|1300|1550
Chapter 4 Message Details

PWRR [Power Monitor Result]

Function
This command queries the measurement results of the power monitor.

Syntax
PWRR?

Response Data
<numeric_value>

<numeric_value>: Power monitor measurement results (dBm)

When sending PWRR? without setting to power monitor, *** is queried as response data.

RCAL [Resolution Calibration]

Function
This command sets the actual resolution value to the initial value or correction value.
The actual resolution calibration status is queried.
When processing is completed, bit 4 of the end event status register (ESR2) is set to 1.

Syntax
RCAL 0|1
RCAL?

0: Uses default resolution calibration value
1: Executes resolution calibration and calculates resolution calibration value

Response Data
0|1|2|3

0: Uses default resolution calibration value
1: Resolution calibration finished normally
2: Calibrating resolution
3: Resolution calibration finished abnormally
4.4 Device Message Details

RCXML [Recall XML Data]

Function
This command reads the parameters and data for 10 traces from the XML file saved in the specified device.
If the specified device or file cannot be found and an error is generated, the standard event status execution error bit becomes 1.
The XML files in the following folder of the specified device can be read.

x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\Trace Data

Syntax
RCXML <file_name>,D<user_drive>
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
RCXML "Trace-OPT_AMP", F

RES [Resolution]

Function
This command sets the resolution.
This command queries the set resolution.

Syntax
RES 0.03|0.05|0.07|0.1|0.2|0.5|1.0
RES?

Response Data
0.03|0.05|0.07|0.1|0.2|0.5|1.0
RLV [Reference Level]

Function
At the time of setting the Log scale, this command sets and queries the reference level.

Syntax
RLV <numeric_value>
RLV?

Response Data
<numeric_value>
At absolute value display: Reference level (dBm) –90.0 to 30.0
At relative value display: Reference level (dB) –100.0 to 100.0

SMD [Storage Mode]

Function
This command sets and queries the Storage Mode of trace.

Syntax
SMD <trace>,AVS|MAX|MIN|OFF|OVL
SMD? <trace>

Response Data
<trace>,AVS|MAX|MIN|OFF|OVL

AVS: Calculates and displays mean for totals from waveform memory values and measured values
MAX: Overwrites and displays just larger values than waveform memory values
MIN: Overwrites and displays just smaller values than waveform memory values
OFF: Displays measured data as is
OVL: Overwrites traces in each sweep.
SMT [Smooth]

Function
This command sets and queries the smoothing point count.

Syntax
SMT 3|5|7|9|11|OFF
SMT?

Response Data
3|5|7|9|11|OFF

3, 5, 7, 9, 11: This is the point count for smoothing.
OFF: Smoothing is not performed.

SOFTVER [Software Version]

Function
This command queries the software version.
This message is a system management command.

Syntax
SOFTVER? ALL|OSA

ALL: Queries all versions of the software installed in the MS9740A.
OSA: Queries the version of software for the Optical Spectrum Analyzer.

Response Data
ALL|OSA <string>

<string>: Character string indicating software version

Example of Use
SOFTVER? OSA
>OSA 1.0.0

SPC [Spectrum Mode]

Function
This command exits the power monitor measurement.

Syntax
SPC
Chapter 4 Message Details

SPN [Span Wavelength]

Function
This sets and queries the sweep width (nm).

Syntax
SPN <numeric_value>
SPN?

Response Data
<numeric_value>

<numeric_value>: Sweep width (nm) 0|0.2 to 1200.0

STHR [Search Threshold]

Function
This command sets the search threshold for Peak/Dip Search.
This command queries the search threshold for Peak/Dip Search.

Syntax
STHR <numeric_value>
STHR?

Response Data
<numeric_value>: Search Threshold (dB) 0|0.01 to 10.00

STHRS [Search Threshold Set]

Function
This command sets the search threshold Auto/Manual setting for
Peak/Dip Search.
This command queries the search threshold for Peak/Dip Search.

Syntax
STHRS AUTO|MANUAL
STHRS?

Response Data
AUTO|MANUAL

AUTO: Sets Search Threshold setting to Auto.
SRT [Repeat Sweep]

Function
This command starts the repeat sweeping.

Syntax
SRT

SSI [Single Sweep]

Function
This command starts the single sweeping.
When sweeping is completed, bit 1 (at sweeping end) of the end event status register (ESR2) is set to 1.

Syntax
SSI

SST [Sweep Stop]

Function
This command stops the sweeping.

Syntax
SST

STA [Start Wavelength]

Function
This command sets and queries the start wavelength (nm).

Syntax
STA <numeric_value>
STA?

Response Data
<numeric_value>

<numeric_value>: Start wavelength (nm) 600.0 to 1750.0
Specify smaller value than Stop wavelength.
STO [Stop Wavelength]

Function
This command sets and queries the stop wavelength (nm).

Syntax
STO <numeric_value>
STO?

Response Data
<numeric_value>

<numeric_value>: Stop wavelength (nm) 600.0 to 1800.0
Specify larger value than Start wavelength.

SVCSV [Save CSV Data]

Function
This command saves the trace CSV file in the specified device.
When the file name is omitted, the file is automatically named in the following format: "WaveDatadate_Sequential number.csv". Here, a number from 000 to 999 is sequentially affixed to the name.
No more files can be saved if numbers up to 999 are already used.
When the device specification is omitted, the file is saved in the D drive.
Files are saved to the following directory in the specified drive.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV
Data
When an error is caused because a specified device is not found, 1 is written to the execution error bit of the standard event status register.

Syntax
SVCSV [<file_name>[,.D]<user_drive>]]
It is not necessary to add the extension to file_name. Remember to enclose the file name in double quotation marks.

Example of Use
SVCSV
SVCSV "PMD_Coupler-03",E
SVCSVA [Save CSV All Data]

Function
This command saves all trace CSV files to the specified device. The file name created when the file name is omitted will be formatted as “WaveData date_sequential number.csv”. The range of the sequential numbers appended to the file name in this case is 000 to 999. If all the numbers up to 999 have been used, no more files will be saved. If the device is not specified, files will be saved to drive D. The files are saved to the following folder on the drive specified.
x:\Anritsu Corporation\Optical Spectrum Analyzer\User Data\CSV Data
If the specified device is not found or another error occurs, the execution error bit for the standard event status becomes 1.

Syntax
SVCSVA [<file_name>[,D<user_drive>]]
An extension is not required for the file_name. Enclose file_name in double quotation marks.

Examples of Use:
SVCSVA
SVCSVA "PMD_Coupler-03",E
SVXML [Save XML Data]

Function
This command saves the trace XML file in the specified device. When the file name omitted, the file is automatically named in the following format: "WaveDatadata_Sequential number.xml". Here, a number from 000 to 999 is sequentially affixed to the name. No more files can be saved if numbers up to 999 are already used. When the device specification omitted, the file is saved in the D drive. Files are saved to the following directory in the specified drive:
`x\Anritsu Corporation\Optical Spectrum Analyzer\User Data\All Trace Data`

When an error is caused because a specified device is not found, 1 is written to the execution error bit of the standard event status register.

Syntax

`SVXML [<file_name>,D|<user_drive>]`

It is not necessary to add the extension to `file_name`. Remember to enclose the file name in double quotation marks.

Example of Use

SVXML "Trace_all"
SVXML "Trace_all",E
SYS [Application Switch]

Function
This command switches the Config screen and the Spectrum Measurement screen. It can be switched using a system management command or a measurement command.
This command queries the types of commands that can be used and the screen display.
For the system management and measurement commands, refer to Section 4.3.2 System Management and Measurement Commands.

Syntax
SYS CONFIG|OSA[,ACT|INACT|MIN]
SYS? CONFIG|OSA

CONFIG: Activates Config screen display and system management command
OSA: Activates measurement screen display and measurement command
ACT: Displays front-most screen and permits operation (active status)
When the Config screen is set to Active, the system management command is available.
When the measurement screen is set to Active, the measurement command is available.
INACT: Makes screen operations inactive
MIN: Minimizes screen display size
ACT is assumed if the setting is omitted.

Response Data
CURRENT|IDLE|RUN|UNLOAD,ACT|INACT|MIN|NON

CURRENT: Executes and makes operation target
IDLE: Loads but does not execute
RUN: Executes, but does not make operation target
UNLOAD: Does not load

ACT: Displays active screen
INACT: Displays not active screen
RUN: Displays minimized screen
NON: No display
Example of Use
SYS OSA,MIN
SYS? OSA
>CURRENT,MIN
SYS CONFIG,ACT
SYS? OSA
>RUN,INACT

SYSINFO [System Information]

Function
This command queries the system information.
This message is a system management command.

Syntax
SYSINFO? ALL|MODEL|SERIAL|TYPE

ALL: Queries product name, model name, and serial number.
MODEL: Queries model name.
SERIAL: Queries serial number.
TYPE: Queries product name.

Response Data
<string>|<numeric_value>|
<string>,<string>,<numeric_value>

<string>: Character displaying product name model
<numeric_value>: Integer value indicating serial number

Example of Use
SYSINFO? ALL
>Optical Spectrum Analyzer,MS9740A,610000001
SYSINFO? MODEL
>MS9740A
SYSINFO? SERIAL
>610000001
SYSINFO? TYPE
>Optical Spectrum Analyzer
TDL [Ext-Trigger Delay Time]

Function
This command sets and queries the delay time (µs) when using the external trigger.

Syntax
TDL <numeric_value>
TDL?

<numeric_value> numeric value 0 to 5000000

Response Data
<numeric_value>

<numeric_value>: Group delay time (µs) 0 to 5000000

TER [Title Erase]

Function
This command deletes all characters displayed in the title.

Syntax
TER

TMD [Trace Display]

Function
This command sets and queries the trace display.

Syntax
TMD <trace>,OFF|ON
TMD? <trace>

Response Data
<trace>,OFF|ON

OFF: Displays the specified trace waveform.
ON: Deletes the specified trace waveform. However, nothing is displayed if Trace Type is Blank.
TMK [Trace Marker]

Function
This command sets the wavelength of the trace marker and displays the trace marker. Furthermore, this queries the wavelength and level of the trace marker.

Syntax
TMK <numeric_value>
TMK?

<numeric_value>:
- Wavelength marker value (nm/THz)
 Rounded to 4 decimal places at wavelength marker display and to 5 places at frequency display. The range is between the start and stop wavelengths.

Response Data

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Trace Marker wavelength (nm/THz)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>Trace Marker level (screen display units)</td>
</tr>
</tbody>
</table>

Refer to the following for the units:
- The units for absolute display are as follows:
- The units for relative display are as follows:
 - DB: dB, PCT: %

When analysis is impossible at Linear scale, becomes −1.
TRM [Terminator]

Function
This command sets and queries the remote control terminator.
This message is a system management command.

Syntax
TRM 0|1|2|LF|CRLF|NONE
TRM?

