MP1800A Series
Signal Quality Analyzer
32 Gbit/s Signal Integrity Test Solution
Welcome to a 32-Gbit/s...
Module Configurations for Multi-channel BER and Jitter Measurements

MP1800A Signal Quality Analyzer is a modular BERT with plug-in modules:
- Pulse Pattern Generator (PPG) supporting high quality output and high amplitude signals
- Error Detector (ED) with high input sensitivity and internal Clock Recovery supporting signal analysis, such as Bathhtub and Eye Diagram measurements
- Jitter Modulation Source for generating various types of jitter, such as SJ/RJ/BUJ/SSC, and supporting Jitter Tolerance tests

Wideband bit rates from up to 32.1 Gbit/s

High sensitivity ED 10 mV (typ.) (Single-ended, Eye Height)

Up to 8 ch Multi-channel synchronized pattern generation and simultaneous BER analysis

Clock Recovery 2.4 Gbit/s to 28.1 Gbit/s 25.5 Gbit/s to 32.1 Gbit/s

Versatile signal integrity measurement functions
- 32.1 Gbit/s Jitter Tolerance tests SJ = 1 UI (fm: 250 MHz) (using MU16150B, supports RJ/SJ/BUJ/SSC generation)
- Half Period Jitter (F/2 Jitter) Generation
- 4Tap Emphasis signal generation up to 32.1 Gbit/s (using MP1625B)
- Crosstalk testing with independent variable data skew per channel
- Internal Clock Recovery up to 32.1 Gbit/s

Excellent signal quality and Rx sensitivity
- 10 mV high input sensitivity Error Detector (ED)
- Low-jitter, High-quality waveforms
- Up to 3.5 Vp-p output amplitude enables direct-drive EML
- PAM4/PAM8 Signal Generation (using MU1634/A/MU1635A)
- PAM4 BER Measurement

Data patterns for various applications
- DQPSK, DP-QPSK Pre-coding
- Burst Signal tests
- Programmable data patterns up to 256 Mbit/channel CJTAT, CJFAT, K29.5, etc.
- PAM4 PRBS
- PCI Express, USB, Thunderbolt Compliance Test

MP1800A Series
Covers Wide Range of Bandwidths and Channels

Anritsu Signal Integrity Test Solution for Every Need

Adding the 32 Gbit/s module to the MP1800A Signal Quality Analyzer supports evaluation of the physical layer for optical modules and high-speed interconnects up to 32.1 Gbit/s. Combined installation with the synthesizer and Jitter modules supports a test environment without external signal generator. Moreover, powerful signal integrity tests at up to 32.1 Gbit/s are supported by linked operation with the MP1825B 4Tap Emphasis, MZ1834A/B 4PAM Converter, MZ1838A 8PAM Converter, G0374A 64Gbaud PAM4 DAC, G0375A 32Gbaud Power PAM4 Converter and G0376A 32Gbaud PAM4 Decoder with CTLE. In addition, bit rates are supported down to 0.1 Gbit/s by changing modules as well as up to 64 Gbit/s by connecting an external MUX/DEMUX (MP1861A/MP1862A).

POINT

1. Supports up to NRZ 8 channels and PAM4 4 channels in 32Gbaud Band
 The 4ch PPG and 4ch ED synthesizer configuration supports all-in-one evaluation of 4ch TRx devices, cutting total costs and saving space.

2. Signal Integrity Analysis using Jitter, Clock Recovery, Data Delay and 4Tap Emphasis
 Jitter generation, Crosstalk tests using Data Delay, and Emphasis generation are essential tools at signal integrity analysis of high-speed interconnects. As the ideal solution, the all-in-one MP1800A supports a 2ch PPG and 2ch ED configuration with Jitter modulator, synthesizer, and individual variable delay functions, while linked operation with the compact MP1825B 4Tap Emphasis gets as close as possible to the DUT.
Features

Synchronization up to 8ch
Due to the modular platform design, the PPG/ED modules can be configured with various other modules to configure custom systems. The number of channels per 28G/32G PPG/ED module can be selected from 1, 2, or 4 and PPG/ED modules can be installed to support up to 8ch. Moreover, since each channel pattern can be synchronized, D/A converters, MUX/DEMUX, crosstalk, and skew tolerance can be evaluated.

Low-jitter, High-quality Waveform
The PPG module supports low-jitter and high-quality waveforms. The output amplitude can be customized to application needs.

- Low-jitter: RJ 300 fs rms (typ.)
- Total RMS Jitter 700 fs rms (typ.)
- High amplitude: 0.5 Vp-p to 3.5 Vp-p

High Sensitivity Error Detector (ED)
MU183040B/MU183041B 28 G/32 Gbit/s High Sensitivity ED extends the performance of the earlier A-type ED to offer world’s best Rx sensitivity* with the world’s fastest Auto Adjust* (auto-align of threshold level and phase points).
The MU183040B/41B supports simultaneous multichannel measurements of low-amplitude, low Eye Opening DUTs such as Highs Speed Backplane devices and Active Optical Cable (AOC) to achieve more-accurate, ideal signal quality analysis.

- Eye Amplitude Sensitivity:
 - 15 mVp-p (typ.) (28.1 Gbit/s, Single-end)
 - ≤25 mVp-p (28.1 Gbit/s, Single-end)
- Eye Height Sensitivity:
 - 10 mVp-p (typ.) (28.1 Gbit/s, Single-end)

*As of September, 2013

Passive Equalizer
In high speed serial transmission such as 28 Gbit/s, transmission losses of printed-circuits boards causes the Eye Opening to become narrower.
The J1621A and J1622A Passive Linear Equalizers can be connected to the ED to compensate for PCB trace losses and improve the Eye Opening. Combination with the MU183040B/MU183041B High Sensitivity ED supports Jitter Tolerance tests of PHY devices with a narrow Eye Opening.

Clock Recovery
Internal Clock Recovery option can be installed in to MU183040B/41B. Physical layer (PHY) devices, such as SERDES, sometimes have different Tx and Rx Clock systems and Clock Recovery is required at the Error Detector for jitter tolerance tests. Additionally, since transmission using Multi-Mode Fiber (MMF) causes generation of jitter and wander components in the Rx module, Clock Recovery at the Error Detector is similarly required.

Installing this Clock Recovery option supports stress jitter tolerance tests of PHY devices with different Tx and Rx clocks, BER measurements of AOC devices, and simultaneous multichannel measurements, offering even more accurate and ideal signal integrity analyses.
SJ, RJ, BUJ, SSC and Half Period Jitter (F/2 Jitter) Generation

The MU181500B Jitter Modulation Source generates wide-amplitude SJ up to 1 UI at a Jitter Frequency of 250 MHz and a maximum 2000 UI, ensuring sufficient margin for receiver Jitter Tolerance tests. Additionally, the Intrinsic Jitter of 275 fs rms (nom.)* is extremely low, not only when Jitter modulation is OFF but also when 0 UI is set at Jitter modulation ON, ensuring accurate measurements even at low Jitter amplitudes. The combination of low intrinsic jitter waveform with excellent jitter transparency supports high-accuracy Jitter Tolerance tests. Moreover, simultaneous injection of RJ, BUJ and SSC as well as dual SJ for two-tone supports various Jitter Tolerance tests. Additionally, the MX183000A High-Speed Serial Data Test Software supports multi-mask tables as well as easy mask editing to support next-generation standards.

* Phase noise measurement with using Spectrum Analyzer and 1010...repetition signal.

MU181500B Jitter Modulation Source Setting Screen

MX183000A High-Speed Serial Data Test Software Measurement Screen

28 Gbit/s, PPG Intrinsic RJ rms Using Sampling oscilloscope with 50 GHz bandwidth and <100 fs rms intrinsic jitter

Sinusoidal Jitter (SJ)
Random Jitter (RJ)
Bounded Uncorrelated Jitter (BUJ)
Half Period Jitter (F/2 Jitter)

MP1825B 4Tap Emphasis

MP1800A
PCB Trace
DUT Rx
DUT Tx
Asynchronous Clock

Internal Clock Recovery
Equalizer

PCB Trace
PAM4/PAM8 Signal Generation

Combining the Anritsu MZ1834A/B 4PAM Converter, MZ1838A 8PAM Converter and G0375A 32Gbaud Power PAM4 Converter with the MP1800A Signal Quality Analyzer supports generation of both PAM4 and PAM8 signals for R&D High Speed Backplane and 400 GbE R&D.

The MP1800A high-quality NRZ waveform and wideband passive PAM converter generate high-quality PAM signals with assured S/N.

In addition, combining the MP1800A and 32Gbaud Power PAM4 Converter G0375A supports output of high-amplitude PAM4 signals and independent 3 Eye level control.

- High-amplitude PAM 4ch output
- Wideband 32.1-Gbaud rate
- High quality and low Jitter
- PAM4 Linearity control

Diagram:

- MP1800A 2ch PPG
 - NRZ Data CH1
 - NRZ Data CH2

- MZ1834A/B 4PAM Converter
 - Differential PAM4 Signal

- MP1800A 4ch PPG
 - NRZ Data CH1
 - NRZ Data CH2
 - NRZ Data CH3

- MZ1838A 8PAM Converter
 - Differential PAM8 Signal

- G0375A 32Gbaud Power PAM4 Converter
 - Differential PAM4 Signal

28Gbaud 2.0Vpp (Single-end) : 4.0Vpp (Differential)
True BER Measurement of 32Gbaud PAM4 Signal

BER measurement of PAM4 signals requires accurate measurement of bit error rates in each of three Eye patterns using a 3-ch Error Detector (ED). However, each Eye data pattern must be a programmable pattern due to differences in regular PRBS. Moreover, since 2-bit data is split between three Eye patterns, errors may be counted twice by mistake at simple error measurements for each Eye, so the true BER cannot be measured.

The BER of the three Eye patterns of a PAM4 data signal can be measured simultaneously by combining the K240C Power Divider and K241C Power Splitter with the MU18304xB High-Sensitivity ED. Additionally, the True BER of PAM4 signals can be measured using both the MP1800A long-memory programmable pattern function and the error mask function for removing unwanted errors. In addition, the standard built-in functions support separate BER measurements for each of the Top/Middle/Bottom Eye parts, repeated Auto Search and BER measurements using ED 1ch, and calculation and display of PAM4 total BER results from measured results. Moreover, versatile automatic measurement functions enable easy and efficient testing.

- Auto Search function automatically detects each decision point (both the amplitude and phase) of Upper, Middle and Lower Eye.
- Simultaneous Bathtub Jitter measurement for PAM 3Eyes
- Eye Margin, Eye Diagram and Q-value measurement

*: MP1800A Software Version 7.9 or later.
Eye Height >50 mV at the input of ED is required for PAM4 automatic measurement function.

Moreover, the MSB and LSB can be measured separately, and the BER can be measured in real-time using the high input sensitivity of the 32Gbaud PAM4 Decoder with CTLE G0376A and PAM4 Decode function.

- Baud Rate of 10 to 32.1 Gbaud
- High Input Sensitivity of 40 mV typ. (per Eye, Single-end, G0376A Data input)
- Continuously Variable CTLE Gain of –12 to 0 dB for PAM4 BER Measurement after Adjustment of Eye Opening
- Real-time PAM4 BER Measurement using PAM4 Decoder + 2ch Error Detector
- CDR function (with MU183040B-022)
- Compact Remote Head for Close DUT Measurement (Remote Control between G0376A and MP1800A)

Sampling Measurement of PAM4 Signal at 1ch ED

Moreover, the MSB and LSB can be measured separately, and the BER can be measured in real-time using the high input sensitivity of the 32Gbaud PAM4 Decoder with CTLE G0376A and PAM4 Decode function.

- Baud Rate of 10 to 32.1 Gbaud
- High Input Sensitivity of 40 mV typ. (per Eye, Single-end, G0376A Data input)
- Continuously Variable CTLE Gain of –12 to 0 dB for PAM4 BER Measurement after Adjustment of Eye Opening
- Real-time PAM4 BER Measurement using PAM4 Decoder + 2ch Error Detector
- CDR function (with MU183040B-022)
- Compact Remote Head for Close DUT Measurement (Remote Control between G0376A and MP1800A)
64Gbaud PAM4 BER Measurements

The G0374A 64Gbaud PAM4 DAC has two built-in 64G 2:1 multiplexers for generating 64-Gbaud PAM4 signals simply by using a 32-Gbit/s NRZ signal source (PPG). The compact, all-in-one G0374A connects to the DUT using a Remote Head with short cable to minimize loss and provide high-quality waveform PAM4 signals.

Moreover, BER measurements of PAM4 signals up to 56Gbaud are supported by combining the 56G/64G bit/s DEMUX MP1862A and 32G ED.
4Tap Emphasis

Combined use with the MP1825B 4Tap Emphasis supports generation of pre-emphasis 2- and 3-tap signals for standards up to 32.1 Gbit/s as well as 4-tap signals. The effect of pre-emphasis and de-emphasis can be confirmed accurately because each tap can be changed independently.

Since the MP1825B can be installed as a remote head for the MP1800A close to the Device Under Test (DUT), the shorter cables keeping signal quality high. Accurate Jitter Tolerance tests corrected using pre-emphasis signals are supported by the transparent input data and clock jitter.
Bathtub Jitter
Measures optimum bit error rate based on changes in bit error rate relative to phase margin and performs jitter analysis (TJ, DJ, RJ).

Eye Contour Function
Contours can be estimated quickly up to BER 1E-20 based on the Bathtub estimate. Any of the Upper/Middle/Lower part of the Eye of either NRZ or PAM4 signals can be specified and measured.

Eye Margin
Confirms Data threshold and phase margins.

Q Measurement
Calculates Q-value from bit error rate using change in threshold value. Can be used to check change in Q-value for clock phase.

Crosstalk Test
Independently controls phase for each channel using built-in PPG Data Delay option to examine DUT crosstalk characteristics with excellent accuracy in 1-mUI steps.

Versatile Pattern Generation
- Pseudorandom Patterns (PRBS)
 All PRBS patterns required by standards are supported up to PRBS $2^n - 1$.
 $2^n - 1$ (n = 7, 9, 10, 11, 15, 20, 23, 31)
- Zero Substitution Pattern
 Consecutive 0 s and 1 s patterns can be added to PRBS patterns for Clock Data Recovery (CDR) tolerance tests.
 $2^n, 2^n - 1$ (n = 7, 9, 10, 11, 15, 20, 23)
- Data Pattern
 Patterns required by each application, such as CJTPAT, CJPAT, K28.5 and PAM4 PRBS can be created flexibly.
 256 Mbits/ch max. (Steps: 1 bit)
- Mixed Pattern
 A mixed data and PRBS pattern can be output. At creation of SONET/SDH frames, adding a PRBS $2^{31} - 1$, etc., pattern to the payload supports setting of a continuous pattern across frames.
- Pre-code
 The DQPSK and DP-QPSK pre-code signal generation are supported. Hardware-based generation of modulation signals produces pure PRBS31 signals without pattern length restrictions.
- Burst Signals
 Application evaluation using burst signals, such as optical loop test and transmission test using quantum noise technology are supported.
- PAM4 Pattern
 J03A, J03B, Linearity test pattern, SSPR, PRQS 10, 13, PRBS 13Q, Gray PRBS 13Q.
Multi-channel

Along with support for multi-channels, the bit rate of devices such as backplanes of high-performance servers is becoming increasingly faster. The MP1800A supports generating both the Victim signal with controlling Emphasis and the Aggressor signal for crosstalk testing simultaneously. The MP1800A offers multi-channel measurements for TRx devices such as Transceiver, SERDES and Clock Data Recovery (CDR).

Skew and Crosstalk Effect Check

Processing high speed digital signals requires both logic tests and actual equipment tests. The MP1800A supports both pattern synchronization and phase adjustment functions, permitting easy tests of Rx device skew tolerance and crosstalk effects.

Jitter Tolerance Test

The MU181500B Jitter Modulation Source supports jitter tolerance tests of various standards because it can add SJ (dual tone), RJ, BUJ, and SSC simultaneously at up to 32.1 Gbit/s. The Eye opening of signals passing through the backplane is degraded by loss in the board traces. Due to its high input sensitivity, the MU183040B High Sensitivity Error Detector (ED) can receive data signals with low amplitude and a closed Eye-opening. Moreover, installing the Clock Recovery option supports jitter tolerance measurements of SERDES with different Tx and Rx clocks.

Verifying Emphasis Effect

The MP1825B 4Tap Emphasis is a 4 taps pre-emphasis converter for bit rates up to 32.1 Gbit/s; it supports easy changes to the pre-emphasis waveform amplitude, offset, amplitude of each taps, etc., for effective evaluation of the characteristics of high-speed interfaces below 10 Gbit/s, such as PCIe, USB, and Backplane Ethernet requiring pre-emphasis signals, as well as InfiniBand 26G-IB-EDR, CEI-28G-VSR, 32G FC, etc., in the 30 Gbit/s band.
InfiniBand FDR (14G)/EDR (26G) AOC Evaluation

Simultaneous 8ch (2 × 4ch end-to-end) BER measurement

InfiniBand QSFP-type active optical cables (AOC) support simultaneous transmission for up to 8 channels using 2 × 4ch end-to-end transmission. One MP1800A unit supports up to 8ch (with PPG 8ch, ED 8ch, or PPG 4ch + ED 4ch installed) and all channels can be measured simultaneously using two MP1800A units for fast measurement with high performance.

Jitter Tolerance Test

The MU181500B Jitter Modulation Source supports Jitter Tolerance tests of various standards because it can add SJ (two types), RJ, BUJ, and SSC simultaneously at up to 32.1 Gbit/s. AOC are being used more commonly in data centers due to the need to reduce power consumption as well as decreases in I/O amplitudes. Due to its high input sensitivity, the MU183040B High Sensitivity ED can receive low-amplitude, closed Eye-opening data signals to help cut measurement times to less than 1 second using the Auto Adjust function.

In addition, adding the Clock Recovery option simplifies the measurement system and supports easy jitter tolerance tests.

Crosstalk Effect Check

Processing high-speed digital signals requires both logic tests and actual equipment tests. The MP1800A supports both pattern synchronization and phase adjustment for each channel, permitting easy testing of AOC crosstalk effects.

Bathtub Jitter and Eye Diagram Analysis

The built-in ED Clock Delay function supports Bathtub Jitter (TJ, RJ, DJ) analysis. Low bit error rates of 1E-12, 1E-15, etc., can be estimated quickly from transitions in bit error rate versus phase.

Required Test Items

- Simultaneous 8ch (2 × 4ch end-to-end) BER measurement
- Crosstalk test
- Jitter Tolerance test
- Bathtub Jitter, Eye Diagram analysis

Anritsu MP1800A is recognized to test equipment for IBTA Integrators’ List.
The MP1800A can evaluate EML devices and optical modulators for 100-GbE standardized by IEEE802.3ba using PPG/ED modules supporting bit rates up to 32.1 Gbit/s. 4ch EML devices can be driven independently and simultaneously for accurate evaluation with excellent cost performance.

Optimum Signal Quality for EML Evaluation
EML devices can be direct-driven by the Variable Data Output Function at up to 3.5 Vp-p. The amplitude and crosspoint are easily adjusted on-screen, shortening evaluation times and offering high-reliability evaluation.

Skew and Crosstalk Effect Check
Applications using high-speed digital signals require both logic tests and actual equipment tests. The MP1800A supports both pattern synchronization and phase adjustment functions, permitting easy tests of Rx device skew tolerance and crosstalk effects.

Jitter Tolerance Test
Installing Option-001 Jitter Modulation in the MU181000B 12.5 GHz 4 port Synthesizer supports SJ generation for jitter tolerance tests of CFP2/4 modules. Furthermore, adding the Clock Recovery option simplifies the measurement system for easy jitter tolerance tests.
100 Gbit/s Band DP-QPSK and 40 Gbit/s Band DQPSK Evaluation

2ch/4ch Synchronization Pre-code Signal Generation

The Pre-code function automatically generates 100G DP-QPSK and 40G DQPSK modulation signals for evaluating optical modulators. Hardware-based generation of modulation signals produces pure PRBS31 signals without pattern length restrictions, resulting in high-reliability evaluations using high-load pseudo-random patterns closely approximating real signals.

Skew Effect Check

Processing high-speed digital signals requires both logic tests and actual equipment tests. The MP1800A supports both pattern synchronization and phase adjustment functions, permitting easy tests of Rx device skew tolerance and crosstalk effects.

Optimum High-quality Waveform for MZ-Modulator Evaluation

MZ-Modulator can be direct-driven by the Variable Data Output function at up to 3.5 Vp-p. The amplitude and crosspoint are easily adjusted on-screen, shortening evaluation times and offering high-reliability evaluation.
Required Functions

- Loopback State Setting Function
- Jitter Tolerance Function
- Automatic Receiver Test Function

Supported Standards: PCI Express (1.x/2.0/3.x/4.0)

<table>
<thead>
<tr>
<th>DUT</th>
<th>Link Sequence Generation</th>
<th>Jitter Tolerance Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>When both Common Clock Architecture and DUT Loopback data SSC OFF</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>When both Common Clock Architecture and DUT Loopback data not SSC OFF</td>
<td>Not supported</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Link Sequence Generation

The Link status required for measurement can be configured automatically using the MX183000A and options.

- Controls status of PCI Express Rev 1.x/2.0/3.x/4.0 devices and evaluates Logical Sub Block

Jitter Tolerance Tests

- SJ/RJ required for evaluating PCI Express 4.0 devices can be impressed to support PHY device Jitter tolerance tests.
- Device margins can be verified using low-rate BER estimates.
- Measurement results can be saved as HTML or CSV format reports.

Receiver Test

Calibration and the Jitter Tolerance test can both be automated using the GRL-PCIE4-BASE-RXA software. Automation helps cut design verification times.

* The MG3710A is used at common mode noise and differential mode noise loads.
* The Variable ISI Channel is used at the ISI (Inter Symbol Interference) load test.
USB Device Evaluation Setup

Required Functions

- Loopback State Setting Function
- Jitter Tolerance Function
- Automatic Receiver Test Function

Measurement Item	**Supported Software**
Stressed Signal Calibration | GRL-USB31-RXA
Transition to Loopback State | MX183000A (Option PL012)
Jitter Tolerance Test | MX183000A (Option PL012), GRL-USB31-RXA

Supported Standards: USB (3.0/3.1 Gen1 and Gen2)

<table>
<thead>
<tr>
<th>DUT</th>
<th>Link Sequence Generation</th>
<th>Jitter Tolerance Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Sequence Generation

The Link status required for measurement can be configured automatically using the MX183000A and options.

- The test mode can be transitioned to the Loopback mode required for evaluating USB3.1 Gen1 and Gen2 devices. (MX183000A-PL012)

BER Measurements

The BER of USB3.1 Gen1 and Gen2 devices can be measured from the Link status probability.

Receiver Test

Calibration and the Jitter Tolerance test can both be automated using the GRL-USB31-RXA. Automation helps cut design verification times.
Thunderbolt Device Evaluation Setup

![Diagram of Thunderbolt Device Evaluation Setup]

- The MG3710A is used at common mode noise loads.

Thunderbolt Cable Evaluation Setup

![Diagram of Thunderbolt Cable Evaluation Setup]

Required Functions

- 20 Gbit/s PPG
- Stressed Signal Calibration Function
- Jitter Tolerance Function

<table>
<thead>
<tr>
<th>Measurement Item</th>
<th>Supported Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stressed Signal Calibration</td>
<td>GRL-TBT3-RXA (Thunderbolt 3)</td>
</tr>
<tr>
<td>Jitter Tolerance Test</td>
<td>GRL-TBT3-RXA (Pass/Fail) Evaluation</td>
</tr>
</tbody>
</table>

Supported Standards: Thunderbolt (2/3)

<table>
<thead>
<tr>
<th>DUT</th>
<th>Jitter Tolerance Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Supported</td>
</tr>
<tr>
<td>Device</td>
<td></td>
</tr>
</tbody>
</table>

Supports Thunderbolt 3

Supports Thunderbolt 3 specified bit rates (20G)

Stressed Signal Calibration

GRL Automation Software supports automatic stressed signal calibration as specified by Thunderbolt 3 (USB Type-C Thunderbolt Alternate Mode Electrical Host/Device Compliance Test Specification).

Stressed Signal Input Test

- Supports Rx BER measurements required by Host/Device compliance test
- Supports automatic Rx test using Tenlira scripts
- Supports automatic Pass/Fail measurement for Rx stressed signal tests

Receiver Test

Calibration and the Jitter Tolerance test can both be automated using the GRL-TBT3-RXA software. Automation helps cut design verification times.

* The GRL-PCIE4-BASE-RXA and GRL-TBT3-RXA software are Granite River Labs products.
The PON OLT Upstream test can be performed using one MP1800A and MX180014A 100G EPON Application Software.

Required Functions

- 100G-EPON OLT/ONU BER measurement
- Multichannel synchronization and skew adjustment
- High-reproducibility BER measurement
- Setting 2ch test signal pattern length and timing
- Background pattern editing
 (pattern insertion into non-burst signal part)
Module Panel Layout

- **MU183020A 28G/32G bit/s PPG (1ch or 2ch)**

1. **Data1/XData1 Output**
 - Output for 1ch differential data signal

2. **Data2/XData2 Output**
 - Output for 2ch differential data signal

3. **Gating Output**
 - Output for burst timing signal

4. **Aux Input**
 - Input for auxiliary signal

5. **Aux/XAux Output**
 - Output for differential auxiliary signal

6. **Clock Output**
 - Output for clock signal

7. **Ext Clock Input**
 - Input for external clock signal

- **MU183021A 28G/32G bit/s 4ch PPG**

1. **Data1/XData1 Output**
 - Output for 1ch differential data signal

2. **Data2/XData2 Output**
 - Output for 2ch differential data signal

3. **Data3/XData3 Output**
 - Output for 3ch differential data signal

4. **Data4/XData4 Output**
 - Output for 4ch differential data signal

5. **Gating Output**
 - Output for burst timing signal

6. **Aux Input**
 - Input for auxiliary signal

7. **Aux/XAux Output**
 - Output for differential auxiliary signal

8. **Clock Output**
 - Output for clock signal

9. **Ext Clock Input**
 - Input for external clock signal

- **MU183040B 28G/32G bit/s High Sensitivity ED (1ch or 2ch)**

1. **Data1/XData1 Input**
 - Input for 1ch differential data signal

2. **Data2/XData2 Input**
 - Input for 2ch differential data signal

3. **Aux Input**
 - Input for auxiliary signal

4. **Aux/XAux Output**
 - Output for differential auxiliary signal

5. **Ext Clock Input**
 - Input for external clock signal

- **MU183041B 28G/32G bit/s 4ch High Sensitivity ED**

1. **Data1/XData1 Input**
 - Input for 1ch differential data signal

2. **Data2/XData2 Input**
 - Input for 2ch differential data signal

3. **Data3/XData3 Input**
 - Input for 3ch differential data signal

4. **Data4/XData4 Input**
 - Input for 4ch differential data signal

5. **Aux Input**
 - Input for auxiliary signal

6. **Aux/XAux Output**
 - Output for differential auxiliary signal

7. **Ext Clock Input**
 - Input for external clock signal

*1: Data/XData when 1ch option was selected.
*2: Not implemented when 1ch option was selected.
MU181000B 12.5 GHz 4port Synthesizer

| 1 | 10 MHz Buff Output | 2 | 10 MHz Ref Input | 3 | 100 MHz Ref Input*3 | 4 | Ext I, Q*3 | 5 | Trigger Output*3 | 6 | Jitter Ext Input*3 | 7 | Clock Output 1 to 4 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 MHz Buff Output | Output for 10 MHz reference clock |
| 10 MHz Ref Input | Input for 10 MHz reference clock |
| 100 MHz Ref Input*3 | Input for 100 MHz reference clock |
| Ext I, Q*3 | Input for I, Q signal |
| Trigger Output*3 | Output for 1/64 clock or 1/1 clock |
| Jitter Ext Input*3 | Input for jitter modulation signal |
| Clock Output 1 to 4 | Clock output 1 to 4 |

*3: Only enabled when Jitter Modulation option (MU181000B-001) installed

MU181500B Jitter Modulation Source

<p>| 1 | IQ Output | 2 | Ext Jitter Input | 3 | Sub-rate Clock Output | 4 | Aux Input | 5 | Reference Clock Output | 6 | Jittered Clock Output | 7 | Ext Clock Input |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| IQ Output | Outputs IQ signals |
| Ext Jitter Input | Input for modulation signal source |
| Sub-rate Clock Output | Outputs frequency-divided clock (1/8 to 1/256) based on either of following inputs: |
| Ext Clock Input | Aux Input |
| Reference Clock Output | Outputs two 1/1, 1/2, or 1/4 frequency-divided clocks based on either of following inputs: |
| Ext Clock Input | Aux Input |
| Jittered Clock Output | Outputs two jitter-modulated clock signals |
| Ext Clock Input | Input for external clock |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Model Number</th>
<th>Model Name</th>
<th>28G 1ch Basic</th>
<th>High-speed Interconnects 32G 2ch + Jitter + Emphasis</th>
<th>InfiniBand QSFP 28G 8ch + Jitter</th>
<th>100 GbE/Silicon Photonics 28G 4ch</th>
<th>DP-QPSK 32G 4ch PPG</th>
<th>PAM4</th>
<th>PAM8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Frame</td>
<td>MP1800A</td>
<td>Signal Quality Analyzer</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MP1800A-015</td>
<td>4-slot for PPG and/or ED</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MP1800A-032</td>
<td>32 Gbit/s PPG and/or ED Support</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Synthesizer (Sinusoidal Jitter)</td>
<td>MU181000B</td>
<td>12.5 GHz 4port Synthesizer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jitter Modulator SJ (2-tone)/RJ/BUJ</td>
<td>MU181500B</td>
<td>Jitter Modulation Source</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28G/32G PPG 1ch/2ch</td>
<td>MU183020A</td>
<td>28G/32G bits PPG</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-001</td>
<td>32G bit/s Extension</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-012</td>
<td>1ch 2 V Data Output</td>
<td>1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-013</td>
<td>1ch 3.5 V Data Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-022</td>
<td>2ch 2 V Data Output</td>
<td>1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-023</td>
<td>2ch 3.5 V Data Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-030</td>
<td>1ch Data Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183020A-031</td>
<td>2ch Data Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28G/32G PPG 4ch</td>
<td>MU183021A</td>
<td>28G/32G bits 4ch PPG</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183021A-001</td>
<td>32G bit/s Extension</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183021A-012</td>
<td>4ch 2 V Data Output</td>
<td>2*</td>
<td>1*</td>
<td>1*</td>
<td>1*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183021A-013</td>
<td>4ch 3.5 V Data Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183021A-030</td>
<td>4ch Data Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28G/32G ED 1ch/2ch</td>
<td>MU183040B</td>
<td>28G/32G bits ED</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183040B-001</td>
<td>32G bit/s Extension</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183040B-010</td>
<td>1ch ED</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183040B-020</td>
<td>2ch ED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183040B-022</td>
<td>2.4G to 28.1G bit/s Clock Recovery</td>
<td>1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183040B-023</td>
<td>25.5G to 32.1G bit/s Clock Recovery</td>
<td>1*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28G/32G ED 4ch</td>
<td>MU183041B</td>
<td>28G/32G bits 4ch ED</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183041B-001</td>
<td>32G bit/s Extension</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183041B-022</td>
<td>2.4G to 28.1G bit/s Clock Recovery</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MU183041B-023</td>
<td>25.5G to 32.1G bit/s Clock Recovery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emphasis</td>
<td>MP1825B</td>
<td>4Tap Emphasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-001</td>
<td>14 Gbit/s Operation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-002</td>
<td>28 Gbit/s Operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-003</td>
<td>14 Gbit/s Variable Data Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-004</td>
<td>28 Gbit/s Variable Data Delay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-005</td>
<td>14.1 Gbit/s Extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MP1825B-006</td>
<td>32.1 Gbit/s Extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>MX181500A</td>
<td>Jitter/Noise Tolerance Test Software</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX183000A</td>
<td>High-Speed Serial Data Test Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MX183000A-PL001</td>
<td>Jitter Tolerance Test</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAM Signal Generation</td>
<td>MZ1834A/B</td>
<td>4PAM Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MZ1838A</td>
<td>8PAM Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G0375A</td>
<td>32Gbaud Power PAM4 Converter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAM Signal Measurement</td>
<td>G0376A</td>
<td>32Gbaud PAM4 Decoder with CTLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equalizer</td>
<td>J1621A</td>
<td>Passive Equalizer 3 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J1622A</td>
<td>Passive Equalizer 6 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Select any one
Specifications

<table>
<thead>
<tr>
<th>Bit Rate Setting Range (MU181000B synchronized operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when MU181000B is installed into the same main frame. When Full Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 0.000 001 Gbit/s step 12.500 002 Gbit/s to 25.000 000 Gbit/s, 0.000 002 Gbit/s step 25.000 004 Gbit/s to 32.100 000 Gbit/s, 0.000 004 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s) When Half Rate Clock Output is selected: 2.4 Gbit/s to 25.000 000 Gbit/s, 0.000 002 Gbit/s step 25.000 004 Gbit/s to 32.100 000 Gbit/s, 0.000 004 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit-rate Setting Range (MU181500B synchronized operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when MU181000B and MU181500B are installed to the same main frame. When Full Rate Clock Output is selected: 2.4 Gbit/s to 3.125 000 Gbit/s, 0.000 001 Gbit/s step 3.200 001 Gbit/s to 6.250 000 Gbit/s, 0.000 001 Gbit/s step 6.400 001 Gbit/s to 12.500 000 Gbit/s, 0.000 001 Gbit/s step 12.800 002 Gbit/s to 25.000 000 Gbit/s, 0.000 002 Gbit/s step 25.600 004 Gbit/s to 28.100 000 Gbit/s, 0.000 004 Gbit/s step 25.600 004 Gbit/s to 32.100 000 Gbit/s, 0.000 004 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s) When Half Rate Clock Output is selected: 2.4 Gbit/s to 25.000 000 Gbit/s, 0.000 002 Gbit/s step 25.000 004 Gbit/s to 32.100 000 Gbit/s, 0.000 004 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit-rate Setting Range (with external clock source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when external clock source is used. When Full Rate Clock Output is selected: 2.4 Gbit/s to 16.0 Gbit/s, 2.4 Gbit/s to 15.0 Gbit/s, 7.5 Gbit/s to 10.0 Gbit/s, 2.4 Gbit/s to 28.1 Gbit/s, 25.0 Gbit/s to 32.1 Gbit/s, 0.000 001 Gbit/s step 10.0 Gbit/s to 14.05 Gbit/s, 0.000 002 Gbit/s step 6.25 Gbit/s to 7.025 Gbit/s, 0.000 001 Gbit/s step 6.25 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step 10.0 Gbit/s to 14.05 Gbit/s, 0.000 002 Gbit/s step 6.25 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s) When Half Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 2.4 Gbit/s to 28.1 Gbit/s, 7.5 Gbit/s to 10.0 Gbit/s, 2.4 Gbit/s to 30.0 Gbit/s, 25.0 Gbit/s to 32.1 Gbit/s, 0.000 001 Gbit/s step 10.0 Gbit/s to 14.05 Gbit/s, 0.000 002 Gbit/s step 7.5 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit-rate Setting Range (MU181500B synchronized operation with external clock source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when MU181000B is installed into the same mainframe and external clock source is used. When Full Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 2.4 Gbit/s to 28.1 Gbit/s, 7.5 Gbit/s to 10.0 Gbit/s, 2.4 Gbit/s to 30.0 Gbit/s, 25.0 Gbit/s to 32.1 Gbit/s, 0.000 001 Gbit/s step 10.0 Gbit/s to 14.05 Gbit/s, 0.000 002 Gbit/s step 7.5 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s) When Half Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 2.4 Gbit/s to 28.1 Gbit/s, 7.5 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step 10.0 Gbit/s to 14.05 Gbit/s, 0.000 002 Gbit/s step 7.5 Gbit/s to 8.025 Gbit/s, 0.000 001 Gbit/s step Offset: –1000 ppm to +1000 ppm, 1 ppm step. (Offset setting range is changed depends on Bit-rate. Offset range is –1000 ppm to 0 ppm with following Bit-rate range. Full Rate: 12.500 000 Gbit/s, Half Rate: 25.000 000 Gbit/s)</td>
</tr>
</tbody>
</table>

Bit-rate Setting Range

- **MU183020A** 28G/32G bit/s PPG, **MU183021A** 28G/32G bit/s 4ch PPG

<table>
<thead>
<tr>
<th>Bit Rate Setting Range (MU181000B synchronized operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when MU181000B is installed into the same main frame. When Full Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 2.4 Gbit/s to 32.1 Gbit/s (with Option-x01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit-rate Setting Range (MU181500B synchronized operation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This item is specified when MU181000B and MU181500B are installed to the same mainframe. When Full Rate Clock Output is selected: 2.4 Gbit/s to 28.1 Gbit/s, 2.4 Gbit/s to 32.1 Gbit/s (with Option-x01)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Bit-rate Range</th>
<th>Input Clock Frequency</th>
<th>Bit-rate/Clock Divide Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Gbit/s to 16.0 Gbit/s</td>
<td>2.4 GHz to 16.0 GHz</td>
<td>1/1 Clock</td>
</tr>
<tr>
<td>16.0 Gbit/s to 20.4 Gbit/s</td>
<td>8.0 GHz to 10.2 GHz</td>
<td>1/2 Clock</td>
</tr>
<tr>
<td>20.4 Gbit/s to 28.1 Gbit/s</td>
<td>10.0 GHz to 14.05 GHz</td>
<td>1/2 Clock</td>
</tr>
<tr>
<td>25.0 Gbit/s to 28.1 Gbit/s</td>
<td>6.25 GHz to 7.025 GHz</td>
<td>1/4 Clock</td>
</tr>
<tr>
<td>25.0 Gbit/s to 32.1 Gbit/s</td>
<td>6.25 GHz to 8.025 GHz</td>
<td>1/4 Clock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Bit-rate Range</th>
<th>Input Clock Frequency</th>
<th>Bit-rate/Clock Divide Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Gbit/s to 28.1 Gbit/s</td>
<td>1.2 GHz to 14.05 GHz</td>
<td>1/2 Clock</td>
</tr>
<tr>
<td>2.4 Gbit/s to 32.1 Gbit/s</td>
<td>1.2 GHz to 16.05 GHz</td>
<td>1/2 Clock</td>
</tr>
<tr>
<td>25.0 Gbit/s to 28.1 Gbit/s</td>
<td>6.25 GHz to 7.025 GHz</td>
<td>1/4 Clock</td>
</tr>
<tr>
<td>25.0 Gbit/s to 32.1 Gbit/s</td>
<td>6.25 GHz to 8.025 GHz</td>
<td>1/4 Clock</td>
</tr>
</tbody>
</table>

*1: Up to 28.1 Gbit/s when Option-x01 is not installed.
*2: Option-x01 must be installed.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
</table>
| **External Clock Input** | Number of Input: 1 (Single end)
Frequency: 1.2 GHz to 16.05 GHz*
Amplitude: 0.3 Vp-p to 1.0 Vp-p (~6.5 to +4.0 dBm)
Termination: 50Ω/AC Coupling
Connector: SMA (f.) |
| **Aux Input** | Number of Input: 1 (Single end)
Signal Type: Error Injection, Burst
Minimum Pulse Width: 1/128
Input level: 0/–1 V (H: –0.25 V to 0.05 V, L: –1.1 V to –0.8 V)
Termination: 50Ω/GND
Connector: SMA (f.) |
| **Aux Output** | Number of Output: 2 (Differential)
Signal Type: 1/n Clock (n = 4, 6, 8, 10 · · · 510, 512), Pattern Sync, Burst Out2
Output level: 0/–0.6 V (H: –0.25 V to 0.05 V, L: –0.80 V to –0.45 V)
Termination: 50Ω/GND
Connector: SMA (f.) |
| **Gating Output** | Burst, Repeat Timing Signal
Output level: 0/–1 V (H: –0.25 V to 0.05 V, L: –1.25 V to –0.8 V)
Termination: 50Ω/GND
Connector: SMA (f.) |
| **Pattern Generation** | PRBS
- Pattern length: 2^n – 1 (n = 7, 9, 10, 11, 15, 20, 23, 31)
- Mark ratio: 1/2 (1/2INV is supported by a logic inversion)
Zero-Substitution:
- Pattern with continuous 0 s appended to M-sequence signal + 1 bit
- Pattern: 2^n or 2^n – 1 (n = 7, 9, 10, 11, 15, 20, 23)
0 continuous substitution count: 1 to (pattern length – 1) bits
0 at next bit after 0 substitution changed to 1
Data
- Data length: 2 bits to 268 435 456 bits, 1 bit step
Mixed Pattern
- Pattern: PRBS, Data – 1 to Data – 511
Mixed Row Length (Data + PRBS Length): 1 536 to 2 415 919 104, 256 bits step
Data length: 1 024 bits to 268 435 456 bits, 1 bit step
PRBS length/Mark Ratio: Same as PRBS
PRBS Sequence: Restart, Consecutive |
| **Pattern Sequence** | Repeat: Continuous Pattern
Burst
- Burst Cycle: 25 600 bits to 2 147 483 648 bits, 256 bits step
- Enable period
- Internal: 12 800 bits to 2 147 483 392 bits, 256 bits step
- Ext Trigger, Enable: 12 800 bits to 2 147 483 648 bits, 256 bits step |
| **Pre-code** | Pre-code function: ON and OFF
Type: DQPSK (MU183020A, MU183021A)
DP-QPSK (MU183021A)
Initial Data: 0 or 1 selectable |
| **Error addition** | Timing: Internal, external trigger
Error event: Repeat, Single
Error rate: a × 10^-b (a = 1 to 9, b = 3 to 12), Upper limit: 5E-3 |

*: The clock frequency from external clock source shall be changed depends on the Bit-rate setting. Please see Bit-rate setting range.
Data Output

<table>
<thead>
<tr>
<th>Model</th>
<th>MU183020A-x12</th>
<th>MU183020A-x13</th>
<th>MU183021A-x22</th>
<th>MU183021A-x23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Outputs</td>
<td>2: Data, XData (Independent)</td>
<td>4: Data1, XData1, Data2, XData2 (Independent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Amplitude</td>
<td>0.5 Vp-p to 2.0 Vp-p</td>
<td>2 mV step</td>
<td>0.5 Vp-p to 3.5 Vp-p</td>
<td>2 mV step</td>
</tr>
</tbody>
</table>

- Output amplitude setting error: ±50 mV ±17% of setting amplitude
- Offset: –2.0 Voh to +3.3 Voh, 1 mV step
- Current limitation: Sourcing 50 mA, Sinking 80 mA
- Cross point setting range: 20 to 80%/0.1% step: at 1.0 Vp-p to upper limit of output amplitude setting 30 to 70%/0.1% step: at 0.5 Vp-p to 0.998 Vp-p
- Tr/Tf 12 ps (20 to 80%)
- Jitter (p-p): 8 ps p-p
- Jitter (RMS): 700 fs
- RJ (RMS): 300 fs
- Waveform Distortion (0-peak): ±25 mV ±15%
- Output: On/Off selectable
- Inter channel skew: ±0.25 UI
- Termination: AC/DC 50Ω
- Connector: K (f.)

