Measurement Guide

Tracking Generator for Anritsu RF and Microwave Handheld Instruments

Spectrum Master™ E-Series

Tracking Generator Option 20

Spectrum Master™ T-Series

Tracking Generator Option 809
Option 813
Option 820
TRADEMARK ACKNOWLEDGMENTS

Spectrum Master is a trademark of Anritsu Company.

NOTICE

Anritsu Company has prepared this manual for use by Anritsu Company personnel and customers as a guide for the proper installation, operation and maintenance of Anritsu Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of Anritsu Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Company.

UPDATES

Updates, if any, can be downloaded from the Anritsu Website at:
http://www.anritsu.com
For the latest service and sales contact information in your area, please visit:
http://www.anritsu.com/contact.asp
Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Company uses the following symbols to indicate safety-related information. For your own safety, please read the information carefully *before* operating the equipment.

Symbols Used in Manuals

Danger

![Danger Symbol](image)

This indicates a risk from a very dangerous condition or procedure that could result in serious injury or death and possible loss related to equipment malfunction. Follow all precautions and procedures to minimize this risk.

Warning

![Warning Symbol](image)

WARNING

This indicates a risk from a hazardous condition or procedure that could result in light-to-severe injury or loss related to equipment malfunction. Follow all precautions and procedures to minimize this risk.

Caution

![Caution Symbol](image)

This indicates a risk from a hazardous procedure that could result in loss related to equipment malfunction. Follow all precautions and procedures to minimize this risk.

Safety Symbols Used on Equipment and in Manuals

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions *before* operating the equipment. Some or all of the following five symbols may or may not be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

- ![Prohibited Operation Symbol](image)

 This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

- ![Compulsory Safety Precaution Symbol](image)

 This indicates a compulsory safety precaution. The required operation is indicated symbolically in or near the circle.

- ![Warning or Caution Symbol](image)

 This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

- ![Note Symbol](image)

 This indicates a note. The contents are described in the box.

- ![Recycle Symbol](image)

 These indicate that the marked part should be recycled.
For Safety

Warning
Always refer to the operation manual when working near locations at which the alert mark, shown on the left, is attached. If the operation, etc., is performed without heeding the advice in the operation manual, there is a risk of personal injury. In addition, the equipment performance may be reduced. Moreover, this alert mark is sometimes used with other marks and descriptions indicating other dangers.

Warning
When supplying power to this equipment, connect the accessory 3-pin power cord to a 3-pin grounded power outlet. If a grounded 3-pin outlet is not available, use a conversion adapter and ground the green wire, or connect the frame ground on the rear panel of the equipment to ground. If power is supplied without grounding the equipment, there is a risk of receiving a severe or fatal electric shock.

Warning
This equipment can not be repaired by the operator. Do not attempt to remove the equipment covers or to disassemble internal components. Only qualified service technicians with a knowledge of electrical fire and shock hazards should service this equipment. There are high-voltage parts in this equipment presenting a risk of severe injury or fatal electric shock to untrained personnel. In addition, there is a risk of damage to precision components.

Caution
Electrostatic Discharge (ESD) can damage the highly sensitive circuits in the instrument. ESD is most likely to occur as test devices are being connected to, or disconnected from, the instrument’s front and rear panel ports and connectors. You can protect the instrument and test devices by wearing a static-discharge wristband. Alternatively, you can ground yourself to discharge any static charge by touching the outer chassis of the grounded instrument before touching the instrument’s front and rear panel ports and connectors. Avoid touching the test port center conductors unless you are properly grounded and have eliminated the possibility of static discharge.

Repair of damage that is found to be caused by electrostatic discharge is not covered under warranty.