Response Data
0|1|2

0|LF: Sets remote control terminator to Line Feed (LF)
1|CRLF: Sets remote control terminator to Carriage Return and Line Feed (CR/LF)
2|NONE: Sets remote control terminator to None and uses only EOI only

This is the same processing as message DELM.

TSL [Trace Select]

Function
This command sets and queries the active trace.

Syntax
TSL <trace>
TSL?

Response Data
<trace>
Chapter 4 Message Details

TTL [Title]

Function
This command sets and queries the title.

Syntax
TTL <string>
TTL?

Response Data
TTL <string>

<string>: Title string of 32 or less characters

Example of Use
TTL "Forward Cur. 50mA,Temp. 23deg."
TTL?
>"Forward Cur. 50mA,Temp. 23deg."

TTP [Trace Type]

Function
This command sets and queries the trace type.

Syntax
TTP <trace>,BLANK|CALC|FIX|WRITE
TTP? <trace>

Response Data
<trace>,BLANK|CALC|FIX|WRITE

 BLANK: Deletes the data. The data cannot be written.
 CALC: The calculation formula when saving the calculation results between traces can be set using FML.
 FIX: Keeps the data. Even when the measurement is performed, the data cannot be rewritten.
 WRITE: The measured data can be written.

Example of Use
TTP C,FIX
TTP? C
>C,FIX
VBW [Video Band Width]

Function
This command sets and queries the video band width.

Syntax
VBW 10HZ|100HZ|200HZ|1KHZ|2KHZ|10KHZ|100KHZ|1MHZ
|10|100|200|1000|2000|10000|100000|1000000
VBW?

Response Data
10HZ|100HZ|200HZ|1KHZ|2KHZ|10KHZ|100KHZ|1MHZ

Example of Use
VBW 1000
VBW?
>1KHZ
WCAL [Wavelength Calibration]

Function
This command performs wavelength calibration when using an external light source or reference light source option and creates the wavelength calibration data.
This command queries the wavelength calibration execution result.
When wavelength calibration is completed, 1 is written to bit 4 (execution completion bit) of the end event status register.

Syntax
WCAL 0|1|2|3
WCAL?

- 0: Initializes wavelength calibration data
- 1: Executes wavelength calibration when using external light source and creates wavelength calibration data
- 2: Executes wavelength calibration when using reference light source and creates wavelength calibration data
- 3: Stops wavelength calibration and does not create wavelength calibration data

Response Data
0|1|2|3

- 0: Ends wavelength calibration
- 1: Wavelength calibration in progress
- 2: Terminates wavelength calibration due to lack of optical level
- 3: Terminates wavelength calibration due to other abnormal phenomena

WDP [Wavelength Display]

Function
This command sets and queries whether to display the wavelength in air or in vacuum.

Syntax
WDP AIR|VACUUM
WDP?

Response Data
AIR|VACUUM

- AIR: Value in air
- VACUUM: Value in vacuum
WOFS [Wavelength Offset]

Function
This command sets and queries the wavelength offset and moves the waveform on the screen by the offset.

Syntax
WOFS <numeric_value>
WOFS?

Response Data
<numeric_value>

<numeric_value>: Wavelength offset value (nm) -1.00 to 1.00

Example of Use
WOFS -0.05
WOFS?
>=-0.05

WSS [Wavelength Start and Stop]

Function
This command sets and queries the start and stop wavelength simultaneously.

Syntax
WSS <numeric_value>,<numeric_value>
WSS?

Response Data
<numeric_value>,<numeric_value>

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>600.0 to 1750.0</td>
<td>Start wavelength (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>600.0 to 1800.0</td>
<td>Stop wavelength (nm)</td>
</tr>
</tbody>
</table>

However, the value of the second parameter is larger than the first parameter.

Example of Use
WSS 800,900
WSS?
>800.0,900.0
ZCAL [Zero Calibration]

Function
This command executes the calibration function (Zero Calibration). When zero level calibration is completed, bit 4 of end event status register (execution completion bit) is written to 1. This command queries the actual Zero Calibration status.

Syntax

```
ZCAL  0|1|2
ZCAL?
```

1: Starts Zero Calibration
2: Stops performing Zero Calibration

Response Data

```
0|1|2
```

0: Normal ends Zero Calibration
1: Performing Zero Calibration
2: Abnormal ends Zero Calibration

Example of Use

```
ZCAL 1
ZCAL?
>0
```

Note:
The message to set Auto Cal, explained in Section 3.1.2 Calibrating Wavelength in the MS9740A Optical Spectrum Analyzer Operation Manual, is not available.

In cases where the measurement is performed via remote control, even when Auto Cal is set to On, the Zero Calibration cannot be performed automatically. On the other hand, if ZCAL is sent, Zero Calibration can be performed at the given timing.
ZMK [Zone Marker]

Function
This command sets and queries the value and display of the zone marker. The details of parameters for each zone marker operation are described separately below.

Syntax
ZMK <switch>,<parameter>,,
ZMK?

Response Data
<switch>,<parameter>,,

<switch>= ERS|SPN|WL|ZOOM
The number of <parameter> varies depending on the status of <switch>.

<table>
<thead>
<tr>
<th><switch></th>
<th>Operation Type</th>
<th>Number of <parameter></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERS</td>
<td>Deletes the zone marker display.</td>
<td>0</td>
</tr>
<tr>
<td>SPN</td>
<td>Sets the wavelength wide of the zone marker to the sweep width.</td>
<td>0</td>
</tr>
<tr>
<td>WL</td>
<td>Sets the center wavelength of the zone marker to the wavelength width.</td>
<td>2</td>
</tr>
<tr>
<td>ZOOM</td>
<td>Sets the zone marker display magnification range.</td>
<td>1</td>
</tr>
</tbody>
</table>

ZMK ERS[Zone Marker (Erase)]

Function
This command erases the zone marker display.