Clock Output

- Number of output: 1
- Full Rate: Clock frequency is same as bit-rate when Full Rate Clock Output is selected.
 - 2.4 GHz to 28.1 GHz
 - 2.4 GHz to 32.1 GHz (Option-x01)
- Half Rate: Clock frequency is half of bit-rate when Half Rate Clock Output is selected.
 - 1.2 GHz to 14.05 GHz
 - 1.2 GHz to 16.05 GHz (Option-x01)
- Amplitude: 0.3 Vp-p to 1.0 Vp-p
- Output: On/Off selectable
- Termination: 50Ω/AC Coupling
- Connector: K (f.)

Delay

- Phase variable range: –1 000 mUI to +1 000 mUI, 2 mUI step
- Phase setting error: ±50 mUIp-p ±10% (Bit rate ≤28.1 Gbit/s), ±75 mUIp-p ±10% (Bit rate >28.1 Gbit/s)

*1: Unless otherwise specified, these are defined with PRBS 2^{31} – 1, Mark Ratio 1/2, Cross-point 50%, using an optional accessories (J1439A coaxial cable, 0.8 m, K connector) and a sampling oscilloscope which has 70 GHz bandwidth.
*2: This value is assured when Cross point is set to 50% or within the range of 30 to 80% and Bit rate is set to 25 or 28.1 Gbit/s.
*3: Without Option-x01: at 28.1 Gbit/s
 - With Option-x10: at 32.1 Gbit/s
*4: With Option-x12 or x22: at amplitude 2.0 Vp-p
 - With Option-x13 or x23: at amplitude 3.5 Vp-p
*5: Typical value
*6: Using oscilloscope with intrinsic jitter of less than 200 fs (RMS).
*7: Without MU183020A-x22 or MU183020A-x23. Or, when MU183021A is used.
*8: With Option-x30 or x31
*9: These values are monitored using an applicable part (J1439A coaxial cable, 0.8 m, K connector) at a sampling oscilloscope bandwidth of 70 GHz.
*10: This value is the peak-to-peak jitter of the crossing point on Eye pattern measured at 1k Jitter total samples and 30 counts, and is not the estimated TJ at BER 1E-12 using DR/RJ decomposition.
*11: Calculated by following formula with using 1010 repetition signal
 \[RJ (\text{rms}) = \sqrt{RJ_{\text{meas}}^2 - RJ_{\text{scope}}^2} \]
 where RJmeas is measured RJ and RJscope is intrinsic RJ of Sampling Scope
*12: Sometimes, performance may exceed the standards for undescribed settings, such as burst lengths of >1 μs (reference value), and contiguous patterns of 0 s (or 1 s).
Jitter Tolerance

<table>
<thead>
<tr>
<th>Modulation Frequency [MHz]</th>
<th>Jitter Amplitude [UIp-p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00001</td>
<td>2000</td>
</tr>
<tr>
<td>0.075</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>0.075</td>
</tr>
<tr>
<td>20</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

20dB/decade

Multi-Channel Operation

- **MU183020A**
 - Combination*:1, *2: 2ch (Bit shifted test pattern as 56 Gbit/s, 64 Gbit/s band signal source)
 - CH Sync.: 2 to 4ch
 - Phase variable range*:5: –64 000 mUI to +64 000 mUI, Steps: 2 mUI

- **MU183021A**
 - Combination*:2: 2ch (Bit shifted test pattern as 56G/64 Gbit/s band signal source)
 - 4ch (Bit shifted test pattern as 112G/128 Gbit/s band signal source)
 - CH Sync.: 2 to 8ch
 - Phase variable range*:5: –64 000 mUI to +64 000 mUI, Steps: 2 mUI

Operating Temperature

15° to 35°C

*1: Option-x31 is required for target channels.
*2: Combination extending over multiple slots cannot be set.
*3: When target channels are installed successively from Slot 1.
*4: Option-x30 is required for target channels.
*5: A separate value can be set for each channel. This value is common to both Channel Combination and Channel Synchronization.
*6: Option-x30 or x31 is required for target channels.
*7: Combined operation with MU181500B and MU181000B. SJ applied. Looped back with MU183040B.
##MU183040B 28G/32G bit/s High Sensitivity ED, MU183041B 28G/32G bit/s 4ch High Sensitivity ED

###Bit-rate

| Operational Bit-rate Range: 2.4 Gbit/s to 28.1 Gbit/s |
| 2.4 Gbit/s to 32.1 Gbit/s (with Option-x01) |

###Data Input

- **Number of Input**
 - MU183040B-001 · · · 2 (Data, XData)
 - MU183040B-020 · · · 4 (Data1 to Data2, XData1 to XData2)
 - MU183041B · · · 8 (Data1 to Data4, XData1 to XData4)

- **Amplifier:**
 - Single-ended 50Ω, Differential 50Ω, Differential 100Ω can be set.
 - Data, XData can be set.
 - Tracking, Independent, Alternate can be set.
 - (Data-XData or XData-Data can be set when Alternate is selected.)

- **Format:** NRZ

- **Input Amplitude**
 - 0.05 Vp-p to 1.0 Vp-p

- **Sensitivity**
 - Eye Amplitude ≤ 15 mVp-p
 - Eye Height ≤ 25 mVp-p

Note: Be careful about the maximum input amplitude. 2 Vp-p Max. for A-type, and 1 Vp-p Max. for B-type.

###Threshold voltage:
- –3.5 V to +3.3 V, 1 mV step (Can be set individually for Data and XData.)
- Absolute value of difference between Data and XData Threshold values shall be 3 V or less.

###Phase Margin:
- 20 ps

###Termination:
- GND/50Ω, Variable/50Ω

###Clock Input

- **Number of Input:** 1 (Single-end)
- **Frequency:** 1.2 GHz to 16.05 GHz
- **Amplitude:** 0.3 Vp-p to 1.0 Vp-p (–6.5 to +4.0 dBm)
- **Termination:** 50Ω/AC Coupling

###Clock Recovery

- **Clock Recovery from 1ch Data input, internal distribution to each channel**
- **Operating Bit-rate**
 - 2.4 Gbit/s to 28.1 Gbit/s, 1 kbit/s step (Option-x22)
 - 25.5 Gbit/s to 32.1 Gbit/s (Option-x23)
- **Maximum Number of Consecutive Zeros**
 - 72 bit (Zero Substitution 215)
- **Lock Range for Clock Data Recovery**
 - ±200 ppm (Option-x22)
 - ±100 ppm (Option-x23)

###Target Loop Band

Available options are Bit rate/1667, Bit rate/2578, Jitter Tolerance*13 and Variable (Option-x22)
If the Variable option is selected, the following settings are available:

<table>
<thead>
<tr>
<th>Bit rate [Gbit/s]</th>
<th>Setting Range [MHz]/Step [MHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.400 000 to 5.500 000</td>
<td>3/–</td>
</tr>
<tr>
<td>5.500 001 to 7.500 000</td>
<td>3 to 4/1</td>
</tr>
<tr>
<td>7.500 001 to 9.500 000</td>
<td>3 to 5/1</td>
</tr>
<tr>
<td>9.500 001 to 10.500 000</td>
<td>3 to 6/1</td>
</tr>
<tr>
<td>10.500 001 to 12.500 000</td>
<td>3 to 7/1</td>
</tr>
<tr>
<td>12.500 001 to 14.500 000</td>
<td>3 to 8/1</td>
</tr>
<tr>
<td>14.500 001 to 15.500 000</td>
<td>3 to 9/1</td>
</tr>
<tr>
<td>15.500 001 to 17.500 000</td>
<td>3 to 10/1</td>
</tr>
<tr>
<td>17.500 001 to 19.500 000</td>
<td>3 to 11/1</td>
</tr>
<tr>
<td>19.500 001 to 20.500 000</td>
<td>3 to 12/1</td>
</tr>
<tr>
<td>20.500 001 to 22.500 000</td>
<td>3 to 13/1</td>
</tr>
<tr>
<td>22.500 001 to 24.500 000</td>
<td>3 to 14/1</td>
</tr>
<tr>
<td>24.500 001 to 25.500 000</td>
<td>3 to 15/1</td>
</tr>
<tr>
<td>25.500 001 to 27.500 000</td>
<td>3 to 16/1</td>
</tr>
<tr>
<td>27.500 001 to 28.100 000</td>
<td>3 to 17/1</td>
</tr>
</tbody>
</table>

###Jitter Tolerance

Comply 16G FC, 32G FC, 100 GbE (25.78x4), InfiniBand FDR, Jitter Tolerance Mask (Option-x22)
Comply 32G FC, 100 GbE (25.78x4), Jitter Tolerance Mask (Option-x23)

###Aux Input

- **Number of Input:** 1 (Single-end)
- **Input Signal:** External Mask, Burst
- **Minimum Pulse Width:** 1/128 of Bit-rate
- **Input Level:** 0~1 V (H: –0.25 V to 0.05 V, L: –1.1 V to –0.8 V)
- **Termination:** GND/50Ω
- **Connector:** SMA (f.)
Aux Output

- **Number of Output**: 2 (Differential)
- **Input Signal**: 1/n Clock \((n = 4, 6, 8, 10 \cdots 510, 512)\), Pattern Sync, Error, Sync. gain
- **Pattern Sync.**: PRBS, PRGM: Position: (Least common multiple of 1 to Pattern Length and 128) – 135, 8 step
- **Mixed Data**: Block No. setting: 1 to the Block No. specified for Mixed Data, in single steps
- **Row No. setting**: 1 to the Row No. specified for Mixed Data, in single steps
- **Output Level**: 0V–0.6 V (H: –0.25 V to 0.05 V, L: –0.80 V to –0.45 V)
- **Termination**: GND/50Ω
- **Connector**: SMA (f.)

Pattern Detection

- **PRBS**: Pattern length: \(2^n – 1\) \((n = 7, 9, 10, 11, 15, 20, 23, 31)\)
- **Mark ratio**: 1/2 \((1/2INV is supported by a logic inversion)\)
- **Zero-Substitution**: Pattern with continuous 0s appended to M-sequence signal + 1 bit
- **Pattern**: 2\(^n\) or 2\(^n\) – 1 \((n = 7, 9, 10, 11, 15, 20, 23)\)
- **Output Level**: 0/–0.6 V (H: –0.25 V to 0.05 V, L: –0.80 V to –0.45 V)
- **Termination**: GND/50Ω
- **Connector**: SMA (f.)

Pattern Sequence

- **Repeat**: Continuous Pattern
- **Burst Cycle**: 25 600 bits to 2 147 483 648 bits, 256 bits step
- **Enable period**: Internal: 12 800 bits to 2 147 483 392 bits, 256 bits step
- **Ext Trigger, Enable**: 12 800 bits to 2 147 483 648 bits, 256 bits step

Measurement Type

- **Error Rate, Error Count, Error Interval, Error Free Interval (%)**, **Frequency Clock Count, Sync Loss Interval, Clock Loss Interval**

Error Detection Mode

- **Total error**, **Insertion Error**, **Omission Error**, **Transition Error**, **Non Transition Error**

Burst Measurement Signal

- **Burst Trigger**: Internal, External

Variable Clock Delay

- **Phase variable range**: –1 000 mUI to +1 000 mUI, 2 mUI step
- **Phase setting error**: ±50 mUIp-p

Multi-channel Operation

- **MU183040B (with Option-x20): 2ch combination (Combination extending over multiple slots cannot be set)**
- **MU183041B (4ch): 2ch or 4ch combination (Combination extending over multiple slots cannot be set)**

Operating Temperature

- **15° to 35°C**

1: Absolute value of difference between Data and XData Threshold values shall be 1.5 V or less.
2: 28.1 Gbit/s
3: PRBS 31, Single-ended, Mark Ratio 1/2, 20° to 30°C
4: Typical value
5: 0.5 Vp-p Input
6: 25 Gbit/s
7: PRBS31, Single-ended, Mark ratio 1/2
8: Input amplitude is a range where Auto Adjust function operates. Input sensitivity is the minimum input amplitude which becomes error-free.
9: Sensitivity of eye height. Eye Height is the internal amplitude of Eye when the output amplitude of the MU183020A/21A + ATT is set to 15 mV with the measurement system as the figure below (A sampling oscilloscope with the bandwidth of 70 GHz or more is used.). The number of samples with Sampling Oscilloscope is equivalent to BER 1E–9 or less at this internal amplitude.
10: MU183041B-023 recovers Clock from 1ch Data input and distributes to 1ch and 2ch. Also recovers Clock from 3ch Data input and distributes to 3ch and 4ch.
11: MU183040B/41B-001 must be installed.
12: When the MU183040B/MU183041B-x22 option is installed: The target loop band is specified by the maximum setting value of each bit rate.
13: When the MU183040B/MU183041B-x23 option is installed: The target loop band is specified by (Bit rate/1667) and (Bit rate/2578).
14: The Jitter Tolerance option makes the loop band wider than the other options and enables the Jitter Tolerance measurement.

Diagram:

![Eye Height Diagram](image)
MU18100B 12.5 GHz 4port Synthesizer

Clock Output
- Number of Output: 4
- Frequency Range: 0.1 GHz to 12.5 GHz, Steps: 1 kHz/1 MHz
- Offset from Set Frequency: −1000 ppm to +1000 ppm, Steps: 1 ppm, 1 Hz (Min)
- Level: 0.4 Vp-p to 1 Vp-p (AC)
- SSB Phase Noise: ≤−80 dBc/Hz (10 kHz offset)
- Intrinsic Jitter: ≤20 ps p-p
 - ≤20 ps p-p (fc > 400 MHz)
- Waveform: Square wave (<1 GHz), Square wave or Sine wave (≥1 GHz)
- Duty: 50 ±10%
- Inter-channel Skew: ≤10 ps (12.5 GHz)
- Connector: SMA(f.), Termination: 50Ω/GND

10 MHz Input
- Frequency: 10 MHz ±10 ppm
- Level: 0.5 Vp-p to 2.0 Vp-p
- Waveform: Square wave or Sine wave
- Duty: 50 ±10%
- Connector: BNC, Termination: 50Ω/GND

10 MHz Output
- Level: 1.0 Vp-p ±30% (AC)
- Waveform: Square wave
- Duty: 50 ±10%
- Connector: BNC, Termination: 50Ω/GND

MU18100B-001 Jitter Modulation

External Modulation Input
- Frequency Range: 9 Hz to 1 GHz
- Level Range: 3 Vp-p, 0 V(dc) (Max.)
- Waveform: Sine wave
- Connector: SMA(f.), Termination: 50Ω/GND

External I, Q Input
- Frequency Range: DC to 320 MHz (−3 dB)
- Bandwidth Limit: 5 MHz (0.1 GHz ≤ fc ≤ 0.4 GHz), 10 MHz (0.4 GHz ≤ fc ≤ 0.65 GHz), 20 MHz (0.65 GHz ≤ fc ≤ 1.4 GHz), 100 MHz (1.4 GHz ≤ fc ≤ 2.4 GHz), 320 MHz (2.4 GHz ≤ fc ≤ 4.0 GHz)
- Level Range: ±0.5 V
- Connector: BNC, Termination: 50Ω/GND

100 MHz Reference Signal Input (SSC)
- Output Center Frequency is × 25 or × 50 of Reference Input Frequency
- Modulation Frequency: 30 kHz to 33 kHz
- Frequency Deviation: 50 kHz
- Level: 1.0 Vp-p ±30% (AC)
- Waveform: Square wave or Sine wave
- Duty: 50 ±10%
- Connector: BNC, Termination: 50Ω/GND

Trigger Output
- Available from 800 MHz to 12.5 GHz of center frequency (fc)
- Frequency: 1/64 (800 MHz ≤ fc ≤ 6.4 GHz), 1/1 or 1/64 selectable (6.4 GHz ≤ fc ≤ 12.5 GHz)
- Level: 0.4 Vp-p to 1.1 Vp-p (AC)
- Connector: SMA(f.), Termination: 50Ω/GND

Internal Jitter Function

Modulation Frequency Range

<table>
<thead>
<tr>
<th>Center Frequency (fc)</th>
<th>fm1</th>
<th>fm2</th>
<th>fm3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 GHz to 0.8 GHz</td>
<td>13.75 Hz</td>
<td>250 kHz</td>
<td>5 MHz</td>
</tr>
<tr>
<td>0.8 GHz to 1.6 GHz</td>
<td>27.5 Hz</td>
<td>500 kHz</td>
<td>10 MHz</td>
</tr>
<tr>
<td>1.6 GHz to 3.2 GHz</td>
<td>55 Hz</td>
<td>1 MHz</td>
<td>20 MHz</td>
</tr>
<tr>
<td>3.2 GHz to 6.4 GHz</td>
<td>110 Hz</td>
<td>2 MHz</td>
<td>40 MHz</td>
</tr>
<tr>
<td>6.4 GHz to 12.5 GHz</td>
<td>220 Hz</td>
<td>4 MHz</td>
<td>90 MHz</td>
</tr>
</tbody>
</table>

Modulation Frequency Accuracy: ±100 ppm

<table>
<thead>
<tr>
<th>FM</th>
<th>Q (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Hz ≤ fm ≤ 500 kHz</td>
<td>7</td>
</tr>
<tr>
<td>500 kHz ≤ fm ≤ 5 MHz</td>
<td>12</td>
</tr>
<tr>
<td>2 MHz ≤ fm ≤ 80 MHz</td>
<td>15</td>
</tr>
</tbody>
</table>
External Jitter Function

Modulation Frequency Range:
- 9 Hz to 5 MHz (0.1 GHz ≤fc ≤0.4 GHz)
- 9 Hz to 10 MHz (0.4 GHz ≤fc ≤0.65 GHz)
- 9 Hz to 20 MHz (0.65 GHz ≤fc ≤1.4 GHz)
- 9 Hz to 100 MHz (1.4 GHz ≤fc ≤2.4 GHz)
- 9 Hz to 500 MHz (2.4 GHz ≤fc ≤4.0 GHz)
- 9 Hz to 1 GHz (4.0 GHz ≤fc ≤12.5 GHz)

UI Range: 0.22, 2.0, 20, 200, 4000 UI

External Jitter Function

Modulation Frequency Range**1

<table>
<thead>
<tr>
<th>Center Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4 GHz to 2.4 GHz</td>
<td>80 MHz to 100 MHz</td>
<td>Max. 0.22 UI</td>
</tr>
<tr>
<td>2.4 GHz to 4.0 GHz</td>
<td>80 MHz to 500 MHz</td>
<td>Max. 0.22 UI</td>
</tr>
<tr>
<td>4.0 GHz to 8.0 GHz</td>
<td>80 MHz to 1 GHz</td>
<td>Max. 0.10 UI</td>
</tr>
<tr>
<td>8.0 GHz to 8.5 GHz</td>
<td>80 MHz to 500 MHz</td>
<td>Max. 0.22 UI</td>
</tr>
<tr>
<td>8.5 GHz to 11.3 GHz</td>
<td>80 MHz to 1 GHz</td>
<td>Max. 0.22 UI</td>
</tr>
<tr>
<td>11.3 GHz to 12.5 GHz</td>
<td>80 MHz to 250 MHz</td>
<td>Max. 0.22 UI</td>
</tr>
</tbody>
</table>

Modulation Sensitivity: 0.22 UI Range, Input level: 0.5 Vp-p

Clock Frequency: 0.1 GHz ≤fc ≤0.8 GHz

<table>
<thead>
<tr>
<th>Jitter Amplitude</th>
<th>FM Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 UI</td>
<td>250 kHz</td>
<td>27.5 kHz</td>
<td>1 Ulp-p ±0.3 UI</td>
</tr>
<tr>
<td>20 UI</td>
<td>27.5 kHz</td>
<td>2.75 kHz</td>
<td>10 Ulp-p ±3 UI</td>
</tr>
<tr>
<td>200 UI</td>
<td>2.75 kHz</td>
<td>275 Hz</td>
<td>100 Ulp-p ±30 UI</td>
</tr>
<tr>
<td>4000 UI</td>
<td>275 Hz</td>
<td>13.75 Hz</td>
<td>1000 Ulp-p ±300 UI</td>
</tr>
</tbody>
</table>

Clock Frequency: 0.8 GHz ≤fc ≤1.6 GHz

<table>
<thead>
<tr>
<th>Jitter Amplitude</th>
<th>FM Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 UI</td>
<td>500 kHz</td>
<td>5.5 kHz</td>
<td>1 Ulp-p ±0.3 UI</td>
</tr>
<tr>
<td>20 UI</td>
<td>5.5 kHz</td>
<td>550 Hz</td>
<td>10 Ulp-p ±3 UI</td>
</tr>
<tr>
<td>200 UI</td>
<td>550 Hz</td>
<td>27.5 Hz</td>
<td>100 Ulp-p ±30 UI</td>
</tr>
<tr>
<td>4000 UI</td>
<td>275 Hz</td>
<td>13.75 Hz</td>
<td>1000 Ulp-p ±300 UI</td>
</tr>
</tbody>
</table>

Clock Frequency: 1.6 GHz ≤fc ≤3.2 GHz

<table>
<thead>
<tr>
<th>Jitter Amplitude</th>
<th>FM Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 UI</td>
<td>1 MHz</td>
<td>110 kHz</td>
<td>1 Ulp-p ±0.3 UI</td>
</tr>
<tr>
<td>20 UI</td>
<td>110 kHz</td>
<td>11 kHz</td>
<td>10 Ulp-p ±3 UI</td>
</tr>
<tr>
<td>200 UI</td>
<td>11 kHz</td>
<td>1.1 kHz</td>
<td>100 Ulp-p ±30 UI</td>
</tr>
<tr>
<td>4000 UI</td>
<td>1.1 kHz</td>
<td>55 Hz</td>
<td>1000 Ulp-p ±300 UI</td>
</tr>
</tbody>
</table>

Clock Frequency: 3.2 GHz ≤fc ≤6.4 GHz

<table>
<thead>
<tr>
<th>Jitter Amplitude</th>
<th>FM Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 UI</td>
<td>2 MHz</td>
<td>220 kHz</td>
<td>1 Ulp-p ±0.3 UI</td>
</tr>
<tr>
<td>20 UI</td>
<td>220 kHz</td>
<td>22 kHz</td>
<td>10 Ulp-p ±3 UI</td>
</tr>
<tr>
<td>200 UI</td>
<td>22 kHz</td>
<td>220 Hz</td>
<td>100 Ulp-p ±30 UI</td>
</tr>
<tr>
<td>4000 UI</td>
<td>2.2 kHz</td>
<td>110 Hz</td>
<td>1000 Ulp-p ±300 UI</td>
</tr>
</tbody>
</table>

Clock Frequency: 6.4 GHz ≤fc ≤12.5 GHz

<table>
<thead>
<tr>
<th>Jitter Amplitude</th>
<th>FM Frequency</th>
<th>Input Frequency</th>
<th>Jitter Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 UI</td>
<td>4 MHz</td>
<td>440 kHz</td>
<td>1 Ulp-p ±0.3 UI</td>
</tr>
<tr>
<td>20 UI</td>
<td>440 kHz</td>
<td>44 kHz</td>
<td>10 Ulp-p ±3 UI</td>
</tr>
<tr>
<td>200 UI</td>
<td>44 kHz</td>
<td>4400 Hz</td>
<td>100 Ulp-p ±30 UI</td>
</tr>
<tr>
<td>4000 UI</td>
<td>4.4 kHz</td>
<td>220 Hz</td>
<td>1000 Ulp-p ±300 UI</td>
</tr>
</tbody>
</table>

Triangle Wave Modulation

PCle-Gen I (2.5 GHz) or PCIe-Gen II (5 GHz)

Clock Output Frequency Setting: Spread Method Center/Spread Method Down selectable

Frequency Offset: –1000 ppm to +1000 ppm, Steps: 1 ppm

Modulation Frequency Accuracy: ±3.25 kHz ±1000 ppm

Frequency Deviation: ±5.25 MHz (PCle-Gen I, 2.5 GHz), ±12.5 MHz (PCle-Gen II, 5 GHz)

Deviation Accuracy: ±10%**1

**1: The maximum jitter amplitude is limited according to the jitter tolerance of PPG or ED modules. Refer to the jitter tolerance specification of PPG/ED modules.
MU181500B Jitter Modulation Source

| **External Clock Input** | **Number of Input:** 1
| Frequency Range: | Number of Output: 1
| 6.400 001 GHz to 12.500 000 GHz (MU181000B, Combination: On)
| 0.800 000 GHz to 15.000 000 GHz (MU181000B, Combination: Off, or External synthesizer)
| Amplitude: 0.4 Vp-p to 1.0 Vp-p
| Connector: SMA(f.), Termination: 50Ω/AC Coupling |

| **External Jitter Input** | **Number of Input:** 1
| Frequency Range: 10 kHz to 1 GHz
| Amplitude: 0 to 2.0 Vp-p
| Connector: SMA(f.), Termination: 50Ω/GND |

| **Jittered Clock Output** | **Number of Output:** 2
| Frequency Range: 0.800 001 GHz to 1.562 500 GHz (MU181000B, Combination: On), Steps: 0.000 001 GHz
| 1.600 001 GHz to 3.125 000 GHz (MU181000B, Combination: On), Steps: 0.000 001 GHz
| 3.200 001 GHz to 6.250 000 GHz (MU181000B, Combination: On), Steps: 0.000 001 GHz
| 6.400 001 GHz to 12.500 000 GHz (MU181000B, Combination: On), Steps: 0.000 001 GHz
| 12.800 002 GHz to 15.000 000 GHz (MU181000B, Combination: On), Steps: 0.000 002 GHz
| 0.8 GHz to 15 GHz (MU181000B, Combination: Off, or External synthesizer)
| Frequency Offset: –1000 ppm to +1000 ppm (MU181000B, Combination: On), Steps: 1 ppm
| None (MU181000B, Combination: Off, or External synthesizer)
| Amplitude: 0.4 Vp-p (Min.), 1.0 Vp-p (Max.)
| Intrinsic Jitter: ≤350 fs (4.25, 7.0125, 10, 12.5, 14, 15 GHz)
| Connector: SMA(f.), Termination: 50Ω/AC Coupling |

| **IQ Output** | **Number of Output:** 2 (I, Q)
| Amplitude: 1 Vp-p (Max.)
| Connector: SMA(f.), Termination: 50Ω/GND |

| **AUX Input** | **Number of Input:** 1
| Frequency Range: Same frequency with External Clock Input
| Amplitude: 0.4 Vp-p (Min.), 1.1 Vp-p (Max.)
| Connector: SMA(f.), Termination: 50Ω/AC Coupling |

| **Reference Clock Output** | **Number of Output:** 2
| Reference Clock: External Clock Input or AUX Input (MU181000B, Combination: On)
| External Clock Input (MU181000B, Combination: Off, or External synthesizer)
| Frequency Range: 1/N of Jittered Clock Output Frequency (N: 1, 2, or 4)
| Amplitude: 0.4 Vp-p (Min.), 1.0 Vp-p (Max.) (Jittered Clock Output Frequency: ≥4 GHz)
| 0.4 Vp-p (Min.), 1.2 Vp-p (Max.) (Jittered Clock Output Frequency: <4 GHz)
| Connector: SMA(f.), Termination: 50Ω/AC Coupling |

| **Sub-rate Clock Output** | **Number of Output:** 2 (Differential)
| Frequency Range: 1/N of Jittered Clock Output Frequency (N: 8 to 256, Steps: 1)
| Amplitude: 0.1 Vp-p to 0.7 Vp-p, Steps: 10 mV
| Accuracy: ±70 mV ±20% of Amplitude (N: 8)
| Connector: SMA(f.), Termination: 50Ω/AC Coupling |
Internal Sinusoidal Jitter (SJ1)

<table>
<thead>
<tr>
<th>Modulation Frequency (FM)</th>
<th>Jitter Amplitude [UIp-p]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz to 10 kHz, Steps: 1 Hz</td>
<td>0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI</td>
</tr>
<tr>
<td>10 kHz to 100 kHz, Steps: 10 Hz</td>
<td>0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI</td>
</tr>
<tr>
<td>100 kHz to 1 MHz, Steps: 0.1 UI</td>
<td>0 to 0.5 UIp-p (FM: 10.01 MHz to 250 MHz), Steps: 0.001 UI</td>
</tr>
</tbody>
</table>

