

NXDN Tx Test Solution

MS2830A Signal Analyzer

MS2830A Signal Analyzer Product Introduction

NXDN Tx Test Solution

NXDN Technical Specifications

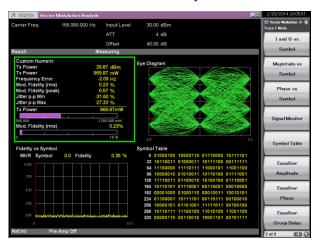
Common Air Interface
NXDN TS 1-A Version 1.3 (Nov 2011)

Common Air Interface Type. D
NXDN TS 2-A Version 1.1 (Mar 2012)

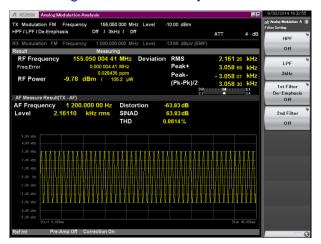
Transceiver Performance Test
NXDN TS 1-E Version 1.1 (Jun 2012)

Note: For details, refer to the NXDN standard.

Version 2.00
Oct. 2014
Anritsu Corporation


[Anritsu] NXDN Tx Test Solution

Tx Evaluation


Multi-functions supported with one unit!

MX269017A Vector Modulation Analysis Software

MX269018A Analog Modulation Analysis Software

[Anritsu] NXDN Tx Test Solution

Note: For details, refer to the NXDN standard.

NXDN TS 2-A	Transmitter test items	Signal Analyzer MS2830A	Other
5.2.1	Transmitter Power		Power Meter
5.2.2	Frequency Error (CW)	$\sqrt{}$	
	Frequency Error (1/3 deviation)	√ 2	
5.2.3	Transmit Behavior	√ 1	
5.2.4	Spectrum Mask	V	
5.2.5	Rediated Spurious Emission	$\sqrt{}$	
5.2.6	Conductive Spurious Emission	$\sqrt{}$	
5.2.7	Adjacent Channel Power Ratio	$\sqrt{}$	
5.2.8	Intermodulation Attenuation	$\sqrt{}$	Signal Generator
5.2.9	Transmitter Attack Time		Power Meter
5.2.10	Maximum Frequency Deviation	√ ²	
5.2.11	1/3 Frequency Deviation	√ ²	
5.2.12	Modulation Accuracy	√ 3	
5.2.13	Modulation Symbol Speed	√ 2	

- 1. Requires MS2830A-006 Analysis Bandwidth 10 MHz for Frequency vs. Time function
- 2. Requires MX269018A Analog Measurement Software with A0086A USB Audio
- 3. Requires MX269017A Vector Modulation Analysis Software with MS2830A-006

Transmitter Power

Note: For details, refer to the NXDN standard.

Measures transmitter power

Limits: (Specified by manufacturer)

Non-modulation State (CW), Standard Modulation State (PN9) or Formatted Modulation State (Form-PN9)

RF Signal

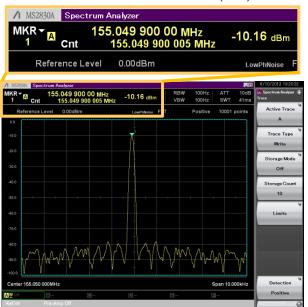
Power Meter

Frequency Error

Note: For details, refer to the NXDN standard.

Measures transmitter transmit frequency deviation

Limits: (Specified by 47 CFR 90.213)

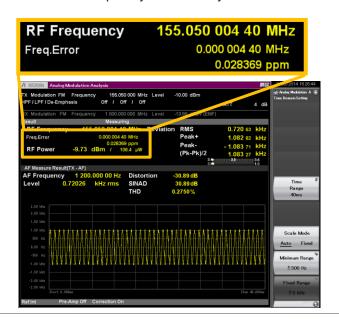


1/3 frequency deviation symbol stream or Non-Modulation State (CW)

RF Signal

Frequency Counter Function [pre-installed]

For Non-Modulation State (CW)



MX269018A

Analog Modulation Analysis Software

For 1/3 frequency deviation symbol stream

Frequency Error

Note: For details, refer to 47 CFR.

§90.213 Frequency stability.

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

MINIMUM FREQUENCY STABILITY

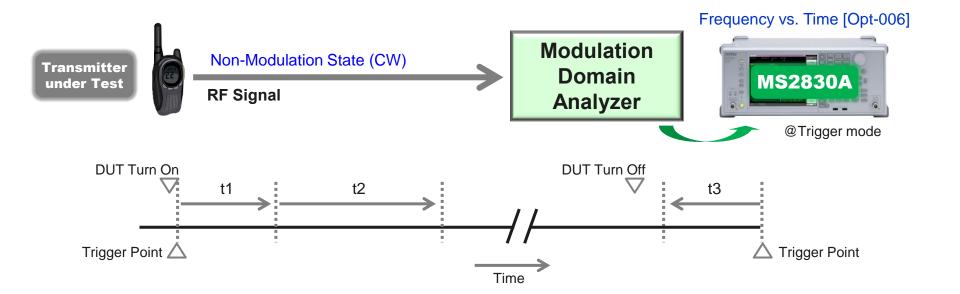
[Parts per million (ppm)]

		Mobile stations		
Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power	
Below 25	100	100	200	
25-50	20	20	50	
72-76	5		50	
150-174	5	5	50	
216-220	1.0		1.0	
220-222	*1 0.1	1.5	1.5	
421-512	2.5	5	5	
806-809	1.0	1.5	1.5	
809-824	1.5	2.5	2.5	
851-854	1.0	1.5	1.5	
854-869	1.5	2.5	2.5	
896-901	*1 0.1	1.5	1.5	
902-928	2.5	2.5	2.5	
902-928	2.5	2.5	2.5	
929-930	1.5			
935-940	*1 0.1	1.5	1.5	
1427-1435	300	300	300	
Above 2450				

^{*1.} Requires "External Reference Clock" or "High Stability Reference Oscillator (Opt.002)"

47CFR: http://www.ecfr.gov/cgi-bin/text-idx?SID=8fbed58a5723510d7268832815998bfb&tpl=/ecfrbrowse/Title47/47cfr90_main_02.tpl

Transient Behavior


Note: For details, refer to the NXDN standard.

Measures deviation of transmit frequency (Maximum Frequency Difference) for specified period when the transmit power switched on or off

Limits:

Time	6.25 kHz Ch. Spacing	Frequency Range (MHz)			
Intervals	12.5 kHz Ch. Spacing	30~174	406~512	806~940	
t1 *	+/- 6.25 kHz	Ema	5		
	+/- 12.5 kHz	5ms	10ms	20ms	
t2	+/- 3.125 kHz	20ms 25ms	20,000	F0::::	
12	+/- 6.25 kHz		25/118	50ms	
t3 *	+/- 6.25 kHz	5ms	10ms	10ma	
ls	+/- 12.5 kHz	51115	TUTTS	10ms	

*If the transmit power rating is ≤6 W, the frequency differences during t1 and t3 are not specified.

Transient Behavior

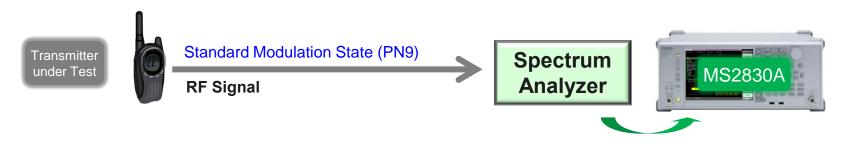
Note: For details, refer to 47 CFR.

§90.214 Transient frequency behavior.

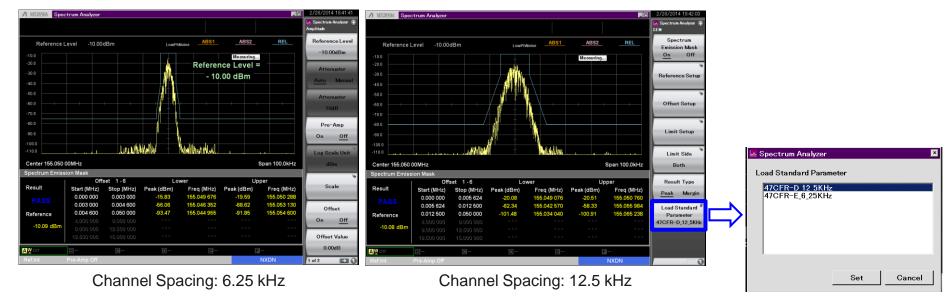
Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated:

	Maximum frequency	All equipment	
Time intervals ^{1 2}	difference ³	150 to 174 MHz	421 to 512 MHz
Transient Frequer	ncy Behavior for Equipm	ent Designed to Operate on 25	kHz Channels
t ₁ ⁴	±25.0 kHz	5.0 ms	10.0 ms
t ₂	±12.5 kHz	20.0 ms	25.0 ms
t ₃ ⁴	±25.0 kHz	5.0 ms	10.0 ms
Transient Frequen	cy Behavior for Equipme	ent Designed to Operate on 12.5	kHz Channels
t ₁ ⁴	±12.5 kHz	5.0 ms	10.0 ms
t ₂	±6.25 kHz	20.0 ms	25.0 ms
t3 ⁴	±12.5 kHz	5.0 ms	10.0 ms
Transient Frequen	cy Behavior for Equipme	ent Designed to Operate on 6.25	kHz Channels
t1 ⁴	±6.25 kHz	5.0 ms	10.0 ms
t ₂	±3.125 kHz	20.0 ms	25.0 ms
t ₃ ⁴	±6.25 kHz	5.0 ms	10.0 ms

- 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing.
 - t1 is the time period immediately following ton.
 - t2 is the time period immediately following t1.
 - t3 is the time period from the instant when the transmitter is turned off until toff.
 - toff is the instant when the 1 kHz test signal starts to rise.
- 2. During the time from the end of t2 to the beginning of t3, the frequency difference must not exceed the limits specified in § 90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is ≤6 W, the frequency difference during this time period may exceed the maximum frequency difference for this time period.



Spectrum Mask


Note: For details, refer to the NXDN standard.

Measures spectrum of emitted modulation signal

Limits: (Specified by 47 CFR 90.210)

Spectrum Emission Mask Function [pre-installed]

Spectrum Mask

Notes: For details, refer to 47 CFR.

§90.210 Emission masks.

APPLICABLE EMISSION MASKS

Frequency band (MHz)	Mask for equipment with audio low pass filter	Mask for equipment without audio low pass filter
Below 25 ¹	A or B	A or C
25-50	В	С
72-76	В	С
150-174 ²	B, D, or E	C, D or E
150 paging only	В	С
220-222	F	F
421-512 ^{2 5}	B, D, or E	C, D, or E
450 paging only	В	G
806-809/851-854	В	Н
809-824/854-869 ^{3 5}	В	G
896-901/935-940	I	J
902-928	K	K
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-5925 ⁴		
All other bands	В	С

^{2.} Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask B or C, as applicable. Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D, and equipment designed to operate with a 6.25 kHz channel bandwidth must meet the requirements of Emission Mask E.

Spectrum Mask

Notes: For details, refer to 47 CFR.

§90.210 Emission masks.

- (d) Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB.
 - (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
 - (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.
- (e) Emission Mask E—6.25 kHz or less channel bandwidth equipment. For transmitters designed to operate with a 6.25 kHz or less bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f0 to 3.0 kHz removed from f0: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 3.0 kHz but no more than 4.6 kHz: At least 30 + 16.67(fd-3 kHz) or 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
 - (3) On any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.
 - (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

Radiated Spurious Emission

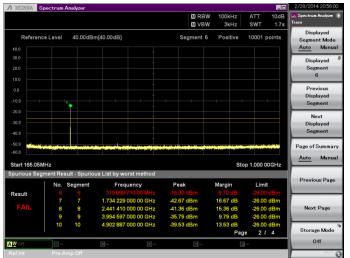
Measures power of spurious signals radiated from chassis when transmitter antenna terminal connected to standard load

Limits: (Specified by 47 CFR 90.210)

Transmitter under Test

Non-Modulation State (CW)

RF Signal


§90.210 Emission masks.

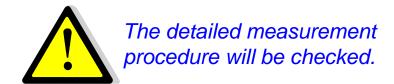
(o) Instrumentation. The reference level for showing compliance with the emission mask shall be established, except as indicated in § § 90.210 (d), (e), and (k), using standard engineering practices for the modulation characteristic used by the equipment under test. When measuring emissions in the 150-174 MHz and 421-512 MHz bands the following procedures will apply. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For frequencies more than 50 kHz removed from the edge of the authorized bandwidth a resolution of at least 100 kHz must be used for frequencies below 1000 MHz. Above 1000 MHz, the resolution bandwidth of the instrumentation must be at least 1 MHz. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, then an alternate procedure may be used provided prior Commission approval is obtained.

