Content:

- Test all OTN rates up to 11.095 Gbps with one single module
- Accurate FEC performance evaluation with O.182
- Field exchangeable XFP and SFP transceivers
- Fast and professional reports

Test all OTN rates up to 11.095 Gbps with one single module

The emergence of ITU-T G.709 recommendation in 2001 (“Network Node Interfaces for the Optical Transport Network (OTN”) has paved the way for a new generation of DWDM optical transport networks whereby several important mechanisms enable the following capabilities:

- Management and intelligence in the optical domain
- Compatibility with all existing network communication protocols
- Enhancement of about 5-6 dB in optical budget through the use of Forward Error Correction scheme (FEC)

The CMA5000-UTA module supports the OTU-1 (2.66 Gbps) and OTU-2 (10.709 Gbps) frame formats as defined in the G.709 recommendation. In addition, the UTA module also supports the 11.049 Gig FEC and 11.095 Gig FEC formats. Both formats are identical to standard OTU-2 frame but with overclocking in order to authorize the mapping of 10GigE-LAN traffic directly into the OTN frame. The 2 rates (11.049 and 11.095 Gbps) correspond to the 2 different methods of mapping into OTU-2: with and without fixed stuff (see figure 1).
Key Features

- Multi-rates OTN support:
 - OTU-2 (10.709 Gbps)
 - OTU-1 (2.66 Gbps)
 - 11.049 Gbps FEC
 - 11.095 Gbps FEC
- SDH/SONET mapping into OTU-1/OTU-2 frames
- ODU-1 mapping into OTU-2
- Edition of OTN overhead bytes: OTU, ODU, OPU
- FEC encoder / decoder can be activated / deactivated
- Poisson error generation according to ITU-T O.182 recommendation
- Field exchangeable XFP
- Automatic test report in PDF

Key Applications

- Installation, commissioning and troubleshooting tests
- Accurate FEC performance evaluation through O.182 error insertions
- Test of “extended OTN” equipments at 11.049 Gbps and 11.095 Gbps

Fig.1: The different OTN frames supported by the CMA5000-UTA
Accurate FEC performance evaluation with O.182

The ITU-T G.709 Optical Transport Network (OTN) Forward Error Correction (FEC) code uses the Reed Solomon codes (RS255 and RS239). Since the Reed Solomon codes are block codes, generation of pseudo-random errors makes it impossible to evaluate FEC decoder performance properly by comparing the error correction performance with the theoretical curve. Accordingly, a new method of error generation has been specified by the ITU-T O.182 recommendation. This method involves a special Poisson error generator that approximates the actual conditions of an in-service network and is a suitable condition for evaluating FEC performance. The CMA5000-UTA has a Poisson error generator fully compliant to O.182.

Field exchangeable XFP and SFP transceivers

The UTA module supports hot pluggable XFP and SFP transceivers. This feature brings a lot of configurability to the module. In the field, the user just has to replace the XFP/SFP by another to change the optical interface characteristics. This is particularly important as many optical interface standards exist today, each of them specifying a wavelength and a maximum transmission range.

![Fig. 3: Change the optical interface of your module in the field via XFP/SFP transceivers](image)
Fast and professional reports
Creating professional reports has never been so easy with the UTA application. After stopping a measurement, the report is just one click away: produce, save, print reports directly from the application. Select the set of results you want to produce, fill in the header information associated with the measurement and the UTA application will generate professionally presented reports in PDF format.

Fig. 4: Generate automatic test report in PDF format with just one click
Interfaces and Signal Specifications

<table>
<thead>
<tr>
<th>Signal</th>
<th>Port/Connector</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU-2 (10.709 Gb/s)</td>
<td>One XFP port</td>
<td>As per G.709</td>
</tr>
<tr>
<td>11.049 Gb/s FEC</td>
<td></td>
<td>As per GSup43 subclause 7.2</td>
</tr>
<tr>
<td>11.095 Gb/s FEC</td>
<td></td>
<td>As per GSup43 subclause 7.1</td>
</tr>
<tr>
<td>OTU-1 (2.66 Gb/s)</td>
<td>One SFP port</td>
<td>As per G.709</td>
</tr>
</tbody>
</table>

