MX269010A Mobile WiMAX Measurement Software Operation Manual Remote Control

11th Edition

- For safety and warning information, please read this manual before attempting to use the equipment.
- Additional safety and warning information is provided within the MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Mainframe Operation) or MS2830A Signal Analyzer Operation Manual (Mainframe Operation) and MX269010A Mobile WiMAX Measurement Software Operation Manual (Operation). Please also refer to either of these documents before using the equipment.
- Keep this manual with the equipment.

ANRITSU CORPORATION

Document No.: M-W2954AE-11.0

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

Symbols used in manual

DANGER

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

WARNING This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

CAUTION /

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.

This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

These indicate that the marked part should be recycled.

MX269010A

Mobile WiMAX Measurement Software Operation Manual Remote Control

17 July 2007 (First Edition) 24 June 2011 (11th Edition)

Copyright © 2007-2011, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the

The contents of this manual may be changed without prior notice.

Printed in Japan

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as not to be unlawfully used for military purpose.

Cautions against computer virus infection

- · Copying files and data
 - Only files that have been provided directly from Anritsu or generated using Anritsu equipment should be copied to the instrument.
 - All other required files should be transferred by means of USB or CompactFlash media after undergoing a thorough virus check.
- · Adding software
 - Do not download or install software that has not been specifically recommended or licensed by Anritsu.
- Network connections
 - Ensure that the network has sufficient anti-virus security protection in place.

About This Manual

■ Composition of Operation Manuals

The operation manuals for the MX269010A Mobile WiMAX Measurement Software are comprised as shown below.

MS2690A/MS2691A/MS2692A Signal Analyzer Operation Manual (Main Frame Operation)

MS2830A Signal Analyzer Operation Manual

(Main Frame Operation)

MS2690A/MS2691A/MS2692A and MS2830A

Signal Analyzer Operation Manual (Main Frame Remote Control)

MX269010A Mobile WiMAX Measurement Software Operation Manual (Operation)

MX269010A Mobile WiMAX Measurement Software Operation Manual (Remote Control)

- Signal Analyzer Operation Manual (Mainframe Operation)
- Signal Analyzer Operation Manual (Mainframe Remote Control)

These manuals describe basic operating methods, maintenance procedures, common functions, and common remote control of the signal analyzer mainframe.

- Mobile WiMAX Measurement Software Operation Manual (Operation)
- Mobile WiMAX Measurement Software Operation Manual (Remote Control)

<This document>

These manuals describe basic operating methods, functions, and remote control of the Mobile WiMAX Measurement Software.

Table of Contents

Chap	ter 1 Basics of Remote Control	1
1.1	Overview	
1.2	Basics of Remote Control	
1.3	Example Programs	1.
1.4	Trouble Shooting	1.
Chap	ter 2 Device Message List	2
Chap 2.1	ter 2 Device Message List IEEE488.2 Common Device Messages	2
•	•	
2.1	IEEE488.2 Common Device Messages	:
2.1 2.2	IEEE488.2 Common Device Messages	:
2.1 2.2 2.3	IEEE488.2 Common Device Messages	:
2.1 2.2 2.3 2.4	IEEE488.2 Common Device Messages	:

Chapter 1 Basics of Remote Control

This chapter provides an overview of the remote control of the MX269010A Mobile WiMAX measurement software (hereinafter, referred to as "MX269010A").

1.1	Overvi	ew	1-2		
	1.1.1	Interface	1-2		
	1.1.2	Control target application	1-3		
	1.1.3	Restrictions (differences from other			
		applications)	1-4		
1.2	Basics	of Remote Control	1-5		
	1.2.1	Activating and selecting MX269010A	1-5		
	1.2.2	Setting measurement mode and			
		parameter	1-6		
	1.2.3	Starting measurement and detecting end of			
		measurement	1-8		
	1.2.4	Reading measurement result	1-11		
1.3	Examp	Example Programs			
1.4	Trouble Shooting 1-				

1.1 Overview

The MX269010A can perform remote control by transmitting the defined command/query/response through the MS269x Series or MS2830A Signal Analyzer.

1.1.1 Interface

The MX269010A supports GPIB, Ethernet, and USB as an interface for remote control, but only one of the three can be used at one time.

The interface receiving a command of a communication start from an external controller (PC) is automatically selected from among the interfaces when the MS2690A/MS2691A/MS2692A or MS2830A is in Local mode. Once the interface is decided, the MS2690A/MS2691A/MS2692A or MS2830A shifts to Remote mode. When Remote on the front panel is turned off, it indicates "Local", and when turned on, it indicates "Remote".

Please refer to the "MS2690A/MS2691A/MS2692A and MS2830A Signal Analyzer Operation Manual (Mainframe Remote Control)" for the explanations about the basics of remote control, including how to set the interface.

1.1.2 Control target application

There are two types of remote control commands used. One is a command applied to the MS2690A/MS2691A/MS2692A or MS2830A itself and all other applications (hereinafter, referred to as "common command"). The other is a command unique to the MS2690A/MS2691A/MS2692A or MS2830A. The common command can be executed irrespective of the type of the selected application. On the other hand, a command unique to an application is only enabled for the application of the control target. If an application which is not a control target is selected, an error will occur or the command cannot be executed for the application of a control command.

Two or more applications can be executed simultaneously. Only one application can be executed at one time, per one hardware resource. The MX269010A performs a measurement of an input signal using the resource of RF Input. Thus, the MX269010A cannot be executed together with another application which uses the same resource, including the signal analyzer function. In order to execute a function unique to the MX269010A via remote control, it is necessary to select the MX269010A while it is executed. In addition, the MX269010A can be used together with another application such as a Vector Signal Generator option which separately uses the resources which the MX269010A does not use.

1.1.3 Restrictions (differences from other applications)

In several ways, how to use the remote control functions of the MX269010A differs from that of other applications. The following functional restrictions apply to the MX269010A.

- (1) Status Byte Register and Extended Event Status Register
 The MX269010A does not have an Extended Event Status Register
 (ESE2/ESR2?/ESE3/ESR3?) defined by an application. If the
 measurement has completed normally, bit 2 of the Status Byte
 Register always becomes Enable, and if there is an error in the
 measurement, bit 3 has always become Enable.
- (2) Specifying the window status when an application is selected It is impossible to specify INACT (non-active status) for the window status when an application is selected by a SYS command.
- (3) Error display methods in command or execution error

 The MX269010A always displays the message corresponding to the
 last error when a command error or execution error occurs. When
 the next command is received or the MX269010A changes into Local
 Control, the error message will be deleted.
- (4) Common command SVPRM, RCPRM
 - When the common commands SVPRM/RCPRM are sent, only the executed and selected statuses are saved or recalled for the MX269010A. If a parameter unique to the MX269010A is saved or recalled, the commands SAVE and RECALL can be used.
- (5) Measurement start command

 The MX269010A has only two commands for starting measurement:

 SNGLS and CONTS.
- (6) Language mode

Remote control for the MX269010A is possible only when commands are transmitted in Native mode. Transmitting a command unique to the MX269010A results in an error. Be sure to transmit the SYST: LANG NAT command when starting control of the MX269010A.

1.2 Basics of Remote Control

This section describes a flow to operate the MX269010A, using the remote control and basic methods to transmit commands.

1.2.1 Activating and selecting MX269010A

First, make the MX269010A the operation target of the remote control. This can be omitted if the MX269010A is already selected.

When operating the MX269010A, which is the operation target, via remote control, it must be activated and selected in the same manner as during panel operation.

Activation of an application is performed on the Configuration screen. Check that the MX269010A has been loaded, and then select it.

■ Example program:

Activation and selection of MX269010A

1: SYS CONFIG ; Selects the Configuration screen

2: LOAD WIMAX ; Loads the MX269010A

3: *OPC? ; Waits for processing completion

> 1

4: SYS WIMAX ; Selects the MX269010A

5: *OPC? ; Waits for processing completion

> 1

1.2.2 Setting measurement mode and parameter

Next, set the measurement conditions.

First, initialize the MX269010A to reset all the parameters to the initial values. From the initial status at this time, set only parameters need to be modified.

Next, set the parameters common to downlink and uplink, such as those for setting frequency, level, and CH. Bandwidth.

After the common parameters are completely configured, set a measurement mode depending on whether the measurement target signal (input signal) is a downlink or uplink signal. If the measurement target is a downlink signal, select the Downlink measurement screen, and if it is an uplink signal, select the Uplink measurement screen.

Lastly, set the parameters unique to the measurement mode and each screen, such as those for setting DIUC, UIUC, and "Uplink Parameters". Be sure to configure the settings according to the properties of the input signal to be measured.

After all the settings are completed, wait for the completion of processing.

■ Example program:

Setting parameters common to downlink and uplink

1: PRE ; Initializes parameters

2: FREQ 2345 ; Sets the center frequency of carrier

signals

3: LVLOFS 1.00 ; Sets the level offset (cable loss)

4: INPUTLVL -15.0 ; Sets an input level

5: CHBW 10 ; Sets CH. Bandwidth to 10 MHz

Example program:

Configuring fundamental settings for downlink signal measurement

1: MEAS MOD ; Selects the DL Modulation screen

2: DIUC 1,3 ; Sets DIUC

3: *OPC? ; Waits for processing completion

> 1

■ Example of program:

Configuring fundamental settings for uplink signal measurement

1: MEAS ULMOD ; Selects the UL Modulation screen

2: UIUC 1,3 ; Sets UIUC

3: ULMODTYPE 1 ; Sets the modulation type

4: ULZONEOFS 3 ; Sets the zone offset

5: ULNUMSYMBOL 18 ; Sets the number of symbols

 $\ensuremath{\text{6}}\colon \ensuremath{\text{ULFRAMESYNC}}$ Manual; Sets the frame number synchronization

method

7: ULFRAME 0 ; Sets the frame number

8: ULPERMBASE 0 ; Sets UL PermBase

9: DLIDCLL 0 ; Sets DL IDCell

10: DURATION 60 ; Sets the duration

11: ULSUBCHOFS 3 ; Sets the subchannel offset

12: *OPC? ; Waits for processing completion

> 1

1.2.3 Starting measurement and detecting end of measurement

After all the settings required for measurement complete, start the measurement.

There are two types of the measurement start commands, SNGLS and CONTS. When reading the measurement result after one measurement, use SNGLS.

After transmitting the measurement start command, execute the process to detect the end of the measurement. Even if the measurement result is read before the end of measurement, the response is not correct.

The methods to detect the end of measurement include the method to use a service request, the method to transmit a query repeatedly until the status changes, and the method to use a processing completion wait status command or query. The measurement time differs according to the measurement conditions. Therefore, if a processing completion wait status command or query is used, time-out of remote control communication may occur. Also, if a query is transmitted repeatedly, it may put too much burden on the processing.

When measurement is ended, check whether the measurement has been completed properly. If a measurement error or overflow has occurred, check the conditions of the setting parameters and input signals, and the physical paths of measurement.

(1) Method to use a service request

A service request can be used by enabling bit 2 (measurement completion) or bit 3 (measurement error) of the Service Request Enable Register, or enabling bit 1 (OPC) of the Standard Event Status Enable Register.

■ Example program:

Waiting for bit 2 or bit 3 of Status Byte Register

	•		,
1:	*CLS	;	Clears the statuses
2:	*SRE 12	;	Sets to generate a service request when bit 2 or 3 of the Status Byte Register is enabled
3:	SNGLS	;	Starts the measurement
4:	SRQWAIT()	;	Waits for a service request (the method differs according to the environment of the remote control application)
5:	MERROR?	;	Queries the measurement error occurrence status
6:	OVF?	;	Queries the overflow occurrence status

■ Example program:

Wait of the Standard Event Status for OPC bit

; Clears the statuses 2: *ESE 1 Sets to generate a service request when bit 1 of the Standard Event Status Register is enabled 3: *SRE 32 Sets to generate a service request when bit 5 (ESB) of the Status Byte Register is enabled 4: SNGLS ; Starts the measurement 5: *OPC ; Waits for processing completion 6: SRQWAIT() ; Waits for a service request (the method differs according to the environment of the

remote control application)
7: MERROR? ; Queries the measurement error occurrence

status

8: OVF? ; Queries the overflow occurrence status.

(2) Method to monitor the measurement status by transmitting a query repeatedly.

The end of measurement can be detected by querying the values of the Status Byte Register and the Standard Event Status Register directly, or by monitoring the "PAUSE" status defined by the MX269010A. Transmit the query repeatedly until the measurement end status is returned.

■ Example program:

Monitoring PAUSE status

1: SNGLS ; Starts the measurement

2: PAUSE? ; Queries the PAUSE status (repeatedly)

> 0 During measurement

3: PAUSE? ; Queries the PAUSE status (repeatedly)

> 1 PAUSE status

(end of measurement)

4: MERROR? ; Queries the measurement error occurrence

status

5: OVF? ; Queries the overflow occurrence status

(3) Method to use measurement end wait command/query.

■ Example program:

Using *WAI command

1: SNGLS ; Starts the measurement

2: *WAI ; Processes the next command after the

measurement ends.

3: MERROR? ; Queries the measurement error occurrence

status

4: OVF? ; Queries the overflow occurrence status

■ Example program:

Using *OPC? query

1: SNGLS ; Starts the measurement

2: *OPC? ; Waits for processing completion

> 1

3: MERROR? ; Queries the measurement error occurrence

status

4: OVF? ; Queries the overflow occurrence status

1.2.4 Reading measurement result

Read the measurement result after checking that the end of the measurement has been detected and no measurement error has occurred. The response of the result is valid only for the measurement mode in which the measurement was performed.