Spurious Function [pre-installed]

Note: For details, refer to the NXDN standard.

Note: For details, refer to 47 CFR.


Conductive Spurious Emission

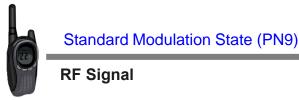

Measures power of spurious signals radiated from transmitter antenna terminal

Limits: (Specified by 47 CFR 90.210)

Note: For details, refer to the NXDN standard.

Notes: For details, refer to 47 CFR.

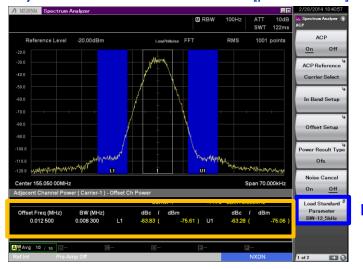
Adjacent Channel Power Ratio


Notes: For details, refer to the NXDN standard.

Measures ratio of total power of transmitter in the standard modulation state to leakage power within bandwidth of adjacent channels

Limits:

Channel Spacing Measurement Bandwidth		Adjacent Channel Power Ratio	
6.25 kHz	4.0 kHz	55dB	
12.5 kHz	8.3 kHz	55dB	



Spectrum Analyzer

Adjacent Channel Power Function [pre-installed]

Load Standard Parameter

BW-12_5kHz
BW-6_25kHz

ie

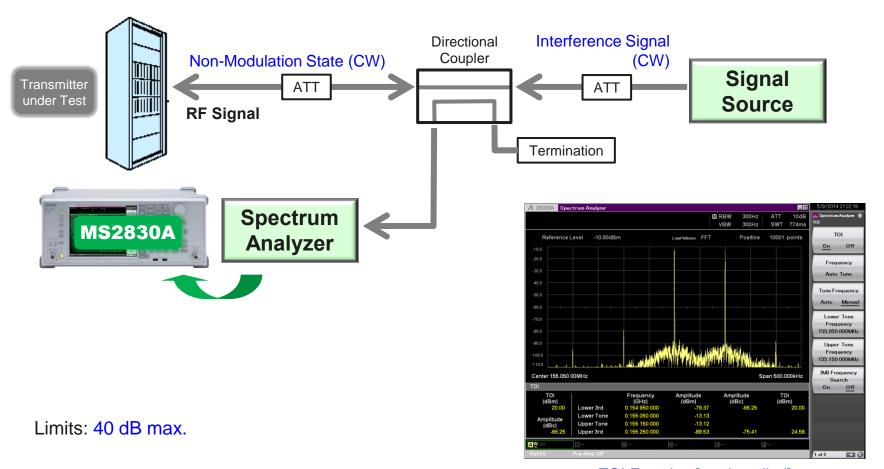
GBM

GBC / GBM

GBC / GBM

-74.06) U1

-54.08 (-75.91)

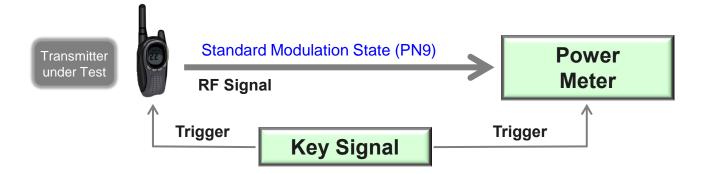

Example: Ch-BW = 12.5 kHz

Intermodulation Attenuation

Note: For details, refer to the NXDN standard.

Measures ability of transmitter to withstand generation of intermodulation components caused by carrier signal and interfering signal entering transmitter antenna of BE (RU).

TOI Function [pre-installed]



Transmitter Attack Time

Note: For details, refer to the NXDN standard.

Measures rise time of transmit power after changing transmitter state from standby to transmit.

Limits: 100 ms max.

Maximum Frequency Deviation

Note: For details, refer to the NXDN standard.

Measures frequency deviation when modulating with maximum frequency deviation symbol stream Set the audio bandwidth of the test receiver so that the high-pass corner frequency is ≤15 Hz and the low-pass corner frequency is ≥3 kHz. Turn the De-emphasis function off.

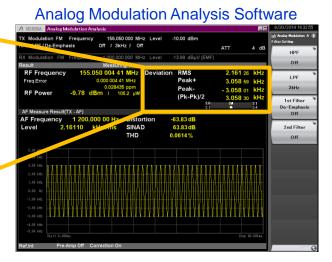
Limits:

Symbol Rate	Maximum Frequency Deviation Limit		
Symbol Rate	Positive Peak (+Peak)	Negative Peak (-Peak)	
2400 sps	1203 Hz to 1471 Hz	-1203 Hz to -1471 Hz	
4800 sps	2750 Hz to 3362 Hz	-2750 Hz to -3362 Hz	

Maximum Frequency
Deviation Symbol Stream

RF Signal

Test Receiver MS2830A


MX269018A

Deviation RMS 2.161 26 kHz

Peak+ 3.058 59 kHz

Peak- - 3.058 01 kHz

(Pk-Pk)/2 3.058 30 kHz

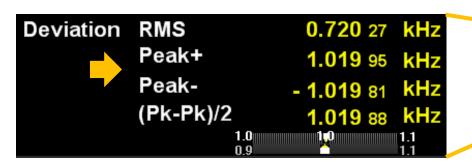
1/3 Frequency Deviation

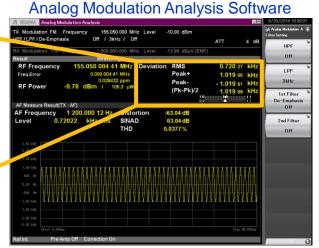
Notes: For details, refer to the NXDN standard.

Measures frequency deviation when modulating with 1/3 frequency deviation symbol stream Set the audio bandwidth of the test receiver so that the high-pass corner frequency is ≤15 Hz and the low-pass corner frequency is ≥3 kHz. Turn the De-emphasis function off.

Limits:

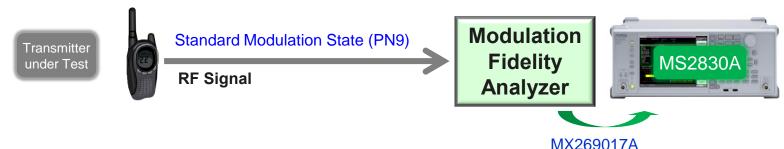
Cymphal Data	1/3 Frequency Deviation Limit		
Symbol Rate	Positive Peak (+Peak)	Negative Peak (-Peak)	
2400 sps	401 Hz to 490 Hz	-401 Hz to -490 Hz	
4800 sps	917 Hz to 1121 Hz	–917 Hz to –1121 Hz	

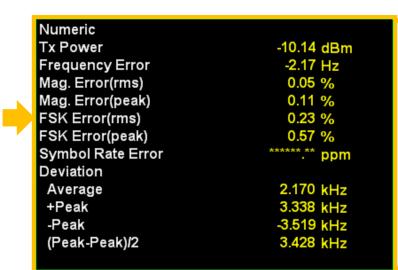



1/3 Frequency Deviation Symbol Stream

RF Signal

MX269018A


Modulation Accuracy

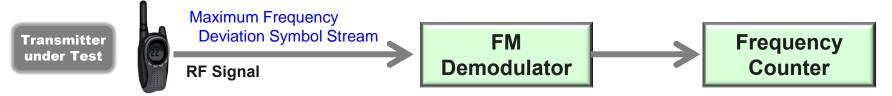

Note: For details, refer to the NXDN standard.

Measures rms FSK error of modulated signal with standard modulation state.

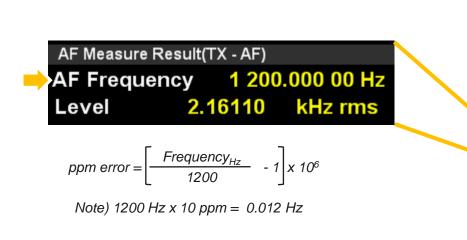
Limits:

Class	Modulation Accuracy		
Α	5%		
В	10%		

| A | Mosson | Vector Modulation Analysis | Carrier Freq. | 155 050 000 Hz | Input Level | -10.00 dBm | ATT | 4 dB | Carrier Freq. | 155 050 000 Hz | Input Level | -10.00 dBm | ATT | 4 dB | Carrier Freq. | -10.14 dBm | Frequency | -10.14 dBm | -10.14 dBm

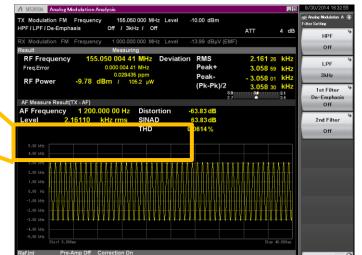

Vector Modulation Analysis Software

Modulation Symbol Speed


Note: For details, refer to the NXDN standard.