Optical Interfaces

XFP

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Ref.</th>
<th>Wavelength</th>
<th>Output Power</th>
<th>Reach</th>
<th>Overload</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU-2 / 11G FEC</td>
<td>5610-150-UTA</td>
<td>1310 nm</td>
<td>-6 to -1 dBm</td>
<td>10 km</td>
<td>-1 dBm</td>
<td>-11 dBm</td>
</tr>
<tr>
<td></td>
<td>5610-142-UTA</td>
<td>1550 nm</td>
<td>-1 to +2 dBm</td>
<td>40 km</td>
<td>-1 dBm</td>
<td>-14 dBm</td>
</tr>
<tr>
<td></td>
<td>5610-143-UTA</td>
<td>1550 nm</td>
<td>0 to +4 dBm</td>
<td>80 km</td>
<td>-7 dBm</td>
<td>-24 dBm</td>
</tr>
</tbody>
</table>

SFP

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Ref.</th>
<th>Wavelength</th>
<th>Output Power</th>
<th>Reach</th>
<th>Overload</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU-1</td>
<td>5610-144-UTA</td>
<td>1310 nm</td>
<td>-2 to +3 dBm</td>
<td>40 km</td>
<td>-9 dBm</td>
<td>-25 dBm</td>
</tr>
<tr>
<td></td>
<td>5610-145-UTA</td>
<td>1550 nm</td>
<td>-2 to +3 dBm</td>
<td>80 km</td>
<td>-9 dBm</td>
<td>-26 dBm</td>
</tr>
</tbody>
</table>

Clock Synchronization

- **Clock Reference**
 - Internal stratum 3 clock generation
 - External 2.048 MHz reference clock
 - Timed from 2.048 Mbit/s received signal
 - External 1.544 MHz reference clock
 - Timed from 1.544 Mbit/s received signal
 - External 5 MHz clock
 - External 10 MHz clock
 - Timed from OTU-2/OTU-1/11.049 Gbps/11.095 Gbps received signal

- **Clock Output**
 - Line rate divided by 16
 - 10 MHz

Notes

1. The XFP and SFP interfaces of the UTA module meet the requirements stated in the MSA standard
2. XFP and SFP must be ordered separately
Frame Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTN format</td>
<td>OTU-2 and OTU-1 as per ITU-T G.709</td>
</tr>
<tr>
<td>SDH format</td>
<td>STM-64 and STM-16 as per ITU-T G.707</td>
</tr>
<tr>
<td>SONET format</td>
<td>OC-192 and OC-48 as per Telcordia GR-253</td>
</tr>
</tbody>
</table>

Unframed Signals

<table>
<thead>
<tr>
<th>Rates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.709 Gbps</td>
<td></td>
</tr>
<tr>
<td>11.096 Gbps</td>
<td></td>
</tr>
<tr>
<td>11.096 Gbps</td>
<td></td>
</tr>
<tr>
<td>10.709 Gbps</td>
<td></td>
</tr>
</tbody>
</table>

OTU-2 Mappings & Structures

- **10.709 Gbps**
 - OTU-2 → ODU-2 → OPU-2 → CBR 10G async.
 - Internal STM-64/OC-192
 - Test
 - (*) FEC encoder can be activated/deactivated
 - ODU-1
 - CBR 10G sync.
 - Internal STM-64/OC-192
 - Test
 - (*) FEC decoder can be activated/deactivated
 - BULK
 - Test

- **11.096 Gbps**
 - OTU-2 → ODU-2 → OPU-2 → CBR 10G async.
 - Test
 - CBR 10G sync.
 - Test

- **11.049 Gbps**
 - Unframed
 - Test

- **10.709 Gbps**
 - PRBS
OTU-1 Mappings & Structures

2.66 Gbps

OTU-1 → ODU-1 → OPU-1 → CBR 2.5G async.

CBR 2.5G sync.

(*) FEC encoder can be activated/deactivated
(⁎) FEC decoder can be activated/deactivated

Unframed → BULK → PRBS

Test Patterns

PRBS
- PRBS 31, PRBS 23, PRBS 15 (inverted and non-inverted)

Patterns
- NULL pattern, All "1s", All "0s", Alternate "01", 16 bit user programmable pattern

Internal SDH Frame Structures

OPU-2 → STM-64 → AU-4-64c → VC-4-64c → C-4-64c

Bulk

OPU-1 → STM-16 → AU-4-16c → VC-4-16c → C-4-16c

Bulk

AU-4-4c → VC-4-4c → C-4-4c

Bulk

AU-4 → VC-4 → C-4

Bulk
Internal SONET Frame Structures

<table>
<thead>
<tr>
<th>OPU-2</th>
<th>OC-192</th>
<th>STS-192</th>
<th>STS-192c</th>
<th>STS-192c SPE</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPU-1</td>
<td>OC-48</td>
<td>STS-48</td>
<td>STS-48c</td>
<td>STS-48c SPE</td>
<td>Bulk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STS-12</td>
<td>STS-12c</td>
<td>STS-12c SPE</td>
<td>Bulk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STS-3</td>
<td>STS-3c</td>
<td>STS-3c SPE</td>
<td>Bulk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>STS-1</td>
<td>STS1 SPE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTN Overhead Editors

<table>
<thead>
<tr>
<th>Editor</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU Editor</td>
<td>FAS: OA1, OA2</td>
</tr>
<tr>
<td></td>
<td>SM: SAPI, DAPI, Operator bytes</td>
</tr>
<tr>
<td></td>
<td>GCC 0</td>
</tr>
<tr>
<td>ODU Editor</td>
<td>RES: 3 bytes</td>
</tr>
<tr>
<td></td>
<td>TCM/ACT: 1 byte</td>
</tr>
<tr>
<td></td>
<td>TCM-i (i=1 to 6): SAPI, DAPI, Operator bytes</td>
</tr>
<tr>
<td></td>
<td>FTFL: 1 byte</td>
</tr>
<tr>
<td></td>
<td>GCC 1: 2 bytes</td>
</tr>
<tr>
<td></td>
<td>GCC 2: 2 bytes</td>
</tr>
<tr>
<td></td>
<td>APS/PCC: 4 bytes</td>
</tr>
<tr>
<td>OPU Editor</td>
<td>PSI: PT</td>
</tr>
</tbody>
</table>

SDH/SONET Overhead Editors

<table>
<thead>
<tr>
<th>Frame</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH</td>
<td>All bytes of SOH (STM-1) are programmable except B1/B2</td>
</tr>
<tr>
<td></td>
<td>J0 (Trace Identifier): programmable 15 bytes ASCII sequence, CRC (E.164) added</td>
</tr>
<tr>
<td>POH</td>
<td>C2, G1, F2, H4, F3, K3, N1</td>
</tr>
<tr>
<td></td>
<td>J1 (trace Identifier): programmable 15 bytes ASCII sequence, CRC (E.164) added</td>
</tr>
<tr>
<td>SONET Frame</td>
<td>All bytes of SOH (STS-3) are programmable except B1/B2 and Z0</td>
</tr>
<tr>
<td></td>
<td>J0 (Trace Identifier): programmable 62 bytes ASCII sequence, CRLF added</td>
</tr>
<tr>
<td>POH</td>
<td>C2, G1, F2, H4, Z3, Z4, N1</td>
</tr>
<tr>
<td></td>
<td>J1 (trace Identifier): programmable 62 bytes ASCII sequence, CRLF added</td>
</tr>
</tbody>
</table>
Errors Addition

<table>
<thead>
<tr>
<th>Component</th>
<th>Error Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH over OTN</td>
<td>• A1/A2, B1, B2, B3, MS-REI, AU-REI, ERR</td>
</tr>
<tr>
<td>SONET over OTN</td>
<td>• A1/A2, B1, B2, B3, REI-L, REI-P, ERR</td>
</tr>
<tr>
<td>OTN</td>
<td>• FEC:
Correctable FEC bit, Correctable FEC block, Uncorrectable FEC block
Error generation according to O.182 (Poisson error generation)
• OTU:
FAS, MFAS, SM-BIP 8, SM-BEI
• ODU:
PM-BIP 8, PM-BEI</td>
</tr>
</tbody>
</table>

Error Control
• Programmable number or Rate
• FEC error control: User-programmable 8-bit mask

Alarms Addition

<table>
<thead>
<tr>
<th>Component</th>
<th>Alarm Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDH over OTN</td>
<td>• LOF, OOF, RS-TIM, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-PLM, HP-TIM, HP-UNEQ, HP-RDI, LSS</td>
</tr>
<tr>
<td>OTN</td>
<td>• OTU:
LOF, OOF, LOM, OOM, OTU-AIS, SM-TIM, SM-IAE, SM-BDI, SM-BIAE, SM-SAPI, SM-DAPI
• ODU:
ODU-AIS, ODU-LCK, ODU-OCI, PM-BDI, PM-SAPI, PM-DAPI
• OPU:
PLM</td>
</tr>
</tbody>
</table>

Alarm Control
• On steady-state or programmable number of frames

Test Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU Frequency Shift</td>
<td>• Programmable frequency offset: -100 ppm to +100 ppm</td>
</tr>
<tr>
<td>OPU Justifications</td>
<td>• Generation of payload frequency offset: -65 ppm to +65 ppm</td>
</tr>
<tr>
<td>FEC</td>
<td>• FEC encoder can be deactivated</td>
</tr>
<tr>
<td>SDH/SONET Pointer Movements</td>
<td>• Pointer movement generation:
o Pointer set to any value with or without NDF
o Positive and Negative movements
o G.783 sequences</td>
</tr>
</tbody>
</table>
OTN Analysis

| Signal Qualification | • Power meter (dB)
<table>
<thead>
<tr>
<th></th>
<th>• Frequency meter (ppm)</th>
</tr>
</thead>
</table>
| Error Analysis | • **FEC:**
| | FEC bit, FEC block, FUEB
| | • **OTU:**
| | FAS, MFAS, SM-BIP 8, SM-BEI
| | • **ODU:**
| | PM-BIP 8, PM-BEI
| | • **Payload:**
| | ERR |
| Alarm Analysis | • **OTU:**
| | LOF, OOF, LOM, OOM, OTU-AIS, SM-TIM, SM-IAE, SM-BDI, SM-BIAE
| | • **ODU:**
| | ODU-AIS, ODU-LCK, ODU-OCI, PM-BDI, PM-TIM
| | • **OPU:**
| | PLM |
| Justifications | • Positive and Negative OPU justifications count
| | • OPU frequency shift (ppm) |

SDH/SONET over OTN Analysis

SDH

<table>
<thead>
<tr>
<th>Error Analysis</th>
<th>• A1/A2, B1, B2, B3, MS-REI, AU-REI, ERR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Analysis</td>
<td>• LOF, OOF, RS-TIM, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-PLM, HP-TIM, HP-UNEQ, HP-RDI, LSS</td>
</tr>
</tbody>
</table>
| Pointer Movements| • Pointer value
| | • Number of positive and negative pointer movements
| | • Number of pointer movements with NDF |

SONET

<table>
<thead>
<tr>
<th>Error Analysis</th>
<th>• A1/A2, B1, B2, B3, REI-L, REI-P, ERR</th>
</tr>
</thead>
</table>
| Pointer Movements| • Pointer value
| | • Number of positive and negative pointer movements
| | • Number of pointer movements with NDF |
Ordering Information

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5610-000-UTA</td>
<td>UTA base module</td>
</tr>
<tr>
<td></td>
<td>*Applications must be ordered separately</td>
</tr>
<tr>
<td>5610-301-UTA</td>
<td>OTN application for UTA module supporting:</td>
</tr>
<tr>
<td></td>
<td>- OTU-2 interface (XFP not included)</td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5610-311-UTA</td>
<td>OTU-1" option for OTN application (SFP not included)</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5610-150-UTA</td>
<td>1310 nm XFP transceiver (10 km) (LC connector)</td>
</tr>
<tr>
<td></td>
<td>* Multi-rates XFP supporting STM-64/OC-192/10 GigE/OTU-2</td>
</tr>
<tr>
<td>5610-142-UTA</td>
<td>1550 nm XFP transceiver (40 km) (LC connector)</td>
</tr>
<tr>
<td></td>
<td>* Multi-rates XFP supporting STM-64/OC-192/10 GigE/OTU-2</td>
</tr>
<tr>
<td>5610-143-UTA</td>
<td>1550 nm XFP transceiver (80 km) (LC connector)</td>
</tr>
<tr>
<td></td>
<td>* Multi-rates XFP supporting STM-64/OC-192/10 GigE/OTU-2</td>
</tr>
<tr>
<td>5610-144-UTA</td>
<td>1310 nm SFP transceiver (40 km) (LC connector)</td>
</tr>
<tr>
<td></td>
<td>* Multi-rates SFP supporting STM-1/4/16/OC-3/12/48/OTU-1</td>
</tr>
<tr>
<td>5610-145-UTA</td>
<td>1550 nm SFP transceiver (80 km) (LC connector)</td>
</tr>
<tr>
<td></td>
<td>* Multi-rates SFP supporting STM-1/4/16/OC-3/12/48/OTU-1</td>
</tr>
</tbody>
</table>

Upgrades

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5610-360-UTA</td>
<td>UTA upgrade with "OTN application supporting OTU-2 " (XFP not included)</td>
</tr>
<tr>
<td>5610-361-UTA</td>
<td>UTA upgrade with "OTU-1" option (SFP not included)</td>
</tr>
<tr>
<td></td>
<td>* Requires the "OTN" application</td>
</tr>
</tbody>
</table>

Note 1: For best performance, the CMA5000 platform must have 512M RAM when using UTA with more than one application.

Note 2: All the 10G/11G applications are field upgradeable.

For upgrades with reference 5610-361-UTA, customers must call their Anritsu contact with module Serial Number as hardware upgrade might be required.
Anritsu Corporation
5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555
Japan
Phone: +81-46-223-1111
Fax: +81-46-296-1264

U.S.A.
Anritsu Company
1155 East Collins Blvd., Richardson, TX 75081
Toll Free: 1-800-ANRITSU (267-4878)
Phone: +1-972-644-1777
Fax: +1-972-671-1877

Canada
Anritsu Electronics Ltd.
700 Silver Seven Road, Suite 120, Kanata,
Ontario K2V 1C3, Canada
Phone: +1-613-591-2003
Fax: +1-613-591-1006

Brazil
Anritsu Eletrônica Ltda.
Praca Amadeu Amaral, 27 – 1 Andar
01327-010-Paraiso-São Paulo-Brazil
Phone: +55-11-3283-2511
Fax: +55-11-3288-6940

U.K.
Anritsu EMEA Ltd.
200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K.
Phone: +44-1582-433200
Fax: +44-1582-731303

France
Anritsu S.A.
16/18, Avenue du Québec, SILIC 720
91961 COUR Taboeuf Cedex, France
Phone: +33-1-60-92-15-50
Fax: +33-1-64-46-10-65

Germany
Anritsu GmbH
Nemetschek Haus, Konrad-Zuse-Platz 1
81829 München, Germany
Phone: +49-89-442309-0
Fax: +49-89-442309-55

Italy
Anritsu S.p.A.
Via Elio Vittorini, 128, 00144 Roma, Italy
Phone: +39-6-509-9711
Fax: +39-6-502-2425

Sweden
Anritsu AB
Borgafjordsgatan 13, 164 40 KISTA, Sweden
Phone: +46-8-534-707-00
Fax: +46-8-534-707-30

Finland
Anritsu AB
Teknobulevardi 3-5, FI-01530 Vantaa, Finland
Phone: +358-20-741-8100
Fax: +358-20-741-8111

Denmark
Anritsu A/S
Kirkebjerg Allé 90, DK-2605 Brandby, Denmark
Phone: +45-72112200
Fax: +45-72112210

Spain
Anritsu EMEA Ltd.
Oficina de Representación en España
Edificio Vegaloba
Avda de la Vega, n° 1 (edf 8, pl 1, of 8)
28108 ALCOBENDAS - Madrid, Spain
Phone: +34-914905761
Fax: +34-914905762

Russia
Anritsu EMEA Ltd.
Representation Office in Russia
Tverskaya str. 16/2, bld. 1, 7th floor.
Russia, 125009, Moscow
Phone: +7-495-363-1694
Fax: +7-495-935-8962

United Arab Emirates
Anritsu EMEA Ltd.
Dubai Liaison Office
P O Box 500413 - Dubai Internet City
Al Thuraya Building, Tower 1, Suit 701, 7th Floor
Dubai, United Arab Emirates
Phone: +971-4-3670352
Fax: +971-4-3688460

Singapore
Anritsu Pte Ltd.
60 Alexandra Terrace, #02-08, The Comtech
(Lobby A), Singapore 118502
Phone: +65-6282-2400
Fax: +65-6282-2533

India
Anritsu Pte. Ltd.
India Branch Office
Unit No. S-3, Second Floor, Esteem Red Cross
Bhavan, No 26, Race Course Road,
Bangalore 560 001, India
Phone: +91-80-32944707
Fax: +91-80-22356648

P.R. China (Hong Kong)
Anritsu Company Ltd.
Units 4 & 5, 28th Floor, Greenfield Tower,
Concordia Plaza, No. 1 Science Museum Road,
Tsim Sha Tsui East, Kowloon, Hong Kong
Phone: +852-2301-4980
Fax: +852-2301-3545

P.R. China (Beijing)
Anritsu Company Ltd.
Beijing Representative Office
Room 1515, Beijing Fortune Building,
No. 5, Dong-San-Huan Bei Road,
Chao-Yang District, Beijing 10004, P.R. China
Phone: +86-10-6590-9230
Fax: +86-10-6590-9235

Korea
Anritsu Corporation, Ltd.
8F Hyunjuk Building, 832-41, Yeoksam dong,
Kangnam-ku, Seoul, 135-080, Korea
Phone: +82-2-553-6603
Fax: +82-2-553-6604

Australia
Anritsu Pty Ltd.
Unit 21 / 270 Ferntree Gully Road,
Notting Hill, Victoria 3168 Australia
Phone: +61-3-9558-8177
Fax: +61-3-9558-8255

Taiwan
Anritsu Company Inc.
7F, No. 316, Sec. 1, Neihu Rd., Taipei 114,
Taiwan
Phone: +886-2-8751-1816
Fax: +886-2-8751-1817

Please Contact: