Network Master Pro
MT1000A

10G Multirate Module MU100010A
100G Multirate Module MU100011A
High Performance GPS Disciplined Oscillator MU100090A
Scenario Environment Editing Kit (SEEK) MX100003A
Contents

• Network Master Pro MT1000A
 • Redefining Transport Testing
• Instrument Views
• Product Structure
• Carrier Class Ethernet Installation and Troubleshooting
• TCP Throughput Option (RFC 6349)
• Ethernet OAM Functionality
• Mobile Backhaul Installation and Verification
 • Synchronous Ethernet Test
 • Phase/Time Synchronization Test
• Mobile Fronthaul Installation and Verification
 • CPRI/OBSAI Test
 • eCPRI/IEEE1914.3 Test
• Powerful Storage Area Networking (SAN) Testing
 • Fibre Channel Functionality
• OTN Metro and Core Network Installation and Maintenance
• Quick and Easy Tests of SDH/SONET/PDH/DSn Networks
• VIP : Video Inspection Probe
• Operation and Presentation
• Report Generation
• Remote Operation
 • Remote Control - Scripting
 • Remote GUI & Scripting
• Automation Testing (MX100003A)
Network Master Pro MT1000A

• Redefining Transport Testing
Market Situation—Historical

- Core network had multiple metro/access network subsets
 - Much of the network coming to the access network was muxed up to a larger metro network which was muxed up to the core network.
 - Not all traffic was transferred to the core, but a large percentage was.
 - To a large extent, the core was the size of the combined metro networks.
Market Situation—Current and Future

- Metro networks becoming same or larger size than core
 - Many services now require “near” real-time response (simultaneous multiple access to data)
 - Transferring data long distances to server not ideal
 - Many services to many millions of users (apps) now truly global (apps)
 - A single or even two servers (back-up) isn’t good enough to handle data
 - Many services require very large data from millions of users (video)
 - HD and even UHD video now being streamed
Market Segmentation

Mobile Fronthaul
- Microcell/Picocell (RRH)
- CPRI/eCPRI/IEEE1914.3
- RF Over Glass (Fiber)

Mobile Backhaul
- GE/10GbE/25GbE
- (RNC/BSC)

Metro
- 8G/10G/16GFC
- 10GbE/25GbE/40Gb
- (Data Center)
- 10G OTN
- Ethernet Switch

Access
- GbE/10GbE
- FTTx, xDSL
- Femtocell
- ONU

Core
- Core Router
- 40G/100G
- ROADM
- ROADM
- Ethernet Switch

Internet
- TDM Transport

SAN
- 8G/10G/16GFC
- 10GbE/25GbE/40Gb
- (Data Center)

SAN
- 8G/10G/16GFC
- 10GbE/25GbE/40Gb
- (Data Center)
Where to use MT1000A

- Mobile Fronthaul (CPRI/OBSAI)
- TDM (SDH/SONET/PDH/DSn)
- Carrier Ethernet
- Residential (Ethernet/IP based)
- Mobile Backhaul (Ethernet or TDM based)
- San (Storage Area Network) Fibre Channel
- OTN
Out-of-Service Installation Testing

• Installing and commissioning new lines
 – Verify new-line quality/performance before service commissioning
• Troubleshooting with test traffic
 – Test network functions under different loads
• Testing line quality
 – Perform far-end loopback tests using cable or special configuration (protocol dependent)
Out-of-Service Installation Testing

- One-way testing using two instruments
 - Separate results for each line direction
 - Performed between MT1000A and MT1000A
Out-of-Service Installation Testing

- Efficient simultaneous out-of-service testing of up to two lines
 - Supports up to two fully independent ports at all rates

MT1000A
Out-of-Service Testing

- Network element installation/commissioning
- Error-performance measurements
- Propagation-time measurements

- Alarm, error, slip and frequency-deviation measurements
- System stressing through generation of alarms, errors, slip and frequency offset
In-Service Troubleshooting and Analysis

• Monitoring both line directions simultaneously to troubleshoot communications path problems
 – Optimum communications requires smooth data transport in both directions

MT1000A connected to monitoring point

MT1000A in Pass-through mode
MT1000A Key Applications

• Carrier Class Ethernet I&M and troubleshooting
 - Ethernet testing up to 100 GigE
 - Include RFC 2544, and Y.1564
 - Include RFC 6349 (Up to 10Gbps)
 - Ethernet OAM
 - MPLS-TP and PBB
 - IP Channel statistics
 - Frame capture for advanced troubleshooting

• Core and Metro networks I&M
 - OTN up to OTU4
 - Mapping of Ethernet/CPRI/SDH/SONET/Fibre Channel client signals, multistage mapping
 - FEC (Forward Error Correction) and O.182 Poisson error insertion

• Mobile Backhaul installation and verification
 - Synchronous Ethernet testing up to 10 GigE (ITU-T G.826x and IEEE 1588 v2)

• Mobile Fronthaul installation and verification
 - CPRI testing up to 10 Gbps
 - OBSAI testing up to 6 Gbps
 - eCPRI/IEEE 1914.3 up to 100 Gbps
MT1000A Key Applications

- Powerful Storage Area Networking (SAN) testing
 - Fibre Channel up to 16 Gbps
 - Supports throughput, latency, and buffer credit performance verification
- Quick and easy testing of SDH/SONET, PDH/DSn Networks
 - SDH/SONET up to STM-64/OC-192
 - PDH/DSn (E1, E3, E4, DS1, DS3)
- Fiber endface inspection using VIP (Video Inspection Probe)
- Dual port at 10 Gbps rates
 - Reduced testing time by simultaneous testing of two lines with one unit
 - In-service bi-directional monitoring
MT1000A Key Benefits and Features

- Easy intuitive GUI
 - Large 9-inch touch screen
 - Eight languages (English, Chinese, Japanese, Korean, German, French, Russian and Spanish)
- WLAN*1/Bluetooth/LAN connectivity
- PDF, CSV and XML report generation for documentation of test results
- Remote operation
 - Using VNC or dedicated GUI operation software
 - Via Ethernet, WLAN
- Remote control (scripting) via Ethernet, WLAN, GPIB
- Hand-held product
 - Compact and lightweight design for maximum portability in field
 - Clam shell (single module installation)
 - Modular platform ensures maximum return on investment
- Battery-operated
- High performance in small form factor

*1 Available for certified countries, including USA, Canada, Japan, all EU countries
Network Master Family

• Transport

<table>
<thead>
<tr>
<th>Network Master GigE MT9090A</th>
<th>Network Master Pro MT1000A</th>
<th>Network Master Flex MT1100A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedicated field test solution for installation and troubleshooting Ethernet links in access network</td>
<td>All-in-one transport tester supporting from 1.5 Mbps to 100 Gbps including OTN, Ethernet, PTP, eCPRI/IEEE 1914.3/CPRI/OBSAI, Fibre Channel, SDH/SONET and PDH/DSn</td>
<td>All-in-one, up to 4-port transport tester supporting from 1.5 Mbps to 100 Gbps including OTN, Ethernet, eCPRI/IEEE 1914.3/CPRI/OBSAI, Fibre Channel, SDH/SONET and PDH/DSn</td>
</tr>
</tbody>
</table>

• Optical

<table>
<thead>
<tr>
<th>Optical Channel Analyzer MT9090A</th>
<th>μOTDR MT9090A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact CWDM channel analyzer to verify power levels, drift and channel presence of CWDM networks</td>
<td>Compact OTDR for fully automatic verification of optical networks, FTTH PON, metro and core</td>
</tr>
</tbody>
</table>
Network Master Pro MT1000A

• Instrument Views
MT1000A Instrument Views

• Front View

• Other Views:

<table>
<thead>
<tr>
<th></th>
<th>Kg</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>2,7</td>
<td>6,0</td>
</tr>
<tr>
<td>Width</td>
<td>257</td>
<td>10,1</td>
</tr>
<tr>
<td>Height</td>
<td>164</td>
<td>6,5</td>
</tr>
<tr>
<td>Depth</td>
<td>77</td>
<td>3,0</td>
</tr>
</tbody>
</table>
Instrument Views 1/3

- Top (connector panel) View
 - MT1000A + MU100010A

1. Port 1, Tx Bantam (DS1)
2. Port 1, Tx BNC (E1, E3, E4, DS3, STM-1-e, STS-3e)
3. Port 1, Rx Bantam (DS1)
4. Port 1, Rx BNC (E1, E3, E4, DS3, STM-1-e, STS-3e)
5. Port 2, Tx Bantam (DS1)
6. Port 2, Tx BNC (E1, E3, E4, DS3, STM-1-e, STS-3e)
7. Port 2, Rx Bantam (DS1)
8. Port 2, Rx BNC (E1, E3, E4, DS3, STM-1-e, STS-3e)
9. Port 1, Tx/Rx RJ48 (E1 balanced)
10. Port 2, Tx/Rx RJ48 (E1 balanced)
11. Port 1, Tx/Rx SFP/SFP+ (optical OTN/Ethernet/CPRI/OBSAI/Fibre Channel/SDH/SONET)
12. Port 2, Tx/Rx SFP/SFP+ (optical OTN/Ethernet/CPRI/OBSAI/Fibre Channel/SDH/SONET)
13. Port 1, Tx/Rx RJ45 (Ethernet electrical)
14. Port 2, Tx/Rx RJ45 (Ethernet electrical)
15. Audio
16. AUX
17. Clock input
18. USB Mini-B
19. USB A
20. USB A
21. Ethernet service interface
22. DC input (18 VDC)
Instrument Views 2/3

- Top (connector panel) View
 - MT1000A + MU100011A

23. Port 1, Tx/Rx CFP4 (optical OTN/Ethernet)
24. Port 1, Tx/Rx SFP/SFP+/SFP28 (optical OTN/Ethernet/eCPRI/RoE/CPRI/OBSAI/Fibre Channel/SDH/SONET)
25. Port 2, Tx/Rx SFP/SFP+/SFP28 (optical OTN/Ethernet/eCPRI/RoE/CPRI/OBSAI/Fibre Channel/SDH/SONET)
26. Port 1, Tx/Rx QSFP28 (optical 25G Ethernet)
27. Port 1, Sync Clock Out (CAUI4, 25GAUI, OTL 4.4)
28. Port 1, Tx/Rx RJ45 (Ethernet electrical)
29. Port 2, Tx/Rx RJ45 (Ethernet electrical)
Instrument Views 3/3

- Top (connector panel) View
 - MT1000A + MU100010A

30. AUX D-SUB 9 pin
31. 1 pps Output
32. 10 MHz Output
33. OCS LED
34. GPS received LED
35. 1 pps Sync In
36. GPS Antenna Input
Network Master Pro MT1000A

• Product Structure
MT1000A Product Structure

Mainframe and Accessories

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th>Standard Accessories</th>
<th>Optional Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A</td>
<td>Network Master Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT1000A-006**</td>
<td>High Power Supply:</td>
<td>Installed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line Cord:*</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>B0745A</td>
<td>Softcase:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>B0728A**</td>
<td>Rear Panel kit:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>G0385A**</td>
<td>High Power AC Adaptor:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>G0310A</td>
<td>Li-ion Battery:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>Z1746A</td>
<td>Stylus:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>Z1747A**</td>
<td>Carrying Strap:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>Z1748A**</td>
<td>Handle:</td>
<td>1 pc</td>
<td></td>
</tr>
<tr>
<td>Z1817A**</td>
<td>Utilities ROM:</td>
<td>1 pc</td>
<td></td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A-003**</td>
<td>Connectivity for WLAN/Bluetooth</td>
<td></td>
</tr>
<tr>
<td>MT1000A-005**</td>
<td>AUX I/O</td>
<td></td>
</tr>
</tbody>
</table>

Softcase B0745A (Standard Accessory)

This bag with shoulder strap can hold the MT1000A with up to three installed modules.

1. The presence of the MT1000A-006 option can be recognized at the top right of the front panel. To retrofit to the already shipped item, please contact us.
2. One line cord is attached to the area to shipment.
3. Composed of B0728A, B0729A, B0730A and B0731A. Refer to Module Composition for the module combination.
4. The MT100A with MT1000A-006 can be used. Use the AC adapter when using the MT100A without MT1000A-006 installed.
5. Shoulder strap for MT100A.

Hard Case B0691B

This strong plastic case can hold the MT1000A with up to two installed modules. 462 (W) x 372 (H) x 207 (D) mm

13. This fiberscope uses the VIP function in the MT1000A Utility menu. Different tip types are used by the G0382A and G0306B.
14. J1667A is required for SCPE remote control via GPIB.
MT1000A Product Structure

- 10G Multirate Module MU100010A

<table>
<thead>
<tr>
<th>MU100010A</th>
<th>Bit Rate</th>
<th>Less than 5G</th>
<th>From 6G to 10G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Technology</td>
<td>No. of Measurement Points**</td>
<td>2 (Dual Channel)</td>
<td>1 (Single Channel)</td>
</tr>
<tr>
<td>Ethernet</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
<td>MU100010A-011 Ethernet 10G Single Channel</td>
<td>MU100010A-012 Ethernet 10G Dual Channel</td>
</tr>
<tr>
<td>IPv4/IPv6, Y.1564, IEEE 1588 v2, RFC 2544, BER, Multistream, OAM, SyncE, MPLS, MPLS-TP, Multistage VLAN, FBS, Ring/Traceroute, Cable Tests, In-band Control, Auto discovery, Path-through TCP Throughput Test (RFC 5289, iPerf) MU100010A-020 TCP Throughput</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eCPR/E1914.3 (Ref)</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
<td>MU100010A-011 Ethernet 10G Single Channel</td>
<td>MU100010A-012 Ethernet 10G Dual Channel</td>
</tr>
<tr>
<td>IPv4/IPv6, BER, VLAN, SyncE, IEEE 1588 v2, E-CAM</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
<td>MU100010A-051 OTN 10G Single Channel</td>
<td>MU100010A-052 OTN 10G Dual Channel</td>
</tr>
<tr>
<td>OTN**</td>
<td>ODU Multiplexing Addition** MU100010A-061 ODU Multiplexing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODU Flex Addition**</td>
<td>—</td>
<td>MU100010A-062 ODU Flex</td>
<td></td>
</tr>
<tr>
<td>CPR/CBSAI</td>
<td>CPR/CBSAI 1: Level/Bit Rate/Frequency deviation Measurement, Alarm/Errs Detection, Unframed BER</td>
<td>MU100010A-071 CPR/CBSAI Up to 5G Single Channel</td>
<td>MU100010A-072 CPR/CBSAI Up to 10G Single Channel</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
<td>MU100010A-081 STM-64 OC-192 Single Channel</td>
<td>MU100010A-082 STM-64 OC-192 Dual Channel</td>
</tr>
<tr>
<td>SDH/SONET, PDH/DSn</td>
<td>PDH/DSn Test, Two-Way Monitoring/Mapping, Errors/Alarms, Error Performance/Decay/APS Test, Header Monitoring/Generation, Pointer Event Generation, Trubutary Scan</td>
<td>MU100010A-001 Up to 2.7G Dual Channel</td>
<td>MU100010A-081 STM-64 OC-192 Single Channel</td>
</tr>
</tbody>
</table>

Notes:

*1: The channel is not related to the physical port position. The user can freely choose either of the two physical ports assigned to the option via software. For a dual channel setup, the two different ports of one protocol can operate simultaneously, or two different single channel options can operate simultaneously.

*2: Please see the datasheet for supported OTN mapping.

*3: When using the OTN function, the channel can be used as client signal mapped to OTN. For example, when mapping STM-64/OC-192 to OTU2, both the MU100010A-051/052 (for physical port) and the MU100010A-081/082 (for client signal) are required.

*4: When the ODU Multimapping option is installed, OTN multistage mapping measurements are supported. This one option supports both single channel and dual channel.

*5: When the ODU Flex option is installed, since transport is over OTN networks, mappings based on used ODU Flex standard can be measured. This one option supports both single channel and dual channel.
MT1000A Product Structure

100G Multirate Module MU100011A

<table>
<thead>
<tr>
<th>MU100011A</th>
<th>Bit Rate</th>
<th>Up to 10G</th>
<th>Higher than 10G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Technology</td>
<td>No. of Measurement Ports**</td>
<td>1 (Single Channel)</td>
<td>2 (Dual Channel)</td>
</tr>
<tr>
<td>Ethernet</td>
<td>MU100011A-001 Up to 10G Single Channel</td>
<td>MU100011A-003 Up to 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td>MU100011A-017 Ethernet 25G Single Channel</td>
<td>MU100011A-013 Ethernet 40G Single Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-015 Ethernet 100G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP Throughput Test (RFC 6349, iPerf)</td>
<td>MU100011A-020 TCP Throughput</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement using 100GBASE-SR</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>eCPRI/IEEE1914.3 (RoE)</td>
<td>MU100011A-001 Up to 10G Single Channel</td>
<td>MU100011A-003 Up to 10G Dual Channel</td>
<td></td>
</tr>
<tr>
<td>MU100011A-017 Ethernet 25G Single Channel</td>
<td>MU100011A-013 Ethernet 40G Single Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-015 Ethernet 100G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement using 100GBASE-SR</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>OTN**</td>
<td>MU100011A-062 ODU Multiplexing/Mux MSI Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODU Multiplexing Addition**</td>
<td>MU100011A-066 ODU Multiplexing/Mux MSI Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODU Flex Addition**</td>
<td>MU100011A-062 ODU Flex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPF/OBSAI</td>
<td>MU100011A-071 CPF/OBSAI Up to 10G Single Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-072 CPF/OBSAI Up to 10G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-075 ODU 10G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-073 ODU 40G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-055 ODU 10G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPF/OBSAI</td>
<td>MU100011A-064 Up to 10G FC Single Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-005 Up to 10G FC Dual Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-091 FC 10G Single Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Test, Signal Generation/Monitoring, Latency, BER, Line Alarm/Error Monitoring</td>
<td>MU100011A-001 Up to 10G Single Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-003 Up to 10G Dual Channel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MU100011A-083** STM 256/OC-768 Client Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. The channel is not related to the physical port position. The user can freely choose either of the two physical ports assigned to the option via software. For a dual channel setup, the two different ports of one protocol can operate simultaneously, or two different single channel options can operate simultaneously.

2. Please see the datasheet for supported OTN mapping.

3. When using the OTN function, the channel can be used as client signal mapped to OTN. For example, when mapping 100G Ethernet to OTU4, both the MU100011A-055 (for physical port) and the MU100011A-015 (for client signal) are required.

4. When the ODU Multiplexing/Multistage option is installed, OTN multistage mapping measurements are supported. This one option supports both single channel and dual channel.

5. This mapping function is based on the ODUflex standard for transmissions over OTN networks and supports client signals of any speed.

6. The MU100011A has no STM-256/OC-768 PHY interface; it can be used for OTN client signals.
MT1000A Product Structure

- **Optical Transceiver for Transport Module**

<table>
<thead>
<tr>
<th>Module/Chip Name</th>
<th>Name</th>
<th>Form Factor</th>
<th>100GbE SFP+</th>
<th>100GBASE-STUN-I</th>
<th>6144G AniCBL</th>
<th>264G AniCBL</th>
<th>120G 4x4</th>
<th>125G 4x5</th>
<th>26G 8x1 MER</th>
<th>26G 8x1 CIN</th>
<th>40G 4x8</th>
<th>6144G CIN (bulk)</th>
<th>98G 6x1</th>
<th>11.2G 6x1</th>
<th>11.2G 6x2</th>
<th>11.2G 6x4</th>
<th>25G</th>
<th>40G CIN</th>
<th>100G CIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC32A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC315A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC320A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC32A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC324A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC322A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC323A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC315A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC316A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
<tr>
<td>GC314A</td>
<td>100G LR1310 nm VM SFP</td>
<td>SFP</td>
<td>1310 nm, SM 15 km</td>
<td></td>
</tr>
</tbody>
</table>
MT1000A Product Structure

- High Performance GPS Disciplined Oscillator MU100090A

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU100090A-008</td>
<td>High Performance GPS Disciplined Oscillator</td>
</tr>
</tbody>
</table>

Standard Accessories
- J1709A: AUX Conversion Adaptor
- J1708A: GPS Antenna
- J1710A: BNC Cable (2) and +2

Mandatory Main Frame Option
- MT1000A-008** A1KID

*1. Excel and ECO Product non-compliant.
*2. MT1000A-008 is required for MU100090A.

- Transport Test Accessories

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0325A</td>
<td>GPS Receiver</td>
<td>It is required when measuring one-way latency at Ethernet tests. However, it is unnecessary when purchasing MU100090A.</td>
</tr>
<tr>
<td>W3813A-E</td>
<td>MT1000A Transport Module Operation Manual</td>
<td>Printed manual</td>
</tr>
<tr>
<td>Z1821A</td>
<td>Utilities in USB Stick</td>
<td>USB memory with operation manual, remote scripts instruction manual, etc.</td>
</tr>
<tr>
<td>J1582A</td>
<td>Optical Attenuator 10 dB LC/PC to LC/PC</td>
<td></td>
</tr>
<tr>
<td>J1584A</td>
<td>R/J3 Cable 3 m</td>
<td></td>
</tr>
<tr>
<td>J1585A</td>
<td>R/J8 to Crocodile Clips Cable 3 m</td>
<td>E1 interface cable.</td>
</tr>
<tr>
<td>J1586A</td>
<td>R/JR to Crocodile Clips Cable 20 dB ATT 3 m</td>
<td>E1 interface cable.</td>
</tr>
<tr>
<td>J1588A</td>
<td>BNC Cable 2.5 m</td>
<td>E1, E3, E4, DS3, STS-1e, STS-3 interface cable. Impedance: 75Ω.</td>
</tr>
<tr>
<td>J1591A</td>
<td>BNC to 1.6/5.3 Cable 2.5 m</td>
<td>E1, E3, E4, DS3, STS-1e, STS-3 interface cable. Impedance: 75Ω.</td>
</tr>
<tr>
<td>J1597A</td>
<td>R/J3 Balanced PDH Cable Crossed 3 m</td>
<td>E1 interface cable.</td>
</tr>
<tr>
<td>J1598A</td>
<td>Balance Cable 3 m</td>
<td>D51 interface cable.</td>
</tr>
<tr>
<td>J1710A</td>
<td>BNC Cable 0.2 m</td>
<td>BNC cable for MU100090A and main-frame external clock input connector. Impedance: 50Ω.</td>
</tr>
<tr>
<td>J0127B</td>
<td>COAXIAL CORD, 2.0 M</td>
<td>BNC cable for MU100090A and main-frame external clock input connector. Impedance: 50Ω.</td>
</tr>
</tbody>
</table>
MT1000A Product Structure

- **Warranty Products**

<table>
<thead>
<tr>
<th>Model</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A</td>
<td></td>
</tr>
<tr>
<td>MT1000A-ES210</td>
<td>2 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 1 year)</td>
</tr>
<tr>
<td>MT1000A-ES310</td>
<td>3 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 2 years)</td>
</tr>
<tr>
<td>MT1000A-ES510</td>
<td>5 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 4 years)</td>
</tr>
<tr>
<td>MU100010A</td>
<td></td>
</tr>
<tr>
<td>MU100010A-ES210</td>
<td>2 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 1 year)</td>
</tr>
<tr>
<td>MU100010A-ES310</td>
<td>3 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 2 years)</td>
</tr>
<tr>
<td>MU100010A-ES510</td>
<td>5 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 4 years)</td>
</tr>
<tr>
<td>MU100011A</td>
<td></td>
</tr>
<tr>
<td>MU100011A-ES210</td>
<td>2 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 1 year)</td>
</tr>
<tr>
<td>MU100011A-ES310</td>
<td>3 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 2 years)</td>
</tr>
<tr>
<td>MU100011A-ES510</td>
<td>5 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 4 years)</td>
</tr>
<tr>
<td>MU100090A</td>
<td></td>
</tr>
<tr>
<td>MU100090A-ES210</td>
<td>2 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 1 year)</td>
</tr>
<tr>
<td>MU100090A-ES310</td>
<td>3 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 2 years)</td>
</tr>
<tr>
<td>MU100090A-ES510</td>
<td>5 Years Extended Warranty Service</td>
</tr>
<tr>
<td></td>
<td>(standard 1 year + 4 years)</td>
</tr>
</tbody>
</table>
Network Master Pro MT1000A

• Carrier Class Ethernet Installation and Troubleshooting
MT1000A Product Highlights

• Easy Ethernet test solution
 – Ethernet testing
 • at 100Gbps, 40Gbps, 25Gbps, 10Gbps, 1Gbps, 100Mbps and 10Mbps
 – Traffic generation up to full line rate
 – Supports IPv4 and IPv6
 – Ethernet Service Activation Test (Y.1564)
 – Automated RFC 2544 testing
 • Throughput
 • Frame Loss
 • Latency or Packet Jitter
 • Burstability
 – TCP Throughput option (RFC 6349) (Up to 10 Gbps)
 – BER testing
 • Includes frame loss and sequence error tests
 – Service disruption measurement
MT1000A Product Highlights

• Easy Ethernet test solution—continued
 – Comprehensive statistics including:
 • Performance (utilization, Throughput, frame rate)
 • Frame statistics (frame types and errors)
 • Burst statistics
 • Frame size distribution
 • Latency and Packet Jitter measurements
 • Transmitted and received frames and bytes
 – Filters – to extract relevant parts of traffic
 – Thresholds – to highlight abnormal situations
 – Simultaneous monitoring of both line directions
 – IP Channel Statistics to identify error streams, top talkers, network attacks for up to 230 multiflow counters
 – Ethernet OAM: IEEE 802.3 (IEEE 802.3ah), IEEE 802.1ag, ITU-T Y.1731
MT1000A Product Highlights

• Easy Ethernet test solution—continued
 – Synchronous Ethernet Test (G.826x and IEEE 1588 v2) (Up to 10G bps)
 • For Mobile Backhaul testing
 – Ethernet Multistream: Up to 16 streams per port
 • Information on Throughput, Frame Loss, Packet Jitter and latency per stream
 – Stacked VLAN (Q-in-Q): Up to 8 levels of VLAN tags
 – MPLS/MPLS-TP testing: Up to 8 levels of MPLS labels
 – PBB testing
 – 10G WAN PHY
 – Ping testing
 – Traceroute test
 – Electrical cable test and optical signal level indication
 – Frame capture for protocol analysis by Wireshark®
MT1000A Applications – Out-of-Service Testing

- Out-of-service Ethernet testing
 - Installation and commissioning of new lines
 • Verification of quality/performance of new lines before commercial operation
 - Troubleshooting with test traffic
 • Functional testing and network behavior at different loads
 - Testing line Quality of Service (QoS)
 • Loop-back MT1000A Ethernet test signal using cable or reflector at far end

Ethernet testing with far-end reflector
MT1000A Applications – Out-of-Service Testing

• Ethernet end-to-end testing
 – Due to nature of IP/Ethernet networks key parameters like Throughput, Frame Loss and Packet Jitter may differ in two directions of connection
 • Two instruments needed to capture data for each direction
MT1000A Applications – Out-of-Service Testing

• Typical applications\(^1\):
 – Dual-port testing of networks or network elements
 – One-way latency measurements
 – Router testing
 – QoS verification

\(^1\) Requires 10 Gbps dual-port option
MT1000A Applications – In-Service Monitoring

• Typical applications¹:
 – Rapid in-service diagnostics
 – In-service troubleshooting
 – Live traffic analysis and statistics

¹ Requires 10 Gbps dual-port option

MT1000A in Pass-through mode
MT1000A IP Channel Statistics (Up to 10 Gbp)

• IP Channel Statistics
 – Typical root causes of network issues
 • Top talker
 – Top talker occupies major bandwidth slowing it down
 • Network attack
 – One node accessed from many sites, occupying network
 • Error Frames
 – Error frames causes re-transmission and wasted network capacity
MT1000A IP Channel Statistics (Up to 10 Gbp)

• IP Channel Statistics
 – Finding top talker, network attack, and error frames quickly decreases downtime and recovers network performance
 – IP Channel Statistics offers simple method to top talker, network attack, and error frames just by selecting and starting filters
 – Field technicians analyze network easily without training

<table>
<thead>
<tr>
<th>Analysis</th>
<th>IP Channel Stats Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top talker</td>
<td>Source IP address</td>
</tr>
<tr>
<td>Network attack</td>
<td>Destination IP address</td>
</tr>
<tr>
<td>Error frames</td>
<td>(any parameter OK)</td>
</tr>
</tbody>
</table>
MT1000A IP Channel Statistics (Up to 10 Gbp)

- IP Channel Statistics
 - Combination of filters
 - IPv4, IPv6 or MAC address, VLAN ID or MPLS label, IP next header (protocol), TCP/UDP ports
 - Monitoring values
 - Frame counts/rate, Throughput, Error frames, Size distribution, IPv4/IPv6 statistics, TCP/UDP statistics, etc.
 - Added value of IP Channel Statistics
 - VLAN scan
 - Throughput per VLAN ID monitored by selecting VLAN ID as filter
MT1000A IP Channel Statistics (Up to 10 Gbp)

- Setup screen for configuring channel definitions and displayed columns
- Result screen
 - Easy switching between results from two ports
MT1000A Ethernet Line Status

- Line alarms as LED indicators
- Displays current line status
Some problems on electrical Ethernet are basic:
- Short in wire pair
- Break in wire pair

Cable test easily identifies such basic problems
Cable test displays distance from instrument to fault
MT1000A Signal Level Display for Optical Ethernet

• Some problems on optical Ethernet connection are basic:
 – Bent cables
 – Breaks in cable
 – Dirty connectors

• Optical signal level display easily identifies such problems
MT1000A Service Activation Test

• What is ITU-T Y.1564?
 – Anritsu actively involved in creating Y.1564 standard
 – Defines new method for testing multiple Ethernet services on network simultaneously
 – Designed to allow service providers to assess customer end-to-end network performance including:
 • End-user traffic profiles with multiple frame sizes
 • Services with different traffic priorities on network
 – Verifies following for each surface:
 • Frame Loss, transfer time and jitter across network
 • Policing
 • Network ability to manage short-duration traffic bursts
MT1000A Service Activation Test

• What is ITU-T Y.1564?
 – ITU-T Y.1564 completes testing in two phases:
 • Phase 1: Service Configuration Test—confirms each service configured correctly throughout network at Committed Information Rate (CIR), and others rates as required
 • Tests one service at a time
MT1000A Service Activation Test

- What is ITU-T Y.1564?
 - ITU-T Y.1564 completes testing in two phases:
 - Phase 2: Service Performance Test—Transmits one or many services simultaneously at CIR confirming all traffic can transverse network under full service load
 - Default test time: 15 minutes, 2 hours, or 24 hours
MT1000A Service Activation Test

• What is ITU-T Y.1564?
 – Test configurations:
 • One-way test, using two testers
 – Provides individual results for each direction
 – “Preferred configuration” in Y.1564
 – How to synchronize two instruments to test one-way FTD (Frame Transfer Delay) is an issue.

• Round-trip test
 – FDV (Frame Delay Variation) may be irrelevant
MT1000A Service Activation Test

• What is ITU-T Y.1564?
 – RFC 2544 often used for Service Activation Test
 • Not intended use for RFC 2544:
 – “Benchmarking Methodology for Network Interconnect Devices”
 – Defines number of tests used for describing performance characteristics of network devices
 – Y.1564 intended for Service Activation Test

<table>
<thead>
<tr>
<th>Item</th>
<th>ITU-T Y.1564</th>
<th>RFC 2544</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed for</td>
<td>Service activation</td>
<td>Device performance</td>
</tr>
<tr>
<td>Concurrent services</td>
<td>Multiple services simultaneously</td>
<td>One service at a time</td>
</tr>
<tr>
<td>Simulates</td>
<td>Realistic network</td>
<td>One service on network</td>
</tr>
<tr>
<td>Testing time</td>
<td>Short due to simultaneous testing of services</td>
<td>Long due to sequential test of parameters and services</td>
</tr>
<tr>
<td>Test result</td>
<td>Directly related to SLA requirements</td>
<td>Link performance limit</td>
</tr>
</tbody>
</table>
MT1000A Service Activation Test

- Supports tests specified in Y.1564
- Features:
 - Two-step test based on:
 - Bandwidth profile parameters: CIR, EIR, CBS, EBS
 - Performance parameters: FTD, FDV, FLR, AVAIL
 - Includes support for CM (“Color Aware”) and EMIX
 - Local–Remote operation
 - One-way test results using two MT1000A units
 - GPS add-on option for one-way FTD measurements
 - Round-trip measurements
MT1000A Service Activation Test

• Results
 – On instrument display
 • Easy-to-understand GO/NO GO display
 • Full result details also available
 – As pdf reports
MT1000A Service Activation Test

• Setup of overall test conditions
 – Display results from local and remote instruments on local instrument when one-way test (using two instruments) selected
MT1000A Service Activation Test

- Setup of each service
 - Graphical presentation of traffic profile for easy overview
 - Full flexibility in programming parameters
MT1000A Service Activation Test

- GPS synchronization
 - Accurate information on one-way FTD with GPS synchronization option
 - Once synchronized, MT1000A holds synchronization for period of time
 - Relevant when difficult to get GPS signals at test site
MT1000A RFC 2544 Analysis

• ETF RFC 2544 “Benchmarking Methodology for Network Interconnect Devices”
 - Defines number of tests used to describe performance characteristics of network devices
 - Throughput — for selected layer
 - Frame Loss
 - Latency
 - Packet jitter
 - Burstability
• Easy-to-interpret graphs
• Full-detail tables

Graphs are bar graphs with legends (where applicable), giving users a better overview of results

RFC 2544 tables fit the screen width - no need for horizontal scrolling
Can flexibly measure multiple Frame sizes with one sequence to check device-unique properties for Frame-size related specifications, such as Maximum Transmission Unit (MTU), etc., to support easy Boundary Testing of Frame size-dependent properties.

Useful Point!

Although only one size can be measured in the Constant mode, measuring multiple sizes shortens the measurement time and simplifies comparison of measurement results between sizes.
MT1000A RFC 2544 Reporting

• Report tables are organized like the GUI with Tx row followed by Rx row, making it easy to find faulty test areas with Frame loss.
 – New tables display per-port test results before actual results tables. Users can quickly identify combinations of Frame sizes and utilizations with problems.

RFC 2544 graphs same as GUI

PDF reports are displayed with the built-in PDF viewer

RFC 2544 Summary section with new table showing which tests completed
Benefit of RFC 2544 End-to-End Test

- Typical test set-up with one instrument and reflector or loopback OK for symmetrical links:

- For Ethernet links carried over asymmetrical connections (xDSL, WIMAX) throughput tests only reflect performance of link direction with lowest capacity

- Symmetrical typical test set-up does not identify transmission performance differences between two link directions
MT1000A RFC 2544 End-to-End Test

- RFC 2544 end-to-end test with Local–Remote relationship
 - Needed for test of Ethernet links over asymmetrical connections
 - Identifies transmission performance differences between two directions in link
 - User sets test at local master instrument which exchanges set-up and results with remote slave instrument
 - Tests Throughput, Frame Loss and Burstability
 - Tests two lines simultaneously

![Diagram showing Local master instrument connected to Port 1 and Port 2, and Remote slave instrument connected to Port 1 and Port 2, with LAN in the middle.](image)
MT1000A Ethernet Ping Test

- Ping test applications:
 - Installation and commissioning
 - Troubleshooting and maintenance
- Popular tool for testing:
 - Continuity
 - Connectivity
 - Response time
MT1000A Ethernet Traceroute Test

- Traces IP route over IP network
- Ping timing data per hop
MT1000A Ethernet BER Tests

- Traditional test of physical connection
- Generates and detects test patterns
- Counts errors in received test pattern
- Color-coded errors and alarms for easy overview
- Pattern generation:
 - Unframed
 - Layer 2 (Mac address)
 - Layer 3 (with IP header)
 - Layer 4 (with UDP/TCP header)
- Detects sequence errors and loss of sequence synchronization
- Frame loss count and frame loss seconds
MT1000A BER Tests

- Layered Throughput analysis

<table>
<thead>
<tr>
<th>Frame representation</th>
<th>Throughput Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>Data layer</td>
</tr>
<tr>
<td>Pre-amble</td>
<td></td>
</tr>
<tr>
<td>MAC header</td>
<td></td>
</tr>
<tr>
<td>MPLS (opt)</td>
<td></td>
</tr>
<tr>
<td>EoMPLS (opt)</td>
<td></td>
</tr>
<tr>
<td>VLAN (opt)</td>
<td></td>
</tr>
<tr>
<td>LL (opt)</td>
<td></td>
</tr>
<tr>
<td>SNAP (opt)</td>
<td></td>
</tr>
<tr>
<td>IP head</td>
<td></td>
</tr>
<tr>
<td>UDP/TCP</td>
<td></td>
</tr>
<tr>
<td>PAYLOAD</td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td></td>
</tr>
</tbody>
</table>

FG	Network layer
Pre-amble	
MAC header	
MPLS (opt)	
EoMPLS (opt)	
VLAN (opt)	
LL (opt)	
SNAP (opt)	
IP head	
UDP/TCP	
PAYLOAD	
CRC	

FG	Link layer
Pre-amble	
MAC header	
MPLS (opt)	
EoMPLS (opt)	
VLAN (opt)	
LL (opt)	
SNAP (opt)	
IP head	
UDP/TCP	
PAYLOAD	
CRC	

FG	Physical layer no preamble
Pre-amble	
MAC header	
MPLS (opt)	
EoMPLS (opt)	
VLAN (opt)	
LL (opt)	
SNAP (opt)	
IP head	
UDP/TCP	
PAYLOAD	
CRC	

FG	Physical layer
Pre-amble	
MAC header	
MPLS (opt)	
EoMPLS (opt)	
VLAN (opt)	
LL (opt)	
SNAP (opt)	
IP head	
UDP/TCP	
PAYLOAD	
CRC	

FG	Utilization layer
Pre-amble	
MAC header	
MPLS (opt)	
EoMPLS (opt)	
VLAN (opt)	
LL (opt)	
SNAP (opt)	
IP head	
UDP/TCP	
PAYLOAD	
CRC	

CMA 3000 frame size (does not include Preamble)

Area included in throughput calculation

Area included in utilization calculation

![Figure showing detailed frame representation and throughput calculation](image)
Why Service Disruption on Ethernet Links?

• Many Ethernet links carried over OTN/SDH/SONET via backbone network
 – OTN/SDH/SONET networks sometimes have Automatic Protection Switching (APS)
 – If OTN/SDH/SONET network line fails, APS switches traffic to working line
 – Switch and service disruption should be completed in less than 50 ms
MT1000A Service Disruption Measurement

- Service disruption can be measured as part of BER test
 - Using far-end loopback or two MT1000A testers
 - Max. acceptable service disruption time can be set
 - Color-coded results when max. time exceeded
MT1000A Ethernet Signal Analysis

• Frame performance
• Frame type statistics
• Frame size distribution statistics
• Burst statistics
• Transmit statistics
• Full-detail tables
• User-defined thresholds to highlight problems
MT1000A Ethernet Statistics Export

- Export all Ethernet Statistics per interval setting 1, 2, 5 sec etc.
- Select required sections to export into CSV format
- Open CSV file in Excel (or other)
- Analyze stat's for required data
- Graph statistical results
- Graph and compare different results over time

<table>
<thead>
<tr>
<th>date/time</th>
<th>Relative time</th>
<th>Throughput(bps)-Link layer-Max.</th>
<th>Throughput(bps)-Phys.(-preamble)-Max.</th>
<th>Throughput(bps)-Physical layer-Max.</th>
<th>Throughput(bps)-Utilization layer-Max.</th>
<th>Errored Frames-Errored frame-Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/6/2019 16:00:47</td>
<td>0:00:00</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:00:52</td>
<td>0:00:05</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:00:57</td>
<td>0:00:10</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:02</td>
<td>0:00:15</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:07</td>
<td>0:00:20</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:12</td>
<td>0:00:25</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:17</td>
<td>0:00:30</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:22</td>
<td>0:00:35</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:27</td>
<td>0:00:40</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:32</td>
<td>0:00:45</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:37</td>
<td>0:00:50</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
<tr>
<td>21/6/2019 16:01:42</td>
<td>0:00:55</td>
<td>5476196592</td>
<td>7619056128</td>
<td>8571438144</td>
<td>10000011168</td>
<td>0</td>
</tr>
</tbody>
</table>
Latency and packet jitter can cause problems for real-time services like VoIP
- Part of statistical measurements
- User selects included information
Benefit of Ethernet Multistream Test

- By sending several traffic streams with different priority settings, the user can verify that high-priority traffic is transported better (i.e. has lower frame loss) through a congested network than low-priority traffic.

- VoIP traffic is often given high priority to ensure service quality
 - Sometimes DSCP/TOS byte used to give high priority
 - Other times high priority given to selected TCP/UDP ports

- Some operators allocate certain traffic capacity to each traffic type on link with limited capacity

- User can verify that each traffic types gets allocated capacity by sending several traffic streams with different type indications
 - Traffic type indicated by VLAN tags
MT1000A Ethernet Multistream Test

• Using MT1000A, user can generate up to 16 streams per port on Ethernet link
 – Individual settings for traffic load and header information for streams, including DSCP/TOS byte and TCP/UDP port numbers for each stream

Stream Selector and Overview
MT1000A Ethernet Multistream Test

- Multistream function displays frame loss for up to 16 streams per port, making it easy to spot whether high-priority traffic has lower frame loss than low-priority traffic
When generating Ethernet and IPv4/v6 test Frames, a function supports creation of [Increment], [Decrement], and [Random] streams for the address specified location, resulting in shorter test setting times.
Ethernet function for broadcast packet networks

The following functions are supported for measuring broadcast packet networks.

- IGMP/MLD client function for multicast group Join/Leave
- IEEE1588V2 (PTP) SMPTE 2059-2 profile for video streaming IP upgrade

Adding end-to-end test for broadcast packet networks assures QoS evaluations using throughput and one-way latency measurement at network installation, as well as easy and efficient network maintenance.

Only one unit is all that is necessary to evaluate video streaming network time synchronization performance and check time synchronization protocols.
VLAN Background

• Virtual Local Area Networks (VLANs) - IEEE 802.1Q
 – Segment LAN on organizational basis, by functions, project teams or applications
 • Each VLAN has ID and priority
 – 802.1p priority bits (3) segment traffic into eight Classes of Service (CoS), enabling traffic differentiation
 – 12-bit ID supports 4096 VLANs

• Stacked VLAN ("Q-in-Q") IEEE 802.1ad
 – VLAN carried on VLAN
 • Method to provide more VLAN IDs
 • Allows service provider to carry customer VLAN traffic transparently service provider VLAN
 • Sometimes service provider and/or customer use more than one VLAN tag
MT1000A Ethernet Stacked VLAN Function

- Insert up to eight layers of VLAN tags into Ethernet frame
 - Can be combined with Multistream function
 - Special layer naming when two layers selected
 - S-VLAN – Service provider VLAN
 - C-VLAN – Customer VLAN

CFI bit renamed to DEI (Drop Eligible Indicator)
MT1000A Ethernet Stacked VLAN Function

- VLAN information:
 - Indicates detected VLAN tagged frames in Status pane
 - Counts detected VLAN tagged frames and max. VLAN tag level in statistical measurements
 - Displays information on last received VLAN frame
MPLS Background

• Multi-Protocol Label Switching (MPLS)
 – Carries data; considered to be between Layer 2 (Data Link Layer) and Layer 3 (Network Layer); often called “Layer 2.5”.
 – Simplifies point-to-point routing
 • MPLS header has one or more 'labels’ (label stack) and each label has four fields:
 – 20-bit label value
 – 3-bit field for QoS priority
 – 1-bit bottom of stack flag
 – 8-bit TTL (time to live) field

• EoMPLS (Ethernet over MPLS) or PWE3 (Pseudo-Wire Emulation Edge-to-Edge)
 – Defines method to transport Layer 2 protocol across MPLS network
MT1000A MPLS/MPLS-TP Function

• Stacked MPLS generation
 – Inserts up to 8 layers of MPLS labels into Ethernet frame
 – Can be combined with Multistream facility
 – EoMPLS Control word can be added with MPLS-TP
MT1000A MPLS/MPLS-TP Function

- **MPLS information:**
 - Indicates detection of MPLS and EoMPLS frames in Status pane
 - Counts detected MPLS and MPLS-TP (EoMPLS) frames and max. MPLS layer
 - Displays information on latest received MPLS frames
MT1000A MPLS-TP Function

- MPLS-TP information:
 - Activation of MLPS-TP OAM function
MT1000A PBB Function

- PBB (Mac-in-Mac) information:
 - Counts PBB frames at result page
 - Can be combined with Multistream facility
MT1000A TCP Function

- Set TCP connections before sending traffic with TCP headers
 - Allows traffic to pass firewalls using “state-full inspection”
 - Limited implementation:
 For example:
 No retransmissions
 No flow control
MT1000A Ethernet Traffic Generator

- Ramp traffic: Increases traffic automatically until max. capacity exceeded
 - Programmable per stream
- Burst Traffic: Continuous sending at specified conditions
- Generate Tx rates above 100%
- Data type profiles (data, video, voice)
Custom Editing of Ethernet Header

- Free editing of the Ethernet Header in the Frame stream settings to support special protocols for R&D.
 - This function can be used with the following applications:
 - Ethernet BERT Application

- Edit Custom header with text editor for Save and Load
- Supports Header lengths up to 256 bytes

- The following restrictions apply:
 - “Ethernet over OTN” not supported
 - Rx filters other than Layer 2 not supported when using Layer 3 Custom headers
 - No Rx filters supported when using Layer 2 Custom headers
 - Arp/Ping functions not supported when using Layer 2/3 Custom headers
MT1000A Ethernet Frame Capture Function

• Protocol analysis
 – For advanced Ethernet troubleshooting
 – Captures frames in live traffic of monitored line
 – Analyzes captured frames using Wireshark® protocol analysis software
Link Fault Signaling (LFS) Emulation

- Enables/disables LFS Emulation for MU100011A 10GbE and faster interfaces
 - When enabled
 A) Sends RF when LF detected (LF Rx or Link down, etc.)
 B) Sends Idle signal when RF detected during Tx streaming; sends stream when RF released

- When disabled (or using V9.11 or earlier)
 - Does not send RF when LF detected (LF Rx or Link down, etc.); Tx side unaffected
 - Tx side unaffected whether RF detected or not

Technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>Application</th>
<th>10GbE</th>
<th>25GbE</th>
<th>40GbE</th>
<th>100GbE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet *1</td>
<td>RFC2544</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>SAT(Y1564)</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>RFC6349</td>
<td>☑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>BERT</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>Mon/Gen</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>Pass Through</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Reflector</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>Channel Stat</td>
<td>☑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ping</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>Traceroute</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>Sync Test</td>
<td>☑</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Discovery</td>
<td>☑</td>
<td>☑</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mobile xHaul</td>
<td>eCPRI BERT</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>

*1: The LFS Emulation function does not operate at Mapping to OTN.
Network Discovery and In-band Control

- No Need for Two Engineers for End-to-end Test
 - One engineer controls both local and remote testers without dedicated LAN for remote access
 - Testing from one end cuts OPEX
- Process
 - Discover other “Network Master(s)” on network
 - Remote-control far-end tests, such as RFC2544, Y.1564, Reflector (L2/L3/L4 loopback) etc.
 - Generate report at local controller with results summarized at both local and remote testers
Validating PCS at 10 GbE

- Validating PCS operation at the 10 GbE interface to support fast troubleshooting in the PCS layer:
 - Error/Alarm Insertion
 - Error/Alarm Display/Count
 - Native 10G LAN PHY is supported

- Does not support Stimuli function
 - Invalid alignment marker/BIP error
10G WAN PHY Background

- 10G WAN PHY
 - Mapping Ethernet frames to SONET/SDH

Fixed pointer in transmitted WAN signal; may have changed value when reaches destination.
MT1000A 10G WAN PHY Function

• WAN results
 – Bi-directional overhead byte capture (requires dual-port version)
 – Error and alarm statistics on WAN part of signal with Ethernet BERT application
MT1000A 10G WAN PHY Function

- WAN overhead byte generation
 - User programming of transmitted OH bytes
 - SDH or SONET terminology
Network Master Pro MT1000A

- TCP Throughput Option (RFC 6349) (Up to 10 Gbps)
RFC 6349 Testing – TCP Throughput Option (Up to 10 Gbps)

• Optimized performance essential in modern communication networks
• IP network operators can test networks based on IETF RFC 2544 and ITU-T Y.1564
 – Even when network seems fine at these tests, customers may complain that achieved throughput below agreement with operator
 – Can be caused by non-optimal configuration of Transmission Control Protocol (TCP) providing higher-layer connections through network, or badly configured network element burst size settings
• TCP adds reliability to communication over IP network because data receiver acknowledges packets received correctly
 – To support this, network elements have buffering
 • Data throughput reduced if buffering sizes incorrect
• Operators use RFC 6349 test methodology to optimize TCP throughput
RFC 6349 Testing – Benefit of TCP Throughput Test

• Eliminate end-user factors from test by emulating TCP host
 Bi-directional TCP throughput test by emulating end user hosts

 ![Diagram of iPerf Server and iPerf client](image)

• MT1000A TCP throughput test hardware based
 – Always validate maximum TCP throughput potential possible on customer’s network
 – Repeatable tests with consistent results

• MT1000A can perform bi-directional TCP throughput testing
 – More realistic test result
 – MT1000A can test up to four ports simultaneously
 – Can shorten multiple network commissioning test time
RFC 6349 Testing – TCP Throughput Option (Up to 10 Gbps)

- TCP performance verification using RFC 6349 test methodology
- Client and server modes
- Connect to iPerf server as client
- Automated or manual testing
 - New installation mode
 - Troubleshooting mode
- Simultaneous bi-directional testing with independent settings
- Configuration of TCP Throughput (RFC 6349) test
RFC 6349 Testing – TCP Throughput Option (Up to 10 Gbps)

- Measurements include:
 - MTU (Maximum Transmission Unit) based on RFC 4821
 - RTT (Round-Trip Time)
 - Window scan
 - Throughput
 - Multi-service (if selected)

- Measurement results include:
 - Transmitted and Retransmitted Bytes
 - TCP Transfer Time Ratio
 - TCP Efficiency
 - Retransmitted Percentage
 - Buffer Delay Percentage

<table>
<thead>
<tr>
<th>Window Size</th>
<th>Corrections</th>
<th>Threshold</th>
<th>Avg Throughput</th>
<th>Avg RTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2920 Bytes</td>
<td>1</td>
<td>95.00% of Ideal</td>
<td>945.284 Mbps</td>
<td>0.022 ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MTU / MSS</th>
<th>Source</th>
<th>Value</th>
<th>RFC 6349 Metrics</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 / 1460 Bytes</td>
<td>Measured</td>
<td>Transfer Time Ratio</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>0.022 ms</td>
<td>Measured</td>
<td>TCP Efficiency</td>
<td>100.00%</td>
<td></td>
</tr>
<tr>
<td>1000.000 Mbps</td>
<td>User Input</td>
<td>Buffer Delay</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Avg Throughput</th>
<th>Ideal Throughput</th>
<th>Actual Transfer Time</th>
<th>Ideal Transfer Time</th>
<th>Transfer Time Ratio</th>
<th>TCP Efficiency</th>
<th>Retransmitted Bytes</th>
<th>Window Size/Conn</th>
</tr>
</thead>
<tbody>
<tr>
<td>945.284 Mbps</td>
<td>945.285 Mbps</td>
<td>10.00 s</td>
<td>10.00 s</td>
<td>1.00</td>
<td>100.00%</td>
<td>0 Bytes</td>
<td>2920 Bytes / 1</td>
</tr>
<tr>
<td>Transmitted Bytes</td>
<td>1.11 GB</td>
<td>Retransmitted %</td>
<td>0.00 %</td>
<td>TCP Efficiency</td>
<td>100.00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline RTT</td>
<td>Min RTT</td>
<td>Avg RTT</td>
<td>Max RTT</td>
<td>Buffer Delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.022 ms</td>
<td>0.015 ms</td>
<td>0.022 ms</td>
<td>0.023 ms</td>
<td>0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RFC 6349 Testing – TCP Throughput Option (Up to 10 Gbps)

- Multi-service results (when selected)
 - Test up to 16 connections
RFC 6349 Testing – TCP Throughput Option (Up to 10 Gbps)

- Window Scan Result
 - MT1000A runs “Window Scan” test measuring TCP Throughput at each window size

![Window Scan Result Diagram]

Optimum window size
RFC 6349 Testing – TCP Throughput Metrics (Up to 10 Gbps)

TCP Transfer Time Ratio = \frac{\text{Actual TCP Transfer Time}}{\text{Ideal TCP Transfer Time}}

TCP Efficiency % = \frac{\text{Transmitted Bytes} - \text{Retransmitted Bytes}}{\text{Transmitted Bytes}} \times 100

Buffer Delay % = \frac{\text{Average RTT during transfer} - \text{Baseline RTT}}{\text{Baseline RTT}} \times 100

Summary
Window Scan
Throughput
Event Log
Statistics

Local->Remote

<table>
<thead>
<tr>
<th>Avg Throughput</th>
<th>653.209 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal Throughput</td>
<td>655.362 Mbps</td>
</tr>
<tr>
<td>Actual Transfer Time</td>
<td>5.00 s</td>
</tr>
<tr>
<td>Ideal Transfer Time</td>
<td>4.98 s</td>
</tr>
<tr>
<td>Transfer Time Ratio</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Summary
Window Scan
Throughput
Event Log
Statistics

Local->Remote

<table>
<thead>
<tr>
<th>Avg Throughput</th>
<th>653.209 Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Size / Conn</td>
<td>05700 Bytes / 1</td>
</tr>
<tr>
<td>Transmitted Bytes</td>
<td>389.3 MB</td>
</tr>
<tr>
<td>Retransmitted Bytes</td>
<td>0 Bytes</td>
</tr>
<tr>
<td>TCP Efficiency</td>
<td>100.00 %</td>
</tr>
</tbody>
</table>

Baseline RTT | Min RTT | Avg RTT | Max RTT | Buffer Delay
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.802 ms</td>
<td>0.802 ms</td>
<td>0.802 ms</td>
<td>0.802 ms</td>
<td>0.00 %</td>
</tr>
</tbody>
</table>

Graph

Throughput (Mbps)
Efficiency

Test Duration (s)

Anritsu envision: ensure
Network Master Pro MT1000A

• Ethernet OAM Functionality
Ethernet OAM background

- Ethernet moved from LAN technology to Carrier Class technology
- Ethernet Operations, Administration and Maintenance (OAM) developed to:
 - Ease operations, administration, and maintenance of complex Ethernet networks
 - Reduce operational expenses
- Ethernet OAM covers:
 - Link fault management
 - Connectivity fault management
 - Performance monitoring
Ethernet OAM Layers

<table>
<thead>
<tr>
<th>OAM layers</th>
<th>Functions</th>
<th>Standards</th>
</tr>
</thead>
</table>
| Transport layer | Ensures bi-directional communication between two directly connected devices
Focuses on Ethernet First Mile (EFM)
Link fault management | IEEE 802.3 (now includes IEEE 802.3ah) |
| Connectivity layer | Monitors path between two devices not directly connected
Connectivity fault management incl. Link trace, continuity check and loopback protocols | IEEE 802.1ag
ITU-T Y.1731 |
| Service layer | Monitors status of services as seen by customer
Performance monitoring including Frame Loss, Frame Delay and Throughput measurements | ITU-T Y.1731 |

![Network Diagram](image)
Ethernet OAM Y.1731 and IEEE 802.1ag

• Y.1731 and IEEE 802.1ag similar
 – Supported by both Y.1731 and IEEE 802.1ag:
 • Connectivity fault management
 – Supported by Y.1731 only:
 • Performance monitoring
 – Same frame format for OAM PDUs (Protocol Data Units)
Ethernet OAM IEEE 802.3ah

- Ethernet OAM IEEE 802.3ah functions:
 - Remote failure indication during fault
 - Remote loopback mode ("Real" loopback)
 - Fault isolation
 - Link performance and status monitoring
 - OAM discovery mechanism
 - Determines whether remote device has OAM enabled and configured parameters and supported functions compatible with requesting device
 - Optional activation of OAM
 - OAM can be enabled on ports subset or all ports
 - Extension mechanism
 - Available for higher-level management applications
Ethernet OAM

- Ethernet OAM Y.1731 set-up and results:
Network Master Pro MT1000A

- Mobile Backhaul Installation and Verification
 - Synchronous Ethernet Test
 - Phase/Time Synchronization Test
Recently Ethernet has become the dominant technology for data transmission, due to its simplicity and low cost.

- Started as a LAN (Local Area Network) technology but now used for end-to-end communications.

Synchronous networks (PDH, SDH/SONET) migrating to Ethernet-based packet-switched networks (PSN) are used for Mobile Backhaul network (MBH).

Asynchronous nature of Ethernet introduces challenges:

- Mobile networks have a strong requirement for frequency synchronization across the entire network.
- TDD and LTE-Advanced technology push the requirement for phase/time synchronization to the Ethernet-based MBH.
Synchronous Ethernet Test (Up to 25 Gbps)

- Synchronization can be applied to Ethernet-based packet networks using Synchronous Ethernet.
- Techniques under consideration for Ethernet synchronization are:
 - Physical synchronization signal forwarding as defined in ITU-T recommendations G.8261, G.8262 and G.8264 (in many cases now called SyncE).
 - Packet-based synchronization as defined in IEEE1588 v2 Precision Time Protocol (PTP)
 - ITU-T G.8265.1 telecom profile for frequency synchronization
 - ITU-T G.8275.1 telecom profile for phase/time synchronization
MT1000A Synchronous Ethernet Test (Up to 25 Gbps)

- **SyncE (ITU-T G.826x) functions:**
 - Detect ESMC messages and real time display of received SSM/QL byte
 - Record ESMC message log
 - Generate alarm when SSM/QL not received within 5 seconds
 - Clear alarm on SSM/QL reception
 - Transmit ESMC/SSM messages with user-defined QL
 - Four user-selectable QL interpretations
 - SyncE recovered frequency monitor and synchronized packet generation.
MT1000A Synchronous Ethernet Test (Up to 25 Gbps)

- Protocol Parameter G.8265.1 / G.8275.1 / G.8275.2
 - MT1100A Supports G.8265.1, G.8275.1 G.8275.2 and “Custom” profile

<table>
<thead>
<tr>
<th>Parameters</th>
<th>G.8265.1</th>
<th>G.8275.1</th>
<th>G.8275.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Frequency</td>
<td>Frequency and Phase</td>
<td>Frequency and Phase</td>
</tr>
<tr>
<td>Protocol Stack</td>
<td>UDP/IP(v4/v6)/Ethernet</td>
<td>PTP/Ethernet (w/o VLAN)</td>
<td>UDP/IP(v4/v6)/Ethernet</td>
</tr>
<tr>
<td>Addressing</td>
<td>Unicast</td>
<td>Multicast</td>
<td>Unicast</td>
</tr>
<tr>
<td>Unicast negotiation</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Timing Transfer Method</td>
<td>One-way or Two-way</td>
<td>Two-way</td>
<td>One-way or Two-way</td>
</tr>
<tr>
<td>Clock Behavior</td>
<td>One-step or Two-step</td>
<td>One-step or Two-step</td>
<td>One-step or Two-step</td>
</tr>
<tr>
<td>Path delay mechanism</td>
<td>End-to-end</td>
<td>End-to-end</td>
<td>End-to-end</td>
</tr>
<tr>
<td>Domain No.</td>
<td>4 to 23</td>
<td>24 to 43</td>
<td>44 to 63</td>
</tr>
<tr>
<td>Priority 1 range / Priority 2 range</td>
<td>- / -</td>
<td>128 / 0 to 255</td>
<td>128 / 0 to 255</td>
</tr>
<tr>
<td>BMCA</td>
<td>Static BMCA</td>
<td>Alternative BMCA</td>
<td>Alternative BMCA</td>
</tr>
<tr>
<td>Message interval of Sync</td>
<td>1/128 to 16</td>
<td>1/16</td>
<td>1/128 to 1</td>
</tr>
<tr>
<td>Message interval of Delay Request</td>
<td>1/128 to 16</td>
<td>1/16</td>
<td>1/128 to 1</td>
</tr>
<tr>
<td>Message interval of Announce</td>
<td>1/8 to 16</td>
<td>1/8</td>
<td>1/8 to 1</td>
</tr>
<tr>
<td>Announce timeout</td>
<td>2</td>
<td>3 to 10</td>
<td>2</td>
</tr>
</tbody>
</table>
MT1000A Synchronous Ethernet Test

- SyncE (ITU-T G.826x) results (per port):
 - Status information:
 - Rx SSM QL (current value)
 - Statistics on SSM QL messages and values
MT1000A Synchronous Ethernet Test (Up to 25 Gbps)

- IEEE 1588 v2 (PTP) functions:
 - Support G.8265.1, G.8275.1 and G.8275.2 profile and ‘User defined’ one.
 - Emulating a master clock.
 - Selectable UTC source from internal instrument clock or GPS.
 - Configurable parameters of Announce message, etc.
 - Emulating slave clock
 - Configurable parameters of message interval, etc.
 - Best master clock algorithm (BMC)
 - Supported encapsulations: PTP-UDP-IP(IPv4 and IPv6) and PTP-MAC
 - Support stacked VLAN and MPLS
 - Real time PTP signaling sequence in ladder chart, off-line analysis by PCAP file capture, message statistics, message rate measurement.

For quick analysis and troubleshooting of IEEE 1588 v2 (PTP) signaling
MT1000A Synchronous Ethernet Test
(Up to 25 Gbps)

- IEEE 1588 v2 (PTP) results – statistics on:
 - Offset and offset variance
 - Path Delay Variation (PDV)
 - Messages
 - Clock state transitions
MT1000A Synchronous Ethernet Test
(Up to 25 Gbps)

- IEEE 1588 v2 (PTP) clock status real time information
Phase/Time Synchronization Test

- CDMA2000 and W-CDMA(TDD) require not only frequency synchronization but also phase/time synchronization among base stations. GPS has been used for that purpose.
- Expanding small cell deployment and technologies of LTE-TDD and LTE-Advanced cause increasing demands for packet-based phase/time synchronization by IEEE1588v2.
- New testing demands for mobile network installation and maintenance using IEEE1588v2 are rapidly increasing.

Synchronization requirement to MBH

<table>
<thead>
<tr>
<th>Application</th>
<th>Mobile Backhaul</th>
<th>Air Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>Phase</td>
</tr>
<tr>
<td>LTE FDD</td>
<td>N/A</td>
<td>±5μs</td>
</tr>
<tr>
<td>LTE TDD (large cell)</td>
<td>±1μs</td>
<td>±1.5μs</td>
</tr>
<tr>
<td>LTE TDD (small cell)</td>
<td>±1μs</td>
<td>±1.5μs</td>
</tr>
<tr>
<td>LTE-A MBSFN</td>
<td>±16ppb</td>
<td>±500ns to 1.1μs</td>
</tr>
<tr>
<td>LTE-A CoMP</td>
<td>±1μs</td>
<td>±500ns to 1.1μs</td>
</tr>
<tr>
<td>LTE-A eICIC</td>
<td>±1μs</td>
<td>±500ns to 1.1μs</td>
</tr>
</tbody>
</table>
Phase/Time Synchronization Test

- MT1000A is located at the service demarcation point between mobile backhaul and mobile service. It evaluates SLA of the backhaul.
- MT1000A measures max |TE|, cTE (Constant Time Error) and dTE (Dynamic Time Error) as metrics of phase/time synchronization.
- Supports GbE, 10GbE and 25GbE optical interfaces.

max |TE| < 1.1 us
Phase/Time Synchronization Test

- Time Error method No.1: 1PPS Signal phase measurement
 Measuring the phase difference between the reference in the tester and 1PPS signal from the network under test.

PTP Network

T-GM

T-BC

1PPS

Reference 1PPS locked to GPS

(Up to 25 Gbps)
Phase/Time Synchronization Test (Up to 25 Gbps)

- Time Error method No.2: By PTP timestamp (defined in ITU-T G.8273)
 - The tester emulates slave clock and has reference UTC from GPS.
 - The tester measures the difference between the timing of PTP message reception and the time stamp inside the message (T1 and T4). This is observed as OWD (One-Way-Delay).
 - Because cable length is known the tester estimates the time error by deducting the cable delay from the OWD.

![Diagram of PTP Network]

- T-GM
- T-BC
- PTP Network
Phase/Time Synchronization Test

- MU100090A High Performance GPS Disciplined Oscillator is required for phase/time synchronization test.

1PPS output locked to GPS

GPS antenna is connected here

Measurement 1PPS signal from the network

1PPS from MU100090A as reference
Network Master Pro MT1000A

- Mobile Fronthaul Installation and Verification
 - CPRI/OBSAI Test
 - eCPRI/IEEE 1914.3
CPRI Background

• Operators supporting explosive spread of smartphones and tablets by increasing bandwidth of mobile communications networks
• Driving complete change in mobile communications systems
 – Adoption of Centralized-Radio Access Networks (C-RAN).
 • Using C-RAN, the mobile fronthaul is configured from centralized Base Band Units (BBU) and multiple Remote Radio Head (RRH) units connected via general-purpose interfaces, such as the Common Public Radio Interface (CPRI) or Open Base Station Architecture Initiative (OBSAI).
CPRI Bit Rates

- CPRI bit rates are referred to as “option #”
- There are now eight options (CPRI Specification V7.0)
- MT1000A supports Option 8, 10.1376 Gbps, reflecting marketing requirement of supporting exploring mobile network bandwidth.
- MT1000A can perform simultaneous testing up to 2 ports to reduce commissioning testing time.

<table>
<thead>
<tr>
<th>Option</th>
<th>Bit rate (Gbps)</th>
<th>Line Code</th>
<th>Support Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6144</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>2</td>
<td>1.2288</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>3</td>
<td>2.4576</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>4</td>
<td>3.0720</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>5</td>
<td>4.9152</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>6</td>
<td>6.1440</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>7</td>
<td>9.8304</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>8</td>
<td>10.1376</td>
<td>64B/66B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>9</td>
<td>12.1651</td>
<td>64B/66B</td>
<td>MU100011A</td>
</tr>
<tr>
<td>10</td>
<td>24.2302</td>
<td>64B/66B</td>
<td>MU100011A</td>
</tr>
</tbody>
</table>
OBSAI Bit Rates

- Four OBSAI bit rates are defined.
- MT1000A supports 6.144 Gbps, reflecting marketing requirement of supporting exploring mobile network bandwidth.
- MT1000A can perform simultaneous testing up to 2 ports to reduce commissioning testing time.

<table>
<thead>
<tr>
<th>Bit rate (Gbps)</th>
<th>Line Code</th>
<th>Support Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.768</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>1.536</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>3.072</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
<tr>
<td>6.144</td>
<td>8B/10B</td>
<td>MU100010A/MU100011A</td>
</tr>
</tbody>
</table>
C-RAN Market

- Market requirements
 - Minimizing number of BBUs per antenna cuts operator costs (rent, power, HW, etc.)
 - Locating BBU 15 km or more from multiple RRH requires reliable connection i.e. C-RAN
 - CPRI runs over C-RAN with two main layers:
 - Layer 1: Physical transport
 - Layer 2: Several areas
 - C-RAN main interest is L1 in-band protocol; understanding this area allows operator to troubleshoot alarms and errors

In CPRI, BBU is called REC, and RRH is called RE (Fig. 1 from CPRI Specification V6.0)
CPRI/OBSAI - Test cases

• Test case 1
 - Test line between REC(s) and RE(s)
 • System testing
 • Installation testing
 - Line can be
 • Optical
 • Carried over radio link or microwave link
 • CPRI over OTN
 • Instrument connected via optical interface to link
 - Terminate both sides of transmission line
 • BER test (Framed or unframed) *1
 - One side could be loopback
 • Delay measurement
 - With one side in loopback

*1: OBSAI supports UnFrame only
CPRI/OBSAI - Test cases

- Test case 2
 - CPRI Specification V7.0 defines
 - When both devices are in Operation state or in Passive link state, link is in normal operation
 - Operators find that up to 80% of CPRI turn-up issues occur in lowest layers
 - Essential during installation to:
 - Confirm RRH/RE can communicate to ground even without BBU/REC
 - Confirming RRH/RE can connect to Passive link state
 - Confirming HDLC layer (Layer 2) network is connecting
 - Completing above minimizes chance of issues during BBU/REC installation

Extract from Figure 30 in CPRI Specification V7.0: Start-up states and transitions
CPRI/OBSAI - Test cases

• Test case 2
 – Connect to actual equipment (REC or RE) to verify alive
 • Signal level and frequency measurement
 – Optical cable ends can be checked with Video Inspection Probe (VIP)
 • Monitor control word K30.7 – indicates error in 8B/10B line code (CPRI option 1-7 only) – and 8B/10B code violations
 • Check equipment behavior
 – Check that equipment can reach Passive link state
 – Confirm HDLC layer (Layer 2) network connecting
 – Check equipment behaviour at alarms
CPRI/OBSAI - Test cases

• Test case 3
 – Monitoring actual line between REC (Radio Equipment Control) - (master) and RE (Radio Equipment) - (slave)
 • Using dual port in Pass-through mode or monitor
 – Monitor interactive behaviour of equipment
 • For maintenance or in-service troubleshooting
MT1000A CPRI Wire Line Testing

- Supports CPRI interface rate option 1 (614.4 Mbit/s) to option 8 (10.1376 Gbit/s)
 - Ensures testing of current and future CPRI interfaces
MT1000A CPRI Wire Line Testing

• Testing at any rate
• Ability to exercise BBU or RRH up to Passive link status (as per latest CPRI standard)
• Support for Pass-through mode
 – Complete solution for detailed I&M testing
MT1000A CPRI Wire Line Testing

- Displayed signal level and bit rate gives first verification of received-signal condition

- Using Video Inspection Probe (VIP) to check fiber endface confirms quality practices and removes key cause of turn-up failure.
MT1000A CPRI Wire Line Testing

- Checking for and inserting Layer-2 alarms and errors from BBU to RRH
 - Ensures engineer can complete advanced fault finding and evaluate issue root cause
MT1000A CPRI Wire Line Testing

- Test results:
 - Summary screen with pattern error information and survey of result pages
 - Alarms/Errors screen with details of detected CPRI alarms and errors
 - Color coding highlights detected alarms and errors
MT1000A CPRI Wire Line Testing

- Test results:
 - CPRI Frames screen with counts of received and sent frames and code words
 - Delay screen showing measured Round Trip Delay
MT1000A CPRI Wire Line Testing

- Added APS measurement function to CPRI BERT application
 - Sets any APS measurement start/stop trigger using checkbox, with APS measurement started/stopped at selected trigger OR condition
 - Choice of triggers for network configuration and hypothetical faults for analyzing how equipment and network perform at APS operation

Graph and Event log screens for easy viewing and analysis
CPRI over OTN

• Market requirements
 – CPRI over OTN:
 • Transport raw radio (CPRI) data from RE over optical fiber to central location for baseband processing
 – Single location serving multiple REs
 – Consolidation has huge power and cost savings over distributed approach without impacting network scalability
 – OTN supports transport of several protocols over same fiber
 • Same management system across network
MT1000A CPRI Wire Line Testing

• Support for CPRI over OTN enables tests of latest CPRI implementations
MT1000A OBSAI Testing

OBSAI Frame Commissioning Test, Error/Alarm analysis, and APS and Delay measurements

- Helps cut costs of MFH I&M
- Ideal low-cost signal source and measuring instrument for developing and evaluating MFH transmission equipment

Useful Point!

- Supported rates: 768 M, 1536 M, 3072 M, and 6144 Mbps
- Tx/Rx status data display
- RP3 Address, and Type editing
- 6144 M auto-scrambling, Scramble SEED manual setting

Supports confirmation of Tx/Rx settings at one screen and simplifies evaluation of connection conditions with status information. Moreover, simultaneous installation of OBSAI function, SEEK function, OTDR module and CPRI module combines all functions required by MFH on-site tests in one unit for excellent maintainability and reduced costs.
eCPRI/IEEE1914.3

• Market
 – Most MFH networks are based on CPRI and will have to move to these new frame formats for 5G or before allowing the operator to manage the massive increase in data throughput requirements.
 – IEEE 1914.3 frames will likely also to be utilized back into the MBH as the architecture as the connection from Core / Metro to the MFH will evolve.

MT1000A support BER test of eCPRI/IEEE 1914.3
eCPRI/IEEE1914.3(RoE) 25G Dual port solution

- Market
 - Conventional fronthaul and backhaul network configurations are being re-examined to support 5G services and a switchover to eCPRI and RoE (Radio over Ethernet) packet-based protocols is being examined as part of this change.

With dual-port 25G eCPRI/RoE measurement support, the MU100011A offers efficient signal generation and analysis plus precision one-way latency measurement of Transport networks, supporting tests for implementing ultra-Reliable Low-Latency Communications (uRLLC). This will play a key role in Next Generation Fronthaul Interface (NGFI) network configurations and Fronthaul Transport Node (FTN) evaluations.

- Using the dual-port 25G eCPRI/RoE function helps to optimize testing while cutting the number and cost of required test instruments.
Network Master Pro MT1000A

- Powerful Storage Area Networking (SAN) Tests – Fibre Channel Functions
MT1000A Product Highlights

• Powerful tests of Fibre Channel links
 – Test of 1 GFC, 2 GFC, 4 GFC, 8 GFC, 10 GFC and 16GFC
 • Optional mapping to OTN
 – Performance Test
 – Latency measurement
 – BER testing including service disruption measurement
 – Line alarm and error monitoring
 – Normal or Reflector mode
Color-coded displays give easy overview of GO/NO-GO results on Fibre Channel links

Powerful Fibre Channel statistics include Latency, Packet Jitter and service disruption information
 - Optional threshold settings for easy understanding of results
MT1000A Product Highlights

- Point-to-point and Fabric topology
- Latency, Packet Jitter and service disruption measurements
MT1000A Product Highlights

- Performance test application to Fibre channel interface
 - Supports throughput, latency, and buffer credit performance verification for Fibre channel networks and Fibre channel equipment
Network Master Pro MT1000A

• OTN Metro and Core Network Installation and Maintenance
• ITU-T defines an Optical Transport Network (OTN) as a set of Optical Network Elements (ONE) connected by optical fiber links, able to provide functions of transport, multiplexing, switching, management, supervision and survivability of optical channels carrying client signals.
 – Typical signals carried by OTN are:
 • SONET/SDH
 • Ethernet
 • Fibre Channel
 • CPRI
 – Key OTN functions include:
 • Mapping/demapping of non-OTN signals
 • Multiplexing and demultiplexing of OTN signals
 • Forward Error Correction
OTN Background

• OTN networks first designed for submarine sections
 – Quickly moved to Core → Metro → Access
 • Operators can implement more services, control and management
• Simplifying network management is key for operators
 – Control customer traffic from access point and across network (single system, single management)
 – Greater insight about faults, quick repair and fewer maintenance issues
 – Single management of all legacy and replacement technologies
MT1000A OTN Test Function

- Comprehensive OTN testing for metro and core network I&M
 - OTU1, OTU2, OTU3, OTU4, OTU1e, OTU2e, OTU1f, OTU2f, OTU3e1, OTU3e2 tests
 - ODU0, ODUflex*1, ODU1, ODU2, ODU3, ODU4. ODU0 to ODU4 multistage mapping
 - Test Ethernet, CPRI, Fibre Channel and SDH/SONET client signals mapped to OTN signal
 - OTN tests with bulk signals at OTN level
 - Comprehensive OTN error and alarm statistics
 - OTN error performance measurement (G.8201 or M.2401)
 - ITU-T O.182-compliant FEC test
 - Delay measurement
 - OTN header edit and capture
 - OTN TCM monitoring and generation
 - Service disruption analysis using APS application
 - OTN tributary scan

*1 Up to OTU2
MT1000A OTN Test configuration (1/3)

- OTN out-of-service testing
 - For installation and commissioning
 - For troubleshooting

- OTN testing with far-end loopback

- OTN testing with two instruments
 - Separate results for each side of line
MT1000A OTN Test configuration (2/3)

• OTN in-service testing
 – Troubleshooting live traffic
 – Connected at monitoring point
MT1000A OTN Test configuration (3/3)

- OTN in-service pass-through testing
 - Troubleshooting live traffic when no monitoring point

![Diagram of MT1000A OTN Test configuration](image)
MT1000A OTN Mapping OTU1/OTU2

- Largest Range of Mappings and Supported Clients
MT1000A Product Highlights

- OTN statistics
 - Summary page with main results
 - Additional pages with detailed statistics
 - GO/NO GO color coding gives easy overview of results
MT1000A Product Highlights

- Ethernet in OTN
 - Statistics for OTN and embedded Ethernet signal in same measurement
 - Client signal frequency
 - Intuitive configuration map
MT1000A Product Highlights

- SDH/SONET/DSn/PDH in OTN
 - BERT applications and upgraded to switch without closing BERT, APS and RTD applications to improve operation efficiency
MT1000A Product Highlights

- SDH/SONET in OTN
 - Upgraded Client signal selection method used for ATN mappings at SDH-OTN-BERT application, and enabled Client SDH and Client PRBS signal switching without closing applications to improve operation efficiency.
MT1000A Product Highlights

- OTN status information
 - Overview of current status of alarms and errors
 - Optical level and rate information
 - GO/NO GO color coding gives easy overview of line status
MT1000A Product Highlights

- OTN Over Head (OH) Byte capture
 - Inspect OH bytes for detailed troubleshooting
 - Updates about every 1 second
Comprehensive OTN Testing—continued
- ODUflex testing
 - ODUflex: New feature of OTN
 - Method for flexible allocation of bandwidth to client signal
 - Makes most efficient use of OTN capacity
 - Capacity of ODU2 split into eight 1.25G ODUflex time slots
- In above example, FC-400 (4GFC) Fibre Channel signal occupies four ODUflex time slots, freeing other four ODUflex time slots in ODU2 for other payloads
- MT1000A supports ODUflex testing, allowing operators deploying new technology to verify working correctly throughout network
MT1000A Product Highlights

- ODUflex
 - Configuration and results
MT1000A OTN FEC Test

- **ITU-T O.182 Compliant FEC Test**
 - Reproducible/accurate FEC error correction tests by generating random signal errors (Poisson distribution)

![Error Correction Curve](image)

BER Characteristics of FEC performance for 43-Gbit/s

- **Test pattern:** PRBS-31
- **Theoretical BER without FEC**
- **Measured BER not using Poisson random error generator**
- **Theoretical BER with FEC (G.709)**
- **Measured BER using Poisson random error generator**

![Bad Random Distribution](image)

![Good Random Distribution](image)
MT1000A OTN FEC Test

- ITU-T O.182 Compliant FEC Test
 - FEC error insertion with MT1000A
Network Master Pro MT1000A

• Quick and Easy Tests of SDH/SONET/PDH/DSn Networks
MT1000A Product Highlights

- Quick and easy tests of SDH/SONET/PDH/DSn
 - Testing of SDH/SONET systems at STM-64/STM-16/STM-4/STM-1/OC-192/OC-48/OC-12/OC-3/STS-3 and embedded PDH (E1/E3/E4) and DSn (DS1/DS3) systems
 - Powerful PDH (E1/E3/E4) and DSn (DS1/DS3) testing
 - Simultaneous bi-directional monitoring of SDH/SONET/PDH/DSn lines
 - SDH/SONET mapping and de-mapping
 - Comprehensive error and alarm statistics
 - G.826/G.828/G.829/M.2100 error-performance measurements on SDH/SONET traffic
 - G.826/M.2100 error-performance measurements on PDH/DSn traffic
 - SDH/SONET OH byte testing and monitoring
 - SDH/SONET trouble scan
 - SDH/SONET pointer event generation and monitoring
 - SDH/SONET/PDH/DSn delay measurements
MT1000A Product Highlights

- SDH mappings

1) Requires MU100010A-081 or MU100010A-082
2) Requires MU100010A-001
MT1000A Product Highlights

- SONET mappings

1) Requires MU100010A-081 or MU100010A-082
2) Requires MU100010A-001
MT1000A SDH/SONET In-Service Measurements

- Alarm and error monitoring for both sides of SDH/SONET line
- Frequency-deviation measurements

- G.826/G.828/G.829/M.2100 error-performance measurements on live traffic
MT1000A SDH/SONET Out-of-Service Testing

- Installing, commissioning and troubleshooting SDH/SONET lines
- Stressing system by generating alarms, errors, pointer operations, slip and frequency offset
- Testing synchronization circuits

- Generating embedded PDH/DSn signals
- G.826/G.828/G.829/M.2100 error performance
- Propagation time
- Alarm, error, slip and frequency-deviation measurements
MT1000A SDH /SONET Out-of-Service Testing

- Installing/commissioning
- System stressing by generating alarms, errors, slip and frequency offset
- Testing synchronization circuits
- Alarm, error, drift and frequency-deviation measurements
- Propagation time measurements
MT1000A SDH/SONET Line Status

- Physical line information
- Current alarms and errors
MT1000A SDH/SONET Tributary scan

• Quick overview of problems in monitored SDH/SONET signals
• Detailed problem description when required
 – Click tributary for more details
MT1000A SDH/SONET Performance Measurements

- Bi-directional performance measurement
 - Easy information switching between two ports
- BER measurements of embedded PDH/DSn signal
MT1000A SDH/SONET Overhead Byte Analysis

- Bi-directional OH byte capture
- User-programmable transmitted OH bytes
MT1000A SDH/SONET Event Insertion

- Stress-test network elements by inserting events in test signal
- Inserted Events:
 - Alarms
 - Errors
 - Frequency deviations
 - Pointer operations
MT1000A SDH/SONET APS Test Application

- Max switchover time measurement
 - User-defined max. time
 - User-defined switching criteria: APS measurement triggered by SDH/SONET or E1/DS1 events
 - Average time display

- APS protocol events can be generated and detected
 - No. of switchovers based on APS protocol events count

- Measurement at two receivers for simultaneous APS protocol event monitoring and switch time measurement
MT1000A SDH/SONET Pointer Movement Graph

- Graph of pointer movements
 - Good overview of pointer operations
- Information on AU and TU pointer
- Magnify graph points of interest
- Results stored in MT1000A memory
MT1000A SDH/SONET TCM Functions

- Analyze TCM (Tandem Connection Monitoring) function in SDH/SONET systems
 - Simultaneous bi-directional monitoring of TCM information on SDH/SONET lines
 - Comprehensive TCM error and alarm statistics
 - Inject TCM events to stress-test network elements
MT1000A PDH/DSn Out-of-Service Testing

- Installing, commissioning and troubleshooting PDH/DSn lines
- Stress system by generating alarms, errors, slip and frequency offset
- Testing synchronization circuits

- G.821(E1/DS1)/G.826/M.2100 error performance
- Alarm, error, slip and frequency-deviation measurements
- Propagation time with far-end loopback

![Diagram of MT1000A PDH/DSn Out-of-Service Testing](image-url)
MT1000A PDH/DSn In-Service Measurements

- Alarm and error monitoring at both sides of PDH/DSn line
- Frequency-deviation measurements
- G.821(E1/DS1)/G.826/M.2100 error-performance measurements on live traffic
MT1000A E1/DS1 Network-Element Testing

- Installing/commissioning
- G.821, G.826 or M.2100 error-performance measurements
- System stressing by generating alarms, errors, slip and frequency offset

- Testing synchronization circuits
- Alarm, error, slip and frequency-deviation measurements
- Propagation time measurements

E1/DS1 signal with test pattern in n time slot(s)
MT1000A E1/DS1 Drop-and-Insert Testing

- Pseudo in-service testing on live PCM systems
- Add and drop N*64 kbps signals
- Alarm, error and slip generation and measurement

- Inject errors in live traffic channel
- G.821, G.826 or M.2100 error-performance
- Frequency deviation

![Diagram of MT1000A E1/DS1 Drop-and-Insert Testing](image-url)
MT1000A PDH/DSn Line Status

- Physical line information – display of current:
 - Input frequency and deviation
 - Input-level indication
 - Pattern bit rate
- Current alarms and errors
MT1000A PDH/DSn Alarm and Error Statistics

- Alarm-second counts and ratios
- Error counts and ratios
- M.2100, G.826 or G.821 parameters

- Histograms show measurement overview
 - Click parameter to activate histogram
MT1000A E1 Alignment and CAS Displays

- Information on FAS words and Sa bits

- Information on CAS bits
 - User-selectable bit pattern for red and yellow colors
MT1000A DS1 Alignment and CAS Displays

- Information on F-bits and S-bits
- Information on CAS bits
 - User-selectable bit pattern for red and yellow colors
MT1000A E1/DS1 Channel Status Display

- Fast overview of E1/DS1 line status
MT1000A E1/DS1 Audio Display

- Details on contents of one selected traffic channel
 - Displays information from two ports for bidirectional monitoring
Network Master Pro MT1000A

• VIP: Video Inspection Probe
VIP: Video Inspection Probe

- VIP Video Inspection Probe
 - Judge quality of optical fiber and module endface
 - Find trouble in optical fiber and module endface
 - Reduce degraded signal transmission and effect on measurement results
 - Prevent connected optical fiber and module endface damage
- Dirty connector endface...
 - Dirty connector endface causes more reflection
 - Cleaning connector endfaces maintains good connection
- Damaged connector endface...
 - Damaged connector endface has greater reflection and larger ORL (Optical Return Loss)
- MT1000A supports G0382A/G0306B VIP option
 - Table View identifies endface “defects” or “scratches”
 - Automatic fiber endface pass/fail determination made in accordance with IEC61300-3-35 standard
VIP - Ordering items 1/2 -

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0382A</td>
<td>Autofocus Video Inspection Probe</td>
</tr>
<tr>
<td></td>
<td>- Standard accessories*1 -</td>
</tr>
<tr>
<td></td>
<td>- Soft Bag</td>
</tr>
<tr>
<td></td>
<td>- Seven Connector Tips</td>
</tr>
<tr>
<td></td>
<td>- 1.25mm PC Male, 2.5mm PC Male, 2.5mm APC Male,</td>
</tr>
<tr>
<td></td>
<td>- 1.25mm PC Female(LC), 2.5mm PC Female(FC),</td>
</tr>
<tr>
<td></td>
<td>- 2.5mm PC Female(SC), 2.5mm APC Female(SC)</td>
</tr>
<tr>
<td></td>
<td>- Quick Reference Guide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H0382A</td>
<td>H0395A FC-APC-F (FC APC Female)</td>
</tr>
<tr>
<td>H0383A</td>
<td>H0385A LC-PC-F (LC PC Female)</td>
</tr>
<tr>
<td>H0387A</td>
<td>H0393A LC-PC-F-L (LC PC Long Female)</td>
</tr>
<tr>
<td>H0388A</td>
<td>H0394A LC-APC-F-L (LC APC Long Female)</td>
</tr>
<tr>
<td>H0384A</td>
<td>H0396A ST-PC-F (ST PC Female)</td>
</tr>
<tr>
<td>H0398A</td>
<td>H0397A MU-PC-F (MU PC Female)</td>
</tr>
<tr>
<td>H0386A</td>
<td>H0390A E2000-PC-F (E2000 PC Female)</td>
</tr>
<tr>
<td></td>
<td>H0392A*2 MPO-PC/APC-F (MPO PC/APC Female)</td>
</tr>
</tbody>
</table>

*1: Operation manual and MX900031A Autofocus VIP Software (For PC) can be downloaded from Anritsu public Web site.

*2: H0392A MPO tip does not have Autofocus and Pass/Fail functions.
VIP - Ordering items 2/2 -

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0306B</td>
<td>400x Video Inspection Probe</td>
</tr>
</tbody>
</table>

- Standard accessories -
 - Operation manual (Printed)
 - Soft Bug
 - Seven Connector Tips
 - 1.25mm PC Male, 2.5mm PC Male, 2.5mm APC Male
 - 1.25mm PC Female(LC), 2.5mm PC Female(FC)
 - 2.5mm PC Female(SC), 2.5mm APC Female(SC)

<table>
<thead>
<tr>
<th>Application Parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model No.</td>
</tr>
<tr>
<td>H0360A</td>
</tr>
<tr>
<td>H0361A</td>
</tr>
<tr>
<td>H0362A</td>
</tr>
<tr>
<td>H0363A</td>
</tr>
<tr>
<td>H0364A</td>
</tr>
<tr>
<td>H0365A</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

G0306B + Standard Accessories

H0380A(Option)
Network Master Pro MT1000A

- Operation and Presentation
• Easy operation
 – Simple, intuitive GUI
 – Loading and transferring configurations
 – Go/No Go testing
• Touch-screen based operation
• Automation Testing
• Remote operation
 – Via Ethernet interface
• Setup transfer/data transfer/firmware upgrade
 – Via USB interface
MT1000A GUI

- Five main groups

Application Selector

- Port Setup
- Test Setup
- Test Results
MT1000A GUI

• Application selector
 – Intuitive launch of new test
 – “Double” keys for starting tests of client signals in OTN
 • Right side of key starts test of client signals in OTN
 • Left side of key starts test of client signals directly
MT1000A GUI

- Select Port display
 - Displayed after selecting application
 - Select one port – or two if available – and press Accept
MT1000A GUI

- Result pages:
 - Summary page
 - Event log
 - Statistics page(s)
 - Color-coded GO/NO GO indications
MT1000A GUI

- Several pages in each main group
 - Selected with tabs
 - Selected from drop-down menu
MT1000A Histograms for General Statistics

- User sees distribution over time for selected parameter easily
 - Click parameter and select histogram
 - Click Zoom: Large numeric makes distance reading easy
Test Applications Summary

- Summarizes measurement results for all current Test Applications (applications using port resources) belonging to one user – using Remote GUI software up to two users can use MT1000A
- Test Application Summary and Overall Test Status updates only during testing:
 - **Green**: No trouble
 - **Yellow**: Errors (but no alarms) pending or occurred in past
 - **Red**: Threshold violation or Alarms pending or occurred in past

 ![Test Applications Summary](image)

 Shows worst Status of all test applications.

 - **All applications OK**
 - **One or more applications have Yellow Test Status (and no Red)**
 - **One or more applications have Red Test Status**

- Clicking Test Applications Summary icon opens Overall Test Status screen
Overall Test Status

- For remote viewing test status for all current Test Applications
- Test Application Summary and Overall Test Status has no current/history distinction—basically show history.
- To “clear” Test Status: Restart test.
- User-configurable to show Test Application Summary indicator—and to access Overall Test Status screen

- Overall Test Status updates only during testing:
 - **Green:** No trouble
 - **Yellow:** Errors (but no Alarms) pending or occurred in past
 - **Red:** Threshold violation or Alarms pending or occurred in past
Overall Test Status

- Adapts to number of running test applications

One test application

Two test applications
Event Log

- Event Log gives users powerful means to analyze problems of long-term testing
- Records what/when problem happened and how long/often been happening
Event Log

- GUI filter function and CSV export
Event Log

- Logged events included in report

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Port</th>
<th>Type</th>
<th>Src.</th>
<th>Description</th>
<th>Dur./Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2015-03-28 07:41:40</td>
<td>1</td>
<td>Test</td>
<td>Test</td>
<td>Started</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2015-03-28 07:41:49</td>
<td>1</td>
<td>Alarm</td>
<td>ETH</td>
<td>10G LFS Remote Fault</td>
<td>00:00:03</td>
</tr>
<tr>
<td>3</td>
<td>2015-03-28 07:41:49</td>
<td>1</td>
<td>Error</td>
<td>ETH</td>
<td>Invalid blocks</td>
<td>73.566 k</td>
</tr>
<tr>
<td>4</td>
<td>2015-03-28 07:41:50</td>
<td>1</td>
<td>Alarm</td>
<td>ETH</td>
<td>Frame Loss Secs.</td>
<td>00:00:03</td>
</tr>
<tr>
<td>5</td>
<td>2015-03-28 07:41:51</td>
<td>1</td>
<td>Error</td>
<td>ETH</td>
<td>Invalid blocks</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>2015-03-28 07:41:52</td>
<td>1</td>
<td>Alarm</td>
<td>ETH</td>
<td>Seq. Sync. Lost</td>
<td>00:00:01</td>
</tr>
</tbody>
</table>
Event Log

- Time stamp shows relation between event and statistics
MT1000A GUI

• Control panes
 – Control applications in work space
MT1000A GUI

- Control panes
 - Control applications in work space
 - Click to expand
MT1000A GUI

- Control panes
 - Control applications in work space – expanded
MT1000A GUI

- Control panes
 - Control instrument in application work space – expanded
 - Click to expand instrument control
MT1000A GUI

- **Control panes**
 - Control instrument in application work space
MT1000A GUI

- Control panes
 - Control instrument in Application selector and test Result pages
MT1000A GUI

- Power button menu
 - Pressing Power button while instrument on displays menu to:
 - Switch applications (when two applications running)
 - Take screen shot
 - Activate screen lock – can be password protected
 - Power-down

- Switch applications by clicking running applications at screen bottom
- Running applications window always accessible
MT1000A Instrument Setup

- **Password protection**
 - Prevent unintended changes to parameters and measurement start/stop
 - Enabled/disabled by user
Network Master Pro MT1000A

• Report Generation
Report Generator

• Generates reports:
 – Summary page only
 – Summary and Statistics pages
 – Port setup and Application setup included as option
 – User-customized report including:
 • Logo in .png format
 • Customer ID, Operator ID, notes, and similar information in measurement .pdf reports
 – Output report in .pdf, .CSV or .XML format to USB port
Document Information

<table>
<thead>
<tr>
<th>Report Name</th>
<th>BERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Customer 001</td>
</tr>
<tr>
<td>Project</td>
<td>Testing of line 1</td>
</tr>
<tr>
<td>Operator</td>
<td>Operator 001</td>
</tr>
<tr>
<td>Notes</td>
<td>This is a sample report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Serial no</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A</td>
<td>6D60000101</td>
<td>3.01</td>
</tr>
<tr>
<td>MU100010A</td>
<td>6D60000087</td>
<td></td>
</tr>
</tbody>
</table>
Report Layout

• Look of pages like Ethernet stats, event log and port settings

 ![PDF reports are displayed with the built-in PDF viewer](image)

• Look of reports from other applications.

 ![RFC 6349, RFC 2544, OTN](image)

• Reports can be viewed in the built-in PDF viewer immediately after they are generated
 – This makes it simple and easy for the user to inspect the report
The user can select the information to output when reporting statistical test results. As a result, file save times are shortened and files sizes are smaller.
Report Generator

- Optionally includes Performance Verification information in reports
 - User-programmable performance verification period

![Image of Report Generator interface]

Document Information

<table>
<thead>
<tr>
<th>Report Name</th>
<th>BERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Customer 001</td>
</tr>
<tr>
<td>Project</td>
<td>Testing of line 1</td>
</tr>
<tr>
<td>Operator</td>
<td>Operator 001</td>
</tr>
<tr>
<td>Notes</td>
<td>This is a sample report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Serial no</th>
<th>Performance Verification Date</th>
<th>Performance Verification Due Date</th>
<th>Software Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT1000A</td>
<td>6D60000101</td>
<td>2014-05-06</td>
<td>2016-05-06</td>
<td>3.01</td>
</tr>
<tr>
<td>MU100010A</td>
<td>6D60000087</td>
<td>2014-05-06</td>
<td>2016-05-06</td>
<td></td>
</tr>
</tbody>
</table>
Network Master Pro MT1000A

- Automation Testing
Network Master Pro MT1000A

- Remote Operation
Three Remote Control Types

<table>
<thead>
<tr>
<th>Function</th>
<th>Multi-user</th>
<th>File Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNC</td>
<td>Control from remote site</td>
<td>No</td>
</tr>
</tbody>
</table>
| Remote GUI (MX100001A) | Control from remote site
Port sharing
File sharing | OK | OK |
| SCPI | Automation
Control from remote site | OK | OK |
MT1000A Remote Operation – Applications

- Remote access
- Troubleshooting spurious errors
- Long-term surveillance and stability tests
- Multi-site surveillance
- Multi-user access
- Display screens via projector
- Documentation and training
- Operate MT1000A from PC with VNC client or new Remote GUI app
- View MT1000A displays on PC
What Can User Do with Remote GUI?

- Remote GUI application runs on Windows 7/8/8.1
- Port-oriented connection not unit-oriented
- Multiple users share same unit and use separate ports

User 1 is using Port 1

User 2 is using Port 2

DUT for User 1

DUT for User 2
What Can User Do with Remote GUI?

• Connect one application to up to two GUls

• Only one GUI can change settings and start test (Read/Write)
• Next user just observes (Read only)
• Any user can take right to change settings with exchangeable rights
What Can User Do with Remote GUI?

• Remote GUI can run as ‘Standalone’ viewer
• Users can:
 – Generate report(s)
 – Analyze results offline
 – Create setup file(s) for deployment

• Remote GUI supports
 – Firmware update via LAN
 – Remote unit reset
What Can User Do with Remote GUI?

- Share file system—user can access file system from Windows Explorer
- Access PC file system—user can save/load file to/from Windows memory

- Remote GUI supports:
 - Firmware update via LAN
 - Remote unit reset

Result files
Setting files
Report files
Capture files
Network Master Pro MT1000A

• Remote Control–Scripting
Remote Control Scripting Option

• Automated testing for developing applications
• Remote control commands/replies as ASCII format strings
 – SCPI 1999.0 compliant with IEEE 488.2 mandatory common commands
• Fast command response
 – Execute up to 8 commands per second
 • Reduces test time at mass production
• Communication between controller (PC) and MT1000A:
 – Via MT1000A Ethernet Service Interface
 • TCP/IP connection
 – Test facility can be isolated LAN
 – Via WLAN
 – Via GPIB
• Includes documentation and scripting example
• LabVIEW driver sample
Network Master Pro MT1000A

• Remote Control – GUI & Scripting
Remote Control GUI & Scripting Option

- Execution became possible simultaneously about remote GUI (MX100001A) control and SCPI control at each port.
 - Customer can use one facility more effectively by being able to use two kinds of control commands at the same time.
Remote Control GUI & Scripting Option

- Show who are using the port on the resource monitor screen of MT1000A

Useful Point!

To identify who are using the occupied port, it can be allowed to present “Nickname” on the MT1000A GUI.
Remote Control GUI & Scripting Option

If the IP address of MT1000A connected to the network is known, it can be powered-on/off by remote control from the MX100001A (only when connected to AC adapter).
Network Master Pro MT1000A

• Automation Testing
Automation Testing (1/3)

- Installation and maintenance tests have several challenges.
 - Varying Work Time and Test Results Quality Dependent on Technician’s Experience
 - Increasing Risk of Work Errors as Test Items increase
 - Reducing work burn to minimize errors

- Network Master have the One-Button Test Mode by creating a settings file for each manual procedure enables field technicians to run tests and complete pass/fail evaluations with a single click.

<table>
<thead>
<tr>
<th>Setting Test Equipment</th>
<th>Executing Test</th>
<th>Evaluating Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Manual</td>
<td>Based on data</td>
</tr>
</tbody>
</table>

→ One-button automation
Automation Testing (2/3)

- Anritsu’s Automated testing cuts timing time

Repetitive tasks: Set, Test, Evaluate, Create report

Shorter Time

Select one file

Technician waits for test result
Automation Testing (3/3)

- **Scenario Environment Editing Kit (SEEK) MX100003A**
 - Free tool for creating automatic test scenarios for use on the MT1000A
 - Test scenarios are created using the PC SEEK GUI with drag and drop operations

Command Selection
The MT1000A command functions are listed as icons here to create the test scenario using drag and drop operations.

Command Details
Comments, such as cable connection, test notes, etc., can be displayed here. Parameter input is also supported.

Test Scenario Creation Area
The scenario is created here by dragging icons from the command list into a series.