Measurement Guide

Tracking Generator

for Anritsu RF and Microwave Handheld Instruments

Spectrum Master™ E-Series

Tracking Generator Option 20

Spectrum Master™ T-Series

Tracking Generator Option 809
 Option 813
 Option 820
Unauthorized Use or Disclosure

Anritsu Company has prepared the product user documentation for use by Anritsu Company personnel and customers as a guide for the proper installation, operation, and maintenance of Anritsu Company equipment and software programs. The drawings, specifications, and information contained therein are the property of Anritsu Company, and any unauthorized use is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Company.

Export Management

The Anritsu products identified herein and their respective manuals may require an Export License or approval by the government of the product country of origin for re-export from your country. Before you export these products or any of their manuals, please contact Anritsu Company to confirm whether or not these items are export-controlled. When disposing of export-controlled items, the products and manuals must be broken or shredded to such a degree that they cannot be unlawfully used for military purposes.

Updates

Updates, if any, can be downloaded from the Anritsu website at:

http://www.anritsu.com/

For the latest service and sales contact information in your area, please visit:

http://www.anritsu.com/contact-us
Table of Contents

Chapter 1—General Information
- 1-1 Introduction .. 1-1
- 1-2 Product Information, Compliance, and Safety 1-2
- 1-3 Contacting Anritsu ... 1-2
- 1-4 Selecting Tracking Generator 1-2

Chapter 2—E-Series Tracking Generator
- 2-1 Generator Mode .. 2-1
- 2-2 Tracking Generator Overview 2-1
- 2-3 Measurement Example .. 2-2
 - Enhancing Accuracy .. 2-4
- 2-4 Transmission Measurements 2-6
- 2-5 CW Generator Overview .. 2-8
- 2-6 Tracking Generator Menus 2-10
- 2-7 Generator Menu .. 2-11
 - Settings Menu .. 2-12
 - Transmission Measurement Menu 2-13

Chapter 3—T-Series Tracking Generator
- 3-1 Generator Mode .. 3-1
- 3-2 Tracking Generator Overview 3-1
- 3-3 Measurement Example .. 3-2
- 3-4 Transmission Measurements 3-4
- 3-5 CW Generator Overview .. 3-6
- 3-6 Tracking Generator Menus 3-8
- 3-7 Generator Menu .. 3-9
 - Settings Menu .. 3-10
 - Transmission Measurement Menu 3-11

Index
Chapter 1 — General Information

1-1 Introduction

This Measurement Guide documents Option 20 Tracking Generator functions of the Anritsu Spectrum Master E-Series handheld instruments and Option 809, Option 813, and Option 820 of the Spectrum Master T-Series instrument.

The Option 20 Tracking Generator has a starting frequency of 500 kHz. The Option 809, Option 813, and Option 820 Tracking Generators have a starting frequency of 100 kHz. The highest frequency is the same as the highest tuning frequency of the spectrum analyzer.

Options 20, 809, 813, and 820 add Tracking Generator function to the Spectrum Analyzer mode of the instrument. This measurement guide describes only specific Tracking Generator functions.

The tracking generator and spectrum analyzer combination allows a signal to be applied to a device under test (DUT) to measure the frequency response.

General Spectrum Analyzer measurement functions including Frequency, Amplitude, Span, Bandwidth, Marker, Sweep, Trace, and Limit menus are detailed in the Spectrum Analyzer Measurement Guides (SPA MG) available on the Anritsu Web site:

- T-Series Spectrum Master SPA MG (p/n 10580-00349)

Note: Not all instrument models offer every option or measurement mode. Please refer to the Technical Data Sheet of your instrument for available options.

Note: The screen images on your instrument may vary from those shown in this Measurement Guide.

Note: Master Software Tools does not support capture of Tracking Generator traces.
1-2 Product Information, Compliance, and Safety

Read the Handheld Instruments Product Information, Compliance, and Safety Guide (PN: 10100-00065) for important safety, legal, and regulatory notices before operating the equipment. For additional information and literature covering your product, visit the product page of your instrument on http://www.anritsu.com/ and select the Library tab.

Not all instrument models offer every option. Please refer to the Technical Data Sheet of your instrument for available options.

1-3 Contacting Anritsu

To contact Anritsu, please visit:

http://www.anritsu.com/contact-us

From here, you can select the latest sales, select service and support contact information in your country or region, provide feedback, complete a “Talk to Anritsu” form to have your questions answered, or obtain other services offered by Anritsu.

Updated product information can be found on the Anritsu web site:

http://www.anritsu.com/

Search for the product model number. The latest documentation is on the product page under the Library tab.

1-4 Selecting Tracking Generator

Press the Menu button and select the Tracking Generator measurement shortcut by tapping on the touch screen (Figure 1-1).

Figure 1-1. Menu Button Screen
You can also press the Shift key then the Mode (9) key, select Spectrum Analyzer (Figure 1-2) from the list using the rotary knob or the Arrow key, and press Enter. In Spectrum Analyzer mode, press the Shift then Measure (4) keys and then press Generator (Figure 1-3 on page 1-3).

Figure 1-2. Measurement Mode List (example)

Refer to Instrument’s Spectrum Analyzer Measurement Guide

Refer to Chapter 2 (Option 20) or Chapter 3 (Options 809, 813, 820) Tracking Generator and CW Generator accessed here.

Refer to Instrument’s Spectrum Analyzer Measurement Guide

Figure 1-3. Tracking and CW Generator Options

Refer to Chapter 2, “E-Series Tracking Generator” or Chapter 3, “T-Series Tracking Generator” for detailed information on the tracking generator operation and menus.
Chapter 2 — E-Series Tracking Generator

(Option 20)

2-1 Generator Mode

Option 20 adds a Tracking Generator to the Spectrum Analyzer mode of the instrument. The Tracking Generator generates a swept signal with an output frequency that is the same as the tuning frequency of the spectrum analyzer.

Additionally, a CW generator feature is included in Option 20. The sine wave output frequency and power is set by the user. Refer to Section 2-5 “CW Generator Overview” on page 2-8.

The output power is leveled and has a specified power range –50 dBm to +0 dBm in 0.1 dB steps.

| Note | Operation outside this power range is possible. However, performance and compliance with specifications are not guaranteed. |

Power output information is available for both absolute and transmission (normalized) measurements.

Enhanced power level calibration is available for the generator output. Additional information about the enhanced level calibration is provided later in this chapter.

2-2 Tracking Generator Overview

1. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.

2. Preset the instrument (Shift+1 > Preset).

3. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00244) for additional information.

4. Press the Shift key, then the Measure (4) key. Press the Generator key.

5. Press the Output Power button and set the output power (at the output connector before any external attenuation). In tracking mode, the output is leveled and flat over the spectrum analyzer frequency range.

6. Set the Generator Mode to Tracking. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency.

7. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.
2-3 Measurement Example

This example demonstrates how to connect a Device Under Test (DUT) and make a measurement. This example will characterize the frequency response of a filter in the GSM frequency band.

1. Set the frequency range to cover the range of the DUT being tested. In this example, the center frequency is set to 1.8 GHz with a 1 GHz span.

2. Set the Generator to Tracking Mode with an Output Power of 0.0 dBm. Refer to the previous “Tracking Generator Overview” section for additional information.

3. Connect the DUT as shown in Figure 2-1 on page 2-2. For connector torque and connector care information, refer to the User Guide for your instrument.

4. Toggle the Generator Output to On.

Note

Turning the Tracking Generator On sets the detection type (Amplitude > Detection) to Sample and sets the sweep mode (Sweep > Sweep Mode) to No FFT. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on.

Figure 2-1. Connection of Device Under Test
5. Observe the measurement to confirm that the pass band frequency range covers the required span.

6. If the spectrum analyzer noise floor is too high for the necessary measurements, then reduce the input attenuation and RBW to maximize the dynamic range. Figure 2-2 on page 2-3 shows the sample setup with the input attenuation lowered from 30 dB to 10 dB and with the RBW reduced from 3 MHz to 300 kHz.

7. When measuring a filter with a very high insertion loss in the stop band, press the Shift key, then the Trace (5) key. Press the Trace A Operations submenu key, then the Average → A submenu key to turn on averaging and clean up the stop band area. An averaging value of 10 will probably be adequate for most filters.

8. Under the Setting submenu turn Power Statistics On (Figure 2-2) to display the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep.

Note If the noise floor drops below the visible display, then set the Scale dB/division setting to a value larger than 10. This will increase the displayed amplitude range.

![Figure 2-2. Increasing Measurement Dynamic Range, Trace Averaging On, Displaying Power Statistics](image)

Note Many of displayed settings on the left side of the screen are used as menu shortcuts. Select a parameter by touching the appropriate setting on the touch screen to display the menu and set the parameter for editing.
Enhancing Accuracy

For detailed power level measurements, the output flatness of the tracking generator can be calibrated in the field.

1. After the frequency range and other settings are determined, disconnect the DUT and make a through connection between the GENERATOR/RF OUT connector and the ANALYZER/RF IN connector. For the most accurate results, use the same cables and adapters for this connection as were used to connect the DUT.

2. From the Generator > Setting submenu, press Enhanced Generator Power Accuracy.

3. Select the number of external Matching Pad (3 dB) pads to use for calibration and measurements. Press Enhanced Accuracy Calibration. External attenuators will need to be inserted for the 3 dB and 6 dB pad options.

4. Follow the onscreen instructions shown in Figure 2-3 on page 2-5.

During the Enhanced Accuracy Calibration process, the instrument calibrates across the frequency range, reducing any output ripple. After the successful completion, the (+Accy) label will be displayed after the Generator output power (Figure 2-5 on page 2-6).

5. Figure 2-4 on page 2-5 is a detail of the top of the filter trace shown in Figure 2-2 before calibration. Figure 2-5 shows the same trace section after enhanced calibration using two 3 dB pads.

The 7.5 dB loss from the 0 dBm generator power is from the two 3 dB pads, the filter, and cables connected between the Generator port and Spectrum Analyzer receiver.

Note

Matching 3 dB external attenuators are not required. Attenuators do provide a more accurate 50 ohm match to the generator output and analyzer input. This may help in cases where transmission ripple needs to be minimized.

For the most accurate results, use the same 3 dB pad setup (0, 1, or 2 pads) in measurements as were used for calibration.

Caution

The Enhanced Accuracy calibrations are eliminated at Preset, Power-on, or when the generator output level is changed. The calibrations are not saved nor recalled with Save/Recall.
Chapter 2 — E-Series Tracking Generator

2-3 Measurement Example

Figure 2-3. Enhanced Generator Accuracy

Figure 2-4. Before Enhanced Accuracy Calibration
2-4 Transmission Measurements

Option 20 includes normalized transmission measurements. This functionality is similar to a previous option, Option 21 “2-Port Transmission Measurement”.

1. Connect a through cable between GENERATOR/RF OUT and ANALYZER/RF In connectors. From the Generator submenu, press the Transmission Measurement submenu key and then set Normalize On.

2. Figure 2-6 shows a through cable measurement after normalization. Note the relative scale numbers on the graticule lines (in increments of 10 dB) on the right side of the sweep window now that Normalization is ON. If desired, the resolution bandwidth and video bandwidth can be changed after normalization without needing to renormalize. After the normalization sweep is completed, reconnect the DUT between the GENERATOR/RF OUT and ANALYZER/RF In connectors.

Figure 2-7 shows the filter measurement after normalization. Displaying the trace required changing the Relative Ref (top of the graticule) and the Relative Scale (dB range between grids).

Refer to “Transmission Measurement Menu” on page 2-13 for additional information including Transmission Statistics and Transmission Offset.

Note
Set the appropriate input attenuation needed before turning Normalization ON. The Amplitude menus and the Frequency menus are disabled while Normalization is ON.
Figure 2-6. Normalized Through Cable (Trace at 0 dB)

Figure 2-7. Normalized Filter Trace
2-5 CW Generator Overview

Option 20 includes a CW Generator. The CW Signal Generator provides a continuous wave (CW) signal from the GENERATOR/RF OUT port of the instrument.

The following example displays the generator CW signal on the instrument display.

1. Connect a THROUGH cable between the GENERATOR/RF OUT and ANALYZER/RF IN connectors as shown in Figure 2-8.

2. Set the **Mode** to Spectrum Analyzer. Refer to Chapter 1 for details.

3. **Preset** the instrument (Shift+1 > Preset).

4. Set the spectrum analyzer frequency range using the Frequency (**Freq**) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00244) for additional information.

5. Press the **Shift** key, then the **Measure** (4) key. Press the **Generator** key.

6. Press the **Output Power** button and set the output power (at the output connector before any external attenuation).
7. Set the Generator Mode to CW and set the CW Frequency.

Note
Confirm that the CW Frequency is set within the spectrum analyzer span, or the signal will not be displayed on the instrument.

8. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

Note
Turning the CW Generator On sets the detection type (Amplitude > Detection) to Peak and sets the sweep mode (Sweep > Sweep Mode) to Performance. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on.

9. Figure 2-9 displays the CW output at 1 GHz frequency and 0.0 dBm power. Refer to “Generator Menu” on page 2-11 for additional information.

![Figure 2-9. CW Output Example](image-url)
2-6 Tracking Generator Menus

To access the functions under the Measure menu, press the **Shift** key, then the **Measure** (4) key. The addition of Option 20 adds the **Tracking Generator** submenu key and subsequent menus, as shown Figure 2-10. Menu maps typically display all possible submenu keys, although some keys are displayed on the instrument only under special circumstances (refer to menu descriptions).

Figure 2-10. Measure Menu with Tracking Generator (Option 20)

Note

General Spectrum Analyzer measurement menu including **Frequency, Amplitude, Span, Bandwidth, Marker, Sweep, Trace, and Limit** menus are detailed in the Spectrum Analyzer Measurement Guide (p/n 10580-00244).

General instrument operating functions including the **Preset, File, Mode** and **System** are described in the instrument User Guide.
2-7 Generator Menu

Key Sequence: **Measure (Shift + 4) > Generator**

<table>
<thead>
<tr>
<th>Generator</th>
<th>Generator On Off: Press to turn the tracking generator On or Off. The output power is turned on at the level that was previously set with the Output Power submenu key.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator Output</td>
<td>Output Power: Press to set the output power of the generator. The specified range is from –80 dBm to 15 dBm. If the user has entered an external gain or loss value, that value will be added to the displayed value.</td>
</tr>
<tr>
<td>On</td>
<td>Generator Mode: Press to toggle the Generator Mode between CW and Tracking. In CW Mode, the output frequency is fixed and set by the CW Frequency submenu. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency. The frequency range is set using the Freq main menu and submenu keys. Setting Generator Mode to Tracking will automatically, set Sweep Mode to NO FFT and Detection to Sample.</td>
</tr>
<tr>
<td>Off</td>
<td>CW Frequency: Sets the frequency of the output when the Generator Mode is set to CW.</td>
</tr>
<tr>
<td>Output Power</td>
<td>Settings: Displays the “Settings Menu” on page 2-12.</td>
</tr>
<tr>
<td>Generator Mode</td>
<td>Back: Returns to the Measure menu.</td>
</tr>
<tr>
<td>CW</td>
<td></td>
</tr>
<tr>
<td>Tracking</td>
<td></td>
</tr>
<tr>
<td>CW Frequency</td>
<td></td>
</tr>
<tr>
<td>1.000 GHz</td>
<td></td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Transmission Measurement</td>
<td></td>
</tr>
<tr>
<td>Back</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2-11. Generator Menu
Settings Menu

Key Sequence: Measure (Shift + 4) > Generator > Settings

Ext Gain/Loss: Sets the tracking generator (GENERATOR/RF OUT) external attenuation or gain. Press the Ext Gain/Loss submenu key and select a value from 0 dB to 100 dB, then select either dB External Loss or dB External Gain. The Generator Gain/Loss setting (other than 0 dB) is displayed in the upper-right corner after the Generator output power level. The external attenuation or gain is also reflected in the displayed output power.

Power Statistics: Press to display the Tracking Generator Summary table displaying the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep. Only available with Generator Mode set to tracking.

Enhanced Generator Accuracy: Displays the Gen Power Accuracy submenu.

Enhanced Accuracy Calibration: Improves the output accuracy of the generator when turned on. The calibration can be done in both Tracking Generator and CW Generator modes. Changing the output power turns enhanced calibration OFF. (+Accy) is displayed after the Generator power level when Enhanced Accuracy is ON.

Matching Pads(3dB) Zero One Two: Sets the number of external 3 dB attenuators used during the Enhanced Accuracy Calibration procedure.

Additional Calibration Sweep: Pressing this key after Enhanced Accuracy Calibration is completed starts an additional set of calibration sweeps to improve the power accuracy level of the generator output.

Back: Press to return to the “Generator Menu” on page 2-11.
Transmission Measurement Menu

Key Sequence: **Measure (Shift + 4)** > Generator [Generator = ON] [Generator Mode = Tracking] > Transmission Measurement

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalize</td>
<td>Press to toggle Normalization On or Off. When turned On, a calibration process is started. Make a THROUGH connection between the tracking Generator Output and the Spectrum Analyzer Input connectors before performing normalization. For the most accurate results, use the same cables and adapters that will be used for the normalization as will be used for the measurement. The current state (Off or On) is underlined.</td>
</tr>
<tr>
<td>Relative Ref</td>
<td>Press to set the value of the top graticule line in dB relative to the THROUGH connection that was made when normalization was performed.</td>
</tr>
<tr>
<td>Relative Scale</td>
<td>Press to set the scale factor from 1 dB/division to 15 dB/division in 1 dB steps.</td>
</tr>
<tr>
<td>Transmission Statistics</td>
<td>Press to display the Transmission Measurement Statistics table displaying the received spectrum analyzer Maximum, Average, and Minimum relative power of each frequency range sweep.</td>
</tr>
<tr>
<td>Transmission Offset</td>
<td>Sets the offset for the normalized trace. Offset value is displayed in the Transmission Measurement Statistics.</td>
</tr>
<tr>
<td>Back</td>
<td>Press to return to the “Generator Menu” on page 2-11.</td>
</tr>
</tbody>
</table>

Figure 2-13. Transmission Measurement Menu

![Diagram of Transmission Measurement Menu]
Chapter 3 — T-Series Tracking Generator

(Option 809, Option 813, and Option 820)

3-1 Generator Mode

Options 809, 813, and 820 add a Tracking Generator to the Spectrum Analyzer mode of the instrument. The Tracking Generator generates a swept signal with an output frequency that is the same as the tuning frequency of the spectrum analyzer. Additionally, a CW generator feature is included in these options. The sine wave output frequency and power is set by the user. Refer to Section 3-5 “CW Generator Overview” on page 3-6.

The output power is leveled and has a specified power range from –40 dBm to +0 dBm in 0.1 dB steps.

| Note | Operation outside this power range is possible. However, performance and compliance with specifications are not guaranteed. |

Power output information is available for both absolute and transmission (normalized) measurements.

3-2 Tracking Generator Overview

1. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.
2. Preset the instrument (Shift+1 > Preset).
3. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00349) for additional information.
4. Press the Shift key, then the Measure (4) key. Press the Generator key.
5. Press the Output Power button and set the output power (at the output connector before any external attenuation). In tracking mode, the output is leveled and flat over the spectrum analyzer frequency range.
6. Set the Generator Mode to Tracking. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency.
7. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

| Note | Turning the Tracking Generator On sets the detection type (Amplitude > Detection) to Sample and sets the sweep mode (Sweep > Sweep Mode) to No FFT. Turning off the generator resets both parameters to their previous settings. Either parameter may be changed by the user with the Tracking Generator on or by the instrument when other measurements are also turned on. |
3-3 Measurement Example

This example demonstrates how to connect a Device Under Test (DUT) and make a measurement. This example characterizes the frequency response of a filter in the GSM frequency band.

1. Set the frequency range to cover the range of the DUT being tested. In this example, the center frequency is set to 1.8 GHz with a 1 GHz span.
2. Set the Generator to Tracking Mode with an Output Power of 0.0 dBm. Refer to the previous “Tracking Generator Overview” section for additional information.
3. Connect the DUT as shown in Figure 3-1 on page 3-2. For connector torque and connector care information, refer to the User Guide for your instrument.
4. Toggle the Generator Output to On.

5. Observe the measurement to confirm that the pass band frequency range covers the required span.
6. If the spectrum analyzer noise floor is too high for the necessary measurements, then reduce the input attenuation and RBW to maximize the dynamic range. Figure 3-2 on page 3-3 shows the sample setup with the input attenuation lowered from 30 dB to 15 dB and with the RBW reduced from 3 MHz to 300 kHz.
7. When measuring a filter with a very high insertion loss in the stop band, press the Shift key, then the Trace (5) key. Press the Trace A Operations submenu key, then the Average → A submenu key to turn on averaging and clean up the stop band area. An averaging value of 10 will probably be adequate for most filters.

8. Under the Setting submenu turn Power Statistics On (Figure 3-2) to display the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep.

Note
If the noise floor drops below the visible display, then set the Scale dB/division setting to a value larger than 10. This will increase the displayed amplitude range.

Figure 3-2. Increasing Measurement Dynamic Range, Trace Averaging On, Displaying Power Statistics

Note
Many of displayed settings on the left side of the screen are used as menu shortcuts. Select a parameter by touching the appropriate setting on the touch screen to display the menu and set up the parameter for editing.
3-4 Transmission Measurements

Each Tracking Generator option includes normalized transmission measurements.

1. Set the frequency and amplitude parameter required for the DUT.

2. Press the Shift key, then the Measure (4) key. Press the Generator key. Set the Generator Mode to Tracking and turn Generator Output On.

3. Connect a through cable between the RF OUT and RF In connectors. From the Generator submenu, press the Transmission Measurement submenu key (Figure 3-3).

4. Toggle Normalize On (Figure 3-4). A message will flash when the process is complete.

Figure 3-3. Normalize Off (Trace at ~0 dBm)

Figure 3-4. Normalize On (Trace at 0 dB)
After Normalization:

- Units in the Amplitude scale change from absolute (dBm) to relative (dB).
- The trace is centered in the graticule at 0 dB when Reference Position is set 5 (default) and Reference Amplitude is 0.0 dB (default).
- (Trans) is added after the Traces header on the left of the display.

Note

Set the appropriate input attenuation needed *BEFORE* turning Normalization ON.

Changes to the Amplitude menus or the Frequency menus will automatically turn OFF Normalization.

After the normalization sweep is completed, reconnect the DUT between the RF OUT and RF In connectors.

Figure 3-5 shows a filter measurement after the normalization process. Displaying the trace required changing the Reference Position to 9 and the Scale (db range between grids).

Refer to “Transmission Measurement Menu” on page 3-11 for additional information including Transmission Statistics and Transmission Offset.

Figure 3-5. Normalized Filter Trace
3-5 CW Generator Overview

These Tracking Generator options include a CW Generator. The CW Signal Generator provides a continuous wave (CW) signal from the GENERATOR/RF OUT port of the instrument.

The following example displays the generator CW signal on the instrument display.

1. Connect a THROUGH cable between the RF OUT and RF In connectors as shown in Figure 3-6.

 ![Figure 3-6. Through Cable Setup Example](image)

2. Set the Mode to Spectrum Analyzer. Refer to Chapter 1 for details.

3. Preset the instrument (Shift+1 > Preset).

4. Set the spectrum analyzer frequency range using the Frequency (Freq) menu and submenus. Refer to the Spectrum Analyzer Measurement Guide (10580-00349) for additional information.

5. Press the Shift key, then the Measure (4) key. Press the Generator key.

6. Press the Output Power button and set the output power (at the output connector before any external attenuation).
7. Set the Generator Mode to CW and set the CW Frequency.

Note
Confirm that the CW Frequency is set within the spectrum analyzer span, or the signal will not be displayed on the instrument.

8. Turn Generator Output On. The output power turns on at the level that has been set previously with the Output Power key.

9. Figure 3-7 displays the CW output at 1 GHz frequency and 0.0 dBm power. Refer to “Generator Menu” on page 3-9 for additional information.

Figure 3-7. CW Output Example
3-6 Tracking Generator Menus

To access the functions under the Measure menu, press the **Shift** key, then the **Measure** (4) key. The addition of Option 809, Option 813, and Option 820 adds the Tracking Generator submenu key and subsequent menus, as shown Figure 3-8. Menu maps typically display all possible submenu keys, although some keys are displayed on the instrument only under special circumstances (refer to menu descriptions).

Note

General Spectrum Analyzer measurement menu including **Frequency**, **Amplitude**, **Span**, **Bandwidth**, **Marker**, **Sweep**, **Trace**, and **Limit** menus are detailed in the Spectrum Analyzer Measurement Guide (p/n 10580-00349).

General instrument operating functions including the **Preset**, **File**, **Mode** and **System** are described in the instrument User Guide.
3-7 Generator Menu

Key Sequence: Measure (Shift + 4) > Generator

Generator On Off: Press to turn the tracking generator On or Off. The output power is turned on at the level that was previously set with the Output Power submenu key.

Output Power: Press to set the output power of the generator. The specified range is from –40 dBm to 0 dBm. The range that can be requested is –50 dBm to +15 dBm, which the instrument will deliver on a best efforts basis. Levels beyond –40 dBm to 0 dBm are not warranted. If the user has entered an external gain or loss value, that value will be added to the displayed value.

Generator Mode: Press to toggle the Generator Mode between CW and Tracking. In CW Mode, the output frequency is fixed and set by the CW Frequency submenu. In Tracking Mode, the output frequency is paired with the spectrum analyzer input sweeping frequency. The frequency range is set using the **Freq** main menu and submenu keys.

CW Frequency: Sets the frequency of the output when the Generator Mode is set to CW.

Settings: Displays the “Settings Menu” on page 3-10.

Transmission Measurement: Displays the “Transmission Measurement Menu” on page 3-11. To enter into Transmission mode, the Generator Mode must be set to Tracking and the Generator Output must be set to On.

Back: Returns to the Measure menu.
Settings Menu

Key Sequence: **Measure (Shift + 4) > Generator > Settings**

Ext Gain/Loss: Sets the tracking generator (RF OUT) external attenuation or gain. Press the Ext Gain/Loss submenu key and select a value from 0 dB to 100 dB, then select either dB External Loss or dB External Gain. The Generator Gain/Loss setting adjusts the Generator output power level displayed in the upper-right corner.

Regardless of the external gain or loss setting, the output power range of the tracking generator will not change.

Power Statistics: Press to display the Tracking Generator Summary table displaying the spectrum analyzer received Maximum, Average, and Minimum power of each frequency range sweep. Only available with Generator Mode set to tracking.

Back: Press to return to the “Generator Menu” on page 3-9.

Figure 3-10. Settings Menu
Transmission Measurement Menu

Key Sequence: **Measure (Shift + 4) > Generator [Generator = ON] [Generator Mode = Tracking] > Transmission Measurement**

<table>
<thead>
<tr>
<th>Button</th>
<th>Function Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalize</td>
<td>Press to toggle Normalization On or Off. When turned On, a calibration process is started. Make a THROUGH connection between the tracking Generator Output and the Spectrum Analyzer Input connectors before performing normalization. For the most accurate results, use the same cables and adapters that will be used for the normalization as will be used for the measurement. The current state (Off or On) is underlined.</td>
</tr>
<tr>
<td>Scale</td>
<td>Press to set the scale factor from 1 dB/division to 15 dB/division in 1 dB steps.</td>
</tr>
<tr>
<td>Reference Position</td>
<td>Press to set the graticle position of the Reference Amplitude. A setting of 5 uses the middle grid line. Position indicated by the > symbol.</td>
</tr>
<tr>
<td>Reference Amplitude</td>
<td>Press to set the reference amplitude. The Reference Amplitude value is placed at the defined Reference Position and the displayed amplitude values are adjusted based on the Scale division.</td>
</tr>
<tr>
<td>Transmission Statistics</td>
<td>Press to display the Transmission Measurement Statistics table displaying the received spectrum analyzer Maximum, Average, and Minimum relative power of each frequency range sweep.</td>
</tr>
<tr>
<td>Transmission Offset</td>
<td>Sets the offset for the normalized trace. Offset value is displayed in the Transmission Measurement Statistics.</td>
</tr>
<tr>
<td>Back</td>
<td>Press to return to the “Generator Menu” on page 3-9.</td>
</tr>
</tbody>
</table>

Figure 3-11. Transmission Measurement Menu
Index

A
Anritsu contact 1-2
Anritsu, contact 1-2
averaging, trace operations, TG ... 2-3, 3-3

C
calibration losses 2-4
connector torque 2-2, 3-2
contacting Anritsu 1-2
CW overview
TG 20 2-8
TG 800 3-6

detection type with TG On 2-2, 3-1

E
example
measurement 2-2, 3-2
relative scale, TG 2-6, 3-5

F
frequency, TG starting frequency ... 1-1
gen power accuracy menu, TG 20 ... 2-12
generator
 CW overview, TG 20 2-8
 CW overview, TG 800 3-6
 external gain/loss 2-12, 3-10
generate signal 2-1
starting frequency 1-1
generator menu
TG 20 2-11
TG 800 3-9

H
http, contacting Anritsu 1-2

L
links
contacting Anritsu 1-2
links, contact 1-2

M
measurement example 2-2, 3-2
menu
gen power accuracy, with TG 20 . 2-12
generator, with TG 20 2-11
generator, with TG 800 3-9
measure, with TG 20 2-10
measure, with TG 800 3-8
settings, with TG 20 2-12
settings, with TG 800 3-10
transmission, with TG 20 2-13
transmission, with TG 800 3-11
Menu button 1-2
menu map
TG 20 menus 2-10
TG 800 menus 3-8
mode change 1-2

N
normalization scale 2-13, 3-11
Normalize 2-13, 3-11
normalized reference level 2-13, 3-11

R
relative scale example, TG 2-6, 3-5

S
Settings menu
TG 20 2-12
TG 800 3-10
starting frequency 1-1

tuning frequency
TG 20 2-1
TG 800 3-1

THROUGH connection, TG 2-4
torque, connector care 2-2, 3-2
tracking generator
calibration 2-2, 3-2
example measurement 2-2, 3-2
menu map 20 2-10
menu map 800 3-8
startup 2-1, 3-1
transmission menu
TG 20 2-13
TG 800 3-11
transmission offset 2-13, 3-11
transmission statistics 2-13, 3-11
tuning frequency
TG 800 3-1
tuning frequency
TG 20 2-1

Tracking Generator MG
PN: 10580-00339 Rev. D
Index-1
<table>
<thead>
<tr>
<th>U</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL contacting Anritsu 1-2</td>
<td>web links, contact 1-2</td>
</tr>
<tr>
<td>Web site, contacting Anritsu 1-2</td>
<td></td>
</tr>
</tbody>
</table>