Syntax
ZMK ERS

Example of Use
ZMK ERS
ZMK SPN[Zone Marker (Span)]

Function
This command sets the wavelength width of the zone marker to the sweep width.

Syntax

```
ZMK SPN
```

Example of Use

```
ZMK SPN
```

ZMK WL[Zone Marker (Wavelength)]

Function
This command sets and queries the center wavelength of the zone marker and wavelength width.

Syntax

```
ZMK WL,<numeric_value>,<numeric_value>
ZMK? WL
```

Response Data

```
WL,<numeric_value>,<numeric_value>
```

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><numeric_value></td>
<td>Larger than Start wavelength and smaller than Stop wavelength</td>
<td>Zone Marker center wavelength (nm)</td>
</tr>
<tr>
<td>2</td>
<td><numeric_value></td>
<td>0.2 or more</td>
<td>Zone Marker wavelength width (nm)</td>
</tr>
</tbody>
</table>

Set the Zone market range so that is bigger than the Start wavelength but does not exceed the Stop wavelength. The narrowest range is 0.2 nm.

Example of Use

```
ZMK WL,1525,2.5
ZMK? WL
>WL,1525,2.5
```
ZMK ZOOM [Zone Marker(Zoom In/Out)]

Function
This command sets and queries the Zone Marker zoom in and zoom out range.

Syntax
ZMK ZOOM, {IN|OUT}
ZMK? ZOOM

Response Data
ZOOM, {IN|OUT}

- IN: Zooms in on Zone Marker range
- OUT: Analyzes zoomed in Zone Marker range

Example of Use
ZMK ZOOM, IN
ZMK ZOOM?
> ZOOM, IN
Appendix A Changes from MS9710C

This appendix explains the changed items from the MS9710C Optical Spectrum Analyzer.

<table>
<thead>
<tr>
<th>Removed MS9710C Commands</th>
<th>Equivalent MS9740A Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKL</td>
<td>None</td>
</tr>
<tr>
<td>CPY</td>
<td>None</td>
</tr>
<tr>
<td>CRCL</td>
<td>None</td>
</tr>
<tr>
<td>CSAV</td>
<td>None</td>
</tr>
<tr>
<td>DATE</td>
<td>None</td>
</tr>
<tr>
<td>DEL</td>
<td>DELCOPYDAT (Deleting image file)</td>
</tr>
<tr>
<td></td>
<td>DELSYSINFO (Deleting system information)</td>
</tr>
<tr>
<td></td>
<td>DELCSV (Deleting CSV file)</td>
</tr>
<tr>
<td></td>
<td>DELXML (Deleting XML file)</td>
</tr>
<tr>
<td>DMD</td>
<td>DFR</td>
</tr>
<tr>
<td>FED</td>
<td>None</td>
</tr>
<tr>
<td>FMT</td>
<td>None</td>
</tr>
<tr>
<td>FOPT</td>
<td>None</td>
</tr>
<tr>
<td>GCL</td>
<td>None</td>
</tr>
<tr>
<td>HEAD</td>
<td>None</td>
</tr>
<tr>
<td>LCD</td>
<td>None</td>
</tr>
<tr>
<td>MSL</td>
<td>TTP</td>
</tr>
<tr>
<td>RCL</td>
<td>RCXML</td>
</tr>
<tr>
<td>SAV</td>
<td>SVXML</td>
</tr>
<tr>
<td>TDSP</td>
<td>None</td>
</tr>
<tr>
<td>TIME</td>
<td>None</td>
</tr>
<tr>
<td>TLSA</td>
<td>None</td>
</tr>
<tr>
<td>TLST</td>
<td>None</td>
</tr>
<tr>
<td>TMC</td>
<td>None</td>
</tr>
</tbody>
</table>
Table A-2 Changes from MS9710C Command Specifications

<table>
<thead>
<tr>
<th>Changed Commands</th>
<th>MS9710C Specifications</th>
<th>MS9740A Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAR?</td>
<td>(RMS measurement) λ_c, Δλ</td>
<td>(RMS measurement) λ_c, Δλ, σ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ: Standard deviation</td>
</tr>
<tr>
<td>AP</td>
<td>AP DFB, s, n</td>
<td>AP DFB, s, n, k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>s = 2NDPEAK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEFT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 0.1 to 50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k = 1.00 to 10.00</td>
</tr>
<tr>
<td></td>
<td>AP LED, n, p</td>
<td>AP LED, n, p, k</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 0.1 to 50.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p = -10.0 to +10.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>k = 1.00 to 10.00</td>
</tr>
<tr>
<td></td>
<td>AP PMD, n</td>
<td>AP PMD, n, m[, p]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 0.01 to 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>m= 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p = 2 to 99</td>
</tr>
<tr>
<td>AP AMP, MSL, s</td>
<td>s = PIN</td>
<td>POUT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>s = PIN</td>
</tr>
<tr>
<td>AP? AMP, CAL</td>
<td>0: Normal end of</td>
<td>0: Uses initial valuefor the configuration value of the actual resolution</td>
</tr>
<tr>
<td></td>
<td>calibration for</td>
<td>1: Normal end of</td>
</tr>
<tr>
<td></td>
<td>resolution</td>
<td>calibration for resolution</td>
</tr>
<tr>
<td></td>
<td>1: Lack of optical level</td>
<td>2: Calibrating resolution in progress</td>
</tr>
<tr>
<td></td>
<td>2: Other failures</td>
<td>3: Abnormal end of calibration for resolution</td>
</tr>
<tr>
<td>AP WDM, SLV, n</td>
<td>n = 1 to 50</td>
<td>AP WDM, SLV, n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n = 0.1 to 50</td>
</tr>
<tr>
<td>Changed Commands</td>
<td>MS9710C Specifications</td>
<td>MS9740A Specifications</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>APR?</td>
<td>(DFB-LD application)</td>
<td>(DFB-LD application)</td>
</tr>
<tr>
<td></td>
<td>SMSR, B̃ndb, λp, Lp, λsm, Lsm, MOFS, STBW, CNTOFS</td>
<td>SMSR, kσ, Δλp, Lp, λsm, Lsm, MOFS, STBW, CNTOFS, σ</td>
</tr>
<tr>
<td></td>
<td>kσ: Spectrum Bandwidth using RMS method</td>
<td>σ: Standard deviation</td>
</tr>
<tr>
<td></td>
<td>(FP-LD application)</td>
<td>(FP-LD application)</td>
</tr>
<tr>
<td></td>
<td>FWHM, λm, λp, Lp, MODE, MSPC, POW</td>
<td>FWHM, λm, λp, Lp, MODE, MSPC, POW, σ</td>
</tr>
<tr>
<td></td>
<td>σ: Standard deviation</td>
<td>σ: Standard deviation</td>
</tr>
<tr>
<td></td>
<td>(LED application)</td>
<td>(LED application)</td>
</tr>
<tr>
<td></td>
<td>λfwhm, λndb, FWHM, B̃ndb , λp, Lp, PKdens, POW</td>
<td>λfwhm, λndb, FWHM, B̃ndb , λp, Lp, PKdens, POW, σ</td>
</tr>
<tr>
<td></td>
<td>σ: Standard deviation</td>
<td>σ: Standard deviation</td>
</tr>
<tr>
<td>AVS</td>
<td>AVS n</td>
<td>AVS n (n = 1 to 1000)</td>
</tr>
<tr>
<td></td>
<td>n = 2 to 1000</td>
<td>1 is set at OFF.</td>
</tr>
<tr>
<td>Changed Commands</td>
<td>MS9710C Specifications</td>
<td>MS9740A Specifications</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| **DBA?** | At log scale
Signed 16 bit integer value
Measured value: 0.01 dBm represented as 1 | At log scale
64 bit double precision floating point (Double)
Measured value: 1 dBm represented as 1 |
| **DBB?** | At linear scale
Exponent: 16 bits
Mantissa: signed 16 bits
Measured value: (mantissa × 0.0001)E+
(exponent) mW | At linear scale
64 bit double precision floating point (Double)
Measured value: 1 mW represented as 1 |
| **DMA?** | The minimum value at linear scale measurement is 1E–12 (0.001 pW). | When using the linear scale, sometimes the measured value may be negative. Offset calibration sets the measured average noise level to 0, resulting in a negative value if the output noise level drops below the average level. |
| **DMB?** | | |
| **DQA?** | | |
| **DQB?** | | |
| **MPT** | MPT n
n = 51|101|251|501|1001|2001|5001 | MPT n
n = 51|101|251|501|1001|2001|5001|10001|20001|50001 |
| **RES** | RES n
n = 0.05|0.07|0.1|0.2|0.5|1 | RES n
n = 0.03|0.05|0.07|0.1|0.2|0.5|1.0 |
| **TSL** | TSL s
s = A|B|AB|A_B|B_A | TSL s
s = A|B|C|E|F|G|H|I|J |
Appendix B Message Codes

This appendix explains the meaning of the \texttt{ERR?} message response number (code).

(1) Error Code [–100 to –199]

The error code [–100 to –199] indicates that the IEEE488.2 syntax error occurs. When the error occurs, bit 5 of the event status register is set.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>–108</td>
<td>Incorrect parameter count</td>
</tr>
<tr>
<td>–109</td>
<td></td>
</tr>
<tr>
<td>–113</td>
<td>Command header undefined</td>
</tr>
<tr>
<td>–113</td>
<td>Undefined error.</td>
</tr>
<tr>
<td>–120</td>
<td>Incorrect numeric data.</td>
</tr>
<tr>
<td>–140</td>
<td>Character data error</td>
</tr>
<tr>
<td>–140</td>
<td>Illegal character in input string</td>
</tr>
<tr>
<td>–150</td>
<td>Incorrect string data.</td>
</tr>
<tr>
<td>–160</td>
<td>Block data error</td>
</tr>
</tbody>
</table>
(2) Execution error [-200 to –299]

The error code [-200 to –299] indicates that an error occurs in the controlled part of the device. When the error occurs, bit 4 of the event status register is set.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
<td>Execution error</td>
<td></td>
</tr>
<tr>
<td>-221</td>
<td>Setting conflict.</td>
<td></td>
</tr>
<tr>
<td>-220</td>
<td>Other error.</td>
<td></td>
</tr>
<tr>
<td>-222</td>
<td>Input value out of range.</td>
<td></td>
</tr>
<tr>
<td>-222</td>
<td>Character string too long.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>File read failed.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>File read failed (incorrect model).</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>File read failed (incorrect option configuration).</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>File write failed.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Folder not found.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Input title.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Item not selected.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Mass storage error</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>No file selected.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Either the device has insufficient free space or the 1000 limit on saved files has been reached.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Specified file already exists.</td>
<td></td>
</tr>
<tr>
<td>-250</td>
<td>Save file name not specified.</td>
<td></td>
</tr>
<tr>
<td>-252</td>
<td>No external storage device</td>
<td></td>
</tr>
<tr>
<td>-254</td>
<td>Target device full.</td>
<td></td>
</tr>
<tr>
<td>-256</td>
<td>File not found.</td>
<td></td>
</tr>
<tr>
<td>-258</td>
<td>Operation failed because write protected.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B Message Codes

(3) Device-dependent error \([-300 \text{ to } 399], [0 \text{ to } 32767]\)

The error code \([-300 \text{ to } 399]\) and \([0 \text{ to } 32767]\) indicates that errors other than command and execution errors occur in the device. When the device error occurs, bit 3 of the event status register is set.

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No error.</td>
</tr>
<tr>
<td>1</td>
<td>Optical Unit failed memory test at boot.</td>
</tr>
<tr>
<td>2</td>
<td>Slit 1 error in Optical Unit.</td>
</tr>
<tr>
<td>3</td>
<td>Slit 2 error in Optical Unit.</td>
</tr>
<tr>
<td>4</td>
<td>Optical Unit failed alignment adjustment.</td>
</tr>
<tr>
<td>5</td>
<td>Optical attenuator error.</td>
</tr>
<tr>
<td>7</td>
<td>Optional light source error.</td>
</tr>
<tr>
<td>8</td>
<td>Optical Unit failed grating control.</td>
</tr>
<tr>
<td>9</td>
<td>Optical Unit failed offset adjustment.</td>
</tr>
<tr>
<td>10</td>
<td>Optical input power is too high. Insert attenuator or decrease input level.</td>
</tr>
<tr>
<td>11</td>
<td>Optical Unit failed program test. Contact Anritsu or representative.</td>
</tr>
<tr>
<td>12</td>
<td>Optical Unit failed calibration data test Contact Anritsu or representative.</td>
</tr>
<tr>
<td>13</td>
<td>Optical Unit failed FPGA data test. Contact Anritsu or representative.</td>
</tr>
<tr>
<td>14</td>
<td>Error in Optical Unit.</td>
</tr>
<tr>
<td>49</td>
<td>Control CPU application error. File not found.</td>
</tr>
<tr>
<td>51</td>
<td>Control CPU Boot Error.</td>
</tr>
<tr>
<td>52</td>
<td>FPGA Config Error.</td>
</tr>
<tr>
<td>53</td>
<td>Control CPU Shutdown Error.</td>
</tr>
</tbody>
</table>
Table B-4 Measurement Code (100 to 199)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Auto Measure finished unsuccessfully.</td>
</tr>
</tbody>
</table>
| 101 | Peak point not found.
 | Confirm that optical level is high enough for Peak Search. |
| 102 | Dip point not found.
 | Confirm that optical level is high enough for Dip Search. |
| 110 | Optical power too low to calibrate wavelength.
 | Adjust input level. |
| 111 | Wavelength calibration failed. |
| 112 | Optical power too low for Optical Unit auto-adjustment.
 | Adjust input level. |
| 113 | Optical Unit failed auto alignment. |
| 114 | Resolution bandwidth calibration failed. |
| 115 | Auto CAL failed. |
Appendix B Message Codes

Table B-5 Operation Code (200 to 299)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Operation prohibited during measurement.</td>
</tr>
<tr>
<td>211</td>
<td>Operation prohibited during Auto Measure.</td>
</tr>
<tr>
<td>212</td>
<td>Operation prohibited while Power Monitor is displayed.</td>
</tr>
<tr>
<td>213</td>
<td>Operation prohibited at Peak Search or Dip Search.</td>
</tr>
<tr>
<td>214</td>
<td>Invalid In Sweep-Average.</td>
</tr>
<tr>
<td>215</td>
<td>Operation prohibited while Ext.Trig. displayed.</td>
</tr>
<tr>
<td>216</td>
<td>Operation prohibited at Calibration.</td>
</tr>
<tr>
<td>217</td>
<td>No Write-Trace</td>
</tr>
<tr>
<td>220</td>
<td>Operation prohibited at Analysis.</td>
</tr>
<tr>
<td>221</td>
<td>Operation prohibited when Application selected.</td>
</tr>
<tr>
<td>222</td>
<td>Operation prohibited when WDM Application selected.</td>
</tr>
<tr>
<td>223</td>
<td>Operation prohibited when Opt.Amp Application selected.</td>
</tr>
<tr>
<td>224</td>
<td>Operation prohibited when Auto PMD selected.</td>
</tr>
<tr>
<td>225</td>
<td>Operation prohibited when Pulse Method or WDM Method in Opt. Amp Application selected.</td>
</tr>
<tr>
<td>226</td>
<td>Operation prohibited when Spectrum Power selected.</td>
</tr>
<tr>
<td>227</td>
<td>Operation prohibited when Peak/Dip Search not performed.</td>
</tr>
<tr>
<td>228</td>
<td>Operation prohibited when Area specified as Noise Detection Type.</td>
</tr>
<tr>
<td>230</td>
<td>Operation prohibited when Normalize Disp displayed.</td>
</tr>
</tbody>
</table>
| 231 | Operation prohibited when Zone Marker displayed.
Turn Zone Marker off. |
| 232 | Set Span larger than 0. |
| 233 | Operation prohibited at frequency unit.
Change unit from frequency to wavelength. |
Table B-5 Operation Code (200 to 299) (Cont’d)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>Operation prohibited at Linear Scale. Change Linear Scale to Log Scale.</td>
</tr>
<tr>
<td>236</td>
<td>Option Error(**)</td>
</tr>
<tr>
<td>238</td>
<td>Operation prohibited when Calculation set for Trace Type. Change Trace Type to setting other than Calculation.</td>
</tr>
<tr>
<td>239</td>
<td>Set Display of Active Trace to On.</td>
</tr>
<tr>
<td>240</td>
<td>Selected TCP Port Number busy. Change TCP Port Number.</td>
</tr>
<tr>
<td>241</td>
<td>Storage Mode enabled only when Write set for Trace Type of active trace</td>
</tr>
<tr>
<td>242</td>
<td>Calculation enabled only when calculation set for Trace Type of active trace</td>
</tr>
<tr>
<td>243</td>
<td>Trace measurement parameters must be same to calculate between traces.</td>
</tr>
<tr>
<td>244</td>
<td>Trace already in use</td>
</tr>
<tr>
<td>245</td>
<td>Invalid wavelength</td>
</tr>
<tr>
<td>246</td>
<td>Pase enabled only when PLZN Nulling set for Method.</td>
</tr>
</tbody>
</table>

Table B-6 Remote Control Code (–300 to –399)

<table>
<thead>
<tr>
<th>Code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>–350</td>
<td>Queue overflow</td>
</tr>
</tbody>
</table>
Appendix C BASIC Sample Program

This appendix describes the sample program in Chapter 3 using the BASIC language.

C.1 Sample Program Operating Environment

The sample program operating environment is as follows.

PC

OS: Windows XP Professional Service Pack 2
VISA: NI-VISA Version 4.6
Program tool: Microsoft Visual BASIC 2008 Express Edition

MS9740A Optical Spectrum Analyzer

GPIB Address: 1
IP Address: 198.168.0.10
Subnet Mask: 255.255.255.0
Terminator Settings: CR/LF

Installing NI-VISA

To use VISA at Visual BASIC 2008, add the following function at installation.

- Development Support .NET Framework 3.5 Language Support
- NI Measurement & Automation Explore .NET Framework 3.5 Language Support
Appendix C BASIC Sample Program

Figure C.1-1 Function Selection Screen at VISA Install

Setting Visual BASIC 2008
To use VISA at Visual BASIC 2008, operate as follows.

1. Click **Add Reference** at the Project menu
2. Click the **.NET** tab in the Add Reference dialog box.
3. Select National Instruments Common and National Instruments VisaNS, and click **OK**.
4. Click **Solution Explore** from the menu list.
5. Double-click **My Project** of Solution Explore.
6. Click **Refer** on the displayed dialog box.
7. Put checkmarks in the list of imported namespaces for National Instruments Common and National Instruments VisaNS.
8. Click **Add** button.
9. Click **.NET** tab on the Add Reference dialog box.
10. Select National Instruments Common and National Instruments VisaNS, then click **OK**.
C.1 Sample Program Operating Environment

Figure C.1-2 Add Reference Dialog Box

Figure C.1-3 Project Reference Settings
C.2 Example 1: Adjusting Optical System and Calibrating Wavelength

This sample program controls the instrument via the Ethernet interface.

Dim tbs As TcpipSession
Dim ret As String

tbs = CType(ResourceManager.GetLocalManager().Open("TCPIP::192.168.0.10::INSTR"), TcpipSession)
tbs.Timeout = 30000
tbs.Write("ALIN 1")
tbs.Query("*OPC?")
ret = tbs.Query("ALIN?")
Console.WriteLine(ret)
C.3 Example 2: Measuring Center Wavelength and Spectrum Width

This sample program controls the instrument via the GPIB interface.

```vbnet
Dim tbs As TcpipSession
Dim ret As String
gbs = CType(ResourceManager.GetLocalManager().Open("GPIB::1::INSTR"), TcpipSession)
gbs.Timeout = 30000
gbs.Write("ANA ENV,3")
gbs.Write("SSI")
gbs.Query("*OPC?")
ret = tbs.Query("ANAR?")
Console.WriteLine(ret)
```
C.4 Example 3: Reading Trace Data

This sample program controls the instrument via the Ethernet interface.

```basic
Dim tbs As TcpipSession
Dim ret As String
Dim fno As Integer

  tbs = CType(ResourceManager.GetLocalManager().Open("TCPIP::192.168.0.10::INSTR"), TcpipSession)
  tbs.Timeout = 30000
  tbs.Write("SSI")
  tbs.Query("*OPC?")
  ret = tbs.Query("DMA?")

  fno = FreeFile()
  FileOpen(fno, "c:\trace.txt", OpenMode.Output)
  Print(fno, ret)
  FileClose(fno)
```
Appendix D Sample Program without VISA

This appendix describes the sample program without using the VISA. This sample program controls the instrument via the GPIB interface.

D.1 Sample Program Operating Environment

The sample program operating environment is as follows.

PC

OS: Windows XP Professional Service Pack 2
Program tool: Microsoft Visual BASIC 2008 Express Edition
Microsoft Visual C# 2008 Express Edition

Interface

National Instruments products GPIB interface
Driver: NI-488.2 2.6

MS9740A Optical Spectrum Analyzer

GPIB Address: 1
Terminator Settings: CR/LF

The software attached to the interface provided by National Instruments is used.

Setting at installing GPIB driver

To use GPIB at Visual BASIC/C# 2008, the driver version 2.6 or later is required. Add the following function at installation.

- Development Support .NET Framework3.5 Language Support
Visual BASIC 2008

1. Click **Add Reference** at the Project menu
2. Click the **.NET** tab in the Add Reference dialog box.
3. Select National Instruments Common and National Instruments 488.2, and click **OK**.
4. Click **Solution Explore** from the menu list.
5. Double-click **My Project** of Solution Explore.
7. Click **Add**.

Visual C# 2008

1. Click **Add Reference** at the Project menu
2. Click the **.NET** tab in the Add Reference dialog box.
3. Select National Instruments Common and National Instruments 488.2, and click **OK**.
D.1 Sample Program Operating Environment

4. Add the below sentence to the program.
 using NationalInstruments;
 using NationalInstruments.NI4882;

Figure D.1-2 Add Reference Dialog Box

Figure D.1-3 Project Reference Settings (Visual Basic only)
D.2 Waiting Until Measurement Completed by SRQ (Visual C#)

This sample program performs the following processing.

- Executes single sweep and waits until terminated by SRQ
- Captures DFB laser diode measured results

```csharp
NationalInstruments.NI4882.Device ms9740a =
    new NationalInstruments.NI4882.Device(0, 0);

// Set GPIB Address
ms9740a.PrimaryAddress = 1;
// Set timeout
ms9740a.IOTimeout = NationalInstruments.NI4882.TimeoutValue.T100s;

// Set register for SRQ
ms9740a.Write("*ESE 0;*SRE 4;ESE2 1");
// Perform DBF application
ms9740a.Write("AP DFB");
// Clear register
ms9740a.Write("*CLS");
// Start single sweep
ms9740a.Write("SSI");
// Wait for SRQ
ms9740a.Wait(NationalInstruments.NI4882.GpibStatusFlags.DeviceServiceRequest);
// Serial Poll
NationalInstruments.NI4882.SerialPollFlags flag = ms9740a.SerialPoll();
Console.WriteLine(flag.ToString());
// Read result
ms9740a.Write("APR?");
string ret = ms9740a.ReadString();
// Print result
Console.WriteLine(ret);
```
D.3 Waiting Until Measurement Completed by SRQ (Visual BASIC)

This sample program performs the following processing.

- Executes single sweep and waits until terminated by SRQ
- Captures DFB laser diode measured results

```vbnet
Dim ms9740a As New NationalInstruments.NI4882.Device(0, 0)
' Set GPIB Address
ms9740a.PrimaryAddress = 1
' Set timeout
ms9740a.IOTimeout = NationalInstruments.NI4882.TimeoutValue.T100s

' Set register for SRQ
ms9740a.Write("*ESE 0;*SRE 4;ESE2 1")
' Perform DBF application
ms9740a.Write("AP DFB")
' Clear register
ms9740a.Write("*CLS")
' Start single sweep
ms9740a.Write("SSI")
' Wait for SRQ

' Serial Poll
Dim flag As NationalInstruments.NI4882.SerialPollFlags
flag = ms9740a.SerialPoll()
Console.WriteLine(flag.ToString())
' Read result
ms9740a.Write("APR?")
Dim ret As String
ret = ms9740a.ReadString()
' Print result
Console.WriteLine(ret)
```
Appendix E Bibliography

(1) IEEE488.1-1987 IEEE Standard Digital Interface for Programmable Instrumentation -Description

(3) IEEE802.3-2005 IEEE Standard for Information technology. Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.

(4) NI-VISA .NET Framework 2.0 Help
References are to page numbers.

A

About This Manual I
Asynchronous message 2-24

B

binary data 2-17, 4-115, 4-128

C

Change adapter settings 2-11
Changes from MS9710C Command
 Specifications A-2, A-3, A-4
Checking Connection 2-15
Command messages with no corresponding
 panel operation 4-12
commands 2-16
Connecting Ethernet 2-4
Connecting GPIB 2-5
Controlling Message Sync 2-24
Correspondence between Function Key and
 Message 4-4
Correspondence between Panel Operation and
 Message 4-3
CR/LF 2-7

D

Device dependant Error Code B-3

E

End Event Register 2-22
EOI ... 2-7
Error Event Register 2-23
Ethernet Interface 2-2
Executing Sample Program 3-4
Execution Error Code B-2

G

Glossary 1-4
GPIB Cable Connection 2-5
GPIB Interface 2-2

I

IEEE488.2 Common Message 4-18
IEEE488.2 Common Messages and Native
 Messages 4-14
Installing NI-VISA 3-2
Instrument dependent commands 4-24

L

LF .. 2-7

M

Measurement Code B-4
Measurement commands 4-15
Message Format 2-16

N

Network and Sharing Center 2-11
Neutral commands 4-15

O

Operation Code B-5

P

ping .. 2-15
Program Messages 2-16

Q

queries 2-16
Querying Measurement End 2-26

R

Register Structure 2-18
Remote Control Code B-6
Removed MS9710C Commands A-1
Response Messages 2-16

S

Sample Program Operating Environment
 .. C-1, D-1
sample program operating environment 3-2
service request 2-19
Setting at installing GPIB driver D-1
Setting Ethernet 2-7
Index

Setting GPIB ... 2-14
Setting Visual BASIC 2008 C-2
Setting Visual C# 2008 3-3
Standard Event Status Register 2-21
Status Byte Register 2-20
String data ... 2-17
Synchronous message 2-24
Syntax Error Code .. B-1
System management commands 4-15

U

Using *OPC .. 2-25
Using *OPC and *ESR? 2-26
Using ESR2? .. 2-27

V

VISA ... 2-2, C-1