How To Create Scenarios

Network Master Pro MT1000A
Network Master Flex MT1100A
Scenario Edit Environment Kit (SEEK) MX100003A

Contents

1 Introduction .. 2
 1.1 ABOUT THIS NOTE ... 2
 1.2 DIFFICULTY OF SCENARIO CREATION .. 2

2 Considerations for Creating Scenarios .. 4
 2.1 TESTING MANAGER AND TESTING FIELD TECHNICIAN .. 4
 2.2 PREPARING FOR CREATING SCENARIOS .. 4
 2.3 HANDLING VARIABLE PARAMETERS AND THRESHOLD VALUES ... 6
 2.4 UPDATING SCENARIOS .. 7

3 Sample Scenarios ... 8
 3.1 ERROR-FREE COMMUNICATIONS TEST .. 9
 3.2 COMMUNICATIONS TEST WITH ERROR INSERTION ... 13
 3.3 AUTOMATING LONG-TERM CONTINUOUS MEASUREMENT ... 18
 3.4 TESTING CATEGORY 5 CABLE ... 21
1 Introduction

1.1 About This Note

This note describes the procedures and knowledge required for end users to create scenarios to automate tests using the MT1000A and MT1100A (Network Master hereafter). Readers with a good understanding of the contents will be able to create scenarios for controlling the Network Master.

This note explains the following:

・ General procedures and knowledge to prepare for creating and maintaining scenarios
・ Detailed explanations of sample scenarios

This note does not explain the following items; refer to the appended instruction manual for explanation of these items.

• How to operate network master → Refer to MT1000A or MT1100A instruction manual.
• SCPI command reference → Refer to remote scripting instruction manual.
• How to use MX100003A Scenario Editing Kit → Refer to MX100003A instruction manual.
• Scripts syntax and commands reference → Refer to MX100003A instruction manual.

1.2 Difficulty of Scenario Creation

The MX100003A Scenario Editing Kit (SEEK) is a tool to support automating tests. Implementing automatic testing using general measuring instruments without SEEK requires deep knowledge, skills, and experience in the following areas.

・ Knowledge about command-line-based user interfaces called SCPI supported by measuring instruments
・ Knowledge and experience of software programming using languages, such as C/C++, Visual Basic, Python, Ruby, etc.

Using these types of knowledge for programming automation objectives is a strength. Conversely, sections performing and managing testing must secure staff with the necessary software development skills.

The SEEK has been developed to implement automation using a drag and drop GUI without the need for the above-described knowledge and experience. The SEEK GUI is used to create scenarios on-screen based on operation sequences and pass/fail evaluation standards to be automated.

Scenario descriptions are simple to create using general GUI operations, but on the other hand, there may be limits to the descriptions. Descriptions created using programming languages have no limits, but on the other hand, can be extremely hard to use. SEEK eliminates this trade-off by introducing a unique scripting language in addition to GUI operations. It is easy to obtain this scripting language due to its small size. This combination of sequence description using a GUI and scripting language offers users the best balance of both methods.
The necessity to use scripting language when creating scenarios by the SEEK depends on what kind of pass/fail evaluation standards are used. The following table shows the relationship between pass/fail evaluation standards and the difficulty of scenario creation.

Table 1.2-1 Relationship between pass/fail evaluation standards and scenario creation difficulty

<table>
<thead>
<tr>
<th>Pass/fail evaluation standards</th>
<th>Scenario creation difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Master pass/fail evaluation (threshold setting)</td>
<td>No need to use scripting language</td>
</tr>
<tr>
<td></td>
<td>Scenarios created easily using GUI operation only</td>
</tr>
<tr>
<td>Other than above</td>
<td>Requires programming using scripting language</td>
</tr>
<tr>
<td></td>
<td>Difficulty of scenario creation depends on complexity of evaluation standards</td>
</tr>
<tr>
<td></td>
<td>Simple example:</td>
</tr>
<tr>
<td></td>
<td>The difference between the measured maximum and minimum throughput for a frame length of 64 bytes is evaluated as pass if it is 10% or less of the wire rate, but fail under other conditions.</td>
</tr>
<tr>
<td></td>
<td>Complex example:</td>
</tr>
<tr>
<td></td>
<td>If no frame loss is detected at a frame length of 64 bytes, it is evaluated as pass. If frame loss is detected, the frame length is set to 1500 bytes and measurement is performed over. If the frame loss rate result of the second measurement is improved by at least 50% compared to the first measurement, it is evaluated as pass. If this improvement is not achieved, it is evaluated as fail.</td>
</tr>
</tbody>
</table>
2 Considerations for Creating Scenarios

This section explains some general considerations and recommended procedures for creating scenarios.

2.1 Testing Manager and Testing Field Technician

There are two positions to consider when automating tests: the testing manager (in the office), and the field technician onsite. The testing manager (or office) creates the scenarios, while the field technician loads scenarios into the Network Master and runs the field tests. Technicians performing multiple tests can be based at different locations, and sometimes the testing manager and field technician may be the same person.

