The rapid spread of smartphones and tablets together with many new Cloud services in the last decade have led to explosive growth in mobile data traffic. Operators are supporting mobile data traffic growth by increasing the bandwidth of mobile communications networks. This has been an important driver for a complete change in mobile communications systems with the adoption of the Centralized-Radio Access Networks (C-RAN), sometimes called Cloud-Radio Access Networks. Another important driver for operators has been reducing network running costs.

Using C-RAN, the mobile fronthaul is configured with centralized Base Band Units (BBU) controlling multiple, distributed Remote Radio Head (RRH) units at antenna sites. BBUs and RRHs are connected via general-purpose interfaces, most commonly the Common Public Radio Interface (CPRI), or in some cases the Open Base Station Architecture Initiative (OBSAI).

Introduction

Removing BBUs from antenna sites reduces operators' costs for renting space and power to the equipment at the antenna site, etc. However, locating BBUs some distance from RRHs requires a reliable connection, which is provided by C-RAN.

The CPRI running over C-RAN has two main layers:
- **Layer 1**: Provides physical transport
- **Layer 2**: Has several areas; the L1 In-band Protocol area is important in Layer 2. Understanding the L1 In-band Protocol area allows the operator to troubleshoot alarms and errors
CPRI Specification V6.0 defines the sequence of actions to be performed by two devices connected via a CPRI link. When both devices are in the Operation state or in the Passive Link state, the link is in normal operation. This is shown in Figure 30: Start-up states and transitions in the CPRI specification. This document uses a simplified version of the start-up process.

In the CPRI, a BBU is called REC, and an RRH is called RE.

(Figure 1 in CPRI Specification V6.0)

CPRI and OBSAI Bit Rates

<table>
<thead>
<tr>
<th>Option</th>
<th>Bit Rate (Mbps)</th>
<th>Line Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>614.4</td>
<td>8B/10B</td>
</tr>
<tr>
<td>2</td>
<td>1,228.8</td>
<td>8B/10B</td>
</tr>
<tr>
<td>3</td>
<td>2,457.6</td>
<td>8B/10B</td>
</tr>
<tr>
<td>4</td>
<td>3,072.0</td>
<td>8B/10B</td>
</tr>
<tr>
<td>5</td>
<td>4,915.2</td>
<td>8B/10B</td>
</tr>
<tr>
<td>6</td>
<td>6,144.0</td>
<td>8B/10B</td>
</tr>
<tr>
<td>7</td>
<td>9,830.4</td>
<td>8B/10B</td>
</tr>
<tr>
<td>8</td>
<td>10,137.6</td>
<td>64B/66B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Bit Rate (Mbps)</th>
<th>Line Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>768</td>
<td>8B/10B</td>
</tr>
<tr>
<td></td>
<td>1536</td>
<td>8B/10B</td>
</tr>
<tr>
<td></td>
<td>3072</td>
<td>8B/10B</td>
</tr>
<tr>
<td></td>
<td>6144</td>
<td>8B/10B</td>
</tr>
</tbody>
</table>

Applications

During recent CPRI installations, many operators have found that up to 80% of CPRI turn-up issues occur in the lowest layers. Therefore, during installation, it is essential to confirm that the RRH/RE can communicate to ground even when the BBU/REC has not yet been installed. This includes:

- Confirming the RRH/RE can connect to the Passive Link state as per the CPRI standard. (See the figure above: "Extract from Figure 30 in CPRI Specification V6.0: Start-up states and transitions").
- Confirming that connection including the HDLC layer within the Layer-2 network is connecting correctly to the C&M Plane.

When these two are functioning correctly, the first phase (often considered the most important and most expensive) can be confirmed before installing the BBU/REC at the second phase.
CPRI/OBSAI Test Cases

Test case 1
In this case, the physical line between REC(s) and RE(s) is tested during the installation phase, before connection of the actual network equipment (RECs and REs). The line can be optical, carried over a radio link or microwave link or the line can be CPRI over OTN. In any case, the instrument is connected via the optical interface to the link.

- Terminate both sides of the transmission line. Typical tests in this case are:
 - BER test (Framed or unframed). One side could be in loopback.
 - Delay measurement with one side in loopback.

Test case 2
In this case, the network equipment (RECs and REs) are tested during the installation phase.

- Connect to the actual equipment. Typical tests in this case are:
 - Frequency measurement
 - Monitor control word K30.7 (indicates error in 8B/10B line code) and monitor 8B/10B Line Code Violations (LCV) (CPRI option 1-7 only)
 - Equipment behavior check:
 - Check that the equipment can reach the “Passive Link” state
 - Check the equipment behavior when alarms are generated

Test case 3
In this case, the C-RAN behavior is tested during the installation phase or later for in-service troubleshooting of the system.

- Monitor the actual line between REC (Radio Equipment Control) - (master) and RE (Radio Equipment) - (slave)
 - Utilizing dual port in Pass-through mode or monitor with optical splitters (tabs) on the CPRI link
 - Monitor interactive behavior of equipment

MT1000A and MT1100A CPRI Wire Line Testing

The MT1000A and MT1100A help installers:

- Confirm the RRH/RE is powered-up correctly
- Confirm the fibers are connected correctly
- Verify that the correct wavelength SFP/SFP+ modules are installed
- Verify that the SFP/SFP+ modules support the rate configured
- Confirm the optical connector condition and cleanliness using the Video Inspection Probe (VIP)
- Confirm the link has no excess loss from the RRH/RE to the BBU/REC (or MT1000A/MT1100A) location – levels at this side can also be measured using the MT1000A/MT1100A
- Confirm the RRH/RE can connect to the lower communications layers, including the C&M channels
 - This is testing up to the Passive state as per the CPRI standard.
 - This is essential because it proves the RRH/RE is working and confirms the communication configuration settings (i.e. line rate, HDLC rate, etc.).
 - This completes testing to confirm the BBU/REC can be installed without issues.
 - Any issue above the Passive state layer is within the proprietary areas of the CPRI protocol.
The MT1000A and MT1100A support CPRI interface rate Option 1 (614.4 Mbit/s) to Option 8 (10.1376 Gbit/s). This ensures testing of both current and future CPRI interfaces.

Combining testing at any rate and the ability to exercise the REC (BBU) or RE (RRH) up to the Passive link state (as per the latest CPRI standard) with monitoring in Pass-through mode offers a complete solution for detailed installation and maintenance testing.

Displaying the signal level and bit rate gives first verification of the received-signal condition.

Using the Video Inspection Probe (VIP) to check the fiber endface confirms quality practices are being followed and removes a key point of turn-up failure.

Dirty endface as seen with the VIP. Using the Table View, you can identify “defects” or “scratches” on the end of the fiber.

Endface after cleaning as seen with the VIP. The automatic pass/fail determination is made in accordance with the IEC61300-3-35 standard.

Checking for and inserting Layer-2 Alarms and Errors from the REC (BBU) to the RE (RRH) using the MT1000A and MT1100A ensures that engineers can complete advanced troubleshooting and evaluate the root cause of any issue.
When a test is activated, the MT1000A and MT1100A display valuable results:

- Summary screen with pattern error information and survey of result pages
- Alarms/Errors screen with details of detected CPRI alarms and errors
- CPRI Frames screen with counts of received and sent frames and code words
- Delay screen showing measured Round Trip Delay
- Color coding highlights detected alarms and errors

CPRI over OTN

Several vendors are working on CPRI over Optical Transport Network (OTN) solutions supporting transport of the raw radio (CPRI) data from the RE over optical fiber to a centralized location for baseband processing.

- A single location can serve multiple REs.
- This level of consolidation has huge power and cost savings over the distributed approach without impacting network scalability.

OTN supports transport of several protocols over the same fiber, offering OTN operators fault management, performance monitoring, and protection mechanisms coupled with low cost-of-entry and the ability to support current, future, and legacy infrastructure technologies. OTN operators also enjoy the advantage of using the same network-wide management system.

The MT1000A and MT1100A support tests of CPRI over OTN, allowing users to test the latest CPRI implementations.

For more information on OTN please refer to the Anritsu white papers and application notes on OTN.

CPRI/OBSAI Product Features

- **CPRI/OBSAI L1 Test**
 - Supported bit rates
 - CPRI: 614.4, 1228.8, 2457.6, 3072.0, 4915.2, 6144.0, 9830.4, 10137.6 Mbps
 - OBSAI: 768, 1536, 3072.0, 6144.0 Mbps
 - Clocks: Internal, External (10 MHz), GPS
 - Level measurement (dBm)
 - Bit rate (bps) and deviation (ppm) measurement
 - Alarm/Error detection (Signal Loss, PSL, Pattern Error)
 - Unframed BER measurement
- **CPRI L2 Test**
 - Link status monitoring
 - Alarm/Error detection (Signal Loss, LOS, LOF, R-LOS, R-LOF, RAI, SDI, Reset, PSL, LCV, INVSH, Pattern Error)
 - Framed BER measurement
 - RTD Measurement (min, avg, max)
- **Pass-through monitoring**
- **CPRI over OTN**
 - OTN Alarm/Error detection
 - L1 Unframed BER measurement using CPRI client signals
- **Fiber endface inspection using VIP (Video Inspection Probe)**

Summary

The mobile fronthaul test functions of the Network Master Pro MT1000A and Network Master Flex MT1100A support comprehensive testing and analysis of CPRI and OBSAI technologies. They can identify problems in the mobile fronthaul rapidly, solve issues quickly, reduce system downtime and customer churn, and cut operating costs for mobile operators.
Ordering Information

MT1000A

<table>
<thead>
<tr>
<th>Mainframe</th>
<th>Test Module</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A</td>
<td>MU10010A</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
</tr>
<tr>
<td></td>
<td>MU100010A-071 CPRI Up to 5G Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-072 CPRI 6G to 10G Single Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-073 CPRI 6G to 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-051 OTN 10G Single Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-052 OTN 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-061 ODU Multiplexing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100010A-062 ODU Flex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-071 CPRI/OBSAI Up to 10G Single Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-072 CPRI/OBSAI Up to 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-001 Up to 10G Signal Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-003 Up to 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-053 OTN 40G Single Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-055 OTN 100G Single Channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-062 ODU Flex</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU100011A-063 ODU Multiplexing/Multi Stage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G0306B Video Inspection Probe</td>
<td></td>
</tr>
</tbody>
</table>

MT1100A

<table>
<thead>
<tr>
<th>Mainframe</th>
<th>Test Modules</th>
<th>Power Supply Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1100A</td>
<td>MU110010A</td>
<td>MU110001A Power Supply Module AC/DC</td>
</tr>
<tr>
<td></td>
<td>MU110011A</td>
<td>MU110002A High Power Supply Module AC</td>
</tr>
<tr>
<td></td>
<td>MU110013A</td>
<td></td>
</tr>
</tbody>
</table>

Options:
- MU110010A-001 Up to 2.7G Dual Channel
- MU110010A-071 CPRI Up to 5G Dual Channel
- MU110010A-072 CPRI 6G to 10G Single Channel
- MU110010A-073 CPRI 6G to 10G Dual Channel
- MU110010A-051 OTN 10G Single Channel
- MU110010A-052 OTN 10G Dual Channel
- MU110010A-061 ODU Multiplexing
- MU110010A-062 ODU Flex
- MU110011A-071 CPRI/OBSAI Up to 10G Single Channel
- MU110011A-072 CPRI/OBSAI Up to 10G Dual Channel
- MU110011A-001 Up to 10G Signal Channel
- MU110011A-003 Up to 10G Dual Channel
- MU110011A-053 OTN 40G Single Channel
- MU110011A-055 OTN 100G Single Channel
- MU110011A-062 ODU Flex
- MU110011A-063 ODU Multiplexing/Multi Stage
- G0306B Video Inspection Probe

*MT1000A-006 is required for MU100011A.

Note: Screen shots in this application note are made using the MT1000A. The MT1100A has similar screens.