Warning
This equipment is supplied with a rechargeable battery that could potentially leak hazardous compounds into the environment. These hazardous compounds present a risk of injury or loss due to exposure. Anritsu Company recommends removing the battery for long-term storage of the instrument and storing the battery in a leak-proof, plastic container. Follow the environmental storage requirements specified in the product data sheet.
Table of Contents

Chapter 1—General Information
- 1-1 Introduction .. 1-1
- 1-2 Contacting Anritsu .. 1-2
- 1-3 Selecting Tracking Generator 1-2

Chapter 2—E-Series Tracking Generator
- 2-1 Generator Mode .. 2-1
- 2-2 Tracking Generator Overview 2-1
- 2-3 Measurement Example 2-2
 - Enhancing Accuracy .. 2-4
- 2-4 Transmission Measurements ... 2-6
- 2-5 CW Generator Overview 2-8
- 2-6 Tracking Generator Menus 2-10
- 2-7 Generator Menu ... 2-11
 - Settings Menu ... 2-12
 - Transmission Measurement Menu 2-13

Chapter 3—T-Series Tracking Generator
- 3-1 Generator Mode ... 3-1
- 3-2 Tracking Generator Overview 3-1
- 3-3 Measurement Example 3-2
- 3-4 Transmission Measurements ... 3-4
- 3-5 CW Generator Overview 3-6
- 3-6 Tracking Generator Menus 3-8
- 3-7 Generator Menu ... 3-9
 - Settings Menu ... 3-10
 - Transmission Measurement Menu 3-11

Index
Chapter 1 — General Information

1-1 Introduction

This Measurement Guide documents Option 20 Tracking Generator functions of the Anritsu Spectrum Master E-Series handheld instruments and Option 809, Option 813, and Option 820 of the Spectrum Master T-Series instrument.

The Option 20 Tracking Generator has a starting frequency of 500 kHz. The Option 809, Option 813, and Option 820 Tracking Generators have a starting frequency of 100 kHz. The highest frequency is the same as the highest tuning frequency of the spectrum analyzer.

Options 20, 809, 813, and 820 add Tracking Generator function to the Spectrum Analyzer mode of the instrument. This measurement guide describes only specific Tracking Generator functions.

The tracking generator and spectrum analyzer combination allows a signal to be applied to a device under test (DUT) to measure the frequency response.

General Spectrum Analyzer measurement functions including **Frequency**, **Amplitude**, **Span**, **Bandwidth**, **Marker**, **Sweep**, **Trace**, and **Limit** menus are detailed in the Spectrum Analyzer Measurement Guides (SPA MG) available on the Anritsu Web site:

- E-Series Spectrum Master SPA MG (p/n 10580-00244)
- T-Series Spectrum Master SPA MG (p/n 10580-00349)

Note

Not all instrument models offer every option or measurement mode. Please refer to the Technical Data Sheet of your instrument for available options.

The screen images on your instrument may vary from those shown in this Measurement Guide.

Note

Master Software Tools does not support capture of Tracking Generator traces.
1-2 Contacting Anritsu

To contact Anritsu, please visit:

http://www.anritsu.com/contact.asp

From here, you can select the latest sales, select service and support contact information in your country or region, provide online feedback, complete a “Talk to Anritsu” form to have your questions answered, or obtain other services offered by Anritsu.

Updated product information can be found on the Anritsu web site:

http://www.anritsu.com/

Search for the product model number. The latest documentation is on the product page under the Library tab.

1-3 Selecting Tracking Generator

Press the Menu button and select the Tracking Generator measurement shortcut by tapping on the touch screen (Figure 1-1).

You can also press the Shift key then the Mode (9) key, select Spectrum Analyzer (Figure 1-2) from the list using the rotary knob or the Arrow key, and press Enter. In Spectrum Analyzer mode, press the Shift then Measure (4) keys and then press Generator (Figure 1-3 on page 1-3).
Figure 1-2. Measurement Mode List (example)

Figure 1-3. Tracking and CW Generator Options

Refer to Chapter 2, “E-Series Tracking Generator” or Chapter 3, “T-Series Tracking Generator” for detailed information on the tracking generator operation and menus.
Chapter 2 — E-Series Tracking Generator

(Option 20)

2-1 Generator Mode

Option 20 adds a Tracking Generator to the Spectrum Analyzer mode of the instrument. The Tracking Generator generates a swept signal with an output frequency that is the same as the tuning frequency of the spectrum analyzer.

Additionally, a CW generator feature is included in Option 20. The sine wave output frequency and power is set by the user. Refer to Section 2-5 “CW Generator Overview” on page 2-8.

The output power is leveled and has a specified power range −50 dBm to +0 dBm in 0.1 dB steps.

| Note | Operation outside this power range is possible. However, performance and compliance with specifications are not guaranteed. |

Power output information is available for both absolute and transmission (normalized) measurements.

Enhanced power level calibration is available for the generator output. Additional information about the enhanced level calibration is provided later in this chapter.

2-2 Tracking Generator Overview

1. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.
2. Preset the instrument (Shift+1 > Preset).
3. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00244) for additional information.
4. Press the Shift key, then the Measure (4) key. Press the Generator key.
5. Press the Output Power button and set the output power (at the output connector before any external attenuation). In tracking mode, the output is leveled and flat over the spectrum analyzer frequency range.
6. Set the Generator Mode to Tracking. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency.
7. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.
2-3 Measurement Example

This example demonstrates how to connect a Device Under Test (DUT) and make a measurement. This example will characterize the frequency response of a filter in the GSM frequency band.

1. Set the frequency range to cover the range of the DUT being tested. In this example, the center frequency is set to 1.8 GHz with a 1 GHz span.

2. Set the Generator to Tracking Mode with an Output Power of 0.0 dBm. Refer to the previous “Tracking Generator Overview” section for additional information.

3. Connect the DUT as shown in Figure 2-1 on page 2-2. For connector torque and connector care information, refer to the User Guide for your instrument.

4. Toggle the Generator Output to On.

Note

Turning the Tracking Generator On sets the detection type (Amplitude > Detection) to Sample and sets the sweep mode (Sweep > Sweep Mode) to No FFT. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on.

Figure 2-1. Connection of Device Under Test
5. Observe the measurement to confirm that the pass band frequency range covers the required span.

6. If the spectrum analyzer noise floor is too high for the necessary measurements, then reduce the input attenuation and RBW to maximize the dynamic range. Figure 2-2 on page 2-3 shows the sample setup with the input attenuation lowered from 30 dB to 10 dB and with the RBW reduced from 3 MHz to 300 kHz.

7. When measuring a filter with a very high insertion loss in the stop band, press the Shift key, then the Trace (5) key. Press the Trace A Operations submenu key, then the Average → A submenu key to turn on averaging and clean up the stop band area. An averaging value of 10 will probably be adequate for most filters.

8. Under the Setting submenu turn Power Statistics On (Figure 2-2) to display the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep.

Note

If the noise floor drops below the visible display, then set the Scale dB/division setting to a value larger than 10. This will increase the displayed amplitude range.

Figure 2-2. Increasing Measurement Dynamic Range, Trace Averaging On, Displaying Power Statistics

Note

Many of displayed settings on the left side of the screen are used as menu shortcuts. Select a parameter by touching the appropriate setting on the touch screen to display the menu and set the parameter for editing.
Enhancing Accuracy

For detailed power level measurements, the output flatness of the tracking generator can be calibrated in the field.

1. After the frequency range and other settings are determined, disconnect the DUT and make a through connection between the GENERATOR/RF OUT connector and the ANALYZER/RF IN connector. For the most accurate results, use the same cables and adapters for this connection as were used to connect the DUT.

2. From the Generator > Setting submenu, press Enhanced Generator Power Accuracy.

3. Select the number of external Matching Pad (3 dB) pads to use for calibration and measurements. Press Enhanced Accuracy Calibration. External attenuators will need to be inserted for the 3 dB and 6 dB pad options.

4. Follow the onscreen instructions shown in Figure 2-3 on page 2-5.

 During the Enhanced Accuracy Calibration process, the instrument calibrates across the frequency range, reducing any output ripple. After the successful completion, the (+Accy) label will be displayed after the Generator output power (Figure 2-5 on page 2-6).

5. Figure 2-4 on page 2-5 is a detail of the top of the filter trace shown in Figure 2-2 before calibration. Figure 2-5 shows the same trace section after enhanced calibration using two 3 dB pads.

 The 7.5 dB loss from the 0 dBm generator power is from the two 3 dB pads, the filter, and cables connected between the Generator port and Spectrum Analyzer receiver.

 Matching 3 dB external attenuators are not required. Attenuators do provide a more accurate 50 ohm match to the generator output and analyzer input. This may help in cases where transmission ripple needs to be minimized.

 For the most accurate results, use the same 3 dB pad setup (0, 1, or 2 pads) in measurements as were used for calibration.

Caution

The Enhanced Accuracy calibrations are eliminated at Preset, Power-on, or when the generator output level is changed. The calibrations are not saved nor recalled with Save/Recall.
Chapter 2 — E-Series Tracking Generator

2-3 Measurement Example

Figure 2-3. Enhanced Generator Accuracy

Figure 2-4. Before Enhanced Accuracy Calibration
2-4 Transmission Measurements

Option 20 includes normalized transmission measurements. This functionality is similar to a previous option, Option 21 “2-Port Transmission Measurement”.

1. Connect a through cable between GENERATOR/RF OUT and ANALYZER/RF In connectors. From the Generator submenu, press the Transmission Measurement submenu key and then set Normalize On.

2. Figure 2-6 shows a through cable measurement after normalization. Note the relative scale numbers on the graticule lines (in increments of 10 dB) on the right side of the sweep window now that Normalization is ON. If desired, the resolution bandwidth and video bandwidth can be changed after normalization without needing to renormalize. After the normalization sweep is completed, reconnect the DUT between the GENERATOR/RF OUT and ANALYZER/RF In connectors.

Figure 2-7 shows the filter measurement after normalization. Displaying the trace required changing the Relative Ref (top of the graticule) and the Relative Scale (db range between grids).

Refer to “Transmission Measurement Menu” on page 2-13 for additional information including Transmission Statistics and Transmission Offset.

Note
Set the appropriate input attenuation needed before turning Normalization ON.

The Amplitude menus and the Frequency menus are disabled while Normalization is ON.
Figure 2-6. Normalized Through Cable (Trace at 0 dB)

Figure 2-7. Normalized Filter Trace
2-5 CW Generator Overview

Option 20 includes a CW Generator. The CW Signal Generator provides a continuous wave (CW) signal from the GENERATOR/RF OUT port of the instrument.

The following example displays the generator CW signal on the instrument display.

1. Connect a THROUGH cable between the GENERATOR/RF OUT and ANALYZER/RF In connectors as shown in Figure 2-8.

2. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.

3. Preset the instrument (Shift+1 > Preset).

4. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00244) for additional information.

5. Press the Shift key, then the Measure (4) key. Press the Generator key.

6. Press the Output Power button and set the output power (at the output connector before any external attenuation).
7. Set the Generator Mode to CW and set the CW Frequency.

Note Confirm that the CW Frequency is set within the spectrum analyzer span, or the signal will not be displayed on the instrument.

8. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

Note Turning the CW Generator On sets the detection type (Amplitude > Detection) to Peak and sets the sweep mode (Sweep > Sweep Mode) to Performance. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on.

9. **Figure 2-9** displays the CW output at 1 GHz frequency and 0.0 dBm power. Refer to “Generator Menu” on page 2-11 for additional information.

Figure 2-9. CW Output Example
2-6 Tracking Generator Menus

To access the functions under the Measure menu, press the **Shift** key, then the **Measure** (4) key. The addition of Option 20 adds the **Tracking Generator** submenu key and subsequent menus, as shown **Figure 2-10**. Menu maps typically display all possible submenu keys, although some keys are displayed on the instrument only under special circumstances (refer to menu descriptions).

Figure 2-10. Measure Menu with Tracking Generator (Option 20)

| Note | General Spectrum Analyzer measurement menu including **Frequency**, **Amplitude**, **Span**, **Bandwidth**, **Marker**, **Sweep**, **Trace**, and **Limit** menus are detailed in the Spectrum Analyzer Measurement Guide (p/n 10580-00244).
| | General instrument operating functions including the **Preset**, **File**, **Mode** and **System** are described in the instrument User Guide. |
2-7 Generator Menu

Key Sequence: Measure (Shift + 4) > Generator

<table>
<thead>
<tr>
<th>Generator</th>
<th>Generator On Off: Press to turn the tracking generator On or Off. The output power is turned on at the level that was previously set with the Output Power submenu key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator Output</td>
<td>Output Power: Press to set the output power of the generator. The specified range is from –80 dBm to 15 dBm. If the user has entered an external gain or loss value, that value will be added to the displayed value.</td>
</tr>
<tr>
<td>On</td>
<td>Generator Mode: Press to toggle the Generator Mode between CW and Tracking. In CW Mode, the output frequency is fixed and set by the CW Frequency submenu. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency. The frequency range is set using the Freq main menu and submenu keys. Setting Generator Mode to Tracking will automatically, set Sweep Mode to NO FFT and Detection to Sample.</td>
</tr>
<tr>
<td>Off</td>
<td>CW Frequency: Sets the frequency of the output when the Generator Mode is set to CW.</td>
</tr>
<tr>
<td>Output Power</td>
<td>Settings: Displays the “Settings Menu” on page 2-12.</td>
</tr>
<tr>
<td>Generator Mode</td>
<td>Back: Returns to the Measure menu.</td>
</tr>
<tr>
<td>CW</td>
<td></td>
</tr>
</tbody>
</table>
Settings Menu

Key Sequence: **Measure (Shift + 4) > Generator > Settings**

Ext Gain/Loss: Sets the tracking generator (GENERATOR/RF OUT) external attenuation or gain. Press the Ext Gain/Loss submenu key and select a value from 0 dB to 100 dB, then select either dB External Loss or dB External Gain. The Generator Gain/Loss setting (other than 0 dB) is displayed in the upper-right corner after the Generator output power level. The external attenuation or gain is also reflected in the displayed output power.

Power Statistics: Press to display the Tracking Generator Summary table displaying the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep. Only available with Generator Mode set to tracking.

Enhanced Generator Accuracy: Displays the Gen Power Accuracy submenu.

- **Enhanced Accuracy Calibration:** Improves the output accuracy of the generator when turned on. The calibration can be done in both Tracking Generator and CW Generator modes. Changing the output power turns enhanced calibration OFF. (+Accy) is displayed after the Generator power level when Enhanced Accuracy is ON.

- **Matching Pads(3dB) Zero One Two:** Sets the number of external 3 dB attenuators used during the Enhanced Accuracy Calibration procedure.

- **Additional Calibration Sweep:** Pressing this key after Enhanced Accuracy Calibration is completed starts an additional set of calibration sweeps to improve the power accuracy level of the generator output.

Back: Press to return to the “Generator Menu” on page 2-11.
Transmission Measurement Menu

Key Sequence: **Measure (Shift + 4) > Generator [Generator = ON] [Generator Mode = Tracking] > Transmission Measurement**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalize</td>
<td>Normalize: Press to toggle Normalization On or Off. When turned On, a calibration process is started. Make a THROUGH connection between the tracking Generator Output and the Spectrum Analyzer Input connectors before performing normalization. For the most accurate results, use the same cables and adapters that will be used for the normalization as will be used for the measurement. The current state (Off or On) is underlined.</td>
</tr>
<tr>
<td>Relative Ref</td>
<td>Relative Ref: Press to set the value of the top graticule line in dB relative to the THROUGH connection that was made when normalization was performed.</td>
</tr>
<tr>
<td>Relative Scale</td>
<td>Relative Scale: Press to set the scale factor from 1 dB/division to 15 dB/division in 1 dB steps.</td>
</tr>
<tr>
<td>Transmission Statistics</td>
<td>Transmission Statistics: Press to display the Transmission Measurement Statistics table displaying the received spectrum analyzer Maximum, Average, and Minimum relative power of each frequency range sweep.</td>
</tr>
<tr>
<td>Transmission Offset</td>
<td>Transmission Offset: Sets the offset for the normalized trace. Offset value is displayed in the Transmission Measurement Statistics.</td>
</tr>
<tr>
<td>Back</td>
<td>Back: Press to return to the “Generator Menu” on page 2-11.</td>
</tr>
</tbody>
</table>

Figure 2-13. Transmission Measurement Menu
Chapter 3 — T-Series Tracking Generator

(Option 809, Option 813, and Option 820)

3-1 Generator Mode

Options 809, 813, and 820 add a Tracking Generator to the Spectrum Analyzer mode of the instrument. The Tracking Generator generates a swept signal with an output frequency that is the same as the tuning frequency of the spectrum analyzer.

Additionally, a CW generator feature is included in these options. The sine wave output frequency and power is set by the user. Refer to Section 3-5 “CW Generator Overview” on page 3-6.

The output power is leveled and has a specified power range from −40 dBm to +0 dBm in 0.1 dB steps.

| Note | Operation outside this power range is possible. However, performance and compliance with specifications are not guaranteed. |

Power output information is available for both absolute and transmission (normalized) measurements.

3-2 Tracking Generator Overview

1. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.
2. Preset the instrument (Shift+1 > Preset).
3. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00349) for additional information.
4. Press the Shift key, then the Measure (4) key. Press the Generator key.
5. Press the Output Power button and set the output power (at the output connector before any external attenuation). In tracking mode, the output is leveled and flat over the spectrum analyzer frequency range.
6. Set the Generator Mode to Tracking. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency.
7. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

| Note | Turning the Tracking Generator On sets the detection type (Amplitude > Detection) to Sample and sets the sweep mode (Sweep > Sweep Mode) to No FFT. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on. |
3-3 Measurement Example

This example demonstrates how to connect a Device Under Test (DUT) and make a measurement. This example characterizes the frequency response of a filter in the GSM frequency band.

1. Set the frequency range to cover the range of the DUT being tested. In this example, the center frequency is set to 1.8 GHz with a 1 GHz span.

2. Set the Generator to Tracking Mode with an Output Power of 0.0 dBm. Refer to the previous “Tracking Generator Overview” section for additional information.

3. Connect the DUT as shown in Figure 3-1 on page 3-2. For connector torque and connector care information, refer to the User Guide for your instrument.

4. Toggle the Generator Output to On.

5. Observe the measurement to confirm that the pass band frequency range covers the required span.

6. If the spectrum analyzer noise floor is too high for the necessary measurements, then reduce the input attenuation and RBW to maximize the dynamic range. Figure 3-2 on page 3-3 shows the sample setup with the input attenuation lowered from 30 dB to 15 dB and with the RBW reduced from 3 MHz to 300 kHz.
7. When measuring a filter with a very high insertion loss in the stop band, press the **Shift** key, then the **Trace (5)** key. Press the **Trace A Operations** submenu key, then the **Average → A** submenu key to turn on averaging and clean up the stop band area. An averaging value of 10 will probably be adequate for most filters.

8. Under the **Setting** submenu turn **Power Statistics On** (**Figure 3-2**) to display the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep.

Note

If the noise floor drops below the visible display, then set the Scale dB/division setting to a value larger than 10. This will increase the displayed amplitude range.

Figure 3-2. Increasing Measurement Dynamic Range, Trace Averaging On, Displaying Power Statistics

Note

Many of displayed settings on the left side of the screen are used as menu shortcuts. Select a parameter by touching the appropriate setting on the touch screen to display the menu and set up the parameter for editing.
3-4 Transmission Measurements

Each Tracking Generator option includes normalized transmission measurements.

1. Set the frequency and amplitude parameter required for the DUT.
2. Press the Shift key, then the Measure (4) key. Press the Generator key. Set the Generator Mode to Tracking and turn Generator Output On.
3. Connect a through cable between the RF OUT and RF In connectors. From the Generator submenu, press the Transmission Measurement submenu key (Figure 3-3).

4. Toggle Normalize On (Figure 3-4). A message will flash when the process is complete.

Figure 3-3. Normalize Off (Trace at ~0 dBm)

Figure 3-4. Normalize On (Trace at 0 dB)
After Normalization:

- Units in the Amplitude scale change from absolute (dBm) to relative (dB).
- The trace is centered in the graticule at 0 dB when Reference Position is set 5 (default) and Reference Amplitude is 0.0 dB (default).
- (Trans) is added after the Traces header on the left of the display.

Note

Set the appropriate input attenuation needed *BEFORE* turning Normalization ON.
Changes to the Amplitude menus or the Frequency menus will automatically turn OFF Normalization.

After the normalization sweep is completed, reconnect the DUT between the RF OUT and RF IN connectors.

Figure 3-5 shows a filter measurement after the normalization process. Displaying the trace required changing the Reference Position to 9 and the Scale (db range between grids).

Refer to “Transmission Measurement Menu” on page 3-11 for additional information including Transmission Statistics and Transmission Offset.

![Figure 3-5. Normalized Filter Trace](image-url)
3-5 CW Generator Overview

These Tracking Generator options include a CW Generator. The CW Signal Generator provides a continuous wave (CW) signal from the GENERATOR/RF OUT port of the instrument.

The following example displays the generator CW signal on the instrument display.

1. Connect a THROUGH cable between the RF OUT and RF In connectors as shown in Figure 3-6

![Figure 3-6: Through Cable Setup Example](image)

2. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.

3. Preset the instrument (Shift+1 > Preset).

4. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00349) for additional information.

5. Press the Shift key, then the Measure (4) key. Press the Generator key.

6. Press the Output Power button and set the output power (at the output connector before any external attenuation).
7. Set the Generator Mode to CW and set the CW Frequency.

Note
Confirm that the CW Frequency is set within the spectrum analyzer span, or the signal will not be displayed on the instrument.

8. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

9. **Figure 3-7** displays the CW output at 1 GHz frequency and 0.0 dBm power. Refer to “Generator Menu” on page 3-9 for additional information.

Figure 3-7. CW Output Example
3-6 Tracking Generator Menus

To access the functions under the Measure menu, press the Shift key, then the Measure (4) key. The addition of Option 809, Option 813, and Option 820 adds the Tracking Generator submenu key and subsequent menus, as shown Figure 3-8. Menu maps typically display all possible submenu keys, although some keys are displayed on the instrument only under special circumstances (refer to menu descriptions).

![Figure 3-8. Measure Menu with Tracking Generator (Options 809, 813, and 820)](image)

Note

General Spectrum Analyzer measurement menu including Frequency, Amplitude, Span, Bandwidth, Marker, Sweep, Trace, and Limit menus are detailed in the Spectrum Analyzer Measurement Guide (p/n 10580-00349).

General instrument operating functions including the Preset, File, Mode and System are described in the instrument User Guide.
3-7 Generator Menu

Key Sequence: Measure (Shift + 4) > Generator

<table>
<thead>
<tr>
<th>Generator Menu Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator On Off:</td>
<td>Press to turn the tracking generator On or Off. The output power is turned on at the level that was previously set with the Output Power submenu key.</td>
</tr>
<tr>
<td>Output Power:</td>
<td>Press to set the output power of the generator. The specified range is from –40 dBm to 0 dBm. The range that can be requested is –50 dBm to +15 dBm, which the instrument will deliver on a best efforts basis. Levels beyond –40 dBm to 0 dBm are not warranted. If the user has entered an external gain or loss value, that value will be added to the displayed value.</td>
</tr>
<tr>
<td>Generator Mode:</td>
<td>Press to toggle the Generator Mode between CW and Tracking. In CW Mode, the output frequency is fixed and set by the CW Frequency submenu. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency. The frequency range is set using the Freq main menu and submenu keys.</td>
</tr>
<tr>
<td>CW Frequency:</td>
<td>Sets the frequency of the output when the Generator Mode is set to CW.</td>
</tr>
<tr>
<td>Settings:</td>
<td>Displays the “Settings Menu” on page 3-10.</td>
</tr>
<tr>
<td>Transmission Measurement:</td>
<td>Displays the “Transmission Measurement Menu” on page 3-11. To enter into Transmission mode, the Generator Mode must be set to Tracking and the Generator Output must be set to On.</td>
</tr>
<tr>
<td>Back:</td>
<td>Returns to the Measure menu.</td>
</tr>
</tbody>
</table>

![Figure 3-9. Generator Menu](image)
Settings Menu

Key Sequence: **Measure (Shift + 4)** > Generator > Settings

<table>
<thead>
<tr>
<th>Settings</th>
<th>Ext Gain/Loss</th>
<th>Power Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext Gain/Loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 dB Ext Gain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
<td></td>
</tr>
</tbody>
</table>

Ext Gain/Loss: Sets the tracking generator (RF OUT) external attenuation or gain. Press the Ext Gain/Loss submenu key and select a value from 0 dB to 100 dB, then select either dB External Loss or dB External Gain. The Generator Gain/Loss setting adjusts the Generator output power level displayed in the upper-right corner.

Regardless of the external gain or loss setting, the output power range of the tracking generator will not change.

Power Statistics: Press to display the Tracking Generator Summary table displaying the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep. Only available with Generator Mode set to tracking.

Back: Press to return to the “Generator Menu” on page 3-9.

Figure 3-10. Settings Menu
Transmission Measurement Menu

Key Sequence: Measure (Shift + 4) > Generator [Generator = ON] [Generator Mode = Tracking] > Transmission Measurement

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalize</td>
<td>Press to toggle Normalization On or Off. When turned On, a calibration process is started. Make a THROUGH connection between the tracking Generator Output and the Spectrum Analyzer Input connectors before performing normalization. For the most accurate results, use the same cables and adapters that will be used for the normalization as will be used for the measurement. The current state (Off or On) is underlined.</td>
</tr>
<tr>
<td>Scale</td>
<td>Press to set the scale factor from 1 dB/division to 15 dB/division in 1 dB steps.</td>
</tr>
<tr>
<td>Reference Position</td>
<td>Press to set the graticle position of the Reference Amplitude. A setting of 5 uses the middle grid line. Position indicated by the > symbol.</td>
</tr>
<tr>
<td>Reference Amplitude</td>
<td>Press to set the reference amplitude. The Reference Amplitude value is placed at the defined Reference Position and the displayed amplitude values are adjusted based on the Scale division.</td>
</tr>
<tr>
<td>Transmission Statistics</td>
<td>Press to display the Transmission Measurement Statistics table displaying the received spectrum analyzer Maximum, Average, and Minimum relative power of each frequency range sweep.</td>
</tr>
<tr>
<td>Transmission Offset</td>
<td>Sets the offset for the normalized trace. Offset value is displayed in the Transmission Measurement Statistics.</td>
</tr>
<tr>
<td>Back</td>
<td>Press to return to the “Generator Menu” on page 3-9.</td>
</tr>
</tbody>
</table>

Figure 3-11. Transmission Measurement Menu
Index

A
- Anritsu, contact 1-2
- averaging, trace operations, TG 2-3, 3-3

C
- caution
 - calibrations lost 2-4
- connector torque 2-2, 3-2
- contacting Anritsu 1-2

CW overview
- TG 20 .. 2-8
- TG 800 .. 3-6

D
- detection type with TG On 2-2, 3-1

E
- example
 - measurement .. 2-2, 3-2
 - relative scale, TG 2-6, 3-5

F
- frequency, TG starting frequency 1-1

G
- gen power accuracy menu, TG 20 2-12
- generate signal (TG) 3-1
- generator
 - CW overview, TG 20 2-8
 - CW overview, TG 800 3-6
 - external gain/loss 2-12, 3-10
 - generate signal 2-1
 - starting frequency 1-1
- generator menu
 - TG 20 .. 2-11
 - TG 800 .. 3-9

L
- links, contact .. 1-2

M
- measure menu
 - TG 20 .. 2-10
 - TG 800 .. 3-8
- measurement example 2-2, 3-2

menu
- gen power accuracy, with TG 20 2-12
- generator, with TG 20 2-11
- generator, with TG 800 3-9
- measure, with TG 20 2-10
- measure, with TG 800 3-8
- settings, with TG 20 2-12
- settings, with TG 800 3-10
- transmission, with TG 20 2-13
- transmission, with TG 800 3-11

Menu button .. 1-2

menu map
- TG 20 menus ... 2-10
- TG 800 menus ... 3-8

mode change ... 1-2

N
- normalization scale 2-13, 3-11
- Normalize ... 2-13, 3-11
- normalized reference level 2-13, 3-11

R
- relative scale example, TG 2-6, 3-5

S
- Safety Symbols
 - For Safety .. Safety-2
 - In Manuals .. Safety-1
 - On Equipment Safety-1
- Settings menu
 - TG 20 ... 2-12
 - TG 800 ... 3-10

T
- starting frequency 1-1
- THROUGH connection, TG 2-4
- torque, connector care 2-2, 3-2
- tracking generator
 - calibration .. 2-2, 3-2
 - example measurement 2-2, 3-2
 - menu map 20 ... 2-10
 - menu map 800 3-8
 - startup ... 2-1, 3-1
- transmission menu
 - TG 20 ... 2-13
 - TG 800 ... 3-11
 - transmission offset 2-13, 3-11
 - transmission statistics 2-13, 3-11
tuning frequency
 TG 800 3-1
 TG 20 2-1

warning
 battery storage Safety-2
 web links, contact 1-2