The role of the testing manager is to create the scenarios and distribute them to the field technicians. Sometimes, following distribution of the scenarios, it may be necessary to change these scenarios due to differences in the network operation policy, and testing environment. In this case, the testing manager must be able to change/revise scenarios and will also have to redistribute them so that field technicians will run the revised scenarios.

This important work requires careful consideration of how the testing manager distributes the completed created test scenarios so that field technicians can perform operations and maintenance. If the testing manager and field technician are located at the same person, this is not a problem.

2.2 Preparing for Creating Scenarios

The first thing to do before creating scenarios is to clearly document the test procedure. For example, it is best to clarify the following four points.

2.2.1 Defining Network Master Initial Conditions at Test Start

To assure measurement repeatability, it is important to define the initial conditions. When the next test is performed under the same conditions which previous test made, if the measurement results change without changing anything about the device/network under the test, it indicates that a problem has occurred.

After defining the initial conditions, set and operate the Network Master under these conditions, which can be saved as a settings or configuration (.cfg) file defining the initial conditions of the Network Master. Loading this
configuration file before the scenario assures testing under the same conditions every time. If no Network Master is available, this settings or configuration file can be created on a PC using the MX100001A software, which can be downloaded free-of-charge from the Anritsu website.

2.2.2 Examining Parameters

What settings cannot be determined at scenario creation? As an example, the IP address of the equipment to which the Network Master will be connected changes at each measurement site and cannot be determined until actual testing starts. Occasionally, a scenario may be created in which all measurement sites have a common fixed IP address, but this usage may change with time.

So how do we examine these variable parameters and clarify the reasons and changes at fault conditions? It is best to consider them from various viewpoints, such as changes with time, changes with location, changes due to unknown factors (accuracy), changes due to test frequency (quarterly measurements, etc.). It is also good to describe items that can change simultaneously.

2.2.3 Visualizing Test Procedure

Visualize the test procedure using a flowchart. It is best to start from powering-up the device to be tested (DUT) and the Network Master. It is important to be clear about manual operation procedures before and after connecting cables. When powering-up equipment before and after connecting cables, there may be differences in the obtained measurement results.

It is important to understand complex flow procedures when there are many alternative conditions. When describing these types of procedure using one scenario, the scenario can become extremely complex, making post-testing maintenance difficult. In these cases, it is better to re-examine the procedure and split the scenario into several scenarios.

2.2.4 Defining Pass/Fail Standards

This section explains the basics of a passing test.

The Network Master has a pass/fail evaluation function using standard counter items. This tutorial first explains use of this function, which simplifies scenario creation. Select “Summary” at the GUI and read section 3.4.7.8 Judge of the MX100003A instruction manual for an explanation.

If the pass/fail evaluation is complex, consider whether it can be simplified. For example, at evaluation when the threshold value is XX when there is a VLAN and YY when there is no VLAN, this scenario can be greatly simplified by splitting into two scenarios one with the VLAN, And one without the VLAN. Or in this case, it may be more efficient for the field technician to perform pass/fail evaluation by eye and omit automatic evaluation. In this latter case, create a scenario to display the message “Confirm XXX is YYY. OK/NG”.

In both these examples, although the scenarios are simple, the field technician has more work to do, increasing the risk of human error. When performing evaluations, it is important to consider the balance between the cost of creating and maintaining the scenario and the operation cost.

Like the previously described test parameters, there are cases where the pass/fail threshold values cannot be decided at scenario creation. In these cases, it is best to document the reasons for the variability and the range.
2.3 Handling Variable Parameters and Threshold Values

As explained previously, sometimes setting parameters and threshold values either cannot be decided at scenario creation, or may change in the future. There are two methods for dealing with these types of variable factors.

(1) Allocating Global Variables

Use the function explained in section 3.4.4 Global Variable of the MX100003A instruction manual. Since, unlike local variables, the value of a global variable can be changed at a Network Master screen, this function makes it unnecessary to update and redistribute scenarios. The changed value is backed-up, so it is saved after restarting the Network Master. It can be locked with a password, preventing the field technician changing it in error.

Use of global variables is convenient when parameter settings change with test site. For example, when the parameter is different between sites A and B, two Network Master units are used—one at each site. In this case, the site-dependent parameters are set in each Network Master, supporting integrated testing at all sites.

There are some precautions regarding global variables; if the same scenarios are re-registered in a Network Master, when the scenario is updated, the values saved in the main frame are initialized. As a result, the last updated value is in error. It is necessary to manage conditions when changing global variables. Refer to section 2.4 Updating Scenarios in this note for how to transfer global variables when updating scenarios.

(2) Questioning Field Technician Running Test Scenarios

One scenario command is use of “Message”. Executing this command while executing a scenario, displays a dialog box on the Network Master screen requesting input by the field technician.

This is convenient if values cannot be decided before the test start date, or if there may be small changes in the values depending on circumstances. However, too many of these input messages increases the work of the field technician, which may increase the chance of operation errors. Consequently, it is better not to use too many Message questions for field technicians.
2.4 Updating Scenarios

Manage scenario updates by including the version number in the scenario name. For example, the first version of a scenario named “Example” would be “Example v00”; when this scenario is upgraded, change the name of the scenario to “Example v01”, and so on with each upgrade.

Register upgraded scenarios in the Network Master main frame. The following screen shows an example when both versions have been registered.

![Fig. 2.4-1 Registering revised scenario]

Before deleting an old version, it may sometimes be necessary to transfer global variables. Use the [Edit] button while the focus is on the old version as shown in the above figure.

![Fig. 2.4-2 Transferring global variables]

Make a note of the displayed global variables and input them to the new version. At this time, it is possible that the structure of the global variables will be different between the new and old versions. The test manager should consider transfer of global variables at scenario update and subsequently distribute the updated scenario.

When transfer of the required global variables is completed, use the [Delete] button to delete the old version. To keep the old version without it being visible, use the [Hide] button to hide it.
3 Sample Scenarios

This section shows the scenario creation process using sample scenarios. Scenario creation can be completed quickly by revising sequences to be automated using these samples as templates.

Sample scenarios can be downloaded from the Anritsu website at the following URL.

These sample scenarios assume use of the MT1000A but can be easily changed for use by the MT1100A. Refer to section 3.4.1 Instrument Configuration in the MX100003A instruction manual for how to use the MT1100A.

<table>
<thead>
<tr>
<th>Title</th>
<th>Outline</th>
<th>Programming Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error-free commissioning test</td>
<td>Confirms network communications. Checks for error-free transmission by looping-back traffic sent from tester at far end</td>
<td>Not required</td>
</tr>
<tr>
<td>Error insertion commissioning test</td>
<td>Confirms network communications. Loops-back traffic sent with inserted errors from tester at far end and confirms errors returned</td>
<td>Required (low difficulty level)</td>
</tr>
<tr>
<td>Automated long-term testing</td>
<td>Automates multiple long-term measurements as one processing sequence</td>
<td>Not required</td>
</tr>
<tr>
<td>Category 5 cable test</td>
<td>Confirms continuity of pulled Category 5 cables</td>
<td>Required (high difficulty level)</td>
</tr>
</tbody>
</table>
3.1 Error-free Communications Test

3.1.1 Test Objective

This test uses a 10-Gbps Ethernet network. The Network Master located at the user side sends traffic to the central exchange. When a specific IP address is specified as the destination, the traffic is looped-back by the central exchange.

![Network configuration at sample scenario commissioning test](image)

3.1.2 SCPI Commands

No SCPI commands are used.

3.1.3 Test Specifications

Network Master Initial Conditions

This sample uses the Ethernet BERT application; after using [Restore Application Defaults] to set the initial conditions, the Ethernet BERT application is launched and the settings are changed as follows. Save the changed settings to a settings file.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Setting] – [Port]</td>
<td>Port</td>
<td>[Off] → [SFP+ 10 Gbps LAN]</td>
</tr>
<tr>
<td>[Setting] – [Stream]</td>
<td>[MAC] – [ARP]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[MAC] – [Default]</td>
<td>No check → Check</td>
</tr>
<tr>
<td>[Test] – [Generator]</td>
<td>[Automatically start traffic generator when test started]</td>
<td>No check → Check</td>
</tr>
<tr>
<td>[Test] – [Stream]</td>
<td>[Frame Size]</td>
<td>[Constant] → [Random]</td>
</tr>
<tr>
<td></td>
<td>[End]</td>
<td>[64] → [1500]</td>
</tr>
<tr>
<td>[Test] – [Thresholds]</td>
<td>[Pattern Errors]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[Sequence Errors]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[Ethernet]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>Type (See Fig. 3.1-2.)</td>
<td>No check → Check</td>
</tr>
</tbody>
</table>
Pass/Fail Evaluation Standards

After completing measurement, a pass evaluation is awarded only when the values for all the following statistics are zero.

Pattern Error, Sequence Error, Fragmented Frames, Undersized Frames, Oversized Frames, FCS Errored Frames, Oversized&FCS Errored Frames, IFG Violations, Preamble Violations

Parameters

The following table shows the parameters used by this sample.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Class/Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src IPv4 Address</td>
<td>Global Variable MY_IP</td>
<td>Network Master IPv4 Address</td>
</tr>
<tr>
<td>Dest IPv4 Address</td>
<td>Global Variable NOC_IP</td>
<td>IP Address for looping-back by central exchange</td>
</tr>
</tbody>
</table>

The following global variables are defined at the MX100003A screen according to this table.

Fig. 3.1-2 Threshold settings screen

Fig. 3.1-3 Global setting changes
Test flowchart
The following shows the match between the test flowchart and the scenario command sequence.

Fig. 3.1-4 Test flowchart

3.1.4 Explanation of Scenario
This section explains the setting contents of each command in line with the test flowchart.

1. Setting Network Master Initial Conditions

Specifies settings file for saving initial conditions settings

Uses two action commands to set IP address specified by global variable at Network Master
2. Connecting Cable and Confirming Link

Displays message for visually confirming link

Specifies instruction screen image created by Power Point,

3. Measuring Every 10 Seconds and Evaluating Results

Selects [Timed] at Test Mode. Set the measurement time below this.

Selects [Summary] at Judge to perform pass/fail evaluation at threshold value setting in Fig. 3.1-2.

4. Creating Report

Using the Save command last saves the measurement results file (*.res) in the same way as saved by using normal screen operation. This measurement file is converted to a report (pdf, xml, csv) when the scenario is completed.

Specifies file name and sets [Generate Report] to On.

When the test evaluation result is Fail, the *.res file file can provide useful clues; we recommend placing the Save command after evaluation for this reason.
3.2 Communications Test with Error Insertion

3.2.1 Test Objective

This test uses a 10-Gbps Ethernet network. The Network Master located at the user side sends traffic to the central exchange. When a specific IP address is specified as the destination, the traffic is looped-back by the central exchange. This sample scenario instructs the Network Master to insert packets including a user signal with bit errors into the traffic which is looped-back and checked for the same bit errors.

![Network configuration for sample scenario commissioning test](image)

3.2.2 SCPI Commands

The following table lists the SCPI commands used by this sample scenario.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHernet:PORT1:STIMuli:EBLength</td>
<td>Sets number of bit errors to insert</td>
</tr>
<tr>
<td>SYSTem:STIMuli:INSert</td>
<td>Inserts bit errors</td>
</tr>
<tr>
<td>ETHernet:PORT1:IFETch? (BPE)</td>
<td>Captures bit error measurement results</td>
</tr>
</tbody>
</table>

3.2.3 Test Specifications

Network Master Initial Conditions

This sample uses the Ethernet BERT application; after initializing the settings using [Restore Application Defaults], the Ethernet BERT is launched and the following settings are changed. Save the changed settings to a settings file.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Setting] - [Port]</td>
<td>Port</td>
<td>[Off] → [SFP+ 10 Gbps LAN]</td>
</tr>
<tr>
<td>[Setting] - [Stream]</td>
<td>[MAC] - [ARP]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[MAC] - [Default]</td>
<td>No check → Check</td>
</tr>
<tr>
<td>[Test] - [Stream]</td>
<td>[Frame Size]</td>
<td>[Constant] → [Random]</td>
</tr>
<tr>
<td></td>
<td>[End]</td>
<td>[64] → [1500]</td>
</tr>
</tbody>
</table>
Fig. 3.2-2 Changing setting contents (continued)

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Test] - [Thresholds]</td>
<td>[Pattern Errors]</td>
<td>No check → Check</td>
</tr>
<tr>
<td>Alarms/Errors/Others</td>
<td>[Errors/Violations]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[Destination]</td>
<td>[Off] → [Manual]</td>
</tr>
<tr>
<td></td>
<td>[Insertion]</td>
<td>[No Error] → [BERT Pattern Error]</td>
</tr>
</tbody>
</table>

Fig. 3.2-2 Settings at Alarms/Errors/Others screen

Pass/Fail Evaluation Standards

After completing measurement, a pass evaluation is awarded only when the bit error count and detected bit error count match.

Parameters

The following table lists the parameters used by this sample scenario.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type/Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src IPv4 Address</td>
<td>Global variable MY_IP</td>
<td>Network Master IPv4 Address</td>
</tr>
<tr>
<td>Dest IPv4 Address</td>
<td>Global variable NOC_IP</td>
<td>IP Address for looping-back by central exchange</td>
</tr>
</tbody>
</table>

The following global variables are defined at the MX100003A screen according to this table.

Fig. 3.2-3 Global variable settings
Test Flowchart

The following shows the match between the test flowchart and the scenario command sequence.

Fig. 3.2-4 Test flowchart

3.2.4 Explanation of Scenario

This section explains the setting contents of each command in line with the test flowchart.

1. Setting Network Master Initial Conditions.

- Specifies settings file for saving initial conditions settings
- Uses two action commands to set IP address specified by global variable at network master
2. Connecting Cable and Confirming Link

- Displays message for visually confirming link
- Specifies instruction screen image created by Power Point,

3. Starting Measurement

- Sets Test Mode to [Manual] and continues measurement until "Measurement Stop" command executed

4. Queries Inserted Bit Error Count and Inserts Errors for That Count

- Defines NUM_OF_ERROR variable to substitute for queried user value and assumes initial condition of 1 for Value
- Since decimal integer, Format is [NUM] and Decimals is 0 with setting range of 1 ~ 255
- Selects [Custom] at Action and describes following script:

 001: EQUAL,"ETHernet:PORT1:STIMuli:EBLength"%NUM_OF_ERROR
 002: EQUAL,"SYSTem:STIMuli:INSert"
 003: WAIT,5000

 Wait processing is required at line 3 of this sample scenario setting to wait for 5 seconds to capture the first measurement result.
5. Stopping Measurement and Evaluating Measurement Result

Selects [Custom] at Judge and describes following script:

```scpi
001:===' GET Pattern Error Bit
002:VAR_STORE,,"ETHernet:PORT1:IFETch? (BPE)",%RESP
003:===' Extract Number of Error bit from Response
004: Response is "(Bit,Rate)" format.
005: Such as "(2,1.31E-12)"
006: Only the first number is interested,
007:SPLIT,%BIT,1,%RESP
008:LOG,"Measured error bit is " %BIT
009:
010:===' Judgement
011:IF,%BIT,==,%NUM_OF_ERROR
012:ELSE, JUDGE_FAIL
```

Line 002
First, saves measurement results to local variable RESP.

Lines 003 ~ 008
Represent measurement results as character string like "(2,1.31E-12)". Extract part indicating bit error count and save to local variable BIT. For confirmation, displays obtained bit error count on screen.

Lines 010 ~ 012
Compare obtained bit error count with the one input by field technician and evaluate as fail if different before finally terminating scenario.
3.3 Automating Long-Term Continuous Measurement

3.3.1 Test Objective

When long-term test taking 8 hours for example has many test runs under different conditions, procedures are required to save measurements, and change the conditions and restart measurement every 8 hours. This sample scenario automates this continuing process to obtain three sets of test results each 24 hours (every 8 hours) without manual intervention. Each test is conducted with different frame size, 64 bytes, 256 bytes and 1518 bytes.

3.3.2 SCPI Commands

No SCPI commands are used.

3.3.3 Test Specifications

Initial Network Master Condition

This sample scenario uses the Ethernet BERT application. After first using [Restore Application Defaults] to set the initial conditions, the Ethernet BERT application is launched and the settings are changed as follows.

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Setting] - [Port]</td>
<td>Port</td>
<td>[Off] → [SFP+ 10 Gbps LAN]</td>
</tr>
<tr>
<td>[Setting] - [Stream]</td>
<td>[MAC] - [ARP]</td>
<td>No check → Check</td>
</tr>
<tr>
<td></td>
<td>[MAC] - [Default]</td>
<td>No check → Check</td>
</tr>
<tr>
<td>[Test] - [Generator]</td>
<td>[Automatically start traffic generator when test started]</td>
<td>No check → Check</td>
</tr>
</tbody>
</table>

After making the above changes, save the settings file as file name Longrun64.cfg and then make the following setting changes.

Table 3.3.1 Changing setting contents (2/3)

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Test] - [Stream]</td>
<td>[Start]</td>
<td>[64] → [256]</td>
</tr>
</tbody>
</table>

After making the above changes, save the settings file as file name Longrun256.cfg and then make the following setting changes.

Table 3.3.1 Changing setting contents (3/3)

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Test] - [Stream]</td>
<td>[Start]</td>
<td>[256] → [1518]</td>
</tr>
</tbody>
</table>

After making the above changes, save the settings file as file name Longrun1518.cfg and then make the following setting changes.
Pass/Fail Evaluation Standards
Only the measurement results are required and there is no pass/fail evaluation; the result is always pass.

Parameters
The following table shows the parameters used by this sample scenario.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Type/Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Src IPv4 Address</td>
<td>Global Variable MY_IP</td>
<td>Network Master IPv4 Address</td>
</tr>
<tr>
<td>Dest IPv4 Address</td>
<td>Global Variable DEST_IP</td>
<td>IPv4 address of traffic destination</td>
</tr>
</tbody>
</table>

The following global variables are defined at the MX100003A screen according to this table.

Fig. 3.3-1 Global Variable Settings

Test Flowchart
The following shows the match between the test flowchart and the scenario command sequence.

Fig. 3.3-1 Test flowchart

In stead of loop, Ethernet BERT application is launched three times.
3.3.4 **Explanation of Scenario**

This section explains the setting contents of each command in line with the test flowchart.

1. **Setting Network Master Initial Conditions**

 ![Diagram of setting network master initial conditions]

 Specifies settings files:
 - Longrun64.cfg
 - Longrun256.cfg
 - Longrun1518.cfg

 for saving settings

 Uses two action commands to set IP address specified by global variable at Network Master

2. **Connecting Cable and Confirming Link**

 This command is placed only in the Ethernet BERT applications started first.

 ![Diagram of connecting cable and confirming link]

 Displays message for visually confirming Link

 Specifies instruction screen image created by Power Point,
3. Measuring for 8 hours and Saving Measurement Results

![Image showing test mode and file name settings]

Selects [Timed] at Test Mode and measurement for 8 hours

Specifies each of Frame_64Byte, Frame_256Byte, and Frame_1518Byte as name of file for saving measurement results

3.4 Testing Category 5 Cable

3.4.1 Test Objective

This test confirms the continuity of Category 5 cable pulls in facilities such as data centers. The Network Master is connected to one end of the cable and a RJ-45 loop-back jack is connected to the other end to loop-back the test signal.

![Diagram showing network configuration]

Fig. 3.4-1 Network configuration for sample scenario commissioning test

The main test procedure flow is outlined below.

1. Measure the cable length using the Cable Test application with the far end open.

2. Measure the cable length again using the Cable Test application with the loop-back jack connected to the far end to loop-back the test signal.

3. Measure the bit error rate with the loop-back jack connected to the far end to loop-back the test signal.
3.4.2 SCPI Commands

The following table lists the SCPI commands used by this sample scenario.

<table>
<thead>
<tr>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHernet:CABLe:RESults:PAIR?<Pr>?</td>
<td>Queries Cable Test Application measurement results</td>
</tr>
<tr>
<td>ETH:STAT:PORT1:LINK?</td>
<td>Queries Ethernet Link status</td>
</tr>
<tr>
<td>ETHernet:PORT1:STReam:PAYLoad</td>
<td>Sets Ethernet sent traffic pattern</td>
</tr>
</tbody>
</table>

3.4.3 Test Specifications

Initial Network Master Condition

This sample scenario uses the Cable Test and Ethernet BERT applications. Since the Cable Test Application has no setting items, it is not necessary to define the initial conditions. After setting the initial condition using [Restore Application Defaults], the Ethernet BERT application is started and the settings are changed as follows. Save the settings to a file after completing the settings.

Table 3.4-2 Changing setting contents

<table>
<thead>
<tr>
<th>Screen</th>
<th>Setting</th>
<th>Setting Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Setting] - [Port]</td>
<td>[Port Setup] - [Interface Type]</td>
<td>Off → Electrical</td>
</tr>
<tr>
<td></td>
<td>[Port Setup] - [Port Mode]</td>
<td>Autonegotiate</td>
</tr>
<tr>
<td></td>
<td>Auto Negotiation Advertisement</td>
<td>1000M FDX only Off; all others On</td>
</tr>
<tr>
<td>[Setting] - [Stream]</td>
<td>Layer 2 (See Fig. 3.4-2.)</td>
<td>Unframed</td>
</tr>
<tr>
<td></td>
<td>Payload Pattern</td>
<td>PRBS31</td>
</tr>
<tr>
<td>[TEST] - [Threshold]</td>
<td>[Pattern Errors]</td>
<td>Off → On</td>
</tr>
<tr>
<td></td>
<td>[Pattern Errors] - [Threshold]</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3.4-2 Settings at Setup-Stream screen
Pass/Fail Evaluation Standards
The test is evaluated as pass only when all the following conditions are satisfied.

1. The measurement results for the four cable pairs are sufficiently similar when the cable length is measured while the far end is open.

2. The measurement results for the same cable pairs are sufficiently similar when the cable length is measured while the far end is open and when shorted by the far-end loop-back jack.

3. The bit-error measurement results are error-free when measured for 1 minute.

Parameters
The following table shows the parameters used by this sample scenario.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type/Variable Name</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Global variable</td>
<td>Variables for measurements result saves</td>
</tr>
<tr>
<td></td>
<td>OPEN_LENGTH1</td>
<td>In this sample scenario, the Cable Test application is launched twice. In these circumstances, it is best to use global variables to transfer data between applications.</td>
</tr>
<tr>
<td></td>
<td>OPEN_LENGTH2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPEN_LENGTH3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPEN_LENGTH4</td>
<td></td>
</tr>
<tr>
<td>Threshold value</td>
<td>Global variable</td>
<td>Pass/Fail evaluation margins</td>
</tr>
<tr>
<td></td>
<td>LENGTH_MARGIN</td>
<td>The results for the lengths of the four cable pairs are evaluated based on the average ± LENGTH_MARGIN.</td>
</tr>
</tbody>
</table>

The global variables are defined as follows at the MX100003A screen according to this table.

Fig. 3.4-3 Settings at Setup-Stream screen

Fig. 3.4-4 Global variable settings
Test Flowchart
The following shows the match between the test flowchart and the scenario.

Fig. 3.4-5 Test flowchart

3.4.4 Explanation of Scenario
This section explains the setting contents of each command in line with the test flowchart.

1. Connecting Cable

Displays message for visually confirming Link

Specifies instruction screen image created by Power Point, etc.
2. Starting Measurement (Open) and Recording Measurement Results

Use ETHernet:CABLE:RESults:PAIR<Pr>? query and save obtained measurement results (lengths for four cable pairs) to each of four local variables %RESP1, %RESP2, %RESP3, and %RESP4, respectively. Pay attention to the blank second column of the VAR_STORE command.

Analyze response string to ETHernet:CABLE:RESults:PAIR<Pr>? query to obtain cable lengths and status, and store them in appropriate variables. Response string to ETHernet:CABLE:RESults:PAIR<Pr>? query composed of three comma-separated measurement values for <status>, <distance>, and <amplitude> in form of "SHRT,20.6,-0.6". Specific measurement values obtained using SPLIT command.

Output log for measurement results to screen using LOG command.
3. Evaluating Measurement Results

Select [Custom] at Judge and describes following script.

```
001: '=== Calculate average length ===
002: COPY,%TOTAL,%OPEN_LENGTH1
003: CALC,%TOTAL,%TOTAL,+,%OPEN_LENGTH1
004: CALC,%TOTAL,%TOTAL,+,%OPEN_LENGTH2
005: CALC,%TOTAL,%TOTAL,+,%OPEN_LENGTH3
006: CALC,%TOTAL,%TOTAL,+,%OPEN_LENGTH4
007: CALC,%AVERAGE,%TOTAL,/,4.000
008: LOG,"Average Length=" %AVERAGE
009:
010: '=== Decide thredold ===
011: CALC,%THRESHOLD_L,%AVERAGE,-,%LENGTH_MARGIN
012: CALC,%THRESHOLD_H,%AVERAGE,+,%LENGTH_MARGIN
013:
014: '===== Status Check ====
015: COPY,%OK_COUNT_S,0
016: IF,%STATUS1,==,"OPEN"
017: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
018: IF,%STATUS2,==,"OPEN"
019: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
020: IF,%STATUS3,==,"OPEN"
021: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
022: IF,%STATUS4,==,"OPEN"
023: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
024:
025: IF,%OK_COUNT_S,==,4
026: THEN,LOG,"All of Statuses are OPEN -> OK", "GREEN"
027: ELSE,LOG,"All of Statuses are not OPEN -> NG", "RED"
028:
029: '===== Length Check ====
030: COPY,%OK_COUNT_L,0
031: IF_EX,"(%OPEN_LENGTH1>=%THRESHOLD_L) && (%OPEN_LENGTH1<=%THRESHOLD_H)"
032: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
033: IF_EX,"(%OPEN_LENGTH2>=%THRESHOLD_L) && (%OPEN_LENGTH2<=%THRESHOLD_H)"
034: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
035: IF_EX,"(%OPEN_LENGTH3>=%THRESHOLD_L) && (%OPEN_LENGTH3<=%THRESHOLD_H)"
036: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
037: IF_EX,"(%OPEN_LENGTH4>=%THRESHOLD_L) && (%OPEN_LENGTH4<=%THRESHOLD_H)"
038: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
039:
040: IF,%OK_COUNT_L,==,4
041: THEN,LOG,"All of length are within margin -> OK", "GREEN"
042: ELSE,LOG,"All of length are out of margin -> NG", "RED"
043:
044: '===== Total Judgement =====
045: IF_EX,"(%OK_COUNT_S == 4) && (%OK_COUNT_L == 4)"
```
The average values are used to evaluate whether the lengths of the four cable pairs are sufficiently similar. Evaluation is performed by examining whether the difference between the average and length of each cable pair is within or outside the permissible margin.

Lines 001 ~ 008
Find average lengths of four cable pairs

Lines 010 ~ 012
Use found average lengths and %LENGTH_MARGIN global variable to calculate pass/fail evaluation high and low limits

Lines 014 ~ 027
Evaluate whether status of four cable pairs is all “OPEN”. Although can use JUDGE_FAIL command here to confirm pass/fail evaluation, in this case, subsequent evaluation processing not performed. In order to perform next evaluation irrespective of whether status pass or fail, evaluation result is counted in %OK_COUNT_S variable (pass when value is 4).

Lines 029 ~ 042
Evaluate whether lengths of four cable pairs within pass range

Lines 044 ~ 046
Overall evaluation

The following color-coded screen is output using the LOG command.

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2016-04-13 20:39:45 *Length: Pair1=0.8 Pair2=0.8 Pair3=0.8 Pair4=0.8</td>
</tr>
<tr>
<td>16</td>
<td>2016-04-13 20:39:45 All of statuses are not SHORE-> NG</td>
</tr>
<tr>
<td>17</td>
<td>2016-04-13 20:39:45 All of length are within margin -> OK</td>
</tr>
</tbody>
</table>

4. Looping-back Far End

Displays message requesting connection of loop-back jack at far end
5. Starting Measurement (Short) and Obtaining Measurement Result

Use ETHernet:CABLe:RESults:PAIR<Pr> query and save obtained measurement results (lengths for four cable pairs) to each of four local variables %RESP1, %RESP2, %RESP3, and %RESP4, respectively. Pay attention to the blank second column of the VAR_STORE command.

Analyze response string to ETHernet:CABLe:RESults:PAIR<Pr> query to obtain cable lengths and status, and store them in appropriate variables. Response string to ETHernet:CABLe:RESults:PAIR<Pr> query composed of three comma-separated measurement values for <status>, <distance>, and <amplitude> in form of "SHRT,20.6,-0.6". Specific measurement values obtained using SPLIT command.

Output log for measurement results to screen using LOG command.
6. Evaluating Measurement results

Selects [Custom] at Judge and describes following script.

```plaintext
001: '==== Status Check ===
002: COPY,%OK_COUNT_S,0
003: IF,%STATUS1,==,"SHRT"
004: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
005: IF,%STATUS2,==,"SHRT"
006: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
007: IF,%STATUS3,==,"SHRT"
008: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
009: IF,%STATUS4,==,"SHRT"
010: THEN,CALC,%OK_COUNT_S,%OK_COUNT_S,+1
011: 012: IF,%OK_COUNT_S,==,4
013: THEN,LOG,"All of Statuses are SHORT-> OK", "GREEN"
014: ELSE,LOG,"All of Statuses are not SHORT-> NG", "RED"
015: 016: '==== Length Check ===
017: COPY,%OK_COUNT_L,0
018: 019: '-- pair 1 ---
020: COPY,%OK_COUNT_L,0.0
021: COPY,%OK_COUNT_H,0.0
022: CALC,%THRESHOLD_L,%OPEN_LENGTH1,-,%LENGTH_MARGIN
023: CALC,%THRESHOLD_H,%OPEN_LENGTH1,+,%LENGTH_MARGIN
024: IF_EX, "(%LENGTH1>=%THRESHOLD_L) && (%LENGTH1<=%THRESHOLD_H)"
025: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
026: LOG,"Threshold1 Low=" %THRESHOLD_L " High=" %THRESHOLD_H
027: 028: '-- pair 2 ---
029: CALC,%THRESHOLD_L,%OPEN_LENGTH2,-,%LENGTH_MARGIN
030: CALC,%THRESHOLD_H,%OPEN_LENGTH2,+,%LENGTH_MARGIN
031: IF_EX, "(%LENGTH2>=%THRESHOLD_L) && (%LENGTH2<=%THRESHOLD_H)"
032: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
033: LOG,"Threshold2 Low=" %THRESHOLD_L " High=" %THRESHOLD_H
034: 035: '-- pair 3 ---
036: CALC,%THRESHOLD_L,%OPEN_LENGTH3,-,%LENGTH_MARGIN
037: CALC,%THRESHOLD_H,%OPEN_LENGTH3,+,%LENGTH_MARGIN
038: IF_EX, "(%LENGTH3>=%THRESHOLD_L) && (%LENGTH3<=%THRESHOLD_H)"
039: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
040: LOG,"Threshold3 Low=" %THRESHOLD_L " High=" %THRESHOLD_H
041: 042: '-- pair 4 ---
043: CALC,%THRESHOLD_L,%OPEN_LENGTH4,-,%LENGTH_MARGIN
044: CALC,%THRESHOLD_H,%OPEN_LENGTH4,+,%LENGTH_MARGIN
045: IF_EX, "(%LENGTH4>=%THRESHOLD_L) && (%LENGTH4<=%THRESHOLD_H)"
046: THEN,CALC,%OK_COUNT_L,%OK_COUNT_L,+1
047: LOG,"Threshold4 Low=" %THRESHOLD_L " High=" %THRESHOLD_H
048: LOG,"OK Count=" %OK_COUNT_L
049: 050: IF,%OK_COUNT_L,==,4
051: THEN,LOG,"All of length are within margin -> OK", "GREEN"
052: ELSE,LOG,"All of length are out of margin -> NG", "RED"
053: 054: '==== Total Judgement ====
055: IF_EX, "(%OK_COUNT_S == 4) && (%OK_COUNT_L == 4)"
056: ELSE, JUDGE_FAIL
```

The length values recorded in the global variables as the previous measurement (open) are used to evaluate whether the lengths of the four cable pairs are sufficiently similar when the far end is shorted by the loop-back jack and when it is open. Evaluation is performed by examining whether the difference between the opened and the shorted lengths is within or outside the permissible margin.

Lines 001 ~ 014
Evaluate whether status of four cable pairs is all “SHRT”. Although can Use JUDGE_FAIL command here to confirm pass/fail evaluation, in this case, subsequent evaluation processing not performed. In order to perform next evaluation irrespective of whether status pass or fail, evaluation result is counted in %OK_COUNT_S variable (pass when value is 4).

Lines 016 ~ 052
Evaluate whether lengths of four cable pairs within pass range

Lines 054 ~ 056
Overall evaluation

7. Setting Network Master Initial Condition for BER Measurement

Selects [Custom] at Judge and describes following script.

001: ‘== Check LINK UP
002: WAIT, 1000
003: VAR_STORE, ,”ETH:STAT:PORT1:LINK?”,%RESP
004:
005: IF, %RESP, ==, 1
006: THEN, LOG, ”ETH [link] OK (”%RESP”),”GREEN
007: ELSE, LOG, ”ETH [link] NG (”%RESP”),”RED
008: ELSE, MESSAGE, ”Link up fail! ¥nCheck cable connection”
009: ELSE, JUDGE_FAIL
100: ELSE, END
101: ENDIF

8. Confirming Link Status

Selects [Custom] at Judge and describes following script.

Line 002
Waits until Link established after completing preceding Load Setup

Line 002
Saves response to ETH:STAT:PORT1:LINK? query in local variable %RESP

Lines 005 ~ 011
Perform evaluation. If no Link established, evaluate as fail and terminate processing
9. Selecting Pattern

Displays dialog to select two choices of user pattern: PRBS23 and PRBS31. Consequently specifies [LIST_STR] at Type. Inputs name change for saving user results at Name. This example uses “PATTERN” for name change.

Input selection list here.

VAR1 list box displays candidate variables. Selects PATTERN variable.

10. Starting Measurement and Evaluating Measurement Results

Selects [Timed] at Test Mode. Sets measurement time below.

Selects [Summary] at Judge to perform pass/fail evaluation at [Threshold] setting set as shown in Fig. 3.4-3.