■ Example program:

Reading downlink measurement result.

1: DLDECODEFAIL? ; Queries the Decode-Fail occurrence

2: PREAMBLEPWR? ; Reads the preamble power

3: AVGPWR? ; Reads the DL average power

4: EVM TTLRMS? DB ; Reads the total EVM (rms)

5: SYMBOL 3 ; Sets Symbol 3

6: EVM_SYMBOL? DB ; Reads Symbol EVM of Symbol 3

7: ZONEINDX 1 ; Sets Zone 1

8: EVM_ZONE? DB ; Reads EVM of Zone 1

■ Example program:

Reading uplink measurement result

1: AVGPWR? ; Reads the channel power

2: SYMBOL 3 ; Sets Symbol 3

3: EVM_SYMBOL ? DB ; Reads Symbol EVM of Symbol 3

4: EVM_BURST? DB ; Reads the burst EVM

5: ULMODSUBCARRERR? DB; Reads Unmod subcarrier error

1.3 Example Programs

This section provides examples of measurement programs from the status in which the MX269010A is already selected.

(1) Example of downlink signal measurement

An example of a program to measure the downlink signal defined in Table 1.3-1 is shown below.

Parameter	Value		
Center Frequency	2.500 GHz		
Channel Bandwidth	10 MHz (FFT Size = 1024)		
Input Level	-10 dBm		
	As shown in Figure. 1.3-1		
Burst Composition	Preamble + FCH + DL-MAP +UL-MAP (QPSK [CTC] 1/2 - DIUC 0) +Burst4 (16QAM [CTC] 1/2 - DIUC 1) +Burst5 (16QAM [CTC] 1/2 - DIUC 1) +Burst6 (16QAM [CTC] 1/2 - DIUC 1)		

+Burst7 (16QAM [CTC] 1/2 - DIUC 1)

Table 1.3-1 Parameters of example downlink signal

Figure. 1.3-1 Burst configuration of example downlink signal

Example program	ľ

1: PRE ; Executes initialization

2: MEAS MOD ; Selects the Downlink measurement

screen.

3: CHBW 10 ; Sets CH. Bandwidth

4: FREQ 2500 ; Sets the center frequency

5: INPUTLVL -10.0 ; Sets the input level

6: DIUC 1,2 ; Sets DIUC

7: *SRE 44 ; Sets the service request wait bit(s).

8: *CLS ; Clears the statuses

9: SNGLS ; Starts the measurement

10: SRQWAIT() ; Waits for measurement end service

request

11: MERROR? ; Queries the measurement error

12: OVF? ; Queries the overflow

13: DLDECODEFAIL? ; Queries the Decode-Fail occurrence

14: AVGPWR? ; Reads the DL average power

15: EVM_PREAMBLE? PER ; Reads the preamble EVM

16: SYMBOL 0 ; Sets Symbol 0

(necessary to read Pilot EVM)

17: EVM PILOT? PER ; Reads the pilot EVM

18: SYMBOL 7 ; Sets Symbol 7

19: EVM_SYMBOL? PER ; Reads EVM of Symbol 7

20: MEAS MAP ; Selects the DL Map Info. screen

21: BURSTINDX 4 ; Sets Burst Index 4

22: EVM BURST? PER ; Reads EVM of Burst 4

23: BURST? SYMBOFS ; Reads MAP of Burst 4

24: BURST? SUBCHOFS

25: BURST? SYMBINT

26: BURST? SUBCHINT

27: BURSTINDX 5 ; Selects Burst Index 5

28: EVM_BURST? PER ; Reads EVM of Burst 5

29: BURST? SYMBOFS ; Reads MAP of Burst 5

30: BURST? SUBCHOFS

31: BURST? SYMBINT

32: BURST? SUBCHINT

33: MEAS EVS ; Selects the Error Vector Spectrum screen.

34: SUBCARRINDX 100; Sets the Subcarrier Index to 100.

35: MKR EVM? ; Reads EVM of Subcarrier Index 100.

36: MEAS FLAT ; Selects the Spectral Flatness screen.

37: FLATNESS? 0 ; Reads the spectral flatness

38: FLATNESS? 1

39: FLATNESS? 2

40: FLATNESS? 3

41: EVM_TTLRMS? DB ; Reads the total EVM (rms)
42: EVM_TTLPEAK? DB ; Reads the total EVM (peak)

(2) Example of uplink signal measurement

An example of a program to measure the uplink signal defined in Table 1.3-2 is shown below.

Table 1.3-2 Parameters of example uplink signal

Parameter	Value
Center Frequency	2.500 GHz
Channel Bandwidth	10 MHz (FFT Size = 1024)
Input Level	-10 dBm
Frame Number	0 (fixed)
PermBase	0
ID Cell	0
Burst Composition	Symbols 0 to 2: Initial/Handover Ranging + Fast-Feedback Measurement target burst: Zone offset = 3* Symbol length (Num of Symbols) = 18 Subchannel Offset = 10 slots Burst length (Duration) = 140 slots UL PermBase = 0 Modulation type = 16 QAM (CTC) 3/4 Burst type = Normal

^{*:} When the measurement target burst is in the first uplink zone and the information for controlling Initial/Handover Ranging and Fast-Feedback is included, generate a measurement signal so that the control information channel occupies the first three symbols. Also, set the zone offset to 3 in this event.

Figure 1.3-2 Uplink signal example (IQ producer screen)

Example program:

; Executes initialization
; Selects the UL Downlink measurement screen.
; Sets CH. Bandwidth
; Sets the center frequency
; Sets the input level
; Sets the modulation type
; Sets the fame mode
; Sets the frame number
; Sets the zone offset
; Sets the symbol length of the burst
; Set the ID cell

Chapter 1 Basics of Remote Control

12: ULPERMBASE 0 ; Sets UL PermBase

13: DURATION 140 ; Sets the slot length of the analysis target burst

14: ULSUBCHOFS 10 ; Sets the subchannel offset

15: ULBURSTTYPE NRM ; Sets the burst type

16: SNGLS; *WAI ; Synchronizes the measurement

start and completion

17: MERROR? ; Queries the measurement error

18: OVF? ; Queries the overflow

19: AVGPWR? ; Reads the channel power

20: CARRFERR? ; Reads the frequency error

21: EVM_BURST? PER ; Reads the burst EVM

22: UNMODSUBCARRERR? PER; Reads the Unmod subcarrier

error

23: MEAS ULFLAT ; Selects the Spectral Flatness

screen

24: FLATNESS? 0 ; Reads the spectral flatness

25: FLATNESS? 1

26: FLATNESS? 2

27: FLATNESS? 3

1.4 Trouble Shooting

This section provides explanations for some possible problems in the remote control of the MX269010A and solutions to the problems.

- (1) When the MS2690A/MS2691A/MS2692A or MS2830A cannot be set to the remote control state and cannot transmit commands Check whether the settings for the interface used are correct, whether the physical path is correct, and whether the cables are properly connected.
 - (a) When a GPIB is used
 - (i) Whether the GPIB address is correct
 - (ii) Whether the address is different from those of the other GPIB instruments
 - (b) When an Ethernet is used
 - (i) Whether the IP address is correct
 - (ii) Whether the types (cross/straight) of the cable used are correct
- (2) When a command error occurs Other applications might be selected. Check whether the MX269010A is selected.
- (3) When an execution error occurs

The grammar of the transmitted command or query may be wrong, or the application may not be in the status in which the command or query can be used. Check the definition of the command and the status of the application.

In principle, the downlink measurement result can be read when the Downlink measurement screen is selected, and the uplink measurement result can be read when the Uplink measurement screen is selected.

- (4) When the expected measurement result cannot be obtained

 The end of measurement may not be detected properly, or the settings for the input signals and the command transmission order may not be correct. Also, for some queries, note that the items of the results to be read may differ according to the screen presently selected and the parameters.
 - (a) AVGPWR?

The DL average power value is returned when the Downlink measurement screen is selected, and the channel power value is returned when the Uplink measurement screen is selected.

(b) MKR_CONST?

The result for the setting value of Subcarrier Index on the selected screen is returned.

Chapter 2 Device Message List

This chapter describes remote control commands for operating the MX269010A, using a list organized by functions. Refer to Chapter 3 "Device Message Details" for detailed specifications for each command, except for those provided in Chapter 2.1 "IEEE488.2 Common Device Messages." Refer to the "MS2690A/MS2691A/MS2692A and MS2830A Signal Analyzer Operation Manual (Mainframe Remote Control)" for detailed specifications for the commands in Chapter 2.1 "IEEE488.2 Common Device Messages."

2.1	IEEE488.2 Common Device Messages	2-2
2.2	Application Common Device Messages	2-4
2.3	Measurement Screen Selection	2-6
2.4	Parameter Setting	2-7
2.5	Performing Measurement and Reading Each State.	2-11
2.6	Reading Downlink Measurement Result	2-12
27	Reading Unlink Measurement Result	2-16

2.1 IEEE488.2 Common Device Messages

IEEE488.2 common device messages available in the MX269010A are shown in Table 2.1-1.

Table 2.1-1 IEEE488.2 common device messages

Function	Command	Query	Response	Remarks	
Identification		*IDN?	ANRITSU, model, serial , version	model: Main unit model name serial: Main unit serial number version: Software package version	
Operation Complete	*OPC	*OPC?	1		
Preset (All Applications)	*RST				
Self Test		*TST?		result: Self test result = 0 1	
Wait to Continue	*WAI				
Clear Status	*CLS				
Service Request Enable Register			byte	byte = bit7: EESB7 bit6: Not used bit5: ESB bit4: MAV bit3: Mobile WiMAX Error bit2: Mobile WiMAX End bit1: EESB1 bit0: EESB0	

.1 IEEE488.2 Common Device Messages

Function	Command	Query	Response	Remarks
				byte =
				bit7: EESB7
				bit6: MSS/RQS
				bit5: ESB
Status Byte Register		*STB?	byte	bit4: MAV
				bit3: Mobile WiMAX Error
				bit2: Mobile WiMAX End
				bit1: EESB1
				bit0: EESB0
Standard Event Status Enable	*ESE byte	*ESE?	brita	byte =
Register	vese pare	"FOF:	byte	bit7: Power on
		*ESR?		bit6: User request
				bit5: Command error
				bit4: Execution error
Standard Event Status Register	egister		byte	bit3: Device error
				bit2: Query error
				bit1: Not used
				bit0: Operation complete

Table 2.1-1 IEEE488.2 common device messages (Cont'd)

2.2 Application Common Device Messages

Application common device messages available in the MX269010A are shown in Table 2.2-1.

Table 2.2-1 Application common device messages

Function	Command	Query	Response	Remarks
Application Switch	SYS WIMAX, window SYS? WIMAX		status,window	Window: = ACT MIN NON INACT ACT and MIN can be specified by the command. window: Window status status: Application execution status = CURRENT IDLE RUN UNLOAD
System Restart	REBOOT			
Preset (Active Application only)	PRE			
Freset (Active Application only)	INI			
LCD Power	DISPLAY on_off	DISPLAY?	on_off	
Save Parameter	SVPRM file, device			file: File name device: Drive name = A B D E F In the MX269010A, only the states of start and selection are saved
Recall Parameter	RCPRM file,device,apl			file: File name device: Drive name = A B D E F apl: Target application = ALL CURR This parameter can be omitted.

2.2 Application Common Device Messages

Table 2.2-1	Application	common device	messages	(Cont'd)
--------------------	-------------	---------------	----------	----------

Function	Command	Query	Response	Remarks
Hard Copy	PRINT file, device			file: Filename
	PRINT			device: Drive name = A B D E F
Hard Copy Mode	PMOD format	PMOD?	format	format: Specifies file format
	PMOD	PMOD?	BMP	= BMP PNG
Calibration	CAL mode			mode: Calibration mode = ALL LEVEL LOLEAK SUPPRESS BAND Asynchronous command
Language Mode	SYST:LANG mode	SYST:LANG?	mode	mode: Language mode = SCPI NAT

2.3 Measurement Screen Selection

Device messages for selecting a measurement screen are shown in Table 2.3-1.

 Table 2.3-1
 Measurement screen selection messages

Funct	ion	Command	Query	Response	Remarks
DL Modulation		MEAS MOD		MOD	
DL I/Q Received		MEAS IQ		IQ	
DL Map Info.		MEAS MAP		MAP	
DL Error Vector Sp	ectrum	MEAS EVS		EVS	
DL Error Vector Ti	ne	MEAS EVT	MEAS?	EVT	
DL Spectral Flatnes	3S	MEAS FLAT	MEAS:	FLAT ULMOD	
UL Modulation		MEAS ULMOD		ULMOD	
UL Error Vector Sp	ectrum	MEAS ULEVS		ULEVS	
UL Error Vector Ti	me	MEAS ULEVT		ULEVT	
UL Spectral Flatnes	ss	MEAS ULFLAT		ULFLAT	
Spectral Flatness	Absolute	GRAPH_FLATNESS ABS	GRAPH_FLATNESS? ABS DIFF	ABS	
Graph	Differential	GRAPH_FLATNESS DIFF			
Modulation (Back T WiMAX)	o Mobile	CONF: EVM			
ACP (Swept)		CONF:SWEP:ACP			
ACP (FFT)		CONF:FFT:ACP			
OBW (Swept)		CONF:SWEP:OBW			
OBW (FFT)		CONF:FFT:OBW			
SEM (Swept)		CONF:SWEP:SEM			

4 Parameter Setting

2.4 Parameter Setting

Device messages for setting parameters are shown in Table 2.4-1.

Table 2.4-1 Parameter setting messages

Function		Command	Query	Response	Remarks
Center Frequency		FREQ f	FREQ?	f	
Input Level		INPUTLVL 1	INPUTLVL?	1	
Level Offset		LVLOFS 1	LVLOFS?	1	
Attenuator +		AT UP	AT?	1	
Attenuator -		AT DN	AT?	1	
Attenuator (numeric v	alue)	AT 1	AT?	1	
D (On	PREAMP ON	DDEAMDO	ON	
Pre-Amp (option)	Off	PREAMP OFF	PREAMP?	OFF	
	$3.5\mathrm{MHz}$	CHBW 3.5		3.5	
	5 MHz	CHBW 5		5	
CH. Bandwidth	7 MHz	CHBW 7	CHBW?	7	
Ch. banawiath	8.75 MHz	CHBW 8.75	- Chbw:	8.75	
	10 MHz	CHBW 10		10	
	20 MHz	CHBW 20		20	
	Auto	MAPDETINFO AUTO		AUTO	
DL Map	Import	MAPDETINFO IMPORT	MAPDETINFO?	IMPORT	
DL Мар	Local Edit	MAPDETINFO LOCALEDIT	MAPDETINFO:	LOCALEDIT	
DL Map Import		IMPORTDLMAP filename, drive	IMPORTDLMAP?	status, filename	
DI M. Elli Boll	On	MNLFCH ON	NOTE FIGURE	ON	
DL Map Edit – FCH	Off	MNLFCH OFF	MNLFCH?	OFF	
DL Map Edit –	Normal	MNLDLMAP ON	MNII DI MA DO	ON	
DL-MAP	Off	MNLDLMAP OFF	- MNLDLMAP?	OFF	
DL Map Edit – Burst	DIUC	MNLBURST DIUC, n	MNLBURST? DIUC	n	
	Symbol Offset	MNLBURST SYMBOFS, n	MNLBURST? SYMBOFS	n	
	Symbol Interval	MNLBURST SYMBINT, n	MNLBURST? SYMBINT	n	

Function		Command	Query	Response	Remarks
	Sub Channel Offset	MNLBURST SUBCHOFS, n	MNLBURST? SUBCHOFS	n	
	Sub Channel Interval	MNLBURST SUBCHINT, n	MNLBURST? SUBCHINT	n	
	Boosting Index	MNLBURST BOOSTINDX, n	MNLBURST? BOOSTINDX	n	
	Repetition Code	MNLBURST REPETCODE, n	MNLBURST? REPETCODE	n	
E Office	On	FREQOFS ON	FREQOFS?	ON	
Frequency Offset	Off	FREQOFS OFF	rkeQOrs:	OFF	
Channel Estimation	On	CHEST ON	CHEST?	ON	
Channel Estimation	Off	CHEST OFF	CHESI:	OFF	
	Preamble Only	CHESTEQ PREAMBLE	OHE CHECK	PREAMBLE	
Equalizer	Preamble + Data	CHESTEQ DATA	CHESTEQ?	DATA	
Equanzer	Preamble + Data (Average)	CHESTEQ DATAAVG		DATAAVG	
CH. Tracking –			CHESTAMP?	ON	
Amplitude	Off	CHESTAMP OFF	CUESIAME:	OFF	
CH. Tracking –	On	CHESTPHASE ON	CHESTPHASE?		
Phase	Off	CHESTPHASE OFF			

2.4 Parameter Setting

Function		Command	Query	Response	Remarks
	Free Run	TRIG FREE		FREE	
Trigger	External	TRIG EXT	TRIG?	EXT	
	SG (option)	TRIG SG		SG	
m : Q1	Rise	TRIGSLOPE RISE	- TRIGSLOPE?	RISE	
Trigger Slope	Fall	TRIGSLOPE FALL	- IRIGSLOPE:	FALL	
Trigger Delay		TRIGDELAY t	TRIGDELAY?	t	
Search Time		SEARCHTIME t	SEARCHTIME?	t	
DIUC		DIUC diuc, fec	DIUC? diuc	fec	
UIUC		UIUC uiuc,fec	UIUC? uiuc	fec	
Sampling Freq.	On	SAMPFREQOFS ON	SAMPFREQOFS?	ON	
Offset	Off	SAMPFREQOFS OFF	- SAMPIREQUIS:	OFF	
a li p c	1/4	CP 0		0	
	1/8	CP 1	- CP?	1	
Cyclic Prefix	1/16	CP 2	- Cr:	2	
	1/32	CP 3]	3	
A (DI)	ANT 0	ANT 0	- ANT?	0	
Antenna (DL)	ANT 1	ANT 1	- ANI:	1	
DE C	Normal	RFSPECTRUM NORMAL	RFSPECTRUM?	NORMAL	
RF Spectrum	Reverse	RFSPECTRUM REVERSE	RESPECTRUM:	REVERSE	
Symbol		SYMBOL n	SYMBOL?	n	
Subcarrier Index		SUBCARRINDX n	SUBCARRINDX?	n	
	Off	INPUTTYPE OFF		OFF	
I T	QPSK	INPUTTYPE QPSK	- INPUTTYPE?	QPSK	
Input Type	16QAM	INPUTTYPE 16QAM	INCOLLIEE:	16QAM	
	64QAM	INPUTTYPE 64QAM		64QAM	
Marker	On	MKR ON	MKR?	ON	
warker	Off	MKR OFF	PILAN:	OFF	
DL MAP Info.	Zone	MAPINFODISP ZONE	MAPINFODISP?	ZONE	
Display	Burst	MAPINFODISP BURST	MWLINLODISL:	BURST	

Table 2.4-1 Parameter setting messages (Cont'd)

Functi	Function		Query	Response	Remarks
Zone Index		ZONEINDX n	ZONEINDX?	n	
Burst Index		BURSTINDX n	BURSTINDX?	n	
Uplink Parameters – N	Modulation Type	ULMODTYPE uiuc	ULMODTYPE?	uiuc	
Uplink Parameters -	PUSC	ULZONETYPE PUSC	W GOVERNDED	PUSC	
Zone Type	AMC 2x3	ULZONETYPE AMC23	- ULZONETYPE?	AMC23	
Uplink Parameters – Z	Zone Offset	ULZONEOFS n	ULZONEOFS?	n	
Uplink Parameters – N	Num of Symbols	ULNUMSYMBOL n	ULNUMSYMBOL?	n	
Uplink Parameters – U	JL PermBase	ULPERMBASE n	ULPERMBASE?	n	
Uplink Parameters – I	DL IDCell	DLIDCELL n	DLIDCELL?	n	
Uplink Parameters – I	Uplink Parameters – Duration		DURATION?	n	
Uplink Parameters – S	Subchannel Offset	ULSUBCHOFS n	ULSUBCHOFS?	n	
Uplink Parameters –	Auto	ULFRAMESYNC AUTO	AUTO		
Frame Sync	Manual	ULFRAMESYNC MANUAL	- ULFRAMESYNC?	MANUAL	
Uplink Parameters - F	rame Number	ULFRAME n	ULFRAME?	n	
Uplink Parameters –	Normal	ULBURSTTYPE NRM	ULBURSTTYPE?	NRM	
Burst Type	Collaborative	ULBURSTTYPE CLB	- ULBURSTTIPE?	CLB	
Uplink Parameters – A Pilot Pattern B		ULPILOT A	ULPILOT?	A	
		ULPILOT B	- OPLIPOI:	В	
Save Settings		SAVE n			
Recall Settings		RECALL n			

5 Performing Measurement and Reading Each Stat

2.5 Performing Measurement and Reading Each State

Device messages for performing measurement and reading each state are shown in Table 2.5-1.

Table 2.5-1 Messages for performing measurement and reading each state

Functi	on	Command	Query	Response	Remarks
Single		SNGLS			
Continuous		CONTS			
D	No Change		PRMCHANGED?	0	
Parameter Changed	Changed		PRMCHANGED:	1	
Error Status	No Error		MERROR?	0	
Error Status	Error		MERKOR:	1	
D Ct	Measuring		PAUSE?	0	
Pause Status	Pause		PAUSE?	1	
Normal	Normal		OVF?	0	
Overflow Status	Overflow		OVF:	1	
Oven Cold Status	Normal		OC?	0	
Oven Cold Status	Oven Cold		00:	1	
	INT, Lock			INT, LOCK	
D. C C' 1	INT, Unlock		REF?	INT, UNLOCK	
Reference Signal	EXT, Lock		- KEF:	EXT, LOCK	
	EXT, Unlock		7	EXT, UNLOCK	
FCH or DL Map	Normal		DLDECODEFAIL?	0	
Decode	Fail		DIDECODETAIL:	1	

2.6 Reading Downlink Measurement Result

Device messages for reading downlink measurement results are shown in Table 2.6-1. The following commands are available only when the Downlink measurement screen is selected.

Table 2.6-1 Messages for reading downlink measurement results

F	unction	Command	Query	Response	Remarks
Preamble Pow	ver		PREAMBLEPWR?	1	
DL Average Po	ower		AVGPWR?	1	
CINR			CINR?	1	
E 0.00	2		CARRFERR?	f	Unit; Hz
Frequency Off	set		CARRFERR_PPM?	f	Unit; ppm
Timing Error			TIMINGERR?	t	
Preamble Inde	ex		PREAMBLEINDX?	n	
Cell ID			CELLID?	n	
Segment ID			SEGMENT?	n	
Preamble EVA	M		EVM_PREAMBLE? unit	f	
Pilot EVM			EVM_PILOT? unit	f	unit= PER DB
Symbol EVM			EVM_SYMBOL? unit	f	unit= PER DB
Zone EVM			EVM_ZONE? unit	f	unit= PER DB
Burst EVM			EVM_BURST? unit	f	unit= PER DB
Total EVM (rn	ms)		EVM_TTLRMS? unit	f	unit= PER DB
Total EVM (rn Excluded	ms) Preamble		EVM_TTLPERMS? unit	f	unit= PER DB
Total EVM (pe	eak)		EVM_TTLPEAK? unit	f	unit= PER DB
Subcarrier Nu (peak)	umber at Total EVM		SUBCARR_TTLPEAK?	n	
Symbol Numb (peak)	er at Total EVM		SYMBOL_TTLPEAK?	n	
	ub Channel Bitmap		FCH? SUBCHBITMAP	n	
R	Repetition Coding		FCH? REPETITION	n	
FCH C	Coding Indication		FCH? CODING	n	
D	L Map Length		FCH? DLMAPLEN	n	

2.6 Reading Downlink Measurement Result

	Function	Command	Query	Response	Remarks
	Message Type		DLMAP? MSGTYPE	n	
	Base Station ID		DLMAP? BSID	n	
	DCD Count		DLMAP? DCD	n	
	Frame Number		DLMAP? FRMNUM	n	
	Frame Duration		DLMAP? FRMDUR	n	
	Symbol Number		DLMAP? SYMBNUM	n	
DL Map /	UL Symbol Number		DLMAP? ULSYMBNUM	n	
Compressed DL-MAP /	Compressed Map Indicator		DLMAP? CMAPI	n	
Compressed	UL-Map Append		DLMAP? ULMAPAP	n	
UL-MAP	Map Message Length		DLMAP? MAPMSGLEN	n	
	Operation ID		DLMAP? OPID	n	
	Sector ID		DLMAP? SECID	n	
	DL IE Count		DLMAP? DLIE	n	
	UCD Count		DLMAP? UCD	n	
	Allocation Start Time		DLMAP? ALLOCST	n	
	Мар Туре		DLMAP? MAPTYPE	n	

Table 2.6-1 Messages for reading downlink measurement results (Cont'd)

Table 2.6-1 Messages for reading downlink measurement results (Cont'd)

	Function	Command	Query	Response	Remarks
	Permutation		ZONE? PRMT	mode	
	Symbol Offset		ZONE? SYMBOFS	n	
	Symbol Interval		ZONE? SYMBINT	n	
	STC / 2/3 antenna select		ZONE? STC	n	
	Matrix Indicator		ZONE? MATRIX	n	
DL Zone IE	DL PermBase		ZONE? PERMBASE	n	
DL Zone 1E	Pilot Subcarrier Power		ZONE? PILOTPWR	1	
	Data Subcarrier Power		ZONE? DATAPWR	1	
	Null Subcarrier Power		ZONE? NULLPWR	1	
	Punctured Pilot Power		ZONE? PUNCTUREDPILOTPWR	1	
	AMC Type		ZONE? AMCTYPE	n	
	DIUC		BURST? DIUC	n	
	Boosting		BURST? BOOSTINDX	n	
	Symbol Offset		BURST? SYMBOFS	n	
	Sub Channel Offset		BURST? SUBCHOFS	n	
	Symbol Interval		BURST? SYMBINT	n	
UL Map	Sub Channel Interval		BURST? SUBCHINT	n	
and	Repetition Code		BURST? REPETCODE	n	
DL Map IE	Matrix Indicator		BURST? MATRIX	n	
	Num_Layers		BURST? NUMLAYERS	n	
	UL Map - UCD Count		BURST? UCDCNT	n	
	UL Map - Allocation Start Time		BURST? STARTTIME	n	
	UL Map - Symbol Number		BURST? SYMBNUM	n	

2.6 Reading Downlink Measurement Result

	Function	Command	Query	Response	Remarks
Number of DL zones			NUMDLZONE?	n	
Number of DL bursts			NUMDLBURST?	n	
Number of DI	symbols		NUMDLSYMBOL?	n	
	-Nused/2 to -Nused/4		FLATNESS? 0		
G . 1 1711 .	$-N_{\rm used}/4$ to -1		FLATNESS? 1	l_max,sub_max,	
Spectral Flatness	+1 to N _{used} /4		FLATNESS? 2	l_min,sum_min	
	Nused/4 to Nused/2		FLATNESS? 3		
Max Absolute Difference			MAXDIFF?	l,sub1,sub2	
IQ DC Offset			IQDCOFS?	1	
Avg power pe	r subcarrier		AVGPWRPERSC?	1	
Po	ower Spectrum		MKR_SPECT?	1	
Co	onstellation		MKR_CONST?	l_i,l_q	
Marker	VM		MKR_EVM?	f	
Sp	ectral Flatness (Absolute)		MKR_FLATNESS?	1	
_	pectral Flatness pifferential)		MKR_DIFFFLAT?	1	

2.7 Reading Uplink Measurement Result

Device messages for reading uplink measurement results are shown in Table 2.7-1. The following commands are available only when the Uplink measurement screen is selected.

Table 2.7-1 Messages for reading uplink measurement results (Cont'd)

	Function	Command	Query	Response	Remarks
T. 0.00			CARRFERR?	f	Unit; Hz
Frequency (Jiiset		CARRFERR_PPM?	f	Unit; ppm
Symbol EVI	I		EVM_SYMBOL? unit	evm	unit= PER DB
Burst EVM			EVM_BURST? unit	evm	unit= PER DB
Unmodulate	ed Subcarrier Error		UNMODSUBCARRERR? unit	r	unit= PER DB
Channel Po	wer		AVGPWR?	1	
Marker – Po	ower Spectrum		MKR_SPECT?	1	
Marker – Co	onstellation		MKR_CONST?	l_i,l_q	
Marker – E	VM		MKR_EVM?	f	
Marker – Spectral Flatness (Absolute)			MKR_FLATNESS?	1	
Marker – Spectral Flatness (Differential)			MKR_DIFFFLAT?	1	
Timing Erro	or		TIMINGERR?	t	
	-N _{used} /2 to -N _{used} /4		FLATNESS? 0		
Spectral	-N _{used} /4 to −1		FLATNESS? 1	l_max,sub_max,	
Flatness	+1 to Nused/4		FLATNESS? 2	l_min,sum_min	
	N _{used} /4 to N _{used} /2		FLATNESS? 3		
Max Absolute Difference			MAXDIFF?	1, sub1, sub2	
IQ DC Offset			IQDCOFS?	1	
Avg power per subcarrier			AVGPWRPERSC?	1	
Pilot Subcarrier Power			ULPILOTPWR?	1	
Data Subcar	rrier Power		ULDATAPWR?	1	
Null Subcar	rier Power		ULNULLPWR?	1	

Function	Command	Query	Response	Remarks
Null Subcarrier Power		ULNULLPWR?	1	

Chapter 3 Device Message Details

This chapter describes detailed specifications on remote control commands for executing functions of the MX269010A in alphabetical order. Refer to the "MS2690A/MS2691A/MS2692A and MS2830A Signal Analyzer Operation Manual (Mainframe Remote Control)" for detailed specifications of IEEE488.2 common device messages and application common device messages.

ANT/ANT?	3-4
AT/AT?	3-5
AVGPWR?	3-6
AVGPWRPERSC?	3-7
BURST?	3-8
BURSTINDX/BURSTINDX?	. 3-10
CAL	. 3-11
CARRFERR?	. 3-12
CARRFERR_PPM?	. 3-13
CELLID?	. 3-14
CHBW/CHBW?	. 3-15
CHEST/CHEST?	. 3-16
CHESTAMP/CHESTAMP?	. 3-17
CHESTEQ/CHESTEQ?	. 3-18
CHESTPHASE/CHESTPHASE?	. 3-19
CINR?	. 3-20
CONF:EVM	. 3-21
CONF:FFT:ACP	. 3-22
CONF:FFT:OBW	. 3-23
CONF:SWEP:ACP	. 3-24
CONF:SWEP:OBW	. 3-25
CONF:SWEP:SEM	. 3-26
CONTS	. 3-27
CP/CP?	. 3-28
DISPLAY/DISPLAY?	. 3-29
DIUC/DIUC?	. 3-30
DLDECODEFAIL?	. 3-31
DLIDCELL/DLIDCELL?	
DLMAP?	. 3-33
DURATION/DURATION?	. 3-34
EVM_BURST?	. 3-35
EVM_PILOT?	. 3-36
EVM_PREAMBLE?	. 3-37
EVM_SYMBOL?	. 3-38
EVM_TTLPEAK?	. 3-39

EVM_TTLPERMS?	3-40
EVM_ZONE?	3-41
FCH?	3-42
FLATNESS?	3-43
FREQ/FREQ?	3-44
FREQOFS/FREQOFS?	3-45
GRAPH_FLATNESS/GRAPH_FLATNESS?	3-46
IMPORTDLMAP/ IMPORTDLMAP?	3-47
INI	3-48
INPUTLVL/INPUTLVL?	3-49
INPUTTYPE/INPUTTYPE?	3-50
IQDCOFS?	3-51
LVLOFS/LVLOFS?	3-52
MAPDETINFO/MAPDETINFO?	3-53
MAPINFODISP/MAPINFODISP?	3-54
MAXDIFF?	3-55
MEAS/MEAS?	3-56
MERROR?	3-57
MKR/MKR?	3-58
MKR_CONST?	3-59
MKR_DIFFFLAT?	3-60
MKR_EVM?	3-61
MKR_FLATNESS?	3-62
MKR_SPECT?	3-63
MNLBURST/ MNLBURST?	3-64
MNLDLMAP/ MNLDLMAP?	3-66
MNLFCH/ MNLFCH?	3-67
NUMDLBURST?	3-68
NUMDLSYMBOL?	3-69
NUMDLZONE?	3-70
OC?	3-71
OVF?	3-72
PAUSE?	3-73
PMOD/PMOD?	3-74
PRE	3-75
PREAMBLEINDX?	3-76
PREAMBLEPWR?	3-77
PREAMP/PREAMP?	3-78
PRINT	3-79
PRMCHANGED?	
RCPRM	
REBOOT	
RECALL	
REF?	

RESPECTRUM/RESPECTRUM?	3-85
SAMPFREQOFS/SAMPFREQOFS?	3-86
SAVE	
SEARCHTIME/SEARCHTIME?	3-88
SEGMENT?	3-89
SNGLS	3-90
SUBCARR_TTLPEAK?	3-91
SUBCARRINDX/SUBCARRINDX?	3-92
SVPRM	3-94
SYMBOL/SYMBOL?	3-95
SYMBOL_TTLPEAK?	3-96
SYS/SYS?	3-97
SYST:LANG/SYST:LANG?	3-98
FIMINGERR?	3-99
FRIG/TRIG?	3-100
FRIGDELAY/TRIGDELAY?	3-101
TRIGSLOPE/TRIGSLOPE?	3-102
JIUC/UIUC?	3-103
JLBURSTTYPE/ULBURSTTYPE?	3-104
JLDATAPWR?	3-105
JLFRAME/ULFRAME?	3-106
JLFRAMESYNC/ULFRAMESYNC?	3-107
JLMODTYPE/ULMODTYPE?	3-108
JLNULLPWR?	3-109
JLNUMSYMBOL/ULNUMSYMBOL?	3-110
JLPERMBASE/ULPERMBASE?	3-111
JLPILOT/ULPILOT?	3-112
JLPILOTPWR?	3-113
JLSUBCHOFS/ULSUBCHOFS?	3-114
JLZONEOFS/ULZONEOFS?	3-115
JLZONETYPE/ULZONETYPE?	3-116
JNMODSUBCARRERR?	3-117
ZONE?	3-118
ZONEINDX/ZONEINDX?	3-119

ANT/ANT?

Antenna (DL)

Function

This command sets the antenna for measuring downlink signals.

Command

ANT mode

Query

ANT?

Response

mode

Parameter

mode Antenna

0 Antenna 0 (ANT0) 1 Antenna 1 (ANT1)

Example of Use

To select Antenna 1:

1: ANT 1 2: ANT?

> 1

AT/AT?

Attenuator

Function

This command sets the attenuator. The query command queries the

current setting value.

Command

AT action

AT l

Query

AT?

Response

1

Parameter

action Attenuator UP $+2 \ dB$ DN $-2 \ dB$

1 Attenuator

Resolution 2 dB Unit dB

Example of Use

To set the attenuator by 2 dB:

AT UP

AVGPWR?

DL Average Power/Channel Power

Function

This command queries the average power (DL Average Power) between downlink intervals when the Downlink measurement screen is selected. This command queries the average power (Channel Power) between the specified uplink intervals when the Uplink measurement screen is

AVGPWR?

selected.

Response

Query

1

Parameter

DL average power (DL mode)

Channel power (UL mode)

Resolution 0.01 Unit dBm

Example of Use

To query the DL average power:

AVGPWR?

AVGPWRPERSC?

Average Power per subcarrier

Function

This command queries the reference power for the spectral line during spectral flatness measurement. During downlink measurement, the average power per subcarrier within the downlink period excluding the preamble is obtained. During uplink measurement, the channel power per subcarrier is obtained.

Command

None

Query

AVGPWRPERSC?

Response

1

Parameter

1 Avg power per subcarrier

Resolution 0.01 Unit dBm

Example of Use

To query the Avg power per subcarrier result.

AVGPWRPERSC?

BURST?

UL Map & DL Map IE for Current Burst Index

Function

This command queries the measurement result of DL Map IE of the currently set Burst Index and the analysis result of UL MAP. An execution error occurs if this command is executed when the Downlink measurement screen is not selected, or when the set Burst Index is 2 or less.

Query

BURST? item

Response

result

Parameter

 $\begin{array}{ll} \text{item} & \quad & \text{Result inquiry item} \\ \text{result} & \quad & \text{Measurement result} \end{array}$

item	Types of results	result
DIUC	DIUC	Range: 0 to 12,
		Resolution: 1
SYMBOFS	Symbol Offset	Decimal, Resolution: 1
SUBCHOFS	Sub Channel Offset	Decimal, Resolution: 1
BOOSTINDX	Boosting Index	Decimal, Resolution: 1
SYMBINT	Symbol Interval	Decimal, Resolution: 1
SUBCHINT	Sub Channel Interval	Decimal, Resolution: 1
REPETCODE	Repetition Code	0: No Repetition 1: 2 Repetitions 2: 4 Repetitions 3: 6 Repetitions
MATRIX	Matrix Indicator*	0: Matrix A 1: Matrix B 2: Others
NUMLAYERS	Num_Layers*	Decimal, Resolution: 1
UCDCNT	UL Map - UCD Count	Decimal, Resolution: 1
STARTTIME	UL Map - Allocation Start Time	Hexadecimal, Resolution: 1
SYMBNUM	UL Map - Symbol Number	Decimal, Resolution: 1

*Note: For bursts that are not in an STC zone, "-999.0" is returned.

Example of Use

To query DIUC of Burst Index 4:

1: BURSTINDX 4 2: BURST? DIUC

BURSTINDX/BURSTINDX?

Burst Index

Function

This command sets the Burst Index, which is a parameter displayed on the DL Map Info. Screen. This command is available only on the DL Map

Info. screen.

Command

BURSTINDX n

Query

BURSTINDX?

Response

n

Parameter

n Burst Index

Range 0 to the number of the detected bursts -1

Resolution 1

Example of Use

To set the Burst Index to 1:

1: BURSTINDX 1
2: BURSTINDX?

> 1

CAL

Calibration

Function

This command executes calibration.

Command

CAL mode

Parameter

mode Calibration type

ALL Executes all the calibrations.

LEVEL Executes level calibration.

LOLEAK_SUPPRESS Executes local leak suppress.

BAND Executes in-band calibration.

Example of Use

To execute all calibrations:

CAL ALL

CARRFERR?

Freq Offset (Hz)

Function

This command queries the measurement result of the frequency offset to $% \frac{1}{2}\left(\frac{1}{2}\right) =0$

the input signal.

The downlink measurement result is returned when the Downlink measurement screen is selected, and uplink measurement result is

returned when the Uplink measurement screen is selected.

Query

CARRFERR?

Response

f

Parameter

f Frequency offset

Resolution 0.1 Unit Hz

Example of Use

To query the frequency offset:

CARRFERR?

CARRFERR_PPM?

Freq Offset (ppm)

Function

This command queries the measurement result of the frequency offset to the input signal in ppm. The downlink measurement result is returned when the Downlink measurement screen is selected, and uplink measurement result is returned when the Uplink measurement screen is

selected.

Query

CARRFERR PPM?

Response

f

Parameters

f Frequency offset (ppm)

Resolution 0.001 Unit ppm

Example of Use

To query the measurement result of the frequency offset to the input signal in ppm.

CARRFERR_PPM?

CELLID?

Cell ID

Function

This command queries the Cell ID analysis result of the downlink signal.

An execution error occurs if this command is executed when the

Downlink measurement screen is not selected.

Query

CELLID?

Response

n

Parameter

n Cell ID

Resolution 1

Example of Use

To query the Cell ID:

CELLID?

CHBW/CHBW?

CH. Bandwidth

Function

This command sets the CH. Bandwidth.

Command

CHBW f

Query

CHBW?

Response

f

Parameter

f CH. Bandwidth
3.5 3.5 MHz
5 5MHz
7 7MHz
8.75 8.75 MHz
10 10 MHz
20 20 MHz

Example of Use

To set the CH. Bandwidth to 5 MHz:

1: CHBW 5 2: CHBW?

> 5

CHEST/CHEST?

Channel Estimation

Function

This command enables (On) or disables (Off) channel estimation.

Command

CHEST on_off

Query

CHEST?

Response

on_off

Parameter

on_off Channel estimation

ON On Off

Example of Use

To enable channel estimation:

1: CHEST ON 2: CHEST?

> ON

CHESTAMP/CHESTAMP?

CH. Tracking – Amplitude

Function

This command sets the CH tracking amplitude function to On/Off. An execution error occurs if this command is executed when channel estimation is disabled (Off).

Command

CHESTAMP on_off

Query

CHESTAMP?

Response

on off

Parameter

on_off CH tracking amplitude - On/Off

ON On Off

Example of Use

To set the CH. tracking amplitude function of channel estimation to On:

1: CHEST ON

2: CHESTAMP ON
3: CHESTAMP?

> ON

CHESTEQ/CHESTEQ?

Channel Estimation – Equalizer

Function

This command sets the equalizer. An execution error occurs if this command is executed when channel estimation is disabled (Off).

Command

CHESTEQ mode

Query

CHESTEQ?

Response

mode

Parameter

mode Channel estimation – Equalizer

 $\begin{array}{ll} \mbox{\tt PREAMBLE} & \mbox{\tt Preamble only} \\ \mbox{\tt DATA} & \mbox{\tt Preamble} + \mbox{\tt Data} \end{array}$

DATAAVG Preamble + Data (Average)

Example of Use

To set the equalizer of channel estimation to Preamble only:

1: CHEST ON

2: CHESTEQ PREAMBLE

3: CHESTEQ?
> PREAMBLE

CHESTPHASE/CHESTPHASE?

CH. Tracking - Phase

Function

This command sets the CH tracking phase function to On/Off. An execution error occurs if this command is executed when channel estimation is disabled (Off).

Command

CHESTPHASE on_off

Query

CHESTPHASE?

Response

on_off

Parameter

on_off CH tracking phase - On/Off

ON On Off

Example of Use

To set the CH. tracking phase function of channel estimation to On:

1: CHEST ON

2: CHESTPHASE ON
3: CHESTPHASE?

> ON

CINR?

CINR

Function

This command queries CINR of the downlink signal. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

CINR?

Response

cinr

Parameter

 $\begin{array}{cc} \text{f} & & \text{CINR} \\ \text{Resolution} & 0.01 \\ \text{Unit} & \text{dB} \end{array}$

Example of Use

To query CINR:

CINR?

CONF:EVM

Modulation (Back To Mobile WiMAX)

Function

This command switches the current function from a measurement function of Signal Analyzer or Spectrum Analyzer to the modulation function of the Mobile WiMAX. An execution error occurs if this

command is executed when the modulation function is already selected.

Command

CONF: EVM

Query

None

Response

None

Parameter

None

Example of Use

To switch from the ACP measurement function of Signal Analyzer to the

modulation function.

CONF: EVM

CONF:FFT:ACP

Signal Analyzer - ACP

Function

This command selects the ACP measurement function of Signal Analyzer.

For the Mobile WiMAX, this command is available if CH. Bandwidth is

set to 5 MH or 10 MHz.

Command

CONF:FFT:ACP

Query

None

Response

None

Parameter

None

Example of Use

To select the ACP measurement function of Signal Analyzer.

CONF:FFT:ACP

CONF:FFT:OBW

Signal Analyzer - OBW

Function

This command selects the OBW measurement function of Signal

Analyzer.

For the Mobile WiMAX, this command is available if CH. Bandwidth is

set to 5 MH or 10 MHz.

Command

CONF:FFT:OBW

Query

None

Response

None

Parameter

None

Example of Use

To select the OBW measurement function of Signal Analyzer.

CONF:FFT:OBW

CONF:SWEP:ACP

Spectrum Analyzer - ACP

Function

This command selects the ACP measurement function of Spectrum

Analyzer.

For the Mobile WiMAX, this command is available if CH. Bandwidth is

set to 5 MH or 10 MHz.

Command

CONF:SWEP:ACP

Query

None

Response

None

Parameter

None

Example of Use

To select the ACP measurement function of Spectrum Analyzer.

CONF:SWEP:ACP

CONF:SWEP:OBW

Spectrum Analyzer - OBW

Function

This command selects the OBW measurement function of Spectrum

Analyzer.

For the Mobile WiMAX, this command is available if CH. Bandwidth is

set to 5 MHz or 10 MHz.

Command

CONF:SWEP:OBW

Query

None

Response

None

Parameter

None

Example of Use

To select the OBW measurement function of Spectrum Analyzer.

CONF:SWEP:OBW

CONF:SWEP:SEM

Spectrum Analyzer - SEM

Function

This command selects the SEM (Spectrum Emission Mask) measurement

function of Spectrum Analyzer.

For the Mobile WiMAX, this command is available if CH. Bandwidth is

set to 5 MHz or 10 MHz.

Command

CONF:SWEP:SEM

Query

None

Response

None

Parameter

None

Example of Use

To select the SEM measurement function of Spectrum Analyzer.

CONF:SWEP:SEM

CONTS

Continuous Measurement

Function

This command starts measurement in the continuous mode. An execution error occurs if this command is executed when DIUC List and UIUC List are displayed.

If the CONTS command is transmitted, Bit 0 (OPC) of the Standard Event Status Register becomes "enable" at the time the command processing completes in the MX269010A, that is to say, at the time the measurement starts. Similarly, if *WAI is transmitted right after the CONTS command has been transmitted, the next command is processed at the time the measurement starts.

After the measurement starts, bit 2 of the Status Byte Register becomes "enable" every time a measurement finishes normally.

Bit 3 of the Status Byte Register becomes "enable" when a measurement error occurs.

The PAUSE flag is always 0 during measurement started by the CONTS command.

Command

CONTS

Example of Use

To start measurement in the continuous mode:

CONTS

CP/CP?

Cyclic Prefix

Function

This command sets the cyclic prefix.

Command

CP mode

Query

CP?

Response

mode

Parameter

mode	Cyclic prefix (CP)
0	1/4
1	1/8
2	1/16
3	1/32

Example of Use

To set the cyclic prefix to 1/8:

1: CP 1 2: CP? > 1

DISPLAY/DISPLAY?

LCD Power

Function

This command sets the backlight of the LCD to On/Off.

Command

DISPLAY on_off

Query

DISPLAY?

Response

on_off

Parameter

on_off Status of the backlight of the LCD

ON On Off

Example of Use

To set the backlight of LCD to Off:

DISPLAY OFF

DIUC/DIUC?

DIUC

Function

This command sets the FEC code for DIUC.

Command

DIUC diuc, fec

Query

DIUC? diuc

Response

fec

Parameter

diuc	DIUC
Range	0 to 12
Resolution	1

fec	FEC code
0	QPSK * CTC * 1/2
1	QPSK * CTC * 3/4
2	16QAM * CTC * 1/2
3	16QAM * CTC * 3/4
4	64QAM * CTC * 1/2
5	64QAM * CTC * 2/3
6	64QAM * CTC * 3/4
7	64QAM * CTC * 5/6
8	QPSK * CC * 1/2
9	QPSK * CC * 3/4
10	16QAM * CC * 1/2
11	16QAM * CC * 3/4
12	64QAM * CC * 1/2
13	64QAM * CC * 2/3
14	64QAM * CC * 3/4

Example of Use

To set the FEC code 64QAM * CTC * 5/6 for DIUC 1:

1: DIUC 1,7 2: DIUC? 1

> 7

DLDECODEFAIL?

FCH or DL Map Decode Fail

Function

This command queries whether decoding of FCH or DL-MAP failed. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

DLDECODEFAIL?

Response

n

Parameter

n FCH or DL Map Decode

Decoding successDecoding failure

Example of Use

To query whether decoding of FCH or DL-MAP succeeded or failed:

DLDECODEFAIL?

DLIDCELL/DLIDCELL?

DL IDCell

Function

This command sets the DL ID cell, which is one of the Uplink

Parameters. This parameter is necessary for setting an uplink signal.

Command

DLIDCELL n

Query

DLIDCELL?

Response

n

Parameter

n DL ID cell

Range 0 to 31 Resolution 1

Example of Use

To set the DL ID cell to 0:

1: DLIDCELL 0
2: DLIDCELL?

> 0

DLMAP?

DL Map

Function

This command queries the analysis result of DL MAP. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

DLMAP? item

Response

result

Parameter

item Result inquiry item result Measurement result

item	Types of results	result
MSGTYPE	Message Type	Range: 0 to 12, Resolution: 1
BSID	Base Station ID	Hexadecimal, Resolution: 1
DCD	DCD Count	Decimal, Resolution: 1
FRMNUM	Frame Number	Hexadecimal, Resolution: 1
FRMDUR	Frame Duration	Unit: ms
SYMBNUM	Symbol Number	Decimal, Resolution: 1
ULSYMBNUM	UL Symbol Number	Decimal, Resolution: 1
CMAPI	Compressed Map	Decimal, Resolution: 1
ULMAPAP	UL-MAP Append	Decimal, Resolution: 1
MAPMSGLEN	Map Message Length	Decimal, Resolution: 1
OPID	Operator ID	Decimal, Resolution: 1
SECID	Sector ID	Decimal, Resolution: 1
DLIE	DL IE Count	Decimal, Resolution: 1
UCD	UCD Count	Decimal, Resolution: 1
ALLOCST	Allocation Start Time	Decimal, Resolution: 1
MAPTYPE	Map Type	DLMAP : DL-MAP
		COMPDLMAP :
		Compressed-DL-MAP
		COMPDLULMAP:
		Compressed
		DL-MAP/UL-MAP

Example of Use

To query the DCD count result of DL MAP:

DLMAP? DCD

DURATION/DURATION?

Duration

Function

This command sets the width of the uplink measuring object in slot units.

This parameter must be set when measuring an uplink signal.

Command

DURATION n

Query

DURATION?

Response

n

Parameter

n Duration

Range 1 to

(Num of Symbols -3)/3 \times Number of sub-channels

Resolution 1

Example of Use

To set the duration of uplink signal to 17:

1: DURATION 17

2: DURATION?

> 17

EVM_BURST?

EVM for Burst

Function

When the Downlink measurement screen is selected, this command queries the measurement result of EVM for the burst set in Burst Index. When Burst Index is 0, the same value as the Preamble EVM is returned.

When the Uplink measurement screen is selected, this command queries the measurement result of EVM for the measurement target burst.

Query

EVM_BURST? unit

Response

evm

Parameter

unit Reading unit

PER %
DB dB

 $\begin{array}{cc} \text{evm} & \text{EVM} \\ \text{Resolution} & 0.01 \end{array}$

Unit Unit specified in unit

Example of Use

To query the EVM for Burst Index 4:

1: BURSTINDX 4
2: EVM BURST? PER

EVM_PILOT?

Pilot EVM

Function

This command queries the measurement result of Pilot EVM during downlink measurement. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

EVM_PILOT? unit

Response

evm

Parameter

unit Reading unit

PER % dB

evm Pilot EVM

Resolution 0.01

Unit Unit specified in unit

Example of Use

To query the Pilot EVM:

1: SYMBOL 0

2: EVM PILOT? PER

EVM_PREAMBLE?

Preamble EVM

Function

This command queries the measurement result of Preamble EVM during downlink measurement. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

EVM_PREAMBLE? unit

Response

evm

Parameter

unit Reading unit

PER % dB

evm Preamble EVM

Resolution 0.01

Unit Unit specified in unit

Example of Use

To query the Preamble EVM:

EVM_PREAMBLE? PER

EVM_SYMBOL?

Symbol EVM

Function

This command queries the measurement result of Symbol EVM during downlink measurement when the Downlink measurement screen is selected, and queries the measurement result of Symbol EVM during uplink measurement when the Uplink measurement screen is selected. An execution error occurs if this command is executed when Symbol is set to 0 in the Downlink measurement screen.

Query

EVM_SYMBOL? unit

Response

evm

Parameter

unit Reading unit

PER % dB

evm Symbol EVM

Resolution 0.01

Unit Unit specified in unit

Example of Use

To query the Symbol EVM:

1: SYMBOL 1

2: EVM_SYMBOL? PER

EVM_TTLPEAK?

Total EVM (peak)

Function

This command queries the peak EVM in the downlink segment.

Query

EVM_TTLPEAK? unit

Response

evm

Parameter

unit Reading unit

PER % dB

evm EVM Resolution 0.01

Unit Unit specified in unit

Example of Use

To query Total EVM (peak):

EVM_TTLPEAK? PER

EVM_TTLPERMS?

Total EVM (rms) Preamble Excluded

Function

This command queries the average EVM in the downlink segment

excluding the preamble part.

Query

EVM_TTLPERMS? unit

Response

evm

Parameter

unit Reading unit

PER % dB

 $\begin{array}{cc} \text{evm} & & \text{EVM} \\ & \text{Resolution} & & 0.01 \end{array}$

Unit Unit specified in unit

Example of Use

To query Total EVM (rms) Preamble Excluded:

EVM TTLPERMS? PER

EVM_ZONE?

EVM for Zone

Function

This command queries the measured EVM for the zone set in Zone Index.

Query

EVM_ZONE? unit

Response

evm

Parameter

unit Reading unit

PER % dB

evm EVM Resolution 0.01

Unit Unit specified in unit

Example of Use

To query the measured EVM for Zone Index 1:

1: ZONEINDX 1
2: EVM_ZONE? PER

FCH?

FCH

Function

This command queries the analysis result of FCH. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

FCH? item

Response

result

Parameter

item Result inquiry item result Measurement result

item	Types of results	result
SUBCHBITMAP	Sub Channel Bitmap	Decimal, Resolution: 1
REPETITION	Repetition Coding	0: No Repetition
		1: 2 Repetition
		2: 4 Repetition
		3: 6 Repetition
CODING	Coding Indication	0: CC
		1: BTC
		2: CTC
		3: ZT CC
		4: CC with interleaver
		5: LDPC
DLMAPLEN	DL Map Length	Decimal, Resolution: 1

Example of Use

To query the coding indication in FCH:

FCH? CODING

FLATNESS?

Spectral Flatness

Function

This command queries the maximum level between spectral lines and the sub-carrier index.

Query

FLATNESS? unit

Response

l_max,subcarr_max,l_min,subcarr_min

Parameter

unit	Reading unit
0	$N_{\rm used}/2$ to $-N_{\rm used}/4$
1	$N_{\rm used}/4$ to -1
2	+1 to $N_{\rm used}/4$
3	$N_{\rm used}/4$ to $N_{\rm used}/2$

1_max1_minMaximum level between spectral lines1_minMinimum level between spectral lines

Resolution 0.01 Unit dBc

subcarr_max Sub-carrier index for the maximum level subcarr_min Sub-carrier index for the minimum level

Resolution 1

Example of Use

To query the spectral flatness for $N_{\rm used}\!/2$ to $-N_{\rm used}\!/4$:

FLATNESS? 0

FREQ/FREQ?

Center Frequency

Function

This command sets the center frequency of the measurement signal in

MHz units.

Command

FREQ f

Query

FREQ?

Response

f

Parameter

f Center frequency

Range 50 to the Upper limit of the main unit

Resolution 0.000001 MHz

Unit MHz

Suffix HZ, KHZ, KZ, MHZ, MZ, GHZ, GZ

 ${\tt MHZ}$ is set when omitted.

Example of Use

To set the center frequency to 2.345 GHz:

1: FREQ 2345

2: FREQ?

> 2345.000000

FREQOFS/FREQOFS?

Frequency Offset

Function

This command sets the frequency offset function to On/Off.

Command

FREQOFS on_off

Query

FREQOFS?

Response

on_off

Parameter

 on_off Frequency offset -On/Off

ON On Off

Example of Use

To enable the frequency offset (On):

1: FREQOFS ON 2: FREQOFS?

> ON

GRAPH_FLATNESS/GRAPH_FLATNESS?

Graph type in Spectral Flatness

Function

This command sets the graph type to be displayed in the Spectral

Flatness screen.

Command

GRAPH_FLATNESS type

Query

GRAPH_FLATNESS?

Response

type

Parameter

type Graph type in Spectral Flatness screen

ABS Absolute Flatness
DIFF Differential Flatness

Example of Use

To display the Absolute Flatness graph:

1: GRAPH_FLATNESS ABS 2: GRAPH_FLATNESS?

> ABS

IMPORTDLMAP/ IMPORTDLMAP?

DL Map Import

Function

This command imports the parameter file that includes DL Map information generated with Mobile WiMAX IQproducer.

Command

IMPORTDLMAP filename, drive

Query

IMPORTDLMAP?

Response

status, filename

Parameter

drive Drive name (D to Z)

filename File name to import/file name being imported

(character string including .xml)

Character string within 32 characters enclosed by double quotation marks ("") or single quotation marks

('') (excluding extension)

The following characters cannot be used:

\ / : * ? " " ' < > |

status Import status

File is not imported.

File is imported.

Example of Use

To import the file "TEST.xml" in drive D.

1: IMPORTDLMAP 'TEST.xml',D

2: IMPORTDLMAP?

> 1, TEST

INI

Preset

Function

This command initializes the present settings and statuses. This

command functions the same as the ${\tt PRE}$ command.

Command

INI

Example of Use

To executes an initialization:

INI

INPUTLVL/INPUTLVL?

Input Level

Function

This command sets the input level of the measurement signal.

Command

INPUTLVL 1

Query

INPUTLVL?

Response

1

Parameter

1 Input level

Range -120.00 + level offset to 34.00 + level offset

 $\begin{tabular}{ll} Resolution & 0.01 \\ Unit & dBm \\ Suffix & DBM \end{tabular}$

DBM is set even when omitted.

Example of Use

To set the input level to -10.00 dBm:

1: INPUTLVL -10.00

2: INPUTLVL? > -10.00

INPUTTYPE/INPUTTYPE?

Input Type

Function

This command sets the input type for the currently selected DL/UL mode, $\,$

and cannot be used on the DL Map Info. screen.

Command

INPUTTYPE type

Query

INPUTTYPE?

Response

type

Parameter

type Input Type

OFF Off
QPSK QPSK
16QAM 16QAM
64QAM 64QAM

Example of Use

To set the input type to QPSK:

1: INPUTTYPE QPSK

2: INPUTTYPE?

> QPSK

IQDCOFS?

IQ DC Offset

Function

This command queries the measurement result of the IQ DC offset.

Query

IQDCOFS?

Response

1

Parameter

1 IQ DC offset

Resolution 0.01 Unit dB

Example of Use

To query the IQ DC offset:

IQDCOFS?

LVLOFS/LVLOFS?

Level Offset

Function

This command sets the offset for the input signal level.

Command

LVLOFS 1

Query

LVLOFS?

Response

1

Parameter

1 Level offset

Range -100.00 to 100.00

 $\begin{array}{ll} Resolution & 0.01 \\ Unit & dB \\ Suffix & DB \end{array}$

DB is set even when omitted.

Example of Use

To set the level offset to -10.00 dB:

1: LVLOFS -10.00

2: LVLOFS? > -10.00

MAPDETINFO/MAPDETINFO?

DL Map

Function

Sets the method for processing DL Map information during downlink

measurement.

Command

MAPDETINFO mode

Query

MAPDETINFO?

Response

mode

Parameter

mode DL Map

AUTO Auto (automatic detection)

IMPORT Import (applies the settings in the imported parameter

file)

LOCALEDIT Local Edit (applies the settings on the DL MAP Local

Edit screen)

Example of Use

To perform measurement based on the settings in the imported parameter file.

1: MAPDETINFO IMPORT

2: MAPDETINFO?

> IMPORT

MAPINFODISP/MAPINFODISP?

DL Map Info. - Display

Function

This command sets the type of information to be displayed in the lower

part of the DL Map Info. screen.

Command

MAPINFODISP mode

Query

MAPINFODISP?

Response

mode

Parameter

mode Display

ZONE Zone

Displays the result for the zone set in Zone Index.

BURST Burst

Displays the result for the burst set in Burst Index.

Example of Use

To display in the lower part of the DL Map Info. screen the result for the

burst:

1: MAPINFODISP BURST

2: MAPINFODISP?

> BURST

MAXDIFF?

Max Absolute Difference

Function

This command queries the maximum level difference between the adjacent subcarriers and the subcarrier index.

Query

MAXDIFF?

Response

1, subcarr1, subcarr2

Parameter

1 Maximum level difference between the adjacent

subcarriers

Resolution 0.01 Unit dB

subcarr1 Adjacent subcarrier index 1 subcarr2 Adjacent subcarrier index 2

Resolution 1

Example of Use

To query the maximum level difference between the adjacent subcarriers:

MAXDIFF?

MEAS/MEAS?

Measurement Screen

Function

This command selects the measurement screen.

Command

MEAS mode

Query

MEAS?

Response

mode

Parameter

 $\begin{array}{ccc} \text{mode} & & \text{Measurement screen} \\ \text{MOD} & & \text{DL Modulation} \\ \text{IQ} & & \text{DL I/Q Received} \\ \text{MAP} & & \text{DL Map Info.} \\ \text{EVS} & & \text{DL Error Vector Spectrum} \\ \text{EVT} & & \text{DL Error Vector Time} \\ \end{array}$

FLAT DL Spectral Flatness

 $\begin{array}{ccc} \mathtt{ULMOD} & & \mathbf{UL\ Modulation} \end{array}$

 $\begin{array}{ll} \hbox{\tt ULEVS} & & \hbox{\tt UL Error Vector Spectrum} \\ \hbox{\tt ULEVT} & & \hbox{\tt UL Error Vector Time} \\ \hbox{\tt ULFLAT} & & \hbox{\tt UL Spectral Flatness} \end{array}$

Example of Use

To select the DL Map Info. screen:

MEAS MAP

3

MERROR?

Measurement Error

Function

This command returns a flag that indicates occurrence of a measurement

error.

The effectiveness of the flag means that the displayed measurement

result is not correct.

Query

MERROR?

Response

error

Parameter

error Measurement error

0 No error 1 Error

Example of Use

To query the error status:

MERROR?

MKR/MKR?

Marker

Function

This command sets the marker display On/Off. An execution error occurs if this command is executed when the I/Q Received or DL Map Info

screen is selected.

Command

MKR on_off

Query

MKR?

Response

on off

Parameter

on_off Marker
ON Display
OFF Not display

Example of Use

To enable marker display on the Modulation screen:

1: MEAS MOD
2: MKR ON
3: MKR?
> ON

MKR_CONST?

Constellation

Function

This command queries the result of the marker on the Constellation graph for the currently selected screen. The result can be read even if marker display is disabled.

When the Downlink measurement screen is selected, the result for downlink is returned. When the Uplink measurement screen is selected, the result for uplink is returned.

Query

MKR_CONST?

Response

i,q

Parameter

 $egin{array}{ll} \mathbf{i} & & & & & & & & & \\ \mathbf{q} & & & & & & & & \\ \mathbf{Resolution} & & & & & & & \\ \mathbf{0.000001} & & & & & & \\ \end{array}$

Example of Use

To query the result of IQ data for Symbol 7 and Subcarrier Index 123:

1: MEAS IQ 2: SYMBOL 7

3: SUBCARRINDX 123

4: MKR_CONST?

MKR_DIFFFLAT?

Differential Flatness for Marker

Function

This command queries the result of the marker on the Differential graph for the Spectral Flatness screen. The result can be read even if marker display is disabled. When the Downlink measurement screen is selected, the result for downlink is returned. When the Uplink measurement screen is selected, the result for uplink is returned.

Query

MKR_DIFFFLAT?

Response

1

Parameter

Difference of average power between subcarrier N

currently selected and subcarrier N+1

 $\begin{array}{ll} Resolution & 0.01 \\ Unit & dB \end{array}$

Example of Use

To query the result of the marker on the Differential graph:

1: MEAS FLAT

2: GRAPH FLATNESS DIFF

3: SUBCARRINDX 123

4: MKR_DIFFFLAT?

MKR_EVM?

EVM for Marker

Function

This command queries the result of the marker on the Error Vector Spectrum and Error Vector Time graphs. The result can be read even if marker display is disabled.

An execution error occurs if this command is executed when neither the Error Vector Spectrum nor Error Vector Time measurement screen is selected, or if Symbol is 0.

DC is returned if Subcarrier Index is 0.

The downlink measurement results are returned if the Downlink measurement screen is selected, and the uplink measurement results are returned if the Uplink measurement screen is selected.

Query

MKR_EVM?

Response

evm

Parameter

 $\begin{array}{cc} \text{evm} & \text{EVM} \\ \text{Resolution} & 0.01 \\ \text{Unit} & \% \end{array}$

Example of Use

To query EVM for Symbol 7 and Subcarrier Index 123 on the Error Vector Spectrum screen:

1: MEAS EVS

2: SYMBOL 7

3: SUBCARRINDX 123

4: MKR_EVM?

MKR_FLATNESS?

Absolute Flatness for Marker

Function

This command queries the result of the marker on the Absolute graph in the Spectral Flatness screen. The result can be read even if marker display is disabled. When the Downlink measurement screen is selected, the result for downlink is returned. When the Uplink measurement screen is selected, the result for uplink is returned.

Query

MKR_FLATNESS?

Response

1

Parameter

Average power of Subcarrier

Resolution 0.01 Unit dB

Example of Use

To query the average power of Subcarrier Index 123:

1: MEAS FLAT

2: SUBCARRINDX 123
3: MKR FLATNESS?

MKR_SPECT?

Power Spectrum for Marker

Function

This command queries the result of the marker on the Power Spectrum graph. The result can be read even if marker display is disabled. The result for downlink is returned when the Downlink measurement screen is selected, and the result for uplink is returned when the Uplink measurement screen is selected.

Query

MKR SPECT?

Response

1

Parameter

1 Power at marker

Resolution 0.01 Unit dB

Example of Use

To query the average power of Subcarrier Index 123:

1: MEAS MOD

2: SUBCARRINDX 123

3: MKR_SPECT?

MNLBURST/ MNLBURST?

DL Map Edit – Burst

Function

Sets the burst attribute on the DL Map Edit screen.

Command

MNLBURST item, value

Query

MNLBURST? item

Response

value

Parameter

item Burst attribute (setting target)

value Settings

Burst attribute corresponding to item and setting range for value

item	Burst attribute	value
DIUC	DIUC	0 to 12
SYMBOFS	Symbol Offset	1, 3
SYMBINT	Symbol Interval	2 to (Maximum value determined by the Cyclic Prefix and Channel Bandwidth settings) Resolution: 2
SUBCHOFS	Subchannel Offset	1 to (Maximum value determined by the Symbol Offset, FCH, DL-MAP, and FFT Size settings)
SUBCHINT	Subchannel Interval	1 to (Maximum value determined by the Symbol Offset, FCH, DL-MAP, and FFT Size settings) Resolution: No Repetition = 1 2 Repetitions = 2 4 Repetitions = 4 6 Repetitions = 6

Burst attribute corresponding to item and setting range for value (cont'd)

Item	Burst attribute	Value
BOOSTINDX	Boost Index	0:0 dB
		1:+6 dB
		2 : −6 dB
		3:+9 dB
		4:+3 dB
		5 : −3 dB
		6: -9 dB
		7 : −12 dB
REPETCODE	Repetition Code	0: No Repetition
		1:2 Repetitions
		2:4 Repetitions
		3:6 Repetitions

Example of Use

To set DIUC as the burst attribute on the DL Map Edit screen.

1: MNLBURST DIUC, 0

2: MNLBURST? DIUC

> 0

MNLDLMAP/ MNLDLMAP?

DL Map Edit – DL-Map

Function

Sets DL-MAP on the DL Map Edit screen.

Command

MNLDLMAP mode

Query

MNLDLMAP?

Response

mode

Parameter

 $\label{eq:discrete_mode} DL\,Map\;Edit\;-\;DL\text{-}MAP$

ON With DL-MAP.
OFF Without DL-MAP.

Example of Use

To enable DL-MAP on the DL Map Edit screen.

1: MNLDLMAP ON 2: MNLDLMAP?

> ON

MNLFCH/ MNLFCH?

DL Map Edit - FCH

Function

Sets FCH on the DL Map Edit screen.

Command

MNLFCH mode

Query

MNLFCH?

Response

mode

Parameter

ON With FCH.
OFF Without FCH.

Example of Use

To enable FCH on the DL Map Edit screen.

1: MNLFCH ON 2: MNLFCH?

> ON

NUMDLBURST?

Number of DL bursts

Function

This command queries the number of bursts of the downlink signal. An execution error occurs if this command is executed when the Downlink

measurement screen is not selected.

Query

NUMDLBURST?

Response

n

Parameter

n Number of the detected bursts

Resolution 1

Example of Use

To query the number of the detected bursts:

NUMDLBURST?

NUMDLSYMBOL?

Number of DL symbols

Function

This command queries the number of symbols of the downlink signal. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

NUMDLSYMBOL?

Response

n

Parameter

n Number of the detected symbols

Resolution 1

Example of Use

To query the number of the detected symbols:

NUMDLSYMBOL?

NUMDLZONE?

Number of DL zone

Function

This command queries the number of zones of the downlink signal. An execution error occurs if this command is executed when the Downlink

measurement screen is not selected.

Query

NUMDLZONE?

Response

n

Parameter

n Number of the detected zones

Resolution 1

Example of Use

To query the number of the detected zones:

NUMDLZONE?

OC?

Oven Cold

Function

This command returns a flag that indicates the Oven Cold state.

Query

OC?

Response

OC

Parameter

Oven Cold

Normal

Oven Cold

Example of Use

To query the Oven Cold state:

OC?

OVF?

Overflow

Function

This command returns a flag that indicates overflow occurrence.

Query

OVF?

Response

ovf

Parameter

ovf Overflow
0 Normal
1 Overflow

Example of Use

To query the overflow state:

OVF?

PAUSE?

Pause

Function

This command returns a flag that indicates the current measurement status. If a flag is valid, it means that the measurement has paused.

Query

PAUSE?

Response

pause

Parameter

pause Pause status
0 Measuring
1 Pause

Example of Use

To query whether the measurement has paused:

PAUSE?

PMOD/PMOD?

Hard Copy Mode

Function

This command sets a file format for saving a screen image.

Command

PMOD format

Query

PMOD?

Response

format

Parameter

 $\begin{array}{ccc} \text{format} & & \text{File format} \\ \text{BMP} & & \text{BMP format} \\ \text{PNG} & & \text{PNG format} \end{array}$

Example of Use

To save a screen image in PNG format:

1: PMOD PNG 2: PRINT PRE

Preset

Function

This command initializes the current settings and conditions. This

command functions the same as the ${\tt INI}$ command.

Command

PRE

Example of Use

To execute an initialization:

PRE

PREAMBLEINDX?

Preamble Index

Function

This command queries the result of Preamble Index of the downlink signal. An execution error occurs if this command is executed when the

Downlink measurement screen is not selected.

Query

PREAMBLEINDX?

Response

n

Parameter

n Preamble Index

Resolution 1

Example of Use

To query the Preamble Index:

PREAMBLEINDX?

PREAMBLEPWR?

Preamble Power

Function

This command queries the result of Preamble Power. An execution error occurs if this command is executed when the Downlink measurement screen is not selected.

Query

PREAMBLEPWR?

Response

1

Parameter

1 Preamble Power

Resolution 0.01 Unit dBm

Example of Use

To query the Preamble Power:

PREAMBLEPWR?

PREAMP/PREAMP?

Pre-Amplifier

Function

This command sets the optional pre-amplifier on/off. A command error

occurs if the Option 008 is not installed.

Command

PREAMP on_off

Query

PREAMP?

Response

 on_off

Parameter

on_off Pre-amplifier

 $\begin{array}{cc} \text{ON} & & \text{On} \\ \text{Off} & & \text{Off} \end{array}$

Example of Use

To enable the pre-amplifier:

1: PREAMP ON 2: PREAMP?

> ON

PRINT

Hard Copy

Function

This command saves a screen image into a file. This command can specify the file name of the file to be saved and the name of the saving destination device.

Command

PRINT file, device

Parameter

file Target file name

> Character string within 32 characters enclosed by double quotation marks (" ") or single quotation marks

('') (excluding extension)

The following characters cannot be used:

\ / : * ? " " \ ' < > |

Named automatically when omitted.

device Drive name

A, B, D, E, F, ...

Set to drive D when omitted.

Details

The numbers added to a file name are from 00 to 999.

The number after 999 returns to 00, so it is overwritten if there is a file

which has the same name.

Example of Use

To save a screen image into a file with the file name "TEST" in an internal hard disk:

PRINT "TEST", D

PRMCHANGED?

Parameter Changed

Function

This command displays a flag that indicates a parameter change. If the flag is valid, it means that the displayed or returned measurement result

is the one before the change.

Query

PRMCHANGED?

Response

changed

Parameter

changed Parameter change

No changeChanged

Example of Use

To query the parameter change flag:

PRMCHANGED?

RCPRM

Recall Parameter Setting file

Function

This command recalls the contents of a parameter setting file and applies them to the settings and conditions of the applications other than the MX269010A. For the MX269010A, only the contents related to execution and selection are recalled. Use the RECALL command to recall the parameters for the MX269010A.

Command

RCPRM file, device, apl

Parameter

file Target file name

Character string within 32 characters enclosed by double quotation marks ("") or single quotation marks ("') (excluding extension) The following characters cannot be used:

\ / : * ? " " \ ' < > |

device Drive name

A, B, D, E, F, ...

apl Target application
ALL All applications
When omitted All applications

Example of Use

To recall the parameter settings in the "TEST" file saved in an internal hard disk to apply them to the settings of all the applications other than those of the MX269010A:

RCPRM "TEST", D, ALL

REBOOT

System Restart

Function

This command restarts the system. When this command is received, communication via remote control is impossible until all the applications

have been completely restarted.

Command

REBOOT

Example of Use

To restart the system:

REBOOT

RECALL

Recall

Function

This command recalls the saved parameter settings.

Command

RECALL n

Parameter

n Save pattern number

Range 1 to 7
Resolution 1

Example of Use

To recall the settings of the save pattern number 1:

RECALL 1

REF?

Reference Signal

Function

This command queries the current reference clock state.

Query

REF?

Response

root, status

Parameter

root Reference clock used

INT Internal EXT External

 $\begin{array}{ccc} \text{status} & & \text{Lock state} \\ & \text{LOCK} & & \text{Normal} \\ & \text{UNLOCK} & & \text{Unlock} \end{array}$

Example of Use

To query the current reference clock state:

REF?

RFSPECTRUM/RFSPECTRUM?

RF Spectrum

Function

This command sets whether to reverse the spectrum (I/Q phases) of the

input signal to be measured.

Command

RFSPECTRUM mode

Query

RFSPECTRUM?

Response

mode

Parameter

 $\begin{array}{cc} \text{mode} & & \text{Phase} \\ \text{NORMAL} & & \text{Normal} \\ \text{REVERSE} & & \text{Reverse} \end{array}$

Example of Use

To measure input signals with the IQ phases reversed.

1: RFSPECTRUM REVERSE

2: RFSPECTRUM?

> REVERSE

SAMPFREQOFS/SAMPFREQOFS?

Sampling Frequency Offset

Function

This command sets whether to correct the sampling frequency error.

Command

SAMPFREQOFS on_off

Query

SAMPFREQOFS?

Response

on_off

Parameter

on_off Sampling frequency offset

ON On Off

Example of Use

To enable the sampling frequency offset:

1: SAMPFREQOFS ON
2: SAMPFREQOFS?

> ON

SAVE

Save

Function

This command saves the current parameter settings.

Command

SAVE n

Parameter

n Save pattern number

Range 1 to 7 Resolution 1

Example of Use

To save the current settings as the save pattern number 1:

SAVE 1

SEARCHTIME/SEARCHTIME?

Search Time

Function

This command sets the maximum search time for trigger measurement.

Command

SEARCHTIME t

Query

SEARCHTIME?

Response

t

Parameter

t Search Time

Range 100 to 5000

Resolution 1

Unit Micro seconds
Suffix NS, US, MS, S

US is set when omitted.

Example of Use

To set Search Time to 200 micro seconds:

1: TRIG EXT

2: SEARCHTIME 200
3: SEARCHTIME?

> 200

SEGMENT?

Segment ID

Function

This command queries the result of Segment ID of the downlink signal.

An execution error occurs if this command is executed when the

Downlink measurement screen is not selected.

Query

SEGMENT?

Response

n

Parameter

n Segment ID

Resolution 1

Example of Use

To query the Segment ID:

SEGMENT?

SNGLS

Single Measurement

Function

This command starts measurement in the single mode. An execution error occurs if this command is executed when DIUC List and UIUC List are displayed.

Refer to Section 1.2.3 "Starting measurement and detecting end of measurement" for how to wait for the completion of the measurement

start.

Command

SNGLS

Example of Use

To start measurement in the single mode:

SNGLS

SUBCARR_TTLPEAK?

Subcarrier number at Total EVM (peak)

Function

This command queries the subcarrier number at the peak EVM.

Query

SUBCARR_TTLPEAK?

Response

n

Parameter

n Subcarrier number

Resolution 1

Example of Use

To query the subcarrier number at the peak EVM:

SUBCARR_TTLPEAK?

> 289

SUBCARRINDX/SUBCARRINDX?

Subcarrier Index

Function

This command sets Subcarrier Index for the currently selected screen, and cannot be used when the DL Map Info. screen is selected.

Command

SUBCARRINDX n

Query

SUBCARRINDX?

Response

n

n

Parameter

Subcarrier Index

FFT Size	Screen Name	Range
1024	DL Modulation DL I/Q Received UL Modulation	-512 to +511
	DL Error Vector Spectrum DL Error Vector Time DL Spectral Flatness UL Error Vector Spectrum UL Error Vector Time UL Spectral Flatness	PUSC -420 to -1, 1 to +420 FUSC -425 to -1, 1 to +425 AMC (2x3) -432 to -1, 1 to +432
512	DL Modulation DL I/Q Received UL Modulation	-256 to +255
	DL Error Vector Spectrum DL Error Vector Time DL Spectral Flatness UL Error Vector Spectrum UL Error Vector Time UL Spectral Flatness	PUSC -204 to -1, 1 to +204 FUSC -213 to -1, 1 to +213 AMC (2x3) -216 to -1, 1 to +216

FFT Size	Screen Name	Range
2048	DL Modulation DL I/Q Received UL Modulation	-1024 to +1023
	DL Error Vector Spectrum DL Error Vector Time DL Spectral Flatness UL Error Vector Spectrum UL Error Vector Time UL Spectral Flatness	PUSC -840 to -1, 1 to +840 FUSC -851 to -1, 1 to +851 AMC (2x3) -864 to -1, 1 to +864

Example of Use

To set the Subcarrier Index on the I/Q Received screen to 1:

1: MEAS IQ

2: SUBCARRINDX 1
3: SUBCARRINDX?

> 1

SVPRM

Save Parameter Setting as file

Function

This command saves the settings and statuses of the applications other than the MX269010A into a parameter setting file. For the MX269010A, only the settings related to execution and selection are saved.

Use the SAVE command to save the parameters of the MX269010A.

Command

SVPRM file, device

Parameter

file Target file name

Character string within 32 characters enclosed by double quotation marks ("") or single quotation marks

(' ') (excluding extension)

The following characters cannot be used:

\ / : * ? " " \ / < > |

Named automatically when omitted.

device Drive name

A, B, D, E, F, ...

Set to drive D when omitted.

Example of Use

To save the parameter settings into a file with the file name "TEST" in the internal hard disk:

SVPRM "TEST", D

SYMBOL/SYMBOL?

Symbol

Function

This command sets the number of the symbol to display for the currently

selected DL/UL mode.

Command

SYMBOL n

Query

SYMBOL?

Response

n

Parameter

n Symbol

Range DL: 0 to (Number of the detected symbols -1)

UL: 0 to (Setting value of Num of Symbols - 1)

Resolution 1

Example of Use

To set Symbol to 1 on the DL Modulation screen:

1: MEAS MOD 2: SYMBOL 1

3: SYMBOL?

> 1

SYMBOL_TTLPEAK?

Symbol number at Total EVM (peak)

Function

This command queries the symbol number at the peak EVM.

Query

SYMBOL_TTLPEAK?

Response

n

Parameter

n Symbol number

Resolution 1

Example of Use

To query the symbol number at the peak EVM:

SYMBOL_TTLPEAK?

> 13

SYS/SYS?

Application Switch

Function

This command selects the MX269010A.

Command

SYS WIMAX, window

Query

SYS? WIMAX

Response

status, window

Parameter

window Application window status

ACT Manipulable (Displayed in the foreground)

INACT Not manipulable (Only query)

MIN Minimized (Only query)

NON A window is not displayed (Only query)

When omitted Same as ACT

status Application status

CURRENT Executed and selected as the operation object

RUN Executed but not selected as the operation object

IDLE Loaded but not executed

UNLOAD Not loaded

Example of Use

To switch the operation object to the MX269010A:

1: SYS WIMAX,ACT
2: SYS? WIMAX
> CURRENT,ACT

SYST:LANG/SYST:LANG?

Language Mode

Function

This command sets the language mode of the remote control commands.

Set to Native mode when using the MX269010A.

Command

SYST:LANG mode

Query

SYST: LANG?

Response

mode

Parameter

mode Language mode

NAT Native mode

SCPI SCPI mode

Example of Use

To set the language mode to Native mode:

1: SYST:LANG NAT
2: SYST:LANG?

> NAT

TIMINGERR?

Timing Error

Function

This command queries the result for timing error measurement in the currently selected DL/UL mode. When Trigger Delay is set to Free Run,

-999.00 is returned.

Query

TIMINGERR?

Response

t

Parameter

t Timing Error

Resolution 0.01

Unit Micro seconds

Example of Use

To query the result for timing error:

TIMINGERR?

TRIG/TRIG?

Trigger

Function

This command sets the trigger type.

Command

TRIG mode

Query

TRIG?

Response

mode

Parameter

mode Trigger
FREE Free run
EXT External

SG Marker (option)

Example of Use

To set the external input trigger:

1: TRIG EXT
2: TRIG?
> EXT

TRIGDELAY/TRIGDELAY?

Trigger Delay

Function

This command sets the trigger delay.

Command

TRIGDELAY t

Query

TRIGDELAY?

Response

t

Parameter

t Trigger delay

Range -5000.0 to 5000.0

Resolution 0.1

Unit Micro seconds
Suffix NS, US, MS, S

US is used when omitted.

Example of Use

To set the trigger delay to 5 micro seconds:

1: TRIG EXT

2: TRIGDELAY 5.0
3: TRIGDELAY?

> 5.0

TRIGSLOPE/TRIGSLOPE?

Trigger Slope

Function

This command sets the effective trigger slope (edge).

Command

TRIGSLOPE mode

Query

TRIGSLOPE?

Response

mode

Parameter

mode Trigger slope

RISE Rise FALL Fall

Example of Use

To set the rising edge of the trigger signal as the trigger:

1: TRIG EXT

2: TRIGSLOPE RISE

3: TRIGSLOPE?

> RISE

UIUC/UIUC?

UIUC

Function

This command sets the FEC code to UIUC.

Command

UIUC uiuc, fec

Query

UIUC? uiuc

Response

fec

Parameter

uiuc	UIUC
Range	1 to 4
Resolution	1

fec	FEC code
0	QPSK * CTC * 1/2
1	QPSK * CTC * 3/4
2	16QAM * CTC * 1/2
3	16QAM * CTC * 3/4
4	64QAM * CTC * 1/2
5	64QAM * CTC * 2/3
6	64QAM * CTC * 3/4
7	64QAM * CTC * 5/6

Example of Use

To set the FEC code QPSK * CTC * 1/2 to UIUC 1:

1: UIUC 1,0 2: UIUC? 1

ULBURSTTYPE/ULBURSTTYPE?

Uplink Parameters - Burst Type

Function

This command sets the burst type of the uplink input signals to Normal

burst or Collaborative burst.

Command

ULBURSTTYPE mode

Query

ULBURSTTYPE?

Response

mode

Parameter

 $\begin{array}{cc} \text{mode} & & \text{Burst type} \\ \text{NRM} & & \text{Normal} \end{array}$

CLB Collaborative

Example of Use

To set the burst type to Collaborative:

1: ULBURSTTYPE CLB
2: ULBURSTTYPE?

> CLB

ULDATAPWR?

Uplink Data Subcarrier Power

Function

This command queries the measurement result of Uplink Data

Subcarrier Power.

Query

ULDATAPWR?

Response

1

Parameter

1 Data Subcarrier Power

Resolution 0.01 Unit dBm

Example of Use

To query Uplink Data Subcarrier Power:

ULDATAPWR? > -12.50

ULFRAME/ULFRAME?

Uplink Parameters - Frame Number

Function

This command sets the number of the frame targeted for uplink analysis.

Command

ULFRAME n

Query

ULFRAME?

Response

n

Parameter

n Frame number Range 0 to 16,777,215

Resolution 1

Example of Use

To set the frame number to 0:

1: ULFRAME 0
2: ULFRAME?

ULFRAMESYNC/ULFRAMESYNC?

Uplink Parameters - Frame Sync

Function

This command sets the synchronization method for the frame numbers of

uplink input signals.

Command

ULFRAMESYNC mode

Query

ULFRAMESYNC?

Response

mode

Parameter

mode Frame Sync

AUTO Auto

MANUAL Manual (value set by the Frame Number parameter)

Example of Use

To set Frame Sync to Manual:

1: ULFRAMESYNC MANUAL

2: ULFRAMESYNC?

> MANUAL

ULMODTYPE/ULMODTYPE?

Uplink Parameters - Modulation Type

Function

This command sets the modulation type of the uplink analysis target

burst.

Command

ULMODTYPE uiuc

Query

ULMODTYPE?

Response

uiuc

Parameter

uiuc UIUC

Range 1 to 8 Resolution 1

Example of Use

To set the modulation type to QPSK*CTC*1/2:

1: UIUC 1,0

2: ULMODTYPE 1
3: ULMODTYPE?

ULNULLPWR?

Uplink Null Subcarrier Power

Function

This command queries the measurement result of Uplink Null

Subcarrier Power.

Query

ULNULLPWR?

Response

1

Parameter

Null Subcarrier Power

Resolution 0.01 Unit dB

Example of Use

To query Uplink Null Subcarrier Power:

ULNULLPWR? > -45.00

ULNUMSYMBOL/ULNUMSYMBOL?

Uplink Parameters - Num of Symbols

Function

This command sets Num of Symbols, which is one of the Uplink

Parameters.

Command

ULNUMSYMBOL n

Query

ULNUMSYMBOL?

Response

n

Parameter

n Num of Symbols

Range 3 to 21 – Zone Offset (5 MHz, 10 MHz, 20 MHz)

3 to 18 - Zone Offset (8.75 MHz)

3 to 15 – Zone Offset (3.5 MHz, 7 MHz bandwidth)

Resolution 3

Example of Use

To set Num of Symbols to 6:

1: ULNUMSYMBOL 6
2: ULNUMSYMBOL?

ULPERMBASE/ULPERMBASE?

UL PermBase

Function

This command sets PermBase of the uplink signal to be input.

Command

ULPERMBASE n

Query

ULPERMBASE?

Response

n

Parameter

n Uplink PermBase

Range 0 to 69 Resolution 1

Example of Use

To set Uplink PermBase to 0:

1: ULPERMBASE 0
2: ULPERMBASE?

ULPILOT/ULPILOT?

Uplink Parameters - Pilot Pattern

Function

This command sets Pilot Pattern when the burst type of the uplink input

signals is Collaborative burst.

Command

ULPILOT mode

Query

ULPILOT?

Response

mode

Parameter

mode Pilot Pattern

A Pilot Pattern A

B Pilot Pattern B

Example of Use

To set Pilot Pattern to A:

1: ULPILOT A
2: ULPILOT?

> A

ULPILOTPWR?

Uplink Pilot Subcarrier Power

Function

This command queries the measurement result of Uplink Pilot

Subcarrier Power.

Query

ULPILOTPWR?

Response

1

Parameter

Pilot Subcarrier Power

Resolution 0.01 Unit dB

Example of Use

To query Uplink Pilot Subcarrier Power:

ULPILOTPWR?

> 2.50

ULSUBCHOFS/ULSUBCHOFS?

Uplink Subchannel Offset

Function

This command sets the subchannel offset for uplink measurement in slot units. This parameter must be set when measuring an uplink signal.

Command

ULSUBCHOFS n

Query

ULSUBCHOFS?

Response

n

n

Parameter

Subchannel Offset

Range 0 to the value set for Number of Symbols/n -1

n (Maximum number of subchannels)

	Zone Type		
FFT Size	PUSC	AMC 2x3	
512	17	24	
1024	35	48	
2048	70	96	

Resolution 1

Example of Use

To set Uplink Subchannel Offset to 17:

1: ULSUBCHOFS 17 2: ULSUBCHOFS?

ULZONEOFS/ULZONEOFS?

Uplink Zone Offset

Function

This command sets the Uplink Zone Offset for measurement in symbol

units.

Command

ULZONEOFS n

Query

ULZONEOFS?

Response

n

Parameter

n Zone Offset

Range 0 to N-Num of Symbols

N = 21 (5 MHz, 10 MHz, 20 MHz)

N = 18 (8.75 MHz)

N=15 (3.5 MHz, 7 MHz bandwidth)

Resolution 3

Example of Use

To set Uplink Zone Offset to 0:

1: ULZONEOFS 0
2: ULZONEOFS?

ULZONETYPE/ULZONETYPE?

Uplink Parameters - Zone Type

Function

This command sets the zone type for uplink measurement.

Command

ULZONETYPE mode

Query

ULZONETYPE?

Response

mode

Parameter

 $\begin{array}{ccc} \text{mode} & & \textbf{Zone Type} \\ \text{PUSC} & & \textbf{PUSC} \\ \text{AMC23} & & \textbf{AMC 2x3} \end{array}$

Example of Use

To set PUSC for the zone type.

1: ULZONETYPE PUSC
2: ULZONETYPE?

> PUSC

UNMODSUBCARRERR?

Uplink Unmodulated Subcarrier Error

Function

This command queries the measurement result of Unmodulated

Subcarrier Error.

Query

UNMODSUBCARRERR? unit

Response

1

Parameter

unit Reading unit

PER % dB

1 Unmodulated Subcarrier Error

Resolution 0.01

Unit Unit specified in unit

Example of Use

To query Unmodulated Subcarrier Error:

1: MEAS ULMOD

2: UNMODSUBCARRERR? PER

ZONE?

DL Zone IE

Function

This command queries the measurement result of the currently selected $% \frac{\partial f}{\partial x}$

Zone Index.

Query

ZONE? item

Response

result

Parameter

item Result query item result Measurement result

item	Types of Results	result
PRMT	Permutation	PUSC: PUSC
		FUSC: FUSC
		OTHER: Other
SYMBOFS	Symbol Offset	Decimal, Resolution: 1
SYMBINT	Symbol Interval	Decimal, Resolution: 1
STC	STC / 2/3 antenna select	0: No STC
		1: STC using 2 antennas
		2: Other
MATRIX	Matrix	0: Matrix A
		1: Matrix B
		2: No STC/Other
PERMBASE	DLPermBase	Decimal, Resolution: 1
PILOTPWR	Pilot Subcarrier Power	Unit: dB
DATAPWR	Data Subcarrier Power	Unit: dBm
NULLPWR	Null Subcarrier Power	Unit: dB
PUNCTUREDP	Punctured Pilot Power	Unit: dB
ILOTPWR		
AMCTYPE	AMC Type	0:2x3
		1: Other
		This data is valid if PRMT is OTHER.

Example of Use

To query the symbol offset of Zone 1:

1: ZONEINDX 1
2: ZONE? SYMOFS

ZONEINDX/ZONEINDX?

Zone Index

Function

This command sets Zone Index to be displayed on the DL Map Info. screen. This command is valid only on the DL Map Info. screen.

Command

ZONEINDX n

Query

ZONEINDX?

Response

n

Parameter

n Zone Index

Range 0 to (Number of the detected zones -1)

Resolution 1

Example of Use

To set Zone Index to 0:

1: ZONEINDX 0
2: ZONEINDX?