Accuracy: ±100 ppm

Amplitude*:
- Jittered Clock Output Frequency: 8.500 001 GHz to 15 GHz
 0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 0 to 0.5 UIp-p (FM: 10.01 MHz to 250 MHz), Steps: 0.001 UI
- Jittered Clock Output Frequency: 4.000 001 GHz to 8.5 GHz
 0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 0 to 0.5 UIp-p (FM: 10.01 MHz to 150 MHz), Steps: 0.001 UI
- Jittered Clock Output Frequency: 1.200 001 GHz to 4 GHz
 0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 0 to 0.5 UIp-p (FM: 10.01 MHz to 100 MHz), Steps: 0.001 UI
- Jittered Clock Output Frequency: 1.800 001 GHz to 1.2 GHz
 0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 0 to 0.5 UIp-p (FM: 10.01 MHz to 50 MHz), Steps: 0.001 UI

Accuracy: ±0.03 UI ±Q% (Amplitude: 0.002 UIp-p to 2.19 UIp-p)
±0.2 UI ±Q% (Amplitude: 2.2 UIp-p to 21.9 UIp-p)
±2 UI ±Q% (Amplitude: 22 UIp-p to 250 UIp-p)

<table>
<thead>
<tr>
<th>FM</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz ≤ fm ≤ 500 kHz</td>
<td>7</td>
</tr>
<tr>
<td>500 kHz < fm ≤ 2 MHz</td>
<td>10</td>
</tr>
<tr>
<td>2 MHz < fm ≤ 80 MHz</td>
<td>13</td>
</tr>
<tr>
<td>80 MHz < fm ≤ 250 MHz</td>
<td>15</td>
</tr>
</tbody>
</table>

On/Off Function: Supported
External Sinusoidal Jitter (SJ1) [using MU183020A/21A]

32G PPG
- **Full rate Clock Out setting, Bit-rate:** 15 Gbit/s to 32.1 Gbit/s
- **Half rate Clock Out setting, Bit-rate:** 2.4 Gbit/s to 32.1 Gbit/s

Jitter Amplitude [UIp-p] vs. Modulation Frequency [MHz]
- **MU181500B Jitter Setting Mask**
- **MU183020A/21A Jitter Tolerance**

Full rate Clock Out setting, Bit-rate: 4 Gbit/s to 15 Gbit/s
- Jitter Amplitude: 0 to 1000 UIp-p (FM: 10 Hz to 100 kHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 100 UIp-p (FM: 100.1 kHz to 1 MHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 0.5 UIp-p (FM: 10.01 MHz to 250 MHz), Steps: 0.001 UI

Full rate Clock Out setting, Bit-rate: 2.4 Gbit/s to 4 Gbit/s
- Jitter Amplitude: 0 to 1000 UIp-p (FM: 10 Hz to 100 kHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 50 UIp-p (FM: 100.1 kHz to 1 MHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.001 UI
- Jitter Amplitude: 0 to 0.5 UIp-p (FM: 10.01 MHz to 250 MHz), Steps: 0.001 UI

Full rate Clock Out setting, Bit-rate: 30 Gbit/s to 32.1 Gbit/s
- Jitter Amplitude: 0 to 2000 UIp-p (FM: 10 Hz to 100 kHz), Steps: 0.002 UI
- Jitter Amplitude: 0 to 50 UIp-p (FM: 100.1 kHz to 1 MHz), Steps: 0.002 UI
- Jitter Amplitude: 0 to 8 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.002 UI
- Jitter Amplitude: 0 to 0.5 UIp-p (FM: 10.01 MHz to 250 MHz), Steps: 0.002 UI

Accuracy:
- ±0.03 UI ±Q% (Amplitude: 0.001 to 2.199 UIp-p)
- ±0.2 UI ±Q% (Amplitude: 2.2 to 21.999 UIp-p)
- ±2 UI ±Q% (Amplitude: 22 to 219.999 UIp-p)
- ±20 UI ±Q% (Amplitude: 220 to 2000 UIp-p)

<table>
<thead>
<tr>
<th>FW</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz to 500 kHz</td>
<td>7</td>
</tr>
<tr>
<td>500.1 kHz to 2 MHz</td>
<td>10</td>
</tr>
<tr>
<td>2.01 MHz to 80 MHz</td>
<td>13</td>
</tr>
<tr>
<td>80.01 MHz to 250 MHz</td>
<td>15</td>
</tr>
</tbody>
</table>

On/Off Function: supported
Jitter Setting Mask

Jittered Clock Output Frequency: 6.400 001 GHz to 15 GHz
Full Rate Mode

- Modulation Frequency (FM): 10 Hz to 10 kHz, Steps: 1 Hz
 - 10 kHz to 100 kHz, Steps: 10 Hz
 - 100 kHz to 1 MHz, Steps: 1 kHz
 - 1 MHz to 10 MHz, Steps: 10 kHz
 - 10 MHz to 100 MHz, Steps: 100 kHz
 - 100 MHz to 250 MHz, Steps: 100 kHz
- Accuracy: ±100 ppm
- Amplitude:
 - Full Rate Mode
 - Jittered Clock Output Frequency: 6.400 001 GHz to 15 GHz
 - 0 to 40 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 - 0 to 6 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 - 0 to 0.4 UIp-p (FM: 10.01 MHz to 1 MHz), Steps: 0.01 UI
 - Jittered Clock Output Frequency: 3.200 001 GHz to 6.25 GHz
 - 0 to 20 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 - 0 to 3 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 - 0 to 0.2 UIp-p (FM: 10.01 MHz to 1 MHz), Steps: 0.01 UI
 - Jittered Clock Output Frequency: 1.800 001 GHz to 3.125 GHz
 - 0 to 10 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 - 0 to 1.5 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 - 0 to 0.1 UIp-p (FM: 10.01 MHz to 1 MHz), Steps: 0.01 UI
 - Jittered Clock Output Frequency: 1.600 001 GHz to 1.8 GHz
 - 0 to 10 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 - 0 to 1.5 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
 - 0 to 0.1 UIp-p (FM: 10.01 MHz to 1 MHz), Steps: 0.01 UI
 - Jittered Clock Output Frequency: 0.800 001 GHz to 1.562 5 GHz
 - 0 to 5 UIp-p (FM: 10 Hz to 1 MHz), Steps: 0.01 UI
 - 0 to 0.75 UIp-p (FM: 1.001 MHz to 10 MHz), Steps: 0.01 UI
- Accuracy: ±0.03 UI ±Q% (Amplitude: 0.002 UIp-p to 2.19 UIp-p)
 - ±0.2 UI ±Q% (Amplitude: 2.2 UIp-p to 21.9 UIp-p)
 - ±2 UI ±Q% (Amplitude: 22 UIp-p to 50 UIp-p)

- FM Q
 - 10 Hz ≤fm ≤500 kHz: 10
 - 500 kHz <fm ≤2 MHz: 13
 - 2 MHz <fm ≤8 MHz: 16
 - 8 MHz <fm ≤250 MHz: 18

On/Off Function: Supported
External Sinusoidal Jitter (SJ2)
[using MU181000B-001 MU181020B]

Jitter Setting Mask

Jittered Clock Output Frequency: 6.400 001 GHz to 15 GHz
Full Rate Mode
Bit-rate: 6.400 001 Gbit/s to 15 Gbit/s

Half Rate Mode
Bit-rate: 12.800 001 Gbit/s to 30 Gbit/s
Quarter Rate Mode
Bit-rate: 25.600 004 Gbit/s to 32.1 Gbit/s

Jitter Tolerance

Jitter Amplitude [UIp-p]
Modulation Frequency [MHz]

Jittered Clock Output Frequency: 3.200 001 GHz to 6.25 GHz
Full Rate Mode
Bit-rate: 3.200 001 Gbit/s to 6.25 Gbit/s

Half Rate Mode
Bit-rate: 8 Gbit/s to 12.5 Gbit/s

Jitter Tolerance

Jitter Amplitude [UIp-p]
Modulation Frequency [MHz]

Jittered Clock Output Frequency: 1.800 001 GHz to 3.125 GHz
Full Rate Mode
Bit-rate: 1.800 001 Gbit/s to 3.125 Gbit/s

Half Rate Mode
Bit-rate: 3.600 002 Gbit/s to 6.25 Gbit/s

Jitter Tolerance

Jitter Amplitude [UIp-p]
Modulation Frequency [MHz]

Jittered Clock Output Frequency: 1.600 001 GHz to 1.8 GHz
Full Rate Mode
Bit-rate: 1.600 001 Gbit/s to 1.8 Gbit/s

Half Rate Mode
Bit-rate: 3.200 002 Gbit/s to 3.6 Gbit/s

Jitter Tolerance

Jitter Amplitude [UIp-p]
Modulation Frequency [MHz]

Jittered Clock Output Frequency: 0.800 001 GHz to 1.562 5 GHz
Full Rate Mode
Bit-rate: 0.800 001 Gbit/s to 1.562 5 Gbit/s

Half Rate Mode
Bit-rate: 1.600 002 Gbit/s to 3.125 Gbit/s

Jitter Tolerance

Jitter Amplitude [UIp-p]
Modulation Frequency [MHz]
External Sinusoidal Jitter (SJ2) [using MU181000B-001 MU181020B]

Modulation Frequency (FM):
- 10 Hz to 1 kHz, Steps: 1 Hz
- 10 kHz to 100 kHz, Steps: 10 Hz
- 100 kHz to 1 MHz, Steps: 100 Hz
- 1 MHz to 10 MHz, Steps: 1 kHz
- 10 MHz to 100 MHz, Steps: 10 kHz
- 100 MHz to 250 MHz, Steps: 100 kHz

Accuracy: ±100 ppm

Amplitude*:

Full Rate Mode*

<table>
<thead>
<tr>
<th>Bit-rate</th>
<th>0 to 40 Ulp-p (FM: 10 Hz to 1 MHz)</th>
<th>Steps: 0.001 Ul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 6 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.4 Ulp-p (FM: 10.01 MHz to 250 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 20 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 3 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 10 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1.5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.05 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.01 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.005 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 10 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1.5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.001 Ul</td>
</tr>
</tbody>
</table>

Accuracy: ±0.03 Ul ±Q% (Amplitude: 0.002 Ulp-p to 2.19 Ulp-p)

Half Rate Mode*

<table>
<thead>
<tr>
<th>Bit-rate</th>
<th>0 to 25 Ulp-p (FM: 10 Hz to 1 MHz)</th>
<th>Steps: 0.2 Ul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 10.01 MHz to 250 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 25 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.2 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.2 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.2 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
</tbody>
</table>

Quarter Rate Mode*

<table>
<thead>
<tr>
<th>Bit-rate</th>
<th>0 to 50 Ulp-p (FM: 10 Hz to 1 MHz)</th>
<th>Steps: 0.2 Ul</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 10 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 10.01 MHz to 250 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 25 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.2 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 5 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 1 Ulp-p (FM: 10 Hz to 1 MHz)</td>
<td>Steps: 0.2 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.2 Ulp-p (FM: 1.001 MHz to 10 MHz)</td>
<td>Steps: 0.02 Ul</td>
</tr>
<tr>
<td></td>
<td>0 to 0.1 Ulp-p (FM: 10.01 MHz to 150 MHz)</td>
<td>Steps: 0.002 Ul</td>
</tr>
</tbody>
</table>

Accuracy: ±0.2 Ul ±Q% (Amplitude: 2.2 Ulp to 21.9 Ulp-p)

Spread Spectrum Clocking (SSC)

Type: Down-Spread, Center-Spread, Up-Spread
Modulation Frequency: 28 kHz to 34 kHz, Steps: 1 Hz
Accuracy: ±100 ppm
Deviation: 0 to 5300 ppm, Steps: 1 ppm
On/Off Function: Supported
Random Jitter (RJ)

- **Bandwidth:** 10 kHz to 1 GHz
- **Crest Factor:** 16 dB
- **Filter Type**
 - **User Filter**
 - Filter: 10 MHz, 20 MHz, Through (HPF 3 dB bandwidth)
 - 100 MHz, Through (LPF 3 dB bandwidth)
 - **Amplitude**:
 - Full Rate Mode:
 - Jittered Clock Output Frequency [GHz] | Setting Range [UIp-p] | Steps [mUI]
 - ≥2.5 | 0 to 0.5 | 2
 - <2.5 | 0 to 0.25 | 2
 - Half Rate Mode:
 - Jittered Clock Output Frequency [GHz] | Setting Range [UIp-p] | Steps [mUI]
 - ≥2.5 | 0 to 0.5 | 4
 - <2.5 | 0 to 0.25 | 2
 - Quarter Rate Mode:
 - Jittered Clock Output Frequency [GHz] | Setting Range [UIp-p] | Steps [mUI]
 - ≥2.5 | 0 to 0.496 | 4
 - <2.5 | 0 to 0.25 | 4

Bounded Uncorrelated Jitter (BUJ)

- **Bandwidth:** 10 kHz to 1 GHz
- **PRBS Pattern Length:** $2^n - 1$ (n = 7, 9, 11, 15, 23, or 31)
- **BUJ Rate:** 0.1 Gbit/s to 3.2 Gbit/s, Steps: 1 kbit/s
- 4.9 Gbit/s to 6.25 Gbit/s, Steps: 1 kbit/s (Jittered Clock Output Frequency: ≥4 GHz)
- 9.8 Gbit/s to 12.5 Gbit/s, Steps: 1 kbit/s (Jittered Clock Output Frequency: ≥4 GHz)
- **Filter Type** (LPF 3 dB Bandwidth): 50, 100, 200, 300, 500 MHz, Through (Jittered Clock Output Frequency: ≥4 GHz)
- 50, 100, 200, 300 MHz, Through (Jittered Clock Output Frequency: ≤4 GHz)
- **Amplitude**:
 - Full Rate Mode:
 - Jittered Clock Output Frequency [GHz] | LF and HF Setting Range [ps rms] | Steps [ps rms]
 - ≥4 | 0 to 8.8 | 0.1
 - Half Rate Mode:
 - Jittered Clock Output Frequency [GHz] | LF and HF Setting Range [ps rms] | Steps [ps rms]
 - ≥4 | 0 to 8.8 | 0.2
 - Quarter Rate Mode:
 - Jittered Clock Output Frequency [GHz] | LF and HF Setting Range [ps rms] | Steps [ps rms]
 - ≥4 | 0 to 8.8 | 0.4

External Jitter

- **Bandwidth:** 10 kHz to 1 GHz
- **Accuracy**:
 - ±0.6 UI ±10% (2 Vp-p)
 - ±6 ps ±10%
- **On/Off Function:** Supported

1: The maximum jitter amplitude is limited according to the jitter tolerance of PPG or ED modules. Refer to the jitter tolerance specification of PPG/ED modules.
2: Full Rate Mode: MU181020B PPG
3: Jittered Clock Output Frequency: Specified as 5 GHz, Modulation Frequency: 0.5 GHz, Sinusoidal Jitter
MP1825B 4Tap Emphasis

| Bit Rate | 1 Gbit/s to 14.05 Gbit/s [MP1825B-001]
1 Gbit/s to 14.1 Gbit/s [MP1825B-001, 005]
1 Gbit/s to 28.1 Gbit/s [MP1825B-002, when not using Doubler Input/Output]
1 Gbit/s to 32.1 Gbit/s [MP1825B-002, 006, when not using Doubler Input/Output]
8 Gbit/s to 28.1 Gbit/s [MP1825B-002, when using Doubler Input/Output] |
|---|---|
| Data Output*1 | Number of Output: 2 (Data/xData)
Emphasis Setting: Selectable from pre-emphasis or de-emphasis*2
a) 2post-cursor, 1pre-cursor
b) 3post-cursor
c) 1post-cursor, 1pre-cursor
d) 2post-cursor
e) 1post-cursor
f) Rev. 3post-cursor
g) 1post-cursor, 2pre-cursor
Peak Voltage: 100 mVp-p to 1.5 Vp-p (Single-ended)
Eye Amplitude: 100 mVp-p to 1.0 Vp-p (Single-ended), Steps: 2 mVp-p
Offset: –1.0 Vth to +1.0 Vth, Steps: 1 mV
Total Jitter*3: 8 ps p-p (typ.)
Tr/Tf*: 20 ps (typ.), ±25 ps (20 to 80%) [MP1825B-001]
12 ps (typ.), ±16 ps (20 to 80%) [MP1825B-002]
Cursor1 Emphasis: –20 to +20 dB, 20log (Eye Amplitude/Cursor1), Steps: 0.1 dB
Cursor2 Emphasis: –20 to +20 dB, 20log (Eye Amplitude/Cursor2), Steps: 0.1 dB
Cursor3 Emphasis: –20 to +20 dB, 20log (Eye Amplitude/Cursor3), Steps: 0.1 dB
On/Off Function: Supported
Connector: K (f.), Termination: 50Ω/AC Coupling |
| Data Input | Amplitude: 0.4 Vp-p to 1.2 Vp-p
Connector: SMA (f.) [MP1825B-001], K (f.) [MP1825B-002], Termination: 50Ω/GND |
| Clock Input | Frequency Range: 1 GHz to 14.05 GHz [MP1825B-001]
1 GHz to 14.1 GHz [MP1825B-001, 005]
1 GHz to 28.1 GHz [MP1825B-002]
1 GHz to 32.1 GHz [MP1825B-002, 006]
Amplitude: 0.25 Vp-p to 1.0 Vp-p
Connector: SMA (f.) [MP1825B-001], K (f.) [MP1825B-002], Termination: 50Ω/AC Coupling |
| Clock Buffer Output | Frequency Range: 1 GHz to 14.05 GHz [MP1825B-001]
1 GHz to 14.1 GHz [MP1825B-001, 005]
4 GHz to 14.05 GHz [MP1825B-002]
Amplitude: 0.4 Vp-p (Min.), 1.0 Vp-p (Max.) (Fixed)
Connector: SMA (f.), Termination: 50Ω/AC Coupling |
| Doubler Input [MP1825B-002] | Frequency Range: 4 GHz to 14.05 GHz
Amplitude: 0.25 Vp-p to 1.2 Vp-p
Connector: SMA (f.), Termination: 50Ω/AC Coupling |
| Doubler Output [MP1825B-002] | Amplitude: 0.4 Vp-p (Min.), 1.0 Vp-p (Max.) (Fixed)
Connector: K (f.), Termination: 50Ω/AC Coupling |
| Variable Data Delay [MP1825B-003 or MP1825B-004] | Phase Variable Range: –1000 mUI to +1000 mUI
Accuracy: 50 mUIp-p (typ.) |
| General Specification | Channel Switch: 1ch/2ch (Rear panel switch)
Operation Interface: USB 2.0 or 1.1 Type B
Power Supply: 100 V (ac) to 240 V (ac), 50 Hz/60 Hz
Power Consumption: <100 W
Dimensions: 120 (W) × 90.9 (H) × 140 (D) mm
Mass: <5 kg
Operating Temperature: 15° to 35°C
EMC: 2014/30/EU, EN61326-1, EN61000-3-2
LVD: 2014/35/EU, EN61010-1 |

*1: Measured at PRBS 2³¹ – 1, Mark Ratio 1/2 with 50 GHz sampling oscilloscope
*2: Only c) 1post-cursor, 1pre-cursor can be set when de-emphasis is selected
*3: Measured at 14.05 Gbit/s or 28.1 Gbit/s (with MP1825B-002) with the sampling oscilloscope, intrinsic jitter should be less than 200 fs (rms)
*4: Emphasis Function: Off
MZ1834A 4PAM Converter

| Data Output | Number of Outputs: 2 (Data, xData)
| | Modulation Format: PAM4
| | Output Amplitude*1: 0.228 Vp-p to 0.475 Vp-p (nom.) (with using MU183020A-022 or MU183021A-012)
| | 0.238 Vp-p to 0.832 Vp-p (nom.) (with using MU183020A-023 or MU183021A-013)
| | Tr/Tf: 12 ps (typ.) (20 to 80%, with using MU18302xA)
| | Connector: K (f.)
| Data Input | Number of Inputs: 4 (Data1, xData1, Data2, xData2)
| | Input Amplitude: 0.5 Vp-p to 3.5 Vp-p
| | Connector: K (m.)
| Insertion Loss | –16 dB (nom.)*2
| General | Temperature: +15° to +35°C (Operating), –20° to +60°C (Storage)
| | Mass: 2 kg max.
| | Dimensions: 92.2 (W) × 20.4 (H) × 121.7 (D) mm*3

*1: 0 to 3 Level
*2: Data_n input to Data output
*3: Excluding protrusions

MZ1834B 4PAM Converter

| Data Output | Number of Outputs: 2 (Data, xData)
| | Modulation Format: PAM4
| | Output Amplitude*1: 0.376 Vp-p to 0.753 Vp-p (nom.) (with using MU183020A-022 or MU183021A-012)
| | 0.756 Vp-p to 1.318 Vp-p (nom.) (with using MU183020A-023 or MU183021A-013)
| | Tr/Tf: 12 ps (typ.) (20 to 80%, with using MU18302xA)
| | Connector: K (f.)
| Data Input | Number of Inputs: 4 (Data1, xData1, Data2, xData2)
| | Input Amplitude: 0.5 Vp-p to 3.5 Vp-p
| | Connector: K (m.)
| Insertion Loss | –12 dB (nom.)*2
| General | Temperature: +15° to +35°C (Operating), –20° to +60°C (Storage)
| | Mass: 2 kg max.
| | Dimensions: 92.2 (W) × 20.4 (H) × 121.7 (D) mm*3

*1: 0 to 3 Level
*2: Data_n input to Data output
*3: Excluding protrusions

MZ1838A 8PAM Converter

| Data Output | Number of Outputs: 2 (Data, xData)
| | Modulation Format: PAM8
| | Output Amplitude*1: 0.139 Vp-p to 0.441 Vp-p (nom.) (with using MU183021A-012)
| | 0.139 Vp-p to 0.772 Vp-p (nom.) (with using MU183021A-013)
| | Tr/Tf: 12 ps (typ.) (20 to 80%, with using MU18302xA)
| | Connector: K (f.)
| Data Input | Number of Inputs: 6 (Data1, xData1, Data2, xData2, Data3, xData3)
| | Input Amplitude: 0.5 Vp-p to 3.5 Vp-p
| | Connector: K (m.)
| General | Temperature: +15° to +35°C (Operating), –20° to +60°C (Storage)
| | Mass: 3 kg max.
| | Dimensions: 96.8 (W) × 40 (H) × 181.2 (D) mm*3

*1: 0 to 7 Level
*2: Data_n input to Data output
*3: Excluding protrusions

J1621A Passive Equalizer 3 dB, J1622A Passive Equalizer 6 dB

| Frequency Range | DC to 14.0 GHz (25 Gbit/s to 28 Gbit/s)
| Slope | 3.0 ±0.5 dB (J1621A)
| | 6.0 ±0.5 dB (J1622A)
| Insertion Loss | At 14 GHz
| | ≤1.2 dB (J1621A)
| | ≤1.4 dB (J1622A)
| Return Loss | 12 dB (min.)

General

| Connectors: SMA
| Impedance: 50Ω (nom.)
| Dimension: 44(W) × 12 (H) × 11(D) mm
G0361A 64Gbaud 2-bit DAC with MUX

<table>
<thead>
<tr>
<th>Operating baud-rate</th>
<th>DC to 64Gbaud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Output</td>
<td>Number of Outputs: 2 (Data, xData)</td>
</tr>
<tr>
<td>Data Input</td>
<td>Number of Inputs: 4 (D0A, D0B, D1A, D1B)</td>
</tr>
<tr>
<td>Clock Input</td>
<td>Number of Inputs: 1</td>
</tr>
<tr>
<td>Power Supply</td>
<td>VEE: –3.7 V, 2.1 W (Typ.)</td>
</tr>
</tbody>
</table>

G0373A USB3.1 Receiver Test Adapter

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>5G (USB3.1G1), 10G (USB3.1G2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Output</td>
<td>LFPS Rx Amplitude: –1 V to +0.5 V</td>
</tr>
<tr>
<td>Data Input</td>
<td>Rx Amplitude: 0.8 V to 1.2 V</td>
</tr>
<tr>
<td>Power Supply</td>
<td>100 V(ac) to 120 V(ac)/200 V(ac) to 240 V(ac) [auto-switching between 100 V(ac)/200 V(ac)], 50 Hz to 60 Hz</td>
</tr>
</tbody>
</table>

G0374A 64Gbaud PAM4 DAC

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>DC to 64Gbaud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Output</td>
<td>Number of Outputs: 2 (Data, xData)</td>
</tr>
<tr>
<td>Data Input</td>
<td>Number of Inputs: 4 (D0A, D0B, D1A, D1B)</td>
</tr>
<tr>
<td>Clock Input</td>
<td>Number of Inputs: 1</td>
</tr>
<tr>
<td>Power Supply</td>
<td>100 V(ac) to 120 V(ac)/200 V(ac) to 240 V(ac) [auto-switching between 100 V(ac)/200 V(ac)], 50 Hz to 60 Hz</td>
</tr>
</tbody>
</table>

G0375A 32Gbaud Power PAM4 Converter

<table>
<thead>
<tr>
<th>Number of Outputs</th>
<th>2 (Data, xData)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>10 to 32.1 Gbaud</td>
</tr>
<tr>
<td>Output Amplitude</td>
<td>2.2 Vp-p (Single-end, maximum)</td>
</tr>
<tr>
<td>Amplitude Gain Control</td>
<td>–6 to 0 dB</td>
</tr>
<tr>
<td>RJ (rms)</td>
<td>200 fs (Typ.)</td>
</tr>
<tr>
<td>Tr/Tf (20 - 80%)</td>
<td>12 ps (Typ.)</td>
</tr>
<tr>
<td>Number of Inputs</td>
<td>4 (Data1, xData1, Data2, xData2)</td>
</tr>
<tr>
<td>In/Out Connector</td>
<td>K (f.)</td>
</tr>
</tbody>
</table>

G0376A 32 Gbaud PAM4 Decoder with CTLE

<table>
<thead>
<tr>
<th>Number of Data inputs</th>
<th>5 (CTLE Input (diff.), Decoder Input (diff.), Clock Input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Data outputs</td>
<td>5 (CTLE Output (diff.), Decoder Data Output1, 2, Monitor Output)</td>
</tr>
<tr>
<td>PAM4 Decoder Baud-rate</td>
<td>10 to 32.1 Gbaud (DFF On)</td>
</tr>
<tr>
<td>Input Amplitude</td>
<td>0.4 V (CTLE input, max.)</td>
</tr>
<tr>
<td>Decoder Input Sensitivity</td>
<td>40 mV (Typ.)</td>
</tr>
<tr>
<td>Decoder Output Amplitude</td>
<td>0.3 Vp-p (Typ.)</td>
</tr>
<tr>
<td>CTLE gain</td>
<td>–12 to 0 dB, adjustable</td>
</tr>
<tr>
<td>CTLE peak Frequency</td>
<td>14 GHz</td>
</tr>
<tr>
<td>In/Out Connector</td>
<td>K (f.)</td>
</tr>
</tbody>
</table>
Please specify the model/order number, name and quantity when ordering.

The names listed in the chart below are Order Names. The actual name of the item may differ from the Order Name.

Ordering Information

MU183020A

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Unit/Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU183020A</td>
<td>28G/32G bits PPG</td>
<td>Standard Accessories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1137 Terminator: 3 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1359A Coaxial Adaptor (K-P, K-J, SMA): 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1341A Open: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J0541E 6 dB Fixed Attenuator: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MP1800A Manual CD: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MX180000A Software CD: 1 pc</td>
</tr>
</tbody>
</table>

Options

- **MU183020A-001**: 32G bits Extension (4 pcs)
- **MU183020A-012**: 1ch 2 V Data Output (4 pcs)
- **MU183020A-013**: 1ch 3.5 V Data Output (2 pcs)
- **MU183020A-022**: 2ch 2 V Data Output (4 pcs)
- **MU183020A-023**: 2ch 3.5 V Data Output (2 pcs)
- **MU183020A-030**: 1ch Data Delay (4 pcs)
- **MU183020A-031**: 2ch Data Delay (2 pcs)

Retrofit Options

- **MU183020A-101**: 32G bits Extension Retrofit (4 pcs)
- **MU183020A-112**: 1ch 2 V Data Output Retrofit (4 pcs)
- **MU183020A-113**: 1ch 3.5 V Data Output Retrofit (4 pcs)
- **MU183020A-122**: 2ch 2 V Data Output Retrofit (2 pcs)
- **MU183020A-123**: 2ch 3.5 V Data Output Retrofit (2 pcs)
- **MU183020A-130**: 1ch Data Delay Retrofit (4 pcs)
- **MU183020A-131**: 2ch Data Delay Retrofit (2 pcs)

Standard Accessories for MU183020A-x12, x13

- **J1137**: Terminator: 2 pcs
- **J1359A** Coaxial Adaptor (K-P, K-J, SMA): 4 pcs

Maintenance Service

- **MU183020A-ES310**: Three Years Extended Warranty Service (1 pc)
- **MU183020A-ES510**: Five Years Extended Warranty Service (1 pc)

MU183040B

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Unit/Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU183040B</td>
<td>28G/32G bits High Sensitivity ED</td>
<td>Standard Accessories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1137 Terminator: 2 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1359A Coaxial Adaptor (K-P, K-J, SMA): 4 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1341A Open: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MP1800A Manual CD: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MX180000A Software CD: 1 pc</td>
</tr>
</tbody>
</table>

Options

- **MU183040B-001**: 32 Gbit/s Extension (8 pcs)
- **MU183040B-010**: 1ch ED (8 pcs)
- **MU183040B-020**: 2ch ED (8 pcs)
- **MU183040B-022**: 2.4G to 28.1G bit/s Clock Recovery (8 pcs)
- **MU183040B-023**: 25.5 G to 32.1 G bit/s Clock Recovery (8 pcs)

Retrofit Options

- **MU183040B-101**: 32 Gbit/s Extension Retrofit (8 pcs)
- **MU183040B-110**: 1ch ED Retrofit (8 pcs)
- **MU183040B-120**: 2ch ED Retrofit (8 pcs)
- **MU183040B-122**: 2.4G to 28.1G bit/s Clock Recovery Retrofit (8 pcs)
- **MU183040B-123**: 25.5 G to 32.1 G bit/s Clock Recovery Retrofit (8 pcs)

Standard Accessories for MU183040B-x10

- **J1341A**: Open: 2 pcs
- **J1359A** Coaxial Adaptor (K-P, K-J, SMA): 2 pcs
- **41KC-6**: Precision Fixed Attenuator 6 dB: 2 pcs

Maintenance Service

- **MU183040B-ES310**: Three Years Extended Warranty Service (1 pc)
- **MU183040B-ES510**: Five Years Extended Warranty Service (1 pc)

MU183021A

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Unit/Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU183021A</td>
<td>28G/32G bits 4ch PPG</td>
<td>Standard Accessories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1137 Terminator: 3 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1359A Coaxial Adaptor (K-P, K-J, SMA): 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1341A Open: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J0541E 6 dB Fixed Attenuator: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MP1800A Manual CD: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MX180000A Software CD: 1 pc</td>
</tr>
</tbody>
</table>

Options

- **MU183021A-001**: 32G bits Extension (4 pcs)
- **MU183021A-012**: 4ch 2.0 V Data Output (4 pcs)
- **MU183021A-013**: 4ch 3.5 V Data Output (4 pcs)
- **MU183021A-030**: 4ch Data Delay (4 pcs)

Retrofit Options

- **MU183021A-101**: 32G bits Extension Retrofit (8 pcs)
- **MU183021A-112**: 4ch 2.0 V Data Output Retrofit (8 pcs)
- **MU183021A-113**: 4ch 3.5 V Data Output Retrofit (8 pcs)
- **MU183021A-130**: 4ch Data Delay Retrofit (8 pcs)

Standard Accessories for MU183021A-x12, x13

- **J1137**: Terminator: 8 pcs
- **J1359A** Coaxial Adaptor (K-P, K-J, SMA): 8 pcs

Maintenance Service

- **MU183021A-ES310**: Three Years Extended Warranty Service (1 pc)
- **MU183021A-ES510**: Five Years Extended Warranty Service (1 pc)

MU183041B

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Unit/Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU183041B</td>
<td>28G/32G bits 4ch High Sensitivity ED</td>
<td>Standard Accessories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1137 Terminator: 3 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1359A Coaxial Adaptor (K-P, K-J, SMA): 9 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J1341A Open: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J0541E Precision Fixed Attenuator 6 dB: 6 pcs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MP1800A Manual CD: 1 pc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z0918A MX180000A Software CD: 1 pc</td>
</tr>
</tbody>
</table>

Options

- **MU183041B-001**: 32 Gbit/s Extension (1 pc)
- **MU183041B-022**: 2.4G to 28.1G bit/s Clock Recovery (1 pc)
- **MU183041B-023**: 25.5 G to 32.1 G bit/s Clock Recovery (1 pc)

Retrofit Options

- **MU183041B-101**: 32 Gbit/s Extension Retrofit (1 pc)
- **MU183041B-122**: 2.4G to 28.1G bit/s Clock Recovery Retrofit (1 pc)
- **MU183041B-123**: 25.5 G to 32.1 G bit/s Clock Recovery Retrofit (1 pc)

Maintenance Service

- **MU183041B-ES310**: Three Years Extended Warranty Service (1 pc)
- **MU183041B-ES510**: Five Years Extended Warranty Service (1 pc)

MP1825B

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Unit/Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1825B*1</td>
<td>Main Frame</td>
<td>Product Brochure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-001 14 Gbit/s Operation (3 pcs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-002 28 Gbit/s Operation (2 pcs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-003 14 Gbit/s Variable Data Delay (2 pcs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-004 28 Gbit/s Variable Data Delay (2 pcs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-005 14.1 Gbit/s Extension (2 pcs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MP1825B-006 32.1 Gbit/s Extension Retrofit (3 pcs)</td>
</tr>
</tbody>
</table>

Options

- **MP1825B-103**: 14 Gbit/s Variable Data Delay Retrofit (3 pcs)
- **MP1825B-104**: 28 Gbit/s Variable Data Delay Retrofit (2 pcs)
- **MP1825B-105**: 14 Gbit/s Extension Retrofit (2 pcs)
- **MP1825B-106**: 32.1 Gbit/s Extension Retrofit (3 pcs)

*1: MP1825B is not RoHS compliant.
*2: MP1825B-001: 2 pcs, MP1825B-002: 3 pcs
*3: Select MP1825B-002
Software

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX180014A</td>
<td>10G EPON Application Software</td>
</tr>
<tr>
<td>MX181500A</td>
<td>Jitter/Noise Tolerance Test Software</td>
</tr>
<tr>
<td>MX183000A</td>
<td>High-Speed Serial Data Test Software</td>
</tr>
<tr>
<td>MX183000A-PL001</td>
<td>Jitter Tolerance Test</td>
</tr>
<tr>
<td>MX183000A-PL011</td>
<td>PCIe Link Sequence</td>
</tr>
<tr>
<td>MX183000A-PL012</td>
<td>USB Link Sequence</td>
</tr>
</tbody>
</table>

*5: Supports Windows 7 OS Only
*6: MP1800A is shipped with MX183000A installed

Before Using VISA

For Those Who Use MP1800A

To use the MX183000A High-Speed Serial Data Test Software (hereafter MX183000A), you are required to install National Instruments™ (hereafter NI™) NI-VISA™ provided in the USB memory stick that contains MX183000A. You are allowed to use NI-VISA™ contained in the USB memory stick only for the purpose of using it for MX183000A. Use of NI-VISA™ for any other product or purpose is prohibited. When uninstalling MX183000A from the PC controller, uninstall NI-VISA™ that was installed from the USB memory stick as well.

*7: Virtual Instrument Software Architecture I/O software specification for remote control of measuring instruments using interfaces such as GPIB, Ethernet, USB, etc.
*8: World de facto standard I/O software interface developed by NI and standardized by the VXI Plug&Play Alliance.

National Instruments™, NI™, NI-VISA™ and National Instruments Corporation are all trademarks of National Instruments Corporation.
Optional Accessories

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1621A</td>
<td>Passive Equalizer 3 dB</td>
<td></td>
</tr>
<tr>
<td>J1622A</td>
<td>Passive Equalizer 6 dB</td>
<td></td>
</tr>
<tr>
<td>J1627A</td>
<td>GND Connection Cable</td>
<td></td>
</tr>
<tr>
<td>G0342A</td>
<td>ESD DISCHARGER</td>
<td></td>
</tr>
<tr>
<td>J1449A</td>
<td>Measurement Kit</td>
<td>J1439A: 2 pcs, J1342A: 2 pcs, J1625A: 1 pc</td>
</tr>
<tr>
<td>J1625A</td>
<td>Coaxial Cable 1 m (SMA connector)</td>
<td>DC to 18 GHz</td>
</tr>
<tr>
<td>J1342A</td>
<td>Coaxial Cable 0.8 m</td>
<td>APC3.5, DC to 27.5 GHz</td>
</tr>
<tr>
<td>J1439A</td>
<td>Coaxial Cable (0.8 m, K connector)</td>
<td>K, DC to 40 GHz</td>
</tr>
<tr>
<td>J1620A</td>
<td>Coaxial Cable (0.9 m, K connector)</td>
<td></td>
</tr>
<tr>
<td>J1550A</td>
<td>Coaxial Skew Match Pair Cable (0.8 m, APC3.5)</td>
<td>APC3.5, DC to 27.5 GHz, Skew <3 ps, pair cable</td>
</tr>
<tr>
<td>J1551A</td>
<td>Coaxial Skew Match Pair Cable (0.8 m, K Connector)</td>
<td>K, DC to 40 GHz, Skew <3 ps, pair cable</td>
</tr>
<tr>
<td>J1615A</td>
<td>Coaxial Cable (1.3 m, K connector)</td>
<td>K, DC to 40 GHz</td>
</tr>
<tr>
<td>J1615A</td>
<td>Coaxial Cable Set (PPG-Emphasis)</td>
<td>For jitter tolerance measurement, 2 pcs</td>
</tr>
<tr>
<td>J1618A</td>
<td>Coaxial Cable Set (Jitter-2chPPG-2chEmphasis)</td>
<td>For jitter tolerance measurement, 6 pcs</td>
</tr>
<tr>
<td>J1678A</td>
<td>ESD Protection Adapter-K</td>
<td></td>
</tr>
<tr>
<td>Z0306A</td>
<td>Wrist Strap</td>
<td></td>
</tr>
<tr>
<td>J1137</td>
<td>Coaxial Terminator</td>
<td></td>
</tr>
<tr>
<td>J1359A</td>
<td>Coaxial Adapter (K-P, K-J, SMA)</td>
<td></td>
</tr>
<tr>
<td>W3594AE</td>
<td>MU183020A/MU183021A Operation Manual</td>
<td>Printed version</td>
</tr>
<tr>
<td>W3595AE</td>
<td>MU183040A/MU183041A/MU183040B/MU183041B Operation Manual</td>
<td>Printed version</td>
</tr>
<tr>
<td>M-W3864AE</td>
<td>MX180014A Operation Manual</td>
<td>Printed version</td>
</tr>
<tr>
<td>W3813AE</td>
<td>MX183000A Operation Manual</td>
<td>Printed version</td>
</tr>
<tr>
<td>41KC-3</td>
<td>Precision Fixed Attenuator 3 dB</td>
<td></td>
</tr>
<tr>
<td>41KC-6</td>
<td>Precision Fixed Attenuator 6 dB</td>
<td></td>
</tr>
<tr>
<td>41KC-10</td>
<td>Precision Fixed Attenuator 10 dB</td>
<td></td>
</tr>
<tr>
<td>41KC-20</td>
<td>Precision Fixed Attenuator 20 dB</td>
<td></td>
</tr>
<tr>
<td>K240C</td>
<td>Precision Power Divider</td>
<td></td>
</tr>
<tr>
<td>K241C</td>
<td>Precision Power Splitter</td>
<td></td>
</tr>
<tr>
<td>G0361A</td>
<td>640 Gbaud 2-bit DAC with MUX</td>
<td></td>
</tr>
<tr>
<td>J1398A</td>
<td>N-SMA ADAPTOR</td>
<td></td>
</tr>
<tr>
<td>J1508A</td>
<td>BNC-SMA Connector Cable (30 cm)</td>
<td></td>
</tr>
<tr>
<td>J1510A</td>
<td>Pick OFF Tee</td>
<td></td>
</tr>
<tr>
<td>J1627A</td>
<td>GND Connection Cable</td>
<td></td>
</tr>
<tr>
<td>J1624A</td>
<td>Coaxial Cable 0.3 m (SMA Connector)</td>
<td></td>
</tr>
<tr>
<td>J1625A</td>
<td>Coaxial Cable 1 m (SMA Connector)</td>
<td></td>
</tr>
<tr>
<td>J1632A</td>
<td>Terminador (SMA)</td>
<td></td>
</tr>
<tr>
<td>J1715A</td>
<td>Coaxial Skew Match Cable (0.1m, SMP-J, SMA-J)</td>
<td></td>
</tr>
<tr>
<td>K220B</td>
<td>Coaxial Adapter</td>
<td></td>
</tr>
<tr>
<td>K201</td>
<td>DC Block</td>
<td></td>
</tr>
<tr>
<td>K250</td>
<td>Bias T</td>
<td></td>
</tr>
<tr>
<td>Z1927A</td>
<td>USB Measurement Kit</td>
<td></td>
</tr>
<tr>
<td>J1721A</td>
<td>USB Measurement Component Set</td>
<td></td>
</tr>
<tr>
<td>J1722A</td>
<td>PCIe Measurement Component Set</td>
<td></td>
</tr>
<tr>
<td>J1723A</td>
<td>TBT Measurement Component Set</td>
<td></td>
</tr>
<tr>
<td>J1724A</td>
<td>Compliance Test Component Set</td>
<td></td>
</tr>
<tr>
<td>J1735A</td>
<td>Combiner</td>
<td></td>
</tr>
<tr>
<td>J1728A</td>
<td>Electrical Length Specified Coaxial Cable (0.4 m, K connector)</td>
<td></td>
</tr>
<tr>
<td>J1741A</td>
<td>Electrical Length Specified Coaxial Cable (0.8 m, K Connector)</td>
<td></td>
</tr>
<tr>
<td>J1742A</td>
<td>Electrical Length Specified Coaxial Cable (0.84 m, K Connector)</td>
<td></td>
</tr>
</tbody>
</table>

* MU181020B is not RoHS compliant.
* MU181040B is not RoHS compliant.

4: The warranty period shall be 1 year under normal use. Repair by exchange for new during the warranty period shall be limited to one instance. Repair using new spare parts shall be charged after the warranty period has expired. Moreover, Anritsu Corporation will deem this warranty void when:

- When new spare parts can no longer be easily obtained when more than 5 years have elapsed after manufacture.