Measures accuracy of modulation speed of transmitter.

Limits: within ±10 ppm



MX269018A Analog Modulation Analysis Software

Enable when "Time Range" set to "≥ 21ms".

[Trace] > [F2: Time Domain Setting] > [F4: Time Range]

Ordering Information

Recommended Configuration

Model	Product Name	Recommended Set		
Wodei	Product Name	Basic	Extension	
MS2830A	Signal Analyzer	$\sqrt{}$	√	
MS2830A-040	3.6GHz Signal Analyzer	$\sqrt{}$	V	
MS2830A-002	High Stability Reference Oscillator	V	1	
MS2830A-006	Analysis Bandwidth 10 MHz		V	
MS2830A-066	Low Phase Noise Performance	√	√	
MX269017A	Vector Modulation Analysis Software		√	
MX269018A	Analog Measurement Software		V	
A0086A	USB Audio		√ V	

NXDN	Transmitter test items	MS2	830A	Other
TS 2-A	Transmitter test items	Basic	Extension	Otriei
5.2.1	Transmitter Power			Power Meter
5.2.2	Frequency Error (CW)	V	$\sqrt{}$	
	Frequency Error (1/3 deviation)	$\sqrt{1}$	√ ¹	
5.2.3	Transmit Behavior	√ ¹	√ 1	
5.2.4	Spectrum Mask	√	√	
5.2.5	Rediated Spurious Emission	V	$\sqrt{}$	
5.2.6	Conductive Spurious Emission	√	$\sqrt{}$	
5.2.7	Adjacent Channel Power Ratio	\checkmark	$\sqrt{}$	
5.2.8	Intermodulation Attenuation	V	$\sqrt{}$	Signal Generator
5.2.9	Transmitter Attack Time			Power Meter
5.2.10	Maximum Frequency Deviation	N/A	$\sqrt{2}$	
5.2.11	1/3 Frequency Deviation	N/A	√ 2	
5.2.12	Modulation Accuracy	N/A	√ 3	
5.2.13	Modulation Symbol Speed	N/A	√ 2	

- 1. Requires MS2830A-006 Analysis
 Bandwidth 10 MHz for Frequency vs.
 Time function
- 2. Requires MX269018A Analog Measurement Software with A0086A USB Audio
- Requires MX269017A Vector Modulation Analysis Software with MS2830A-006

Note

United States **Anritsu Company**

1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878

Phone: +1-972-644-1777 Fax: +1-972-671-1877

Canada

Anritsu Electronics Ltd.

700 Silver Seven Road, Suite 120, Kanata. Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brazil

Anritsu Eletrônica Ltda.

Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - São Paulo - SP - Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

Mexico

Anritsu Company, S.A. de C.V.

Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

United Kingdom

Anritsu EMEA Ltd.

200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

• France

Anritsu S.A.

12 avenue du Québec, Bâtiment Iris 1- Silic 612, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Germany Anritsu GmbH

Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

Italy

Anritsu S.r.l.

Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden

Anritsu AB

Kistagången 20B, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

Anritsu AB

Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark

Anritsu A/S

Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

Anritsu EMEA Ltd.

Representation Office in Russia

Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962

United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office

P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

India

Anritsu India Private Limited 2nd & 3rd Floor, #837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Singapore

Anritsu Pte. Ltd.

11 Chang Charn Road, #04-01, Shriro House Singapore 159640 Phone: +65-6282-2400 Fax: +65-6282-2533

• P.R. China (Shanghai)

Anritsu (China) Co., Ltd.

Room 2701-2705, Tower A,
New Caoheiing International Business Center No. 391 Gui Ping Road Shanghai, 200233, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P.R. China (Hong Kong)

Anritsu Company Ltd.
Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza,
No. 1 Science Museum Road, Tsim Sha Tsui East,
Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545

Japan

Anritsu Corporation

8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-1221 Fax: +81-46-296-1238

Korea

Anritsu Corporation, Ltd.

5FL, 235 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

Australia

Anritsu Pty. Ltd.

Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

Taiwan

Anritsu Company Inc.

7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

1404

Please Contact: