

Optical Spectrum Analyzer MS9740B

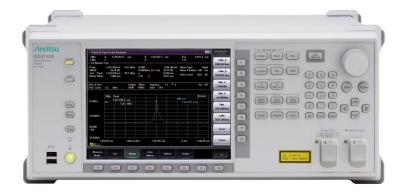
Overview

Reduce the measurement processing times by up to half compared to the earlier model while assuring high performance and complete test menus brings higher-efficiency inspection of active optical devices.

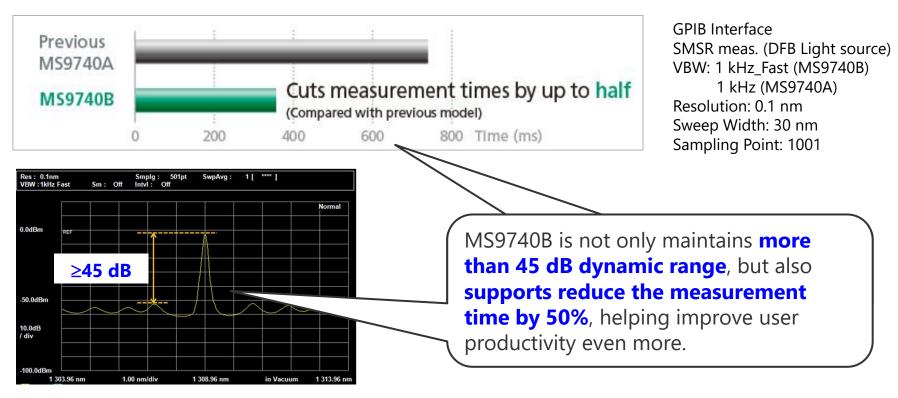
Reduce the manufacturing costs is a key issue for makers of active optical devices. Measuring instruments for device evaluation are expected to increase productivity by shortening inspection times.

The Optical Spectrum Analyzer MS9740B reduces the total time from waveform sweeping to data transfer to external control equipment and supports simple analysis procedures, offering excellent cost performance and better productivity.

Optical Spectrum Analyzer MS9740B

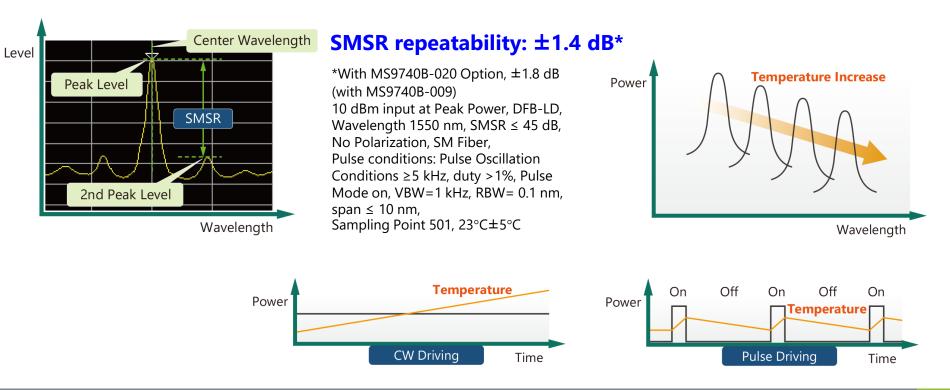

- Wavelength sweeping time <0.35 s^{*1}
- Maximum wavelength sweeping time <0.2 s^{*2}
- ➤ Dynamic range performance ≥58 dB
- > 30 pm minimum resolution
- > –90 dBm minimum light-reception sensitivity
- Stable productivity at pulse measurement of

high-output LDs New !


*1: Reference value: Reduces sweep time by 50% compared to previous models. VBW: 1 kHz_Fast, Resolution: 0.1nm, Sweep Width: 30 nm, Sampling Points: 1,001
*2: VBW: 10 kHz, Resolution: 0.1 nm, Sweep Width: 5 nm, Sampling Points: 501

Key Features (1/3)

Reduce the measurement time by 50% for better production efficiency at required active optical device evaluation


Key Features (2/3)

Stable High-Output LD Productivity *New* !

Use of more high-output LDs in fields such as faster and larger-capacity networks, sensing, etc., is increasing demand for optical spectrum evaluation using pulse measurement to ameliorate heat generation.

the MS9740B supports an optical pulse measurement mode that captures the spectrum of optical pulses from the LD asynchronously without trigger signal input in the same measurement time as when measuring a CW optical spectrum.



Key Features (3/3)

Easy Operation:

When a mouse is connected, the familiar Windows GUI makes menu selection and parameter setting an easy and convenient alternative to setting using panel keys.

- Supports SM and MM Fibers
- Large 8.4-inch LCD

> Internal Memory Function:

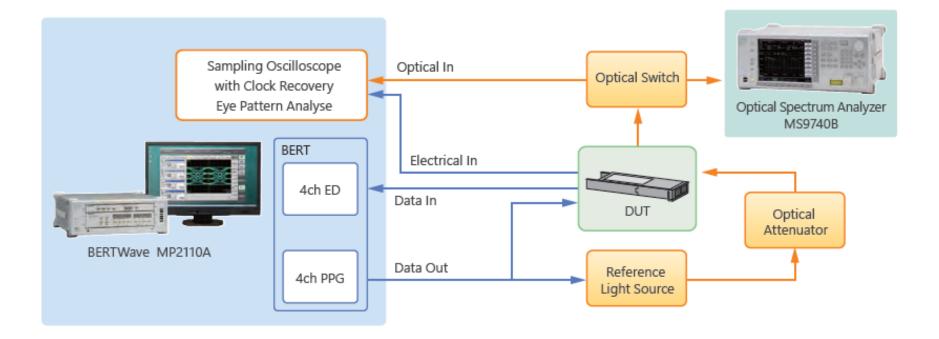
Up to 1000 files can be saved to internal memory.

Full Range of Interfaces:

Supports Ethernet (TCP/IP) and GPIB (option) interfaces

Lightweight:

Weighing in at under 15 kg, the MS9740B is the world's lightest benchtop spectrum


Nine Application Modes

At evaluation of LD characteristics, analysis items and methods can be tailored to the spectrum, such as a single DFB-LD spectrum, multiple discrete-wavelength FP-LD, wideband LED, etc. The MS9740B has seven modes (DFB-LD, FP-LD, LED, PMD, Opt Amp, Opt Amp (Multi-Channel), WDM, WDM Filter, LD Module) matching the measurement target.

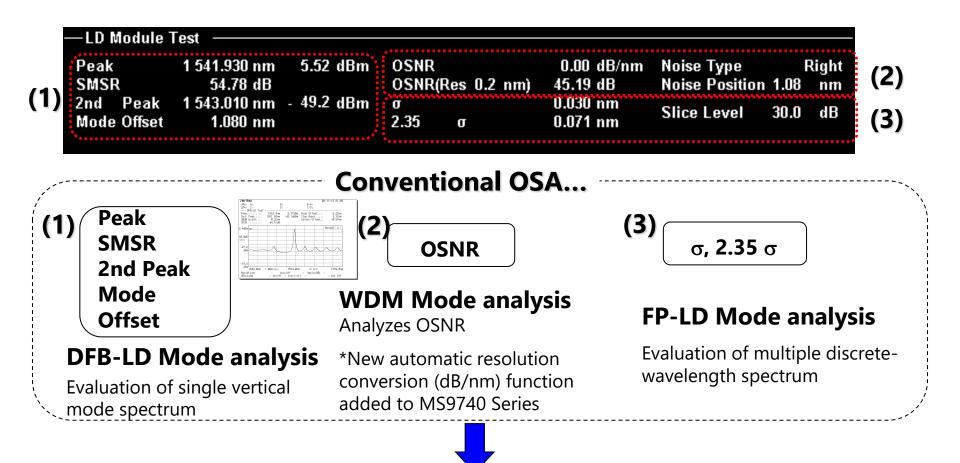
Test Target	
LD Module	Evaluation of optical-transceiver characteristics
DFB-LD	Evaluation of single vertical-mode spectrum
FP-LD	Evaluation of multiple discrete-wavelength spectrum
LED	Evaluation of wideband light source spectrum
PMD	Evaluation of PMD characteristics of optical fiber
Opt. Amp / Opt. Amp (Multi-Channel)	Evaluation of gain and NF characteristics of fiber amplifier (EDFA)
WDM	Evaluation of WDM signal spectrum for up to 300 wavelengths (channels)
WDM Filter	Analysis of optical bandpass filter

Example of Optical Transceiver Measurement (1/3)

Dedicated applications for evaluating active optical devices

Supports SM and MM fibers

Example of Optical Transceiver Measurement (2/3)

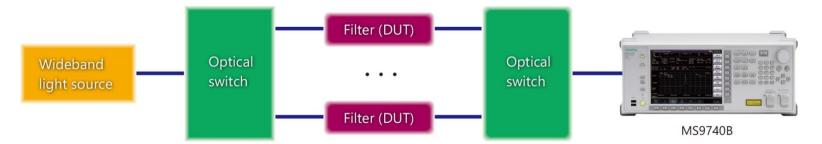

Displays all analysis results required for active optical device on one screen.

This application measures test items, such as center wavelength, optical level, OSNR, etc., required for LD module tests, and displays the results on one screen.

A Optical S	pectru	m Analy	zer									7/4/2014 15:45:17
λMkr LMkr –LD Module	A C				B D				B-A C-D			Signal
-LD module Signal Peak	1 309.4				SNR(/0.1	nm) ; 0.093		58.17 dB 58.47 dB	Signa	Level	Point	Parameter
SMSR 2nd Peak	47. 1 310.3	99 dB 70 nm -		dBm	σ 6.07σ			0.035 nm 0.213 nm	Noise		oint((L+R)/2)	Noise Parameter
Aode Offset Search Reso	lution (60 nm 1.10 dB			20.0 dB Stop Ba	nd		0.211 nm 2.900 nm	Cente	Level r Offset	20.0 dB - 0.490 nm	Noise
Res: 0.1nm VBW : 1kl		Sm :	Off	Smplg Intvl :	y: 50′ Off	lpt S	SwpAvg	: 1[*****]			Position Off
											Normal	
1.6dBm	REF					/	1					
51.6dBm			+	_		Ţ				\sim		Off
0.0dB div												More 1/2
101.6dBm 1 3 <mark>A Wri Off</mark>	04.41 nm		1.00) nm/di	v	1 30	9.41 nm		in Vacuu	ım	1 314.41 nm	Close
Wave- length	_	evel cale		s/VBW/ Ave	_	eak/Dip Gearch	- A	nalysis	Trace	,	Appli- cation	·

- LD-Module Test Items
- Center wavelength, level
- OSNR (actual measured value)
- ✓ OSNR (noise level per nm)
- ✓ SMSR
- Spectrum width

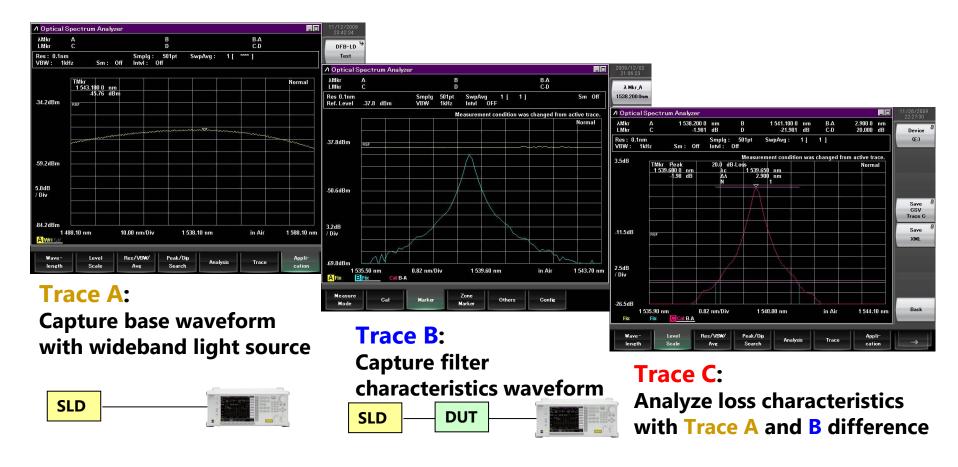
Example of Optical Transceiver Measurement (3/3)



Regardless of whether the spectrum is DFB-LD or FP-LD, the MS9740B analyzes basic optical module items on one screen. And it supports batch transmission of these results via remote control.

Passive Optical Device Measurement (1/3)

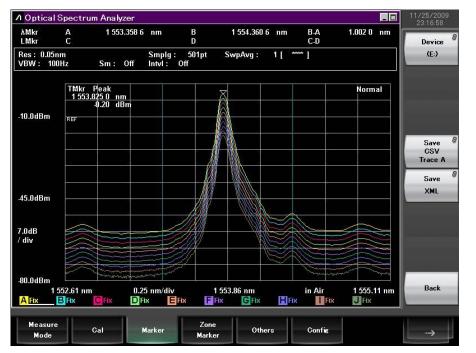
Wide dynamic range and high-resolution support for passive optical device evaluation


- **Dynamic range performance** \geq 58 dB (\pm 0.4 nm from peak wavelength)
- > 30 pm minimum resolution
- –90 dBm minimum light-reception sensitivity

The MS9740B supports signal evaluation with wide dynamic range and high-resolution, such as measurement of narrow-band filters and OSNR analysis of WDM signals.

Passive Optical Device Measurement (2/3)

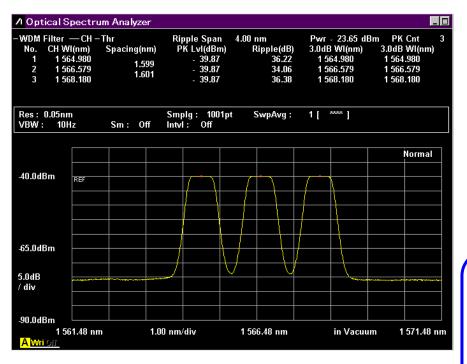
OPBF Loss characteristics evaluation



Passive Optical Device Measurement (3/3)

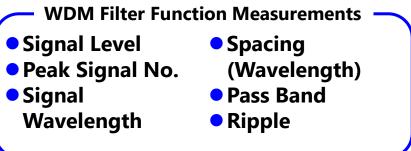
Up to 10 waveforms displayed on one screen saved in one file

The MS9740B has a large waveform memory for saving up to 10 waveforms and a wavelength difference calculation function, making it easy to evaluate devices such as optical switches.

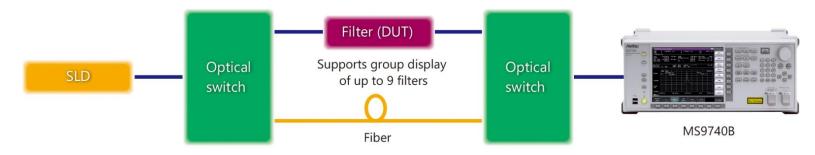


- Display up to 10 waveforms on one screen
- Save 10 analyzed waveforms in one file
- Save up to 1,000 files to internal memory

Save 10,000 waveforms to internal memory


Optical Bandpass Filter Measurement Solution (1/2)

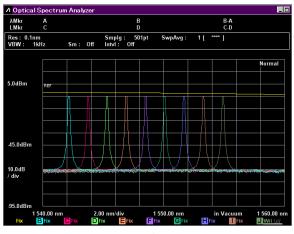
Transmittance Evaluation


Batch Measurement of Optical Bandpass Filter Transmittance

The WDM Filter analysis function supports efficient evaluation of optical bandpass filter transmittance characteristics

Optical Bandpass Filter Measurement Solution (2/2)

Insertion Loss Evaluation

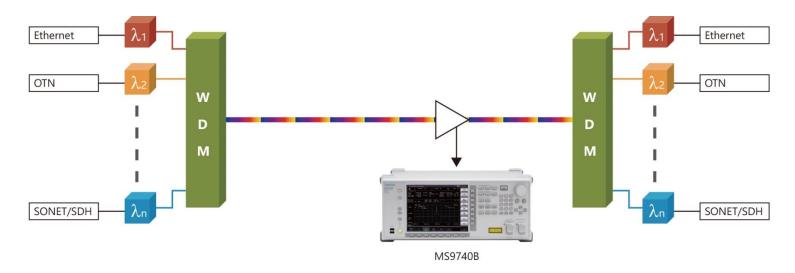


>evaluated by finding the difference in the measured results when the filter (DUT) is inserted and not inserted

Filter Insertion Loss Analysis using Trace Mode

-WDM F No.	ilter — CH CH WI(nm)	Spacing(nm	v n) PKWI(nm)	S.Lvl 30.0 dl CH Lvl(dB) 3.0dB BW(nm)		
1 2 3 4 5	1 550.038 1 550.818 1 551.702 1 552.451 1 553.210	0.780	4 1 550.818 9 1 551.702 9 1 552.451	- 2.72 - 3.28 - 3.20 - 2.94 - 2.60	0.104 0.105 0.105	0.230 0.231 0.230 0.231 0.231 0.231	
Res: (VBW:).05nm 1kHz	Sm: Off	Smplg: 2001 Intvl: Off	ot SwpAvg:	1 [****]		
60.0dB						Normal	
0.0dB	REF						
10.0dB / div				ARARJ	UUUU		
-60.0dB Wri	1 547.23	nm 2 C <u>Cal B-A</u>	2.08 nm/div	1 557.63 nm	in Vacu	um 1 568.03 nr	

Filter Analysis by Waveform Difference Comparison



Multi-waveform Trace

WDM Signal Analysis (1/2)

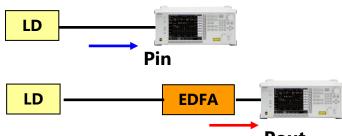
Wide dynamic range and high-resolution support WDM signal measurements at 100 GHz or 50 GHz intervals with margin

> Dynamic range performance \geq 58 dB (±0.4 nm from peak wavelength)

> 30 pm minimum resolution

WDM Signal Analysis (2/2)

Simultaneous spectrum analysis of multiple waveforms

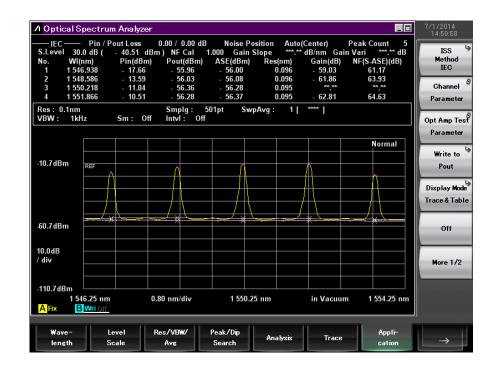

Up to 300 channels can be analyzed and information required for WDM signal analysis, such as center wavelength, level, SNR, etc., is displayed on one screen.

A Optical S	pectrum	Analyzer							_ 0	11/12/2009 22:11:48	/ Opti	cal Spectru	ım Analyzer							11/12/2009 22:11:15
— Relative — No.	WI(nm)		lef 1 :ing(nm)	S Leve WI-Ref(nn		dB (- 4 el(dBm)	4.98 dB Level-	lm) PeakC Ref(dB)	Count 4	Next	—Table			a	S Level	30.0	dB (- 44.9	8 dBm)P	eakCount 4	Next
1 2	1 552.340 1 553.132		0.792 0.816	0.000		14.98 16.20		0.00 1.22		Page	No.	Signal Wl(nm)	Signal Frq(THz)	Level (dBm)	SNR (dB)		Spacing WI(nm)	Spacing Frq(GHz)	Gain Vari 1.68 dB	Page
3 4	1 553.948 1 554.772		0.824	1.608		16.66 15.44		1.68 0.46		Last	1	1 552.340	193.122 9	- 14.98	40.43	Α	0.792	98.4	Dip Prmtr	Last
	260					National V				Page	2	1 553.132 1 553.948	193.024 5	- 16.20	38.83 38.19	A	0.816	101.4	(L+R)/	Page
Res: 0.05nm VBW: 1kH		Sm: Off	Smpl Intvl	g: 501pt : Off	SwpA	vg: ′	1[1		Display 🦃 Mode	3	1 553.948	192.923 1 192.820 8	- 16.66 - 15.44	38.19 39.49	A	0.824	102.3	Noise Position 0.40 nm	Display 🦃 Mode
	Î Î								Normal	Relative									Center 1553.54 nm	Table
-20.0dBm	REF	$-\Lambda$		$-\Lambda$		A		A		Peak [©] Parameter			1						Span 4.00 nm	Peak [©] Parameter
						11		=		Ref									- Start 1551.54 nm	Dip
						+				No. 1				e E					Stop	Parameter
-45.0dBm		\rightarrow	$\left\{ - \right\}$			+		+		Page Top No. 1									1555.54 nm	Noise Position 0.40nm
5.0dB		\bot			<u> </u>												2 			-
/ Div										Off							•			Off
-70.0dBm	j1.54 nm		1.40 nm/E		1 553.54 1			in Air	1 555.54 nm	Close	Res: 0	.05nm	96-	Smplg :	501pt	SwpA		I	·	Close
A Wri oir	11.34-11111		.40 1111/1		1 333.34			- m - Au	1 353.34 nm		VBW :		Sm: Off	Intvl: 0	ff					
Wave-	Lev		Res/VBW			Analysis		Trace	Appli-		Way			les/VBW/	Peak/Dip		Analysis	Trac	Appli-	
length	Sca	le	Ave	Sear	ch	mindiyala		Hacc	cation	>	len	gth	Scale	Ave	Search		Tinelyala		c cation	

EDFA Analysis (1/2)

The MS9740B calculates the gain and NF automatically from the optical input and output to the optical fiber amplifier.

- Pulse Method
- Spectrum Division Method
- PLZN Nulling Method


Pout output waveform after amplification

Pin output waveform before amplification

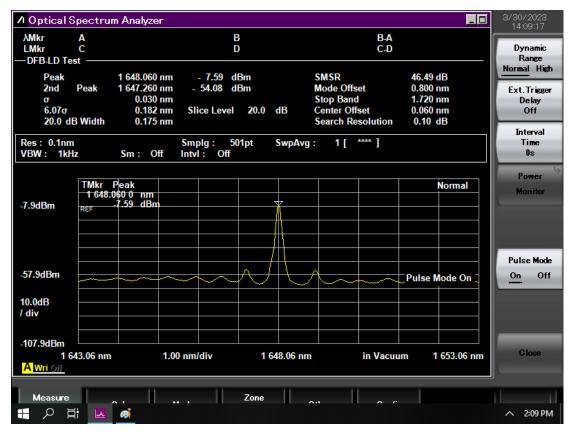
∕I Optical S	Spectrum Analyze	er					11/26/2009 23:26:57
NF (S⊸ Gain Signal WI ASE Lvl(/R Pin Lvl	ASE) 8.28 14.45 1 553.084 .es) . 37.71 . 5.69	dB nm dBm dBm	Res Loss (Fitting (Opt BPF Lvl C		dB / Pout nm / Mask dB	1.000 0.00 dB) 2.00 nm)	Method Spect Div On Barameter
Pout Lvl Res : 0.05m VBW : 100	m	Smplg :		3.00 wpAvg : 1 [Write to 🦃
17.7dBm	TMkr Peak 1553.084 0 nm 8.75 dBn Ref			X		Normal	Pout
-27.3dBm			\mathbb{A}				Res Cal Off
9.0dB / Div							More 1/2
	50.70 nm <mark>3 Wri Max</mark>	0.40 nm/Div	1 55	2.70 nm	in Air	Opt. Att On 1 554.70 nm	Close
Wave- length	Level Scale	Res/VB₩/ Ave	Peak/Dip Search	Analysis	Trace	Appli- cation	

EDFA Analysis (2/2)

- Support to Opt. Amp (Multichannel) for WDM signals and the latest IEC standards.
 - The IEC-recommended ISS (Interpolated Source Subtraction) method is supported for gain and ASE analysis
 - a mode for automatically detecting the noise position is also provided.
 - The Gain Variation and the Output Slope analysis are also supported within the same application.

Optical Level Variation Evaluation

The Min Hold and Max Hold functions are convenient for measuring long-term variation in optical level. It displays real-time maximum and minimum levels on-screen.



Pulsed Light Measurement New !

This function measures the pulsed optical spectrum output from the LD under asynchronous conditions without a trigger signal.

The SMSR can be evaluated in a similar time to measurement of a CW optical signal.

SMSR repeatability: ±1.4 dB*

*With MS9740B-020 Option, $\pm 1.8 \text{ dB}$ (with MS9740B-009) 10 dBm input at Peak Power, DFB-LD, Wavelength 1550 nm, SMSR $\leq 45 \text{ dB}$, No Polarization, SM Fiber。 Pulse conditions: Pulse Oscillation Conditions $\geq 5 \text{ kHz}$, duty > 1%, Pulse Mode on, VBW=1 kHz, RBW= 0.1 nm, span $\leq 10 \text{ nm}$, Sampling Point 501, 23°C $\pm 5^{\circ}$ C

*The pulsed light measurement function requires the MS9740B-020 option.

Easy Optical Fiber Connection

Supports SM and MM fibers

One MS9740B unit supports measurement of both SM and MM fibers. Moreover, fiber light-reception is used for optical input. Backscatter attenuation of <35 dB (1300 nm/1550 nm) assures accurate DUT backscatter measurement.

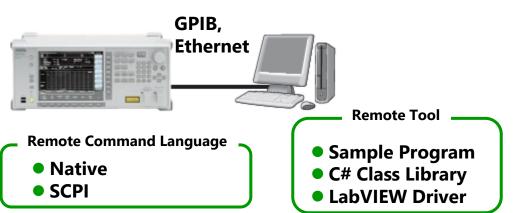
Transfer Data to External PC Controller

- Batch transmission of analyzed data
 - For example, center wavelength, optical level and OSNR analyzed by the LD-Module application can be transferred as a batch to the external PC controller, supporting easy data management.

Transfer BMP and PNG image files

Screen image (BMP, PNG) data captured by the MS9740B can be transferred to the external PC controller. This is convenient when saving screen images separately from binary data.

Remote Tool Package



MS9740B Remote Tool Package

 The Remote Tools Package includes the quick-start guide, sample programs, C# class library, and LabVIEW Driver.

This package can be downloaded from the Anritsu site.

- **Gample Programs: MS9740B control program created using Visual Basic**
- **C#** Class Library: DLL using NET framework
- **LabVIEW Driver : NI LabVIEW 7.1 driver**

Note:

When controlling the MS9740B remotely using the Ethernet port, a VISA*1 driver must be installed in the PC controller. We recommend using NI-VISA™*2 from National Instruments[™] (NI hereafter) as the VISA driver.

More detail information of NI-VISA[™] usage, please refer to the MS9740B product brochure.

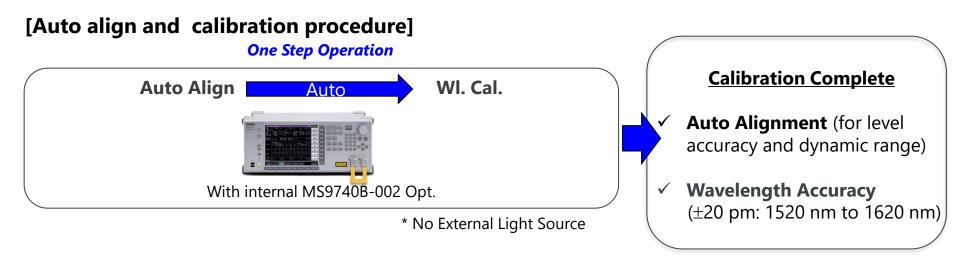
Glossary of Terms:

*1: VISA: Virtual Instrument Software Architecture

I/O software specification for remote control of measuring instruments using interfaces such as GPIB, Ethernet, USB, etc.

*2: NI-VISA™

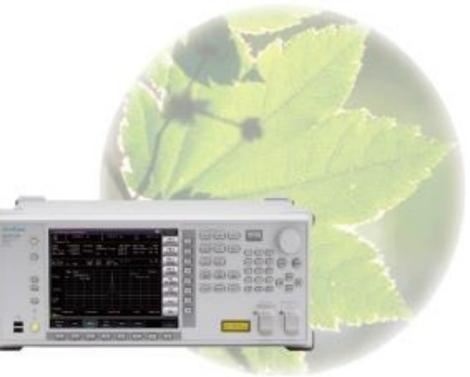
World de facto standard I/O software interface developed by NI and standardized by the VXI Plug&Play Alliance.


Trademarks:

- National Instruments™, NI™, NI-VISA™ and National Instruments Corporation are all trademarks of National Instruments Corporation.

Wavelength Calibration Function

Advancing beyond


Wavelength accuracy of ±20 pm is assured by calibrating the wavelength using the Light Source for Wavelength Calibration (Opt-002). In addition, the MS9740B has a function for automatically calibrating wavelength if the ambient temperature and pressure change, based on the first calibration data.

Weighing in at under 15 kg, the MS9740B is the world's lightest benchtop spectrum analyzer.

Consuming under 75 VA, or less than half its predecessors, it's al eco-friendly too. And not only does it save power, it's quiet as well, making it the ideal benchte companion.

Advancing beyond

公知