MS8609A
Digital Mobile Radio Transmitter Tester
9 kHz to 13.2 GHz
Measures Wideband Signals up to 20 MHz

The MS8609A Digital Mobile Radio Transmitter Tester has a built-in spectrum analyzer, modulation analyzer, and power meter. One tester supports all the measurements needed to develop and manufacture base stations and mobile stations as well as to construct and maintain base stations. The spectrum analyzer resolution bandwidth of 20 MHz readily supports measurement of wideband signals. The modulation analyzer uses high-speed DSP to support all Vector Signal Analysis (VSA) functions. Power can be measured with an accuracy of ±0.4 dB using the amorphous power sensor. Up to three dedicated measurement software options for W-CDMA, GSM/EDGE, etc., can be installed simultaneously and input signals can be selected from either RF or I/Q. Balanced or unbalanced input can also be selected for I/Q signals. Remote measurement is supported by GPIB, RS-232C and 10Base-T (optional) interfaces and the 120 kbyte/s speed of the GPIB I/F supports high-speed measurement on production lines. The screen uses an easy-to-read 6.5-inch TFT color LCD.
Spectrum Analyzer Functions

Frequency
Frequency range: 9 kHz to 13.2 GHz
Resolution bandwidth: 300 Hz to 3 MHz, 5 MHz, 10 MHz, 20 MHz (to 3 GHz)
Frequency span: Zero, 1 kHz to 13.2 GHz
Span accuracy: ±1%
Reference frequency accuracy: ±2 x 10⁻⁸/day, ±5 x 10⁻¹⁰/day (option)

Level
Maximum input level: +20 dBm
Input attenuator: 0 to 62 dB (2 dB steps)
1 dB gain compression: +3 dBm (≥500 MHz)
Two tone 3rd order distortion: ≤–85 dBc (0.1 to 3.2 GHz)

Sweep
Frequency span: 10 ms to 1000 s
Time span: 1 µs to 1000 s
Refresh rate: >20 times/s

Others
Detection mode: Normal, positive, negative, sample, average, RMS (option)
Measurement functions: Frequency counter, noise power, C/N, ACP, OBW, etc.
GPIB transmission speed: 120 kbyte/s
MS8609A Panel Layout
F1-F6: Function for selecting software menus on screen
Spectrum: Switches to spectrum analyzer mode
TX Tester: Runs measurement software in transmitter test mode
Freq/Amp: Main function for setting frequency, span and amplitude
Marker: Switches to normal marker as well as multimarker, zone marker, zone sweep, etc.
System: Selects measurement software in transmitter test mode
Entry: Inputs alphanumeric values and units
Save/Recall: Saves/recalls measurement conditions and waveforms to/from internal memory and memory card
Measure: Executes calculations based on waveform data at high speed without external computer
Coupled Function: Sets non-main functions — Usually used at auto setting values
Memory Card: Slot for memory card for saving/recalling measured waveforms and measurement parameters
I/Q Input: Selects balanced or unbalanced input
Input: Input for signal with max. power of +20 dBm
Probe Power: ±12 V power connector for FET probe
IF Output: Output for IF signal band-limited by RBW
Wideband IF Output: Output for IF signal before passage through RBW
10 MHz/13 MHz Ref In: 10/13 MHz external reference signal input
10 MHz Ref Out: 10 MHz external reference signal output
Sweep (X): Output for X-axis signal proportional to sweep output
Video (Y): Output for Y-axis signal proportional to video detection output
SWP Status: Sweep status signal output
Trig/Gate In: Input for external trigger/gate signal (±10 V)
Parallel: Connector for printer
VGA Out: Output for VGA signal
Ethernet: For remote control via 10BASE-T Ethernet
GPIB: For remote control via GPIB
RS-232C: For remote control via RS-232C I/F
Parameter Setup

Measurement parameters, such as modulation accuracy, code domain power, etc., are set on the screen shown below. Measurement is performed simply via a soft-key menu after setting measurement parameters.

Modulation Accuracy Measurement

The modulation accuracy of base station and mobile equipment can be measured and modulation of multiple waveforms can be analyzed. The residual vector error (rms) accuracy is high (1%, typical).

Code Domain Power

Only 1.5 seconds are required for measurement. Either automatic detection of scrambling code from SCH, or specification of scrambling code can be selected.
I/Q Level Measurement

Each I and Q input voltage (rms, p-p value) can be measured and displayed in dBmV or mV units.

Demodulation Data Monitoring Function

After de-spreading, up to 10 frames of demodulation data can be evaluated.

Power Meter Function

The built-in power meter uses an amorphous power sensor and the measurement accuracy is very high (±0.4 dB).

CCDF Measurement

This supports distribution or cumulative distribution display of the power difference between instantaneous power and average power. The 20 MHz max. filter bandwidth supports multi-carrier measurement.
Supports GSM, EDGE

MX860902A GSM Measurement Software
(sold separately)

Measurement functions
Modulation analysis:
- Carrier frequency, phase error (RMS, peak), magnitude error
- Filter selection complies with ETSI standards (for EDGE modulation analysis)

Amplitude measurement: Transmitter power
Measurement of rise/fall edge characteristics of antenna power
Output RF spectrum measurement
Spurious measurement
I/Q level measurement

Performance
- Modulation accuracy
 - Residual phase error: <0.5° (rms) [GMSK modulation]
 - Residual EVM: <1.0% (rms) [8PSK modulation]
 - Transmitter power: ±0.4 dB

Parameter Setup

Measurement parameters, such as GMSK modulation for GSM and 8PSK modulation for EDGE are set on the screen shown below. Measurement is performed simply via a soft-key menu after setting the measurement parameters.

Modulation Accuracy Measurement

The modulation accuracy is high. (The residual phase error of GMSK modulation is < 0.5° rms and residual EVM of 8PSK modulation is < 1.0% rms.)

Transmitter Power Measurement

The screen displays the amplitude waveforms and template simultaneously with symbols on the horizontal axis and level on the vertical axis.
Output RF Spectrum Measurement

The output RF spectrum can be measured at high speed and simply.

EDGE Constellation Display

The following screen shows the constellation display through the filter for the EDGE constellation display of the GSM standard.

Spurious Measurement

Spurious measurement has three methods: Sweep, Search, Search, and Spot, which can be selected according to the usage.

The following screen shows the constellation display for the 8PSK modulation through a Nyquist filter and Gaussian inverse correction filter.
MX860903A cdma Measurement Software
(sold separately)

Measurement functions

Modulation analysis:
- Carrier frequency, vector error, phase error, magnitude error

Code domain analysis:
- Code domain power, code domain timing offset, code domain phase offset

Amplitude measurement: Transmission power

Spurious close to the carrier measurement

Spurious measurement

Occupied bandwidth measurement

I/Q level measurement

Parameter Setup

A setup screen is provided for input of required parameters for modulation accuracy and code domain power measurements in cdmaOne or CDMA2000 1xRTT analysis. Measurement can be performed after parameter setup.

Modulation Accuracy Measurement

Frequency error, modulation accuracy and code domain analysis are performed and the results are displayed on the screen. The measurement accuracy is 1\% (typical) for residual vector error (rms).

BTS Code Domain Analysis

Only 2 seconds are required for code domain analysis of 1xRTT signals. RC1* through RC5 can be measured. The spreading factor of each code is detected automatically and displayed on the screen.

*Radio Configuration
MS Code Domain Analysis

Code domain analysis of 1xRTT signals in RC3 and RC4 can be performed in only 2 seconds. Code domains of I/Q phase are displayed on the screen.

Spurious Close to Carrier Measurement

Spurious close to the carrier is measured using the spectrum analyzer function. The PASS/FAIL result of template evaluation is displayed on the screen.

Transmission Power Measurement

When transmission power is measured, both the value and signal waveform are displayed on the screen. High powers are measured accurately using the built-in power meter function.

Spurious Measurement

A frequency table can be set at spurious measurement to provide PASS/FAIL results. Fifteen different frequencies and their limit values can be input.
Supports PDC, PHS and NADC
All-in-one Evaluation of π/4DQPSK transmission systems

MX860905A π/4DQPSK Measurement Software
(sold separately)
Measurement functions
Modulation analysis:
 Carrier frequency, vector error, phase error, magnitude error
Amplitude measurement:
 Transmitter power, carrier-off leakage power, rise/fall characteristics
Adjacent channel power measurement
Spurious measurement
Occupied bandwidth measurement
I/Q level measurement
General purpose measurement

Parameter Setting
Analysis of PDC, PHS and NADC (IS-136) systems requires setting of parameters for important measurement such as modulation accuracy at this screen. Changing the symbol rate also permits analysis of systems other than PDC, PHS and NADC.

Modulation Accuracy Measurement
The constellation display is combined with the modulation accuracy measurement results to monitor the residual vector error (rms) with a high accuracy of 0.5 % (PDC).

Transmitter Power Measurement
This screen displays the transmitter power and waveform. The power value is calibrated by the built-in power meter to achieve even higher power measurement accuracy.
Transmission Timing Measurement

This screen displays the PHS send timing. In addition, when average measurement is selected, the send jitter is also displayed.

Adjacent Channel Power Measurement

When measurement is performed using the spectrum analyzer, the adjacent channel power is measured after passage through the built-in filter (root Nyquist). High-speed measurement can also be selected.

Occupied Bandwidth Measurement

The occupied bandwidth is measured with the spectrum analyzer function or by FFT using DSP, and displayed.

Spurious Measurement

There are three spurious measurement methods: Spot, Sweep and Search. Up to 15 frequency and limit values can be set in the tables. Measurement results are displayed with a limit evaluation.
Specifications

<table>
<thead>
<tr>
<th>MS8609A</th>
</tr>
</thead>
</table>

Frequency range: 9 kHz to 13.2 GHz

Max. input level: +20 dBm (100 mW), continuous average power, DC input: 0 V dc

Input impedance
- Power meter: 50 Ω, VSWR: ≤1.3 (30 MHz to 3 GHz)
- Except power meter: 50 Ω, VSWR: ≤1.5 (input attenuator: ≥4 dB, ≤3 GHz)/≤2.3 (input attenuator: ≥10 dB, >3 GHz)

Input connector: N-type

Reference oscillator
- Frequency: 10 MHz
- Starting characteristics: ≤5 x 10⁻⁸ (after 10 minute warm-up, compared to frequency after 24 hour warm-up)
- Aging rate: ≤2 x 10⁻⁸/day, ≤1 x 10⁻⁷/year (compared to frequency after 24 hour warm-up)
- Temperature characteristics: ±5 x 10⁻⁸ (0˚ to 50˚C, compared to frequency at 25˚C)

Power meter
- Frequency range: 30 MHz to 3 GHz, Level range: –20 to +20 dBm, Measurement accuracy (after zero calibration): ±10%

<table>
<thead>
<tr>
<th>Frequency</th>
</tr>
</thead>
</table>

- Frequency setting
 - Setting range: 9 kHz to 13.2 GHz, Pre-selector range: 3.15 to 13.2 GHz (Band 1 and 2)
- Frequency accuracy
 - Accuracy: ± (display frequency x reference frequency accuracy + span x span accuracy + resolution bandwidth x 0.15 + 10 x N Hz) ∗N: Mixer harmonic order
 - Normal marker: Same as display frequency accuracy
 - Delta marker: Same as span accuracy
- Frequency span setting range: 0 Hz, 5 kHz to 13.2 GHz
- Span accuracy: ±1.0% (at single band sweep, number of data points: 1001)
- RBW (resolution bandwidth)
 - Setting range: 300 Hz to 3 MHz (1-3 sequence), 5 MHz, 10 MHz, 20 MHz (Band 0)
 - Accuracy: ±20% (300 Hz to 10 MHz), ±40% (20 MHz)
- Selectivity (60 dB: 3 dB): ≤15:1
- VBW (video bandwidth): 1 Hz to 3 MHz (1-3 sequence), off
- Sideband noise: ≤–108 dBc/Hz (1 GHz, 10 kHz offset), ≤–120 dBc/Hz (1 GHz, 100 kHz offset)

<table>
<thead>
<tr>
<th>Spectrum analyzer</th>
</tr>
</thead>
</table>

- Maximum input level
 - Continuous average power: +20 dBm, DC voltage: 0 V
- Average noise level (RBW: 300 Hz, VBW: 1 Hz): [Without Option 08]
 - ≤–124 dBm + 1.5 x f [GHz] dB (1 MHz to 2.5 GHz, Band 0)
 - ≤–120 dBm + 1.5 x f [GHz] dB (2.5 to 3.2 GHz, Band 0)
 - ≤–116 dBm (3.15 to 7.8 GHz, Band 1)
 - ≤–107 dBm (7.7 to 13.2 GHz, Band 2)
 - [With Option 08]
 - ≤–122 dBm + 1.8 x f [GHz] dB (1 MHz to 2.5 GHz, Band 0)
 - ≤–120 dBm + 1.8 x f [GHz] dB (2.5 to 3.2 GHz, Band 0)
 - ≤–116 dBm (3.15 to 7.8 GHz, Band 1)
 - ≤–107 dBm (7.7 to 13.2 GHz, Band 2)
- Residual response: ≤–100 dBm (1 MHz to 3.2 GHz, Band 0), ≤–90 dBm (3.15 to 7.8 GHz, Band 1)

<table>
<thead>
<tr>
<th>Amplitude</th>
</tr>
</thead>
</table>

- Reference level
 - Setting range: –100 to +30 dBm
 - Accuracy:
 - ±0.75 dB (+0.1 to 20 dBm), ±0.5 dB (–49.9 to 0 dBm), ±0.75 dB (–69.9 to –50 dBm), ±1.5 dB (–80 to –70 dBm)
 - ∗After calibration, frequency: 50 MHz, span: 1 Hz (Input attenuator, RBW, VBW and sweep time are set to AUTO.)
 - RBW Switching uncertainty: ±0.3 dB (300 Hz to 5 MHz), ±0.5 dB (10, 20 MHz)
 - ∗After calibration, with RBW 3 kHz referenced
 - Input attenuator: 0 to 62 dB (2 dB steps)
 - Switching uncertainty: ±0.3 dB (10 to 50 dB), ±0.5 dB (52 to 62 dB)
 - ∗After calibration, with 50 MHz, RF ATT 10 dB referenced
 - Frequency response:
 - ±0.6 dB (9 kHz to 3.2 GHz, Band 0), ±1.5 dB (3.15 to 7.8 GHz, Band 1), ±2.0 dB (7.7 to 13.2 GHz, Band 2)
 - Log linearity: ±0.4 dB (0 to –20 dBm, RBW: ≤1 kHz), ±1.0 dB (0 to –90 dB, RBW: ≤1 kHz)
 - 2nd harmonic distortion:
 - ≤–80 dBc (10 to 200 MHz), ≤–75 dBc (200 to 850 MHz, Band 0), ≤–70 dBc (0.85 to 1.6 GHz, Band 0), ≤–90 dBc (1.6 to 6.6 GHz, Band 1 and 2)
 - Two-tone 3rd order distortion:
 - ≤–70 dBc (10 to 100 MHz), ≤–85 dBc (0.1 to 3.2 GHz), ≤–80 dBc (3.15 to 7.8 GHz), ≤–75 dBc (7.7 to 13.2 GHz)
 - ∗Frequency difference of two signals: ≥50 kHz, mixer input: –30 dBm
 - 1 dB gain compression: ≥0 dBm (≥100 MHz), ≥+3 dBm (≥500 MHz, Band 0), ≥–3 dBm (≥3150 MHz, Band 1 and 2)
Sweep
- Setting range: 10 ms to 1000 s (frequency axis sweep), 1 µs to 1000 s (time axis sweep)
- Trigger switch: Free-run, triggered
- Trigger source: Wide IF video, Line, External (TTL level), External (±10 V)
- Trigger delay
 - Pre-trigger range: –time span to 0 s
 - Resolution: time span/500 or 100 ns, whichever larger
 - Post trigger: 0 µs to 65.5 ms
 - Resolution: 100 ns (sweep time: ≤4.9 ms), 1 µs (sweep time: ≥5 ms)
- Gate sweep mode
 - Gate delay range: 0 to 65.5 ms (resolution: 1 µs), Gate length range: 2 µs to 65.5 ms (resolution: 1 µs)

Spectrum analyzer
- Number of data points: 501, 1001
- Detection modes: Normal, Positive peak, Negative peak, Sample, Average, RMS (Option 04)
- Display functions: Trace A, Trace B, Trace A/B, Trace A/BG, Trace A/Time
- Storage functions: Normal, View, Max hold, Min hold, Average, Linear average, Cumulative, Overwrite
- Markers
 - Signal search: Auto tune, Peak → CF, Peak → Ref, Scroll
 - Zone markers: Normal, Delta
- Marker function: Marker → CF, Marker → Ref, Marker → CF step size, Δ marker → Span, Zone → Span
- Peak search: Peak, Next peak, Min dip, Next dip
- Multi-marker: 10 max.

Functions
- Noise power: dBm/Hz, dBm/ch, dBµ√Hz
- C/N: dBc/Hz, dBc/ch
- Frequency counter
 - Resolution: 1 Hz, 10 Hz, 100 Hz, 1 kHz
 - Measurement accuracy: ± (display frequency x reference frequency accuracy + 2 x N Hz + 1 LSB)
 - *At S/N ≥20 dB and RBW ≤3 MHz, N: Mixer harmonic order
- Occupied bandwidth: Power N% method, X-dB down method
- Adjacent channel power
- Reference measurement: Total power, reference level, in-band method
- Display methods: Channel specified display (3 channels × 2), graphic display
- Average power of burst signal: Average power within specified time range of time domain waveform
- Template comparison measurement (time sweep): Upper limit × 2, lower limit × 2
- Mask measurement (frequency sweep): Upper limit × 2, lower limit × 2

Others
- Display: Color TFT-LCD, VGA 6.5 inch
- Hard copy: Hard copy of screen via parallel interface (ESC/P compatible printer)
- Memory card interface: ATA flash card (3.3/5 V)
- GPIB: Can be controlled from external controller (except power switch) when specified as device
- Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0, E2
- Parallel interface: Centronics printer I/F, D-sub 25-pin connector (female)
- Video output: Analog RGB output, D-sub 15-pin connector (female)

Specifications
- Dimensions and mass: 320 (W) × 177 (H) × 411 (D) mm (except handle, feet, front cover and fan cover), ≤16 kg (nominal)
- Power: 100 to 120/200 to 240 Vac (–15/+10%, max. voltage: 250 V, automatic voltage selection), 47.5 to 63 Hz, ≤400 VA
- Operating temperature and humidity: 0˚ to +50˚C, ≤85% (no condensation)
- LVD: EN61010-1: 2001 (Pollution Degree 2)

*1: Reference frequency: 50 MHz, input attenuator: 10 dB, +18˚ to +28˚C
MX860901B W-CDMA Measurement Software

Guaranteed specifications after pressing Adjust Range and Power Calibration keys

<table>
<thead>
<tr>
<th>Modulation/frequency measurement</th>
<th>Frequency range: 50 MHz to 3 GHz, 50 MHz to 2.3 GHz (Option 08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level: –60 to +20 dBm (average power, pre-amplifier: off), –80 to +10 dBm (average power, pre-amplifier: on)</td>
<td></td>
</tr>
<tr>
<td>Modulation accuracy: ±(reference oscillator accuracy + 10 Hz)</td>
<td></td>
</tr>
<tr>
<td>Carrier frequency accuracy: ±(reference oscillator accuracy + 10 Hz)</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier: off), ≥–40 dBm (pre-amplifier: on), 1 code channel</td>
<td></td>
</tr>
<tr>
<td>Modulation accuracy (residual vector error): <2% (rms)</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier: off), ≥–40 dBm (pre-amplifier: on), 1 code channel</td>
<td></td>
</tr>
<tr>
<td>Origin offset accuracy: ±0.5 dB</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier: off), ≥–40 dBm (pre-amplifier: on), 1 code channel, relative to signal with origin offset of –30 dBc</td>
<td></td>
</tr>
<tr>
<td>Waveform display (for one-channel to multi-channel)</td>
<td></td>
</tr>
<tr>
<td>Constellation, eye pattern, vector error vs. chip, phase error vs. chip, amplitude error vs. chip, code vs. slot</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code domain analysis</th>
<th>Frequency range: 50 MHz to 3 GHz, 50 MHz to 2.3 GHz (Option 08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level: –60 to +20 dBm (average power, pre-amplifier: off), –60 to +10 dBm (average power, pre-amplifier: on)</td>
<td></td>
</tr>
<tr>
<td>Code domain power accuracy: ±0.1 dB (code power: ≥–10 dBc), ±0.3 dB (code power: ≥–25 dBc)</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–10 dBm (pre-amplifier: off), ≥–20 dBm (pre-amplifier: on); the input signal does not have the origin offset.</td>
<td></td>
</tr>
<tr>
<td>Code domain error</td>
<td></td>
</tr>
<tr>
<td>Residual error: <–50 dB</td>
<td></td>
</tr>
<tr>
<td>Accuracy: ±0.5 dB (error: relative to signal with origin offset of –30 dBc)</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–10 dBm (pre-amplifier: off); ≥–20 dBm (pre-amplifier: on), spread factor: 512 (down-link)/256 (up-link), the input signal does not have the origin offset</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>Function: Code domain power, code domain error</td>
<td></td>
</tr>
<tr>
<td>Spread factor: 4 to 256 (up-link)/4 to 512 (down-link), spread factor auto detection function, SCH level measurement function, I/Q separately at up-link</td>
<td></td>
</tr>
<tr>
<td>Code vs. slot measurement:</td>
<td></td>
</tr>
<tr>
<td>Measures code domain power per slot of specified code channel for max. 150 slots. (Supporting compressed mode in downlink)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amplitude measurement</th>
<th>Frequency range: 50 MHz to 3 GHz, 50 MHz to 2.3 GHz (Option 08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level: –60 to +20 dBm (average power, pre-amplifier: off), –80 to +10 dBm (average power, pre-amplifier: on)</td>
<td></td>
</tr>
<tr>
<td>Transmitter power measurement</td>
<td></td>
</tr>
<tr>
<td>Measurement range: –20 to +20 dBm (average power, pre-amplifier: off), –20 to +10 dBm (average power, pre-amplifier: on)</td>
<td></td>
</tr>
<tr>
<td>*Auto calibrated at internal power meter</td>
<td></td>
</tr>
<tr>
<td>Accuracy: ±0.4 dB</td>
<td></td>
</tr>
<tr>
<td>Power measurement linearity: ±0.2 dB (0 to –40 dB)</td>
<td></td>
</tr>
<tr>
<td>*Input level: ≥–10 dBm (pre-amplifier: off); ≥–20 dBm (pre-amplifier: on), after range adjusted, with reference level setting unchanged</td>
<td></td>
</tr>
<tr>
<td>Filter selection function: Power measurement through RRC (α = 0.22) filter</td>
<td></td>
</tr>
<tr>
<td>Transmitter power control measurement function: Relative power display per slot for max. 150 slots, PASS/FAIL evaluation</td>
<td></td>
</tr>
<tr>
<td>RACH measurement function: Measures time difference between preamble RACH signal and message RACH signal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupied bandwidth measurement</th>
<th>Frequency range: 50 MHz to 3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level: –60 to +20 dBm (average power, pre-amplifier: off), –80 to +10 dBm (average power, pre-amplifier: on)</td>
<td></td>
</tr>
<tr>
<td>Measurement method</td>
<td></td>
</tr>
<tr>
<td>Sweep method: Displays result after signal measured with sweep spectrum analyzer</td>
<td></td>
</tr>
<tr>
<td>FFT method: Displays result after FFT</td>
<td></td>
</tr>
</tbody>
</table>
Frequency range: 50 MHz to 3 GHz, 50 MHz to 2.3 GHz (Option 08, 30)

Measurement levels:
-10 to +20 dBm (average power, pre-amplifier: off)

Measurement method:
Sweep method (all): Calculates and displays result after signal measured with sweep spectrum analyzer
Sweep method (separate): Calculates and displays power after each adjacent channel measured with sweep spectrum analyzer
Filter method: Measures and displays power of adjacent channels after passage via built-in receiving filters (RRC: \(\alpha = 0.22 \))

Measurement range:
- Input level: +20 dBm (filter method, wide dynamic range mode)
 - Code channel (1 code): ≥55 dBc (5 MHz offset), ≥62 dBc (10 MHz offset)
 - Code channel (16 multi-code): ≥50 dBc (5 MHz offset), ≥60 dBc (10 MHz offset, without Option 08)
- Input level: ≥–10 dBm (filter method, wide dynamic range mode)
 - Code channel (1 code): 55 dBc (5 MHz offset, typical), 62 dBc (10 MHz offset, typical)
 - Code channel (16 multi-code): 50 dBc (5 MHz offset, typical), 60 dBc (10 MHz offset, typical)

Measurement frequency: 9 kHz to 12.75 GHz (except within carrier frequency ±50 MHz)

Measurement levels:
- Input level (transmitter power): 0 to +20 dBm (average power, pre-amplifier: off)

Measurement method:
Sweep method:
- Sweeps the specified range of frequency using the spectrum analyzer, and then detects and displays the peak value
- Calculates the rate for transmission power value and displays as power rate. Waveform detection mode: average
Spot method:
- Measures the specified frequency with time domain from the spectrum analyzer and then displays the average value
- Calculates the rate for transmission power value and displays as power rate. Waveform detection mode: average
Search method:
- Sweeps the specified frequency range using the spectrum analyzer to detect the peak value, then measures the frequency using the time domain to display the average value. Calculates the rate for transmission power value and displays as power rate. Waveform detection mode: average

Measurement range:
- ≥79 dB (RBW: 1 kHz, 9 to 150 kHz, Band 0)
- ≥79 dB (RBW: 10 kHz, 150 kHz to 30 MHz, Band 0)
- ≥79 dB (RBW: 100 kHz, 30 to 1000 MHz, Band 0)
- ≥76 –f [GHz] dB (RBW: 1 MHz, 1 to 3.15 GHz, Band 0)
- ≥76 dB (RBW: 1 MHz, 3.15 to 7.8 GHz, Band 1)

* Carrier frequency: 1.8 to 2.2 GHz

Spectrum emission mask measurement
Measures the signal under measurement with sweep spectrum analyzer and displays template evaluation result.

Demodulation display
Outputs max. 10 frames of despread data for specified code channel.

CCDF measurement
Frequency range: 50 MHz to 3 GHz, 50 MHz to 2.3 GHz (Option 08, 30)

Measurement level range:
-60 to +20 dBm (average power, pre-amplifier: off), +30 dBm (peak power, pre-amplifier: off)
-80 to +10 dBm (average power, pre-amplifier: on), +20 dBm (peak power, pre-amplifier: on)

Measurement method:
CCDF: Cumulative distribution display of the power difference between instantaneous power and average power.
APD: Distribution display of the power difference between instantaneous power and average power.

Filter selection function: 20 MHz, 10 MHz, 5 MHz, 3 MHz, RRC: \(\alpha = 0.22 \), RC: \(\alpha = 0.22 \)

I/Q signal
Input: Balanced, unbalanced
Input impedance: 1 MΩ (parallel capacity: <100 pF), 50 Ω
Balanced input
- Differential voltage: 0.1 to 1 V (p-p), In-phase voltage: ±2.5 V
- Unbalanced input: 0.1 to 1 V (p-p), AC/DC switchable

Measurement items:
- Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), I/Q level
- Residual vector error: <2% (rms) * Input level: ≥0.1 V (rms), DC coupling, the input signal does not have the origin offset
- I/Q level measurement: Measures and displays each I, Q input voltage (rms, p-p)
- I/Q phase difference measurement:
 - When the CW signal is inputted to I and Q input terminals, measures and displays the phase difference between I- and Q-phase signals.

*1: Can be set when MS8609A-08 option is installed in the main unit.
*2: When carrier frequency is in a 2030.354 to 2200 MHz range, spurious will be generated at the frequency below.
\[f_{\text{spurious}} = f_{\text{input}} - 2030.345 \text{ MHz} \]
MX860902A GSM Measurement Software

Guaranteed specifications after pressing Adjust Range and Power Calibration keys

| Modulation/frequency measurement | Frequency range: 50 MHz to 2.7 GHz
| Input level:
| –40 to +20 dBm (burst average power, pre-amplifier: off), –60 to +10 dBm (burst average power, pre-amplifier: on*)
| Carrier frequency accuracy:
| ±(reference oscillator accuracy + 10 Hz)
| *Input level (burst average power): ≥–30 dBm (pre-amplifier: off), ≥–40 dBm (pre-amplifier: on*)
| Residual phase error (GMSK modulation):
| <0.5 deg (rms), <2.0 deg (peak)
| *Input level (burst average power): ≥–30 dBm (pre-amplifier: off), ≥–40 dBm (pre-amplifier: on*)
| Residual EVM (8PSK modulation): <1% (rms)
| Waveform display:
| Trellis (GMSK modulation), eye pattern, EVM vs. bit (8PSK modulation), phase vs. bit, amplitude vs. bit, I/Q diagram |

| Amplitude measurement | Frequency range: 50 MHz to 2.7 GHz
| Input level:
| –40 to +20 dBm (burst average power, pre-amplifier: off), –60 to +10 dBm (burst average power, pre-amplifier: on*)
| Transmitter power measurement (auto calibrated at internal power meter)
| Measurement range: –10 to +20 dBm (burst average power), –10 to +10 dBm (burst average power, pre-amplifier: on*)
| Accuracy: ±0.4 dB
| Power measurement linearity:
| ±0.2 dB (0 to –30 dBm)
| *Input level (burst average power): ≥–10 dBm (pre-amplifier: off), ≥–20 dBm (pre-amplifier: on*)
| without changing the reference level setting after range optimization
| Carrier-off power measurement range
| Input level (burst average power): ≥–10 dBm (pre-amplifier: off), ≥–20 dBm (pre-amplifier: on*)
| Wide dynamic range mode: ≥80 dB (compared with 10 mW of burst average power)
| *Measurement limit is decided by average nose level (≥–70 dBm, 50 MHz to 2.7 GHz)
| Rise/fall characteristics:
| Display rising/falling edges while synchronizing to modulation data of signal data to be measured; Standard line display possible (measured by 1 MHz bandwidth); NO/GO judgment function |

| Output RF spectrum measurement | Frequency range: 100 MHz to 2.7 GHz
| Input level:
| –10 to +20 dBm (burst average power, pre-amplifier: off), –20 to +10 dBm (burst average power, pre-amplifier: on*)
| Modulation portion measurement range: ≥60 dB (≥200 kHz offset), ≥68 dB (≥250 kHz offset)
| *CW signal, RBW: 30 kHz (<1.8 MHz offset), RBW: 100 kHz (≤1.8 MHz offset)
| Transient portion measurement range: ≥63 dB (CW, ≥400 kHz offset)
| Measurement frequency: 100 kHz to 12.75 GHz (except within carrier frequency ±50 MHz)
| Input level (transmitter power): 0 to +20 dBm (burst average power, pre-amplifier: off)
| Measurement method
| Sweep method:
| Sweeps the specified range of frequency using the spectrum analyzer, and then detects and displays the peak value
| Calculates the rate for transmission power value and displays it as power rate. Waveform detection mode: average
| Spot method:
| Measures the specified frequency with time domain from the spectrum analyzer and then displays the average value
| Calculates the rate for transmission power value and displays it as power rate. Waveform detection mode: average
| Search method:
| Sweeps the specified frequency range using the spectrum analyzer to detect the peak value, then measures the frequency using the time domain to display the average value. Calculates the rate for transmission power value and displays it as power rate. Waveform detection mode: average
| Measurement range:
| ≥72 dB (RBW: 10 kHz, 100 kHz to 50 MHz, Band 0)
| ≥72 dB (RBW: 100 kHz, 50 to 500 MHz, Band 0)
| ≥66 –f [GHz] dB (RBW: 3 MHz, 0.5 to 3.15 GHz, Band 0, except harmonic frequency)
| ≥86 dB (RBW: 3 MHz, 3.15 to 7.8 GHz, Band 1)
| *Carrier frequency: 0.8 to 1 GHz, 1.8 to 2 GHz |
I/Q signal

<table>
<thead>
<tr>
<th>Input: Balanced, unbalanced</th>
<th>Input impedance: 1 MΩ (parallel capacity: <100 pF), 50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced input</td>
<td>Differential voltage: 0.1 to 1 V (p-p), In-phase voltage: ±2.5 V</td>
</tr>
<tr>
<td>Unbalanced input: 0.1 to 1 V (p-p), AC/DC switchable</td>
<td>_measurment items: Modulation accuracy, I/Q level</td>
</tr>
</tbody>
</table>

- Modulation accuracy
 - Residual phase error: <0.5 deg (rms), DC coupling
 - Residual EVM: <1.0% (rms), DC coupling
- I/Q level measurement: Measures and displays each I, Q input voltage (rms, p-p)
- I/Q phase difference measurement: When CW signal input to I and Q input terminals, measures and displays the phase difference between I- and Q-phase signals

*1: Can be set when MS8609A-08 option is installed in the main unit.
MX860903A cdma Measurement Software
The following specifications are guaranteed after the internal level is optimized. (The range of the internal receiver is adjusted automatically by pressing the Adjust Range key.)

<table>
<thead>
<tr>
<th>Modulation/frequency measurement</th>
<th>Measurement frequency range: 50 MHz to 2.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement level range:</td>
<td>-40 to +20 dBm (average power within burst, pre-amplifier off)</td>
</tr>
<tr>
<td></td>
<td>-60 to +10 dBm (average power within burst, pre-amplifier on)</td>
</tr>
<tr>
<td>Carrier frequency accuracy:</td>
<td>±(reference oscillator accuracy + 10 Hz)</td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier off), ≥–40 dBm (pre-amplifier on)</td>
<td>at 1 code channel</td>
</tr>
<tr>
<td>Modulation accuracy (residual vector error):</td>
<td><2.0% (rms)</td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier off), ≥–40 dBm (pre-amplifier on)</td>
<td>at 1 code channel</td>
</tr>
<tr>
<td>Origin offset accuracy:</td>
<td>±0.50 dB</td>
</tr>
<tr>
<td>*Input level: ≥–30 dBm (pre-amplifier off), ≥–40 dBm (pre-amplifier on)</td>
<td>at 1 code channel, relative to signal with origin offset of –30 dBc</td>
</tr>
<tr>
<td>Waveform display:</td>
<td>Displays following items for 1 CH to multi CH input signals; constellation, eye pattern, vector error vs. chip number, phase error vs. chip number, amplitude error vs. chip number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code domain analysis</th>
<th>Measurement frequency range: 50 MHz to 2.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement level range:</td>
<td>-40 to +20 dBm (average power within burst, pre-amplifier off)</td>
</tr>
<tr>
<td></td>
<td>-60 to +10 dBm (average power within burst, pre-amplifier on)</td>
</tr>
<tr>
<td>Analysis signal:</td>
<td>Forward link (radio configuration 1 to 5)</td>
</tr>
<tr>
<td></td>
<td>Reverse link (radio configuration 1 to 4)</td>
</tr>
<tr>
<td></td>
<td>Reverse link (radio configuration 3, 4) at long code mask: 0</td>
</tr>
<tr>
<td>Code domain power accuracy:</td>
<td>±0.1 dB (code power: ≥–10 dBc), ±0.3 dB (code power: ≥–25 dBc)</td>
</tr>
<tr>
<td>Display function: Code domain power, code domain timing offset, code domain phase offset</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amplitude measurement</th>
<th>Frequency range: 50 MHz to 2.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement level range:</td>
<td>-40 to +20 dBm (average power within burst, pre-amplifier off)</td>
</tr>
<tr>
<td></td>
<td>-60 to +10 dBm (average power within burst, pre-amplifier on)</td>
</tr>
<tr>
<td>Tx Power measurement:</td>
<td>(after level calibration using built-in power meter, automatic operation by pushing key)</td>
</tr>
<tr>
<td>Measurement range:</td>
<td>-20 to +20 dBm (average power within burst, pre-amplifier off)</td>
</tr>
<tr>
<td></td>
<td>-20 to +10 dBm (average power within burst, pre-amplifier on)</td>
</tr>
<tr>
<td>Accuracy:</td>
<td>±0.40 dB</td>
</tr>
<tr>
<td>Power measurement linearity:</td>
<td>±0.20 dB (0 to –40 dB)</td>
</tr>
<tr>
<td>*Input level: ≥–10 dBm (pre-amplifier off), ≥–20 dBm (pre-amplifier on)</td>
<td>unchanged reference level setup after range adjustment, Burst analysis: Rising/falling characteristics and on/off ratio analysis function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Occupied bandwidth measurement</th>
<th>Frequency range: 50 MHz to 2.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement level range:</td>
<td>-40 to +20 dBm (average power within burst, pre-amplifier off)</td>
</tr>
<tr>
<td></td>
<td>-60 to +10 dBm (average power within burst, pre-amplifier on)</td>
</tr>
<tr>
<td>Measurement method:</td>
<td>Sweep method: Sweeps signal using spectrum analyzer and calculates result</td>
</tr>
<tr>
<td></td>
<td>FFT Method: Analyzes signal with FFT and calculates result</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spurious close carrier to the measurement</th>
<th>Frequency range: 50 MHz to 2.3 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level range: 0 to +20 dBm (average power within burst, pre-amp off)</td>
<td></td>
</tr>
<tr>
<td>Measurement method:</td>
<td>Calculates and displays ratio of Tx power to power measured using spectrum analyzer with sweep</td>
</tr>
<tr>
<td>Tx power measurement:</td>
<td>Carrier power measured in 1.23 MHz bandwidth</td>
</tr>
<tr>
<td>SPA method:</td>
<td>Carrier power measured in RBW: 3 MHz, VBW: 3 kHz, detection mode: sample, frequency span: 0 Hz</td>
</tr>
<tr>
<td>Measurement range: ±50 dBc (900 kHz offset), ±60 dBc (1.98 MHz offset)</td>
<td></td>
</tr>
<tr>
<td>*Input level (average power within burst): ≥0 dBm (pre-amplifier off), RBW: 30 kHz, VBW: 300 kHz, detection mode: positive</td>
<td></td>
</tr>
</tbody>
</table>
Spurious measurement

- **Measurement frequency range:**
 10 MHz to 12.75 GHz (except within ±50 MHz of carrier frequency)
- **Input level range (Tx power):** +20 to +40 dBm (average power within burst)
- **Measurement method**
 - **Sweep method:**
 Sweeps specified frequency range using spectrum analyzer and calculates ratio of carrier power and peak value detected during the sweep. Detection mode is average
 - **Spot method:**
 Measures average power of specified frequencies in time domain using spectrum analyzer and calculates ratio of carrier power and measured power of the frequencies.
 - **Average detection mode**
 - **Search method:**
 Sweeps specified frequency range using spectrum analyzer and detects frequency of peak spurious.
 Measures average power of detected frequencies in time domain using spectrum analyzer and calculates ratio of carrier power and measured power for frequencies.
 Average detection mode
 - **Tx Power measurement**
 - **Tx power method:** Carrier power measured in 1.23 MHz bandwidth
 - **SPA method:** Carrier power measured in RBW: 3 MHz, VBW: 3 kHz, detection mode: sample, frequency span: 0 Hz
 - **Measurement range (typical)**
 - 79 dB (RBW: 10 kHz, 10 to 30 MHz, Band 0)
 - 79 dB (RBW: 100 kHz, 30 to 1000 MHz, Band 0)
 - **Carrier frequency:** 800 to 1000 MHz/1.8 to 2.2 GHz, referential value of power ratio in Tx power
 - **Normal mode:**
 - 76 – f [GHz] dB (RBW: 1 MHz, 1 to 3.15 GHz, Band 0)
 - 76 dB (RBW: 1 MHz, 3.15 to 7.8 GHz, Band 1)

Electric performance (I/Q input)

- **Input impedance:** 1 MΩ (parallel capacitance: <100 pF), 50 Ω
- **Balance input**
 - **Differential voltage:** 0.1 to 1 Vp-p, In-phase voltage: ±2.5 V
 - **Unbalance Input:** 0.1 to 1 Vp-p
- **DC/AC coupling:** Changeable
- **Measurement items:**
 - Modulation accuracy, code domain power, amplitude, occupied bandwidth (FFT method), I/Q level
 - **Modulation accuracy measurement (residual vector error):** <2% (rms)
 - **DC coupling, input level:** ≥0.1 V (rms)
 - **I/Q Level measurement:** Measures input level of I and Q (rms, p-p)
 - **I/Q Phase difference measurement:**
 - When CW signal input to I and Q input terminals, measures and displays phase difference between I- and Q-phase signals.

*1: Set when MS8609A-08 option installed in main frame
*2: When carrier frequency in 2030.354 to 2200 MHz range, spurious generated at following frequency:

 \[f \text{ (spurious)} = f \text{ (input)} - 2030.345 \text{ MHz} \]
• MX860905A π/4DQPSK Measurement Software

The following specifications are guaranteed after the internal level is optimized. (The Range of the internal receiver is adjusted automatically by pressing the Adjust Range key.)

| Modulation/frequency measurement | Measured frequency range: 50 MHz to 2.1 GHz
Measured level ranges:
–40 to +20 dBm (average power within burst, pre-amplifier off*1)
–60 to +10 dBm (average power within burst, pre-amplifier on*1)
Carrier frequency accuracy: ± (reference oscillator accuracy + 10 Hz)
*Input level (average power within burst): ≥–30 dBm (pre-amplifier off*1), ≥–40 dBm (pre-amplifier on*1)
Modulation accuracy (residual vector error)
PDC/NADC: <0.5% (rms), PHS: <0.7% (rms)
*Input level: ≥–30 dBm (pre-amp off*1), ≥–40 dBm (pre-amplifier on*1), averaging: 10 times
Origin offset accuracy: ±0.50 dB
*Input level (average power within burst): ≥–30 dBm (pre-amplifier off*1), ≥–40 dBm (pre-amplifier on*1)
Transmission rate accuracy: ±1 ppm
*Input level (average power within burst): ≥–30 dBm (pre-amplifier off*1), ≥–40 dBm (pre-amplifier on*1)
Symbol rate: 2 to 300 k symbol/s
Roll off ratio: 0.2 to 1.0
Analysis symbol: 48 to 1000 symbols
Waveform displays:
Constellation, eye diagram, EVM vs. symbol No., phase error vs. symbol No., amplitude error vs. symbol No. |
|-----------------------------|--|
| Amplitude | Frequency range: 50 MHz to 2.1 GHz
Measurement level ranges:
–40 to +20 dBm (average power within burst, pre-amplifier off*1)
–60 to +10 dBm (average power within burst, pre-amplifier on*1)
Transmitter power measurement*1
Measurement ranges:
–10 to +20 dBm (average power within burst, pre-amplifier off*1)
–10 to +10 dBm (average power within burst, pre-amplifier on*1)
Accuracy: ±0.40 dB
Power measurement linearity: ±0.20 dB (0 to –30 dB)
*Input level (average power within burst): ≥–10 dBm (pre-amplifier off*1), ≥–20 dBm (pre-amp on*1), without changing measurement reference level setting after range optimization
Carrier-off power measurement*3
Normal mode measurement range
PDC/NADC: ≥65 dB, PHS: ≥60 dB
*Relative to average power within burst
Wide dynamic range mode measurement range
PDC/PHS: ≥90 dB (measurement limits of average noise level: ≤–80 dBm, 50 Hz to 2.1 GHz)
PHS: ≥80 dB (measurement limits of average noise level: ≤–70 dBm, 50 Hz to 2.1 GHz)
*Average power within burst: 10 mW
Rise/fall characteristics:
Display rising/falling edges while synchronizing to modulation data of signal data to be measured.
Standard line display, PASS/FAIL evaluation function |
| Occupied bandwidth measurement | Measured frequency range: 50 MHz to 2.1 GHz
Measured level ranges:
–40 to +20 dBm (average power within burst, pre-amplifier off*1)
–60 to +10 dBm (average power within burst, pre-amplifier on*1)
Measurement methods
Sweep method: Calculates and displays result after signal measured with sweep spectrum analyzer
FFT method: Calculates and displays result after FFT |
| Adjacent channel power measurement | Frequency range: 100 MHz to 2.1 GHz
Input level range:
–10 to +20 dBm (average power within burst, pre-amplifier off\(^*1\))
–20 to +10 dBm (average power within burst, pre-amplifier on\(^*1\))
Measurement methods
Sweep method (all):
Calculates and displays result after signal measured with sweep spectrum analyzer
Sweep method (separate):
Calculates and displays after measuring adjacent channel and next adjacent channel signal with sweep spectrum analyzer
High-speed method:
Calculates and displays after measuring adjacent channel and next adjacent channel power (rms) through internal receive filter
Measurement range (CW signal input, at high-speed method)
PDC: ≥60 dB (50 kHz offset), ≥65 dB (100 kHz offset)
PHS: ≥60 dB (600 kHz offset), ≥60 dB (900 kHz offset)
NADC: ≥30 dB (30 kHz offset), ≥60 dB (60 kHz offset), ≥65 dB (90 kHz offset)
\(^*\)Adjacent channel power averaging ratio found from average power within burst and during burst on interval
Spurious measurement
Input level range (transmitter power):
–10 to +20 dBm (average power within burst, pre-amplifier off\(^*1\))
–20 to +10 dBm (average power within burst, pre-amplifier on\(^*1\))
Measurement methods
Sweep method:
Sweeps specified range of frequency using spectrum analyzer, and then detects and displays peak value
Calculates rate for transmission power value and displays as power rate. Waveform detection mode: average
Spot method:
Measures specified frequency with time domain from spectrum analyzer and then displays average value
Calculates rate for transmission power value and displays as power rate. Waveform detection mode: average
Search method:
Sweeps specified frequency range using spectrum analyzer to detect peak value, then measures frequency using time domain to display average value. Calculates rate for transmission power value and displays it as power rate
Waveform detection mode: average
Electrical performance (I/Q input)
Input impedance: 1 MΩ (parallel capacitance: <100 pF), 50 Ω
Input level range
Balanced input
Differential voltage range: 0.1 to 1 Vp-p, In-phase voltage range: ±2.5 V (at input terminal)
Unbalanced input: 0.1 to 1 Vp-p (at input terminal, switchable DC/AC coupling)
Measurement items: modulation accuracy, amplitude, occupied bandwidth (FFT method), I/Q level
Modulation accuracy measurement
Input level: ≥0.1 V (rms)
*Temperature range: 10° to 28°C
Residual vector error
PDC/NADC: <0.5% (rms)
*Typical, DC coupling
PHS: <0.7% (rms)
*Typical, DC coupling
I/Q level measurement
Level measurement: Measurement and display each I, Q input voltage (rms, p-p)
I/Q phase difference measurement:
Phase difference between l and Q phase signals when CW signal input to I and Q input terminals |

\(^*1\): Set when MS8609A-08 option installed in main frame
\(^*2\): After level calibration using internal power meter
\(^*3\): Input level (average power within burst): ≥–10 dBm (pre-amplifier off\(^*1\)), ≥–20 dBm (pre-amplifier on\(^*1\))
Options

• Option 01: Precision Frequency Reference

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>10 MHz</td>
</tr>
<tr>
<td>Start-up</td>
<td>≤5 x 10^{-9}/7 min. (referenced to frequency at 24 hours after power-on)</td>
</tr>
<tr>
<td>Aging rate</td>
<td>≤5 x 10^{-10}/day (referenced to frequency at 24 hours after power-on)</td>
</tr>
<tr>
<td>Temperature</td>
<td>≤5 x 10^{-10} (referenced at 0° to +50˚C and +25˚C)</td>
</tr>
</tbody>
</table>

• Option 02: Narrow Resolution Bandwidths (FFT)

<table>
<thead>
<tr>
<th>Resolution Bandwidth</th>
<th>Setting range: 1 Hz to 1 kHz (1, 3 sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bandwidth accuracy: ±10% (RBW = 30, 300 Hz), ±10% Typical (RBW = 1, 3, 10, 100, 1 kHz)</td>
</tr>
<tr>
<td></td>
<td>RBW selectivity (60 dB: 3 dB): ≤5:1</td>
</tr>
<tr>
<td></td>
<td>RBW switching uncertainty: ±0.5 dB</td>
</tr>
<tr>
<td>Span setting</td>
<td>Minimum setting span: 100 Hz</td>
</tr>
</tbody>
</table>

Average noise level display

- Without Option 08, when RBW = 1 Hz, RF ATT = 0 dB, sample detection mode
 - ≤−148.5 dBm + 1.5 x f [GHz] dB Typical (1 MHz to 2.5 GHz, Band 0)
 - ≤−144.5 dBm + 1.5 x f [GHz] dB Typical (2.5 to 3.2 GHz, Band 0)
 - ≤−138.5 dBm Typical (3.15 to 7.8 GHz, Band 1)
 - ≤−129.5 dBm Typical (7.7 to 13.2 GHz, Band 2)

- With Option 08, pre-amplifier off, when RBW = 1 Hz, RF ATT = 0 dB, sample detection mode
 - ≤−146.5 dBm + 1.5 x f [GHz] dB Typical (1 MHz to 2.5 GHz, Band 0)
 - ≤−144.5 dBm + 1.5 x f [GHz] dB Typical (2.5 to 3.2 GHz, Band 0)
 - ≤−138.5 dBm Typical (3.15 to 7.8 GHz, Band 1)
 - ≤−129.5 dBm Typical (7.7 to 13.2 GHz, Band 2)

• Option 04: Digital Resolution Bandwidth

<table>
<thead>
<tr>
<th>Resolution Bandwidth</th>
<th>Setting range: 10 Hz to 1 MHz (1, 3 sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bandwidth accuracy: ±10% (RBW ≥100 Hz), ±10% Typical (RBW ≤30 Hz)</td>
</tr>
<tr>
<td></td>
<td>Bandwidth selectivity (60 dB: 3 dB): ≤5:1 (RBW ≥100 Hz), ≤5:1 typical (RBW ≤30 Hz)</td>
</tr>
<tr>
<td></td>
<td>RBW switching uncertainty: ±0.5 dB</td>
</tr>
<tr>
<td>Detection mode</td>
<td>NORMAL, POSITIVE PEAK, NEGATIVE PEAK, SAMPLE, RMS</td>
</tr>
<tr>
<td></td>
<td>RMS: displays root-mean-square value of average power between sample points</td>
</tr>
</tbody>
</table>

Average noise level display

- Without Option 08, when RBW = 10 Hz, RF ATT = 0 dB, sample detection mode
 - ≤−136.5 dBm + 1.5 x f [GHz] dB Typical (1 MHz to 2.5 GHz, Band 0)
 - ≤−132.5 dBm + 1.5 x f [GHz] dB Typical (2.5 to 3.2 GHz, Band 0)
 - ≤−128.5 dBm Typical (3.15 to 7.8 GHz, Band 1)
 - ≤−119.5 dBm Typical (7.7 to 13.2 GHz, Band 2)

- With Option 08, pre-amplifier off, when RBW = 10 Hz, RF ATT = 0 dB, sample detection mode
 - ≤−134.5 dBm + 1.8 x f [GHz] dB Typical (1 MHz to 2.5 GHz, Band 0)
 - ≤−132.5 dBm + 1.8 x f [GHz] dB Typical (2.5 to 3.2 GHz, Band 0)
 - ≤−128.5 dBm Typical (3.15 to 7.8 GHz, Band 1)
 - ≤−119.5 dBm Typical (7.7 to 13.2 GHz, Band 2)
Option 08: Pre-amplifier

<table>
<thead>
<tr>
<th>Gain</th>
<th>20 dB typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise figure</td>
<td>6.5 dB typical (input frequency: ≤2 GHz), 12 dB (input frequency: >2 GHz)</td>
</tr>
<tr>
<td>Frequency range</td>
<td>100 kHz to 3 GHz</td>
</tr>
<tr>
<td>Band</td>
<td>0: 100 kHz to 3.0 GHz, 1-: 3.15 to 6.3 GHz, 1+: 6.2 to 7.8 GHz, 2+: 7.7 kHz to 13.2 GHz</td>
</tr>
<tr>
<td>Level measurement</td>
<td>Average noise level to +10 dBm</td>
</tr>
<tr>
<td>Max. input level</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>Average noise level</td>
<td>–137 dBm + 2.0 x f [GHz] dB (1 MHz to 2.5 GHz, Band 0)</td>
</tr>
<tr>
<td>RF ATT</td>
<td>0 dB, and Sample detection mode</td>
</tr>
<tr>
<td>Reference level</td>
<td>Setting range</td>
</tr>
<tr>
<td>Linear scale</td>
<td>2.24 µV to 707 mV</td>
</tr>
<tr>
<td>Reference level accuracy</td>
<td>±0.90 dB (~69.9 to +10 dBm), ±1.50 dB (~90 to ~70 dBm)</td>
</tr>
<tr>
<td>Frequency response</td>
<td>±0.5 dB (300 Hz to 5 MHz), ±0.75 dB (10 MHz, 20 MHz)</td>
</tr>
<tr>
<td>RF ATT switching uncertainty</td>
<td>±1.0 dB (10 to 50 dB), ±0.5 dB (52 to 62 dB)</td>
</tr>
<tr>
<td>Frequency response</td>
<td>±2.0 dB (100 kHz to 3 GHz)</td>
</tr>
</tbody>
</table>

Option 09: Ethernet Interface

<table>
<thead>
<tr>
<th>Function</th>
<th>Control by external controller (except power switch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>10BASE-T</td>
</tr>
</tbody>
</table>

Option 30: LPF for 2 GHz Band Carrier Cut

<table>
<thead>
<tr>
<th>Function</th>
<th>Suppresses distortion in spectrum analyzer by carrier wave (1.8 to 2 GHz) at W-CDMA low-frequency band spurious measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>9 kHz to 3.2 GHz (LPF: OFF), 9 kHz to 1.0 GHz (LPF: ON)</td>
</tr>
<tr>
<td>LPF attenuation characteristics</td>
<td><–20 dB, –30 dB typical at 1.8 to 2.2 GHz</td>
</tr>
<tr>
<td>Average noise level display</td>
<td>[LPF: ON] <–122 dBm + 2.0 x f [GHz] dB (1 MHz to 1.0 GHz, band 0)</td>
</tr>
<tr>
<td></td>
<td>*RBW: 300 Hz, VBW: 1 Hz, RF ATT: 0 dB</td>
</tr>
<tr>
<td>Frequency response</td>
<td>[LPF: ON] ±1.0 dB (9 kHz to 1.0 GHz, band 0)</td>
</tr>
<tr>
<td></td>
<td>*Referenced to 50 MHz, when RF ATT = 10 dB, and temperature = +18° to +28°C</td>
</tr>
</tbody>
</table>
Option 31: Low Noise Floor

<table>
<thead>
<tr>
<th>Function</th>
<th>Used to decrease floor noise in frequency band 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average noise level display</td>
<td>≤–112 dBm (7.7 to 13.2 GHz, band 2)</td>
</tr>
<tr>
<td></td>
<td>*RBW: 300 Hz, VBW: 1 Hz, RF ATT: 0 dB</td>
</tr>
</tbody>
</table>

Option 32: Maximum Input Level Extension

<table>
<thead>
<tr>
<th>Function</th>
<th>Extends measurement level range to +26 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. input level</td>
<td>+30 dBm (1 W), continuous wave average power</td>
</tr>
<tr>
<td>Power meter function</td>
<td>Level range: –14 to +26 dBm</td>
</tr>
<tr>
<td>Spectrum analyzer amplitude</td>
<td>Setting range</td>
</tr>
<tr>
<td></td>
<td>Log scale: –100 to +40 dBm or Equivalent level</td>
</tr>
<tr>
<td></td>
<td>Linear scale: 22.4 µV to 22.4 V</td>
</tr>
<tr>
<td>Reference level accuracy</td>
<td>±0.75 dB (+0.1 to +30 dBm), ±0.5 dB (–49.9 to 0 dBm), ±0.75 dB (–69.9 to –50 dBm), ±1.5 dB (–80 to –70 dBm)</td>
</tr>
<tr>
<td></td>
<td>*After calibration, with 50 MHz frequency at 1 MHz span (RF ATT, RBW, VBW, and sweep time set to AUTO)</td>
</tr>
</tbody>
</table>

Option 33: High Accuracy Power Measurement

<table>
<thead>
<tr>
<th>Function</th>
<th>Improves power measurement accuracy without using internal power meter when MX860901A W-CDMA measurement software is used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>1848 to 2171 MHz (Except 1995 to 2105 MHz)</td>
</tr>
<tr>
<td>Transmission power measurement range</td>
<td>–50 dBm to +20 dBm (average power)</td>
</tr>
<tr>
<td>Reference level</td>
<td>–10 dBm to +20 dBm</td>
</tr>
<tr>
<td>Transmission power accuracy</td>
<td>±0.4 dB</td>
</tr>
<tr>
<td></td>
<td>*At reference input level, +25˚±3˚C, input ATT: AUTO, after calibration and except mismatch error</td>
</tr>
<tr>
<td>Power measurement linearity</td>
<td>±0.2 dB (0 to –40 dB)</td>
</tr>
<tr>
<td></td>
<td>*Input level: ≥–10 dBm, at range optimization and no change of reference level setting.</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>0.015 dB/˚C</td>
</tr>
<tr>
<td>Accessories</td>
<td>ATA flash memory card</td>
</tr>
<tr>
<td>Calibration interval</td>
<td>Six months</td>
</tr>
</tbody>
</table>

Option 34: 4 GHz Lo Output

<table>
<thead>
<tr>
<th>Outline</th>
<th>Outputs internal 4 GHz Lo signal to BNC connector on back panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Frequency: 4 GHz</td>
</tr>
<tr>
<td></td>
<td>Frequency accuracy: ±(4 GHz x reference frequency accuracy) ±1 Hz</td>
</tr>
<tr>
<td></td>
<td>Spurious ≤–40 dBm</td>
</tr>
</tbody>
</table>

Option 36: Power Meter Hi Limit Frequency Expansion (6 GHz)

<table>
<thead>
<tr>
<th>Outline</th>
<th>Extends power meter hi limit frequency to 6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>3 to 6 GHz</td>
</tr>
<tr>
<td>Level range</td>
<td>–20 to +20 dBm</td>
</tr>
<tr>
<td>Measurement level accuracy</td>
<td>±10% (after zero calibration)</td>
</tr>
</tbody>
</table>

Option 37: Power Meter Hi Limit Frequency Expansion (6 GHz) (retrofit option)

<table>
<thead>
<tr>
<th>Outline</th>
<th>Extends power meter hi limit frequency to 6 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>3 to 6 GHz</td>
</tr>
<tr>
<td>Level range</td>
<td>–20 to +20 dBm</td>
</tr>
<tr>
<td>Measurement level accuracy</td>
<td>±10% (after zero calibration)</td>
</tr>
</tbody>
</table>

Option 46: Auto-Power Recovery

Function	Disables power switch on front panel and automatically restores power after power failure
	ON/OFF operation performed using Standby switch on rear panel
	*Power switch on front panel lacks latching function, so if power interrupted in ON status, Standby status held even after power restored

Option 47: Rack Mount (IEC)

| Function | For EC standard-compatible rack; tilt handle removed when mounted |

Option 48: Rack Mount (JIS)

| Function | For JIS standard-compatible rack; tilt handle removed when mounted |
Ordering Information

Please specify the model/number, name, and quantity when ordering.

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Main frame</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS8609A</td>
<td>Main frame</td>
<td>Digital Mobile Radio Transmitter Tester</td>
</tr>
<tr>
<td>J0996</td>
<td>Standard accessories</td>
<td>Power cord, 2.6 m: 1 pc</td>
</tr>
<tr>
<td>JT32MA3-NT1</td>
<td></td>
<td>RS-232C cable: 1 pc</td>
</tr>
<tr>
<td>F0014</td>
<td></td>
<td>Fuse, 6.3 A: 1 pc</td>
</tr>
<tr>
<td>J0576B</td>
<td>Options</td>
<td>Coaxial cord (N-P · 5D-2W · N-P), 1 m: 1 pc</td>
</tr>
<tr>
<td>MX268001A</td>
<td>Measurement software</td>
<td>File Transfer Utility: 1 pc</td>
</tr>
<tr>
<td>W1744AE</td>
<td></td>
<td>MS8608A/MS8609A operation manual (Vol. 1): 1 copy</td>
</tr>
<tr>
<td>W1745AE</td>
<td></td>
<td>MS8608A/MS8609A operation manual (Vol. 2): 1 copy</td>
</tr>
<tr>
<td>MS8609A-01</td>
<td>Options</td>
<td>Precision frequency reference (aging rate: 5 x 10⁻¹⁰/day)</td>
</tr>
<tr>
<td>MS8609A-02</td>
<td>Options</td>
<td>Narrow resolution bandwidth (FFT)</td>
</tr>
<tr>
<td>MS8609A-04</td>
<td>Options</td>
<td>Digital resolution bandwidth</td>
</tr>
<tr>
<td>MS8609A-08</td>
<td>Options</td>
<td>Pre-amplifier</td>
</tr>
<tr>
<td>MS8609A-09</td>
<td>Options</td>
<td>Ethernet interface</td>
</tr>
<tr>
<td>MS8609A-30</td>
<td>Options</td>
<td>LPF for 2 GHz band carrier cut</td>
</tr>
<tr>
<td>MS8609A-31</td>
<td>Options</td>
<td>Low noise floor</td>
</tr>
<tr>
<td>MS8609A-32</td>
<td>Options</td>
<td>Maximum input level extension</td>
</tr>
<tr>
<td>MS8609A-33</td>
<td>Options</td>
<td>High accuracy power measurement</td>
</tr>
<tr>
<td>MS8609A-34</td>
<td>Options</td>
<td>4 GHz Lo Output</td>
</tr>
<tr>
<td>MS8609A-36</td>
<td>Options</td>
<td>Power Meter Hi Limit Frequency Expansion (6 GHz)</td>
</tr>
<tr>
<td>MS8609A-37</td>
<td>Options</td>
<td>Power Meter Hi Limit Frequency Expansion (6 GHz) (retrofit option)</td>
</tr>
<tr>
<td>MS8609A-46</td>
<td>Options</td>
<td>Auto-power recovery</td>
</tr>
<tr>
<td>MS8609A-47</td>
<td>Options</td>
<td>Rack mount without handle (JIS)</td>
</tr>
<tr>
<td>MS8609A-48</td>
<td>Options</td>
<td>Rack mount without handle (IEC)</td>
</tr>
<tr>
<td>MU860920A</td>
<td>Options</td>
<td>Demodulation Unit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0576D</td>
<td>Coaxial cord (N-P · 5D-2W · N-P), 2 m</td>
</tr>
<tr>
<td>J0127C</td>
<td>Coaxial cord (BNC-P · RG-58A/U · BNC-P), 0.5 m</td>
</tr>
<tr>
<td>J0127A</td>
<td>Coaxial cord (BNC-P · RG-58A/U · BNC-P), 1 m</td>
</tr>
<tr>
<td>J0007</td>
<td>GPIB cable, 1 m</td>
</tr>
<tr>
<td>J0008</td>
<td>GPIB cable, 2 m</td>
</tr>
<tr>
<td>MA1612A</td>
<td>Four-Point Junction Pad (5 to 3000 MHz)</td>
</tr>
<tr>
<td>J0395</td>
<td>High-power fixed attenuator (30 dB, 30 W, DC to 8 GHz)</td>
</tr>
<tr>
<td>B0472</td>
<td>High-power fixed attenuator (30 dB, 100 W, DC to 18 GHz)</td>
</tr>
<tr>
<td>B0452A</td>
<td>Hard carrying case (with casters)</td>
</tr>
<tr>
<td>B0452B</td>
<td>Hard carrying case (without casters)</td>
</tr>
<tr>
<td>B0329G</td>
<td>Front cover (3/4 MW4U)</td>
</tr>
<tr>
<td>B0488</td>
<td>Rear panel protective pad</td>
</tr>
<tr>
<td>B0480</td>
<td>Tilt handle soft type</td>
</tr>
<tr>
<td>A3933</td>
<td>Circulator (1760 to 2115 MHz)</td>
</tr>
<tr>
<td>H3930</td>
<td>Isolator (1760 to 2115 MHz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model/Order No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS8609A-90</td>
<td>Extended three year warranty service</td>
</tr>
<tr>
<td>MS8609A-91</td>
<td>Extended five year warranty service</td>
</tr>
</tbody>
</table>