RF/Microwave Signal Generators

MG3690C
0.1 Hz to 70 GHz/500 GHz
MG3692C, MG3694C, MG3695C, MG3697C,

RoHS Compliant
Introduction
The MG3690C is the "ideal microwave signal generator," offering unsurpassed frequency coverage, the lowest phase noise, leveled output power, spectral purity, switching speed, modulation performance, size, upgradeability, reliability, and service. Our signal generators are configurable for a broad range of applications from R&D to manufacturing and depot repair. Anritsu provides you a total solution including proven reliability and standard 3 year warranty plus pre-sale and post-sale support that is the best in the industry.

All specifications and characteristics apply to MG3690C signal generators Revision 2 and above under the following conditions, unless otherwise stated. The specifications in the following pages describe the warranted performance of the instrument for 25 ± 10 °C. "Typical" specifications describe expected, but not warranted performance. They do not guarantee the performance of any individual product.
Definitions

All specifications and characteristics apply under the following conditions, unless otherwise stated:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warm-Up Time</td>
<td>After 30 minutes of warm-up time, where the instrument is left in the on state.</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>Over the 23 °C ±5 °C temperature range.</td>
</tr>
<tr>
<td>Typical Performance</td>
<td>Typical specifications in parenthesis () describe performance that will be met by a minimum of 80% of all products. They do not include guard bands and are not warranted. Typical specifications that are not in parenthesis are not tested and not warranted. They are generally representative of the nominal characteristic performance.</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>A coverage factor of K=2 is applied to the measurement uncertainties.</td>
</tr>
<tr>
<td>Calibration Cycle</td>
<td>Recommended calibration cycle is 2 years from the date of shipment (standard warranty).</td>
</tr>
</tbody>
</table>

All specifications subject to change without notice. For the most current data sheet, please visit the Anritsu web site: www.anritsu.com
Signal Generator

General Specifications

Frequency Coverage

<table>
<thead>
<tr>
<th>Model/Option No.</th>
<th>Frequency Coveragea</th>
<th>Output Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG3692C</td>
<td>2 GHz to 20 GHz</td>
<td>2.92 mm K(f)</td>
</tr>
<tr>
<td>MG3694C</td>
<td>2 GHz to 40 GHz</td>
<td>2.92 mm K(f)</td>
</tr>
<tr>
<td>MG3695C</td>
<td>2 GHz to 50 GHz</td>
<td>1.85 mm V(f)</td>
</tr>
<tr>
<td>MG3697C</td>
<td>2 GHz to 67 GHz</td>
<td>1.85 mm V(f)</td>
</tr>
<tr>
<td>Option 4</td>
<td>8 MHz to 2.2 GHzb</td>
<td>Model No. Dependent</td>
</tr>
<tr>
<td>Option 5</td>
<td>8 MHz to 2 GHzb</td>
<td>Model No. Dependent</td>
</tr>
<tr>
<td>Option 22</td>
<td>0.1 Hz to 10 MHz</td>
<td>Model No. Dependent</td>
</tr>
</tbody>
</table>

Options 4 and 5: Frequency extension down to 8 MHz

Two options are available to extend the 2 GHz low end frequency limit of the base models down to 8 MHz. Option 4 uses a digital down-converter (DDC) with successive divide-by-two circuitry. It offers the best phase noise performance of the two choices, at the expense of some analog performance < 500 MHz. In that range, analog sweep mode is not available, and pulse modulation performance is specified as typical. In addition, frequency and phase modulation mod index is scaled by the division ratio of each band of the DDC. Option 5 maintains all analog performance by using a heterodyne mixing down-converter, but does not improve phase noise performance.

Option 22: If frequency coverage down to 0.1 Hz is desired, Option 22 can be added with either Option 4 or 5. Option 22 uses Direct Digital Synthesis (DDS) for CW and Step Sweep modes of operation. Modulation and analog sweep are not available in the DDS band. Frequency resolution < 10 MHz is 0.02 Hz. Output power across the complete instrument frequency range is degraded by 2 dB.

CW Mode

- Accuracy: Same as internal or external 10 MHz time base
- Internal Time Base Stability:
 - With aging: < 2 x 10^{-9}/day (< 5 x 10^{-10}/day with Option 16)
 - With temperature: < 2 x 10^{-9}/°C over 0 °C to 55 °C (< 2 x 10^{-10}/°C with Option 16)
- Resolution: 0.01 Hz
- Internal Time Base Calibration: The internal time base can be calibrated via the System Cal menu to match an external reference (10 MHz ± 50 Hz).
- External 10 MHz Reference Input: Accepts external 10 MHz ± 50 Hz (typical)
- 10 MHz Reference Output: 1 V_p-p into 50 Ω, AC coupled
- Phase Offset: Adjustable in 0.1 degree steps
- Electronic Frequency Control (EFC): -4 V to +4 V input range

Phase-Locked Step Sweep Mode

- Sweep Width: Independently selected, 0.01 Hz to full range
- Accuracy: Same as internal or external 10 MHz time base
- Resolution (Minimum Step Size): 0.01 Hz
- Linear/Log Sweep: User-selectable linear or log sweep
- Steps: User-selectable number of steps or the step size
- Number of Steps: Variable from 1 to 10,000
- Step Size: 0.01 Hz to the full frequency range of the instrument
- Dwell Time Per Step: Variable from 1 ms to 99 s
- Fixed Rate Sweep: Variable from 30 ms to 99 s

a. For frequency coverage beyond 70 GHz, utilize millimeter-wave multiplier 2000-1694 series (see page 2-19).
b. Operational to 70 GHz
c. All specifications apply ≥ 10 MHz
Specifications

<table>
<thead>
<tr>
<th>Analog Sweep Mode (Option 6)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep Width</td>
<td>Independently selected from 1 MHz to full frequency range. For units with Option 4 (Digital Down Converter), the start frequency during analog sweep is limited to \geq 2.2 GHz for stop frequencies > 20 GHz. For stop frequencies \leq 20 GHz, the start frequency is limited to \geq 500 MHz. A range error will be displayed if any of these analog sweep start/stop limits are exceeded. Analog sweep is not available < 10 MHz with Option 22.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>The lesser of \pm 30 MHz or \pm 2 MHz +0.25 % of sweep width for Sweep Speeds of \leq 50 MHz/ms (typical)</td>
</tr>
<tr>
<td>Sweep Time Range</td>
<td>30 ms to 99 s</td>
</tr>
</tbody>
</table>

| Alternate Sweep Mode | Sweeps alternately in step sweep between any two sweep ranges. Each sweep range may be associated with a power level. |

| Manual Sweep Mode | Provides stepped, phase-locked adjustment of frequency between sweep limits. User-selectable number of steps or step size. |

| List Sweep Mode | Under GPIB or Ethernet control, or via the front panel, up to 4 tables with 2000 non-sequential frequency/power sets can be stored and then addressed as a phase-locked step sweep. One table of 2000 points is stored in non-volatile memory. All other tables are stored in volatile memory. |

| Programmable Frequency Agility | Under GPIB or Ethernet control, up to 3202 non-sequential frequency/power sets can be stored and then addressed as a phase-locked step sweep. Data is stored in volatile memory. |

<table>
<thead>
<tr>
<th>Sweep Triggering</th>
<th>Sweep triggering is provided for Analog Frequency Sweep, Step Frequency Sweep, List Frequency Sweep, and CW Power Sweep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Triggers sweep automatically</td>
</tr>
<tr>
<td>External</td>
<td>Triggers a sweep on the low to high transition of an external TTL signal.</td>
</tr>
<tr>
<td>Single</td>
<td>AUX I/O connector, rear panel, Triggers, aborts, and resets a single sweep. Reset sweep may be selected to be at the top or bottom of the sweep.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stored Setups</td>
<td>Stores front panel settings and nine additional front-panel setups in a non-volatile RAM. A system menu allows saving and recalling of instrument setups. Whenever the instrument is turned on, control settings come on at the same functions and values existing when the instrument was turned off.</td>
</tr>
<tr>
<td>Memory Sequenting Input</td>
<td>Accepts a TTL low-level signal to sequence through ten stored setups. AUX I/O connector, rear panel</td>
</tr>
<tr>
<td>Self-Test</td>
<td>Instrument self-test is performed when Self-Test soft-key is selected. If an error is detected, an error message is displayed in a window on the LCD identifying the probable cause and remedy.</td>
</tr>
<tr>
<td>Secure Mode</td>
<td>Disables all frequency and power level state displays. Stored setups saved in secure mode remain secured when recalled. Mode selectable from a system menu and via GPIB or Ethernet.</td>
</tr>
<tr>
<td>Parameter Entry</td>
<td>Instrument-controlled parameters can be entered in multiple ways: keypad, rotary data knob, or the touch pads of the cursor-control key. Controlled parameters are frequency, power level, sweep time, dwell time, and number of steps. Keypad entries are terminated by pressing the appropriate soft key. Edits are terminated by exiting the edit menu.</td>
</tr>
<tr>
<td>Reset</td>
<td>Returns all instrument parameters to predefined default states or values. Any pending GPIB or Ethernet I/O is aborted. Selectable from the system menu</td>
</tr>
<tr>
<td>Master/Slave Operation</td>
<td>Allows two output signals to be swept with a user-selected frequency offset. One instrument controls the other via AUX I/O and SERIAL I/O connections. Requires a Master/Slave Interface Cable Set (part number ND36329).</td>
</tr>
<tr>
<td>User Level Flatness Correction</td>
<td>Allows user to calibrate out path loss due to external switching and cables via entered power table from a GPIB power meter or calculated data. When user level correction is activated, entered power levels are delivered at the point where calibration was performed. Supported power meters are Anritsu ML2437A, ML2438A, ML2480A/B, ML2490A, and ML4803A and HP 437B, 438A, and 70100A. Five user tables are available with up to 801 points/table.</td>
</tr>
<tr>
<td>Warm Up Time:</td>
<td>From Standby: 30 minutes From Cold Start (0 °C): 120 hours to achieve specified frequency stability with aging Instruments disconnected from AC line power for more than 72 hours require 30 days to return to specified frequency stability with aging.</td>
</tr>
<tr>
<td>Power</td>
<td>85 VAC to 264 VAC, 48 Hz to 440 Hz, 250 VA maximum</td>
</tr>
<tr>
<td>Standby</td>
<td>With AC line power connected, unit is placed in standby when front panel power switch is released from the OPERATE position.</td>
</tr>
<tr>
<td>Weight</td>
<td>18 kg maximum</td>
</tr>
<tr>
<td>Dimensions (WxHxD)</td>
<td>429 mm x 133 mm x 450 mm</td>
</tr>
<tr>
<td>Warranty</td>
<td>3 years from ship date</td>
</tr>
</tbody>
</table>
Markers

Description
Up to 20 independent, settable markers (F0 – F9 and M0 – M9)

Video Markers
+5 V or -5 V marker output, selectable from system menus
AUX I/O connector, rear panel

Intensity Markers
Produces an intensity dot on analog display traces, obtained by a momentary dwell in RF sweep, in analog sweeps of < 1 second.

Marker Accuracy
Same as sweep frequency accuracy

Marker Resolution:
- Analog Sweep: 1 MHz or Sweep Width/4096, which ever is greater
- Step Sweep: 0.01 Hz

Remote Operation

Description
All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via Ethernet (VXI-11 over TCP/IP) or GPIB (IEEE-488 interface bus).

Note: For users who wish to use a USB control interface, the following adapter available from National Instruments is recommended:
USB: NI GPIB-USB-MS

Ethernet Port
10/100 Base-T

Ethernet Address
DHCP with Auto-IP 169.254.90.55 (default) or static 192.168.0.254

GPIB Address
Select from a system menu

GPIB Commands
Native, SCPI
IEEE-488 Interface Function Subset
Source Handshake: SH1
Acceptor Handshake: AH1
Talker: T6
Listener: L4
Service Request: SR1
Remote/Local: RL1
Parallel Poll: PP1
Device Clear: DC1
Device Trigger: DT1
Controller Capability: C0, C1, C2, C3, C28
Tri-State Driver: E2

GPIB Status Annunciators
When the instrument is operating in Remote, the GPIB status annunciators (listed below) will appear in a window on the front panel LCD.

Remote
Operating on the GPIB or via Ethernet, all instrument front panel keys are ignored, except for the SYSTEM key and the RETURN TO LOCAL soft key.

LLO (Local Lockout)
Disables the RETURN TO LOCAL soft key. Instrument can be placed in local mode only via Ethernet or GPIB, or by cycling line power.

Emulations
The instrument responds to the published GPIB commands and responses of the Anritsu Models 6600, 6700, and 6XX00-series signal sources. When emulating another signal source, the instrument will be limited to the capabilities, mnemonics, and parameter resolutions of the emulated instrument.

Environmental (MIL-PRF-28800F, class 3)

Storage Temperature Range
-40 °C to +75 °C

Operating Temperature Range
0 °C to +50 °C

Relative Humidity
5 % to 95 % at 40 °C (non-condensing)

Altitude
4,600 m, 43.9 cm-Hg

Vibration
Random, 5 Hz to 500 Hz, 0.015 to 0.0039 g²/Hz PSD; Sinusoidal, 5 Hz to 55 Hz, 0.33 mm displacement

EMC
IEC 61326-1:2013

Safety
IEC 61010-1:2010

Regulatory Compliance

European Union
Low Voltage Directive 2014/35/EU
Safety EN 61010-1:2010
RoHS Directive 2011/65/EU applies to instruments with CE marking and noted as Rev. 2 or above on the rear panel.

Australia and New Zealand
RCM AS/NZS 4417:2012

South Korea
KCC-REM-A21-0004
Frequency Switching Time

Definitions

- **Free Running Mode**
 - Step or List Sweep
 - \(t_{sw} = \) Switching Time, Unlocked

- **Lock Status Indicator**
 - Rear Panel AUX I/O connector (pin 11)
 - The lock status indicator goes high when the output is within 1 kHz of the final frequency.
 - \(t_{lk} = \) Locked Time = 1 ms + \(t_{dW} \)
 - \(t_{dW} = \) Dwell Time, after locking. Selectable, 1 ms minimum
 - \(t_{lk} (\text{min}) = 2 \text{ ms} \)

Single Frequency Trigger Mode

- **(List, non-sequential, and CFx modes)**
 - \(t_{r} = \) Trigger Response Time = 2 ms
 - (Applies to GPIB, Ethernet and External TTL triggers)

![Switching Time Diagram](image)

Switching Time (\(t_{sw} \))

<table>
<thead>
<tr>
<th>(t_{sw}) (ms)</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ms + 1 ms/GHz</td>
<td>Step not starting at, or crossing dwell frequencies</td>
</tr>
<tr>
<td>7 ms + 1 ms/GHz</td>
<td>(typical) Step not starting at, or crossing band switching frequencies</td>
</tr>
<tr>
<td>8 ms + 1 ms/GHz</td>
<td>(typical) Step starting at, or crossing band switching frequencies</td>
</tr>
</tbody>
</table>

- a. Not applicable with FM mode active.

- Band Switching Dwell Frequencies: 2 (2.2 with Option 4), 10, 20, 40 GHz
- Filter Switching Dwell Frequencies: 3.3, 5.5, 8.4, 13.25, 25, 32 GHz
- < 2.2 GHz w/Option 4: 12.5, 15.625, 22.5, 31.25, 43.75, 62.5, 87.5, 125, 175, 250, 350, 500, 700, 1050, 1500 MHz
Signal Purity
All specifications apply at the lesser of +10 dBm output or maximum specified leveled output power unless otherwise noted.

Harmonic and Harmonic-Related

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Hz to 10 MHz (Option 22)</td>
<td>< -30 dBc</td>
</tr>
<tr>
<td>10 MHz to ≤ 100 MHz (Option 4)</td>
<td>< -40 dBc</td>
</tr>
<tr>
<td>> 100 MHz to ≤ 2.2 GHz (Option 4)</td>
<td>< -50 dBc</td>
</tr>
<tr>
<td>10 MHz to ≤ 50 MHz (Option 5)</td>
<td>< -30 dBc</td>
</tr>
<tr>
<td>> 50 MHz to ≤ 2 GHz (Option 5)</td>
<td>< -40 dBc</td>
</tr>
<tr>
<td>2 GHz (2.2 GHz w/Option 4) to ≤ 20 GHz</td>
<td>< -60 dBc<sup>a</sup></td>
</tr>
<tr>
<td>> 20 GHz to ≤ 40 GHz</td>
<td>< -40 dBc<sup>b</sup></td>
</tr>
<tr>
<td>> 40 GHz to ≤ 50 GHz (MG3695C)</td>
<td>< -40 dBc<sup>c</sup></td>
</tr>
<tr>
<td>> 40 GHz to ≤ 67 GHz (MG3697C)</td>
<td>< -25 dBc</td>
</tr>
</tbody>
</table>

^a-30 dBc typical with high power Option 15.

^b 20 GHz to 21 GHz, and 39 GHz to 40 GHz, -20 dBc typical (Option 15 only).

Non-Harmonic

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Hz to 10 MHz (Option 22)</td>
<td>< -30 dBc</td>
</tr>
<tr>
<td>10 MHz to ≤ 2.2 GHz (Option 4)</td>
<td>< -60 dBc</td>
</tr>
<tr>
<td>10 MHz to ≤ 2 GHz (Option 5)</td>
<td>< -40 dBc</td>
</tr>
<tr>
<td>> 2 GHz (2.2 GHz w/Option 4) to ≤ 67 GHz</td>
<td>< -60 dBc</td>
</tr>
</tbody>
</table>

Power Line and Fan Rotation Spurious Emissions (dBc)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Offset from Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 Hz</td>
<td>300 Hz to 1 kHz</td>
</tr>
<tr>
<td>10 MHz to ≤ 500 MHz (Option 4)</td>
<td>< -68</td>
</tr>
<tr>
<td>> 500 MHz to ≤ 1050 MHz (Option 4)</td>
<td>< -62</td>
</tr>
<tr>
<td>> 1050 MHz to ≤ 2200 MHz (Option 4)</td>
<td>< -56</td>
</tr>
<tr>
<td>0.01 GHz to ≤ 8.4 GHz</td>
<td>< -50</td>
</tr>
<tr>
<td>> 8.4 GHz to ≤ 20 GHz</td>
<td>< -46</td>
</tr>
<tr>
<td>> 20 GHz to ≤ 40 GHz</td>
<td>< -40</td>
</tr>
<tr>
<td>> 40 GHz to ≤ 67 GHz</td>
<td>< -34</td>
</tr>
</tbody>
</table>

Residual FM

CW and Step Sweep modes, 50 Hz to 15 kHz BW (typical).

Note: Residual FM is not applicable with FM locked mode.

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Residual FM (Hz RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 8.4 GHz</td>
<td>Option 3/3X</td>
</tr>
<tr>
<td>< 40</td>
<td>< 120</td>
</tr>
<tr>
<td>> 8.4 GHz to 20 GHz</td>
<td>< 40</td>
</tr>
<tr>
<td>> 20 GHz to ≤ 40 GHz</td>
<td>< 80</td>
</tr>
<tr>
<td>> 40 GHz to ≤ 67 GHz</td>
<td>< 160</td>
</tr>
</tbody>
</table>

Residual FM

Analog Sweep and Unlocked FM modes, 50 Hz to 15 kHz BW (typical).

Note: Residual FM is not applicable with FM locked mode.

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Residual FM (kHz RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 GHz to ≤ 20 GHz</td>
<td>Unlocked Narrow FM mode</td>
</tr>
<tr>
<td>< 10</td>
<td>< 25</td>
</tr>
<tr>
<td>> 20 GHz to ≤ 40 GHz</td>
<td>< 20</td>
</tr>
<tr>
<td>> 40 GHz to ≤ 67 GHz</td>
<td>< 40</td>
</tr>
</tbody>
</table>

AM Noise Floor

Typically < −145 dBm/Hz at 0 dBm output and offsets > 5 MHz from carrier
Single-Sideband Phase Noise

Phase noise is specified and guaranteed only with internal reference. In External Reference mode, the phase noise of the external supplied reference, and the selected external reference bandwidth, will dictate the instrument phase noise performance. Phase noise is not degraded when adding high power.

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>10 Hz</th>
<th>100 Hz</th>
<th>1 kHz</th>
<th>10 kHz</th>
<th>100 kHz</th>
<th>1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Hz to < 10 MHz (Option 22)</td>
<td>-80</td>
<td>-90</td>
<td>-120</td>
<td>-130</td>
<td>-130</td>
<td>-130</td>
</tr>
<tr>
<td>10 MHz to 15.625 MHz (Option 4)</td>
<td>-102</td>
<td>-128</td>
<td>-142</td>
<td>-145</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 15.625 MHz to 31.25 MHz (Option 4)</td>
<td>-97</td>
<td>-125</td>
<td>-142</td>
<td>-144</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 31.25 MHz to 62.5 MHz (Option 4)</td>
<td>-92</td>
<td>-122</td>
<td>-142</td>
<td>-143</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 62.5 MHz to 125 MHz (Option 4)</td>
<td>-87</td>
<td>-114</td>
<td>-133</td>
<td>-130</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 125 MHz to 250 MHz (Option 4)</td>
<td>-82</td>
<td>-108</td>
<td>-126</td>
<td>-124</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 250 MHz to 500 MHz (Option 4)</td>
<td>-75</td>
<td>-102</td>
<td>-120</td>
<td>-118</td>
<td>-130</td>
<td>-143</td>
</tr>
<tr>
<td>> 500 MHz to 1050 MHz (Option 4)</td>
<td>-70</td>
<td>-94</td>
<td>-115</td>
<td>-112</td>
<td>-145</td>
<td>-134</td>
</tr>
<tr>
<td>> 1050 MHz to 2200 MHz (Option 4)</td>
<td>-65</td>
<td>-86</td>
<td>-113</td>
<td>-111</td>
<td>-144</td>
<td>-139</td>
</tr>
<tr>
<td>10 MHz to < 2000 MHz (Option 5)</td>
<td>-62</td>
<td>-85</td>
<td>-100</td>
<td>-102</td>
<td>-106</td>
<td>-111</td>
</tr>
<tr>
<td>> 6 GHz to 10 GHz</td>
<td>-54</td>
<td>-81</td>
<td>-109</td>
<td>-103</td>
<td>-106</td>
<td>-128</td>
</tr>
<tr>
<td>> 10 GHz to 20 GHz</td>
<td>-52</td>
<td>-75</td>
<td>-98</td>
<td>-104</td>
<td>-106</td>
<td>-126</td>
</tr>
<tr>
<td>> 20 GHz to 40 GHz</td>
<td>-45</td>
<td>-69</td>
<td>-92</td>
<td>-104</td>
<td>-106</td>
<td>-124</td>
</tr>
<tr>
<td>> 40 GHz to 67 GHz</td>
<td>-32</td>
<td>-56</td>
<td>-80</td>
<td>-87</td>
<td>-92</td>
<td>-112</td>
</tr>
</tbody>
</table>

a. When fitted with Option 36 and when multiple units are connected for purposes of Ultra-Stable Phase Tracking, phase noise may be degraded by up to 4 dB at 1 kHz and 10 kHz offsets.

Single-Sideband Phase Noise

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>10 Hz</th>
<th>100 Hz</th>
<th>1 kHz</th>
<th>10 kHz</th>
<th>100 kHz</th>
<th>1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Hz to < 10 MHz (Option 22)</td>
<td>-80</td>
<td>-90</td>
<td>-120</td>
<td>-130</td>
<td>-130</td>
<td>-130</td>
</tr>
<tr>
<td>10 MHz to 15.625 MHz (Option 4)</td>
<td>-102</td>
<td>-128</td>
<td>-142</td>
<td>-145</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 15.625 MHz to 31.25 MHz (Option 4)</td>
<td>-97</td>
<td>-125</td>
<td>-142</td>
<td>-144</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 31.25 MHz to 62.5 MHz (Option 4)</td>
<td>-92</td>
<td>-122</td>
<td>-142</td>
<td>-143</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 62.5 MHz to 125 MHz (Option 4)</td>
<td>-87</td>
<td>-114</td>
<td>-133</td>
<td>-130</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 125 MHz to 250 MHz (Option 4)</td>
<td>-82</td>
<td>-108</td>
<td>-126</td>
<td>-124</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 250 MHz to 500 MHz (Option 4)</td>
<td>-75</td>
<td>-102</td>
<td>-120</td>
<td>-118</td>
<td>-130</td>
<td>-143</td>
</tr>
<tr>
<td>> 500 MHz to 1050 MHz (Option 4)</td>
<td>-70</td>
<td>-94</td>
<td>-115</td>
<td>-112</td>
<td>-145</td>
<td>-134</td>
</tr>
<tr>
<td>> 1050 MHz to 2200 MHz (Option 4)</td>
<td>-65</td>
<td>-86</td>
<td>-113</td>
<td>-111</td>
<td>-144</td>
<td>-139</td>
</tr>
<tr>
<td>10 MHz to < 2000 MHz (Option 5)</td>
<td>-62</td>
<td>-85</td>
<td>-100</td>
<td>-102</td>
<td>-106</td>
<td>-111</td>
</tr>
<tr>
<td>2 GHz to 6 GHz</td>
<td>-54</td>
<td>-81</td>
<td>-109</td>
<td>-103</td>
<td>-106</td>
<td>-128</td>
</tr>
<tr>
<td>> 6 GHz to 10 GHz</td>
<td>-52</td>
<td>-75</td>
<td>-98</td>
<td>-104</td>
<td>-106</td>
<td>-126</td>
</tr>
<tr>
<td>> 10 GHz to 20 GHz</td>
<td>-45</td>
<td>-69</td>
<td>-92</td>
<td>-104</td>
<td>-106</td>
<td>-124</td>
</tr>
<tr>
<td>> 20 GHz to 40 GHz</td>
<td>-45</td>
<td>-69</td>
<td>-92</td>
<td>-104</td>
<td>-106</td>
<td>-124</td>
</tr>
<tr>
<td>> 40 GHz to 67 GHz</td>
<td>-32</td>
<td>-56</td>
<td>-80</td>
<td>-87</td>
<td>-92</td>
<td>-112</td>
</tr>
</tbody>
</table>

a. When fitted with Option 36 and when multiple units are connected for purposes of Ultra-Stable Phase Tracking, phase noise may be degraded by up to 4 dB at 1 kHz and 10 kHz offsets.

Single-Sideband Phase Noise

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>1 Hz</th>
<th>10 Hz</th>
<th>100 Hz</th>
<th>1 kHz</th>
<th>10 kHz</th>
<th>100 kHz</th>
<th>1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 Hz to < 10 MHz (Option 22)</td>
<td>-60</td>
<td>-80</td>
<td>-90</td>
<td>-120</td>
<td>-130</td>
<td>-130</td>
<td>-130</td>
</tr>
<tr>
<td>10 MHz to 15.625 MHz (Option 4)</td>
<td>-94</td>
<td>-118</td>
<td>-136</td>
<td>-142</td>
<td>-145</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 15.625 MHz to 31.25 MHz (Option 4)</td>
<td>-88</td>
<td>-113</td>
<td>-130</td>
<td>-142</td>
<td>-145</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 31.25 MHz to 62.5 MHz (Option 4)</td>
<td>-83</td>
<td>-109</td>
<td>-125</td>
<td>-140</td>
<td>-145</td>
<td>-145</td>
<td>-145</td>
</tr>
<tr>
<td>> 62.5 MHz to 125 MHz (Option 4)</td>
<td>-77</td>
<td>-103</td>
<td>-119</td>
<td>-134</td>
<td>-142</td>
<td>-143</td>
<td>-143</td>
</tr>
<tr>
<td>> 125 MHz to 250 MHz (Option 4)</td>
<td>-71</td>
<td>-97</td>
<td>-113</td>
<td>-129</td>
<td>-138</td>
<td>-137</td>
<td>-142</td>
</tr>
<tr>
<td>> 250 MHz to 500 MHz (Option 4)</td>
<td>-67</td>
<td>-91</td>
<td>-107</td>
<td>-124</td>
<td>-130</td>
<td>-128</td>
<td>-143</td>
</tr>
<tr>
<td>> 500 MHz to 1050 MHz (Option 4)</td>
<td>-60</td>
<td>-84</td>
<td>-101</td>
<td>-119</td>
<td>-126</td>
<td>-122</td>
<td>-139</td>
</tr>
<tr>
<td>> 1050 MHz to 2200 MHz (Option 4)</td>
<td>-53</td>
<td>-77</td>
<td>-95</td>
<td>-113</td>
<td>-121</td>
<td>-117</td>
<td>-135</td>
</tr>
<tr>
<td>10 MHz to < 2000 MHz (Option 5)</td>
<td>-38</td>
<td>-68</td>
<td>-85</td>
<td>-100</td>
<td>-102</td>
<td>-106</td>
<td>-111</td>
</tr>
<tr>
<td>2 GHz to 6 GHz</td>
<td>-46</td>
<td>-70</td>
<td>-86</td>
<td>-106</td>
<td>-115</td>
<td>-112</td>
<td>-136</td>
</tr>
<tr>
<td>> 6 GHz to 10 GHz</td>
<td>-38</td>
<td>-68</td>
<td>-83</td>
<td>-102</td>
<td>-113</td>
<td>-115</td>
<td>-134</td>
</tr>
<tr>
<td>> 10 GHz to 20 GHz</td>
<td>-35</td>
<td>-64</td>
<td>-80</td>
<td>-105</td>
<td>-109</td>
<td>-115</td>
<td>-130</td>
</tr>
<tr>
<td>> 20 GHz to 40 GHz</td>
<td>-29</td>
<td>-58</td>
<td>-74</td>
<td>-94</td>
<td>-104</td>
<td>-103</td>
<td>-122</td>
</tr>
<tr>
<td>> 40 GHz to 67 GHz</td>
<td>-23</td>
<td>-53</td>
<td>-69</td>
<td>-89</td>
<td>-97</td>
<td>-97</td>
<td>-118</td>
</tr>
</tbody>
</table>

a. When fitted with Option 36 and when multiple units are connected for purposes of Ultra-Stable Phase Tracking, phase noise may be degraded by up to 4 dB at 1 kHz and 10 kHz offsets.
Measured SSB Phase Noise

- Measured SSB Phase Noise MG3690C with Option 4
- Measured SSB Phase Noise MG3690C with Options 3 & 4
- Measured SSB Phase Noise MG3690C with Options 3X and 4

Graphs showing the measured SSB phase noise for different frequency offsets for various frequencies.
Specifications

RF Output

Power level specifications apply at 25 ± 10 °C.

Maximum Leveled Output Power

For output power with Option 22, 0.1 Hz to 10 MHz coverage, derate all specifications by 2 dB.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Configuration</th>
<th>Frequency Range (GHz)</th>
<th>Output Power (dBm)</th>
<th>Output Power with Step Attenuator (dBm)</th>
<th>Output Power with Electronic Step Attenuator (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG3692C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>19</td>
<td>18</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>≥ 2<sup>a</sup> to ≤ 10</td>
<td>19</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 10 to ≤ 20</td>
<td>17</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>15</td>
<td>14</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>≥ 2<sup>a</sup> to ≤ 10</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 10 to ≤ 20</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 20 to ≤ 40</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MG3694C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>12</td>
<td>10</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>≥ 2<sup>a</sup> to ≤ 10</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 20 to ≤ 40</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 40 to ≤ 50</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MG3695C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>12</td>
<td>10</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>≥ 2<sup>a</sup> to ≤ 20</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 20 to ≤ 40</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 40 to ≤ 50</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MG3697C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>12</td>
<td>10</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>≥ 2<sup>a</sup> to ≤ 20</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 20 to ≤ 40</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 40 to ≤ 67</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STD</td>
<td>> 67 to ≤ 70</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Leveled Output Power with Option 15 (High Power) Installed

For output power with Option 22, 0.1 Hz to 10 MHz coverage, derate all specifications by 2 dB.

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Configuration</th>
<th>Frequency Range (GHz)</th>
<th>Output Power (dBm)</th>
<th>Output Power with Step Attenuator (dBm)</th>
<th>Output Power with Electronic Step Attenuator (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG3692C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>19</td>
<td>18</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>2<sup>a</sup> to 10</td>
<td>25</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 10 to 16</td>
<td>22</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 16 to 20</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 2<sup>a</sup> to > 16 to 20</td>
<td>26</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 40 to ≤ 20</td>
<td>25</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 40 to ≤ 20</td>
<td>23</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG3694C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>17</td>
<td>16</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>≥ 2<sup>a</sup> to ≤ 20</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 20 to ≤ 40</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 2<sup>a</sup> to > 20 to ≤ 40</td>
<td>23</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG3695C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>16</td>
<td>14</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>≥ 2<sup>a</sup> to ≤ 20</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 20 to ≤ 40</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 40 to ≤ 50</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 2<sup>a</sup> to > 40 to ≤ 50</td>
<td>23</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG3697C</td>
<td>With opt 4 or 5</td>
<td>< 2<sup>a</sup></td>
<td>16</td>
<td>14</td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
<td>≥ 2<sup>a</sup> to ≤ 20</td>
<td>21</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 20 to ≤ 40</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 40 to ≤ 50</td>
<td>13</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. ≤ 2.2 GHz with Option 4
b. > 2.2 GHz with Option 4
c. Typical 60 GHz to 67 GHz
d. Typical
Specifications

Minimum Settable Output Power
- Without an Attenuator: -20 dBm
- With an Attenuator: -120 dBm

Minimum Leveled Output Power
- Without an Attenuator: -15 dBm (-20 dBm, typical)
- With an Attenuator: -115 dBm (MG3692C and MG3694C)
- -105 dBm (MG3695C and MG3697C)

Unleveled Output Power Range
- Without an Attenuator: > 40 dB below max power
- With an Attenuator: > 130 dB below max power

Power Level Switching Time
- Without Change in Step Attenuator: < 3 ms typical
- With Change in Step Attenuator: < 20 ms typical
- With Change in Electronic Step Attenuator: < 3 ms typical
 - Power level changes across ~70 dB step will result in 20 ms delay.

Step Attenuator (Option 2)
- Adds a 10 dB/step attenuator
- 110 dB range on models ≤ 40 GHz
- 90 dB range on models > 40 GHz

Accuracy and Flatness
- Flatness is included within the accuracy specification.

Step Sweep and CW Modes

<table>
<thead>
<tr>
<th>Attenuation Below Max Power</th>
<th>0.01 to 0.05</th>
<th>0.05 to 20</th>
<th>20 to 40</th>
<th>40 to 67</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB to 25 dB</td>
<td>± 2.0 dB</td>
<td>± 2.0 dB</td>
<td>± 2.0 dB</td>
<td>± 3.0 dB</td>
</tr>
<tr>
<td>12 dB to 30 dB</td>
<td>± 3.5 dB</td>
<td>± 3.5 dB</td>
<td>± 4.6 dB</td>
<td>± 5.6 dB</td>
</tr>
<tr>
<td>30 dB to 60 dB</td>
<td>± 4.0 dB</td>
<td>± 4.0 dB</td>
<td>± 5.2 dB</td>
<td>± 6.2 dB</td>
</tr>
<tr>
<td>60 dB to 122 dB</td>
<td>± 5.0 dB</td>
<td>± 5.0 dB</td>
<td>± 6.2 dB</td>
<td>± 7.2 dB</td>
</tr>
<tr>
<td>Flatness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 dB to 12 dB</td>
<td>± 2.0 dB</td>
<td>± 2.0 dB</td>
<td>± 2.0 dB</td>
<td>± 2.5 dB</td>
</tr>
<tr>
<td>12 dB to 30 dB</td>
<td>± 3.5 dB</td>
<td>± 3.5 dB</td>
<td>± 4.1 dB</td>
<td>± 5.1 dB</td>
</tr>
<tr>
<td>30 dB to 60 dB</td>
<td>± 4.0 dB</td>
<td>± 4.0 dB</td>
<td>± 4.6 dB</td>
<td>± 5.6 dB</td>
</tr>
<tr>
<td>60 dB to 122 dB</td>
<td>± 5.0 dB</td>
<td>± 5.0 dB</td>
<td>± 5.2 dB</td>
<td>± 6.2 dB</td>
</tr>
</tbody>
</table>

Analog Sweep Mode

<table>
<thead>
<tr>
<th>Attenuation Below Max Power</th>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 to 0.05</td>
<td>0.05 to 20</td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>0 dB to 12 dB</td>
<td>± 2.0 dB</td>
</tr>
<tr>
<td>12 dB to 30 dB</td>
<td>± 3.5 dB</td>
</tr>
<tr>
<td>30 dB to 60 dB</td>
<td>± 4.0 dB</td>
</tr>
<tr>
<td>60 dB to 122 dB</td>
<td>± 5.0 dB</td>
</tr>
<tr>
<td>Flatness</td>
<td></td>
</tr>
<tr>
<td>0 dB to 12 dB</td>
<td>± 2.0 dB</td>
</tr>
<tr>
<td>12 dB to 30 dB</td>
<td>± 3.5 dB</td>
</tr>
<tr>
<td>30 dB to 60 dB</td>
<td>± 4.0 dB</td>
</tr>
<tr>
<td>60 dB to 122 dB</td>
<td>± 5.0 dB</td>
</tr>
</tbody>
</table>
Available Output Power

MG3692C, 20 GHz
with High Power Option 15
Maximum Leveled Output Power (Typical)

MG3694C, 40 GHz
with High Power Option 15
Maximum Leveled Output Power (Typical)

Low End Frequency Coverage:
- **MG3692C Standard Frequency**
- **MG3692C with Option 4 or 5**
- Options 2 and/or 22 further reduce power.

Low End Frequency Coverage:
- **MG3694C Standard Frequency**
- **MG3694C with Option 4 or 5**
- Options 2 and/or 22 further reduce power.
Other RF Output Power Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Units</td>
<td>Output units selectable as either dBm or mV. Selection of mV assumes a 50 Ω load. All data entry and display are in the selected units.</td>
</tr>
<tr>
<td>Output Power Resolution</td>
<td>0.01 dB or 0.001 mV</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>50 Ω nominal</td>
</tr>
<tr>
<td>Output SWR (Internal Leveling)</td>
<td>< 2.0 typical</td>
</tr>
<tr>
<td>Power Level Stability with Temperature</td>
<td>Offsets the displayed power level to establish a new reference level.</td>
</tr>
<tr>
<td>Level Offset</td>
<td>Toggles the RF output between an Off and On state. During the Off state, the RF oscillator is turned off. The On or Off state is indicated by two LEDs located below the OUTPUT ON/OFF key on the front panel.</td>
</tr>
<tr>
<td>Output On/Off</td>
<td>System menu selection of RF On or RF Off during frequency switching in CW, Step Sweep, and List Sweep modes.</td>
</tr>
<tr>
<td>RF On/Off Between Frequency Steps</td>
<td>System menu selection of RF On or RF Off during retrace.</td>
</tr>
<tr>
<td>RF On/Off During Retrace</td>
<td>System menu selection of RF On or RF Off during retrace.</td>
</tr>
<tr>
<td>Internal Leveling</td>
<td>Power is leveled at the output connector in all modes.</td>
</tr>
<tr>
<td>External Leveling</td>
<td>Levels output power at a remote detector location.</td>
</tr>
<tr>
<td></td>
<td>Accepts a positive or negative 0.5 mV to 500 mV input signal from the remote detector.</td>
</tr>
<tr>
<td></td>
<td>L1 adjusts the input signal range to an optimum value.</td>
</tr>
<tr>
<td></td>
<td>BNC connector, rear panel</td>
</tr>
<tr>
<td>External Power Meter</td>
<td>Levels output power at a remote power meter location.</td>
</tr>
<tr>
<td></td>
<td>Accepts a ± 1 V full scale input signal from the remote power meter.</td>
</tr>
<tr>
<td></td>
<td>L1 adjusts the input signal range to an optimum value.</td>
</tr>
<tr>
<td></td>
<td>BNC connector, rear panel</td>
</tr>
<tr>
<td>External Leveling Bandwidth</td>
<td>30 kHz typical in Detector mode.</td>
</tr>
<tr>
<td></td>
<td>0.7 Hz typical in Power Meter mode.</td>
</tr>
<tr>
<td>User Level Flatness Correction</td>
<td>Number of points: 2 to 801 points per table</td>
</tr>
<tr>
<td></td>
<td>Number of tables: 5 available</td>
</tr>
<tr>
<td></td>
<td>Entry modes: GPIB power meter or computed data</td>
</tr>
<tr>
<td>External Detector</td>
<td>Levels output power at a remote detector location.</td>
</tr>
<tr>
<td></td>
<td>Accepts a positive or negative 0.5 mV to 500 mV input signal from the remote detector.</td>
</tr>
<tr>
<td></td>
<td>L1 adjusts the input signal range to an optimum value.</td>
</tr>
<tr>
<td></td>
<td>BNC connector, rear panel</td>
</tr>
<tr>
<td>External Power Meter</td>
<td>Levels output power at a remote power meter location.</td>
</tr>
<tr>
<td></td>
<td>Accepts a ± 1 V full scale input signal from the remote power meter.</td>
</tr>
<tr>
<td></td>
<td>L1 adjusts the input signal range to an optimum value.</td>
</tr>
<tr>
<td></td>
<td>BNC connector, rear panel</td>
</tr>
<tr>
<td>External Leveling Bandwidth</td>
<td>30 kHz typical in Detector mode.</td>
</tr>
<tr>
<td></td>
<td>0.7 Hz typical in Power Meter mode.</td>
</tr>
<tr>
<td>User Level Flatness Correction</td>
<td>Number of points: 2 to 801 points per table</td>
</tr>
<tr>
<td></td>
<td>Number of tables: 5 available</td>
</tr>
<tr>
<td></td>
<td>Entry modes: GPIB power meter or computed data</td>
</tr>
</tbody>
</table>

CW Power Sweep

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Sweeps between any two power levels at a single CW frequency.</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.01 dB/step (Log) or 0.001 mV (Linear)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Same as CW power accuracy</td>
</tr>
<tr>
<td>Log/Linear Sweep</td>
<td>Power sweep selectable as either log or linear. Log sweep is in dB; linear sweep is in mV.</td>
</tr>
<tr>
<td>Step Size</td>
<td>User-controlled, 0.01 dB (Log) or 0.001 mV (Linear) to the full power range of the instrument.</td>
</tr>
<tr>
<td>Step Dwell Time</td>
<td>Variable from 1 ms to 99 seconds. If the sweep crosses a step attenuator setting, there will be a sweep dwell of approximately 20 ms to allow setting of the step attenuator.</td>
</tr>
</tbody>
</table>

Sweep Frequency/Step Power

A power level step occurs after each frequency sweep. Power level remains constant for the length of time required to complete each sweep.
Modulation

Frequency/Phase Modulation (Option 12)

Frequency/Phase Modulation is not available <10 MHz with Option 22. Option 12 adds frequency and phase modulation, driven externally via a rear panel BNC connector, 50 W. For internal modulation, add Internal LF Generator and Pulse Generator Option 27.

For the most accurate FM and \(\phi_m \) measurements, Bessel Null methods are used. When verifying FM and \(\phi_m \), the use of the "carrier null" technique is recommended. Measured residual FM effects must be subtracted from modulation meter measurements.

Frequency Generator Multiplication/Division Ratios

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Divide Ratio, (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 10 \text{ MHz} \text{ (Option 22)})</td>
<td>Modulation not available</td>
</tr>
<tr>
<td>(\geq 10.625 \text{ MHz} \text{ to } \leq 31.25 \text{ MHz} \text{ (Option 4)})</td>
<td>128</td>
</tr>
<tr>
<td>(> 31.25 \text{ MHz}) (\leq 62.5 \text{ MHz} \text{ (Option 4)})</td>
<td>64</td>
</tr>
<tr>
<td>(> 62.5 \text{ MHz}) (\leq 125 \text{ MHz} \text{ (Option 4)})</td>
<td>32</td>
</tr>
<tr>
<td>(> 125 \text{ MHz}) (\leq 250 \text{ MHz} \text{ (Option 4)})</td>
<td>16</td>
</tr>
<tr>
<td>(> 250 \text{ MHz}) (\leq 500 \text{ MHz} \text{ (Option 4)})</td>
<td>8</td>
</tr>
<tr>
<td>(> 500 \text{ MHz}) (\leq 1050 \text{ MHz} \text{ (Option 4)})</td>
<td>4</td>
</tr>
<tr>
<td>(> 1050 \text{ MHz}) (\leq 2200 \text{ MHz} \text{ (Option 4)})</td>
<td>2</td>
</tr>
<tr>
<td>(> 10 \text{ MHz}) (\leq 2000 \text{ MHz} \text{ (Option 5)})</td>
<td>1</td>
</tr>
<tr>
<td>(> 2 \text{ GHz}) (\leq 20 \text{ GHz})</td>
<td>1</td>
</tr>
<tr>
<td>(> 20 \text{ GHz}) (\leq 40 \text{ GHz})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(> 40 \text{ GHz}) (\leq 67 \text{ GHz})</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

Frequency Modulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Modes</th>
<th>For all Frequencies other than < 2.2 GHz with Option 4</th>
<th>For Frequencies < 2.2 GHz with Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation</td>
<td>Locked</td>
<td>Rate = 1 kHz to 8 MHz</td>
<td>Rate = 1 kHz to Lesser of 10 MHz or ((300 \times \text{mod rate})/n)</td>
</tr>
<tr>
<td>Deviation</td>
<td>Locked Low-noise</td>
<td>Rate = 50 kHz to 8 MHz</td>
<td>Rate = 50 kHz to Lesser of 10 MHz or ((3 \times \text{mod rate})/n)</td>
</tr>
<tr>
<td>Deviation</td>
<td>Unlocked Narrow</td>
<td>Rate = DC to 8 MHz</td>
<td>Rate = DC to Lesser of 8 MHz or ((0.03 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Deviation</td>
<td>Unlocked Wide</td>
<td>Rate = DC to 100 Hz</td>
<td>Rate = DC to 100 Hz</td>
</tr>
<tr>
<td>Deviation Accuracy</td>
<td>Locked and Low-noise</td>
<td>Rate = 100 kHz Sine wave Int. or 1 (V_{\text{pk}}) Ext.</td>
<td>Rate = 100 kHz sine wave Int. or 1 (V_{\text{pk}}) Ext.</td>
</tr>
<tr>
<td>Flatness</td>
<td>Locked</td>
<td>Rate = 10 kHz to 1 MHz</td>
<td>Rate = 10 kHz to Lesser of 1 MHz or ((0.01 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>Locked</td>
<td>1 kHz to 10 MHz</td>
<td>1 kHz to Lesser of 10 MHz or ((0.03 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>Locked Low-noise</td>
<td>30 kHz to 10 MHz</td>
<td>30 kHz to Lesser of 8 MHz or ((0.03 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>Unlocked Narrow</td>
<td>DC to 10 MHz</td>
<td>DC to Lesser of 10 MHz or ((0.03 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>Unlocked Wide</td>
<td>DC to 100 Hz</td>
<td>DC to 100 Hz</td>
</tr>
<tr>
<td>Incidental AM</td>
<td>Locked and Low-noise</td>
<td>Rate (= 1 \text{ MHz Rate} \times 1 \text{ MHz Deviation})</td>
<td>Rate and Dev. = Lesser of 1 MHz or ((0.01 \times F_{\text{carrier}})/n)</td>
</tr>
<tr>
<td>Harmonic Distortion</td>
<td>Locked</td>
<td>10 kHz Rate, (= 1 \text{ MHz Deviation})</td>
<td>Rate = 10 kHz, Dev. = (\pm 1 \text{ MHz}) in</td>
</tr>
<tr>
<td>External Sensitivity</td>
<td>Locked</td>
<td>(\pm (10 \text{ kHz}/V \text{ to } 20 \text{ MHz}/V)/n)</td>
<td>(\pm (10 \text{ kHz}/V \text{ to } 20 \text{ MHz}/V)/n)</td>
</tr>
<tr>
<td>External Sensitivity</td>
<td>Locked Low-noise</td>
<td>(\pm (10 \text{ kHz}/V \text{ to } 20 \text{ MHz}/V)/n)</td>
<td>(\pm (10 \text{ kHz}/V \text{ to } 20 \text{ MHz}/V)/n)</td>
</tr>
<tr>
<td>External Sensitivity</td>
<td>Unlocked Narrow</td>
<td>(\pm (100 \text{ kHz}/V \text{ to } 100 \text{ MHz}/V)/n)</td>
<td>(\pm (100 \text{ kHz}/V \text{ to } 100 \text{ MHz}/V)/n)</td>
</tr>
</tbody>
</table>
Phase Modulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Modes</th>
<th>For all Frequencies other than < 2.2 GHz with Option 4</th>
<th>For Frequencies < 2.2 GHz with Option 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviation</td>
<td>Narrow</td>
<td>Rate = DC to 8 MHz ± [Lesser of 3 rad or (5 MHz/mod rate)]/n</td>
<td>Rate = DC to Lesser of 8 MHz or (0.03 * F_carrier) ± [Lesser of 3 rad or (5 MHz/mod rate)]/n</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>Rate = DC to 1 MHz ± [Lesser of 400 rad or (10 MHz/mod rate)]/n</td>
<td>Rate = DC to Lesser of 1 MHz or (0.03 * F_carrier) ± [Lesser of 400 rad or (10 MHz/mod rate)]/n</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Narrow and Wide</td>
<td>100 kHz Internal or 1 Vpk External, sine 10%</td>
<td>100 kHz Internal or 1 Vpk External, sine 10%</td>
</tr>
<tr>
<td>Bandwidth (3 dB)</td>
<td>Narrow</td>
<td>DC to 10 MHz</td>
<td>DC to Lesser of 10 MHz or (0.03 * F_carrier)</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>DC to 1 MHz</td>
<td>DC to Lesser of 1 MHz or (0.03 * F_carrier)</td>
</tr>
<tr>
<td>Flatness</td>
<td>Narrow</td>
<td>Rate = DC to 1 MHz ± 1 dB relative to 100 kHz</td>
<td>Rate = DC to Lesser of 1 MHz or (0.01 * F_carrier) ± 1 dB relative to 100 kHz</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>Rate = DC to 500 kHz ± 1 dB relative to 100 kHz</td>
<td>Rate = DC to Lesser of 500 kHz or (0.03 * F_carrier) ± 1 dB relative to 100 kHz</td>
</tr>
<tr>
<td>External Sensitivity</td>
<td>Narrow</td>
<td>± 1 V maximum input ± (0.0025 rad/V to 5 rad/V)/n</td>
<td>± 1 Vpk maximum input ± (0.0025 rad/V to 5 rad/V)/n</td>
</tr>
<tr>
<td></td>
<td>Wide</td>
<td>± (0.25 rad/V to 500 rad/V)/n</td>
<td>± (0.25 rad/V to 500 rad/V)/n</td>
</tr>
</tbody>
</table>

Amplitude Modulation (Option 14)

- **Description**: Option 14 adds amplitude modulation, driven externally via a rear panel BNC connector 50Ω. For internal modulation, add Internal LF and Pulse Generators Option 27. All amplitude modulation specifications apply at 50% depth, 1 kHz rate, with RF level set 6 dB below maximum specified leveled output power, unless otherwise noted. Amplitude Modulation is not available < 10 MHz with Option 22.

- **AM Depth**: Linear: 0% to 90% (nominal)
 Log: 0 dB to 20 dB (nominal)

- **Accuracy**: Reading ± 5%

- **AM Bandwidth (3 dB)**:
 DC to 50 kHz minimum
 DC to 100 kHz typical
 Typical below 2.2 GHz, when ordered with Options 4 and 15

- **Flatness (DC to 10 kHz rates)**: ± 0.3 dB
 < 0.2 rad typical

- **Distortion**: < 5% typical

- **Incidental Phase Modulation (30% depth, 10 kHz rate)**: < 0.2 rad typical

- **External AM Input**: Log AM or Linear AM input
 Rear-panel BNC (50Ω input impedance)
 For internal modulation, add LF Generator Option 27.

- **Sensitivity**: Log AM: Continuously variable from 0 dB per volt to 25 dB per volt.
 Linear AM: Continuously variable from 0% per volt to 100% per volt.

- **Maximum Input**: ± 1 Vpk
Specifications MG3690C

Pulse Modulation (Option 26)

Description
Option 26 adds pulse modulation, driven externally via a rear panel BNC connector, TTL. For internal modulation, add Internal LF and Pulse Generators Option 27. Pulse modulation specifications apply at maximum rated power, unless otherwise noted. Pulse modulation is not available < 10 MHz with Option 22.

On/Off Ratio
> 80 dB or
> 70 dB with high power Option 15;
> 70 dB with Option 4 or 5 and without Option 2 at 500 MHz

Minimum Leveled Pulse Width
100 ns, ≥ 1 GHz
1 μs, < 1 GHz

Minimum Unleveled Pulse Width
< 10 ns

Level Accuracy Relative to CW (100 Hz to 1 MHz PRF)
± 0.5 dB, ≥ 1 μs pulse width
± 1.0 dB, < 1 μs pulse width

Pulse Delay (typical)
50 ns in External Mode

PRF Range
DC to 10 MHz, unleveled
100 Hz to 5 MHz, leveled

External Input
Rear-panel BNC

Drive Level
TTL compatible input

Input Logic
Positive-/negative-true, selectable from modulation menu

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Rise and Fall Time (10 % to 90 %)</th>
<th>Overshoot</th>
<th>Pulse Width Compression</th>
<th>Video Feedthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 10 MHz to < 31.25 MHz (Opt. 4)</td>
<td>400 ns²</td>
<td>33 %a</td>
<td>40 ns²</td>
<td>± 70 mV²</td>
</tr>
<tr>
<td>≥ 31.25 MHz to < 125 MHz (Opt. 4)</td>
<td>90 ns²</td>
<td>22 %a</td>
<td>12 ns²</td>
<td>± 30 mV²</td>
</tr>
<tr>
<td>≥ 125 MHz to < 500 MHz (Opt. 4)</td>
<td>33 ns²</td>
<td>11 %a</td>
<td>12 ns²</td>
<td>± 70 mV²</td>
</tr>
<tr>
<td>≥ 500 MHz to < 2200 MHz (Opt. 4)</td>
<td>15 ns²</td>
<td>10 %</td>
<td>12 ns²</td>
<td>± 50 mV²</td>
</tr>
<tr>
<td>≥ 10 MHz to < 1000 MHz (Opt. 5)</td>
<td>15 ns, 10 ns²</td>
<td>10 %</td>
<td>8 ns²</td>
<td>± 30 mV²</td>
</tr>
<tr>
<td>≥ 1 GHz to < 2 GHz (Opt. 5)</td>
<td>10 ns, 5 ns²</td>
<td>10 %</td>
<td>8 ns²</td>
<td>± 30 mV²</td>
</tr>
<tr>
<td>≥ 2 GHz to 67 GHzb</td>
<td>10 ns, 5 ns²</td>
<td>10 %</td>
<td>8 ns²</td>
<td>± 30 mV²</td>
</tr>
</tbody>
</table>

a. Typical values.
b. Rise time and Pulse Width Compression, > 20 GHz, degrades by 2 ns, with High Power Option 15.
c. For 50 GHz and 67 GHz units, overshoot > 40 GHz is 20 % typical at rated power.

Internal LF and Pulse Generators (Option 27)

Description
An internal pulse generator and two internal waveform generators are added, one providing a frequency or phase modulating signal and the other an amplitude modulating signal. This Internal LF and Pulse Generators option can only be ordered in combination with either FM/ΦM, AM, or Pulse options, 12, 14, and 26 respectively.

Waveforms
Sinusoid, square-wave, triangle, positive ramp, negative ramp, Gaussian noise, uniform noise (Check Option 10 for User-defined.)

Rate
0.1 Hz to 10 MHz sinusoidal
0.1 Hz to 1 MHz square-wave, triangle, ramps

Resolution
0.1 Hz

Accuracy
Same as instrument timebase ± 0.014 Hz

Waveform Outputs
Two BNC connectors on the rear panel, FM/ΦM OUT and AM OUT

Pulse Modes
Singlet, doublet, triplet, quadruplet

Pulse Triggers
Free-run, triggered, gated, delayed, triggered with delay, swept-delay

Pulse Inputs/Outputs
Video pulse and sync out, rear-panel BNC connectors

<table>
<thead>
<tr>
<th>Pulse Parameter</th>
<th>Selectable Clock Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax (100 MHz)</td>
<td>Wide (10 MHz)</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>10 ns to 160 ms</td>
</tr>
<tr>
<td>Pulse Period</td>
<td>100 ns to 160 ms</td>
</tr>
</tbody>
</table>

Variable Delay

<table>
<thead>
<tr>
<th>Mode</th>
<th>Selectable Clock Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlet</td>
<td>0 ns to 160 ms</td>
</tr>
<tr>
<td>Doublet</td>
<td>100 ns to 160 ms</td>
</tr>
<tr>
<td>Triplet</td>
<td>100 ns to 160 ms</td>
</tr>
<tr>
<td>Quadruplet</td>
<td>100 ns to 160 ms</td>
</tr>
</tbody>
</table>

Resolution
10 ns

Accuracy
10 ns (5 ns typical)
a. Period must be longer than the sum of delay and width by 5 clock cycles minimum.
Ultra-Stable Phase Tracking (Option 36)

Description: Option 36 enables up to three MG3690C units fitted with Option 3 or 3X to phase track with a very high degree of stability. Option 36 provides additional rear panel connectors to link internal reference signals together.

100 MHz Reference Output: Provides the reference signal to drive up to two other MG3690C generators. All MG3690C generators must have Option 36 and either Option 3 or 3X. This signal is only intended for use with other Option 36 instruments.

100 MHz Reference Input: Accepts the 100 MHz reference signal from another MG3690C fitted with Option 36. This input is only intended for use with other Option 36 instruments.

Phase Drift: < ±1° over 5 seconds (typical)
< ±1.5° over 100 seconds (typical), after 24 hours warm-up time

User-Defined Modulation Waveform Software (Option 10)

An external software package provides the ability to download user-defined waveforms into the internal LF Generator's memory (requires Option 27, 28A, or 28B). The MG3690C provides as standard with the LF Generator sinusoidal, square-wave, triangle, positive ramp, Gaussian noise, and uniform noise waveforms.

Two look-up tables of 65,536 points can be used to generate two pseudo-random waveforms, one for amplitude modulation and the other for frequency or phase modulation. The download files are simple space-delimited text files containing integer numbers between 0 and 4095, where 0 corresponds to the minimum modulation level and 4095 the maximum.

In addition to the capability of downloading custom waveforms, the software offers a virtual instrument modulation panel. Custom modulation setups with user waveforms can be stored for future use. For IFF signal simulation, the internal generators can be synchronized. They can also be disconnected from the internal modulators, making the low frequency waveforms available at the rear panel for external purposes.

Figure 2-1. Complex Modulation Interface
Millimeter-wave Frequency Coverage

Millimeter-Wave Multiplier 2000-1694 Series

2000-1694 series external waveguide output multipliers are available for banded frequency coverage up to 500 GHz. These external multipliers require at a minimum, an MG3692C with 20 GHz coverage. The output power required to drive the modules is +10 dBm. They can be powered from an external power supply (+12 VDC, 1.5 A typical) using the supplied double banana power cord, or from the 40-187-R DC Power Supply and 2000-1710-R Millimeter-wave power supply adapter. Both included with the modules.

2000-1694 series multipliers have a saturated, unlevelled, output power, yet their inherent flatness is exceptional. Modulating the input drive will indeed modulate the output, except for the case of Amplitude Modulation. Since the output is saturated, Amplitude Modulation is not recommended with these millimeter-wave modules. Frequency and Phase Modulation is possible, but the achieved deviation will be multiplied based on the multiplication factor of the module. Pulse modulation is also possible, with even sharper rise and fall times than the input. All modulation performances are not specified.

For ease of operation, the MG3690C allows the user to enter a frequency scaling factor, the module's multiplication factor, which will be used only for purposes of displaying the proper frequency at the output of the millimeter-wave module, on the MG3690C front panel display.

Waveguide Input

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>12.5 GHz to 18.8 GHz</td>
<td>10.0 GHz to 15.0 GHz</td>
<td>12.5 GHz to 18.4 GHz</td>
<td>11.2 GHz to 17.5 GHz</td>
<td>9.1 GHz to 14.2 GHz</td>
<td>11.8 GHz to 18.4 GHz</td>
<td>12.2 GHz to 18.1 GHz</td>
<td>10.8 GHz to 16.7 GHz</td>
</tr>
<tr>
<td>Waveguide Output</td>
<td>50 GHz to 75 GHz</td>
<td>60 GHz to 90 GHz</td>
<td>75 GHz to 110 GHz</td>
<td>90 GHz to 140 GHz</td>
<td>110 GHz to 170 GHz</td>
<td>140 GHz to 220 GHz</td>
<td>220 GHz to 325 GHz</td>
<td>325 GHz to 500 GHz</td>
</tr>
<tr>
<td>Waveguide Band</td>
<td>WR-15</td>
<td>WR-12</td>
<td>WM-2540</td>
<td>WR-08</td>
<td>WM-2032</td>
<td>WM-1651</td>
<td>WR-05</td>
<td>WM-1295</td>
</tr>
<tr>
<td>Flange</td>
<td>(008)</td>
<td>(009)</td>
<td>(010)</td>
<td>(M08)</td>
<td>(M06)</td>
<td>(M05)</td>
<td>(M05)</td>
<td>(M02.2)</td>
</tr>
<tr>
<td>Output Power</td>
<td>+8 dBm</td>
<td>+6 dBm</td>
<td>+7 dBm</td>
<td>+5 dBm</td>
<td>+9 dBm</td>
<td>+15 dBm</td>
<td>–25 dBm</td>
<td>–25 dBm</td>
</tr>
<tr>
<td>Flatness (typical)</td>
<td>± 2 dB</td>
<td>± 2 dB</td>
<td>± 3 dB</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Output Match</td>
<td>> 11.7 dB</td>
<td>6 dB (typical)</td>
<td>6 dB (typical)</td>
</tr>
<tr>
<td>Multiplication Factor (m)</td>
<td>x4</td>
<td>x6</td>
<td>x6</td>
<td>x8</td>
<td>x12</td>
<td>x12</td>
<td>x18</td>
<td>x30</td>
</tr>
</tbody>
</table>

Frequency Accuracy

- (Synthesizer Accuracy x m)

Frequency Resolution

- (Synthesizer Resolution x m)

Manual Adjustable Attenuator

- 25 dB min
- N/A

Harmonics and Spurious

- -20 dBc (typical)
- N/A

Input Power Required

- +10 dBm

RF Input Connector

- SMA (female)

DC Power

- 12 VDC, 1.5 A (double-banana power cord included)

Dimensions

- 145 mm x 110 mm x 72 mm (not including feet, interfaces, or optional manual attenuation adjuster)

Weight

- < 1 kg

Temperature

- +20 °C to +30 °C

a. These millimeter-wave modules are produced by OML Inc. (Oleson Microwave Labs), located in Morgan Hill, CA, with mutual collaborative experiences over many years. For detailed and up-to-date specifications, please call OML, Inc. or visit their website at http://www.omlinc.com.

b. Multipliers require power from an external power supply (+12 VDC, 1.5 A typical) using the supplied double banana power cord, or from the 40-187-R DC Power Supply and 2000-1710-R Millimeter-wave Power Supply Adapter (both included with the modules).

c. Warranty period for the 2000-1694 Series is one year.
d. Waveguide output flanges are per MIL-DTL-3922/67D (UG387/U-M).
e. Output power is estimated.
f. Available as an option. To order, add “A” to multiplier module part number (for example, 2000-1694-15A-R). Not available with 2000-1694-02-R.
g. In-band mixing products typically ≤ -15 dBc in the lower 10 % of the waveguide band.
h. As relates to multiplied output frequencies.
Inputs and Outputs

<table>
<thead>
<tr>
<th>Description</th>
<th>Connectors may be available but not active if option is not ordered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT ALC IN</td>
<td>Provides for leveling the RF output signal externally with either a detector or power meter. Signal requirements are shown in the RF Output specifications. BNC type, rear panel</td>
</tr>
<tr>
<td>RF OUTPUT (Option 9)</td>
<td>Provides for RF output from 50 Ω source impedance. Option 9 moves the RF Output connector from the front to the rear panel. K Connector (female) $f_{\text{max}} \leq 40$ GHz V Connector (female) $f_{\text{max}} \geq 40$ GHz</td>
</tr>
<tr>
<td>10 MHz REF IN</td>
<td>Accepts an external 10 MHz ± 50 Hz, 0 dBm to +20 dBm time-base signal. Automatically disconnects the internal high-stability time-base option, if installed. 50 Ω impedance BNC type, rear panel</td>
</tr>
<tr>
<td>10 MHz REF OUT</td>
<td>Provides a 1 Vpp, AC coupled, 10 MHz signal derived from the internal frequency standard. 50 Ω impedance BNC type, rear panel</td>
</tr>
<tr>
<td>100 MHz REF IN</td>
<td>Accepts the 100 MHz signal from an MG3690C with Option 36 for ultra-stable phase tracking. 100 MHz REF OUT (Option 36) Provides the 100 MHz signal for an MG3690C with Option 36 ultra-stable phase tracking.</td>
</tr>
<tr>
<td>HORIZ OUT (Horizontal Sweep Output)</td>
<td>Provides 0 V at beginning and +10 V at end of sweep, regardless of sweep width. In CW mode, the voltage is proportional to frequency between 0 V at low end and +10 V at the high end of the range. In CW mode, if CW RAMP is enabled, a repetitive, 0 V to +10 V ramp is provided.</td>
</tr>
<tr>
<td>EFC IN</td>
<td>Provides the capability to frequency modulate the internal crystal oscillator, allowing phase locking of the synthesizer inside an external lock loop. Specifications are on page 2-4.</td>
</tr>
<tr>
<td>AUX I/O (Auxiliary Input/Output)</td>
<td>Provides for most of the rear panel BNC connections through a single, 25-pin, D type connector. Supports master-slave operation with another synthesizer or allows for a single-cable interface with the Model 56100A Scalar Network Analyzer and other Anritsu instruments. See Aux I/O Pin Descriptions on page 2-21. Also provides an Ethernet factory default IP address reset function via pin 19. 25 pin D-type, rear panel</td>
</tr>
<tr>
<td>SERIAL I/O</td>
<td>Provides access to RS-232 terminal ports to support service and calibration functions and master-slave operations. RJ45 type, rear panel</td>
</tr>
<tr>
<td>ETHERNET (10/100 Base-T LAN) I/O</td>
<td>Provides input/output connections for an Ethernet interface. RJ45 type, rear panel</td>
</tr>
<tr>
<td>IEEE-488 GPIB</td>
<td>Provides input/output connections for the General Purpose Interface Bus (GPIB). Type 57, rear panel</td>
</tr>
<tr>
<td>PULSE TRIG IN (Option 26)</td>
<td>Accepts an external TTL compatible signal to pulse modulate the RF output signal or to trigger or to gate the optional internal pulse generator. BNC type, rear panel</td>
</tr>
<tr>
<td>PULSE SYNC OUT (Option 27)</td>
<td>Provides a TTL compatible signal, synchronized to the internal pulse modulation output. BNC type, rear panel</td>
</tr>
<tr>
<td>PULSE VIDEO OUT (Option 27)</td>
<td>Provides a video modulating signal from the internal pulse generator. BNC type, rear panel</td>
</tr>
<tr>
<td>AM IN (Option 14)</td>
<td>Accepts an external signal to amplitude modulate the RF output signal. 50 Ω impedance BNC type, rear panel</td>
</tr>
<tr>
<td>FM/AM IN (Option 12)</td>
<td>Accepts an external signal to frequency or phase modulate the RF output signal. 50 Ω impedance BNC type, rear panel</td>
</tr>
<tr>
<td>AM OUT (Option 27)</td>
<td>Provides the amplitude modulation waveform from the internal LF generator. BNC type, rear panel</td>
</tr>
<tr>
<td>FM/AM OUT (Option 27)</td>
<td>Provides the frequency or phase modulation waveform from the internal LF generator. BNC type, rear panel</td>
</tr>
</tbody>
</table>
Rear Panel

Aux I/O Pin Descriptions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Horizontal Output</td>
<td>14</td>
<td>V/GHz Output</td>
</tr>
<tr>
<td>2</td>
<td>Chassis Ground</td>
<td>15</td>
<td>End-of-Sweep Input</td>
</tr>
<tr>
<td>3</td>
<td>Sequential Sync Output</td>
<td>16</td>
<td>End-of-Sweep Output</td>
</tr>
<tr>
<td>4</td>
<td>Low Alternate Enable Output</td>
<td>17</td>
<td>N/C</td>
</tr>
<tr>
<td>5</td>
<td>Marker Output</td>
<td>18</td>
<td>Sweep Dwell Input</td>
</tr>
<tr>
<td>6</td>
<td>Retrace Blanking Output</td>
<td>19</td>
<td>Ethernet Default Address Reset</td>
</tr>
<tr>
<td>7</td>
<td>Low Alternate Sweep Output</td>
<td>20</td>
<td>Bandswitch Blanking Output</td>
</tr>
<tr>
<td>8</td>
<td>Chassis Ground</td>
<td>21</td>
<td>Master Reset</td>
</tr>
<tr>
<td>9</td>
<td>N/C</td>
<td>22</td>
<td>Horizontal Sweep Input</td>
</tr>
<tr>
<td>10</td>
<td>Sweep Dwell Output</td>
<td>23</td>
<td>Horizontal Sweep Input Return</td>
</tr>
<tr>
<td>11</td>
<td>Lock Status Output</td>
<td>24</td>
<td>Chassis Ground</td>
</tr>
<tr>
<td>12</td>
<td>Penlift</td>
<td>25</td>
<td>Memory Sequencing Input</td>
</tr>
<tr>
<td>13</td>
<td>External Trigger Input</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![MG3690C Rear Panel Diagram]
MG3690C Specifications

Ordering Information

Models

- MG3692C: 2 GHz to 20 GHz Signal Generator
- MG3694C: 2 GHz to 40 GHz Signal Generator
- MG3695C: 2 GHz to 50 GHz Signal Generator
- MG3697C: 2 GHz to 67 GHz Signal Generator (operational to 70 GHz)

Standard Accessories (included)

- 2300-469 Software for MG3690X
- Operation Manual
- Programming Manual
- SCPI Programming Manual
- IVI Drivers
- Technical Datasheet
- 2000-1732-R CAT-7 shielded, twisted-pair, Ethernet cable, 10 ft.
- Miscellaneous Power Cord with plug-type and rating determined by destination country.

Options

- MG3690C/1A: Rack Mount with slides. Rack mount kit containing a set of track slides, mounting ears, and front panel handles to let the instrument be mounted in a standard 19-inch equipment rack.
- MG3690C/1B: Rack Mount without slides. Modifies rack mounting hardware to install unit in a console that has mounting shelves. Includes mounting ears and front panel handles.
- MG3690C/2A, MG3690C/2B, MG3690C/2C: Mechanical Step Attenuator. Adds a 10 dB/step attenuator. Rated RF output power is reduced. This option comes in different versions, based on instrument configuration.
- MG3690C/3: Ultra Low Phase Noise. Adds new modules to significantly reduce SSB phase noise. Not available with Option 3X.
- MG3690C/3X: Premium Phase Noise. Improves Option 3 < 1 kHz offset. Not available with Option 3.
- MG3690C/4: 8 MHz to 2.2 GHz RF coverage. Ultra-Low Phase Noise version. Uses a digital down converter to significantly reduce SSB phase noise. All specifications apply ≥ 10 MHz.
- MG3690C/5: 8 MHz to 2 GHz RF Coverage. Uses an analog down converter. All specifications apply ≥ 10 MHz.
- MG3690C/6: Analog Sweep Capability. When used with Option 4, analog sweep capability is limited to ≥ 500 MHz.
- MG3690C/9V, MG3690C/9K: Rear Panel Output Moves the RF output connector to the rear panel. This option comes in different versions, based on instrument configuration.
- MG3690C/10: User-Defined Modulation Waveform Software. External software package provides the ability to download user-defined waveforms into the memory of the internal waveform generator, serially or via GPIB or Ethernet. External PC and an instrument with LF Generator, Option 27, are required.
- MG3690C/12: Frequency and Phase Modulation. External, via a rear panel BNC connector. For internal modulation capability, requires addition of an LF Generator, Option 27.
- MG3690C/14: Amplitude Modulation. External, via a rear panel BNC connector. For internal modulation capability, requires addition of an LF Generator, Option 27.
- MG3690C/15A, MG3690C/15B, MG3690C/15C, MG3690C/15D: High Power. Adds high-power RF components to the instrument to increase its output power level. This option comes in different versions, based on instrument configuration.
- MG3690C/16: High Stability Time Base. Adds an ovenized, 10 MHz crystal oscillator as a high-stability time base.
- MG3690C/17: Delete Front Panel. Deletes the front panel for use in remote control applications where a front panel display and keyboard control are not needed. Only available with Options 1A or 1B.
- MG3690C/22: 0.1 Hz to 10 MHz Audio coverage. Uses a DDS for coverage down to approximately DC. When adding Option 22, the output power is derated by 2 dB. Frequency resolution below 10 MHz is 0.02 Hz. No modulation is available in the 0.1 Hz to 10 MHz band. Not available without Option 4 or 5.
- MG3690C/26: Pulse Modulation. External, via a rear panel BNC connector. For internal modulation capability, requires addition of a Pulse Generator, Option 27. This option comes in different versions, based on instrument configuration.
- MG3690C/27: Internal LF and Pulse Generators. Provides modulation waveforms for internal AM (if Option 12 installed), FM (if Option 12 installed), and Pulse (if Option 26 installed) and Pulse (if Option 26A/B installed). Not available without Option 12, 14, or 26.
- MG3690C/28: Analog Modulation Suite. For ease of ordering and package pricing, this option bundles Options 12, 14, 26 and 27, offering internally- and externally-driven AM, FM, and Pulse Modulation. This option comes in different versions, based on instrument configuration.
- MG3690C/36: Ultra-Stable Phase Tracking. Provides the capability for ultra-stable phase tracking between instruments using the internal 100 MHz reference. Requires Options 12 or 3X.
- MG3690C/CE: CE Compliance with CE mark.
Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>34RKNF50</td>
<td>DC to 20 GHz, Ruggedized Type N female adapter for units with a K connector output</td>
</tr>
<tr>
<td>ND36329</td>
<td>MASTER/SLAVE interface cable set</td>
</tr>
<tr>
<td>760-278</td>
<td>Transit case (16 kg, 79.4 cm x 61.5 cm x 44.4 cm, roll-away on four wheels)</td>
</tr>
<tr>
<td>2300-469</td>
<td>IVI Driver, includes LabView<sup>®</sup> driver</td>
</tr>
<tr>
<td>806-97</td>
<td>Aux I/O Cable, 25 pin to BNC: Provides BNC access to Aux I/O Data Lines: Sequential Sync, Marker Out, Bandswitch Blanking, Retrace Blanking, Sweep Dwell In, V/GHz, Horizontal Out.</td>
</tr>
</tbody>
</table>

Millimeter Wave Accessories

Note: To order a multiplier with an optional manually adjustable attenuator, add an "A" to the multiplier module part number (for example, 2000-1694-15A-R). Not available with 2000-1694-02-R.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-1694-15-R</td>
<td>50 GHz to 75 GHz V band Multiplier Source Module, WR-15</td>
</tr>
<tr>
<td>2000-1694-12-R</td>
<td>60 GHz to 90 GHz E band Multiplier Source Module, WR-12</td>
</tr>
<tr>
<td>2000-1694-10-R</td>
<td>75 GHz to 110 GHz W band Multiplier Source Module, WR-10</td>
</tr>
<tr>
<td>2000-1694-08-R</td>
<td>90 GHz to 140 GHz F band Multiplier Source Module, WR-08</td>
</tr>
<tr>
<td>2000-1694-06-R</td>
<td>110 GHz to 170 GHz D band Multiplier Source Module, WR-06</td>
</tr>
<tr>
<td>2000-1694-05-R</td>
<td>140 GHz to 220 GHz G band Multiplier Source Module, WR-05</td>
</tr>
<tr>
<td>2000-1694-03-R</td>
<td>220 GHz to 325 GHz H band Multiplier Source Module, WR-03</td>
</tr>
<tr>
<td>2000-1694-02-R</td>
<td>325 GHz to 500 GHz Multiplier Source Module, WR-02.2</td>
</tr>
<tr>
<td>40187-R</td>
<td>DC Power Supply. Included with Multiplier Source Module.</td>
</tr>
</tbody>
</table>

Manuals

<table>
<thead>
<tr>
<th>Manual Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10370-10373</td>
<td>Operation Manual</td>
</tr>
<tr>
<td>10370-10374</td>
<td>Programming Manual (Native)</td>
</tr>
<tr>
<td>10370-10375</td>
<td>Programming Manual (SCPI)</td>
</tr>
<tr>
<td>10370-10376</td>
<td>Maintenance Manual</td>
</tr>
</tbody>
</table>

Upgrades

Economical upgrades are available to upgrade any model to any higher performing model. Consult Anritsu for details.

MG3690C Option Configuration Guide

<table>
<thead>
<tr>
<th>Models</th>
<th>Options</th>
<th>OPT 1</th>
<th>OPT 2</th>
<th>OPT 3</th>
<th>OPT 3X</th>
<th>OPT 4</th>
<th>OPT 5</th>
<th>OPT 6</th>
<th>OPT 9</th>
<th>OPT 10</th>
<th>OPT 12</th>
<th>OPT 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG3692C</td>
<td>1A</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>1B</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>MG3694C</td>
<td>15A</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15B</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15C</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15D</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>MG3695C</td>
<td>16A</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>16B</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>17A</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>17B</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>MG3697C</td>
<td>26A</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26B</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26C</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26D</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Options (continued)

<table>
<thead>
<tr>
<th>Models</th>
<th>Options</th>
<th>OPT 15</th>
<th>OPT 16</th>
<th>OPT 17</th>
<th>OPT 22</th>
<th>OPT 26</th>
<th>OPT 28</th>
<th>OPT 27</th>
<th>OPT 28</th>
<th>OPT 36</th>
<th>OPT 98</th>
<th>OPT 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG3692C</td>
<td>15A</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15B</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15C</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>15D</td>
<td>•</td>
</tr>
<tr>
<td>MG3694C</td>
<td>26A</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26B</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26C</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26D</td>
<td>•</td>
</tr>
<tr>
<td>MG3695C</td>
<td>26A</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26B</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26C</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26D</td>
<td>•</td>
</tr>
<tr>
<td>MG3697C</td>
<td>26A</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26B</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26C</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>26D</td>
<td>•</td>
</tr>
</tbody>
</table>

a. Options 3 and 3X cannot be ordered together.
b. Options 4 and 5 cannot be ordered together.
c. Option 10 can only be ordered with either Options 27 or 28.
d. Option 17 can only be ordered with either Option 1A or 1B.
e. Option 22 can only be ordered with either Option 4 or 5.
f. Option 27 can only be ordered with either Options 12, 14 or 26 in any combination.
g. Option 28 cannot be ordered along with either Options 12, 14, 26, or 27.
h. Option 36 can only be ordered with either Option 3 or 3X.
Training at Anritsu

Anritsu has designed courses to help you stay up to date with technologies important to your job. For available training courses, visit: www.anritsu.com/training