Note SCPI programming commands may not be available for all instrument operating modes and functions.
Table of Contents

Chapter 1—General Information

1-1 About this Manual ... 1-1
1-2 Introduction ... 1-1
1-3 Contacting Anritsu ... 1-1
1-4 Remote Programming Setup and Interface 1-2
 Ethernet Interface Connection and Setup 1-2
 USB Interface Connection and Setup 1-4
1-5 Sending SCPI Commands ... 1-7

Chapter 2—Programming with SCPI

2-1 Introduction ... 2-1
2-2 Introduction to SCPI Programming 2-1
 SCPI Common Commands ... 2-1
 SCPI Required Commands ... 2-2
 SCPI Optional Commands 2-2
2-3 Subsystem Commands ... 2-4
 Command Names ... 2-4
 Hierarchical Command Structure 2-5
 Query Commands .. 2-6
 Identifiers .. 2-7
 Data Parameters ... 2-8
 Data Parameter Notations 2-8
 Unit Suffixes .. 2-9
2-4 Notational Conventions .. 2-10
2-5 Notational Examples ... 2-11
 Command Terminators ... 2-12
2-6 Formatting Conventions .. 2-12
2-7 Parameter Names .. 2-13
 Spectrum Analyzer Parameter Names 2-14
 GSM Parameter Names ... 2-20
 WiMAX, Mobile WiMAX Parameter Names 2-21
 WCDMA Parameter Names 2-23
 CDMA Parameter Names ... 2-25
 EVDO Parameter Names .. 2-27
 TDSCDMA Parameter Names 2-29
Table of Contents (Continued)

Chapter 3—All Mode Commands
- 3-1 :FETCh GPS Subsystem .. 3-1
- 3-2 :INSTrument Subsystem ... 3-2
- 3-3 :MMEMory Subsystem .. 3-4
- 3-4 [:SENSe] GPS Subsystem ... 3-12
- 3-5 :STATus Subsystem .. 3-13
- 3-6 :SYSTem Subsystem .. 3-14

Chapter 4—Spectrum Analyzer Commands
- 4-1 :ABORt Subsystem .. 4-1
- 4-2 :CALCulate Subsystem ... 4-2
- 4-3 :CONFigure Subsystem .. 4-24
- 4-4 :DISPlay Subsystem ... 4-26
- 4-5 :FETCh Subsystem .. 4-28
- 4-6 :FORMat Subsystem .. 4-30
- 4-7 :INITiate Subsystem ... 4-31
- 4-8 :MEASure Subsystem ... 4-34
- 4-9 :MMEMory Subsystem .. 4-38
- 4-10 :READ Subsystem .. 4-39
- 4-11 :TRACe Subsystem .. 4-41
- 4-12 :TRIGger Subsystem ... 4-48
- 4-13 :UNIT Subsystem .. 4-50
- 4-14 [:SENSe] Subsystem ... 4-51

Chapter 5—Tracking Generator Commands
- 5-1 :CONFigure Subsystem .. 5-2
- 5-2 :FETCh Subsystem .. 5-3
- 5-3 :GENerator Subsystem ... 5-4
- 5-4 :INITiate Subsystem .. 5-6
- 5-5 :MEASure Subsystem .. 5-7
- 5-6 :READ Subsystem .. 5-8
- 5-7 [:SENSe] Subsystem .. 5-9

Chapter 6—CDMA Commands
- 6-1 :ABORt Subsystem .. 6-1
- 6-2 :CALCulate Subsystem ... 6-2
- 6-3 :CONFigure Subsystem ... 6-3
6-4 :DISPlay Subsystem 6-5
6-5 :FETCh Subsystem 6-6
6-6 :FORMat Subsystem 6-9
6-7 :INITiate Subsystem 6-10
6-8 :MEASure Subsystem 6-11
6-9 :READ Subsystem 6-16
6-10 :TRACe Subsystem 6-20
6-11 :TRIGger Subsystem 6-23
6-12 :UNIT Subsystem 6-24
6-13 [:SENSe] Subsystem 6-25

Chapter 7—EV-DO Commands
7-1 :ABORt Subsystem 7-1
7-2 :CALCulate Subsystem 7-2
7-3 :CONFigure Subsystem 7-3
7-4 :DISPlay Subsystem 7-5
7-5 :FETCh Subsystem 7-6
7-6 :FORMat Subsystem 7-11
7-7 :INITiate Subsystem 7-12
7-8 :MEASure Subsystem 7-13
7-9 :READ Subsystem 7-20
7-10 :TRACe Subsystem 7-23
7-11 :TRIGger Subsystem 7-26
7-12 :UNIT Subsystem 7-27
7-13 [:SENSe] Subsystem 7-28

Chapter 8—WCDMA Commands
8-1 :ABORt Subsystem 8-1
8-2 :CALCulate Subsystem 8-2
8-3 :CONFigure Subsystem 8-4
8-4 :DISPlay Subsystem 8-7
8-5 :FETCh Subsystem 8-8
8-6 :FORMat Subsystem 8-20
8-7 :INITiate Subsystem 8-21
8-8 :MEASure Subsystem 8-22
8-9 :MMEMory Subsystem 8-36
8-10 :READ Subsystem 8-37
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-11</td>
<td>:TRACe Subsystem</td>
<td>8-46</td>
</tr>
<tr>
<td>8-12</td>
<td>[:SENSe] Subsystem</td>
<td>8-48</td>
</tr>
</tbody>
</table>

Chapter 9—TDSCDMA Commands

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>:ABORt Subsystem</td>
</tr>
<tr>
<td>9-2</td>
<td>:CONFigure Subsystem</td>
</tr>
<tr>
<td>9-3</td>
<td>:DISPlay Subsystem</td>
</tr>
<tr>
<td>9-4</td>
<td>:FETCh Subsystem</td>
</tr>
<tr>
<td>9-5</td>
<td>:FORMat Subsystem</td>
</tr>
<tr>
<td>9-6</td>
<td>:INITiate Subsystem</td>
</tr>
<tr>
<td>9-7</td>
<td>:MEASure Subsystem</td>
</tr>
<tr>
<td>9-8</td>
<td>:READ Subsystem</td>
</tr>
<tr>
<td>9-9</td>
<td>:TRACe Subsystem</td>
</tr>
<tr>
<td>9-10</td>
<td>[:SENSe] Subsystem</td>
</tr>
<tr>
<td>9-11</td>
<td>[:SENSe] Subsystem</td>
</tr>
</tbody>
</table>

Chapter 10—GSM Commands

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>:ABORt Subsystem</td>
</tr>
<tr>
<td>10-2</td>
<td>:CONFigure Subsystem</td>
</tr>
<tr>
<td>10-3</td>
<td>:DISPlay Subsystem</td>
</tr>
<tr>
<td>10-4</td>
<td>:FETCh Subsystem</td>
</tr>
<tr>
<td>10-5</td>
<td>:FORMat Subsystem</td>
</tr>
<tr>
<td>10-6</td>
<td>:INITiate Subsystem</td>
</tr>
<tr>
<td>10-7</td>
<td>:MEASure Subsystem</td>
</tr>
<tr>
<td>10-8</td>
<td>:READ Subsystem</td>
</tr>
<tr>
<td>10-9</td>
<td>:TRACe Subsystem</td>
</tr>
<tr>
<td>10-10</td>
<td>[:SENSe] Subsystem</td>
</tr>
</tbody>
</table>

Chapter 11—Fixed WiMAX Commands

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1</td>
<td>:ABORt Subsystem</td>
</tr>
<tr>
<td>11-2</td>
<td>:CONFigure Subsystem</td>
</tr>
<tr>
<td>11-3</td>
<td>:DISPlay Subsystem</td>
</tr>
<tr>
<td>11-4</td>
<td>:FETCh Subsystem</td>
</tr>
<tr>
<td>11-5</td>
<td>:FORMat Subsystem</td>
</tr>
<tr>
<td>11-6</td>
<td>:INITiate Subsystem</td>
</tr>
<tr>
<td>11-7</td>
<td>:MEASure Subsystem</td>
</tr>
<tr>
<td>11-8</td>
<td>:READ Subsystem</td>
</tr>
<tr>
<td>11-9</td>
<td>:TRACe Subsystem</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

11-10 [:SENSe] Subsystem .. 11-22

Chapter 12—Mobile WiMAX Commands

12-1 :ABORt Subsystem .. 12-1
12-2 :CONFigure Subsystem ... 12-2
12-3 :DISPlay Subsystem .. 12-5
12-4 :FETCh Subsystem .. 12-7
12-5 :FORMat Subsystem .. 12-10
12-6 :INITiate Subsystem .. 12-11
12-7 :MEASure Subsystem .. 12-12
12-8 :READ Subsystem .. 12-17
12-9 :TRACe Subsystem ... 12-21
12-10 [:SENSe] Subsystem .. 12-23

Chapter 13—LTE Commands

13-1 :ABORt Subsystem .. 13-1
13-2 :CALCulate Subsystem ... 13-2
13-3 :CONFigure Subsystem ... 13-6
13-4 :DISPlay Subsystem .. 13-9
13-5 :FETCh Subsystem .. 13-10
13-6 :FORMat Subsystem .. 13-15
13-7 :INITiate Subsystem .. 13-16
13-8 :MEASure Subsystem .. 13-17
13-9 :READ Subsystem .. 13-23
13-10 :UNIT Subsystem ... 13-28
13-11 [:SENSe] Subsystem .. 13-29

Chapter 14—TD-LTE Commands

14-1 :ABORt Subsystem .. 14-1
14-2 :CALCulate Subsystem ... 14-2
14-3 :CONFigure Subsystem ... 14-6
14-4 :DISPlay Subsystem .. 14-9
14-5 :FETCh Subsystem .. 14-10
14-6 :FORMat Subsystem .. 14-15
14-7 :INITiate Subsystem .. 14-16
14-8 :MEASure Subsystem .. 14-17
14-9 :READ Subsystem .. 14-22
14-10 :TRIGger Subsystem .. 14-27
Table of Contents (Continued)

14-11 :UNIT Subsystem ... 14-28
14-12 [:SENSe] Subsystem ... 14-29

Chapter 15—AM/FM/PM Commands
15-1 :CALCulate Subsystem ... 15-1
15-2 :DISPlay Subsystem .. 15-5
15-3 :FORMat Subsystem .. 15-6
15-4 :INIItiate Subsystem .. 15-8
15-5 :MMEMory Subsystem ... 15-9
15-6 :TRACe Subsystem .. 15-12
15-7 [:SENSe] Subsystem .. 15-13

Appendix A—Programming Example
A-1 C/C++ ... A-1
A-2 Visual Basic ... A-5
A-3 LabVIEW™ .. A-6

Appendix B—IQ Waveform Capture
B-1 MATLAB Script (getdata_simple_24.m) B-2
B-2 C++ Code (IQ_SCPI.cpp) .. B-5

Appendix C—List of Commands by Mode
Appendix D—List of All Commands
Index
Chapter 1 — General Information

1-1 About this Manual

This SCPI Programming Manual provides information for remote operation of the MS2720T High Performance Handheld Spectrum Analyzer using commands sent from an external controller via Ethernet or USB connection. This Programming Manual includes the following:

- An overview of Ethernet and USB connection to the instrument.
- An overview of Standard Commands for Programmable Instruments (SCPI) command structure and conventions.
- The IEEE common commands that are supported by the MS2720T.
- A complete listing and description of all the SCPI commands that can be used to remotely control functions of the Spectrum Master. The commands are organized by instrument mode starting in Chapter 3, “All Mode Commands”.

This manual is intended to be used in conjunction with the MS2720T User Guide, P/N: 10580-00340. Refer to that manual for general information about the MS2720T, including equipment setup and operating instructions.

1-2 Introduction

This chapter provides a general description of remote programming setup and interface connections using Ethernet or USB, and sending SCPI commands to the instrument.

1-3 Contacting Anritsu

To contact Anritsu, please visit:
http://www.anritsu.com/contact-us

On this page you can find links to sales, service, and support contact information for your country or region. You can also provide online feedback, complete a “Talk to Anritsu” form to have your questions answered, or obtain other services offered by Anritsu.

Updated product information can be found on the Anritsu website:
http://www.anritsu.com/

Search for the product model number. The latest documentation is on the product page under the Library tab.

Remote Programming Setup and Interface

Remote programming and operation of the instrument is accomplished via the Ethernet or the USB interface. The following sections provide information about the interface connections, cable requirements, and remote operation setup.

Note
If a password has been set for the instrument, to control access via the Anritsu Web Remote Tools, for example, remote operation using SCPI commands is not possible.

Ethernet Interface Connection and Setup

The MS2720T uses Ethernet to communicate remotely with a controller. Most instrument functions (except power on/off) can be controlled via an Ethernet connection to a PC connected directly (with an Ethernet cross-over cable) or through a network. The instrument software supports the TCP/IP network protocol.

Ethernet networking uses a bus or star topology in which all of the interfacing devices are connected to a central cable called the bus, or are connected to a hub. Ethernet uses the CSMA/CD access method to handle simultaneous transmissions over the bus. CSMA/CD stands for Carrier Sense Multiple Access/Collision Detection. This standard enables network devices to detect simultaneous data channel usage, called a collision, and provides for a contention protocol. When a network device detects a collision, the CSMA/CD standard dictates that the data is retransmitted after waiting a random amount of time. If a second collision is detected, the data is again retransmitted after waiting twice as long. This is known as exponential back off.

The TCP/IP setup requires the following:

- IP Address: Every computer and electronic device in a TCP/IP network requires an IP address. An IP address has four numbers (each between 0 and 255) separated by periods. For example: 128.111.122.42 is a valid IP address.
- Subnet Mask: The subnet mask distinguishes the portion of the IP address that is the network ID from the portion that is the station ID. The subnet mask 255.255.0.0, when applied to the IP address given above, would identify the network ID as 128.111 and the station ID as 122.42. All stations in the same local area network should have the same network ID, but different station IDs.
- Default Gateway: A TCP/IP network can have a gateway to communicate beyond the LAN identified by the network ID. A gateway is a computer or electronic device that is connected to two different networks and can move TCP/IP data from one network to the other. A single LAN that is not connected to other LANs requires a default gateway setting of 0.0.0.0. If you have a gateway, then the default gateway would be set to the appropriate value of your gateway.
- Ethernet Address: An Ethernet address is a unique 48-bit value that identifies a network interface card to the rest of the network. Every network card has a unique Ethernet address (MAC address) permanently stored into its memory.
Interface between the instrument and other devices on the network is via a category five (CAT-5) interface cable connected to a network. This cable uses four twisted pairs of insulated copper wires terminated into an RJ45 connector. CAT-5 cabling is capable of supporting frequencies up to 100 MHz and data transfer speeds up to 1 Gbps, which accommodates 1000Base-T, 100Base-T, and 10Base-T networks. CAT-5 cables are based on the EIA/TIA 568 Commercial Building Telecommunications Wiring Standard developed by the Electronics Industries Association. A pinout diagram is shown in Table 1-1.

Table 1-1. 8-pin Ethernet RJ45 Connector Pinout Diagram

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>Transmit data (> +3 volts)</td>
<td>White/Orange</td>
</tr>
<tr>
<td>2</td>
<td>TX–</td>
<td>Transmit data (< −3 volts)</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>Receive data (> +3 volts)</td>
<td>White</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>Not used (common mode termination)</td>
<td>Blue</td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>Not used (common mode termination)</td>
<td>White/Blue</td>
</tr>
<tr>
<td>6</td>
<td>RX–</td>
<td>Receive data (< −3 volts)</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Not used (common mode termination)</td>
<td>White/Brown</td>
</tr>
<tr>
<td>8</td>
<td>–</td>
<td>Not used (common mode termination)</td>
<td>Brown</td>
</tr>
</tbody>
</table>

TCP/IP connectivity requires setting up the parameters described at the beginning of this section. The following is a brief overview of how to set up a general LAN connection on the MS2720T.

Note: You may need to consult your network documentation or network administrator for assistance in configuring your network setup.

LAN Connection

The RJ45 connector is used to connect the instrument to a local area network. Integrated into this connector are two LEDs. The amber LED indicates the presence of LAN voltages (a live LAN connection) while the green LED flashes to show that LAN traffic is present. The instrument IP address is set by pressing the Shift key, then the System (8) key followed by the System Options soft key and the Ethernet Config soft key. The instrument IP address can be set automatically using DHCP, or manually by entering the desired IP address, gateway address and subnet mask.
Dynamic Host Configuration Protocol (DHCP) is an Internet protocol that automates the process of setting IP addresses for devices that use TCP/IP, and is the most common method of configuring a device for network use.

To determine if a network is set up for DHCP, connect the instrument to the network and select DHCP protocol in the Ethernet Config menu. Power cycle the instrument. If the network is set up for DHCP, the assigned IP address should be displayed briefly after the power-up sequence.

To display the IP address of the instrument, press the Shift key followed by System (8), then the System Options soft key and Ethernet Config.

USB Interface Connection and Setup

The Universal Serial Bus (USB) architecture is a high-performance networking standard that is considered “plug and play” compatible. The USB driver software is automatically detected and configured by the operating system of the devices that are connected to the bus. The instrument conforms to the USB 2.0 standard and is a USB “full-speed” device that supports data rates of up to 10 Mbps with the following restrictions:

- One USB network can support up to 127 devices.
- The maximum length of USB cables between active devices is 5 meters for USB 2.0 and 3 meters for USB 1.0.

You must have NI-VISA 2.5 or later installed on the controller PC and you must select the VISA library (visa32.dll) as a reference in a Visual Basic project. For remote USB control, the controlling PC must have a version of VISA installed that supports USBTMC (USB Test and Measurement Class) devices.

The USB 2.0 Mini-B device connector can be used to connect the MS2720T directly to a PC. The first time the instrument is connected to a PC, the normal USB device detection by the computer operating system takes place.

1. Power on the instrument and controller PC and wait for the systems to power up completely.
2. Connect the USB cable mini-B connector to the instrument.
3. Connect the USB cable A connector to the controller PC USB host port. The controller PC should indicate “New Hardware Found” if the combination of USB VID/PID/Serial Number has never been connected to this controller PC.

4. Select to allow the Wizard to search for and install the USB software automatically.
5. After the software finishes installing, close the Wizard by clicking Finish.

Figure 1-3. Found New Hardware Wizard
1-5 Sending SCPI Commands

SCPI commands can be sent to the instrument through any Virtual Instrument Software Architecture (VISA) controller. VISA is a commonly used API in the Test and Measurement industry for communicating with instruments from a PC. The physical connection between the PC and the Spectrum Master can be Ethernet or USB. NI-VISA is the National Instruments implementation of the VISA I/O standard. Information and downloads are available at http://www.ni.com/visa/.

The following example describes the verification that a VISA controller can interact with the instrument. The images shown and the instructions for your instrument and software may differ from the examples.

Note Before remote operation, confirm that the instrument is not in the Menu screen. Sending commands while this screen is displayed is an invalid operation. Refer to the instrument User Guide for information on the Menu screen.

1. On the PC, run VISA Interactive Control and double-click on the instrument.

![VISA Interactive Control](image)

Figure 1-4. VISA Interactive Control
2. Select the viWrite tab and execute the default *IDN? write by clicking the Execute button.

3. Select the viRead tab and click the Execute button. If the PC is connected to the instrument, the command returns the following information from the Buffer: manufacturer name (“Anritsu”), model number/options, serial number, and firmware package number.
Chapter 2 — Programming with SCPI

2-1 Introduction

This chapter provides an introduction to SCPI programming that includes descriptions of the command types, hierarchical command structure, command subsystems, data parameters and notational conventions.

2-2 Introduction to SCPI Programming

The Standard Commands for Programmable Instruments (SCPI) defines a set of standard programming commands for use by all SCPI compatible instruments. SCPI is intended to give the user a consistent environment for program development. It does so by defining controller messages, instrument responses, and message formats for all SCPI compatible instruments. SCPI commands are messages to the instrument to perform specific tasks. The MS2720T command set includes:

- “SCPI Common Commands” on page 2-1
- “SCPI Required Commands” on page 2-2
- “SCPI Optional Commands” on page 2-2

Note: This instrument follows the SCPI standard but is not fully compliant with the standard.

SCPI Common Commands

Some common commands are defined in the IEEE-488.2 standard and must be implemented by all SCPI compatible instruments. These commands are identified by the asterisk (*) at the beginning of the command keyword. These commands are defined to control instrument status registers, status reporting, synchronization, and other common functions. The common commands supported by the Spectrum Master are shown below.

*IDN?

Title: Identification Query

Description: This command returns the following information in <string> format separated by commas: manufacturer name (“Anritsu”), model number/options, serial number, firmware package number. The model number and options are separated by a “/” and each option is separated by a “/”.

For example, the return string might look like:
“Anritsu,MS2720T/3/2,62011032,1.23”
*RST

Title: Reset
Description: This command restores parameters in the current application as well as system settings to their factory default values.

System settings affected by this command are Ethernet configuration, language, volume and brightness. Note that the unit will power-cycle after this command is executed.

After executing this command, communication will be lost. Wait a minimum of 60 seconds before re-establishing communication.

Front Panel
Access: Shift-8 (System), System Options, Reset, Factory Defaults

See Also: :SYSTem:PRESet

SCPI Required Commands
The required SCPI commands supported by the MS2720T are listed in the Table 2-1. These command work in all measurement modes and are described in Chapter 3.

Table 2-1. SCPI Required Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>:STATus</td>
</tr>
<tr>
<td>:SYSTem</td>
</tr>
</tbody>
</table>

SCPI Optional Commands
Table 2-2 lists the optional SCPI commands that comprise the majority of the command set described in this document. These commands control most of the programmable functions of the MS2720T.

Table 2-2. SCPI Optional Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command</th>
<th>Command</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ABORt</td>
<td>:FETCh</td>
<td>:MEASure</td>
<td>:TRACe</td>
</tr>
<tr>
<td>:CALCulate</td>
<td>:FORMat</td>
<td>:MMEMory</td>
<td>:TRIGger</td>
</tr>
<tr>
<td>:CALibration</td>
<td>:INITiate</td>
<td>:READ</td>
<td>:UNIT</td>
</tr>
<tr>
<td>:CONFigure</td>
<td>:INPut</td>
<td>:SENSe</td>
<td>[:SENSe]</td>
</tr>
<tr>
<td>:DISPlay</td>
<td>:INSTRument</td>
<td>:SOURce</td>
<td></td>
</tr>
</tbody>
</table>
The SCPI optional commands are sorted by measurement modes, and commands may be repeated in more than one mode.

- Chapter 3, “All Mode Commands”
- Chapter 4, “Spectrum Analyzer Commands”
- Chapter 5, “Tracking Generator Commands”
- Chapter 6, “CDMA Commands”
- Chapter 7, “EV-DO Commands”
- Chapter 8, “WCDMA Commands”
- Chapter 9, “TDSCDMA Commands”
- Chapter 10, “GSM Commands”
- Chapter 11, “Fixed WiMAX Commands”
- Chapter 12, “Mobile WiMAX Commands”
- Chapter 13, “LTE Commands”
- Chapter 14, “TD-LTE Commands”
- Chapter 15, “AM/FM/PM Commands”
2-3 Subsystem Commands

Subsystem commands control all instrument functions and some general purpose functions. All subsystem commands are identified by the colon used between keywords, as in :INITiate:CONTinuous.

The following information is provided for each subsystem command described in the following chapters:

- The command name, see “Command Names” on page 2-4.
- The path from the subsystem root command, see “Hierarchical Command Structure” on page 2-5.
- The query form of the command (if applicable), see “Query Commands” on page 2-6.
- The command title
- A description of the purpose of the command.
- The data parameters used as arguments for the command, see “Data Parameters” on page 2-8. This may include the parameter type and the available parameter choices.

Command Names

Typical SCPI commands consist of one or more keywords, parameters, and punctuation. SCPI command keywords can be a mixture of upper and lower case characters. Except for common commands, each keyword has a long and a short form. In this manual, the long form is presented with the short form in upper case and the remainder in lower case. For example, the long form of the command keyword to control the instrument display is :DISPlay.

The short form keyword is usually the first four characters of the long form (example: DISP for DISPlay). The exception to this is when the long form is longer than four characters and the fourth character is a vowel. In such cases, the vowel is dropped and the short form becomes the first three characters of the long form. Example: the short form of the keyword :POWer is :POW.

Some command keywords may have a numeric suffix to differentiate between multiple instrument features such as multiple trace options. For example; keywords :TRACe[:DATA]{1|2|3}, :TRACe1, or :TRACe3.

As with any programming language, the exact command keywords and command syntax must be used. The syntax of the individual commands is described in detail in the programming command chapters. Unrecognized versions of long form or short form commands, or improper syntax, will generate an error.
Long Format vs. Short Format

Each keyword has a long format and a short format. The start frequency can be specified by `:SENSe:FREQuency:STARt` or `:SENS:FREQ:STAR`. The capital letters in the command specification indicate the short form of the command. A mixture of the entire short form elements with entire long form elements of each command is acceptable. For example, `:SENS:FREQuency:STA` is an acceptable form of the command. However, `:SENS:FREQuen:STA` is not an acceptable form of the command because `:FREQuen` is not the entire short or long form of the command element.

Hierarchical Command Structure

All SCPI commands, except the common commands, are organized in a hierarchical structure similar to the inverted tree file structure used in most computers. The SCPI standard refers to this structure as “the Command Tree.” The command keywords that correspond to the major instrument control functions are located at the top of the command tree. The root command keywords for the MS2720T SCPI command set are shown in Figure 2-1.

Figure 2-1. SCPI Command Tree
All MS2720T SCPI commands, except the :ABORt command, have one or more subcommands (keywords) associated with them to further define the instrument function to be controlled. The subcommand keywords may also have one or more associated subcommands (keywords). Each subcommand level adds another layer to the command tree. The command keyword and its associated subcommand keywords form a portion of the command tree called a command subsystem. The :CONFigure command subsystem is shown in Figure 2-2.

A colon (:) separates each subsystem. For example, the command

:SENSe:FREQuency:STARt <freq> sets the start frequency. The start frequency is part of the :FREQuency subsystem which is part of the :SENSe subsystem. Stop frequency is also part of the :SENSe:FREQuency subsystem. It is specified by :SENSe:FREQuency:STOP.

Figure 2-2. SCPI :CONFigure Subsystem

Query Commands

All commands, unless specifically noted in the commands syntax descriptions, have a query form. As defined in IEEE-488.2, a query is a command with a question mark symbol appended (examples: *IDN? and :OPTions?). When a query form of a command is received, the current setting associated with the command is placed in the output buffer. Query commands always return the short form of the parameter unless otherwise documented. Boolean values are returned as 1 or 0, even when they can be set as on or off.

Note When sending query commands immediately following an instrument setup command, a delay of up to two seconds may be required to allow the instrument sufficient time to complete the setup and receive the query.
Identifiers

The following identifiers have been used throughout the optional command definitions. Descriptions are provided here. In most cases, units are specified with the individual command.

Table 2-3. Description of Command Identifiers

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><amplitude></td>
<td>Amplitude value. Units specified with the command.</td>
</tr>
<tr>
<td><freq></td>
<td>Frequency. Units specified with the command.</td>
</tr>
<tr>
<td><integer></td>
<td>Integer value, no units. Range specified with the command.</td>
</tr>
<tr>
<td><number></td>
<td>Numeric value, integer, or real.</td>
</tr>
<tr>
<td><percentage></td>
<td>Percentage value from 0 to 100. Units are always %.</td>
</tr>
<tr>
<td><rel ampl></td>
<td>Relative amplitude. Units are always dB.</td>
</tr>
<tr>
<td><x-parameter></td>
<td>Parameter value in the units of the x-axis. Units are specified with the command.</td>
</tr>
<tr>
<td><string></td>
<td>The string should be enclosed in either single quotes (’’) or double quotes (“ “).</td>
</tr>
<tr>
<td><filename></td>
<td>The name should be enclosed in either single quotes (’’) or double quotes (“ “). The need for an extension is documented with applicable commands.</td>
</tr>
<tr>
<td><voltage></td>
<td>Voltage. Units specified with the command.</td>
</tr>
<tr>
<td><current></td>
<td>Current. Units specified with the command.</td>
</tr>
</tbody>
</table>
Data Parameters

Data parameters, referred to simply as “parameters,” are the quantitative values used as arguments for the command keywords. The parameter type associated with a particular SCPI command is determined by the type of information required to control the particular instrument function. For example, Boolean (ON | OFF) type parameters are used with commands that control switch functions.

Some command descriptions specify the type of data parameter to be used with each command. The most commonly used parameter types are numeric, extended numeric, discrete, and Boolean.

Numeric

Numeric parameters comprise integer numbers or any number in decimal or scientific notation, and may include polarity signs. This includes <NR1>, <NR2>, and <NR3> numeric data as defined in “Data Parameter Notations” below. Parameters that accept all three <NR> formats are designated <NRf> throughout this document.

Extended Numeric

Extended numeric parameters include values such as MAXimum and MINimum.

Discrete

Discrete parameters, such as INTernal and EXTernal, are used to control program settings to a predetermined finite value or condition.

Boolean

Boolean parameters represent binary conditions and may be expressed as ON, OFF or 1, 0.

Data Parameter Notations

The following syntax conventions are used for data parameter descriptions in this manual:

<table>
<thead>
<tr>
<th>Parameter Notations (1 of 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td><arg> ::= a generic command argument consisting of one or more of the other data types</td>
</tr>
<tr>
<td><bNR1> ::= boolean values in <NR1> format; numeric 1 or 0</td>
</tr>
<tr>
<td><boolean> ::= ON</td>
</tr>
<tr>
<td>Boolean parameters are always returned as 1 or 0 in <NR1> format by query commands</td>
</tr>
<tr>
<td><integer> ::= an unsigned integer without a decimal point (implied radix point)</td>
</tr>
<tr>
<td><NR1> ::= a signed integer without a decimal point (implied radix point)</td>
</tr>
<tr>
<td><NR2> ::= a signed number with an explicit radix point</td>
</tr>
<tr>
<td><NR3> ::= a scaled explicit decimal point numeric value with and exponent (e.g., floating point number)</td>
</tr>
<tr>
<td><NRf> ::= <NR1></td>
</tr>
</tbody>
</table>
Unit Suffixes

Unit suffixes are not required for data parameters, provided the values are scaled for the
global default units. The Spectrum Master SCPI default units are: Hz (Hertz) for frequency
related parameters s (seconds) for time related parameters, and m (meters) for distance
related parameters.

Table 2-4. Parameter Notations (2 of 2)

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><nv></td>
<td>::=SCPI numeric value: <NRf></td>
</tr>
<tr>
<td><char></td>
<td>::=<CHARACTER PROGRAM DATA> Examples: CW, FIXed, UP, and DOWN</td>
</tr>
<tr>
<td><string></td>
<td>::=<STRING PROGRAM DATA> ASCII characters enclosed by double quotes For example: “OFF”</td>
</tr>
<tr>
<td><block></td>
<td>::=IEEE-488.2 block data format</td>
</tr>
<tr>
<td><NA></td>
<td>::=Not Applicable</td>
</tr>
</tbody>
</table>
2-4 Notational Conventions

The SCPI interface standardizes command syntax and style that simplifies the task of programming across a wide range of instrumentation. As with any programming language, the exact command keywords and command syntax must be used. Unrecognized commands or improper syntax will not function.

Table 2-5. Notational Conventions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>A colon links command keywords together to form commands. The colon is not an actual part of the keyword, but is a signal to the SCPI interface parser. A colon must precede a root keyword immediately following a semicolon (see “Notational Examples” on page 2-11).</td>
</tr>
<tr>
<td>;</td>
<td>A semicolon separates commands if multiple commands are placed on a single program line.</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose one or more optional keywords.</td>
</tr>
<tr>
<td>} }</td>
<td>Braces enclose one or more keyword or command parameters that may be included one or more times.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>< ></td>
<td>Angle brackets enclose parameter descriptions.</td>
</tr>
<tr>
<td>::=</td>
<td>Means “is defined as” For example: (<a> ::= <c>) indicates that (<c>) can replace (<a>).</td>
</tr>
<tr>
<td>sp</td>
<td>Space, referred to as white space, must be used to separate keywords from their associated data parameters. It must not be used between keywords or inside keywords.</td>
</tr>
<tr>
<td>XXX</td>
<td>Indicates a root command name</td>
</tr>
</tbody>
</table>

For further information about SCPI command syntax and style, refer to the Standard Commands for Programmable Instruments (SCPI) 1999.0 document.
2-5 Notational Examples

Table 2-6 provides examples of valid command syntax:

Table 2-6. Creating Valid Commands

<table>
<thead>
<tr>
<th>Command Specification</th>
<th>Valid Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SENSe]:FREQuency:STARt <freq></td>
<td>The following all produce the same result:</td>
</tr>
<tr>
<td></td>
<td>:SENSe:FREQuency:STARt 1 MHZ</td>
</tr>
<tr>
<td></td>
<td>:SENSe:FREQ:STAR 1 MHZ</td>
</tr>
<tr>
<td></td>
<td>:sense:frequency:start 1000000</td>
</tr>
<tr>
<td></td>
<td>:FREQ:STAR 1000 kHZ</td>
</tr>
<tr>
<td>:CALCulate:MARKer{1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>:CALC:MARK:X 1 GHZ</td>
</tr>
<tr>
<td></td>
<td>:CALC:MARK1:X 1 GHZ</td>
</tr>
<tr>
<td></td>
<td>:CALC:MARK2:X 2 GHZ</td>
</tr>
<tr>
<td>:UNIT:POWer dBM</td>
<td>DBV</td>
</tr>
<tr>
<td></td>
<td>:UNIT:POWer dBM</td>
</tr>
<tr>
<td></td>
<td>:unit:pow dBM</td>
</tr>
<tr>
<td>:INITiate:CONTinuous OFF</td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td>:INITiate:CONTinuous OFF</td>
</tr>
<tr>
<td></td>
<td>:init:cont 0</td>
</tr>
</tbody>
</table>

Command statements read from left to right and from top to bottom. In the command statement above, the :FREQuency keyword immediately follows the :SENSe keyword with no separating space. A space (sp) is used between the command string and its argument.

Note that the first keyword in the command string does not require a leading colon; however, it is good practice to always use a leading colon for all keywords. Note also that the :SENSe keyword is optional. This is a SCPI convention for all voltage or signal source type instruments that allows shorter command statements to be used.

The following is an example of a multiple command statement that uses two separate commands in a single statement:

```
:FREQuency:STARt 10E6; :FREQuency:STOP 20E9
```

Note A semicolon is used to join the commands and a leading colon used immediately after the semicolon to start the second command.
Command Terminators

The <new line> character (ASCII 10) in the last data byte of a command string is used as a command terminator. Use of a command terminator will reset the command path to the root of the tree.

2-6 Formatting Conventions

This manual uses the following conventions in describing SCPI commands.

Table 2-7. Formatting Conventions

<table>
<thead>
<tr>
<th>Formatting Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>:COMMands:LOOK:LIKE:THIS</td>
<td>Commands are formatted to differentiate them from their description.</td>
</tr>
<tr>
<td>:COMMand:QUERies:LOOK:LIKE:THIS?</td>
<td>The query form of the command is followed by a “?”</td>
</tr>
<tr>
<td>Front-panel key sequences use this formatting</td>
<td>Front-panel key presses are formatted to differentiate them from text descriptions. Key presses are separated by a comma (”,“).</td>
</tr>
<tr>
<td><identifier></td>
<td>Identifiers are enclosed in “< >”. They indicate that some type of data must be provided. See Table 2-3 for details on the types of identifiers.</td>
</tr>
<tr>
<td></td>
<td>The “</td>
</tr>
<tr>
<td>[optional input]</td>
<td>Optional input is be enclosed in “[]”. The “[]” are not part of the command.</td>
</tr>
</tbody>
</table>
2-7 Parameter Names

The following tables list the parameter options for the :TRACe:PREamble? command in each supported measurement mode.
Spectrum Analyzer Parameter Names

Table 2-8. Available Parameters in Spectrum Analyzer Mode (1 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Instrument serial #</td>
</tr>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>UNITS</td>
<td>Amplitude units</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center frequency</td>
</tr>
<tr>
<td>SPAN</td>
<td>Frequency span</td>
</tr>
<tr>
<td>FREQ_STEP</td>
<td>Frequency step size</td>
</tr>
<tr>
<td>RBW</td>
<td>Resolution bandwidth</td>
</tr>
<tr>
<td>RBW_TYPE</td>
<td>RBW coupling auto/manual</td>
</tr>
<tr>
<td>VBW</td>
<td>Video bandwidth</td>
</tr>
<tr>
<td>VBW_TYPE</td>
<td>VBW coupling auto/manual</td>
</tr>
<tr>
<td>RBW_VBW_RATIO</td>
<td>RBW/VBW ratio</td>
</tr>
<tr>
<td>SPAN_RBW_RATIO</td>
<td>Span/RBW ratio</td>
</tr>
<tr>
<td>INPUT_ATTEN</td>
<td>Input attenuation</td>
</tr>
<tr>
<td>ATTEN_TYPE</td>
<td>Attenuation coupling auto/manual</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference level</td>
</tr>
<tr>
<td>SCALE</td>
<td>y-axis scale</td>
</tr>
<tr>
<td>PREAMP_SET</td>
<td>Preamp state</td>
</tr>
<tr>
<td>REF_LEVEL_OFFSET</td>
<td>Reference level offset</td>
</tr>
<tr>
<td>DETECTION</td>
<td>Detection type</td>
</tr>
<tr>
<td>TRACE_AVERAGE</td>
<td>Number of traces to average</td>
</tr>
<tr>
<td>SWEEP_TYPE</td>
<td>Single/continuous</td>
</tr>
<tr>
<td>CURRENT_SIGNAL</td>
<td>Current signal index</td>
</tr>
<tr>
<td>CURRENT_CHANNEL</td>
<td>Current signal channel</td>
</tr>
<tr>
<td>TRACE_MODE</td>
<td>Normal/Avg/Max</td>
</tr>
</tbody>
</table>
Available Parameters in Spectrum Analyzer Mode (2 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRACE_STATUS</td>
<td>Set of trace status flags</td>
</tr>
<tr>
<td>TRACE_A_VIEW_NOT_BLANK</td>
<td>0x0000000000000001</td>
</tr>
<tr>
<td>TRACE_A_WRITE_NOT_HOLD</td>
<td>0x0000000000000002</td>
</tr>
<tr>
<td>TRACE_A_DATA_VALID</td>
<td>0x0000000000000004</td>
</tr>
<tr>
<td>TRACE_B_VIEW_NOT_BLANK</td>
<td>0x000000000000010000</td>
</tr>
<tr>
<td>TRACE_B_WRITE_NOT_HOLD</td>
<td>0x0000000000020000</td>
</tr>
<tr>
<td>TRACE_B_DATA_VALID</td>
<td>0x0000000000040000</td>
</tr>
<tr>
<td>TRACE_C_VIEW_NOT_BLANK</td>
<td>0x0000000100000000</td>
</tr>
<tr>
<td>TRACE_C_WRITE_NOT_HOLD</td>
<td>0x0000000200000000</td>
</tr>
<tr>
<td>TRACE_C_DATA_VALID</td>
<td>0x0000000400000000</td>
</tr>
<tr>
<td>TRACE_C_IS_B_MINUS_A_ON</td>
<td>0x0000001000000000</td>
</tr>
<tr>
<td>TRACE_C_IS_A_MINUS_B_ON</td>
<td>0x0000002000000000</td>
</tr>
<tr>
<td>TRACE_COUNT</td>
<td>Number of traces averaged</td>
</tr>
<tr>
<td>UI_DATA_POINTS</td>
<td>Number of display points</td>
</tr>
<tr>
<td>IMPEDANCE</td>
<td>Input impedance</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Reference freq</td>
</tr>
<tr>
<td>SET_Sweep_TIME</td>
<td>Minimum sweep time setting</td>
</tr>
<tr>
<td>TRIGGER_TYPE</td>
<td>Trigger type</td>
</tr>
<tr>
<td>VIDEO_TRIGGER_LEVEL</td>
<td>Video trigger level</td>
</tr>
<tr>
<td>TRIGGER_POSITION</td>
<td>Trigger position as a percent of the display</td>
</tr>
<tr>
<td>PEAK_THRESHOLD</td>
<td>Marker peak search threshold</td>
</tr>
<tr>
<td>MARKER_TABLE</td>
<td>Marker table status</td>
</tr>
<tr>
<td>ACTIVE_MEASUREMENT</td>
<td>Current measurement</td>
</tr>
<tr>
<td>ANTENNA</td>
<td>Antenna index</td>
</tr>
<tr>
<td>OCC_BW_METHOD</td>
<td>Occupied bandwidth method</td>
</tr>
<tr>
<td>OCC_BW_PERCENT</td>
<td>Occupied bandwidth % of power setting</td>
</tr>
<tr>
<td>OCC_BW_DBC</td>
<td>Occupied bandwidth dBC setting</td>
</tr>
<tr>
<td>OCC_BW_MEASURED_db</td>
<td>Occupied bandwidth measured dBC value</td>
</tr>
</tbody>
</table>
Table 2-8. Available Parameters in Spectrum Analyzer Mode (3 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCC_BW_MEASURED_PERCENT</td>
<td>Occupied bandwidth measured % value</td>
</tr>
<tr>
<td>OCC_BW_VALUE</td>
<td>Measured occupied bandwidth</td>
</tr>
<tr>
<td>OCC_BW_LINE_MARKER_INFO</td>
<td>Mask off 16 bits at a time to get the display point location of the 3 OBW display indicators</td>
</tr>
<tr>
<td>CH_PWR_WIDTH</td>
<td>Channel power integration bandwidth</td>
</tr>
<tr>
<td>CH_PWR_VALUE</td>
<td>Measured channel power</td>
</tr>
<tr>
<td>CH_PWR_DENSITY</td>
<td>Measured channel power density</td>
</tr>
<tr>
<td>CH_PWR_LINE_MARKER_INFO</td>
<td>Mask off 16 bits at a time to get the display point location of the 2 channel power display indicators</td>
</tr>
<tr>
<td>ACPR_MAIN_CH_BW</td>
<td>ACPR main channel bandwidth</td>
</tr>
<tr>
<td>ACPR_ADJC_CH_BW</td>
<td>ACPR adjacent channel bandwidth</td>
</tr>
<tr>
<td>ACPR_CHANNEL_SPACING</td>
<td>ACPR channel spacing</td>
</tr>
<tr>
<td>ACPR_MAIN_CH_PWR</td>
<td>ACPR measured main channel power</td>
</tr>
<tr>
<td>ACPR_UPPER_CH_PWR</td>
<td>ACPR measured upper channel power</td>
</tr>
<tr>
<td>ACPR_LOWER_CH_PWR</td>
<td>ACPR measured lower channel power</td>
</tr>
<tr>
<td>ACPR_LOWER_CH_LINE_MARKER_INFO</td>
<td>Mask off 16 bits at a time to get the display point location of the 2 ACPR lower channel display indicators</td>
</tr>
<tr>
<td>ACPR_MAIN_CH_LINE_MARKER_INFO</td>
<td>Mask off 16 bits at a time to get the display point location of the 2 ACPR main channel display indicators</td>
</tr>
<tr>
<td>ACPR_UPPER_CH_LINE_MARKER_INFO</td>
<td>Mask off 16 bits at a time to get the display point location of the 2 ACPR upper channel display indicators</td>
</tr>
<tr>
<td>AM_FM_DEMOD_VOL</td>
<td>AM/FM demod volume</td>
</tr>
<tr>
<td>AM_FM_DEMOD_FREQUENCY</td>
<td>AM/FM demod freq</td>
</tr>
<tr>
<td>AM_FM_DEMOD_TYPE</td>
<td>AM/FM demod type</td>
</tr>
<tr>
<td>AM_FM_DEMOD_TIME</td>
<td>AM/FM demod time</td>
</tr>
<tr>
<td>AM_FM_LINE_MARKER</td>
<td>Display point location of the demodulation frequency</td>
</tr>
<tr>
<td>BEAT_FREQUENCY_OSC_FREQUENCY</td>
<td>BFO oscillator freq</td>
</tr>
<tr>
<td>CI_C_TYPE</td>
<td>C/I measurement carrier type</td>
</tr>
<tr>
<td>CI_C_VALUE</td>
<td>C/I measurement measured carrier power</td>
</tr>
<tr>
<td>CI_I_BB_VALUE</td>
<td>C/I measurement measured broadband interference power</td>
</tr>
<tr>
<td>CI_I_NB_VALUE</td>
<td>C/I measurement measured narrowband interference power</td>
</tr>
</tbody>
</table>
Table 2-8. Available Parameters in Spectrum Analyzer Mode (4 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI_I_WB_VALUE</td>
<td>C/I measurement measured wideband interference power</td>
</tr>
<tr>
<td>CI_BB_VALUE</td>
<td>C/I measurement with broadband interference</td>
</tr>
<tr>
<td>CI_NB_VALUE</td>
<td>C/I measurement with narrowband interference</td>
</tr>
<tr>
<td>CI_WB_VALUE</td>
<td>C/I measurement with wideband interference</td>
</tr>
<tr>
<td>MKR_SPA_FREQNx</td>
<td>Marker x frequency (where x is the marker number 0 to 11, 0 represent the reference marker #1 and 1 represent delta marker #1, 2 represent reference marker #2, and 3 represent delta marker #2, and so on)</td>
</tr>
<tr>
<td>MKR_SPA_POINTx</td>
<td>Reference marker x display point</td>
</tr>
<tr>
<td>MKR_SPA_MAGNTx</td>
<td>Reference marker x magnitude</td>
</tr>
<tr>
<td>MKR_SPA_PRCNTx</td>
<td>Reference marker x display percentage</td>
</tr>
<tr>
<td>MKR_SPA_FLAGSx</td>
<td>Reference marker x flags:</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_ON_OFF: 0x00000001</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_DELTA_MKR: 0x00000002</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_SELECTED: 0x00000004</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_DATA_INVALID: 0x00000008</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_DATA_STALE: 0x00000010</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_FIXED: 0x00000020</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_MASK: 0x000000FF</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_DISP_FLAG: 0x00000020</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FLAG_RELATIVE: 0x000000F0</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_STANDARD: 0x10000000</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_FIELD_STRENGTH: 0x20000000</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_NOISE: 0x30000000</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_COUNTER: 0x40000000</td>
</tr>
<tr>
<td></td>
<td>SPA_MKR_TIME: 0x50000000</td>
</tr>
<tr>
<td>MKR_SPA_REF_TOx</td>
<td>Specifies which marker is the marker x reference to</td>
</tr>
<tr>
<td>MKR_SPA_TRACex</td>
<td>Specifies which trace the marker x is for.</td>
</tr>
</tbody>
</table>
Table 2-8. Available Parameters in Spectrum Analyzer Mode (5 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM_LFLAGS_UP</td>
<td>Upper limit flags:</td>
</tr>
<tr>
<td></td>
<td>LIMIT_FLAG_ON: 0x00000004</td>
</tr>
<tr>
<td></td>
<td>LIMIT_FLAG_ALARM_ON: 0x00000002</td>
</tr>
<tr>
<td>LIM_FREQNC_UPx</td>
<td>Upper limit point x freq (where x is the limit point number starting with 0)</td>
</tr>
<tr>
<td>LIM_MAGNTD_UPx</td>
<td>Upper limit point x amplitude</td>
</tr>
<tr>
<td>LIM_LFLAGS_LO</td>
<td>Lower limit flags:</td>
</tr>
<tr>
<td></td>
<td>LIMIT_FLAG_ON: 0x00000004</td>
</tr>
<tr>
<td></td>
<td>LIMIT_FLAG_ALARM_ON: 0x00000002</td>
</tr>
<tr>
<td>LIM_FREQNC_LOx</td>
<td>Lower limit point x freq (where x is the limit point number starting with 0)</td>
</tr>
<tr>
<td>LIM_MAGNTD_LOx</td>
<td>Lower limit point x amplitude</td>
</tr>
</tbody>
</table>

Parameters Related to Tracking Generator

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTERNAL_GAIN_LOSS</td>
<td>Generator External Gain/Loss Setting</td>
</tr>
<tr>
<td>SG_FREQ</td>
<td>Generator CW Frequency</td>
</tr>
<tr>
<td>TG_GEN_SELECT</td>
<td>CW/Tracking Mode Selection</td>
</tr>
<tr>
<td>TG_IL_ABS_AVG_PWR_VALUE</td>
<td>Generator Power Statistics (Average Value)</td>
</tr>
<tr>
<td>TG_IL_ABS_MAX_PWR_VALUE</td>
<td>Generator Power Statistics (Max Value)</td>
</tr>
<tr>
<td>TG_IL_ABS_MIN_PWR_VALUE</td>
<td>Generator Power Statistics (Min Value)</td>
</tr>
<tr>
<td>TG_LEVEL_1</td>
<td>Generator Output Power Level</td>
</tr>
<tr>
<td>TG_S21_NORMALIZE_ON_OFF</td>
<td>Generator Normalize Measurement</td>
</tr>
<tr>
<td>GENERATOR_OUTPUT</td>
<td>Generator State</td>
</tr>
<tr>
<td>TG_REF_POSITION</td>
<td>Normalized Trace Reference Position</td>
</tr>
<tr>
<td>TG_REF_AMPLITUDE</td>
<td>Reference Amplitude at the Reference Position</td>
</tr>
<tr>
<td>TG_SCALE</td>
<td>Normalized Trace Scale</td>
</tr>
<tr>
<td>ACPR_UPPER_ALT_CH_PWR</td>
<td>ACPR measured upper alternate channel power</td>
</tr>
</tbody>
</table>
Table 2-8. Available Parameters in Spectrum Analyzer Mode (6 of 6)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPR_LOWER_ALT_CH_PWR</td>
<td>ACPR measured lower alternate channel power</td>
</tr>
<tr>
<td>TG_S21_NORMALIZE_ON_OFF</td>
<td>TG Normalization State</td>
</tr>
<tr>
<td>TG_IL_REL_STATS</td>
<td>TG Transmission Measurement Statistics Table State</td>
</tr>
<tr>
<td>TG_IL_ABS_STATS</td>
<td>Generator Power Statistics Table State</td>
</tr>
<tr>
<td>TG_REF_LEVEL_OFFSET</td>
<td>TG Transmission Offset</td>
</tr>
<tr>
<td>TG_IL_REL_MAX_PWR_VALUE</td>
<td>TG Transmission Measurement Statistics (Max Value)</td>
</tr>
<tr>
<td>TG_IL_REL_AVG_PWR_VALUE</td>
<td>TG Transmission Measurement Statistics (Average Value)</td>
</tr>
<tr>
<td>TG_IL_REL_MIN_PWR_VALUE</td>
<td>TG Transmission Measurement Statistics (Min Value)</td>
</tr>
</tbody>
</table>
GSM Parameter Names

Table 2-9. Available Parameters in GSM Mode

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Instrument serial #</td>
</tr>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center freq</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current signal standard (the value is the index of the signal standard list, where a value of 1 is the first index in the list)</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current channel</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Selected external reference frequency</td>
</tr>
<tr>
<td>UNITS</td>
<td>Amplitude units</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Current measurements</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>SPAN</td>
<td>Frequency span</td>
</tr>
<tr>
<td>MANUAL_SYSTEM_SELECT</td>
<td>GSM/EDGE select</td>
</tr>
<tr>
<td>CURRENT_SPECTRUM_VIEW</td>
<td>Current spectrum view (single or multiple channel spectrum)</td>
</tr>
<tr>
<td>I_Q_VIEW</td>
<td>IQ view</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/Hold on/off</td>
</tr>
<tr>
<td>MC_SPECTRUM_START_FREQ</td>
<td>Multi-channel spectrum start frequency</td>
</tr>
<tr>
<td>MC_SPECTRUM_STOP_FREQ</td>
<td>Multi-channel spectrum stop frequency</td>
</tr>
<tr>
<td>MC_CHANNEL_CURSOR</td>
<td>Multi-channel spectrum channel cursor (used for markers)</td>
</tr>
<tr>
<td>MC_FREQ_CURSOR</td>
<td>Multi-channel spectrum frequency cursor (used for markers)</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
</tbody>
</table>
WiMAX, Mobile WiMAX Parameter Names

Table 2-10. Available Parameters in WiMAX and Mobile WiMAX Mode (1 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Instrument serial #</td>
</tr>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>UNITS</td>
<td>Amplitude units</td>
</tr>
<tr>
<td>SCALE</td>
<td>Y axis scale</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center freq</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current signal standard (the value is the index of the signal standard list, where a value of 0 is the first index in the list)</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current channel</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Selected external reference frequency</td>
</tr>
<tr>
<td>UNITS</td>
<td>Amplitude units</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Current measurements</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>SPAN</td>
<td>Frequency span</td>
</tr>
<tr>
<td>PVT_FRAME_START_TIME</td>
<td>Power vs. Time start time</td>
</tr>
<tr>
<td>PVT_FRAME_STOP_TIME</td>
<td>Power vs. Time stop time</td>
</tr>
<tr>
<td>BW_SELECT</td>
<td>Current Bandwidth (MHz)</td>
</tr>
<tr>
<td>CURRENT_SPECTRUM_VIEW</td>
<td>Current spectrum view (single or multiple channel spectrum)</td>
</tr>
<tr>
<td>I_Q_VIEW</td>
<td>IQ view</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/Hold on/off</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
<tr>
<td>CP_RATIO</td>
<td>Cyclic Prefix Ratio (the value is the index of the CP Ratio list, where a value of 0 is the first index in the list)</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SPECTRUM_SPAN</td>
<td>Spectrum frequency span (the value is the index of the span list, where a value of 0 is the first index in the list)</td>
</tr>
<tr>
<td>AUTO_SPAN</td>
<td>Auto span on/off</td>
</tr>
<tr>
<td>MAX_HOLD</td>
<td>Max hold on/off</td>
</tr>
<tr>
<td>EVM_SUB_CARRIER_TOP</td>
<td>Y Axis Max for EVM vs. Symbol/Sub-Carrier</td>
</tr>
<tr>
<td>EVM_SUB_CARRIER_SCALE</td>
<td>EVM vs. Symbol/Sub-Carrier scale</td>
</tr>
<tr>
<td>SPECTRAL_FLATNESS_SCALE</td>
<td>Spectral Flatness scale</td>
</tr>
<tr>
<td>ACPR_DISPLAY_GRAPH</td>
<td>Display ACPR trace on/off</td>
</tr>
<tr>
<td>NUM_OF_ACPR_MAIN_CHANNELS</td>
<td>Number of main channels</td>
</tr>
<tr>
<td>NUM_OF_ACPR_ADJC_CHANNELS</td>
<td>Number of adjacent channels</td>
</tr>
<tr>
<td>CONSTELLATION_REFERENCE_POINTS</td>
<td>Constellation reference points on/off</td>
</tr>
<tr>
<td>SPECTRAL_FLATNESS_TOP</td>
<td>Y Axis Max for Spectral Flatness</td>
</tr>
<tr>
<td>SPECTRAL_FLATNESS_EVM_SUB_START</td>
<td>Spectral Flatness/EVM vs. sub-carrier start</td>
</tr>
<tr>
<td>SPECTRAL_FLATNESS_EVM_SUB_STOP</td>
<td>Spectral Flatness/EVM vs. sub-carrier stop</td>
</tr>
<tr>
<td>EVM_SYM_START</td>
<td>EVM vs. Symbol start</td>
</tr>
<tr>
<td>EVM_SYM_STOP</td>
<td>EVM vs. Symbol stop</td>
</tr>
</tbody>
</table>
Table 2-11. Available Parameters in WCDMA Mode (1 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Instrument serial #</td>
</tr>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center frequency</td>
</tr>
<tr>
<td>AUTO_SCRAMBLING_CODE</td>
<td>Auto scrambling code detection on/off</td>
</tr>
<tr>
<td>SCRAMBLING_CODE</td>
<td>Selected manual scrambling code</td>
</tr>
<tr>
<td>MAX_SPREADING_FACTOR</td>
<td>Maximum spreading factor</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>Active channel threshold</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Currently active measurements</td>
</tr>
<tr>
<td>SCALE</td>
<td>Display scale (dB/division)</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>SCCPCH_CODE</td>
<td>Selected S-CCPCH channelization code</td>
</tr>
<tr>
<td>PICH_CODE</td>
<td>Selected PICH channelization code</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CDP_ZOOM</td>
<td>Zoom range for code domain power</td>
</tr>
<tr>
<td>CDP_ZOOM_START</td>
<td>Start code for zoom window</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Reference Frequency</td>
</tr>
<tr>
<td>SCCPCH_SPREAD_FCT</td>
<td>Selected S-CCPCH spreading factor</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/hold state</td>
</tr>
<tr>
<td>EXT_REF_FREQ</td>
<td>Selected external reference frequency</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>ACLR_DISPLAY_GRAPH</td>
<td>Display ACLR trace on/off</td>
</tr>
<tr>
<td>MARKER_TABLE</td>
<td>Marker table on/off</td>
</tr>
<tr>
<td>OTA_AUTO_SC</td>
<td>OTA auto scrambling code on/off</td>
</tr>
<tr>
<td>OTA_CODE_LOCK</td>
<td>OTA code lock on/off</td>
</tr>
<tr>
<td>OTA_DISPLAY_VALUE</td>
<td>Selected OTA display value</td>
</tr>
<tr>
<td>OTA_SORT_PARAM</td>
<td>Selected OTA sort parameter</td>
</tr>
</tbody>
</table>
Table 2-11. Available Parameters in WCDMA Mode (2 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTA_MANUAL_SC_1</td>
<td>Selected manual scrambling code 1</td>
</tr>
<tr>
<td>OTA_MANUAL_SC_2</td>
<td>Selected manual scrambling code 2</td>
</tr>
<tr>
<td>OTA_MANUAL_SC_3</td>
<td>Selected manual scrambling code 3</td>
</tr>
<tr>
<td>OTA_MANUAL_SC_4</td>
<td>Selected manual scrambling code 4</td>
</tr>
<tr>
<td>OTA_MANUAL_SC_5</td>
<td>Selected manual scrambling code 5</td>
</tr>
<tr>
<td>OTA_MANUAL_SC_6</td>
<td>Selected manual scrambling code 6</td>
</tr>
<tr>
<td>CODOGRAM_SINGLE_SWEEP_TIME</td>
<td>Single sweep time for codogram</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
<tr>
<td>CONSTELLATION_CODE</td>
<td>Code number for which IQ data is being displayed</td>
</tr>
<tr>
<td>CONSTELLATION_SPREAD</td>
<td>Spreading factor of code for which IQ data is being displayed</td>
</tr>
<tr>
<td>NUM_OF_ACLR_MAIN_CHANNELS</td>
<td>Number of main channels</td>
</tr>
<tr>
<td>NUM_OF_ACLR_MAIN_CHANNELS</td>
<td>Number of adjacent channels</td>
</tr>
<tr>
<td>BAND_SPECTRUM_START_FREQ</td>
<td>Band spectrum start frequency</td>
</tr>
<tr>
<td>BAND_SPECTRUM_STOP_FREQ</td>
<td>Band spectrum stop frequency</td>
</tr>
<tr>
<td>DL_CHANNEL_NUMBER</td>
<td>Currently selected band spectrum channel</td>
</tr>
<tr>
<td>AUTO_THRESHOLD</td>
<td>Auto threshold value</td>
</tr>
<tr>
<td>HSDPA_DEMOD_SINGLE_SWEEP_TIME</td>
<td>Single sweep time for hsdpa</td>
</tr>
<tr>
<td>BAND_SPECTRUM_REFERENCE_LEVEL</td>
<td>Reference level for band spectrum</td>
</tr>
<tr>
<td>CONSTELLATION_PERSISTENCE</td>
<td>Persistence level for IQ data</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current Signal standard</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current channel</td>
</tr>
<tr>
<td>CONSTELLATION_MARKER</td>
<td>Display location of the IQ marker</td>
</tr>
<tr>
<td>RF_MKR_POINT_1</td>
<td>RF_MKR_STATE_1</td>
</tr>
<tr>
<td>RF_MKR_POINT_5</td>
<td>RF_MKR_STATE_5</td>
</tr>
<tr>
<td>DEMOD_MKR_POINT_1</td>
<td>DEMOD_MKR_STATE_1</td>
</tr>
<tr>
<td>DEMOD_MKR_POINT_5</td>
<td>DEMOD_MKR_STATE_5</td>
</tr>
<tr>
<td>CODOGRAM_MKR_POINT_1</td>
<td>CODOGRAM_MKR_STATE_1</td>
</tr>
<tr>
<td>CODOGRAM_MKR_STATE_1</td>
<td>CODOGRAM_MKR_POINT_1</td>
</tr>
<tr>
<td>CODOGRAM_MKR_TIME_1</td>
<td>CODOGRAM_MKR_POINT_1</td>
</tr>
</tbody>
</table>
CDMA Parameter Names

Table 2-12. Available Parameters in CDMA Mode (1 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center frequency</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>Active channel threshold</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Currently active measurements</td>
</tr>
<tr>
<td>SCALE</td>
<td>Display scale (dB/division)</td>
</tr>
<tr>
<td>SPAN</td>
<td>Span</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CDP_ZOOM</td>
<td>Zoom range for code domain power (16/32/64)</td>
</tr>
<tr>
<td>CDP_ZOOM_START</td>
<td>Start code for zoom window</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Reference Frequency</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/hold state</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>MARKER_TABLE</td>
<td>Marker table on/off</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
<tr>
<td>NUM_OF_ACLR_MAIN_CHANNELS</td>
<td>Number of main channels</td>
</tr>
<tr>
<td>NUM_OF_ACLR_ADJC_CHANNELS</td>
<td>Number of adjacent channels</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current Signal standard</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current channel</td>
</tr>
<tr>
<td>CHANNEL_WIDTH</td>
<td>Channel width</td>
</tr>
<tr>
<td>DATA_MODULATION</td>
<td>Data channel modulation type</td>
</tr>
<tr>
<td>PN_OFFSET</td>
<td>PN offset</td>
</tr>
<tr>
<td>WALSH_CODE</td>
<td>Walsh code (64/128)</td>
</tr>
<tr>
<td>CDP_SCALE</td>
<td>Code Domain Power scale</td>
</tr>
<tr>
<td>MEAS_SPEED</td>
<td>Measurement speed (Fast/Normal/Slow)</td>
</tr>
<tr>
<td>PN_TYPE</td>
<td>PN trigger type (No Trig/GPS/Ext)</td>
</tr>
</tbody>
</table>
Table 2-12. Available Parameters in CDMA Mode (2 of 2)

<table>
<thead>
<tr>
<th>SN</th>
<th>Instrument serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN_SEARCH_TYPE</td>
<td>PN search type (Auto/Manual)</td>
</tr>
<tr>
<td>TRIGGER_POLARITY</td>
<td>Trigger polarity (Rising/Falling)</td>
</tr>
<tr>
<td>PN_INCREMENT</td>
<td>PN increment</td>
</tr>
<tr>
<td>SPUR_EMM_DISPLAY_POINTS</td>
<td>Number of Spurious Emission display points</td>
</tr>
<tr>
<td>CDP_UNITS</td>
<td>Code Domain Power unit type (Relative/Absolute)</td>
</tr>
<tr>
<td>USER_PWR_UNIT</td>
<td>Default unit (dBm/W/mW)</td>
</tr>
<tr>
<td>BAND_CLASS</td>
<td>Band class</td>
</tr>
<tr>
<td>USER_CARRIER_BW</td>
<td>Carrier bandwidth (1.23/1.24/1.25)</td>
</tr>
<tr>
<td>RF_MKR_POINT_[1]</td>
<td>2</td>
</tr>
<tr>
<td>RF_MKR_STATE_[1]</td>
<td>2</td>
</tr>
<tr>
<td>DEMOD_MKR_POINT_[1]</td>
<td>2</td>
</tr>
<tr>
<td>DEMOD_MKR_STATE_[1]</td>
<td>2</td>
</tr>
</tbody>
</table>
EVDO Parameter Names

Table 2-13. Available Parameters in EVDO Mode (1 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Instrument serial #</td>
</tr>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center frequency</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>Active channel threshold</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Currently active measurements</td>
</tr>
<tr>
<td>SCALE</td>
<td>Display scale (dB/division)</td>
</tr>
<tr>
<td>SPAN</td>
<td>Span</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CDP_ZOOM</td>
<td>Zoom range for code domain power (16/32/64)</td>
</tr>
<tr>
<td>CDP_ZOOM_START</td>
<td>Start code for zoom window</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Reference Frequency</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/hold state</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>MARKER_TABLE</td>
<td>Marker table on/off</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
<tr>
<td>NUM_OF_ACLR_MAIN_CHANNELS</td>
<td>Number of main channels</td>
</tr>
<tr>
<td>NUM_OF_ACLR_ADJC_CHANNELS</td>
<td>Number of adjacent channels</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current Signal standard</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current channel</td>
</tr>
<tr>
<td>CHANNEL_WIDTH</td>
<td>Channel width</td>
</tr>
<tr>
<td>DATA_MODULATION</td>
<td>Data channel modulation type</td>
</tr>
<tr>
<td>PN_OFFSET</td>
<td>PN offset</td>
</tr>
<tr>
<td>WALSH_CODE</td>
<td>Walsh code (64/128)</td>
</tr>
<tr>
<td>POWER_TIME</td>
<td>Power vs. Time slot type</td>
</tr>
<tr>
<td>CDP_SCALE</td>
<td>Code Domain Power scale</td>
</tr>
<tr>
<td>Parameter Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SPUR_EMM_DISPLAY_POINTS</td>
<td>Number of Spurious Emission display points</td>
</tr>
<tr>
<td>POWER_VS_TIME_THRESHOLD</td>
<td>Power vs. Time threshold</td>
</tr>
<tr>
<td>MEAS_SPEED</td>
<td>Measurement speed (Fast/Normal/Slow)</td>
</tr>
<tr>
<td>PN_TYPE</td>
<td>PN trigger type (No Trig/GPS/Ext)</td>
</tr>
<tr>
<td>PN_SEARCH_TYPE</td>
<td>PN search type (Auto/Manual)</td>
</tr>
<tr>
<td>TRIGGER_POLARITY</td>
<td>Trigger polarity (Rising/Falling)</td>
</tr>
<tr>
<td>PN_INCREMENT</td>
<td>PN increment</td>
</tr>
<tr>
<td>CDP_UNITS</td>
<td>Code Domain Power unit type (Relative/Absolute)</td>
</tr>
<tr>
<td>POWER_VS_TIME_START</td>
<td>Power vs. Time start chip</td>
</tr>
<tr>
<td>POWER_VS_TIME_STOP</td>
<td>Power vs. Time stop chip</td>
</tr>
<tr>
<td>USER_PWR_UNIT</td>
<td>Default unit (dBm/W/mW)</td>
</tr>
<tr>
<td>BAND_CLASS</td>
<td>Band class</td>
</tr>
<tr>
<td>USER_CARRIER_BW</td>
<td>Carrier bandwidth (1.23/1.24/1.25)</td>
</tr>
<tr>
<td>RF_MKR_POINT_[1</td>
<td>2</td>
</tr>
<tr>
<td>RF_MKR_STATE_[1</td>
<td>2</td>
</tr>
<tr>
<td>DEMOD_MKR_POINT_[1</td>
<td>2</td>
</tr>
<tr>
<td>DEMOD_MKR_STATE_[1</td>
<td>2</td>
</tr>
</tbody>
</table>
TDSCDMA Parameter Names

Table 2-14. Available Parameters in TDSCDMA Mode (1 of 2)

<table>
<thead>
<tr>
<th>SN</th>
<th>Instrument serial #</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIT_NAME</td>
<td>Instrument name</td>
</tr>
<tr>
<td>TYPE</td>
<td>The data type (Setup or Data)</td>
</tr>
<tr>
<td>DESCRIPTOR</td>
<td>Trace name</td>
</tr>
<tr>
<td>DATE</td>
<td>Trace date/time</td>
</tr>
<tr>
<td>BASE_VER</td>
<td>Base FW version</td>
</tr>
<tr>
<td>APP_NAME</td>
<td>Application name</td>
</tr>
<tr>
<td>APP_VER</td>
<td>Application FW version</td>
</tr>
<tr>
<td>APP_MODE</td>
<td>Application Mode</td>
</tr>
<tr>
<td>CENTER_FREQ</td>
<td>Center frequency</td>
</tr>
<tr>
<td>SIGNAL_STANDARD</td>
<td>Current Signal Standard</td>
</tr>
<tr>
<td>CHANNEL</td>
<td>Current Signal Standard Channel</td>
</tr>
<tr>
<td>SPAN</td>
<td>Span</td>
</tr>
<tr>
<td>REFERENCE_LEVEL</td>
<td>Reference Level</td>
</tr>
<tr>
<td>SCALE</td>
<td>Display Scale</td>
</tr>
<tr>
<td>POWER_OFFSET</td>
<td>Applied power offset</td>
</tr>
<tr>
<td>UNITS</td>
<td>0 = dBm, 1 = Watts</td>
</tr>
<tr>
<td>DYNAMIC_ATTENUATION</td>
<td>Dynamic range on/off</td>
</tr>
<tr>
<td>REFERENCE_FREQUENCY</td>
<td>Reference Frequency</td>
</tr>
<tr>
<td>OTA_DISPLAY_MODE</td>
<td>0 = Code Scan, 1 = Tau Scan</td>
</tr>
<tr>
<td>CURRENT_VIEW</td>
<td>Current view</td>
</tr>
<tr>
<td>CURRENT_MEASUREMENTS</td>
<td>Currently active measurements</td>
</tr>
<tr>
<td>POWER_TIME_VIEW</td>
<td>0 = Sub-Frame, 1 = Slot View</td>
</tr>
<tr>
<td>POWER_VS_TIME_START</td>
<td>Start time</td>
</tr>
<tr>
<td>POWER_VS_TIME_STOP</td>
<td>Stop time</td>
</tr>
<tr>
<td>SLOT_NUMBER_SET</td>
<td>Slot number (7 = auto)</td>
</tr>
<tr>
<td>SLOT_NUMBER_RETURN</td>
<td>Slot number</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>0 = Normal, 1 = Wide</td>
</tr>
<tr>
<td>MARKER_TABLE</td>
<td>Marker table on/off</td>
</tr>
<tr>
<td>NUM_OF_ACLR_MAIN_CHANNELS</td>
<td>Number of main channels</td>
</tr>
<tr>
<td>NUM_OF_ACLR_ADJC_CHANNELS</td>
<td>Number of adjacent channels</td>
</tr>
<tr>
<td>CHANNEL_WIDTH</td>
<td>Channel width</td>
</tr>
<tr>
<td>SCRAMBLING_CODE_SET</td>
<td>Scrambling code (128 = auto)</td>
</tr>
<tr>
<td>SCRAMBLING_CODE_SET_RETURN</td>
<td>Actual detected scrambling code</td>
</tr>
<tr>
<td>SCRAMBLING_CODE_1</td>
<td>Scrambling code 1</td>
</tr>
</tbody>
</table>
Table 2-14. Available Parameters in TDSCDMA Mode (2 of 2)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRAMBLING_CODE_2</td>
<td>Scrambling code 2</td>
</tr>
<tr>
<td>SCRAMBLING_CODE_3</td>
<td>Scrambling code 3</td>
</tr>
<tr>
<td>SCRAMBLING_CODE_4</td>
<td>Scrambling code 4</td>
</tr>
<tr>
<td>SPREADING_FACTOR</td>
<td>Spread factor</td>
</tr>
<tr>
<td>SYNC_DL_CODE_SET</td>
<td>Sync DL code (32 = auto)</td>
</tr>
<tr>
<td>SYNC_DL_CODE_RETURN</td>
<td>Actual detected sync DL code set</td>
</tr>
<tr>
<td>DWPTS</td>
<td>DWPTS Power</td>
</tr>
<tr>
<td>NUM_OF_CARRIERS</td>
<td>0 = 1 carrier, 1 = 3 carriers</td>
</tr>
<tr>
<td>MAX_USERS_SET</td>
<td>Max users set (0 = auto)</td>
</tr>
<tr>
<td>MAX_USERS_RETURN</td>
<td>Max users detected</td>
</tr>
<tr>
<td>UPLINK_SLOT_SWITCH_POINT</td>
<td>Uplink slot switch point set</td>
</tr>
<tr>
<td>THRESHOLD</td>
<td>Threshold</td>
</tr>
<tr>
<td>MEAS_SPEED</td>
<td>Measurement speed (Fast/Normal/Slow)</td>
</tr>
<tr>
<td>TAU_OFFSET</td>
<td>Tau time offset</td>
</tr>
<tr>
<td>TRIGGER_TYPE</td>
<td>Trigger type (No Trig/GPS/External)</td>
</tr>
<tr>
<td>TRIGGER_POLARITY</td>
<td>Trigger polarity (Rising/Falling)</td>
</tr>
<tr>
<td>TRIGGER_ACCURACY</td>
<td>Trigger accuracy</td>
</tr>
<tr>
<td>CDP_ZOOM</td>
<td>CDP Zoom</td>
</tr>
<tr>
<td>CDP_ZOOM_START</td>
<td>CDP Zoom Start</td>
</tr>
<tr>
<td>WALSH_CODE</td>
<td>Walsh Code</td>
</tr>
<tr>
<td>CDP_SCALE</td>
<td>CDP scale</td>
</tr>
<tr>
<td>CDP_UNITS</td>
<td>CDP units (Absolute/Relative)</td>
</tr>
<tr>
<td>DATA_MODULATION</td>
<td>Data Modulation (QPSK/8PSK/16QAM)</td>
</tr>
<tr>
<td>DEMOD_MODE</td>
<td>Demod mode</td>
</tr>
<tr>
<td>RUN_HOLD</td>
<td>Run/hold</td>
</tr>
<tr>
<td>CODE_AUTOSAVE</td>
<td>Code autosave on/off</td>
</tr>
<tr>
<td>TEST_MODEL</td>
<td>Current pass fail model being tested</td>
</tr>
<tr>
<td>RF_MKR_POINT_[1][2][3][4][5][6]</td>
<td>RF marker point number</td>
</tr>
<tr>
<td>RF_MKR_STATE_[1][2][3][4][5][6]</td>
<td>RF marker on/off</td>
</tr>
<tr>
<td>DEMOD_MKR_POINT_[1][2][3][4][5][6]</td>
<td>Code domain marker point number</td>
</tr>
<tr>
<td>DEMOD_MKR_STATE_[1][2][3][4][5][6]</td>
<td>Code domain marker on/off</td>
</tr>
</tbody>
</table>
Chapter 3 — All Mode Commands

3-1 :FETCh GPS Subsystem

Use this command to get GPS information.

:FETCh:GPS?

Title: Fetch GPS Information

Required Option: 31

Description: Returns the GPS fix status, UTC timing information, and the GPS location. The results are returned as a set of comma-delimited values in the following format:

<fix status>, <date/time>, <latitude>, <longitude>

The <fix status> field is either “GOOD FIX” or “NO FIX”, depending whether the GPS receiver is currently calculating position data. If “NO FIX” is the value of the <fix status> field, then no data follows.

The date and time (<date/time> field) are returned in the following format:

Www Mmm dd hh:mm:ss yyyy

Where Www is the weekday in letters, Mmm is the month in letters, dd is the day of the month, hh:mm:ss is the time (24-hour time), and yyyy is the year.

Both <latitude> and <longitude> fields are expressed in radians. A negative latitude value corresponds to a “south” reading. A negative longitude value corresponds to a “west” reading.

Related Command: :SENSe:GPS

Front Panel Access: Shift-8 (System), GPS, GPS Info
3-2 :INSTRument Subsystem

One instrument may contain many logical instruments (“modes”). This subsystem controls the selection of the current instrument mode.

:INSTRument:CATalog:FULL?

Title: Query Available Modes
Description: Returns a comma-separated list of available modes. Mode names are enclosed in double quotes (“ “). Immediately following the string name is the application number. For example, an MS2720T instrument with SPA, WCDMA, and Fixed WiMAX would return the string: “SPA”1,“WCDMA”5,“WIMAX_D”18.

An instrument with all available modes would return the string: “SPA”1,“WCDMA”5,“CDMA”7,“GSM”8,“EVDO”9,“HI_PM”10,“WIMAX_D”18, “WIMAX_E”19,“TDSCDMA”23,“PM”6,“CS”15,“IA”14, “LTE”29

Front Panel Access: Shift-9 (Mode)

:INSTRument:NSELect <integer>
:INSTRument:NSELect?

Title: Select Mode by Number
Description: Sets the instrument mode based on the value of <integer>. The query version returns the number associated with the current mode. Use :INSTRument:CATalog:FULL? to get a list of available mode names and their integer representations. After issuing the set command, wait a minimum of 60 seconds before issuing the next command.

Parameter: <integer>
Parameter Type: <integer>
Related Command: :INSTRument:CATalog:FULL?
:INSTRument[:SELect]

Front Panel Access: Shift-9 (Mode)
:INSTRument[:SELect] <string>
:INSTRument[:SELect]?

Title: Select Mode by Name
Description: Sets the instrument mode based on the mode name specified by <string>. Enclose the <string> argument in single or double quotes. The query version returns the name of the current mode. Use :INSTRument:CATalog:FULL? to get a list of available modes.
Parameter: <string>
Related Command: :INSTRument:CATalog:FULL?
:INSTRument:NSElect

Front Panel
Access: Shift-9 (Mode)
3-3 :MMEemory Subsystem

The Mass Memory subsystem contains functions that provide access to the instrument’s setup and data storage.

:MMEemory:DATA? <filename>

Title: Transfer Data

Description: Transfers the data stored in the given file from the instrument to the controlling program. Data is transferred in the form of <header><block>. The ASCII <header> specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in <block>. <filename> should be enclosed in either single quotes (‘’) or double quotes (“”) and should contain a file extension (.stp, .jpg) and the file must not be larger than 262136 bytes. Use the command :MMEemory:MSIS to set the current save location.

Parameter: <filename>

:MMEemory:DELete <filename>

Title: Delete Setup/Measurement

Description: Removes a file specified by <filename> from the current mass storage device. <filename> should be enclosed in either single quotes (‘’) or double quotes (“”) and it must include the file extension. Use the command MMEemory:MSIS to set the current file location.

Parameter: <filename>

Related Command: :MMEemory:STORE:STATe
:MMEemory:STORE:TRACe
:MMEemory:MSIS INTernal|USB

Front Panel
Access: Shift-7 (File), Delete, Delete Selected File
MMEM:DIR?

Title: Show Directory

Description: This command returns the non-recursive contents of the directory specified as the parameter. The parameter is case sensitive and must be enclosed in either single quotes (') or double quotes (" "). Use "/" as a directory separator. For the internal memory, the parameter must start with "Internal".

The response is formatted as follows:

```
<file entry><sp>
<file entry>
```

Where `<file entry>` is either:

```
<file name><sp><file type><sp><timestamp><sp><file size>
```

Or `<file entry>` is:

```
<directory name><sp><file type><sp><timestamp>
```

`<sp>` should be a single space.

`<timestamp>` is the number of seconds since Jan 1 1970.

Parameter: `<directory>`

Parameter Type: `<string>`

Front Panel Access: Shift-7 (File)

:MMEMory:INITialize USB

Title: Format Storage Device

Description: Formats the USB Flash drive. Issuing this command will erase all files on an installed USB Flash drive and create the /usr directory for storage of measurements, setups and jpg files.

Parameter: `USB`

Parameter Type: `<char>`
Title: Recall Setup

Description: Recalls a previously stored instrument setup in the current save location. The setup file to be loaded is specified by `<filename>`. `<filename>` should be enclosed in either single quotes (‘’) or double quotes (“”) and should contain a file extension “.stp”. Use the command MMEMory:MSIS to set the current save location. The `<integer>` parameter is not currently used, but it must be sent. Send a 1.

Parameter: `<integer>`, `<filename>`

Related Command:
- MMEMory:STORE:STATe
- MMEMory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Recall, (select Setup file from list)

Note
When recalling a setup that causes a mode switch, wait a minimum of 60 seconds before issuing the next command.
Title: Recall Measurement

Description: The instrument must be in the mode of the saved trace in order to recall that trace. Use :INSTRument:SELect or :INSTRument:NSELect to set the mode.

Recalls a previously stored measurement trace from the current save location. The saved measurement trace to be loaded is specified by <filename>. <filename> should be enclosed in either single quotes (‘’) or double quotes (“”) and should contain a file extension. Note that the trace specified by <filename> should be available at the current save location. Use the command MMEMory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a 1.

Note: When using this command in SPA mode, a manual key press from the instrument is necessary to continue.

In some modes, the recall of the traces using the front panel allows a user to retain or discard the instrument setup that was saved along with the measurement. This choice is not supported using a SCPI command. :MMEMory:LOAD:STATe is the recommended method to restore a saved instrument setup.

File name extensions:

“.edg” for GSM
“.spa” for SPA
“.wcd” for WCDMA
“.wmxd” for WiMAX
“.wmxe” for Mobile WiMAX
“.cdma” for CDMA
“.tds” for TDSCDMA
“.evdo” for EVDO
“.ia” for Interference Analysis
“.cs” for Channel Scanner
“.pm” for Power Meter
“.lte” for LTE
“.tdlte” for TDLTE

Parameter: <integer>, <filename>

Example: To recall trace with file name “trace”:

:MMEMory:LOAD:TRACe 1,”trace.spa”

Related Command: :MMEMory:STORe:TRACe
:MMEMory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Recall Measurement, (select Measurement file from list)
:MMEMory:MSIS INTernal|USB
:MMEMory:MSIS?

Title: Save Location

Description: Sets the instrument’s internal memory or the USB Flash drive as the save location for all subsequently saved files. This command also determines the destination location for copied files. For example, selecting internal memory as the current save location will set the USB Flash drive as the destination for copied files, and vice-versa.

Note that the save location specified here applies to remote operation. It is independent of and can be different from the save location set via the instrument front panel. The query form of this command returns the save location setting for remote operation, not the front panel setting.

Commands to load, store (save), or copy data will fail if the current save location is not available. This is the case if the USB drive is selected and no USB device is plugged into the instrument. Commands will also fail if internal memory is set as the output location while Option 7 (Secure Data Operation) is enabled, which allows files to be written only to the USB drive.

Before setting the save location, use the :SYSTem:MSIS? query to check the ready state of internal memory or the USB Flash drive.

Parameter: INTernal|USB

Parameter Type: <char>

Related Command: :MMEMory:MSIS:DESTination
:SYSTem:MSIS[:STATe]?

Front Panel Access: Shift-7 (File), Save, Change Save Location, (select drive or folder)

:MMEMory:MSIS:COPY

Title: Copy from Current Save Location to Destination

Description: Copies all files and folders from the current save location to the destination. File hierarchy is maintained. When copying to USB, all data is placed in a folder named usr in the root directory of the drive. If the usr folder already exists, any file it contains that has the same name as a file being copied will be overwritten.

In remote operation, files can only be copied from internal memory to the USB device or from USB to internal memory. If you wish to copy to the same memory device or copy specific files and folders, use the instrument front panel.

Note: Exercise caution before copying. Large files or a great number of files may take a long time to copy. The instrument will not respond to user input while files are being transferred.
The Copy command will not execute if no USB device is plugged in, or if the instrument’s internal memory is the selected destination but is not available (Option 7, Secure Data Operation, is enabled). Use the :SYSTem:MSIS? query to check the ready state of internal memory and the USB drive before copying files.

Related Command: :MMEMory:MSIS
 :MMEMory:MSIS:DESTination
 :SYSTem:MSIS[:STATe]?

Front Panel
Access: Shift-7 (File), Copy

:MMEMory:MSIS:DESTination INTernal|USB
:MMEMory:MSIS:DESTination?

Title: Destination of Copied Files
Description: Sets the destination location for files copied with the
 :MMEMory:MSIS:COPY command. If USB is the destination, files and
 folders will be copied to a directory named usr at the root level of the
 USB device. If the usr folder currently exists, the COPY command will
 overwrite any file that has the same name as a copied file.

The Destination command also sets the current save location. For example, selecting the USB Flash drive as the destination will set the instrument’s internal memory as the current save location, and vice-versa.

The destination location specified by SCPI command applies to remote operation. It is independent of and can be different from the destination selected using the instrument front panel. The query form of this command returns the destination location setting for remote operation, not the front panel setting.

This command is ineffective if the specified destination is not available, such as having no USB device plugged into the USB port. Similarly, the instrument’s internal memory cannot be the destination location if Option 7 (Secure Data Operation) is enabled, which allows files to be written only to the USB drive.

Before setting the destination location, use the :SYSTem:MSIS? query to check the ready state of internal memory or the USB Flash drive.

Parameter: INTernal|USB
Parameter Type: <char>
Related Command: :MMEMory:MSIS
 :MMEMory:MSIS:COPY
 :SYSTem:MSIS[:STATe]?

Front Panel
Access: Shift-7 (File), Copy, (select drive or folder under Select Destination)
:MMEMory:STORe:JPEG <filename>

Title: Save Screen as JPEG

Description: Saves the current screen measurement as a JPEG file. This will save the screen as a JPEG file specified by <filename> with the extension .jpg to the current save location. <filename> should be enclosed in either single quotes (’’) or double quotes (””) and should not contain a file extension. Use the command MMEMory:MSIS to set the current save location.

Parameter: <filename>

Example: To save the screen into the file name “trace”:

`:MMEMory:STORe:JPEG “trace”`

Related Command: :MMEMory:DATA?

:MMEMory:MSIS INTe rval|USB

Front Panel Access: Shift-7 (File), Save, Change Type, (select JPEG from list)

:MMEMory:STORe:STATe <integer>,<filename>

Title: Save Setup

Description: Stores the current setup into the file specified by <filename>. <filename> should be enclosed in either single quotes (’’) or double quotes (””) and should not contain a file extension. Use the command MMEMory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a value of 0.

Parameter: <integer>, <filename>

Related Command: :MMEMory:LOAD:STATe

:MMEMory:MSIS INTe rval|USB

Front Panel Access: Shift-7 (File), Save, Change Type, (select Setup from list)
:MMEMory:STORe:TRACe <integer>,<filename>

Title: Save Measurement

Description: Stores the trace into the file specified by <filename>. <filename> should be enclosed in either single quotes ('') or double quotes (" ") and should not contain a file extension. Use the command MMEMory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a 0. Note that existing files of the same name will not be overwritten.

Parameter: <integer>, <filename>

Example: To save the trace into the file name “trace”:
:MMEMory:STORe:TRACe 0,"trace"

Related Command: :MMEMory:LOAD:TRACe
:MMEMory:MSIS INTernal|USB

Front Panel
Access: Shift-7 (File), Save Measurement
3-4 [:SENSe] GPS Subsystem

This subsystem contains commands that relate to the optional GPS (Global Positioning System) on the instrument.

[:SENSe] :GPS ON|OFF|1|0
[:SENSe] :GPS?

Title: GPS State
Required Option: 31
Description: Toggles GPS ON or OFF.

The query form of this command returns a 0 or 1 when GPS state is OFF or ON, respectively.

Front Panel
Access: Shift-8 (System), GPS, GPS On/Off

[:SENSe] :GPS:CURRent?

Title: GPS Antenna Current
Required Option: 31
Description: Query only. Reads the current draw, in mA, of the GPS antenna.

Front Panel
Access: Shift-8 (System), GPS, GPS Info

[:SENSe] :GPS:RESet

Title: GPS Receiver Reset
Required Option: 31
Description: Resets the optional GPS receiver.

Front Panel
Access: Shift-8 (System), GPS, Reset

[:SENSe] :GPS:VOLTage 0|1
[:SENSe] :GPS:VOLTage?

Title: GPS Antenna Voltage
Required Option: 31
Description: Sets the GPS antenna voltage. Send the parameter value 0 to set the voltage to 3.3 V. To set the voltage to 5 V, send a 1 as the parameter value.

The query form of this command returns a 0 for an antenna voltage of 3.3 V and returns 1 for an antenna voltage of 5 V.

Front Panel
Access: Shift-8 (System), GPS, GPS Voltage
3-5 :STATus Subsystem

The commands in this subsystem relate to the current operating state of the instrument.

:STATus:OPERation?

Title: Query Operation Status

Description: This command requests information about the current status of the instrument. Each bit of the return value represents some operation. Only a subset of the bits are implemented for each application. The number returned is the decimal representation of the bit-wise OR of the enabled bits:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Decimal Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Not implemented</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Not implemented</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Not implemented</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Not implemented</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Not implemented</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>Not implemented</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Not implemented</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>Not implemented</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>Sweep Complete</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>Not implemented</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>Not implemented</td>
</tr>
<tr>
<td>11</td>
<td>2048</td>
<td>Not implemented</td>
</tr>
<tr>
<td>12</td>
<td>4096</td>
<td>Not implemented</td>
</tr>
<tr>
<td>13</td>
<td>8192</td>
<td>Not implemented</td>
</tr>
<tr>
<td>14</td>
<td>16384</td>
<td>Not implemented</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>Will always be 0</td>
</tr>
</tbody>
</table>

This bit is set to 0 when the command :INITiate[:IMMediate] is sent to trigger a sweep. It will have a value of 1 when the sweep has completed.
3-6 :SYSTem Subsystem

This subsystem contains commands that affect instrument functionality that does not
directly relate to data collection, display or transfer.

:SYSTem:MSIS[:STATe]? INTernal|USB

Title: Query Memory State
Description: Queries the ready state of the instrument’s internal memory or of the
USB Flash drive. Use this command to check the ready state of the
memory device before sending a command, such as :MMEMory:STORe
or :MMEMory:MSIS:COPY, that requires the memory location to be
available.

The USB query returns a 1 when a USB device is plugged into the USB
port. It returns 0 if no USB drive is present. The INT query returns a 1
if internal memory is available, 0 if Option 7 (Secure Data Operation) is
enabled on the instrument.

Option 7, when available, is a factory preset that prevents files,
including instrument setup and measurement data, from being saved to
internal memory. They can only be saved to USB. Once configured for
secure data operation (Option 7 enabled), the user cannot switch the
instrument to non-secure operation.

Parameter: INTernal|USB
Parameter Type: <char>
Related Command: :MMEMory:MSIS
:MMEMory:MSIS:DESTination
:MMEMory:MSIS:COPY

:SYSTem:OPTIONS?

Title: Query Installed Options
Description: Returns a string of the installed options. Options are separated by a “/”.
The string will return “NONE” if no options are installed.

Related Command: *IDN?

:SYSTem:PRESet

Title: Preset
Description: This command restores all application parameters to their factory
preset values. This does not modify system parameters such as
Ethernet configuration, language, volume or brightness.

Note: Wait a minimum of 10 seconds before issuing the next command.

Related Command: *RST
Front Panel
Access: Shift-1 (Preset), Preset
Chapter 4 — Spectrum Analyzer Commands

4-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
4-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the SENSe subsystem.

:CALCulate:LIMit:ALARm OFF|ON|0|1
:CALCulate:LIMit:ALARm?

Title: Limit Alarm
Description: Enables/disables the currently active limit line alarm. Setting the value to ON or 1 will turn on the limit alarm. Setting the value to OFF or 0 will turn off the limit alarm. The query version of the command returns a 1 if the currently selected limit line alarm is set to ON and returns 0 if OFF. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off limit alarm:
:CALCulate:LIMit:ALARm OFF
:CALCulate:LIMit:ALARm 0
To turn on limit alarm:
:CALCulate:LIMit:ALARm ON
:CALCulate:LIMit:ALARm 1

Related Command: :CALCulate:LIMit:TYPe

Front Panel Access: Shift-6 (Limit), Limit Alarm

:CALCulate:LIMit:CENTer

Title: Move Limit to Current Center Frequency
Description: Moves the center of the current active limit line to the center frequency. If no limit line is turned on, a new flat default limit line is turned on.

Example: To move the limit to the current center:
:CALCulate:LIMit:CENTer

Front Panel Access: Shift-6 (Limit), Limit Move, Move Limit to Current Center Freq
:CALCulate:LIMit:ENVelope:CREate

Title: Create Limit Envelope
Description: Creates a limit envelope. This generates a limit line that formed a mask just above or below the existing signals. Note that this command will turn on the currently selected limit line if it is not already on. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Example: To create a limit envelope:
:CALCulate:LIMit:ENVelope:CREate

Front Panel
Access: Shift-6 (Limit), Limit Envelope, Create Envelope

:CALCulate:LIMit:ENVelope:OFFSet <amplitude>
:CALCulate:LIMit:ENVelope:OFFSet?

Title: Limit Envelope Offset
Description: Sets limit envelope offset. This defines how far away from the measured signal the active limit envelope is placed. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Parameter: <amplitude>
Default Value: 3 dB for upper limit, –3 dB for lower limit
Default Unit: dB
Range: –100 dB to 100 dB
Example: To set the limit envelope offset to 5 dB:
:CALCulate:LIMit:ENVelope:OFFSet 5
Front Panel
Access: Shift-6 (Limit), Limit Envelope, Upper Offset (If limit is toggled to Upper)
Shift-6 (Limit), Limit Envelope, Lower Offset (If limit is toggled to Lower)
:CALCulate:LIMit:ENvelope:POINt <number>

Title: Number of Limit Envelope Points
Description: Sets the number of inflection point for the currently active limit envelope. Use :CALCulate:LIMit:TYPe to set the currently active limit line. If the active limit shape is square, the number of inflection points must be even; attempting to set an odd value will result in that value being rounded down to the nearest even number.
Parameter: <number>
Default Value: 21 if limit shape is sloped; 20 if limit shape is square
Range: 2 to 41
Example: To set the number of inflection point to 30:
:CALCulate:LIMit:ENvelope:POINt 30

Front Panel
Access: Shift-6 (Limit), Limit Envelope, Upper Point (If limit is toggled to Upper)
Shift-6 (Limit), Limit Envelope, Lower Point (If limit is toggled to Lower)

:CALCulate:LIMit:ENvelope:SHAPe SQUare|SLOPe

:CALCulate:LIMit:ENvelope:SHAPe?

Title: Limit Envelope Shape
Description: Sets the currently active limit envelope shape.
Parameter: SQUare|SLOPe
Parameter Type: <char>
Example: To set the limit envelope to a square:
:CALCulate:LIMit:ENvelope:SHAPe SQUare

Front Panel
Access: Shift-6 (Limit), Limit Envelope, Upper Shape (If limit is toggled to Upper) or Lower Shape (If limit is toggled to Lower)

Title: Update Limit Envelope Frequency
Description: Updates limit envelope frequency. Note that this command is valid only if the limit envelope shape is set to a square. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Example: To adjust the envelope frequency:
:CALCulate:LIMit:ENVelope:UPDate:Y

Title: Update Limit Envelope Amplitude
Description: Updates the amplitude of the current limit without changing the frequencies of the inflection point. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Example: To adjust the limit envelope amplitude:
:CALCulate:LIMit:ENVelope:UPDate:Y

Front Panel Access: Shift-6 (Limit), Limit Envelope, Update Envelope Amplitude

:CALCulate:LIMit:FAIL?

Title: Limit Fail State
Description: Query whether the currently active limit line (upper or lower) has failed or not. The command returns a 0 on success, 1 on fail, and 2 if the current active limit is OFF or the alarm is OFF. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

:CALCulate:LIMit:LOWer:ALARm OFF|ON|0|1
:CALCulate:LIMit:LOWer:ALARm?

Title: Lower Limit Alarm
Description: Enables/disables the lower limit alarm. It is a combination of the commands :CALCulate:LIMit:TYPe 1 and :CALCulate:LIMit:ALARm ON|OFF. Setting the value to ON or 1 will turn on the lower limit alarm. Setting the value to OFF or 0 will turn off the lower limit alarm. The query version of the command returns a 1 if the lower limit line alarm is ON and returns 0 if OFF. Note that using this command sets the lower limit line active for editing.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: :CALCulate:LIMit:ALARm
Front Panel Access: Shift-6 (Limit), Limit Alarm

:CALCulate:LIMit:LOWer:FAIL?

Title: Lower Limit Fail State
Description: Query whether the lower limit line has failed or not. The command returns a 0 on success, 1 on fail, and 2 if the lower limit line is OFF or the alarm is OFF.
:CALCulate:LIMit:LOWer:POINT?

Title: Number of Lower Limit Points
Description: Returns the number of points currently in the lower limit line.
Default Value: 2
Related Command: :CALCulate:LIMit:POINT?

:CALCulate:LIMit:LOWer[:STATe] OFF|ON|0|1
:CALCulate:LIMit:LOWer[:STATe]?

Title: Lower Limit State
Description: Turns the lower limit line ON or OFF. It is a combination of the commands :CALCulate:LIMit:TYPe 1 and :CALCulate:LIMit:STATe ON|OFF. The query version of the command returns a 1 if the lower limit line is ON and returns a 0 if OFF.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn on lower limit:
:CALCulate:LIMit:LOWer ON
:CALCulate:LIMit:LOWer 1
:CALCulate:LIMit:LOWer:STATe ON
To turn off lower limit:
:CALCulate:LIMit:LOWer OFF
:CALCulate:LIMit:LOWer 0
:CALCulate:LIMit:LOWer:STATe 0
Related Command: :CALCulate:LIMit:ALARm
Front Panel Access: Shift-6 (Limit), Limit Alarm
:CALCulate:LIMit:LTYPE ABSolute|RELative

Title: Limit Line Type
Description: Sets the currently active limit line type. Absolute limit lines set the limit inflection points based upon the entered frequencies for each point. Relative limit lines set the limit inflection points relative to the current center frequency.
Parameter: ABSolute|RELative
Parameter Type: <char>
Default Value: ABSolute
Range: ABSolute|RELative
Example: To set the limit line type to relative:
:CALCulate:LIMit:LTYPE RELative
Related Command: :CALCulate:LIMit[:STATe]
Front Panel Access: Shift-6 (Limit), Limit Advanced, Limit Line Type

:CALCulate:LIMit:MIRRor

Title: Limit Mirror
Description: Creates a limit mirror. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Related Command: :CALCulate:LIMit:TYPe
Front Panel Access: Shift-6 (Limit), Limit Advanced, Limit Mirror

:CALCulate:LIMit:POINt:ADD

Title: Add Limit Point
Description: Adds a new limit point to the currently active limit line. Use :CALCulate:LIMit:TYPe to set the currently active limit line.
Related Command: :CALCulate:LIMit:TYPe
Front Panel Access: Shift-6 (Limit), Limit Edit, Add Point
:CALCulate:LIMit:POINt:DELeTe

Title: Delete Limit Point

Description: Deletes the currently active limit point. The active point becomes the point that is immediately to the left of the point that was deleted. Note that deletion is only valid if there are more than 2 limit points. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Example: To delete the currently active limit point:

:CALCulate:LIMit:POINt:DELeTe

Front Panel
Access: Shift-6 (Limit), Limit Edit, Delete Point

:CALCulate:LIMit:POINt:LEFT

Title: Next Point Left

Description: Selects the limit point immediately to the left of the active point, making it active for editing or deleting. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Example: To select the point to the left of the active point:

:CALCulate:LIMit:POINt:LEFT

Front Panel
Access: Shift-6 (Limit), Limit Edit, Next Point Left

:CALCulate:LIMit:POINt:RIGHt

Title: Next Point Right

Description: Selects the limit point immediately to the right of the active point, making it active for editing or deleting. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Example: To select the point to the right of the active point:

:CALCulate:LIMit:POINt:RIGHt

Front Panel
Access: Shift-6 (Limit), Limit Edit, Next Point Right
:CALCulate:LIMit:POINt:X <x-parameter>

Title: Limit Point X Value

Description: Sets the location of the active limit point on the x-axis at the specified location. <x-parameter> is defined in the current x-axis. Note that this will change the Move Limit on the front panel to Point if it is currently set to Limit. The query version of the command returns the location of the active limit point on the x-axis. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: <x-parameter>

Default Unit: Hz or for zero span in seconds

Example: To set the active point to 5 Hertz:

 :CALCulate:LIMit:POINt:X 5
 :CALCulate:LIMit:POINt:X 5Hz

To set the active point to 500 MHz:

 :CALCulate:LIMit:POINt:X 500MHz

To set the active point to 2.5 seconds (In zero span):

 :CALCulate:LIMit:POINt:X 2.5
 :CALCulate:LIMit:POINt:X 2.5s

To set the active point to 25 us (In zero span):

 :CALCulate:LIMit:POINt:X 25us

Front Panel Access: Shift-6 (Limit), Limit Edit, Frequency
:CALCulate:LIMit:POINT:Y <y-parameter>

Title: Limit Point Y Value
Description: Sets the location of the active limit point on the y-axis at the specified location. <y-parameter> is defined in the current y-axis. Note that this will change the Move Limit on the front panel to Point if it is currently set to Limit. The query version of the command returns the location of the active limit point on the y-axis. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: <y-parameter>
Default Unit: Current y-axis unit.
Example: To set the active point to 5dBm:
:CALCulate:LIMit:POINT:Y 5
(If y-axis unit is dBm)
:CALCulate:LIMit:POINT:Y 5dBm

Front Panel Access: Shift-6 (Limit), Limit Edit, Amplitude

:CALCulate:LIMit:POINT?

Title: Number of Limit Points
Description: Returns the number of points currently in the selected limit line. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Related Command: :CALCulate:LIMit:TYPe

:CALCulate:LIMit:TYPe 0|1

:CALCulate:LIMit:TYPe?

Title: Set Limit Line Upper or Lower
Description: Sets the currently active limit line to either upper or lower. Subsequent limit line operations will be performed on the selected limit line.

Parameter: 0|1 (0 = upper limit line, 1 = lower limit line)
Parameter Type: number
Default Value: 0 (upper)
Range: 0|1
Example: To set the active limit line to upper:
:CALCulate:LIMit:TYPe 0

Front Panel Access: Shift-6 (Limit), Limit
:CALCulate:LIMit:UPPer:ALARm OFF|ON|0|1
:CALCulate:LIMit:UPPer:ALARm?

Title: Upper Limit Alarm
Description: Enables/disables the alarm for the upper limit. It is a combination of the commands :CALCulate:LIMit:TYPe 0 and :CALCulate:LIMit:ALARm ON|OFF. Setting the value to ON or 1 will turn on the upper limit alarm. Setting the value to OFF or 0 will turn off the upper limit alarm. The query version of the command returns a 1 if the upper limit line alarm is ON and returns 0 if OFF.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: :CALCulate:LIMit:ALARm
Front Panel Access: Shift-6 (Limit), Limit Alarm

:CALCulate:LIMit:UPPer:FAIL?

Title: Upper Limit Fail State
Description: Query whether the upper limit line has failed or not. The command returns a 0 on success, 1 on fail, and 2 if the upper limit line is OFF or the alarm is OFF. Note that the condition is reset after the end of the sweep. To avoid missing a failing condition, send the command after completing a single sweep.

:CALCulate:LIMit:UPPer:POINT?

Title: Number of Upper Limit Points
Description: Returns the number of points currently in the upper limit line.
Default Value: 2
Related Command: :CALCulate:LIMit:POINT?
:CALCulate:LIMit:UPPer[:STATe] OFF|ON|0|1

Title: Upper Limit State
Description: Turns the upper limit line ON or OFF. It is a combination of the commands :CALCulate:LIMit:TYPe 0 and :CALCulate:LIMit:STATe ON|OFF. The query version of the command returns a 1 if the upper limit line is ON and returns a 0 if OFF.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn on upper limit:
:CALCulate:LIMit:UPPer ON
:CALCulate:LIMit:UPPer 1
:CALCulate:LIMit:UPPer:STATe ON

To turn off upper limit:
:CALCulate:LIMit:UPPer OFF
:CALCulate:LIMit:UPPer 0
:CALCulate:LIMit:UPPer:STATe 0

Related Command: :CALCulate:LIMit[:STATe]

Front Panel Access: Shift-6 (Limit), On/Off

:CALCulate:LIMit:VALue <value>

Title: Move Limit
Description: Sets the currently active limit line value. This command moves an entire single or multi-segment limit line up or down by the given <value>. If the front panel Move Limit button (Shift-6, Limit Move, Move Limit) is pressed, the limit line will move to the given <value>. This command is equivalent to the command :CALCulate:LIMit:Y. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Note that this will change the Move Limit on the front panel to Limit if it is currently set to Point.

Parameter: <value>
Default Unit: Current y-axis unit.
Related Command: :CALCulate:LIMit:Y
:CALCulate:LIMit:TYPe

Front Panel Access: Shift-6 (Limit), Limit Edit, Amplitude
:CALCulate:LIMit:VERTical:ADD

Title: Add Vertical

Description: Adds vertical. This will add two inflection points that share the same frequency and are centered midpoint between adjacent points. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Related Command: :CALCulate:LIMit:TYPe

Front Panel Access: Shift-6 (Limit), Limit Edit, Add Vertical

:CALCulate:LIMit:X <x-parameter>

Title: Limit X Value

Description: Sets the location of the active limit line on the x-axis at the specified location. This moves the entire limit and moves the active limit point to the given value. `<x-parameter>` is defined in the current x-axis. Note that this will change the Move Limit on the front panel to Limit if it is currently set to Point. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: `<x-parameter>`

Default Unit: Hz or for zero span in seconds

Example: To move the limit and set active point to 5 Hz:

:CALCulate:LIMit:X 5
:CALCulate:LIMit:X 5Hz

To move the limit and set active point to 500 MHz:

:CALCulate:LIMit:X 500MHz

To move the limit and set active point to 2.5 seconds (In zero span):

:CALCulate:LIMit:X 2.5
:CALCulate:LIMit:X 2.5s

To move the limit and set active point to 25 µs (In zero span):

:CALCulate:LIMit:X 25µs

Front Panel Access: Shift-6 (Limit), Limit Edit, Frequency
CALCulate:LIMit:Y \(<y\)-parameter>

Title: Limit Line Y Value
Description: Sets the location of the active limit line on the y-axis at the specified location. This moves the entire limit and moves the current active limit point by the given value. \(<y\)-parameter> is defined in the current y-axis. Note that this will change the Move Limit on the front panel to Limit if it is currently set to Point. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: \(<y\)-parameter>
Default Unit: Current y-axis unit.

Example: To move limit and set the active point to 5 dBm:

\[\text{CALCulate:LIMit:Y 5} \]
(If y-axis unit is dBm)
\[\text{CALCulate:LIMit:Y 5dBm} \]

Front Panel Access: Shift-6 (Limit), Limit Edit, Amplitude

CALCulate:LIMit[:SET]:DEFault

Title: Set Default Limit
Description: Deletes all limit points for the currently active limit line and sets the default limit line value. Note that this command will turn on the currently selected limit line if it is not already on. The current selected limit line can be modified by using the command :CALCulate:LIMit:TYPe.

Front Panel Access: Shift-6 (Limit), Set Default Limit
:CALCulate:LIMit[:STATe] OFF|ON|0|1
:CALCulate:LIMit[:STATe]?

Title: Limit State
Description: Turns the currently selected limit line (upper or lower) ON or OFF. If the value is set to ON or 1, the currently selected limit line is ON. If the value is set to OFF or 0, the currently selected limit line is OFF. The query version of the command returns a 1 if the currently selected limit line is ON and returns a 0 if OFF. Use :CALCulate:LIMit:TYPe to set the currently active limit line.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Example:
To turn on the currently selected limit line:
:CALCulate:LIMit ON
:CALCulate:LIMit:STATe ON
:CALCulate:LIMit:STATe 1

To turn off the currently selected limit line:
:CALCulate:LIMit OFF
:CALCulate:LIMit:STATe 0
:CALCulate:LIMit 0

Front Panel
Access: Shift-6 (Limit), On/Off

:CALCulate:MARKer:AOFF

Title: Turn All Markers Off
Description: Turns off all markers.
Front Panel
Access: Marker, More, All Markers Off
:CALCulate:MARKer:PEAK:THReshold <percentage>

Title: Peak Threshold
Description: Sets the peak/valley threshold as a percentage of the display.
 :CALCulate:MARKer:MAXimum:LEFT and
 :CALCulate:MARKer:MAXimum:RIGHT use this value to determine
whether a particular display point qualifies as a peak.

Parameter: <percentage>
Default Value: 10
Default Unit: %
Range: 0% to 100%
Front Panel
Access: Marker, More Peak Options, Peak Threshold

:CALCulate:MARKer:TABLE[:STATe] OFF|ON

Title: Marker Table State
Description: Turns the Marker Table on or off. Setting the value to ON will turn on
the marker table. Setting the value to OFF will turn off the marker
table.
Note: Marker Table Large mode is not supported with this command.

Parameter: OFF|ON
Parameter Type: <boolean>
Default Value: OFF
Example: To turn on marker table:
 :CALCulate:MARKer:TABLE ON
Front Panel
Access: Marker, More, Marker Table
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:NOISe[:STATe]
OFF|ON|0|1

:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:NOISe[:STATe]?

Title: Marker Noise
Description: Turns the delta marker noise on or off. Note that if counter marker is set to on when setting marker noise to on, then counter marker is set to off. This command is not valid in zero span. The query version of this command returns a 1 if the specified delta marker is noise marker and returns a 0 if not.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Example: To turn on marker noise for delta marker #1:

:CALCulate:MARKer1:DELTa:NOISe ON
:CALCulate:MARKer1:DELTa:NOISe 1
:CALCulate:MARKer:DELTa:NOISe 1
:CALCulate:MARKer:DELTa:NOISe:STATe ON

To turn on marker noise for delta marker #2:

:CALCulate:MARKer2:DELTa:NOISe ON
:CALCulate:MARKer2:DELTa:NOISe 1
:CALCulate:MARKer2:DELTa:NOISe:STATe ON

To turn off marker noise #5:

:CALCulate:MARKer5:DELTa:NOISe OFF
:CALCulate:MARKer5:DELTa:NOISe 0
:CALCulate:MARKer5:DELTa:NOISe:STATe OFF

Front Panel Access: Marker, More, Marker Noise
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:X <x-parameter>

Title: Delta Marker X Value
Description: Sets the location of the delta marker on the x-axis at the specified location <x-parameter> + the reference marker x-axis. <x-parameter> is defined in the current x-axis units. The query version of the command returns the absolute location of the delta marker on the x-axis.

Parameter: <x-parameter>
Default Unit: Hz or seconds if in zero span

Example: If both the reference and delta marker #1 is currently at 1 GHz on the x-axis, send the command below to set the delta marker #1 to 1 GHz on the x-axis:

:CALCulate:MARKer1:DELTa:X 1GHz

(In zero span) If both the reference and delta marker #1 is currently at 25 μs on the x-axis, send the command below to set the delta marker to 25 μs on the x-axis:

:CALCulate:MARKer1:DELTa:X 25us

Related Command: :CALCulate:MARKer{1|2|3|4|5|6}:X

Front Panel Access: Marker, Delta

:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:Y?

Title: Delta Marker Read Y Value
Description: Reads the current absolute Y value for the specified delta marker. The units are the units of the y-axis.

Default Unit: Current y-axis unit

:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:SET]:SPAN

Title: Delta Marker to Span
Description: Sets the total span width to the value of the specified delta marker. Note that this command is valid only if delta marker is on.

Example: To set the span to the value of delta marker #4:

:CALCulate:MARKer4:DELTa:SPAN

Front Panel Access: Marker, More Peak Options, Delta Marker to Span
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATE]?

Title: Delta Marker State
Description: Sets the specified delta marker on or off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Example: To turn on delta marker #3:
CALCulate:MARKer3:DELTa ON
CALCulate:MARKer3:DELTa 1
CALCulate:MARKer3:DELTa:STATE ON
CALCulate:MARKer3:DELTa:STATE 1

To turn off delta marker #6
CALCulate:MARKer6:DELTa OFF
CALCulate:MARKer6:DELTa:STATE OFF
CALCulate:MARKer6:DELTa:STATE 0

Front Panel
Access: Marker, Delta

:CALCulate:MARKer{1|2|3|4|5|6}:FCOunt[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:FCOunt[:STATE]?

Title: Marker Counter
Description: Turns the marker frequency counter on or off. The marker counter is turned off when the selected marker is turned off. If delta marker is on when setting marker counter to on, then delta marker is turned off. If noise marker is set to on when setting marker counter to on, then noise marker is set to off. This command is not valid in zero span.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Example: To turn on frequency counter for reference marker # 2:
CALCulate:MARKer2:FCOunt ON
CALCulate:MARKer2:FCOunt 1

Front Panel
Access: Marker, More, Counter Marker
:CALCulate:MARKer{1|2|3|4|5|6}:FIXed[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:FIXed[:STATe]?

Title: Marker Fixed State
Description: Sets the specified reference marker fixed state on or off. If Fixed is set to on, then the selected reference markers stay at the amplitude they were at when the marker is set to Fixed.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To set reference marker #1 to fixed:
 :CALCulate:MARKer:FIXed ON
 :CALCulate:MARKer:FIXed 1

Front Panel Access: Marker, More, Marker Style

:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum

Title: Marker (Maximum) Peak Search
Description: Puts the specified marker at the maximum amplitude in the trace.
Front Panel Access: Marker, [Marker 1/2/3/4/5/6,] Peak Search Marker, More Peak Options, Peak Search

:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum:LEFT

Title: Marker (Maximum) Peak Search Left
Description: Puts the specified marker on the next highest peak to the left of the current peak. The next highest peak must be above the peak threshold. If no point meets that criterion, the marker is set to the first point on the trace.
Related Command: :CALCulate:MARKer:PEAK:THReshold
Front Panel Access: Marker, More Peak Options, Next Peak Left
:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum:NEXT

Title: Marker (Maximum) Peak Search Next
Description: Moves the marker to the highest peak anywhere in the trace which is lower than the current marker. If the given marker is not on, the command turns it on and sets it to the second highest peak in the trace. The command uses the existing peak threshold values to determine what is a peak and what is not.
Related Command: :CALCulate:MARKer:PEAK:THReshold
Front Panel Access: None

:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum:RIGHt

Title: Marker (Maximum) Peak Search Right
Description: Puts the specified marker on the next highest peak to the right of the current peak. The next highest peak must be above the peak threshold. If no point meets that criterion, the marker is set to the last point on the trace.
Related Command: :CALCulate:MARKer:PEAK:THReshold
Front Panel Access: Marker, More Peak Options, Next Peak Right

:CALCulate:MARKer{1|2|3|4|5|6}:NOISe[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:NOISe[:STATe]?

Title: Marker Noise
Description: Turns the marker noise on or off for the specified reference marker. Note that if counter marker is set to on when setting marker noise to on, then counter marker is set to off. This command is not valid in zero span.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To set reference marker #3 as noise marker:
:CALCulate:MARKer3:NOISe ON
:CALCulate:MARKer3:NOISe 1
Front Panel Access: Marker, More, Marker Noise
:\textit{CALCulate:MARKer\{1\mid2\mid3\mid4\mid5\mid6\}:X <x-parameter>}

Title: Marker X Value
Description: Sets the location of the marker on the x-axis at the specified location. <x-parameter> is defined in the current x-axis units. The query version of the command returns the location of the marker on the x-axis. Note that the marker is snapped to the data point closest to the specified value. If the specified marker is not on it is set to on.
Parameter: <x-parameter>
Default Unit: Hz or seconds if in zero span
Example: To set reference marker #2 to 5 hertz on the x-axis:
:\texttt{:CALCulate:MARKer2:X 5}
:\texttt{:CALCulate:MARKer2:X 5Hz}
To set reference marker #1 to 1.5 GHz on the x-axis:
:\texttt{:CALCulate:MARKer:X 1.5GHz}
:\texttt{:CALCulate:MARKer1:X 1.5GHz}
(In zero span) To set reference marker #3 to 1.5 seconds on the x-axis:
:\texttt{:CALCulate:MARKer3:X 1.5}
:\texttt{:CALCulate:MARKer3:X 1.5s}
(In zero span) To set reference marker #1 to 25 µs:
:\texttt{:CALCulate:MARKer:X 25\mu s}
:\texttt{:CALCulate:MARKer1:X 25\mu s}

Front Panel Access: Marker, Marker [1/2/3/4/5/6]

:\textit{CALCulate:MARKer\{1\mid2\mid3\mid4\mid5\mid6\}:Y?}

Title: Marker Read Y Value
Description: Reads the current Y value for the specified marker. The units are the units of the y-axis.
Default Unit: Current y-axis unit

:\textit{CALCulate:MARKer\{1\mid2\mid3\mid4\mid5\mid6\}[:SET]:CENTer}

Title: Marker Frequency to Center
Description: Sets the center frequency equal to the frequency of the specified marker. Note that this will result in a change to the start and stop frequencies and may also result in a change to the span. Note that this command is not valid in zero span.
Front Panel Access: Marker, Marker Freq to Center
:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:RLEVEL

Title: Marker to Reference Level
Description: Sets the reference level equal to the measured amplitude of the specified marker. Note that this may result in a change to the input attenuation.

Front Panel Access: Marker, Marker to Ref Lvl

:CALCulate:MARKer{1|2|3|4|5|6}[:STATe] OFF|ON|0|1

Title: Marker State
Description: Sets the specified marker on/off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off reference marker #1:

```
:CALCulate:MARKer1:STATe OFF
```

Front Panel Access: Marker, On/Off
4-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure:ACPower

Title: Configure Adjacent Channel Power Ratio
Description: Configures the default adjacent channel power ratio measurement. Disables any other active one-button measurements, including channel power, occupied bandwidth, AM/FM demodulation and C/I. Sets the main channel bandwidth equal to the span. Sets the adjacent channel bandwidth and channel spacing equal to the main channel bandwidth. Sets the detection method to RMS. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:ACPower commands before initiating a sweep.

Related Command: [:SENSe]:ACPower:STATe
[:SENSe]:ACPower:BANDwidth|BWIDth:MAIN
[:SENSe]:ACPower:BANDwidth|BWIDth:ADJacent
[:SENSe]:ACPower:BANDwidth|BWIDth:SPACing

:CONFigure:CHPower

Title: Configure Channel Power
Description: Configures the default channel power measurement. Disables any other active one-button measurements, including ACPR, occupied bandwidth, AM/FM demodulation and C/I. Sets the integration bandwidth equal to the span. Sets the detection method to RMS. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:CHPower commands before initiating a sweep. Note that this measurement is not valid in zero span.

Related Command: [:SENSe]:CHPower:STATe
:SENSe:CHPower:BANDwidth|BWIDth:INTegration
:CONFigure:FSTReNGTH

Title: Configure Field Strength

Description: Configures the default field strength measurement. Disables any other active one-button measurements, including channel power, adjacent channel power, occupied bandwidth, AM/FM demodulation and C/I. Sets the antenna to the first antenna in the instrument’s antenna list. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:FSTRength commands before initiating a sweep. Note that this measurement is not valid in zero span.

Related Command: [:SENSe]:FSTRength:ANTenna

:CONFigure:OBWidth

Title: Configure Occupied Bandwidth

Description: Configures the default occupied bandwidth measurement. Disables any other active one-button measurements, including channel power, ACPR, AM/FM demodulation and C/I. Sets the method to %. Sets the % of power to 99%. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:OBWidth commands before initiating a sweep. Note that this measurement is not valid in zero span.

Related Command: [:SENSe]:OBWidth:STATe
[:SENSe]:OBWidth:METHod
[:SENSe]:OBWidth:PERCent
[:SENSe]:OBWidth:XDB
4-4 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINdow:TRACe:Y:ADJust

Title: Adjust Range
Description: Automatically adjusts reference level if input signal strength is too high (ADC error) or too low.
Example: :DISPlay:WINdow:TRACe:Y:ADJust
Front Panel
Access: Amplitude, Auto Ref Level (or Adjust Range)

:DISPlay:WINdow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINdow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale
Description: Sets the scale (dB/division) for the y-axis.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel
Access: Amplitude, Scale

:DISPlay:WINdow:TRACe:Y[:SCALe]:RLEVel <amplitude>
:DISPlay:WINdow:TRACe:Y[:SCALe]:RLEVel?

Title: Reference Level
Description: Sets the reference level amplitude value for the y-axis. Note that this may cause a change in attenuation if the automatic input attenuation coupling is enabled.
Parameter: <amplitude>
Default Value: 10 dBm
Default Unit: Current active amplitude unit
Range: With reference level offset = 0 dB: 30 dBm to –150 dBm
Example: To set the reference level to 15dBm (If y-axis is dBm)
:DISPlay:WINDow:TRACe:Y:SCALe:RLEVel 15
:DISPlay:WINDow:TRACe:Y:SCALe:RLEVel 15dBm

Related Command: :DISPlay:WINdow:TRACe:Y[:SCALe]:RLEVel:OFFset
Front Panel
Access: Amplitude, Reference Level
:DISPlay:WINDow:TRACe:Y[:SCALe]:RLEVel:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:RLEVel:OFFSet?

Title: Reference Level Offset
Description: Sets the reference level offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –99.9 dB to +99.9 dB
Front Panel
Access: Amplitude, RL Offset

:DISPlay[:WINDow]:TRACe:Y[:SCALe]:RLEVel:AUTO IMMediate

Title: Automatic Reference Level
Description: Causes the reference level to immediately be set to an automatically computed value that best displays the particular data. The computed reference level is the smallest multiple of the scale that would cause the current trace peak to be positioned half a division from the top grid line. This command is semantically equivalent to :DISPlay[:WINDow]:TRACe[:SCALe]:RLEVel <amplitude> with the computed value for amplitude.
Parameter: IMMediate
Front Panel
Access: Shift-8 (System), Application Options, Auto Ref Level
4-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

: FETCh:ACPower?

Title: Fetch Adjacent Channel Power Ratio
Description: Returns the most recent adjacent channel power ratio measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 5 comma-separated values: main channel power, lower adjacent channel power, upper adjacent channel power, lower alternate channel power, upper alternate channel power.

Default Unit: Current amplitude units

: FETCh:CHPower:CHPower?

Title: Fetch Channel Power
Description: Returns the most recent channel power measurement result. It returns only the channel power, not the channel power density. Use :FETCh:CHPower? to get both channel power and channel power density.

Default Unit: Current amplitude units
Related Command: :FETCh:CHPower?
: FETCh:CHPower:DENSity?

: FETCh:CHPower:DENSity?

Title: Fetch Channel Power Density
Description: Returns the most recent channel power density measurement result. It returns only the channel power density, not the channel power. Use :FETCh:CHPower? to get both channel power and channel power density. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Default Unit: Current amplitude units
:FETCh:CHPower?

Title: Fetch Channel Power/Density

Description: This command returns the most recent channel power measurement results: channel power and channel power density. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 2 comma-separated values: channel power, channel power density.

Default Unit: Current amplitude units

Related Command: :FETCh:CHPower:CHPower?
:FETCh:CHPower:DENSity?

:FETCh:OBWidth:FREQuency?

Title: Fetch Occupied Bandwidth Frequency

Description: Returns the most recent occupied bandwidth lower frequency and upper frequency.

Data is returned as 2 comma-separated values: lower frequency and upper frequency in Hz.

Default Unit: Hz

Related Command: :FETCh:CHPower?
:FETCh:CHPower:CHPower?

:FETCh:OBWidth?

Title: Fetch Occupied Bandwidth

Description: Returns the most recent occupied bandwidth measurement results: occupied bandwidth, percent of power and dB down. One of either percent of power or dB down is measured and the other is set. That is determined by the value set using [:SENSe]:OBWidth:METHod. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 3 comma-separated values: occupied bandwidth, percent of power, dB down.

Default Unit: OBW in Hz, Percent of Power in %, dB Down in dB
4-6 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READing][:DATA] ASCII|INTeger,32|REAL,[<length>]

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands. The optional <length> parameter is needed for REAL format only. It defines the length of the floating point number in bits. Valid values are 32 and 64. If no length is specified, the default length of REAL data is set to 64 bits.

ASCII format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger, 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. The units are always mDBm. For example, if the measured result was –12.345 dBm, that value would be sent as −12345. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are always mDBm. For example, if the measured result was –12.345 dBm, that value would be sent as −12345. REAL,64 values are 64-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 8-byte binary format. The units are the current instrument units. For a more precise reading, REAL,64 should be used instead of REAL,32 when the current instrument unit is set to Volt or Watt.

Both INTeger and REAL formats return a definite block length. Each transfer begins with an ASCII header such as #42204 for INTeger,32 and REAL,32 and #44408 for REAL,64. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204 for INT,32 and REAL,32 and 4408 for REAL,64). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger,32 and REAL,32—therefore 2204/4, and 8 for REAL,64) to get the number of data points (in this example, 551).

Parameter: ASCII | INTeger,32 | REAL,[<length>]

Parameter Type: <char>

Default Value: ASCII

Related Command: :TRACe[:DATA]
4-7 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel Access: Shift-3 (Sweep), Sweep (Single/Continuous)
:INITiate[:IMMediate] ONCE|AVERage

Title: Trigger Sweep/Measurement
Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

If the value is set to ONCE, then INITiate[:IMMediate] will sweep once. If the value is set to AVERage and trace averaging is on, then the unit will sweep and average the next X traces, where X is equal to Shift-5 (Trace) -> Trace A Operations -> # of Averages. If the value is set to AVERage and trace averaging is off, then the unit will sweep once. When averaging is on, the sweep complete bit is set after the Xth sweep is completed. If no argument is specified, then AVERage is sent.

Default Value: ONCE
Related Command: :INITiate:CONTinuous
:STATus:OPERation?

:INITiate:SAVe:ON:EVENt:CROSsing:LIMit OFF|ON|0|1

Title: Save On Crossing Limit
Description: When set to ON, automatically saves measurement data when the trace crosses a specified limit line. A limit line must be defined before this command can be enabled.

Default Value: OFF
Related Command: :CALCulate:LIMit
:MMEMory:STORe:TRACe

:INITiate:SAVe:ON:EVENt:SWEep OFF|ON|0|1

Title: Save On Sweep Complete
Description: When set to ON, measurement data is automatically saved after each sweep is completed.

Default Value: OFF
Related Command: :MMEMory:STORe:TRACe
`:INITiate:SAVe:THEn:STOp` OFF|ON|0|1

Title: Save Then Stop

Description: When set to ON, stops the sweep after a measurement is saved. If this setting is Off and Sweep Complete is On, a measurement is saved after every sweep.

Default Value: OFF

Related Command: `:MMEMory:STORe:TRACe`
4-8 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFIGure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFIGure, do the following:

• Send the appropriate CONFIGure command to set the desired measurement.
• Modify the settings as required.
• Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCH command.

:MEASURE:ACPower?

Title: Measure Adjacent Channel Power Ratio
Description: Sets the active measurement to adjacent channel power ratio, sets the default measurement parameters, triggers a new measurement and returns the main channel power lower adjacent and upper adjacent channel power results. It is a combination of the commands :CONFIGure:ACPower and :READ:ACPower? For a description of the default adjacent channel power ratio measurement parameters, see :CONFIGure:ACPower. To make an adjacent channel power ratio measurement with settings other than the default values, send:

:CONFIGure:ACPower
Commands to set desired settings
:READ:ACPower?

Data is returned as 5 comma-separated values: main channel power, lower adjacent channel power, upper adjacent channel power, lower alternate channel power, upper alternate channel power.

Default Unit: Current amplitude units
Related Command: :CONFIGure:ACPower
:MEASure:CHPower?

Title: Measure Channel Power/Density

Description: Sets the active measurement to channel power, sets the default measurement parameters, triggers a new measurement and returns the channel power and channel power density results. It is a combination of the commands :CONFigure:CHPower and :READ:CHPower?

For a description of the default channel power measurement parameters, see :CONFigure:CHPower. To make a channel power measurement with settings other than the default values, send:

:CONFigure:CHPower
Commands to set desired settings
:READ:CHPower?

Data is returned as 2 comma-separated values: channel power in dBm, channel power density in dBm/Hz.

Default Unit: Current amplitude units

Related Command: :MEASure:CHPower:CHPower?
:MEASure:CHPower:DENSity?
:CONFigure:CHPower

:MEASure:CHPower:CHPower?

Title: Measure Channel Power

Description: Sets the active measurement to channel power, sets the default measurement parameters, triggers a new measurement and returns the channel power result in dBm. It is a combination of the commands :CONFigure:CHPower and :READ:CHPower:CHPower? To measure both channel power and channel power density, use :MEASure:CHPower?

For a description of the default channel power measurement parameters, see :CONFigure:CHPower. To make a channel power measurement with settings other than the default values, send:

:CONFigure:CHPower
Commands to set desired settings
:READ:CHPower:CHPower?

Default Unit: Current amplitude units

Related Command: :MEASure:CHPower?
:MEASure:CHPower:DENSity?
:CONFigure:CHPower
:MEASure:CHPower:DENSity?

- **Title:** Measure Channel Power Density
- **Description:** Sets the active measurement to channel power, sets the default measurement parameters, triggers a new measurement and returns the channel power density result in dBm/Hz. It is a combination of the commands :CONFigure:CHPower and :READ:CHPower:DENSity? To measure both channel power and channel power density, use :MEASure:CHPower?

 For a description of the default channel power measurement parameters, see :CONFigure:CHPower. To make a channel power measurement with settings other than the default values, send:

 :CONFigure:CHPower
 Commands to set desired settings
 :READ:CHPower:DENSity?

- **Default Unit:** Current amplitude units
- **Related Command:** :MEASure:CHPower?
 :MEASure:CHPower:CHPower?
 :CONFigure:CHPower

:MEASure:IQ:CAPture SINGle|REMoTe

- **Title:** Initiate IQ waveform capture
- **Required Option:** 24
- **Description:** Starts the IQ capture using the current settings (capture length, sample rate, file name and location). If the parameter value is SINGle, this command initiates the capture and stores the acquired data in the currently specified save location, which can be the instrument internal memory or a connected USB device. Note that in Continuous capture mode, multiple waveform captures will continue until you press **Start Capture** on the instrument screen to stop data acquisition.

 The REMote form of this command initiates the IQ capture and places data in the instrument buffer. Send the :MEASure:IQ:GET? query to retrieve the acquired IQ waveform data.

- **Parameter:** SINGle|REMoTe
- **Related Command:** :MEASure:IQ:GET?
 :SENSe:IQ:LENgth
 :SENSe:IQ:SAMPlerate

- **Front Panel Access:** Shift-4 (Meas), IQ Waveform Capture, Start Capture
:MEASure:IQ:GET?

Title: Query IQ waveform data

Required Option: 24

Description: Retrieves the IQ waveform data acquired with the :MEASure:IQ:CAPture:REMote command. This query returns #xyyyyyy followed by the acquired data. x indicates the number of digits in the buffer size and yyyyyy is the size of the buffer. I and Q data points are each 3 bytes long and stored in 24-bit two's complement in an alternating fashion: I0, Q0, I1, Q1, and so on.

The query returns #10 when there is no data.

Related Command: :MEASure:IQ:CAPture REMote

:MEASure:OBWidth?

Title: Measure Occupied Bandwidth

Description: Sets the active measurement to occupied bandwidth, sets the default measurement parameters, triggers a new measurement and returns the occupied bandwidth, percent of power and dB down results. It is a combination of the commands :CONFigure:OBWidth and :READ:OBWidth? For a description of the default occupied bandwidth measurement parameters, see :CONFigure:OBWidth. To make an occupied bandwidth measurement with settings other than the default values, send:

:CONFigure:OBWidth

Commands to set desired settings

:READ:OBWidth?

Data is returned as 3 comma-separated values: occupied bandwidth, percent of power, dB down.

Default Unit: For OBW: Hz
For Percent of Power: %
For dB Down: dB

Related Command: :CONFigure:OBWidth
:CONFigure:RF SPECTrum
4-9 :MMEMory Subsystem

The Mass Memory subsystem contains functions that provide access to the instrument’s setup and data storage.

:**MMEMory:**STORe:LIMit <filename>

Title: Save Limit
Description: Stores the current limit setup into the file specified by <filename>. <filename> should be enclosed in either single quotes (‘’) or double quotes (””) and should not contain a file extension. Use the command MMEMory:MSIS to set the current save location.

Parameter: <filename>
Related Command: :MMEMory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Save, Change Type, (select Limit Line from list)
4-10 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:ACPower?

Title: Read Adjacent Channel Power Ratio
Description: Triggers a new adjacent channel power ratio measurement and returns the results: main channel power, lower adjacent and upper adjacent channel power. It is a combination of the commands :ABORT, and :INITiate, and :FETCh:ACPower? The channel power measurement must be the active measurement (specified by the command :CONFigure:ACPower). The current measurement can be queried using the command :CONFigure?

Data is returned as 5 comma-separated values: main channel power, lower adjacent channel power, upper adjacent channel power, lower alternate channel power, upper alternate channel power.

Related Command: :READ:ACPower?
 :CONFigure

:READ:CHPower:DENSity?

Title: Read Channel Power Density
Description: Triggers a new channel power measurement and returns the channel power density result. It is a combination of the commands :ABORT, :INITiate, and :FETCh:CHPower:DENSity? It returns only the channel power density, not the channel power. Use the command :READ:CHPower? to get both channel power and channel power density. The channel power measurement must be the active measurement (specified by :CONFigure:CHPower). The current measurement can be queried using :CONFigure? command.

Default Unit: Current amplitude units
Related Command: :READ:CHPower?
 :READ:CHPower:CHPower?
 :CONFigure
:READ:CHPower?

Title: Read Channel Power/Density

Description: Triggers a new channel power measurement and returns the results: channel power and channel power density. It is a combination of the commands :ABORT, :INITiate, and :FETCh:CHPower? The channel power measurement must be the active measurement (specified by the command :CONFigure:CHPower). The current measurement can be queried using the command :CONFigure?

Data is returned as 2 comma-separated values: channel power, channel power density.

Related Command:
- :READ:CHPower:CHPower?
- :READ:CHPower:DENSITY?
- :CONFigure

:READ:OBWidth?

Title: Read Occupied Bandwidth

Description: Triggers a new occupied bandwidth measurement and returns the results: occupied bandwidth, percent of power and dB down. It is a combination of the commands :ABORT, :INITiate, and :FETCh:OBWidth? The occupied bandwidth measurement must be the active measurement (specified by :CONFigure:OBWidth). The current measurement can be queried using the :CONFigure?

Data is returned as 3 comma-separated values: occupied bandwidth, percent of power, dB down.

Default Unit:
- For OBW: Hz
- For Percent of Power: %
- For dB Down: dB

Related Command: :CONFigure
4-11 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:COPY TRACe1,TRACe2|TRACe3

Title: Trace Copy
Description: Copies Trace A to either Trace B or Trace C. Copying Trace A to Trace B is equivalent to pressing the Shift-5 (Trace), Trace B Operations, A->B on the front panel. This store Trace A into Trace B and turns on Trace B if it was off. Copying Trace A to Trace C is equivalent to pressing the Shift-5 (Trace), Trace C Operations, A->C on the front panel. This store Trace A into Trace C and turns on Trace C if it was off.
Parameter: TRACe1,TRACe2|TRACe3
Parameter Type: <char>
Example: To copy Trace A to Trace B:
:TRACe:COPY TRACe1,TRACe2
To copy Trace A to Trace C:
:TRACe:COPY TRACe1,TRACe3

:TRACe:EXCHange TRACe2,TRACe3

Title: Trace Exchange
Description: Swaps Trace B and Trace C.
Parameter: TRACe2,TRACe3
Parameter Type: <char>
Front Panel Access: Shift-5 (Trace), Trace B Operations, B<>C
Shift-5 (Trace), Trace C Operations, B<>C
:TRACe:PREamble? \{1|2|3\}

Title: Trace Header Transfer

Description: Returns trace header information for the specified trace. Data can be transferred to and from the 3 available display traces. Use the commands in the MMEory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X, and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],”. Note that the parameters that are returned depend on the firmware version and that this document does not cover all parameter values that are returned by the command. Valid parameter names are listed in “Spectrum Analyzer Parameter Names” on page 2-14.

Parameter: \[1\]|2|3

Range: 1|2|3

Front Panel Access: NA
:TRACe[:DATA] {1|2|3},(<header><block>)
:TRACe[:DATA]? {1|2|3}

Title: Trace Data Transfer

Description: This command transfers data from the controlling program to the instrument. The query form transfers trace data from the instrument to the controller. Data is transferred to the instrument enclosed in parentheses as (<header><block>) and from the instrument as <header><block>.

The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. Data can be transferred to and from the 3 available display traces. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The command form does not support setting all trace points to a single value. To do this, send the same value to each point. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?.

To acquire the data from trace A in the instrument, send :TRACe[:DATA]? 1. A 551 point trace is returned as #42204<block data>. <block> data could be in either INTeger,32 or REAL,32 format. In both cases, there is 4 bytes per data point. So, 4 bytes per point * 551 data points gives 2204 bytes in <block> data. This example assumes that :FORMat:DATA INTeger,32 or :FORMat:DATA REAL,32 has been sent to the instrument before the query command is sent.

The query command will return a #0 if data is invalid for the active trace.

Parameter: {1 | 2 | 3},(<header><block>)

Related Command: :FORMat:DATA
:TRACe[:DATA]:PREamble?
:TRACe{1|2|3}:DISPlay[:STATe] OFF|ON|0|1

Description: Specifies whether the specified trace should be able to be displayed (visible) or hidden. **TRACe1** corresponds to Trace A, **TRACe2** corresponds to Trace B, and **TRACe3** corresponds to Trace C. Setting the value to ON or 1 will set the specified trace visible. Setting the value to OFF or 0 will set the specified trace hidden. Note that issuing this command will also set the specified trace as active trace.

Parameter: OFF|ON|0|1

Default Value:
- ON for Trace A
- OFF for Trace B
- OFF for Trace C

Example:
- To set Trace A to Blank:
  ```plaintext```
  :TRACe:DISPlay OFF
  :TRACe1:DISPlay 0
  ```plaintext```
- To set Trace B to View:
  ```plaintext```
  :TRACe2:DISPlay ON
  :TRACe2:DISPlay:STATe ON
  :TRACe2:DISPlay 1
  ```plaintext```

Front Panel Access: Shift-5 (Trace), View/Blank
:TRACe{1|2|3}:WRITe[:STATe] OFF|ON|0|1
:TRACe{1|2|3}:WRITe[:STATe]?

Title: Trace Write State

Description: Specifies whether the specified trace state should be set to write or hold. TRACe1 corresponds to Trace A, TRACe2 corresponds to Trace B, and TRACe3 corresponds to Trace C. Setting the state to ON or 1 will set the specified trace to write. Setting the state to OFF or 0 will set the specified trace to hold.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>

Default Value: ON for Trace A
OFF for Trace B
OFF for Trace C

Example: To set Trace A to Hold:
:TRACe:WRITe:STATe OFF
:TRACe:WRITe OFF OR :TRACe:WRITe 0

To set Trace C to Write:
:TRACe3:WRITe ON
:TRACe3:WRITe:STATe ON
:TRACe3:WRITe 1

Related Command: :TRACe:DATA

Front Panel Access: Shift-5 (Trace), Write/Hold
Title: Trace A Operation

Description: This command specifies how successive traces are combined to produce the resulting display values.

- Setting the operation to NORMal is equivalent to pressing the Shift-5 (Trace), Trace A Operations, Normal->A on the front panel. This displays a trace based on the detection method selected.

- Setting the operation to MAXHold is equivalent to pressing the Shift-5 (Trace), Trace A Operations, Max Hold->A on the front panel. This displays the largest signal for each display point over multiple sweeps.

- Setting the operation to MINHold is equivalent to pressing the Shift-5 (Trace), Trace A Operations, Min Hold->A on the front panel. This displays the smallest signal for each display point over multiple sweeps.

- Setting the operation to AVERage is equivalent to pressing the Shift-5 (Trace), Trace A Operations, Average->A on the front panel. This displays the average value of multiple sweeps for each display point.

The query version of the command returns the current operation mode or “NONE” if no operation is set.

Parameter: NORMal | MAXHold | MINHold | AVERage

Parameter Type: <char>

Default Value: NORMal

Related Command: [:SENSe]:AVERage:TYPE

Title: Trace B Operation

Description: This command specifies how successive traces are combined to produce the resulting display values.

- Setting the operation to MAXHold is equivalent to pressing the Shift-5 (Trace), Trace B Operations, Max Hold->B on the front panel. This displays the largest signal for each display point over multiple sweeps.

- Setting the operation to MINHold is equivalent to pressing the Shift-5 (Trace), Trace B Operations, Min Hold->B on the front panel. This displays the smallest signal for each display point over multiple sweeps.

- Setting the operation to AVERage is equivalent to pressing the Shift-5 (Trace), Trace B Operations, Average->B on the front panel. This displays the average value of multiple sweeps for each display point.

The query version of the command returns the current operation mode or “NONE” if no operation is set.

Parameter: MAXHold | MINHold

Parameter Type: <char>

Default Value: None

Range: MAXHold | MINHold
:TRACe3:OPERation MAXHold|MINHold|A-B|B-A
:TRACe3:OPERation?

Title: Trace C Operation

Description: This command specifies how successive traces are combined to produce the resulting display values.

Setting the operation to MAXHold is equivalent to pressing the Shift-5 (Trace), Trace C Operations, Max Hold->C on the front panel. This displays the largest signal for each display point over multiple sweeps.

Setting the operation to MINHold is equivalent to pressing the Shift-5 (Trace), Trace C Operations, Min Hold->C on the front panel. This displays the smallest signal for each display point over multiple sweeps.

Setting the operation to A-B is equivalent to pressing the Shift-5 (Trace), Trace C Operations, A-B->C. This displays the difference between trace A and trace B values in trace C.

Setting the operation to B-A is equivalent to pressing the Shift-5 (Trace), Trace C Operations, B-A->C. This displays the difference between trace B and trace A values in trace C.

The query version of the command returns the current operation mode or “NONE” if no operation is set.

Parameter: MAXHold | MINHold | A-B | B-A

Parameter Type: <char>

Default Value: None

Range: MAXHold | MINHold | A-B | B-A
4-12 :TRIGger Subsystem

This subsystem contains commands related to the triggering of instrument functions for the purposes of synchronization. Related commands appear in the ABORt and INITiate subsystems.

:TRIGger[:SEQuence]:SOURce IMMEDIATE|EXTERNAL|VIDEO
:TRIGger[:SEQuence]:SOURce?

 Title: Trigger Source
 Description: This command defines the trigger source. IMMEDIATE triggering is the equivalent of free-run triggering. EXTERNAL triggering is triggered when a TTL signal is applied to the External Trigger input connector. EXTERNAL triggering is always done on the rising edge of the signal. It is available only in zero span mode.
 Parameter: IMMEDIATE|EXTERNAL|VIDEO
 Parameter Type: <char>
 Default Value: IMMEDIATE
 Range: IMMEDIATE|EXTERNAL|VIDEO
 Related Command: :TRIGger[:SEQuence]:VIDEO:LEVEL
 :TRIGger[:SEQuence]:VIDEO:POSITION

 Front Panel
 Access: Shift-3 (Sweep), Triggering, Source, Free Run|External|Video

:TRIGger[:SEQuence]:VIDEO:DELAY <percentage> or <time>
:TRIGger[:SEQuence]:VIDEO:DELAY?

 Title: Video Trigger Position (time)
 Description: This command sets the video triggering delay as either a percentage of the display or in time units. If setting the delay by time is desired, then time units must be specified when sending the command. The query version of this command will return the video triggering delay as a percentage.
 Default Value: –1
 Default Unit: %
 Range: –100% to +200% (–1 ms to +2 ms)
 Example: To set the delay to 1 ms:
 :TRIGger:SEQUence:VIDEO:DELAY 1 ms
 To set the delay to 1 %:
 :TRIGger:SEQUence:VIDEO:DELAY 1

 Front Panel
 Access: Shift-3 (Sweep), Triggering, Delay
:TRIGger[:SEQuence]:VIDeo:LEVel <amplitude>
:TRIGger[:SEQuence]:VIDeo:LEVel?

Title: Video Trigger Level
Description: This command sets the video triggering level.
Parameter: <amplitude>
Default Value: –65.0 dBm
Default Unit: Current amplitude unit
Range: 30 dBm to –150 dBm
Front Panel
Access: Shift-3 (Sweep), Triggering, Level

:TRIGger[:SEQuence]:VIDeo:POSition <percentage>
:TRIGger[:SEQuence]:VIDeo:POSition?

Title: Video Trigger Position
Description: This command sets the video triggering position as a percentage of the display. When the sweep is triggered, the trigger point is drawn at the location defined by the position. The graph appearing to the left of the trigger position is data acquired before the trigger. The graph appearing to the right of the trigger position is data acquired after the trigger.
Parameter: <percentage>
Default Value: 1
Default Unit: %
Range: 0% to 100%
Front Panel
Access: Shift-3 (Sweep), Triggering, Delay
4-13 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|DBV|DBMV|DBUV|V|W
:UNIT:POWer?

Title: Measurement Units
Description: Sets the default amplitude units for input, output and display.
Available units: dBm, dBV, dBmV, dBµV, V, W.
Note that linear units are not operational with SPA V3.06. The set command is non-operational with SPA V3.06 as well.

Parameter: DBM|DBV|DBMV|DBUV|V|W
Parameter Type: <char>
Default Value: dBm
Front Panel Access: Amplitude, Units, Unit of Measure
4-14 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:ACPow:BWID:ADJacent <freq>
[:SENSe]:ACPow:BWID:ADJacent?

Title: ACPR Adjacent Channel Bandwidth
Description: Sets the adjacent channel bandwidth for the ACPR measurement.
Parameter: <freq>
Default Value: 10.35 MHz
Default Unit: Hz
Range: MS2720T-0709 1 Hz to 9 GHz
 MS2720T-0713 1 Hz to 13 GHz
 MS2720T-0720 1 Hz to 20 GHz
 MS2720T-0732 1 Hz to 32 GHz
 MS2720T-0743 1 Hz to 43 GHz

Front Panel
Access: Shift-4 (Measure), ACPR, Adj Ch BW

[:SENSe]:ACPow:BWID:MAIN <freq>
[:SENSe]:ACPow:BWID:MAIN?

Title: ACPR Main Channel Bandwidth
Description: Sets the main channel bandwidth for the ACPR measurement.
Parameter: <freq>
Default Value: 10.35 MHz
Default Unit: Hz
Range: MS2720T-0709 1 Hz to 9 GHz
 MS2720T-0713 1 Hz to 13 GHz
 MS2720T-0720 1 Hz to 20 GHz
 MS2720T-0732 1 Hz to 32 GHz
 MS2720T-0743 1 Hz to 43 GHz

Front Panel
Access: Shift-4 (Measure), ACPR, Main Ch BW
[:SENSe]:ACPower:BANDwidth|BWIDth:SPACing <freq>
[:SENSe]:ACPower:BANDwidth|BWIDth:SPACing?

Title: ACPR Channel Spacing
Description: Sets the channel spacing for the ACPR measurement.
Parameter: <freq>
Default Value: 10.35 MHz
Default Unit: Hz
Range: MS2720T-0709 1 Hz to 9 GHz
 MS2720T-0713 1 Hz to 13 GHz
 MS2720T-0720 1 Hz to 20 GHz
 MS2720T-0732 1 Hz to 32 GHz
 MS2720T-0743 1 Hz to 43 GHz

Front Panel
 Access: Shift-4 (Measure), ACPR, Ch Spacing

[:SENSe]:ACPower:STATE OFF|ON|0|1
[:SENSe]:ACPower:STATE?

Title: ACPR Measurement State
Description: Sets the state of the adjacent channel power ratio measurement, ON or OFF. When using :CONFigure:ACPower, the state is automatically set to ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

[:SENSe]:AVERage:COUNt <integer>
[:SENSe]:AVERage:COUNt?

Title: Number of Traces to Average
Description: Sets the number of traces to average.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 10
Range: 2 to 65535
Front Panel
 Access: Shift-5 (Trace), Trace A Operations, # of Averages
[:SENSe]:AVERage:TYPE NONE|SCALar|MAXimum|MINimum
[:SENSe]:AVERage:TYPE?

Title: Trace Mode (Normal/Average/Max Hold/Min Hold)
Description: Specifies how successive traces are combined to produce the resulting display value. Setting the TYPE to NONE is the equivalent of setting the trace mode to “Normal->A” on the front panel. The displayed value for a point is the current measured value for that point. Setting the TYPE to SCALar is the equivalent of setting the trace mode to “Average->A” on the front panel. The displayed value for a point is the average of the last <integer> measured values where <integer> is set by [:SENSe]:AVERage:COUNt. Setting the TYPE to MAXimum is the equivalent of setting the trace mode to “Max Hold->A” on the front panel. The displayed value for a point is the maximum measured value for that point over sweeps. Setting the TYPE to MINimum is the equivalent of setting the trace mode to “Min Hold->A” on the front panel. The displayed value for a point is the minimum measured value for that point over sweeps.

Parameter: NONE|SCALar|MAXimum|MINimum
Parameter Type: <char>
Default Value: NONE
Example: To set the TYPE to SCALar:
SENSe:AVERage:TYPE SCALar
To set the TYPE to MAXimum:
SENSe:AVERage:TYPE MAXimum

Related Command: [:SENSe]:AVERage:COUNt
Front Panel Access: Shift-5 (Trace), Trace A Operations

[:SENSe]:BANDwidth|BWIDth[:RESolution] <freq>
[:SENSe]:BANDwidth|BWIDth[:RESolution]?

Title: Resolution Bandwidth
Description: Sets the resolution bandwidth. Note that using this command turns the automatic resolution bandwidth setting OFF.

Parameter: <freq>
Default Value: 10 MHz
Default Unit: Hz
Range: 1 Hz to 10 MHz in a 1:3 sequence

Related Command: [:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO
Front Panel Access: BW, RBW
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO?

Title: Resolution Bandwidth Coupling
Description: Sets the state of the coupling of the resolution bandwidth to the frequency span. Setting the value to ON or 1 will result in the resolution bandwidth being coupled to the span. That is, when the span changes, the resolution bandwidth changes. Setting the value to OFF or 0 will result in the resolution bandwidth being uncoupled from the span. That is, changing the span will not change the resolution bandwidth. When this command is issued, the resolution bandwidth setting itself will not change. The default value is ON. That is, sending :SENS:BAND:RES:AUTO is equivalent to sending :SENS:BAND:RES:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio
Front Panel Access: BW, Auto RBW

[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio <number>
[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio?

Title: Resolution Bandwidth to Span Ratio
Description: Sets the ratio of the resolution bandwidth to the span for use when the resolution bandwidth to span coupling is enabled. Note that the front panel interface sets the inverse ratio: the span to the resolution bandwidth.

Parameter: <number>
Default Value: 0.010000
Range: 0.000001 to 1
Related Command: [:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO
Front Panel Access: BW, Span/RBW (note that this is the inverse ratio)
[:SENSe]:BANDwidth|BWIDth:VIDeo <freq>
[:SENSe]:BANDwidth|BWIDth:VIDeo?

Title: Video Bandwidth
Description: Sets the video bandwidth. Note that using this command turns the automatic video bandwidth setting OFF.
Parameter: <freq>
Default Value: 3 MHz
Default Unit: Hz
Range: 1 Hz to 10 MHz in a 1:3 sequence
Related Command: [:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO

Front Panel
Access: BW, VBW

[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO?

Title: Video Bandwidth Coupling
Description: Sets the state of the coupling of the video bandwidth to the resolution bandwidth. Setting the value to ON or 1 will result in the video bandwidth being coupled to the resolution bandwidth. Setting the value to OFF or 0 will result in the video bandwidth being uncoupled from the resolution bandwidth. Changing the resolution bandwidth will not change the video bandwidth. When this command is issued, the video bandwidth setting itself will not change. The default value is ON. That is, sending :SENS:BAND:VID:AUTO is equivalent to sending :SENS:BAND:VID:AUTO ON.
Parameter: OFF | ON | 0 | 1
Parameter Type: <boolean>
Default Value: ON
Front Panel
Access: BW, Auto VBW
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio <number>
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio?

Title: Video Bandwidth to Resolution Bandwidth Ratio
Description: Sets the ratio of the video bandwidth to the resolution bandwidth for use when the video to resolution bandwidth coupling is enabled. Note that the front panel interface sets the inverse ratio: the resolution bandwidth to the video bandwidth.
Parameter: <number>
Default Value: 0.33
Range: 0.000001 to 1
Related Command: [:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO
Front Panel Access: BW, RBW/VBW (note that this is the inverse ratio)

[:SENSe]:BANDwidth|BWIDth:VIDeo:TYPE LOGarithmic|LINear
[:SENSe]:BANDwidth|BWIDth:VIDeo:TYPE?

Title: VBW/Average Type
Description: Changes the VBW/Average type.
Default Value: LINear
Front Panel Access: BW, VBW/Average Type

[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration <freq>
[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration?

Title: Channel Power Integration Bandwidth
Description: Sets the integration bandwidth for the channel power measurement. Integration bandwidth must be less than or equal to the frequency span.
Parameter: <freq>
Default Value: 10.35 MHz
Default Unit: Hz
Range: MS2720T-0709 10 Hz to 9 GHz
 MS2720T-0713 10 Hz to 13 GHz
 MS2720T-0720 10 Hz to 20 GHz
 MS2720T-0732 10 Hz to 32 GHz
 MS2720T-0743 10 Hz to 43 GHz
Related Command: [:SENSe]:FREQuency:SPAN
Front Panel Access: Shift-4 (Measure), Channel Power, Ch Pwr Width
[:SENSe]:CHPower:STATe OFF|ON|0|1
[:SENSe]:CHPower:STATe?

Title: Channel Power Measurement State
Description: Sets the state of the channel power measurement, ON or OFF. When using :CONFigure:CHPower, the state is automatically set to ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: :CONFigure:ACPower
Front Panel
Access: Shift-4 (Measure), ACPR, On/Off

[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude] <integer>
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude]?

Title: Input Impedance
Description: Sets the input impedance that is used for amplitude correction and conversion between units (dBm vs. dBV vs. Volts, etc.). If the value of <integer> is 50, no correction is performed. If the value of <integer> is 75, correction is done based on Anritsu adapter 12N50-75B. To place the instrument in Other or offset mode, send a 2. Once in the “Other” mode, the command, [:SENSe]:CORRection:IMPedance[:INPut]:OFFSet, can be used to adjust the offset.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 50 Ohm
Range: 50 Ohm, 75 Ohm, all other values are treated as described above
Front Panel
Access: Shift-8 (System), Application Options, Impedance
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet <rel ampl>
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet?

Title: Other Input Impedance Loss

Description: Sets the value that is used for amplitude correction when the value set by [:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude] is something other than 50 or 75. This value is not applied if the impedance is set to either 50 or 75.

Parameter: <rel ampl>

Default Value: 0

Default Unit: dB

Range: 0 dB to 100 dB

Related Command: [:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude]

Front Panel Access: Shift-8 (System), Application Options, Impedance

[:SENSe]:DETector[:FUNCtion]
POSitive|RMS|NEGative|SAMPLE|QUASI
[:SENSe]:DETector[:FUNCtion]?

Title: Detection Type

Description: Sets the detection method for calculating each display point. Each display point represents several measurements. The detection type determines how the display point is derived from its associated measurements. POSitive Peak detection displays the maximum value of the associated measurements. RMS detection displays the average power of the associated measurements. NEGative Peak detection displays the minimum value of the associated measurements. SAMPLE detection displays the “middle” point of those measurements associated with a display point. For example, if there are 3 measurement frequencies associated with a given display point, sample detection will display the value at the frequency of the second measurement point.

Parameter: POSitive|RMS|NEGative|SAMPLE|QUASI

Parameter Type: <char>

Default Value: (Positive) Peak

Front Panel Access: Amplitude, Detection, Peak|RMS|Negative|Sample|Quasi
[:SENSe] : EMF:STATe OFF|ON|0|1
[:SENSe] : EMF:STATe?

Title: EMF State
Description: Switches EMF ON or OFF.
The query form of this command returns a 0 or 1 when EMF state is OFF or ON, respectively.
Note: EMF will turn ON only if the start and stop frequencies are within the frequency range of the spectrum analyzer and isotropic antenna used. The antenna must be connected.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Front Panel Access: Shift-4 (Measure), Power and Bandwidth, EMF Measurement, On/Off

[:SENSe] : EXTRefstatus?

Title: Frequency Reference Status
Description: Returns 0 for internal or GPS reference. Returns 1 for external reference.

Front Panel Access: None
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.
Parameter: <freq>
Default Value:
 MS2720T-0709 4.5 GHz
 MS2720T-0713 6.5 GHz
 MS2720T-072010 GHz
 MS2720T-0732 16 GHz
 MS2720T-0743 21.5 GHz
Default Unit: Hz
Range:
 MS2720T-0709 0 Hz and 10 Hz to 9 GHz
 MS2720T-0713 0 Hz and 10 Hz to 13 GHz
 MS2720T-0720 0 Hz and 10 Hz to 20 GHz
 MS2720T-0732 0 Hz and 10 Hz to 32 GHz
 MS2720T-0743 0 Hz and 10 Hz to 43 GHz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Frequency, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink, then the value of the <string> argument would be “P-GSM 900 - Uplink”.

4-14 [:SENSe] Subsystem Spectrum Analyzer Commands
The query form of this command will return the name of the currently selected Signal Standard from the list.

Parameter:
<string>

Front Panel Access:
Freq, Signal Standard

[:SENSe] :FREQuency :SPAN <freq>

Title: Frequency Span

Description: Sets the frequency span. Setting the value of <freq> to 0 Hz is the equivalent of setting the span mode to zero span. Note that changing the value of the frequency span will change the value of the coupled parameters Start Frequency and Stop Frequency and may change the Center Frequency.

Parameter:
<freq>

Default Value:
MS2720T-0709 9 GHz
MS2720T-0713 13 GHz
MS2720T-0720 20 GHz
MS2720T-0732 32 GHz
MS2720T-0743 43 GHz

Default Unit: Hz

Range:
MS2720T-0709 0 Hz to 9 GHz
MS2720T-0713 0 Hz to 13 GHz
MS2720T-0720 0 Hz to 20 GHz
MS2720T-0732 0 Hz to 32 GHz
MS2720T-0743 0 Hz to 43 GHz

Title: Frequency Span – Full

Description: Sets the frequency span to full span. Note that changing the value of the frequency span will change the value of the coupled parameters, Start Frequency and Stop Frequency and may change the Center Frequency.

Default Value:
MS2720T-0709 9 GHz
MS2720T-0713 13 GHz
MS2720T-0720 20 GHz
MS2720T-0732 32 GHz
MS2720T-0743 43 GHz

Front Panel Access: Span, Full Span
[:SENSe]:FREQuency:SPAN:PREVious

Title: Frequency Span – Last
Description: Sets the frequency span to the previous span value. Note that changing the value of the frequency span will change the value of the coupled parameters, Start Frequency and Stop Frequency and may change the Center Frequency.

Default Unit: Hz
Range: MS2720T-0709 0 Hz and 10 Hz to 9 GHz
 MS2720T-0713 0 Hz and 10 Hz to 13 GHz
 MS2720T-0720 0 Hz and 10 Hz to 20 GHz
 MS2720T-0732 0 Hz and 10 Hz to 32 GHz
 MS2720T-0743 0 Hz and 10 Hz to 43 GHz

Front Panel
Access: Freq, Span, Last Span

[:SENSe]:FREQuency:STARt <freq>
[:SENSe]:FREQuency:STARt?

Title: Start Frequency
Description: Sets the start frequency. Note that in the spectrum analyzer, changing the value of the start frequency will change the value of the coupled parameters, Center Frequency and Span.

Parameter: <freq>
Default Value: 0 Hz
Default Unit: Hz
Range: MS2720T-0709 0 Hz to 9 GHz
 MS2720T-0713 0 Hz to 13 GHz
 MS2720T-0720 0 Hz to 20 GHz
 MS2720T-0732 0 Hz to 32 GHz
 MS2720T-0743 0 Hz to 43 GHz

Related Command: [:SENSe]:FREQuency:STOP?

Front Panel
Access: Freq, Start Freq
[:SENSe]:FREQuency:STEP[:INCRement] <freq>

Title: Frequency Step
Description: Sets the frequency step to the given frequency value.
Parameter: <freq>
Default Value: 1 MHz
Default Unit: Hz
Range: MS2720T-0709 1 Hz to 9 GHz
 MS2720T-0713 1 Hz to 13 GHz
 MS2720T-0720 1 Hz to 20 GHz
 MS2720T-0732 1 Hz to 32 GHz
 MS2720T-0743 1 Hz to 43 GHz

Front Panel
Access: Freq, Freq Step

[:SENSe]:FREQuency:STOP <freq>
[:SENSe]:FREQuency:STOP?

Title: Stop Frequency
Description: Sets the stop frequency. Note that in the spectrum analyzer, changing the value of the stop frequency will change the value of the coupled parameters, Center Frequency and Span.
Parameter: <freq>
Default Value: MS2720T-0709 9 GHz
 MS2720T-0713 13 GHz
 MS2720T-0720 20 GHz
 MS2720T-0732 32 GHz
 MS2720T-0743 43 GHz
Default Unit: Hz
Range: MS2720T-0709 10 Hz to 9 GHz
 MS2720T-0713 10 Hz to 13 GHz
 MS2720T-0720 10 Hz to 20 GHz
 MS2720T-0732 10 Hz to 32 GHz
 MS2720T-0743 10 Hz to 43 GHz
[:SENSe] :FSTRength:ANTenna <antenna>
[:SENSe] :FSTRength:ANTenna?

Title: Field Strength Antenna
Description: Selects an antenna from the antenna list to use for field strength measurement result calculations. The <antenna> argument is a 1-based index of the position of the desired antenna in the instrument’s current antenna list. The list can be displayed on the instrument by choosing the “Antenna” submenu key in the “F Strength” menu. For example, if the desired antenna were the 3rd item on the antenna listing then the value of the <antenna> argument would be 3. Setting the <antenna> argument to 0 indicates that no antenna is selected.

The query form of this command will return the index of the currently-selected antenna.

Parameter: <antenna>
Default Value: 1
Related Command: :CONFigure:FSTRength
Front Panel Access: Shift-4(Measure), Field Strength, Antenna

[:SENSe] :FSTRength:STATe OFF|ON|0|1
[:SENSe] :FSTRength:STATe?

Title: Field Strength Measurement State
Description: Sets the state of the field strength measurement, ON or OFF. When using :CONFigure:FSTRength, the state is automatically set to ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: :CONFigure:CHPower
Front Panel Access: Shift-4 (Measure), Field Strength, On/Off
[:SENSe]:IQ:LENgth <number>
[:SENSe]:IQ:LENgth?

Title: Capture Length
Description: Sets the length of the capture time in microseconds. Query returns the length of the current capture time in microseconds.
Parameter: <number>
Parameter Type: <char>
Default Value: 10 ms
Default Unit: µs
Range: 1 µs to 800 ms
Front Panel Access: Shift-4 (Measure), IQ Waveform Capture, Capture Length

[:SENSe]:IQ:SAMPlerate <freq>
[:SENSe]:IQ:SAMPlerate?

Title: Sample Rate
Description: Sets the sample rate in Hz. Sample rate choices are 25 kHz, 500 kHz, 2.5 MHz, 6.25 MHz, 12.5 MHz, 20 MHz, and 40 MHz. The query returns the current Sample Rate frequency in Hz.
Parameter: <freq>
Default Value: 40 MHz
Range: 25 kHz, 500 kHz, 2.5 MHz, 6.25 MHz, 12.5 MHz, 20 MHz, 40 MHz
Front Panel Access: Shift-4 (Measure), IQ Waveform Capture, Sample Rate
[:SENSe]:OBWidth:METHod XDB|PERCent

[:SENSe]:OBWidth:METHod?

Title: Occupied Bandwidth Measurement Method

Description: Sets the method for calculating occupied bandwidth. XDB calculates the occupied bandwidth based on points a specified number of dB below the carrier. Issue command [:SENSe]:OBWidth:XDB to set the number of dB to be used. PERCent calculates the occupied bandwidth based on points a specified percentage of the carrier power below the carrier. Issue command [:SENSe]:OBWidth:PERCent to set the percentage to be used.

Parameter: XDB|PERCent

Parameter Type: <char>

Default Value: PERCent

Related Command: [:SENSe]:OBWidth:XDB [:SENSe]:OBWidth:PERCent

Front Panel Access: Shift-4 (Measure), OCC BW, Method, % Int Pwr|> dBC

[:SENSe]:OBWidth:PERCent <percentage>

[:SENSe]:OBWidth:PERCent?

Title: Occupied Bandwidth Percent of Power

Description: This command sets the percentage of carrier power used to measure the occupied bandwidth. This value is used in the measurement if :SENSe:OBWidth:METHod is set to PERCent.

Parameter: <percentage>

Default Value: 99

Default Unit: %

Range: 0% to 100%

Related Command: [:SENSe]:OBWidth:METHod

Front Panel Access: Shift-4 (Measure), OCC BW, %
[:SENSe]:OBWidth:STATE OFF|ON|0|1
[:SENSe]:OBWidth:STATE?

Title: Occupied Bandwidth Measurement State
Description: Sets the state of the occupied bandwidth measurement, ON or OFF. When using :CONFigure:OBWidth, the state is automatically set to ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: :CONFigure:OBWidth
Front Panel Access: Shift-4 (Measure), OCC BW, On/Off

[:SENSe]:OBWidth:XDB <rel ampl>
[:SENSe]:OBWidth:XDB?

Title: Occupied Bandwidth dB Down
Description: This command sets the number of dB below the carrier used to measure the occupied bandwidth. This value is used in the measurement if :SENSe:OBWidth:METHod is set to XDB.
Parameter: <rel ampl>
Default Value: 3 dBC
Default Unit: dBC
Range: 0 to 100 dBC
Related Command: [:SENSe]:OBWidth:METHod
Front Panel Access: Shift-4 (Measure), OCC BW, dBC

[:SENSe]:OPTion:IF:BWSTate 1|2|3|4|5
[:SENSe]:OPTion:IF:BWSTate?

Title: IF Bandwidth State
Description: Sets the IF Bandwidth. Setting a value of 1 is equivalent of setting the IF Bandwidth to Normal on the front panel. Setting a value of 3 is equivalent of setting the IF Bandwidth to 10 MHz BW on the front panel. Setting the value of 4 is equivalent of setting the IF Bandwidth to 16 MHz BW on the front panel. Note that option 89 must be available and in Zero span for the command to be valid. The query version of this command will return a 0 if not in zero span.
Parameter: 1|2|3|4|5
Range: 1|2|3|4|5
Front Panel Access: Span, Zero Span
[:SENSe]:POWer[:RF]:ATTenuation <rel ampl>
[:SENSe]:POWer[:RF]:ATTenuation?

Title: Input Attenuation
Description: Sets the input attenuation. Note that issuing this command will set the automatic input attenuation OFF.
Parameter: <rel ampl>
Default Value: 30 dB
Default Unit: dB
Range: 0 dB to 65 dB
Related Command: [:SENSe]:POWer[:RF]:ATTenuation:AUTO
Front Panel Access: Amplitude, Atten Lvl

[:SENSe]:POWer[:RF]:ATTenuation:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:ATTenuation:AUTO?

Title: Input Attenuation Coupling
Description: Sets the input attenuation coupling. Setting the value to ON or 1 will result in the input attenuation being coupled to the reference level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the reference level. That is, changing the reference level will not change the input attenuation. When this command is issued, the input attenuator setting itself will not change. The default value is ON. That is, sending :SENS:POW:ATT:AUTO is equivalent to sending :SENS:POW:ATT:AUTO ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:ATTenuation
Front Panel Access: Amplitude, Auto Atten
[SENSe]:POWer[:RF]:GAIN[:STATe] OFF|ON|0|1
[SENSe]:POWer[:RF]:GAIN[:STATe]?

Title: Preamp State
Description: Sets the state of the preamp. Note that this may cause a change in the reference level and/or attenuation.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Front Panel
Access: Amplitude, Pre Amp

[SENSe]:SWEep:MODE FAST|PERFormance|NOFFt|BURSt
[SENSe]:SWEep:MODE?

Title: Sweep Mode
Description: Selects the sweep mode. The query form of this command returns the current sweep mode: FAST, PERF, NOFF, or BURS.
Fast - Fastest sweep speed (up to 100 times faster than Performance)
Performance - Medium sweep speed; all specifications are met
No FFT - Slowest mode; suited for analog and pulse modulated signals
Burst - Fast sweep speed; suited for detecting short bursts
Default Value: FAST
Front Panel
Access: Shift-3 (Sweep), Sweep Mode

[SENSe]:SWEep:STATus?

Title: Sweep Status
Description: Returns 1 when the sweep is complete. Returns 0 when the sweep is in progress.
Front Panel
Access: None
[:SENSe]:SWEep:TIME[:LLIMit]
[:SENSe]:SWEep:TIME[:LLIMit]?

Title: Minimum Sweep Time
Description: Sets the value of the minimum sweep time parameter. The sweep will complete in the shortest time possible. To sweep as fast as possible, enter the minimum value allowed for the sweep time.

Default Value: 0.001
Default Unit: Seconds
Range: 10 μs to 600000000 μs
Front Panel
Access: Shift-3 (Sweep), Sweep Time

[:SENSe]:SWEep:TIME:ACTual?

Title: Actual Sweep Time
Description: Returns the actual sweep time as opposed to the specified sweep time.
Default Unit: Seconds

[:SENSe]:SWEep:TIME:AUTO ON|OFF|1|0
[:SENSe]:SWEep:TIME:AUTO?

Title: Auto Sweep Time
Description: Sets Auto Sweep Time on or off.
Front Panel
Access: Shift-3 (Sweep), Auto Sweep Time

[:SENSe]:SWEep:TRACe?

Title: Trace Count
Description: Returns a string with two integers representing the current trace’s average count and the total number of trace averages.

Front Panel
Access: None
Chapter 5 — Tracking Generator Commands

Note

This chapter is specific to Spectrum Master MS2720T instruments with Option 809, Option 813, or Option 820.
5-1 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure:GENerator:TRACking POWStats|TXStats

:CONFigure?

<table>
<thead>
<tr>
<th>Title</th>
<th>Configure Tracking Generator Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>(Valid only for Tracking Mode) This command configures the selected tracking generator power statistic measurement. It disables any other active one-button measurements, including CW, channel power, occupied bandwidth, AM/FM demodulation, and C/I. Sets the tracking generator measurement state to ON. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:GENerator commands before initiating a sweep. When the POWStats option is selected, the measurement results are equivalent to the results that are displayed by choosing Shift-4 (Measure), then Generator, then Generator Output On, then Generator Mode Tracking, then Settings, then Power Statistics On. In this mode the :CONF? query would return TRAC,POWS. When the TXStats option is selected, the Normalize state is set to ON and the measurement results are equivalent to the results that are displayed by choosing Shift-4 (Measure), then Generator, then Generator Output On, then Generator Mode Tracking, then Transmission Measurement, then Normalize On, then Transmission Statistics On. In this mode the :CONF? query would return TRAC,TXS.</td>
</tr>
</tbody>
</table>

| Note | :CONFigure:GENerator:TRACking TXStats does not set the instrument to Single Sweep mode. :INIT:CONT OFF sets the instrument in single sweep mode. |

<table>
<thead>
<tr>
<th>Example</th>
<th>To configure power measurements:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>:CONFigure:GENerator:TRACking POWStats</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Command</th>
<th>:GENerator:OUTput:POWer</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SENSe:]::TGENerator:TX[:SCALe]:RLEVEL:OFFSet</td>
<td></td>
</tr>
<tr>
<td>[:SENSe:]::TGENerator:TX[:SCALe]:PDIVision</td>
<td></td>
</tr>
</tbody>
</table>

| Front Panel Access | Refer to Description section above. |
5-2 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:TGENerator:POWStats?

Title: Fetch Tracking Generator Absolute Power Statistics

Description: (Only valid for Tracking Mode) Returns the most recent tracking generator absolute power statistic measurement results displayed in the Tracking Generator Summary table.

Data is returned as 3 comma-separated values: Absolute Maximum Power, Absolute Minimum Power, and Absolute Average Power. "---" is returned for each data that is not valid at that instance.

Default Unit: Current amplitude units

Related Command: :CONFigure:GENerator:TRACking POWStats

Front Panel Access: Shift-4 (Measure), Generator, Settings, Power Statistics

:FETCh:TGENerator:TXStats?

Title: Fetch Tracking Generator Transmission Statistics

Description: (Only valid for Tracking Mode and Normalize On) Returns the most recent tracking generator transmission statistic measurement results.

Data is returned as 3 comma-separated values: Maximum Power, Minimum Power, Average Power "---" is returned for each data that is not valid at that instance.

Default Unit: Current amplitude units

Related Command: :CONFigure:GENerator:TRACking TXStats

Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Transmission Statistics
5-3 :GENerator Subsystem

This subsystem contains commands related to the generator.

:GENerator:OUTput:POWer <amplitude>
:GENerator:OUTput:POWer?

 Title: Generator Output Power
 Description: Sets the output power for the Generator.
 Query returns actual output power setting without regards to any
 external gain or loss setting.
 Note: Returned value will not match displayed output power on the
 instrument if external gain/loss setting is not 0 dB.
 Parameter: <amplitude>
 Default Value: –40 dBm
 Range: –50 dBm to +15 dBm
 Default Unit: Current active amplitude unit
 Example: To set the output to –30 dBm when the active amplitude units are dBm:
 :GENerator:OUTput:POWer –30
 Related Command: :INITiate:GENerator
 :GENerator:OUTput:POWer:OFFSet[:MAGNitude]

 Front Panel
 Access: Shift-4 (Measure), Generator, Output Power
:GENerator:OUTput:POWer:OFFSet[:MAGNitude] <value>
:GENerator:OUTput:POWer:OFFSet[:MAGNitude]?

Title: Generator Output Power Offset or External Gain/Loss Setting
Description: Sets the output power level offset or the External Gain/Loss Setting. Note that changing this value also causes the displayed output power to adjust with the new offset. For example, if the output power is set to –25 dBm, and if the External Gain/Loss is then set to 10 dB external gain, then the power limits will be adjusted by 10 dB, and the value of the output power that is displayed on the instrument will be adjusted to –15 dBm. The query returns a value from –100 to +100. A negative sign indicates external loss, and no sign indicates external gain.

Parameter: <value>
Default Value: 0 dB
Range: 100 dB Ext Loss to 100 dB Ext Gain
Default Unit: dB
Example: To set the signal generator offset to 10 dB external gain:
:GENerator:OUTput:POWer:OFFSet 10

Related Command: :GENerator:OUTput:POWer

Front Panel
Access: Shift-4 (Measure), Generator, Settings, Ext Gain/Loss
5-4 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:GENerator OFF|ON|0|1
:INITiate:GENerator?

Title: Generator On/Off
Description: Specifies whether the generator is on or off. If the value is set to ON or 1, then the generator is turned on. If the value is set to OFF or 0, then the generator is turned off.

The query version of the command returns a 1 if the generator is on and returns a 0 if the generator is off.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off generator:
 :INITiate:GENerator OFF
To turn on generator:
 :INITiate:GENerator ON

Related Command: [:SENSe]:GENerator:MODe

Front Panel Access: Shift-4 (Measure), Generator, Generator Output
5-5 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement, and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. These commands then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCH command.

:MEASure:TGENerator:POWStats?

Title: Measure Tracking Generator Absolute Statistics

Description: Sets the active measurement to tracking generator with absolute statistics on, sets the default measurement parameters, triggers a new measurement, and returns the results.

It is a combination of the commands

:CONFigure:GENerator:TRACking POWStats and
:READ:TGENerator:POWStats?

For a description of the default tracking generator absolute statistics measurement parameters, refer to " :CONFigure:GENerator:TRACking POWStats | TXStats" on page 5-2.

To make a tracking generator absolute statistics measurement with settings other than the default values, send:

:CONFigure:GENerator:TRACking POWStats
Commands to set desired settings
:READ:TGENerator POWStats?

Data is returned as 3 comma-separated values: Maximum Power, Minimum Power, Average Power.

Default Unit: Current amplitude units

Example: To measure tracking generator absolute statistics:

:MEAS:TGEN:POWS?

Related Command: :CONFigure:GENerator

Front Panel
Access: Shift-4 (Measure), Generator, Settings, Power Statistics
This set of commands combines the ABORt, INITiate, and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (in other words, begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement. To get the current measurement data, use the FETCh command.

:READ:TGENerator:POWStats?

Title: Read Tracking Generator Absolute Statistics

Description: Triggers a new tracking generator absolute statistic measurement and returns the results.

It is a combination of the commands :ABORT, :INITiate, and :FETCh:TGENerator:POWStats?

The tracking generator absolute statistic measurement must be the active measurement (specified by :CONFigure:GENerator:TRACk:POWStats). The current measurement can be queried using :CONFigure?

Data is returned as 3 comma-separated values: absolute maximum power, absolute minimum power, absolute average power.

Example: To read tracking generator absolute statistics:

:READ:TGEN:POWS?

Front Panel Access: Shift-4 (Measure), Generator, Settings, Power Statistics

:READ:TGENerator:TXStats?

Title: Read Tracking Generator Transmission Statistics

Description: (Only valid for Tracking Mode and Normalize On) Triggers a new tracking generator transmission statistics measurement and returns the results.

It is a combination of the commands :ABORT, :INITiate, and :FETCh:TGENerator:TXStats?

The tracking generator transmission statistic measurement must be the active measurement (specified by :CONFigure:GENerator:TRACk:TXStats). The current measurement can be queried using :CONFigure?

Data is returned as 3 comma-separated values: relative maximum power, relative minimum power, relative average power.

Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Transmission Statistics
5-7 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe] :CW:FREQuency
[:SENSe] :CW:FREQuency?

Title: CW Frequency
Description: Sets the frequency for the Generator in CW Mode.
Default Value: 1 GHz
Range: 100 kHz to 9 GHz (–0809) or to 13 GHz (–0813) or to 20 GHz (–0820)
Default Unit: Hz
Example: To set CW frequency at 2 GHz
 :CW:FREQ 2000000000 or :CW:FREQ 2 GHz
Related Command: :INITiate:GENerator, :GENerator MODe CW
Front Panel
Access: Shift-4 (Measure), Generator, Generator Mode CW, CW Frequency

[:SENSe] :GENerator:MODe CW|TRACking
[:SENSe] :GENerator:MODe?

Title: Generator Mode
Description: Toggle Generator Mode between CW and Tracking.
Note: This command does not turn the generator on. Refer to
 :INITiate:GENerator
Parameter: CW|TRACking
Default Value: CW
Example: To select Tracking Generator Mode:
 :GEN:MOD TRAC
Related Command: :INITiate:GENerator
Front Panel
Access: Shift-4 (Measure), Generator, Generator Mode
[:SENSe]:TGENerator:POWStats[:STATe] OFF|ON|0|1
[:SENSe]:TGENerator:POWStats[:STATe]?

Title: Tracking Generator Absolute Power Statistic State
Description: Specifies whether the tracking generator absolute power statistic table is ON or OFF. If the value is set to ON or 1, the tracking generator absolute statistic table is turned on. If the value is set to OFF or 0, the tracking generator absolute statistic table is turned off.

The query version of the command returns a 1 if the tracking generator absolute power statistic is on and returns a 0 if the tracking generator power statistic is off.

Note that this command is ignored if the tracking generator output is off.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off the generator absolute power statistics:
:TGENerator:POWStats OFF
Front Panel Access: Shift-4 (Measure), Generator, Settings, Power Statistics

[:SENSe]:TGENerator:TX:NORMalize[:STATe] OFF|ON|0|1
[:SENSe]:TGENerator:TX:NORMalize[:STATe]?

Title: Tracking Generator Normalize State
Description: Specifies whether the tracking generator normalization is ON or OFF. If the value is set to ON or 1, the tracking generator normalization is turned on. If the value is set to OFF or 0, the tracking generator normalization is turned off.

The query version of the command returns a 1 if the tracking generator normalization is on and returns a 0 if the tracking generator normalization is off.

Note that this command is ignored if the tracking generator output is off.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off the tracking generator normalized state:
:TGENerator:TX:NORMalize OFF
Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Normalize
Title: Tracking Generator Scale

Description: (Only valid for Tracking Mode) Sets the tracking generator normalized scale (dB/division) in Transmission measurements.

Default Value: 10 dB/div

Range: 1 dB to 15 dB

Default Unit: dB

Related Command: [:SENSe]:TGENerator:TX:NORMalize[:STATe]

Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Scale

Title: Tracking Generator Normalized Reference Amplitude

Description: (Valid only for Tracking Mode) Sets the tracking generator normalized reference Amplitude (dB) in Transmission measurements.

Parameter: <amplitude>

Parameter Type: <amplitude>

Default Value: 0 dB

Range: –300 dB to +300 dB

Example: To set the tracking generator reference amplitude:

:TGENerator:TX:REference:AMPLitude 10 dB

Related Command: [:SENSe]:TGENerator:TX[:SCALe]:REference:POSition

Front Panel Access: Shift 4 (Measure), Generator, Transmission Measurement, Reference Amplitude
Tracking Generator Commands

```
[:SENSe]:TGENerator:TX[:SCALE]:REFerence:POSition  <integer>
[:SENSe]:TGENerator:TX[:SCALE]:REFerence:POSition?
```

Title: Tracking Generator Reference Position

Description: (Valid only for Tracking Mode) Sets the tracking generator reference position in Transmission measurements.

Parameter: <integer>

Parameter Type: <integer>

Default Value: 5

Range: 0 to 10

Example: To set the tracking generator reference position to 5:

```
:TGENerator:TX:REFerence:POSition 5
```

Front Panel Access: Shift 4 (Measure), Generator, Transmission Measurement, Reference Position

```
[:SENSe]:TGENerator:TX[:SCALE]:RLEVel:OFFSet <rel ampl>
[:SENSe]:TGENerator:TX[:SCALE]:RLEVel:OFFSet?
```

Title: (Only valid for Tracking Mode and Normalize On) Tracking Generator Reference Level Offset

Description: Sets the tracking generator reference level offset value for the y-axis in Transmission measurements.

Default Value: 0 dB

Range: –100 dB to +100 dB

Default Unit: dB

Related Command: [:SENSe]:TGENerator:TX: Normalize[:STATe]

Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Transmission Offset
[:SENSe]:TGENerator:TXStats[:STATe] OFF|ON|0|1
[:SENSe]:TGENerator:TXStats[:STATe]?

Title: Tracking Generator Transmission Statistic State

Description: (Only valid for Tracking Mode and Normalize On) Specifies whether the tracking generator transmission statistic is ON or OFF. If the value is set to ON or 1, the tracking generator transmission statistic is turned on. Turning on normalization triggers the normalization sweep, during which the sweep complete bit of the operation status is zero, and :STATus:OPERation? can be used to detect the completion of the normalization sweep. If the value is set to OFF or 0, the tracking generator normalization is turned off.

The query version of the command returns a 1 if the tracking generator normalization is on and returns a 0 if the tracking generator normalization is off.

Note that this command is ignored if the tracking generator output is off.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Example: To turn on the tracking generator transmission statistic state:

[:TGENerator:TXStats ON

Related Command: [:SENSe]:TGENerator:TX:NORMalize[:STATe]

Front Panel Access: Shift-4 (Measure), Generator, Transmission Measurement, Transmission Statistics
Chapter 6 — CDMA Commands

6-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort
Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA
Related Command: :INITiate:CONTinuous
:INITiate[:IMMediate]
6-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the CALCulate subsystem. Valid measurements with the use of markers are RF Measurement - Channel Spectrum and the Demodulator Measurement - CDP.

:CALCulate:MARKer:AOFF
 Title: Turn All Markers Off
 Description: Turns off all markers.
 Front Panel
 Access: Marker, All Markers Off

:CALCulate:MARKer{1|2|3|4|5|6}:Y?
 Title: Marker Read Y Value
 Description: Reads the current Y value for the specified marker. The units are the units of the y-axis.
 Default Unit: Current y-axis unit

:CALCulate:MARKer{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATe]?
 Title: Marker State
 Description: Sets the specified marker on/off.
 Parameter: OFF|ON|0|1
 Parameter Type: <boolean>
 Default Value: OFF
 Example: To turn off reference marker #1:
 :CALCulate:MARKer1:STATe OFF
 Front Panel
 Access: Marker, On/Off
6-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMARY|PFail

Title: Configure Summary and Pass/Fail Measurements
Description: This command configures the summary and PASS/FAIL measurements. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMARY|PFail
Parameter Type: <char>
Front Panel Access: Measurements, CDMA Summary or Pass/Fail Mode

:CONFigure:DEMod <char>

Title: Configure Demodulation Measurement
Description: Valid <char> parameter options: SUMMARY|CDPower|CDPTable
This command configures the selected demodulation measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement.

When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Modulation Summary from the front panel.
When the CDPower option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then CDP from the front panel. When the CDPTable option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then CDP Table from the front panel.

Parameter: <char>
Front Panel Access: Measurements, Demodulator
6-3 :CONFigure Subsystem

CDMA Commands

:CONFigure:OTA <char>

Title: Configure Over-The-Air Measurement

Description: Valid parameter options: PSCAn|MPATh. This command configures the selected Over The Air measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified before initiating a measurement. When the PSCAn option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Pilot Scan from the front panel. When the MPATh option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Multipath from the front panel.

Parameter: <char>

:CONFigure:RF <char>

Title: Configure RF Measurement

Description: Valid parameter options: SUMMary|SPECtrum|ACPR|EMISsion

This command configures the selected RF measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMMary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then RF Summary from the front panel. When the SPECtrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Channel Spectrum from the front panel. When the ACPR option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then ACPR from the front panel.
When the EMISsion option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF Measurements, then Spurious Emission from the front panel.

Parameter: <char>

Related Command: [:SENSe]:FREQuency
6-4 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to +100 dB
Front Panel
Access: Amplitude, Power Offset

:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale
Description: Sets the scale (dB/division) for the y-axis.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel
Access: Amplitude, Scale/div
6-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:CDPower?

Title: Fetch Demodulated Channel Power
Description: Returns the most recent Code Domain Power measurement results.

Data is returned as 12 comma-delimited values: Pilot Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Noise Floor in dB, Rho, Carrier Feed Through in dB, Tau in ps, RMS Phase Error in deg, Frequency Error in Hz, Frequency Error PPM, Page in dBm, Sync in dBm, and Q Page. All invalid values are replaced with “--”.

Default Unit: dBm
Related Command: :CONFigure:DEMod CDPower
:MEASure:DEMod:CDPower?
:READ:DEMod:CDPower?

Front Panel Access: Measurements, Demodulator, CDP

:FETCh:OTA:MPATh?

Title: Fetch OTA Multipath
Description: Returns the most recent Multipath measurement results.

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA MPATh
:MEASure:OTA:MPATh?
:READ:OTA:MPATh?

Front Panel Access: Measurements, Over-the-Air, Multipath
**:FETCh:PFail?

Title: Fetch PASS/FAIL

Description: Returns the most recent PASS/FAIL measurement results. Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”). To receive valid measurements, the Pass/Fail measurement must be the active. The current measurement can be queried using CONFigure?. Use the :CONFigure PFail command to set Pass/Fail as the active measurement.

Related Command: MEASure:PFail?
:CONFigure PFail
READ:PFail?

**:FETCh:RF:ACPR?

Title: Fetch Adjacent Channel Power Ratio

Description: Returns the most recent Adjacent Channel Power Ratio measurement results.

Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Main Channel 5 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm. Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command: :CONFigure:RF:ACPR
:MEASure:RF:ACPR?
:READ:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR
:FETCH:RF:EMISSion?

Title: Fetch RF Spurious Emission

Description: Returns the most recent Spurious Emission measurement result. Data is returned as 5 comma-delimited values for each marker/boundary (40 values total): Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz. Markers that are not on will return “-” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. All Mask Boundary Frequencies will show normally.

Related Command: :CONFigure:RF EMISSion
:MEASure:RF:EMISSion?
:READ:RF:EMISSion?

Front Panel Access: Measurements, RF Measurements, Spurious Emission

:FETCH:RF:SPECTrum?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Channel Spectrum measurement results.

Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command: :CONFigure:RF SPECTrum
:MEASure:RF:SPECTrum?
:READ:RF:SPECTrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
6-6 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format
Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you've chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCii|INTeger,32|REAL,32
Parameter Type: <char>
Default Value: ASCii
Related Command: :TRACe[:DATA]
:INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTInuous OFF|ON|0|1

Title: Continuous/Single Sweep
Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTInuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Note: Issue the command :INITiate[:IMMediate] after changing from single sweep mode to continuous sweep mode in order to begin sweeping.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: :INITiate[:IMMediate]
Front Panel Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement
Description: Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTInuous
:STATus:OPERation?
Front Panel Access: Shift-3 (Sweep), Trigger Sweep
These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASure:DEMod:CDPower?

Title: Measure Code Domain Power

Description: Sets the active measurement to Code Domain Power, sets the default measurement parameters, triggers a new measurement and returns the Pilot Power, Channel Power, Noise Floor, Rho, Carrier Feed Through, Tau, RMS Phase Error, Frequency Error, Frequency Error PPM, Page, Sync, and Q Page measurement results. It is a combination of the commands :CONFigure:DEMod CDPower and :READ:DEMod:CDPower? To make a CDP measurement with settings other than the default values, send:

:CONFigure:DEMod CDPower

Commands to set desired settings

:READ:DEMod:CDPower?

Data is returned as 12 comma-delimited values: Pilot Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Noise Floor in dB, Rho, Carrier Feed Through in dB, Tau in ps, RMS Phase Error in deg, Frequency Error in Hz, Frequency Error PPM, Page in dBm, Sync in dBm, and Q Page. All invalid values are replaced with “--”.

Default Unit: dBm

Related Command: :CONFigure:DEMod CDPower

:READ:DEMod:CDPower?

FETCh:DEMod:CDPower?
:MEASURE:OTA:MPATH?

Title: Measure OTA Multipath

Description: Sets the active measurement to Multipath, sets the default measurement parameters, triggers a new measurement and returns six Ec/Io values, six Tau values, Channel Power, and Multipath Power. It is a combination of the commands :CONFigure:OTA MPATH and :READ:OTA:MPATH? To make an OTA Multipath measurement with settings other than the default values, send:

:CONFigure:OTA MPATH

Commands to set desired settings

:READ:OTA:MPATH?

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “-”.

Related Command:

:CONFigure:OTA MPATH

:READ:OTA:MPATH?

:FETCH:OTA:MPATH?

Front Panel Access: Measurements, Over-the-Air, Multipath

:MEASURE:PFail?

Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure PFail and :READ:PFail? To make a PASS/FAIL measurement with settings other than the default values, send:

:CONFigure PFail

Commands to set desired settings

:READ:PFail?

Related Command:

:CONFigure PFail

READ:PFail?

FETCH:PFail?

Front Panel Access: Measurements, Pass/Fail Mode
:MEASure:RF:ACPR?

Title: Measure Adjacent Channel Power Ratio

Description: Sets the active measurement to ACPR, sets the default measurement parameters, triggers a new measurement, and returns the power levels for each of the adjacent and main channels (9 total). It is a combination of the commands :CONFigure:RF ACPR and :READ:RF:ACPR? To make an RF ACPR measurement with settings other than the default values, send:

:CONFigure:RF ACPR

Commands to set desired settings

:READ:RF:ACPR?

Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Main Channel 5 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm.

Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command:

:READ:RF:ACPR?

:CONFigure:RF ACPR

:FETCh:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR
Title: Measure RF Spurious Emission

Description: Sets the active measurement to Spurious Emission, sets the default measurement parameters, triggers a new measurement and returns the Marker Amplitude, Marker Frequency, RBW, a Pass/Fail assessment, and the Mask Boundary Frequency for all markers/boundaries. It is a combination of the commands :CONFigure:RF EMISsion and :READ:RF:EMISsion? To make an RF Spurious Emission measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:RF:EMISsion?

Data is returned as 5 comma-delimited values for each marker/boundary: Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz.

Markers that are not on will return “--” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. Mask Boundary Frequency will show normally despite the corresponding marker being off.

Related Command: :CONFigure:RF EMISsion
:READ:RF:EMISsion?
:FETCh:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spurious Emission
:**MEASure:RF:SPECtrum?**

Title: Measure RF Spectrum

Description: Sets the active measurement to Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power (Current User Set Unit), Occupied Bandwidth, Channel Power (Watts) and Peak to Average Power measurement results. It is a combination of the commands :CONFigure:RF SPECtrum and :READ:RF:SPECtrum? To make an RF Spectrum measurement with settings other than the default values, send:

:CONFigure:RF SPECtrum
Commands to set desired settings
:READ:RF:SPECtrum?

Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command: :CONFigure:RF SPECtrum
:READ:RF:SPECtrum?
:FETCh:RF:SPECtrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
6-9 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:DEMod:CDPower?

Title: Read Code Domain Power
Description: Triggers a new measurement and returns the Pilot Power, Channel Power, Noise Floor, Rho, Carrier Feed Through, Tau, RMS Phase Error, Frequency Error, Frequency Error PPM, Page, Sync, and Q Page measurement results. It is a combination of the following commands :ABORt; :INITiate; :FETCh:DEMod:CDPower? In order for the data to be accurate, the Code Domain Power measurement must be the active measurement (specified by :CONFigure:DEMod CDPower). The current measurement can be queried using :CONFigure?

Data is returned as 12 comma-delimited values: Pilot Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Noise Floor in dB, Rho, Carrier Feed Through in dB, Tau in ps, RMS Phase Error in deg, Frequency Error in Hz, Frequency Error PPM, Page in dBm, Sync in dBm, and Q Page. All invalid values are replaced with “--”.

Default Unit: dBm
Related Command: CONFigure:DEMod CDPower
:MEASure:DEMod:CDPower?
:FETCh:DEMod:CDPower?

Front Panel Access: Measurements, Demodulator, CDP
:READ:OTA:MPATH?

Title: Read OTA Multipath
Description: Triggers a new measurement and returns six Ec/Io values, six Tau values, Channel Power, and Multipath Power. It is a combination of the following commands :ABORT; :INITiate; :FETCh:OTA:MPATH? In order for the data to be accurate, the Multipath measurement must be the active measurement (specified by :CONFigure:OTA MPATH). The current measurement can be queried using :CONFigure?

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA MPATH
:MEASure:OTA:MPATH?
:FETCh:OTA:MPATH?

Front Panel Access: Measurements, Over-the-Air, Multipath

:READ:PFail?

Title: Read PASS/FAIL
Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCh:PFail?
:CONFigure PFail
:MEASure:PFail?

Front Panel Access: Measurements, Pass/Fail Mode
:READ:RF:ACPR?

Title: Read Adjacent Channel Power Ratio
Description: Triggers a new measurement, and returns the power levels for each of the adjacent and main channels (9 total). It is a combination of the commands :ABORt, :INITiate, and :FETCh:RF:ACPR? In order for the data to be accurate, the ACPR measurement must be the active measurement (specified by :CONFigure:RF ACPR). The current measurement can be queried using :CONFigure?

Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Main Channel 5 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm. Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command: :FETCh:RF:ACPR?
:CONFigure:RF ACPR
:MEASure:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR

:READ:RF:EMISsion?

Title: Read RF Spurious Emission
Description: Triggers a new measurement and returns the Marker Amplitude, Marker Frequency, RBW, a Pass/Fail assessment, and the Mask Boundary Frequency for all markers/boundaries. It is a combination of the following commands :ABORt; :INITiate; :FETCh:RF:EMISsion? In order for the data to be valid, the Spurious Emission measurement must be the active measurement (specified by :CONFigure:RF EMISsion). The current measurement can be queried using :CONFigure?

Data is returned as 5 comma-delimited values for each marker/boundary (40 values total): Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz. Markers that are not on will return “- -” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. All Mask Boundary Frequencies will show normally.

Related Command: :CONFigure:RF EMISsion
:MEASure:RF:EMISsion
:FETCh:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spurious Emission
:READ:RF:SPECTrum?

Title: Read RF Spectrum

Description: Triggers a new measurement and returns the Channel Power (Current User Set Unit), Occupied Bandwidth, Channel Power (Watts) and Peak to Average Power measurement results. It is a combination of the following commands :ABORt; :INITiate; :FETCh:RF:SPECTrum? In order for the data to be accurate, the Channel Spectrum measurement must be the active measurement (specified by :CONFigure:RF SPECTrum). The current measurement can be queried using :CONFigure?

Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command:
- :FETCh:RF:SPECTrum?
- :CONFigure:RF SPECTrum
- :MEASure:RF:SPECTrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
6-10 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Trace Header Transfer

Description: Returns trace header information for the specified trace. The <trace type> must be one of the following:
SPECtrum | EMISsion | DEMod | PSCAn | MPATh.

Data can be transferred to and from the 5 available display trace types. Use the commands in the MMEMemory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in “CDMA Parameter Names” on page 2-25.

Parameter: <trace type>

Related Command: :TRACe:DATA?
Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The <trace type> must be one of the following: SPECtrum | EMISsion | DEMod | PSCAn | MPATh | ACPR.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format.

The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter.

Trace setup information can be acquired using :TRACe[:DATA]:PREamble?. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory.

The RF measurements ACPR and Channel Spectrum both only have one value per data point that is returned in dBm. Each value is 4 bytes.

For the RF Spurious Emission measurement, each data point will have two values. The first value is the wave data, while the second value is the mask data. Both values are four bytes and returned in dBm.

The Demodulator Code Domain Power measurement has four values per data point. The first value is the point number, which has no unit. The second value is the relative power returned in dB. The third value is the absolute power returned in dBm. The fourth value is the type, which is defined in the following table.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Signal Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Noise</td>
<td>Grey</td>
</tr>
<tr>
<td>1</td>
<td>IS95 Traffic</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>CDMA2000 Traffic</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>CDMA2000 Traffic</td>
<td>Orange</td>
</tr>
<tr>
<td>4</td>
<td>Pilot</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>Sync</td>
<td>Blue</td>
</tr>
<tr>
<td>6</td>
<td>Page</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Q Page</td>
<td>Purple</td>
</tr>
</tbody>
</table>

All values are four bytes each.

Both of the Over the Air (OTA) measurements, Pilot Scan and Multipath, will have three values per data point. The first value is the type, which can be 0 (Noise, Grey), 1 (Primary, Blue), and 2 (Secondary, Red), or. The second value is the Ec/Io returned in dB. The third value is Tau returned in s. All three values are the same and are 4 bytes each.
Note that the instrument must be set in the selected view. Use the CONFigure command to set the unit to the selected view.

Parameter: <trace type>

Related Command: :FORMat[:DATA]
 :TRACe[:DATA]:PREamble?
6-11 :TRIGger Subsystem

This subsystem contains commands related to the triggering of instrument functions for the purposes of synchronization. Related commands appear in the ABORt and INITiate subsystems.

:TRIGger:SEQUence:SLOPe RISing|FALLing
:TRIGger:SEQUence:SLOPe?

Title: External Trigger Polarity
Description: This command sets the external trigger polarity. Note that this setting can only be changed when the PN Type is set to “EXT”.

Parameter: RISing | FALLing
Parameter Type: <char>
Default Value: RISing
Default Unit: NA
Range: RISing, FALLing
Related Command: [:SENSe]:PN:TRIGger
[:SENSe]:PN:TRIGger?

Front Panel
Access: Setup, Ext Trig Polarity
6-12 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|W
:UNIT:POWer?

Description: Sets the default amplitude units for input, output and display.
Parameter: DBM|W
Parameter Type: <char>
Default Value: dBm
Front Panel Access: Amplitude, Unit
The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:ACPower:BANDwidth:MAIN <freq>
[:SENSe]:ACPower:BANDwidth:MAIN?

Title: ACPR Main Channel Bandwidth
Description: Sets the main channel carrier bandwidth. The <freq> value must be 1.23|1.24|1.25.
Parameter: <freq>
Default Value: 1.25 MHz
Default Unit: MHz
Range: 1.23 MHz, 1.24 MHz, 1.25 MHz
Front Panel
Access: Setup, Carrier BW (MHz)

[:SENSe]:DEMod:CDPower:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPower:UNITs?

Title: Code Domain Power Unit Type
Description: Sets the Code Domain Power unit type. The query form returns either a “REL” for relative units, or an “ABS” for absolute units in Ascii (without the double quotes).
Parameter: RELative|ABSolute
Parameter Type: <char>
Default Value: RELative
Range: RELative, ABSolute
Front Panel
Access: Measurements, Demodulator, CDP, CDP Units
[:SENSe]:DEMod:CDPower:ZOOM 16|32|64
[:SENSe]:DEMod:CDPower:ZOOM?

Title: Code Domain Power Zoom
Description: Sets the zoom for the Code Domain Power measurement. The query form returns either 16, 32, or 64.
Parameter: 16|32|64
Default Value: 16
Range: 16, 32, 64
Related Command: [:SENSe]:DEMod:CDPower:ZOOM:STARt
[:SENSe]:DEMod:CDPower:ZOOM:STARt?

Front Panel Access: Measurements, Demodulator, CDP, Zoom

[:SENSe]:DEMod:CDPower:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPower:ZOOM:STARt?

Title: Code Domain Power Zoom Start Index
Description: Sets the zoom start index for the Code Domain Power measurement.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 0
Range: 0 to 112
Related Command: [:SENSe]:DEMod:CDPower:ZOOM
[:SENSe]:DEMod:CDPower:ZOOM?

Front Panel Access: Measurements, Demodulator, CDP, Zoom Start Index

[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.
Parameter: <freq>
Default Value: 1 GHz
Default Unit: Hz
Range: 1 MHz to 2.7 GHz
Front Panel Access: Freq, Center Freq
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel
Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the <string> argument would be "P-GSM 900 - Uplink".

The query form of this command will return the name of the currently-selected Signal Standard on the list.
Parameter: <string>
Front Panel
Access: Freq, Signal Standard

[:SENSe]:FREQuency:SPAN?

Title: Frequency Span
Description: This is a query command only. The user cannot set the span in CDMA or EVDO modes.
Parameter: <freq>
Default Unit: Hz
[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel
Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test

[:SENSe]:PN:OFFSet <integer>
[:SENSe]:PN:OFFSet?

Title: PN Offset
Description: Sets the PN offset. Note that this can only be changed when PN Trigger is set to “GPS”, or “EXT”. A return value of the PN offset query is invalid when PN search type is AUTO.

Parameter: <integer>
Parameter Type: <integer>
Default Value: 0
Range: 0 to 511
Related Command: [:SENSe]:PN:TRIGger [:SENSe]:PN:TRIGger? [:SENSe]:PN:STYPe [:SENSe]:PN:STYPe?
Front Panel
Access: Setup, PN Setup, Manual PN Offset
[:SENSe]:PN:STYPE:AUTo 1|0|ON|OFF
[:SENSe]:PN:STYPE:AUTo?

Title: PN Search Type
Description: Sets the PN search type. The default value is ON. That is, sending
:SENSe:PN:STYPE:AUTo is equivalent to sending
:SENSe:PN:STYPE:AUTo ON. The query form returns either a 1 for
ON, or a 0 for OFF. Note that this can only be changed when PN Trigger
is set to “GPS”, or “EXT”.

Parameter: 1|0|ON|OFF
Parameter Type: <boolean>
Default Value: ON
Range: ON, OFF
Related Command: [:SENSe]:PN:TRIGger
[:SENSe]:PN:TRIGger?
[:SENSe]:PN:OFFSet [:SENSe]:PN:OFFSet?

Front Panel
Access: Setup, PN Setup, PN Trigger (GPS|Ext), PN Search Type

[:SENSe]:PN:TRIGger NOTRig|GPS|EXT
[:SENSe]:PN:TRIGger?

Title: External PN Trigger
Description: Sets the external PN trigger. The query form returns either “NOTRIG”,
“GPS”, or “EXT” in Ascii (without the double quotes).

Parameter: NOTRig|GPS|EXT
Parameter Type: <char>
Default Value: No Trig
Range: NOTRig, GPS, EXT
Related Command: [:SENSe]:PN:STYPE
[:SENSe]:PN:STYPE?
[:SENSe]:PN:OFFSet [:SENSe]:PN:OFFSet?

Front Panel
Access: Setup, PN Setup, PN Trigger
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range

[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.

Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO
Front Panel Access: Amplitude, Adjust Range

[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount?

Title: Main Channel Carrier Count
Description: Sets the number of main channel carriers.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 1
Range: 1 to 5
Front Panel Access: Setup, Number of Carriers
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed?

Title: Measurement Speed
Description: Sets the measurement speed. The query form returns either “FAST”, “NORM”, or “SLOW” in Ascii (without the double quotes).

Parameter: FAST | NORM | SLOW
Parameter Type: <char>
Default Value: Norm
Range: FAST, NORM, SLOW
Front Panel Access: Setup, Meas Speed

[:SENSe]:WCODe 64|128
[:SENSe]:WCODe?

Title: Walsh Codes
Description: Sets the Walsh codes.

Parameter: 64 | 128
Default Value: 128
Range: 64, 128
Front Panel Access: Setup, Walsh Codes
Chapter 7 — EV-DO Commands

7-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
7-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the CALCulate subsystem. Valid measurements with the use of markers are RF Measurement - Channel Spectrum and the Demodulator Measurement - CDP MAC.

:CALCulate:MARKer:AOFF

Title: Turn All Markers Off
Description: Turns off all markers.
Front Panel
Access: Marker, All Markers Off

:CALCulate:MARKer{1|2|3|4|5|6}:Y?

Title: Marker Read Y Value
Description: Reads the current Y value for the specified marker. The units are the units of the y-axis.
Default Unit: Current y-axis unit

:CALCulate:MARKer{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATe]?

Title: Marker State
Description: Sets the specified marker on/off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off reference marker #1:
:CALCulate:MARKer1:STATe OFF

Front Panel
Access: Marker, On/Off
7-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets it to SS and triggers ONE sweep. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMary|PFail

Title: Configure Summary and Pass/Fail Measurements

Description: This command configures the summary and PASS/FAIL measurements. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMary|PFail
Parameter Type: <char>
Front Panel Access: Measurements

:CONFigure:DEMod <char>

Title: Configure Demodulation Measurement

Description: Valid <char> parameter options: SUMMary|CDPMac|CDPData

This command configures the selected demodulation measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement.

When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Modulation Summary from the front panel.

When the CDPMac option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then CDP MAC from the front panel.

When the CDPData option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then CDP Data from the front panel.

Parameter: <char>
Front Panel Access: Measurements, Demodulator
:CONFigure:OTA <char>

Title: Configure Over-The-Air Measurement

Description: This command configures the selected Over The Air measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified before initiating a measurement. When the PSCAn option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Pilot Scan from the front panel. When the MPATh option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Multipath from the front panel.

Parameter: <char> PSCAn, MPATh

:CONFigure:RF <char>

Title: Configure RF Measurement

Description: Valid parameter options:
SUMM ary|SPEC trum|ACPR|EM I S sion|PV T ime

This command configures the selected RF measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMM ary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then RF Summary from the front panel. When the SPEC trum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Channel Spectrum from the front panel. When the ACPR option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then ACPR from the front panel. When the EM I S sion option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Spurious Emission from the front panel. When the PV T ime option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Power vs. Time from the front panel.

Parameter: <char>

Related Command: [:SENSe]:FREQuency
7-4 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to +100 dB
Front Panel Access: Amplitude, Power Offset

:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale
Description: Sets the scale (dB/division) for the y-axis.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel Access: Amplitude, Scale/div
7-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:CDPData?

Title: Fetch Demodulator Code Domain Power Data
Description: Returns the most recent Code Domain Power Data measurement results.

Data is returned as 6 comma-delimited values: Active Data Power in the current user set unit (dBm/W/mW), Data Modulation, Rho Pilot, Rho Overall1, Max Data CDP in dB, and Min Data CDP in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod CDPData
:MEASure:DEMod:CDPData?
:READ:DEMod:CDPData?

Front Panel Access: Measurements, Demodulator, CDP Data

:FETCh:DEMod:CDPMac?

Title: Fetch Demodulator Code Domain Power MAC
Description: Returns the most recent Code Domain Power MAC measurement results.

Data is returned as 8 comma-delimited values: Pilot & MAC Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Frequency Error in Hz, Frequency Error PPM, Rho Pilot, Rho Overall1, Data Modulation, and Noise Floor in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod CDPMac
:MEASure:DEMod:CDPMac?
:READ:DEMod:CDPMac?

Front Panel Access: Measurements, Demodulator, CDP MAC
:FETCh:DEMod:SUMMary?

Title: Fetch Demodulator Summary

Description: Returns the most recent Modulation Summary measurement results. Data is returned as 12 comma-delimited values: Pilot & MAC Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Rho Pilot, Rho Mac, Rho Data, Rho Overall1, Rho Overall2, Data Modulation, Noise Floor in dB, RMS Phase Error, Frequency Error in Hz, Tau in tens of microseconds. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod SUMMARY
:MEASure:DEMod:SUMMary?
:READ:DEMod:SUMMary?

Front Panel
Access: Measurements, Demodulator, Modulation Summary
:FETCH:OTA:MPATH?

Title: Fetch OTA Multipath

Description: Returns the most recent Multipath measurement results.

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA MPATH
:MEASure:OTA:MPATH?
:READ:OTA:MPATH?

Front Panel Access: Measurements, Over-the-Air, Multipath

:FETCH:PFail?

Title: Fetch PASS/FAIL

Description: Returns the most recent PASS/FAIL measurement results.
Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”). To receive valid measurements, the Pass/Fail measurement must be the active. The current measurement can be queried using CONFigure?. Use the :CONFigure PFail command to set Pass/Fail as the active measurement.

Related Command: MEASure:PFail?
:CONFigure PFail
READ:PFail?
:**FETCh:RF:ACPR?**

Title: Fetch Adjacent Channel Power Ratio

Description: Returns the most recent Adjacent Channel Power Ratio measurement results. Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm. Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command:
- :CONFigure:RF ACPR
- :MEASure:RF:ACPR?
- :READ:RF:ACPR?

Front Panel Access:
- Measurements, RF Measurements, ACPR

:**FETCh:RF:EMISSion?**

Title: Fetch RF Spurious Emission

Description: Returns the most recent Spurious Emission measurement result. Data is returned as 5 comma-delimited values for each marker/boundary (40 values total): Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz. Markers that are not on will return “--” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. All Mask Boundary Frequencies will show normally.

Related Command:
- :CONFigure:RF EMISSion
- :MEASure:RF:EMISSion?
- :READ:RF:EMISSion?

Front Panel Access:
- Measurements, RF Measurements, Spurious Emission
Title: Fetch RF Spectrum
Description: Returns the most recent RF Channel Spectrum measurement results.
Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command: :CONFigure:RF SPECtrum
 :MEASure:RF:SPECTrum?
 :READ:RF:SPECTrum?

Access: Measurements, RF Measurements, Channel Spectrum

Title: Fetch RF Summary
Description: Returns the most recent RF Summary measurement results.
Data is returned as 9 comma-delimited values: Channel Power, Pilot & MAC Power, Frequency Error, Spurious Emission, Occupied Bandwidth, Idle Activity, Active Activity, ON/OFF Ratio, Peak to Avg Power. All invalid values are replaced with “..”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:RF SUMMary
 :MEASure:RF:SUMMary?
 :READ:RF:SUMMary?

Access: Measurements, RF, RF Summary
This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you've chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCii|INTeger,32|REAL,32

Parameter Type: <char>

Default Value: ASCii

Related Command: :TRACe[:DATA]
7-7 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1

:INITiate:CONTinuous?

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Note: Issue the command :INITiate[:IMMediate] after changing from single sweep mode to continuous sweep mode in order to begin sweeping.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous

:STATus:OPERation?

Front Panel Access: Shift-3 (Sweep), Trigger Sweep
7-8 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASure:DEMod:CDPData?

Title: Measure Demodulator Code Domain Power Data

Description: Sets the active measurement to Code Domain Power Data, sets the default measurement parameters, triggers a new measurement and returns the Active Data Power, Data Modulation, Rho Pilot, Rho Overall1, Max Data CDP, and Min Data CDP. It is a combination of the commands :CONFigure:DEMod CDPData and :READ:DEMod:CDPData? To make a CDP Data measurement with settings other than the default values, send:

:CONFigure:DEMod CDPData
:READ:DEMod:CDPData?

Commands to set desired settings :READ:DEMod:CDPData?

Data is returned as 6 comma-delimited values: Active Data Power in the current user set unit (dBm/W/mW), Data Modulation, Rho Pilot, Rho Overall1, Max Data CDP in dB, and Min Data CDP in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod CDPData
:READ:DEMod:CDPData?
:FETCh:DEMod:CDPData?

Front Panel Access: Measurements, Demodulator, CDP Data
MEASure:DEMod:CDPMac?

Title: Measure Demodulator Code Domain Power MAC

Description: Sets the active measurement to Code Domain Power Mac, sets the default measurement parameters, triggers a new measurement and returns the Pilot & MAC Power, Channel Power, Frequency Error, Frequency Error PPM, Rho Pilot, Rho Overall1, Data Modulation, Noise Floor. It is a combination of the commands :CONFigure:DEMod CDPMac and :READ:DEMod:CDPMac? To make a CDP MAC measurement with settings other than the default values, send:

:CONFigure:DEMod CDPMac
Commands to set desired settings
:READ:DEMod:CDPMac?

Data is returned as 8 comma-delimited values: Pilot & MAC Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Frequency Error in Hz, Frequency Error PPM, Rho Pilot, Rho Overall1, Data Modulation, and Noise Floor in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod CDPMac
:READ:DEMod:CDPMac?
:FETCh:DEMod:CDPMac?

Front Panel Access: Measurements, Demodulator, CDP MAC
:MEASure:DEMod:SUMMary?

Title: Measure Demodulator Summary

Description: Sets the active measurement to Modulation Summary, sets the default measurement parameters, triggers a new measurement and returns the Pilot & MAC Power, Channel Power, Rho Pilot, Rho Mac, Rho Data, Rho Overall1, Rho Overall2, Data Modulation, Noise Floor, RMS Phase Error,! Frequency Error and Tau. It is a combination of the commands :CONFigure:DEMMod SUMMary and :READ:DEMMod:SUMMary?

To make a Demodulator Summary measurement with settings other than the default values, send:

:CONFigure:DEMMod SUMMary

Commands to set desired settings

:READ:DEMMod:SUMMary?

Data is returned as 12 comma-delimited values: Pilot & MAC Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Rho Pilot, Rho Mac, Rho Data, Rho Overall1, Rho Overall2, Data Modulation, Noise Floor in dB, RMS Phase Error, Frequency Error in Hz, Tau in tens of microseconds. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMMod SUMMary

:READ:DEMMod:SUMMary?

:FETCh:DEMMod:SUMMary?

Front Panel Access: Measurements, Demodulator, Modulation Summary
:MEASure:OTA:MPATH?

Title: Measure OTA Multipath

Description: Sets the active measurement to Multipath, sets the default measurement parameters, triggers a new measurement and returns six Ec/Io values, six Tau values, Channel Power, and Multipath Power. It is a combination of the commands :CONFigure:OTA MPATH and :READ:OTA:MPATH? To make an OTA Multipath measurement with settings other than the default values, send:

:CONFigure:OTA MPATH
Command to set desired settings
:READ:OTA:MPATH?

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA MPATH
:READ:OTA:MPATH?
:FETCh:OTA:MPATH?

Front Panel Access: Measurements, Over-the-Air, Multipath

:MEASure:PFail?

Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure PFail and :READ:PFail? To make a PASS/FAIL measurement with settings other than the default values, send:

:CONFigure PFail
Command to set desired settings
:READ:PFail?

Related Command: :CONFigure PFail
READ:PFail?
FETCh:PFail?

Front Panel Access: Measurements, Pass/Fail mode
-title: Measure Adjacent Channel Power Ratio

Description: Sets the active measurement to ACPR, sets the default measurement parameters, triggers a new measurement, and returns the power levels for each of the adjacent and main channels (9 total). It is a combination of the commands :CONFigure:RF ACPR and :READ:RF:ACPR? To make an RF ACPR measurement with settings other than the default values, send:

:CONFigure:RF ACPR
Commands to set desired settings
:READ:RF:ACPR?

Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Main Channel 5 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm.

Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command: :READ:RF:ACPR?
:CONFigure:RF ACPR
:FETCh:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR
:MEASURE:RF:EMISSion?

Title: Measure RF Spurious Emission

Description: Sets the active measurement to Spurious Emission, sets the default measurement parameters, triggers a new measurement and returns the Marker Amplitude, Marker Frequency, RBW, a Pass/Fail assessment, and the Mask Boundary Frequency for all markers/boundaries. It is a combination of the commands :CONFigure:RF EMISSion and :READ:RF:EMISSion? To make an RF Spurious Emission measurement with settings other than the default values, send:

:CONFigure:RF EMISSion
Commands to set desired settings
:READ:RF:EMISSion?

Data is returned as 5 comma-delimited values for each marker/boundary: Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz.

Markers that are not on will return “--” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. Mask Boundary Frequency will show normally despite the corresponding marker being off.

Related Command: :CONFigure:RF EMISSion
:READ:RF:EMISSion?
:FETCh:RF:EMISSion?

Front Panel Access: Measurements, RF Measurements, Spurious Emission

:MEASURE:RF:SPECTrum?

Title: Measure RF Spectrum

Description: Sets the active measurement to Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power (Current User Set Unit), Occupied Bandwidth, Channel Power (Watts) and Peak to Average Power measurement results. It is a combination of the commands :CONFigure:RF SPECTrum and :READ:RF:SPECTrum? To make an RF Spectrum measurement with settings other than the default values, send:

:CONFigure:RF SPECTrum
Commands to set desired settings
:READ:RF:SPECTrum?

Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command: :CONFigure:RF SPECTrum
:READ:RF:SPECTrum?
:FETCh:RF:SPECTrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
:MEASure:RF:SUMMary?

Title: Measure RF Summary

Description: Sets the active measurement to RF Summary, sets the default measurement parameters, triggers a new measurement and returns Channel Power, Pilot & MAC Power, Frequency Error, Spurious Emission, Occupied Bandwidth, Idle Activity, Active Activity, ON/OFF Ratio, Peak to Avg Power. It is a combination of the commands :CONFigure:RF SUMMary and :READ:RF:SUMMary?

To make a RF Summary measurement with settings other than the default values, send:

:CONFigure:RF SUMMary
Commands to set desired settings
:READ:RF:SUMMary?

Data is returned as 9 comma-delimited values: Channel Power, Pilot & MAC Power, Frequency Error, Spurious Emission, Occupied Bandwidth, Idle Activity, Active Activity, ON/OFF Ratio, Peak to Avg Power. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:RF SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel
Access: Measurements, RF, RF Summary
This set of commands combines the ABORt, INITiate and FETCH commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCH command.

:READ:OTA:MPATH?

Title: Read OTA Multipath
Description: Triggers a new measurement and returns six Ec/Io values, six Tau values, Channel Power, and Multipath Power. It is a combination of the commands :ABORt; :INITiate; :FETCH:OTA:MPATH? In order for the data to be accurate, the Multipath measurement must be the active measurement (specified by :CONFigure:OTA MPATH). The current measurement can be queried using :CONFigure?

Data is returned as 14 comma-delimited values: six Ec/Io Values in dB, six Tau values in ps, Channel Power in the current user set unit (dBm/W/mW), and Multipath Power in dB. All invalid values are replaced with “--”.

Related Command:
:CONFigure:OTA MPATH
:MEASURE:OTA:MPATH?
:FETCH:OTA:MPATH?

Front Panel Access: Measurements, Over-the-Air, Multipath

:READ:PFail?

Title: Read PASS/FAIL
Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCH:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command:
:MEASURE:PFail?
:CONFigure PFail
:FETCH:PFail?

Front Panel Access: Measurements, Pass/Fail Mode
:READ:RF:ACPR?

Title: Read Adjacent Channel Power Ratio

Description: Triggers a new measurement, and returns the power levels for each of the adjacent and main channels (9 total). It is a combination of the commands :ABORt; :INITiate; :FETCh:RF:ACPR? In order for the data to be accurate, the ACPR measurement must be the active measurement (specified by :CONFigure:RF ACPR). The current measurement can be queried using :CONFigure?

Data is returned as 9 comma-delimited values: The Absolute Adjacent Channel 1 Power, Absolute Adjacent Channel 2 Power, Absolute Main Channel 1 Power, Absolute Main Channel 2 Power, Absolute Main Channel 3 Power, Absolute Main Channel 4 Power, Absolute Main Channel 5 Power, Absolute Adjacent Channel 3 Power, Absolute Adjacent Channel 4 Power. All values are returned in dBm. Note that the values for all five main channel carriers are shown even if the number of carriers set on the instrument is below five.

Related Command:
- :FETCh:RF:ACPR?
- :CONFigure:RF ACPR
- :MEASure:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR

:READ:RF:EMISsion?

Title: Read RF Spurious Emission

Description: Triggers a new measurement and returns the Marker Amplitude, Marker Frequency, RBW, a Pass/Fail assessment, and the Mask Boundary Frequency for all markers/boundaries. It is a combination of the following commands :ABORt; :INITiate; :FETCh:RF:EMISsion? In order for the data to be valid, the Spurious Emission measurement must be the active measurement (specified by :CONFigure:RF EMISsion). The current measurement can be queried using :CONFigure?

Data is returned as 5 comma-delimited values for each marker/boundary (40 values total): Marker Amplitude in dB, Marker Frequency in Hz, RBW in Hz, Pass/Fail, and Mask Boundary Frequency in Hz. Markers that are not on will return “...” for Marker Amplitude, Marker Frequency, RBW, and Pass/Fail. All Mask Boundary Frequencies will show normally.

Related Command:
- :CONFigure:RF EMISsion
- :MEASure:RF:EMISsion
- :FETCh:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spurious Emission
:READ:RF:SPECTrurn?

Title: Read RF Spectrum
Description: Triggers a new measurement and returns the Channel Power (Current User Set Unit), Occupied Bandwidth, Channel Power (Watts) and Peak to Average Power measurement results. It is a combination of the following commands :ABORt; :INITiate; :FETCh:RF:SPECTrurn? In order for the data to be accurate, the Channel Spectrum measurement must be the active measurement (specified by :CONFigure:RF SPECTrurn). The current measurement can be queried using :CONFigure?

Data is returned as 4 comma-delimited values: Channel Power in the current user set unit (dBm/W/mW), Occupied bandwidth in Hz, Channel Power in fW, and Peak to Average Power in dB.

Related Command: :FETCh:RF:SPECTrurn?
:CONFigure:RF SPECTrurn
:MEASure:RF:SPECTrurn?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum

:READ:RF:SUMMary?

Title: Read RF Summary
Description: Triggers a new RF Summary measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:RF:SUMMary? The current measurement can be queried using :CONFigure?

Data is returned as 9 comma-delimited values: Channel Power, Pilot & MAC Power, Frequency Error, Spurious Emission, Occupied Bandwidth, Idle Activity, Active Activity, ON/OFF Ratio, Peak to Avg Power. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:RF SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel Access: Measurements, RF, RF Summary
This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Trace Header Transfer

Description: Returns trace header information for the specified trace. The `<trace type>` must be one of the following: SPECtrum | EMISsion | CDPMac | CDPData | PSCAn | MPATh.

Data can be transferred to and from the 6 available display trace types. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header.)

Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in “EVDO Parameter Names” on page 2-27.

Parameter: <trace type>

Related Command: :TRACe:DATA?
:TRACe[:DATA]? <trace type>

Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The <trace type> must be one of the following: SPECtrum | EMISsion | CDPMac | CDPD ata | PSCAn | MPATh | ACPR.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory.

The RF measurements ACPR and Channel Spectrum both only have one value per data point that is returned in dBm. Each value is 4 bytes. For the RF Spurious Emission measurement, each data point will have two values. The first value is the wave data, while the second value is the mask data. Both values are four bytes and returned in dBm.

Power vs. Time data points have three values each. The first value is the wave data. The second value is the upper mask data. The third value is the lower mask data. All values are returned in dB and are 4 bytes each.

The Demodulator Code Domain Power MAC measurement has four values per data point. The first value is the point number, which has no unit. The second value is the relative power returned in dB. The third value is the absolute power returned in dBm. The fourth value is the type, which is defined in the following.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Signal Type</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Noise</td>
<td>Grey</td>
</tr>
<tr>
<td>1</td>
<td>IS95 Traffic</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>CDMA2000 Traffic</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>CDMA2000 Traffic</td>
<td>Orange</td>
</tr>
<tr>
<td>4</td>
<td>Pilot</td>
<td>Red</td>
</tr>
<tr>
<td>5</td>
<td>Sync</td>
<td>Blue</td>
</tr>
<tr>
<td>6</td>
<td>Page</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Q Page</td>
<td>Purple</td>
</tr>
</tbody>
</table>
For the Code Domain Power Data measurement, each data point has six values. The first value is the point number, which has no unit. The second value is the relative I Data Magnitude, which is returned in dB. The third value is the absolute I Data Magnitude returned in dBm. The fourth value is the relative Q Data Magnitude returned in dB. The fifth value is the absolute Q Data Magnitude returned in dBm. The sixth value is the type, which follows the table above in terms of returned values. All values are four bytes each.

Both of the Over the Air (OTA) measurements, Pilot Scan and Multipath, will have three values per data point. The first value is the type, which can be 0 (Noise, Grey), 1 (Primary, Blue), and 2 (Secondary, Red), or. The second value is the Ec/Io returned in dB. The third value is Tau returned in s. All three values are the same for both measurements and are 4 bytes each.

Note that the instrument must be set in the selected view. Use the CONFigure command to set the unit to the selected view.

Parameter: <trace type>
Related Command: :FORMat[:DATA]
:TRACe[:DATA]:PREamble?
This subsystem contains commands related to the triggering of instrument functions for the purposes of synchronization. Related commands appear in the ABORt and INITiate subsystems.

:TRIGger:SEQuence:SLOPe RISing|FALLing
:TRIGger:SEQuence:SLOPe?

Title: External Trigger Polarity
Description: This command sets the external trigger polarity. Note that this setting can only be changed when the PN Type is set to “EXT”.
Parameter: RISing|FALLing
Parameter Type: <char>
Default Value: RISing
Default Unit: NA
Range: RISing, FALLing
Related Command: [:SENSe]:PN:TRIGger
[:SENSe]:PN:TRIGger?

Front Panel
Access: Setup, Ext Trig Polarity
7-12 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|W
:UNIT:POWer?

 Title: Measurement Units
 Description: Sets the default amplitude units for input, output and display.
 Parameter: DBM | W
 Parameter Type: <char>
 Default Value: dBm
 Front Panel
 Access: Amplitude, Unit
7-13 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:ACPower:BANDwidth:MAIN <freq>
[:SENSe]:ACPower:BANDwidth:MAIN?

Title: ACPR Main Channel Bandwidth
Description: Sets the main channel carrier bandwidth. The <freq> value must be 1.23|1.24|1.25.
Parameter: <freq>
Default Value: 1.25 MHz
Default Unit: MHz
Range: 1.23 MHz, 1.24 MHz, 1.25 MHz
Front Panel Access: Setup, Carrier BW (MHz)

[:SENSe]:DEMod:CDPower:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPower:UNITs?

Title: Code Domain Power Unit Type
Description: Sets the Code Domain Power unit type. The query form returns either a “REL” for relative units, or an “ABS” for absolute units in Ascii (without the double quotes).
Parameter: RELative|ABSolute
Parameter Type: <char>
Default Value: RELative
Range: RELative, ABSolute
Front Panel Access: Measurements, Demodulator, CDP Data, CDP Units
[:SENSe]:DEMod:CDPower:ZOOM 16|32|64
[:SENSe]:DEMod:CDPower:ZOOM?

Title: Code Domain Power Zoom
Description: Sets the zoom for the Code Domain Power measurement. The query form returns either 16, 32, or 64.
Parameter: 16|32|64
Default Value: 16
Range: 16, 32, 64
Related Command: [:SENSe]:DEMod:CDPower:ZOOM:STARt
[:SENSe]:DEMod:CDPower:ZOOM:STARt?

Front Panel
Access: Measurements, Demodulator, CDP MAC, Zoom

[:SENSe]:DEMod:CDPower:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPower:ZOOM:STARt?

Title: Code Domain Power Zoom Start Index
Description: Sets the zoom start index for the Code Domain Power measurement.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 0
Range: 0 to 112
Related Command: [:SENSe]:DEMod:CDPower:ZOOM
[:SENSe]:DEMod:CDPower:ZOOM?

Front Panel
Access: Measurements, Demodulator, CDP MAC, Zoom Start

[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency.
Parameter: <freq>
Default Value: 2.7 GHz
Default Unit: Hz
Range: 5 MHz to 2.7 GHz
Front Panel
Access: Freq, Center Freq
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel
Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently-selected Signal Standard on the list.
Parameter: <string>
Front Panel
Access: Freq, Signal Standard

[:SENSe]:FREQuency:SPAN?

Title: Frequency Span
Description: This is a query command only. The user cannot set the span in CDMA or EVDO modes.
Parameter: <freq>
Default Unit: Hz
[SENSe]:PFail <test set>
[SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel
Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test

[SENSe]:PN:OFFSet <integer>
[SENSe]:PN:OFFSet?

Title: PN Offset
Description: Sets the PN offset. Note that this can only be changed when PN Trigger is set to “GPS”, or “EXT”. A return value of the PN offset query is invalid when PN search type is AUTO.

Parameter: <integer>
Parameter Type: <integer>
Default Value: 0
Range: 0 to 511
Related Command: [:SENSe]:PN:TRIGger
[:SENSe]:PN:TRIGger?
[:SENSe]:PN:STYPe [:SENSe]:PN:STYPe?

Front Panel
Access: Setup, PN Setup, Manual PN Offset
Title: PN Search Type
Description: Sets the PN search type. The default value is ON. That is, sending
:SENSe:PN:STYPe:AUTO is equivalent to sending
:SENSe:PN:STYPe:AUTO ON. The query form returns either a 1 for
ON, or a 0 for OFF. Note that this can only be changed when PN Trigger
is set to “GPS”, or “Ext”.
Parameter: 1|0|ON|OFF
Parameter Type: <boolean>
Default Value: 1
Range: ON, OFF
Related Command: [:SENSe]:PN:TRIGger
[:SENSe]:PN:TRIGger?
[:SENSe]:PN:OFFSet [:SENSe]:PN:OFFSet?
Front Panel
Access: Setup, PN Setup (GPS|Ext), PN Search Type

Title: External PN Trigger
Description: Sets the external PN trigger. The query form returns either “NOTRIG”,
“GPS”, or “EXT” in Ascii (without the double quotes).
Parameter: NOTRIG|GPS|EXT
Parameter Type: <char>
Default Value: NOTRIG
Range: NOTRIG, GPS, EXT
Related Command: [:SENSe]:PN:STYPe
[:SENSe]:PN:STYPe?
[:SENSe]:PN:OFFSet [:SENSe]:PN:OFFSet?
Front Panel
Access: Setup, PN Setup, PN Trigger
[:SENSe]:POWe[:RF]:RANGE[:AUTO] OFF|ON|0|1
[:SENSe]:POWe[:RF]:RANGE[:AUTO]?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENSe:POWe:RANGE:AUTO is equivalent to sending :SENSe:POWe:RANGE:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWe[:RF]:RANGE

Front Panel Access: Amplitude, Auto Range

[:SENSe]:POWe[:RF]:RANGE[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.

Related Command: [:SENSe]:POWe[:RF]:RANGE[:AUTO]

Front Panel Access: Amplitude, Adjust Range

[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount?

Title: Main Channel Carrier Count
Description: Sets the number of main channel carriers.

Parameter: <integer>
Parameter Type: <integer>
Default Value: 1
Range: 1 to 5
Front Panel Access: Setup, Number of Carriers
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed?

Title: Measurement Speed
Description: Sets the measurement speed. The query form returns either “FAST”, “NORM”, or “SLOW” in Ascii (without the double quotes).
Parameter: FAST|NORM|SLOW
Parameter Type: <char>
Default Value: Norm
Range: FAST, NORM, SLOW
Front Panel Access: Setup, Meas Speed

[:SENSe]:WCODe 64|128
[:SENSe]:WCODe?

Title: Walsh Codes
Description: Sets the Walsh codes.
Parameter: 64 | 128
Default Value: 128
Range: 64, 128
Front Panel Access: Setup, Walsh Codes
Chapter 8 — WCDMA Commands

8-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
8-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the SENSe subsystem.

:CALCulate:MARKer:AOFF

Title: Turn All Markers Off
Description: Turns off all markers.
Front Panel Access: Marker, All Markers Off

:CALCulate:MARKer{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:X?

Title: Marker X Value
Description: Sets the location of the marker on the x-axis at the specified location. <x-parameter> is defined in the current x-axis units. The query version of the command returns the location of the marker on the x-axis. Note that the marker is snapped to the data point closest to the specified value. If the specified marker is not on it is set to on.
Parameter: <x-parameter>
Default Unit: Current x-axis unit
Example:
To set reference marker #2 to 1 GHz on the x-axis:
:CALCulate:MARKer2:X 1
:CALCulate:MARKer2:X 1GHz
To set reference marker #1 to 1.5 GHz on the x-axis:
:CALCulate:MARKer1:X 1.5GHz
:CALCulate:MARKer1:X 1.5GHz

Front Panel Access: Marker, Marker [1/2/3/4/5/6]

:CALCulate:MARKer{1|2|3|4|5|6}:Y?

Title: Marker Read Y Value
Description: Reads the current Y value for the specified marker. The units are the units of the y-axis.
Default Unit: Current y-axis unit
:CALCulate:MARKer{1|2|3|4|5|6}[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATE]?

Title: Marker State
Description: Sets the specified marker on/off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off reference marker #1:
:CALCulate:MARKer1:STATE OFF

Front Panel
Access: Marker, On/Off
8-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMARY|PFail

Title: Configure Summary Measurement

Description: This command configures the UMTS Summary or PASS/FAIL measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement. In SUMMARY mode, the measurement results are equivalent to the results that are displayed by choosing Measurements, then WCDMA Summary from the front panel. In PFail mode, the results are equivalent to those that are displayed by choosing Measurements, then Pass Fail Mode from the front panel. This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement. To get new measurement data, use the READ command.

Parameter: SUMMARY|PFail

Parameter Type: <char>
WCDMA Commands

:CONFigure:DEMod <char>

Title: Configure Demodulation Measurement

Description: Valid <char> parameter options:
SUMMARY|CDPower|CODogram|HSDPa

The HSDPA measurement is only available if option 65 is installed. This command configures the selected demodulation measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF).

Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement.

When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demod, then Summary from the front panel. When the CDP option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demod, then CDP from the front panel. When the CODOGRAM option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demod, then Codogram from the front panel. When the HSDPa option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demod, then HSDPA from the front panel.

Parameter: <char>

Related Command:
[:SENSe]:DEMod:SCODe
[:SENSe]:DEMod:SFACtor
[:SENSe]:DEMod:THRSod
[:SENSe]:DEMod:PICCh:CODE
[:SENSe]:DEMod:SCCPch:CODE

Front Panel Access: Measurements, Demodulator

:CONFigure:OTA

Title: Configure Over-The-Air Measurement

Description: This command configures the over-the-air measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:OTA commands before initiating a measurement. The measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA from the front panel.

Related Command:
[:SENSe]:OTA:RESet
[:SENSe]:OTA:SCODc
[:SENSe]:OTA:SORT
:CONFigure:RF <char>

Title: Configure RF Measurement

Description: Valid parameter options:
SUMMary | SPECtrum | ACLR | EMISsion | BANDspectrum

This command configures the selected RF measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMMary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Summary from the front panel. When the SPECtrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Channel Spectrum from the front panel. When the ACLR option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then ACLR from the front panel. When the EMISsion option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Spectral Emission Mask from the front panel. When the BANDspectrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF Measurements, then Band Spectrum from the front panel.

Parameter: <char>

Related Command: [:SENSe]:FREQuency
[:SENSe]:RF:ACLR:MAINchannelcount
[:SENSe]:RF:ACLR:ADJCchannelcount
8-4 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset

Description: Sets the power offset value for the y-axis.

Parameter: \(<rel \text{ ampl}>\)

Default Value: 0 dB

Default Unit: dB

Range: 0 dB to 100 dB

Front Panel

Access: Amplitude, Power Offset

:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale

Description: Sets the scale (dB/division) for the y-axis.

Parameter: \(<rel \text{ ampl}>\)

Default Value: 10 dB/div

Default Unit: dB

Range: 1 dB to 15 dB

Front Panel

Access: Amplitude, Scale
8-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:ACLR?

Title: Fetch Adjacent Channel Leakage Ratio
Description: Returns the most recent adjacent channel leakage ratio measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 12 comma-separated values: –20 MHz channel power, –15 MHz channel power, –10 MHz channel power, –5 MHz channel power, Main channel power 1, Main channel power 2, Main channel power 3, Main channel power 4, +5 MHz channel power, +10 MHz channel power, +15 MHz channel power, +20 MHz channel power.

Default Unit: dBm

:FETCh:CHPower?

Title: Fetch Channel Power/Density
Description: Returns the most recent channel power measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Default Unit: dBm

Related Command: :FETCh:CHPower:CHPower?
:FETCh:CHPower:DENSity?
:FETCh:DEMod:ACTChannels?

Title: Fetch Active Channel Count

Description: Returns the active channel count from the most recent measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the total number of active channels.

Default Unit: No Units
:FETCh:DEMod:CDPower?

Title: Fetch Demodulated Channel Power

Description: Returns the most recent absolute power measurement results for the requested logical channel. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 4 comma-delimited values: CPICH power, PCCPCH power, PICH power, SCCPCH power.

Default Unit: dBm

Related Command: :CONFigure:DEMod CDPower
:MEASure:DEMod:CDPower?
:READ:DEMod:CDPower?

Front Panel Access: Measurements, Demodulator, CDP

:FETCh:DEMod:CFTHrough?

Title: Fetch Carrier Feed Through

Description: Returns the most recent carrier feed through measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the carrier feed through.

Default Unit: dB

:FETCh:DEMod:EVM?

Title: Fetch Error Vector Magnitude (EVM)

Description: Returns the most recent EVM measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the RMS error vector magnitude.

Default Unit: %
:FETCh:DEMod:FERRor:PPM?

Title: Fetch Frequency Error PPM

Description: Returns the most recent frequency error PPM measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the frequency error PPM.

Default Unit: No units

Related Command: MEASure:DEMod:FERRor:PPM?
READ:DEMod:FERRor:PPM?

:FETCh:DEMod:FERRor:PRECise?

Title: Fetch Frequency Error

Description: Returns the most recent frequency error measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the frequency error. Note that this command is the same as :FETCh:DEMod:FERRor?, but returns the result with a precision of one-tenth Hertz.

Default Unit: Hertz

:FETCh:DEMod:FERRor?

Title: Fetch Frequency Error

Description: Returns the most recent frequency error measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the frequency error.

Default Unit: Hertz
:FETCh:DEMod:HSDPa:FERRor:PPM?

Title: Fetch HSDPA Frequency Error PPM

Description: Returns the most recent HSDPA frequency error PPM measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the HSDPA frequency error PPM.

Default Unit: No units

Related Command: MEASure:DEMod:HSDPa:FERRor:PPM?
READ:DEMod:HSDPa:FERRor:PPM?

:FETCh:DEMod:HSDPa:FERRor?

Title: Fetch HSDPA Frequency Error

Description: Returns the most recent HSDPA frequency error measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the HSDPA frequency error.

Default Unit: Hertz

:FETCh:DEMod:HSDPa:TXFRequency?

Title: Fetch HSDPA Transmitter Frequency

Description: Returns the most recent HSDPA transmitter frequency measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the HSDPA carrier frequency.

Default Unit: Hertz

Related Command: MEASure:DEMod:HSDPa:TXFRequency?
READ:DEMod:HSDPa:TXFRequency?
:FETCh:DEMod:NFLoor?

Title: Fetch Code Domain Noise Floor

Description: Returns the most recent code domain noise floor measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the noise floor power level.

Default Unit: dB

:FETCh:DEMod:NUMChannels?

Title: Fetch Total Channel Count

Description: Returns the total channel count from the most recent measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the total number of channels.

Default Unit: No units

:FETCh:DEMod:SPOWer?

Title: Fetch Synch Channel Power

Description: Returns the most recent absolute power measurement results for the requested synch channel. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 3 comma-delimited values: SCH power, PSCH power, SSCH power.

Default Unit: dBm
:FETCH:DEMod:SUMmary?

Title: Fetch Modulation Summary

Description: Returns the most recent Modulation Summary measurement results. Data is returned as 13 comma-delimited values: Carrier Frequency, Frequency Error, Channel Power, P-CPICH Power, Carrier Feed Through, Peak CDE, EVM, P-CCPCH Power, S-CCPCH Power, PICH Power, PSCH Power, SSCH Power, RMS Phase Er (deg). All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:DEMod:SUMmary
:MEASure:DEMod:SUMmary?
:READ:DEMod:SUMmary?

Front Panel Access: Measurements, Demodulator, Modulation Summary

:FETCH:DEMod:TXFRequency:PRECise?

Title: Fetch Transmitter Frequency

Description: Returns the most recent transmitter frequency measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCH? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the carrier frequency. Note that this command is the same as :FETCH:DEMod:TXFRequency?, but returns the result with a precision of one-tenth Hertz.

Default Unit: Hertz

:FETCH:DEMod:TXFRequency?

Title: Fetch Transmitter Frequency

Description: Returns the most recent transmitter frequency measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCH? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the carrier frequency.

Default Unit: Hertz
:**FETCH:EMISSion:FAIL?**

Title: Fetch Spectral Emission Mask Pass/Fail

Description: Returns the most recent spectral emission mask pass/fail measurement result. Any violation of the spectral emission mask template will cause a FAIL result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error –230. This could occur if there was a *RST immediately before the :FETCH? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value indicating the PASS/FAIL status of the spectral emission mask measurement (PASS = 0, FAIL = 1).

Default Unit: No units
8-5 :FETCh Subsystem

:[FETCh:EMISSsion:TEMPLat:DATA?]

Title: Fetch Spectral Emission Mask Template Data
Description: Returns the spectral emission mask template power level, frequency, and PASS/FAIL data for all ten frequency ranges shown in the Spectral Emission Summary. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate. Any violation of the spectral emission mask template will cause a FAIL result.

For each frequency range, the data is returned as 3 comma delimited values: Power Level in dBm, Frequency in Hz, and PASS/FAIL. The order in which the data is returned is shown below (from top to bottom).

Range:
- 12.5 MHz to –8 MHz
- –8 MHz to –4 MHz
- –4 MHz to –3.515 MHz
- –3.515 MHz to –2.715 MHz
- –2.715 MHz to –2.515 MHz
- 2.515 MHz to 2.715 MHz
- 2.715 MHz to 3.515 MHz
- 3.515 MHz to 4 MHz
- 4 MHz to 8 MHz
- 8 MHz to 12.5 MHz

Related Command: MEASure:EMISSsion:TEMPLat:DATA?
READ:EMISSsion:TEMPLat:DATA?

:[FETCh:EMISSsion:TEMPLat?]

Title: Fetch Spectral Emission Mask Template
Description: Returns the spectral emission mask template used for the most recent spectral emission mask measurement. Any violation of the spectral emission mask template will cause a FAIL result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as a single value representing the template used for the current spectral emission mask measurement results.

Templates:
- Template 0: Power >= 43 dBm
- Template 1: 43 dBm > Power >= 39 dBm
- Template 2: 39 dBm > Power >= 31 dBm
- Template 3: Power < 31 dBm

Default Unit: No units
WCDMA Commands

:FETCh:EMISsion?

Title: Fetch Spectral Emission Mask Results
Description: Returns the most recent spectral emission mask pass/fail and template measurement results. Any violation of the spectral emission mask template will cause a FAIL result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 2 comma-delimited values: PASS/FAIL status (PASS = 0, FAIL = 1), template number. See :FETCh:EMISsion:TEMPlate command for valid template numbers.

Default Unit: No units

Related Command: :FETCh:EMISsion:FAIL?
:FETCh:EMISsion:TEMPlate?

:FETCh:OBWidth?

Title: Fetch Occupied Bandwidth
Description: Returns the most recent occupied bandwidth measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Default Unit: Hz

:FETCh:OTA{1|2|3|4|5|6}?

Title: Fetch Over The Air
Description: Returns the most recent over-the-air measurement results. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

The measurement results are returned as 5 comma delimited values: scrambling code, CPICH power, chip energy, Ec/I0 ratio, pilot dominance. If valid results are not available in the requested position (1 to 6), the returned string will contain a series of 3 dashes “---” instead of the numeric results.

Default Unit: Scrambling Code: No units
CPICH power: dBm
EC/I0: dB
Chip Energy: dBm
Pilot dominance: No units
Title: Fetch PASS/FAIL

Description: Returns the most recent PASS/FAIL measurement results. If the instrument is actively measuring, it will not return until the measurement is complete. If the instrument is not actively measuring and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate. Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”).

Related Command: MEASure:PFail?
:FETCh:PTAPower?

Title: Fetch Peak to Average Power Ratio

Description: Returns the most recent peak to average power ratio measurement result. If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid, it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Default Unit: dB
:**FETCh:RF:SUMMary?**

Title: Fetch RF Summary

Description: Returns the most recent RF Summary measurement results.

Data is returned as 10 comma-delimited values: Channel Power, Carrier Frequency, Frequency Error, Spectral Emission, Occupied Bandwidth, Peak to Avg Power, Filtered –10MHz, Filtered –5 MHz, Filtered 5MHz, Filtered 10 MHz. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command:
- :CONFigure:RF SUMMary
- :MEASure:RF:SUMMary?
- :READ:RF:SUMMary?

Front Panel Access: Measurements, RF, RF Summary
This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

`:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32`

`:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks.

The units are always dBm. For example, if the measured result was –12.345 dBm, that value would be sent as –12345.) REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCii|INTeger,32|REAL,32

Parameter Type: <char>

Default Value: ASCii

Related Command: :TRACe[:DATA]
8-7 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1

:INITiate:CONTinuous?

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous

:STATus:OPERation?

Front Panel Access: Shift-3 (Sweep), Trigger Sweep
8-8 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASure:ACLR?

Title: Measure Adjacent Channel Leakage Ratio

Description: Sets the active measurement to adjacent channel power ratio, sets the default measurement parameters, triggers a new measurement and returns the main channel(s) power, and adjacent channel(s) power. It is a combination of the commands :CONFigure:RF ACLR and :READ:ACLR? For a description of the default adjacent channel power ratio measurement parameters, see :CONFigure:RF ACLR. To make an adjacent channel power ratio measurement with settings other than the default values, send:

:CONFigure:RF ACLR

Commands to set desired settings

:READ:ACLR?

Data is returned as 12 comma-separated values: –20 MHz channel power, –15 MHz channel power, –10 MHz channel power, –5 MHz channel power, Main channel power 1, Main channel power 2, Main channel power 3, Main channel power 4, +5 MHz channel power, +10 MHz channel power, +15 MHz channel power, +20 MHz channel power.

Default Unit: dBm
:MEASure:CHPower?

Title: Measure Channel Power

Description: Sets the active measurement to Code Domain Power (CDP), sets the default measurement parameters, triggers a new measurement and returns the channel power results. It is a combination of the commands :CONFigure:DEMod CDPower and :READ:CHPower? For a description of the default channel power measurement parameters, see :CONFigure:DEMod CDPower. To make a channel power measurement with settings other than the default values, send:

:CONFigure:DEMod CDPower

Commands to set desired settings

:READ:CHPower?

Default Unit: dBm

Related Command: :CONFigure:DEMod CDPower

:MEASure:DEMod:ACTChannels?

Title: Measure Active Code Domain Channels

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the number of active traffic channels. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:ACTChannels? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP.

Related Command: :CONFigure:RF ACLR

:CONFigure:DEMod:CDP

:MEASure:DEMod:CDPower?

Title: Measure Code Domain Power

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the channel power results. It is a combination of the commands :CONFigure:DEMod CDPower and :READ:DEMod:CDPower? For a description of the default channel power measurement parameters, see :CONFigure:DEMod CDPower. To make a code domain power measurement with settings other than the default values, send:

:CONFigure:DEMod CDP

Commands to set desired settings

:READ:DEMod:CDPower?

Results are returned as 4 comma-delimited values: CPICH power, PCCPCH power, PICH power, SCCPCH power.

Default Unit: dBm

Related Command: :CONFigure:DEMod CDPower

:READ:DEMod:CDPower?

FETCh:DEMod:CDPower?
:MEASure:DEMod:CFTHrough?

Title: Measure Carrier Feed Through

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the carrier feed through results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:CFTHrough? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a carrier feed through measurement with settings other than the default values, send:

[:CONFigure:DEMod CDP]

Commands to set desired settings

:READ:DEMod:CFTHrough?

Default Unit: dB

Related Command: :CONFigure:DEMod CDP

:MEASure:DEMod:EVM?

Title: Measure Error Vector Magnitude

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the EVM results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:EVM? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a carrier feed through measurement with settings other than the default values, send:

[:CONFigure:DEMod CDP]

Commands to set desired settings

:READ:DEMod:EVM?

Default Unit: %

Related Command: :CONFigure:DEMod CDP
:MEASure:DEMod:FERRor:PPM?

Title: Measure Frequency Error PPM

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the frequency error PPM results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:FERRor:PPM? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a frequency error measurement with settings other than the default values, send:

:CONFigure:DEMod CDP
Commands to set desired settings
:READ:DEMod:FERRor:PPM?

Related Command: :READ:DEMod:FERRor:PPM?
:FETCh:DEMod:FERRor:PPM?
:CONFigure:DEMod:CDP

:MEASure:DEMod:FERRor:PRECise?

Title: Measure Frequency Error

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the frequency error results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:FERRor:PRECise? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a frequency error measurement with settings other than the default values, send:

:CONFigure:DEMod CDP
Commands to set desired settings
:READ:DEMod:FERRor:PRECIse?

Note that this command is the same as :MEASure:DEMod:FERRor?, but returns the result with a precision of one-tenth Hertz.

Default Unit: Hz

Related Command: :CONFigure:DEMod CDP
:MEASure:DEMod:FERRor?
:MEASure:DEMod:FERRor?

Title: Measure Frequency Error

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the frequency error results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:FERRor? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a frequency error measurement with settings other than the default values, send:

:CONFigure:DEMod CDP
Commands to set desired settings
:READ:DEMod:FERRor?

Default Unit: Hz

Related Command: :CONFigure:DEMod CDP

:MEASure:DEMod:HSDPa:FERRor:PPM?

Title: Measure HSDPA Frequency Error PPM

Description: Sets the active measurement to HSDPA sets the default measurement parameters, triggers a new measurement and returns the HSDPA frequency error PPM results. It is a combination of the commands :CONFigure:DEMod HSDPa and :READ:DEMod:HSDPa:FERRor:PPM? For a description of the default HSDPA measurement parameters, see :CONFigure:DEMod HSDPa. To make a frequency error measurement with settings other than the default values, send:

:CONFigure:DEMod HSDPa
Commands to set desired settings
:READ:DEMod:HSDPa:FERRor:PPM?

Related Command:
- :READ:DEMod:HSDPa:FERRor:PPM?
- :FETCh:DEMod:HSDPa:FERRor:PPM?
- :CONFigure:DEMod HSDPa
:MEASure:DEMod:HSDPa:FERRor?

Title: Measure HSDPA Frequency Error

Description: Sets the active measurement to HSDPA, sets the default measurement parameters, triggers a new measurement and returns the HSDPA frequency error results. It is a combination of the commands :CONFigure:DEMod HSDPa and :READ:DEMod:HSDPA:FERRor? For a description of the default HSDPA measurement parameters, see :CONFigure:DEMod HSDPa. To make a frequency error measurement with settings other than the default values, send:

:CONFigure:DEMod HSDPa

Commands to set desired settings

:READ:DEMod:HSDPa:FERRor?

Default Unit: Hz

Related Command: :READ:DEMod:HSDPa:FERRor?
:FETCh:DEMod:HSDPa:FERRor?
:CONFigure:DEMod HSDPa

:MEASure:DEMod:HSDPa:TXFFrequency?

Title: Measure HSDPA Transmitter Frequency

Description: Sets the active measurement to HSDPA, sets the default measurement parameters, triggers a new measurement and returns the HSDPA transmitter frequency results. It is a combination of the commands :CONFigure:DEMod HSDPa and

:READ:DEMod:HSDPa:TXFFrequency? For a description of the default HSDPA measurement parameters, see :CONFigure:DEMod HSDPa. To make a transmitter frequency measurement with settings other than the default values, send:

:CONFigure:DEMod HSDPa

Commands to set desired settings

:READ:DEMod:HSDPa:TXFFrequency?

Default Unit: Hz

Related Command: :READ:DEMod:HSDPa:TXFFrequency?
:FETCh:DEMod:HSDPa:TXFFrequency?
:CONFigure:DEMod:HSDPa
Title: Measure Code Domain Noise Floor

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the noise floor results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:NFLoor? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a noise floor measurement with settings other than the default values, send:

:CONFigure:DEMod HSDPa
Commands to set desired settings
:READ:DEMod:NFLoor?

Default Unit: dB

Related Command: :CONFigure:DEMod CDP

Title: Measure Code Domain Channel Count

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the number of channels. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:NUMChannels? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make an channel count measurement with settings other than the default values, send:

:CONFigure:DEMod HSDPa
Commands to set desired settings
:READ:DEMod:NUMChannels?

Default Unit: dB

Related Command: :CONFigure:DEMod CDP
:**MEASure:**DEMod:**SPower?**

Title: Measure Synch Channel Power

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the synch channel power results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:**SPower? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a synch channel power measurement with settings other than the default values, send:

:CONFigure:DEMod CDP

Commands to set desired settings

:READ:DEMod:**SPower?

Results are returned as 3 comma-delimited values: SCH power, PSCH power, SSCH power.

Default Unit: dBm

Related Command: :CONFigure:DEMod CDP

:**MEASure:**DEMod:**SUmmary?**

Title: Measure Modulation Summary

Description: Sets the active measurement to Modulation Summary, sets the default measurement parameters, triggers a new measurement and returns Carrier Frequency, Frequency Error, channel Power, P-CPICH Power, Carrier Feed Through, Peak CDE, EVM, P-CCPCH Power, S-CCPCH Power, PICH Power, PSCH Power, SSCH Power, RMS Phase Er (deg). It is a combination of the commands :CONFigure:DEMod SUMMary and :READ:DEMod:**SUMMary? To make a Demodulator Summary measurement with settings other than the default values, send:

:CONFigure:DEMod SUMMary

Commands to set desired settings

:READ:DEMod:**SUMMary?

Data is returned as 13 comma-delimited values: Carrier Frequency, Frequency Error, channel Power, P-CPICH Power, Carrier Feed Through, Peak CDE, EVM, P-CCPCH Power, S-CCPCH Power, PICH Power, PSCH Power, SSCH Power, RMS Phase Er (deg). All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:DEMod SUMMary

:READ:DEMod:**SUMMary?

;FETCh:DEMod:**SUMMary?

Front Panel Access: Measurements, Demodulator, Modulation Summary
:MEASure:DEMod:TXFRequency:PRECise?

Title: Measure Transmitter Frequency

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the transmitter frequency results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:TXFRequency:PRECise? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a transmitter frequency measurement with settings other than the default values, send:

:CONFigure:DEMod CDP
Commands to set desired settings
:READ:DEMod:TXFRequency:PRECise?

Note that this command is the same as :MEASure:DEMod:TXFRequency?, but returns the result with a precision of one-tenth Hertz.

Default Unit: Hertz

Related Command: :CONFigure:DEMod CDP
:MEASure:DEMod:TXFRequency?

:MEASure:DEMod:TXFRequency?

Title: Measure Transmitter Frequency

Description: Sets the active measurement to code domain power, sets the default measurement parameters, triggers a new measurement and returns the transmitter frequency results. It is a combination of the commands :CONFigure:DEMod CDP and :READ:DEMod:TXFRequency? For a description of the default code domain power measurement parameters, see :CONFigure:DEMod CDP. To make a transmitter frequency measurement with settings other than the default values, send:

:CONFigure:DEMod CDP
Commands to set desired settings
:READ:DEMod:TXFRequency?

Default Unit: Hertz

Related Command: :CONFigure:DEMod CDP
:MEASure:EMISsion:FAIL?

Title: Measure Spectral Emission Mask Pass/Fail status

Description: Sets the active measurement to spectral emission mask, sets the default measurement parameters, triggers a new measurement and returns the spectral emission mask pass/fail results. It is a combination of the commands :CONFigure:RF EMISsion and :READ:EMISsion:FAIL? For a description of the default spectral emission mask measurement parameters, see :CONFigure:RF EMISsion. To make a spectral emission mask pass/fail status measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:EMISsion:FAIL?

Related Command: :MEASure:EMISsion
:MEASure:EMISsion:TEMPLate?
:CONFigure:RF EMISsion

:MEASure:EMISsion:TEMPLate:DATA?

Title: Measure Spectral Emission Mask Template Data

Description: Sets the active measurement to spectral emission mask, sets the default measurement parameters, triggers a new measurement and returns the spectral emission mask template power level, frequency, and PASS/FAIL data for all ten frequency ranges shown in the Spectral Emission Summary. It is a combination of the commands :CONFigure:RF EMISsion and :READ:EMISsion:TEMPLate:DATA? For a description of the default spectral emission mask measurement parameters, see :CONFigure:RF EMISsion. To make a spectral emission mask template measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:EMISsion:TEMPLate:DATA?

For each frequency range, the data is returned as 3 comma-delimited values: Power Level in dBm, Frequency in Hz, and PASS/FAIL.

Related Command: :READ:EMISsion:TEMPLate:DATA?
:FETCh:EMISsion:TEMPLate:DATA?
:CONFigure:RF EMISsion
Title: Measure Spectral Emission Mask Template

Description: Sets the active measurement to spectral emission mask, sets the default measurement parameters, triggers a new measurement and returns the spectral emission mask template results. It is a combination of the commands :CONFigure:RF EMISsion and :READ:EMISsion:TEMPlate? For a description of the default spectral emission mask measurement parameters, see :CONFigure:RF EMISsion. To make a spectral emission mask template measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:EMISsion:TEMPlate?

Related Command: :MEASure:EMISsion?
:MEASure:EMISsion:FAIL?
:CONFigure:RF EMISsion

Title: Measure Spectral Emission Mask

Description: Sets the active measurement to spectral emission mask, sets the default measurement parameters, triggers a new measurement and returns the spectral emission mask measurement results. It is a combination of the commands :CONFigure:RF EMISsion and :READ:EMISsion? For a description of the default spectral emission mask measurement parameters, see :CONFigure:RF EMISsion. To make a spectral emission mask measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:EMISsion?

Results are returned as 2 comma-delimited values: pass/fail status, and template number.

Related Command: :MEASure:EMISsion:FAIL?
:MEASure:EMISsion:TEMPlate?
MEASURE:OBWidth?

Title: Measure Occupied Bandwidth

Description: Sets the active measurement to RF spectrum, sets the default measurement parameters, triggers a new measurement and returns the occupied bandwidth results. It is a combination of the commands :CONFigure:RF SPECTrum and :READ:OBWidth? For a description of the default occupied bandwidth measurement parameters, see :CONFigure:RF SPECTrum. To make an occupied bandwidth measurement with settings other than the default values, send:

:CONFigure:RF SPECTrump

Commands to set desired settings

:READ:OBWidth?

Default Unit: Hz

Related Command: :CONFigure:OBWidth

:CONFigure:RF SPECTrump

MEASURE:OTA{1|2|3|4|5|6}?

Title: Measure Over The Air

Description: Sets the active measurement to over-the-air, sets the default measurement parameters, triggers a new measurement and returns the OTA measurement results. It is a combination of the commands :CONFigure:OTA and :READ:OBWidth? For a description of the default occupied bandwidth measurement parameters, see :CONFigure:RF SPECTRUM. To make an OTA measurement with settings other than the default values, send:

:CONFigure:OTA

Commands to set desired settings

:READ:OTA?

The measurement results are returned as 5 comma delimited values: scrambling code, CPICH power, chip energy, Ec/I0 ratio, pilot dominance.

Default Unit:
- Scrambling Code: No units
- CPICH power: dBm
- Chip Energy: dBm
- EC/I0: dB
- Pilot dominance: No units

Related Command: :CONFigure:OTA
:MEASure:PFail?

Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure PFail and :READ:PFail? To make a PASS/FAIL measurement with settings other than the default values, send:

:CONFigure PFail

Commands to set desired settings

:READ:PFail?

Related Command:

:CONFigure PFail

READ:PFail?

FETCH:PFail?

Front Panel

Access: Measurements, Pass/Fail Mode

:MEASure:PTAPower?

Title: Measure Peak to Average Power

Description: Sets the active measurement to RF spectrum, sets the default measurement parameters, triggers a new measurement and returns the PTAP measurement results. It is a combination of the commands :CONFigure:RF SPECtrum and :READ:PTAPower? For a description of the default occupied bandwidth measurement parameters, see

:CONFigure:RF SPECtrum. To make a peak to average power measurement with settings other than the default values, send:

:CONFigure:RF SPECtrum

Commands to set desired settings

:READ:PTAPower?

Default Unit: dB

Related Command: :CONFigure:RF SPECtrum
:MEASure:RF:SUMMary?

Title: Measure RF Summary

Description: Sets the active measurement to RF Summary, sets the default measurement parameters, triggers a new measurement and returns Carrier Frequency, Frequency Error, channel Power, P-CPICH Power, Carrier Feed Through, Peak CDE, EVM, P-CCPCH Power, S-CCPCH Power, PICH Power, PSCH Power, SSCH Power, RMS Phase Er (deg). It is a combination of the commands :CONFigure:RF SUMMary and :READ:RF:SUMMary? To make a RF Summary measurement with settings other than the default values, send:

:CONFigure:RF SUMMary
Commands to set desired settings
:READ:RF:SUMMary?

Data is returned as 10 comma-delimited values: Channel Power, Carried Frequency, Frequency Error, Spectral Emission, Occupied Bandwidth, Peak to Avg Power, Filtered –10MHz, Filtered –5 MHz, Filtered 5MHz, Filtered 10 MHz. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command:
:CONFigure:RF SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel Access: Measurements, RF, RF Summary
8-9 :MMEMory Subsystem

The Mass Memory subsystem contains functions that provide access to the instrument’s setup and data storage.

:MMEMory:STORe:PFail <header><block>

Title: Store PASS/FAIL Test Definitions

Description: Stores a new PASS/FAIL test definition file in the internal file space for future use. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The format of the block data is always ASCII text. The contents of the block data is the contents of a Pass/Fail test definition file. These files can be generated using the Pass/Fail Test Editor that is included with the Anritsu Master Software Tools Measurement Editor. For the latest Master Software Tools, visit the Anritsu website at http://www.anritsu.com.

Parameter: <header><block>

Related Command: :CONFigure PFail
:FETCh:PFail?
:MEASure:PFail?
:READ:PFail?

Front Panel Access: None
8-10 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ :ACLR?

Title: Read Adjacent Channel Leakage Ratio (ACLR)
Description: Triggers a new adjacent channel power ratio measurement and returns the results: main channel power, lower adjacent and upper adjacent channel power, and lower alternate and upper alternate channel power. It is a combination of the commands :ABORT, :INITiate, and :FETCh:ACLR? The ACLR measurement must be the active measurement (specified by :CONFigure:RF ACLR). The current measurement can be queried using :CONFigure?

Data is returned as 12 comma-separated values: –20 MHz channel power, –15 MHz channel power, –10 MHz channel power, –5 MHz channel power, Main channel power 1, Main channel power 2, Main channel power 3, Main channel power 4, +5 MHz channel power, +10 MHz channel power, +15 MHz channel power, +20 MHz channel power.

Related Command: :CONFigure:RF ACLR

:READ :CHPower?

Title: Read Channel Power
Description: Triggers a new channel power measurement and returns the channel power result. It is a combination of the commands :ABORT, :INITiate, and :FETCh:CHPower:CHPower? It returns only the channel power, not the channel power density. The channel power measurement must be the active measurement (specified by :CONFigure:CHPower). The current measurement can be queried using the :CONFigure? command.

Default Unit: Current amplitude units

Related Command: :READ:CHPower?
:READ:CHPower:DENSity?
:CONFigure
`:READ:DEMod:ACTChannels?`

Title: Read Active Code Domain Channel Count

Description: Triggers a new measurement and returns the active channel count. It is a combination of the commands :ABORT; :INITiate; :FETCh:DEMod:ACTChannels? A demodulation measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: dB

Related Command: :CONFigure:DEMod

`:READ:DEMod:CDPower?`

Title: Read Code Domain Power

Description: Triggers a new measurement and returns the Pilot Power, Channel Power, Noise Floor, Rho, Carrier Feed Through, Tau, RMS Phase Error, Frequency Error, Frequency Error PPM, Page, Sync, and Q Page measurement results. It is a combination of the following commands :ABORT; :INITiate; :FETCh:DEMod:CDPower? In order for the data to be accurate, the Code Domain Power measurement must be the active measurement (specified by :CONFigure:DEMod CDPower). The current measurement can be queried using :CONFigure?

Data is returned as 12 comma-delimited values: Pilot Power in the current user set unit (dBm/W/mW), Channel Power in the current user set unit (dBm/W/mW), Noise Floor in dB, Rho, Carrier Feed Through in dB, Tau in ps, RMS Phase Error in deg, Frequency Error in Hz, Frequency Error PPM, Page in dBm, Sync in dBm, and Q Page. All invalid values are replaced with “--”.

Default Unit: dBm

Related Command:
:MEASure:DEMod:CDPower?
:FETCh:DEMod:CDPower?

Front Panel Access: Measurements, Demodulator, CDP

`:READ:DEMod:CFTHrough?`

Title: Read Carrier Feed Through

Description: Triggers a new measurement and returns the carrier feed through results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:DEMod:CFTHrough? The carrier feed through measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: dB
:**READ:DEMod:EVM?**

Title: Read Error Vector Magnitude (EVM)

Description: Triggers a new measurement and returns the EVM results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:EVM? The EVM measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: %

Related Command: :CONFigure:DEMod

:**READ:DEMod:FERRor:PPM?**

Title: Read Frequency Error PPM

Description: See Also: :CONFigure:DEMod Triggers a new measurement and returns the frequency error results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:FERRor:PPM? The frequency error PPM measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :MEASure:DEMod:FERRor:PPM?
:FETCH:DEMod:FERRor:PPM?
:CONFigure:DEMod CDP

:**READ:DEMod:FERRor:PRECise?**

Title: Read Frequency Error

Description: Triggers a new measurement and returns the frequency error results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:FERRor:PRECise? The frequency error measurement must be active. The current measurement can be queried using :CONFigure? Note that this command is the same as :READ:DEMod:FERRor?, but returns the result with a precision of one-tenth Hertz.

Default Unit: Hertz

Related Command: :CONFigure:DEMod
:READ:DEMod:FERRor?

:**READ:DEMod:FERRor?**

Title: Read Frequency Error

Description: Triggers a new measurement and returns the frequency error results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:FERRor? The frequency error measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: Hertz

Related Command: :CONFigure:DEMod
:READ:DEMod:HSDPa:FERRor:PPM?

Title: Read HSDPA Frequency Error PPM

Description: Triggers a new measurement and returns the frequency error results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:HSDPa:FERRor:PPM? The HSDPA frequency error PPM measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :MEASure:DEMod:HSDPa:FERRor:PPM?
:FETCH:DEMod:HSDPa:FERRor:PPM?
:CONFigure:DEMod HSDPa

:READ:DEMod:HSDPa:FERRor?

Title: Read HSDPA Frequency Error

Description: Triggers a new measurement and returns the frequency error results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:HSDPa:FERRor? The HSDPA frequency error measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: Hertz

Related Command: :MEASure:DEMod:HSDPa:FERRor?
:FETCH:DEMod:HSDPa:FERRor?
:CONFigure:DEMod HSDPa

:READ:DEMod:HSDPa:TXFRequency?

Title: Read HSDPA Transmitter Frequency

Description: Triggers a new measurement and returns the HSDPA transmitter frequency results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:HSDPa:TXFRequency? The HSDPA transmitter frequency measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: Hz

Related Command: :MEASure:DEMod:HSDPa:TXFRequency?
:FETCH:DEMod:HSDPa:TXFRequency?
:CONFigure:DEMod HSDPa

:READ:DEMod:NFLoor?

Title: Read Noise Floor

Description: Triggers a new measurement and returns the noise floor results. It is a combination of the commands :ABORT, :INITiate, and :FETCH:DEMod:NFLoor? The noise floor measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: dB

Related Command: :CONFigure:DEMod
:READ:DEMod:NUMChannels?

Title: Read Code Domain Channel Count

Description: Triggers a new measurement and returns the channel count. It is a combination of the commands :ABORT, :INITiate, and :FETCh:DEMod:NUMChannels? A demodulation measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: dB

Related Command: :CONFigure:DEMod

:READ:DEMod:SPower?

Title: Read Synch Channel Power

Description: Triggers a new measurement and returns the synch channel power results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:DEMod:SPower? The synch channel power measurement must be active. The current measurement can be queried using :CONFigure?

Results are returned as 3 comma-delimited values: SCH power, PSCH power, SSCH power.

Default Unit: dBm

Related Command: :CONFigure:DEMod

:READ:DEMod:SUMMary?

Title: Read Modulation Summary

Description: Triggers a new Modulation Summary measurement and returns the results. It is combination of the commands :ABORT, :INITiate, and FETCh:DEMod:SUMMary?

The current measurement can be queried using :CONFigure?

Data is returned as 13 comma-delimited values: Carrier Frequency, Frequency Error, channel Power, P-CPICH Power, Carrier Feed Through, Peak CDE, EVM, P-CCPCH Power, S-CCPCH Power, PICH Power, PSCH Power, SSCH Power, RMS Phase Er (deg). All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:DEMod SUMMary

Front Panel Access: Measurements, Demodulator, Modulation Summary
:READ:DEMod:TXFRequency:PRECise?

Title: Read Transmitter Frequency
Description: Triggers a new measurement and returns transmitter frequency results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:DEMod:TXFRequency:PRECise? The carrier frequency measurement must be active. The current measurement can be queried using :CONFigure? Note that this command is the same as :READ:DEMod:TXFRequency?, but returns the result with a precision of one-tenth Hertz.
Default Unit: Hz
Related Command: :CONFigure:DEMod

:READ:DEMod:TXFRequency?

Title: Read Transmitter Frequency
Description: Triggers a new measurement and returns transmitter frequency results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:DEMod:TXFRequency?. The carrier frequency measurement must be active. The current measurement can be queried using :CONFigure?
Default Unit: Hz
Related Command: :CONFigure:DEMod

:READ:EMISSion:FAIL?

Title: Read Spectral Emission Mask Pass/Fail Status
Description: Triggers a new spectral emission mask measurement and returns the pass/fail results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:EMISSion:FAIL? The spectral emission mask measurement must be active. The current measurement can be queried using :CONFigure?
Related Command: :CONFigure:RF EMISSion
:READ:EMISSion:TEMPLatE:DATA?

Title: Read Spectral Emission Mask Template Data
Description: Triggers a new spectral emission mask measurement and returns the spectral emission mask template power level, frequency, and PASS/FAIL data for all ten frequency ranges shown in the Spectral Emission Summary. It is a combination of the commands :ABORT, :INITiate, and :FETCh:EMISSion:TEMPLatE:DATA? The spectral emission mask measurement must be active. The current measurement can be queried using :CONFigure?

For each frequency range, the data is returned as 3 comma-delimited values: Power Level in dBm, Frequency in Hz, and PASS/FAIL.

Related Command: :MEASure:EMISSion:TEMPLatE:DATA?
:FETCh:EMISSion:TEMPLatE:DATA?
:CONFigure:RF EMISSion

:READ:EMISSion:TEMPLatE?

Title: Read Spectral Emission Mask Template
Description: Triggers a new spectral emission mask measurement and returns the template number result. It is a combination of the commands :ABORT, :INITiate, and :FETCh:EMISSion:TEMPLatE? The spectral emission mask measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :CONFigure:RF EMISSion

:READ:EMISSion?

Title: Read Spectral Emission Mask
Description: Triggers a new spectral emission mask measurement and returns the results: pass/fail status and template number. It is a combination of the commands :ABORT, :INITiate, and :FETCh:EMISSion? The spectral emission mask measurement must be active. The current measurement can be queried using :CONFigure?

Results are returned as 2 comma-delimited values: pass/fail status, and template number.

Related Command: :CONFigure:RF EMISSion
:READ:OBWidth?

Title: Read Occupied Bandwidth

Description: Triggers a new occupied bandwidth measurement and returns the results: occupied bandwidth, percent of power and dB down. It is a combination of the commands :ABORT, :INITiate, and :FETCh:OBWidth? The occupied bandwidth measurement must be the active measurement (specified by :CONFigure:OBWidth). The current measurement can be queried using the :CONFigure?

Default Unit: Hz

Related Command: :CONFigure

:READ:OTA{1|2|3|4|5|6}?

Title: Read Over The Air

Description: Triggers a new over-the-air measurement and returns the result. It is a combination of the commands :ABORT, :INITiate, and :FETCh:OTA? The over-the-air measurement must be active. The current measurement can be queried using :CONFigure?

The measurement results are returned as 5 comma delimited values: scrambling code, CPICH power, chip energy, Ec/I0 ratio, pilot dominance.

Default Unit: Scrambling Code: No units
CPICH power: dBm
Chip Energy: dBm
EC/I0: dB
Pilot dominance: No units

Related Command: :CONFigure:OTA

:READ:RF:SUMMary?

Title: Read RF Summary

Description: Triggers a new RF Summary measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:RF:SUMMary? The current measurement can be queried using :CONFigure?

Data is returned as 10 comma-delimited values: Channel Power, Carrier Frequency, Frequency Error, Spectral Emission, Occupied Bandwidth, Peak to Avg Power, Filtered –10 MHz, Filtered –5 MHz, Filtered 5 MHz, Filtered 10 MHz. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz

Related Command: :CONFigure:RF:SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel
Access: Measurements, RF, RF Summary
:READ:PFail?

Title: Read PASS/FAIL

Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCH:PFail?. The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCH:PFail?
:CONFigure PFail
:MEASURE:PFail?

Front Panel Access: Measurements, Pass/Fail Mode

:READ:PTAPower?

Title: Read Peak to Average Power Ratio

Description: Triggers a new measurement and returns the peak to average power ratio result. It is a combination of the commands :ABORT, :INITiate, and :FETCH:PTAPower?. The peak to average power measurement must be active. The current measurement can be queried using :CONFigure?

Default Unit: dB

Related Command: :CONFigure:RF
8-11 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Trace Header Transfer

Description: The <trace type> must be one of the following: ACLR|SPECTrum|EMISSion|DEMod. Returns trace header information for the specified trace. Data can be transferred to and from the 4 available display trace types.

Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in “WCDMA Parameter Names” on page 2-23.

Parameter: <trace type>

Related Command: :TRACe:DATA?
Title: Trace Data Transfer

Description: This command transfers data from the controlling program to the instrument. The query form transfers trace data from the instrument to the controller. Before executing this command the instrument must be set to the desired measurement.

The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The number of bytes in the block is calculated by multiplying the number of data points by the number of bytes used to transfer each data point. Also note that the second argument must be enclosed in parentheses.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?. Data can be transferred to and from the 4 available display types. Use the commands in the MMEemory subsystem to store and recall traces from the instrument memory. This command does not support setting all trace points to a single value. To do this, send the same value to each point. For RF traces (ACLR, Spectrum and EMISsion), there is only one value per data point.

For example, to transfer a 501 point trace from the controlling program to the ACLR trace in the instrument the command :TRACe:DATA ACLR,(#42004<block>) would be sent. <block> data could be in either INTeger,32 or REAL,32 format. In both cases, there would be 4 bytes per data point. So, 4 bytes per point * 501 data points gives 2004 bytes in <block> data. For the demodulated code domain power trace, each data point is represented by 6 values of 4 bytes each: code number (no units), absolute power (dBm), relative power (dB), spreading factor (no units), symbol EVM (%), code state (0 = Inactive, 1 = Active). If Option 65 is installed code state will indicate the modulation type (0 = Noise, 1 = QPSK, 2 = 16_QAM).

Note that the instrument must be set in the selected view. Use the CONFigure command to set the unit to the selected view.

Parameter: ACLR | SPECtrum | EMISsion | DEMod,(<header><block>)

Parameter Type: <char>

Related Command: :FORMat:DATA
 :TRACe[:DATA]:PREamble?
8-12 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:AVERage:FERRor OFF|ON|0|1
[:SENSe]:AVERage:FERRor?

Title: Frequency Error Averaging State

Description: Turns averaging for Frequency Error ON or OFF. Setting the value to ON or 1 will result in turning frequency error averaging ON.

The Query form of this command returns either “1” or “0”. “1” corresponds to frequency error averaging being ON and “0” corresponds to frequency error averaging being OFF.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF

Related Command: [:SENSe]:AVERage:FERRor:COUNt
[:SENSe]:AVERage:FERRor:COUNt?
:MMEMory:LOAD:TRACe

Front Panel Access: Setup, More, Freq Err Avg

[:SENSe]:AVERage:FERRor:COUNt <integer>
[:SENSe]:AVERage:FERRor:COUNt?

Title: Average Frequency Error Count

Description: Sets the number that is used for averaging the frequency error.

Parameter: <integer>
Parameter Type: <integer>
Default Value: 2
Range: 2 to 15

Related Command: [:SENSe]:AVERage:FERRor
[:SENSe]:AVERage:FERRor?

Front Panel Access: Setup, More, Freq Err Avg Cnt
[:SENSe]:DEMod:CODogram:TIME <seconds>
[:SENSe]:DEMod:CODogram:TIME?

Title: Codogram Measurement Time
Description: This command refers to the minimum elapsed time between successive codogram measurements.
Parameter: <seconds>
Default Value: 5 seconds
Range: 5 seconds to 6000 seconds

[:SENSe]:DEMod:CPICh:ABSolute?

Title: Absolute Common Pilot Channel (CPICH) Level
Description: Queries the absolute Common Pilot Channel level.
Default Unit: dB
Related Command: MEASure:DEMod:CDPower?
:READ:DEMod:CDPower?
:FETCh:DEMod:CDPower?

[:SENSe]:DEMod:CPICh:RELative?

Title: Relative Common Pilot Channel (CPICH) Level
Description: Queries the relative Common Pilot Channel level.
Default Unit: dB
Related Command: MEASure:DEMod:CDPower?
:READ:DEMod:CDPower?
:FETCh:DEMod:CDPower?

[:SENSe]:DEMod:CTRLchannels:UNIT RELative|ABSolute|DELTa
[:SENSe]:DEMod:CTRLchannels:UNIT?

Title: Control Channels Display Units
Description: This command refers to the display units for the control channels in the HSDPA and CDP view. Setting the value to RELative will result in displaying P-CCPCH, S-CCPCH, PICH, P-SCH and S-SCH in relative powers. Setting the value to ABSolute will result in displaying P-CCPCH, S-CCPCH, PICH, P-SCH and S-SCH in absolute powers.
Parameter: RELative | ABSolute | DELTa
Parameter Type: <char>
Default Value: RELative
Range: RELative | ABSolute | DELTa
Front Panel Access: Measurements, Demodulator, HSDPA, Control Channels, Measurements, Demodulator, CDP, Control Channels
[:SENSe]:DEMod:HSDPa:IQPersistence <integer>
[:SENSe]:DEMod:HSDPa:IQPersistence?

Title: HSDPA IQ Persistence
Description: Sets the number of samples before displaying the screen.
Parameter: <integer>
Parameter Type: <integer>
Default Value: 1
Range: 1 to 48
Front Panel
Access: Measurements, Demodulator, HSDPA, IQ Persistence

[:SENSe]:DEMod:HSDPa:TIME <seconds>
[:SENSe]:DEMod:HSDPa:TIME?

Title: HSDPA Measurement Time
Description: This command sets the single sweep time.
Parameter: <seconds>
Default Value: 5 seconds
Range: 5 to 6000 seconds
Front Panel
Access: Measurements, Demodulator, HSDPA, Single Sweep Time

[:SENSe]:DEMod:PCCPch:RELative?

Title: Relative Primary Common Control Physical Channel (P-CCPCH) Level
Description: Queries the relative Primary Common Control Physical Channel level.
Default Unit: dB
Related Command: MEASure:DEMod:CDPower?
:READ:DEMod:CDPower?
:FETCh:DEMod:CDPower?

[:SENSe]:DEMod:PCDerror?

Title: Peak Code Domain Error
Description: Queries the Peak Code Domain Error.
Default Unit: dB
[:SENSe]:DEMod:PICH:CODE <code number>
[:SENSe]:DEMod:PICH:CODE?

Title: PICH Code Number
Description: This command refers to the channelization code number of the PICH channel for W-CDMA code domain demodulation measurements.
Parameter: <code number>
Default Value: 16
Range: 0 to 255
Front Panel Access: Setup, PICH Code

[:SENSe]:DEMod:SCCPch:CODE <code number>
[:SENSe]:DEMod:SCCPch:CODE?

Title: S-CCPCH Code Number
Description: This command refers to the channelization code number of the S-CCPCH channel for W-CDMA code domain demodulation measurements.
Parameter: <code number>
Default Value: 3

[:SENSe]:DEMod:SCCPch:SFACtor 4|8|16|32|64|128|256
[:SENSe]:DEMod:SCCPch:SFACtor?

Title: S-CCPCH Spreading Factor
Description: This command refers to the spreading factor of the S-CCPCH channel for W-CDMA code domain demodulation measurements.
Parameter: 4|8|16|32|64|128|256
Default Value: 256
Front Panel Access: Setup, S-CCPCH Spread
[:SENSe]:DEMod:SCODe <scrambling code>
[:SENSe]:DEMod:SCODe?

Title: Scrambling Code
Description: This command refers to the primary scrambling code used for W-CDMA code domain demodulation measurements. When the auto scrambling code feature is turned on, this setting will be overwritten by the automatically detected value.
Parameter: <scrambling code>
Default Value: NA
Range: 0 to 511

[:SENSe]:DEMod:SCODe:AUTO OFF|ON|0|1
[:SENSe]:DEMod:SCODe:AUTO?

Title: Automatic Scrambling Code Detection
Description: Sets the state of the automatic scrambling code detection feature. Setting the value to ON or 1 will result in the scrambling code being set to the code of the strongest detected signal. That is, the instrument will detect the strongest signal present and use the scrambling code of that signal for demodulation. Setting the value to OFF or 0 will force the instrument to base all demodulation on the user-selected scrambling code value. The default value is ON. That is, sending :SENS:DEM:SCOD:AUTO is equivalent to sending :SENS:DEM:SCOD:AUTO ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:DEMod:SCODe
Front Panel Access: Setup, Scrambling Code

[:SENSe]:DEMod:SFACtor 256|512
[:SENSe]:DEMod:SFACtor?

Title: Maximum Spreading Factor
Description: This command refers to the maximum spreading factor used when demodulating a UMTS/W-CDMA signal.
Parameter: 256|512
Default Value: 512
Front Panel Access: Setup, Max Spreading
[:SENSe]:DEMod:THRShold <rel ampl>
[:SENSe]:DEMod:THRShold?

Title: Active Code Threshold
Description: This command refers to the threshold used for detecting active vs. inactive traffic channels in W-CDMA code domain demodulation measurements. If the automatic threshold feature is used, this setting will be overwritten by the automatically detected threshold.
Parameter: <rel ampl>
Default Value: –30 dB
Range: –50 dB to –10 dB

[:SENSe]:DEMod:THRShold:AUTO OFF|ON|0|1
[:SENSe]:DEMod:THRShold:AUTO?

Title: Automatic Threshold
Description: Sets the state of the automatic threshold feature. Setting the value to ON or 1 will enable the automatic threshold feature. Setting the value to OFF or 0 will disable the automatic threshold feature. The default value is ON. That is, sending :SENS:DEM:THRS:AUTO is equivalent to sending :SENS:DEM:THRS:AUTO ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:DEMod:THRShold
Front Panel Access: Setup, More, Threshold

[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.
Parameter: <freq>
Default Value: 1 GHz
Default Unit: Hz
Range: 824 MHz to 2.7 GHz
Front Panel Access: Freq, Center Freq
\textbf{[:SENSe]:FREQuency:SIGStandard:NAME <string>}

\textbf{[:SENSe]:FREQuency:SIGStandard:NAME?}

\begin{itemize}
 \item **Title:** Signal Standard
 \item **Description:** Selects the desired signal standard from the list. The \texttt{<string>} argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the \texttt{<string>} argument would be “P-GSM 900 - Uplink”. The query form of this command will return the name of the currently-selected Signal Standard on the list.
 \item **Parameter:** \texttt{<string>}
 \item **Front Panel Access:** Freq, Signal Standard
\end{itemize}

\textbf{[:SENSe]:FREQuency:STARt?}

\begin{itemize}
 \item **Title:** Stop Frequency
 \item **Description:** Queries the start frequency of the RF Band Spectrum. Note that this command is valid only if the current view is set to RF Band Spectrum.
 \item **Parameter:** \texttt{<freq>}
 \item **Default Unit:** Hz
 \item **Related Command:** [:SENSe]:FREQuency:STOP?
\end{itemize}

\textbf{[:SENSe]:FREQuency:STOP?}

\begin{itemize}
 \item **Title:** Stop Frequency
 \item **Description:** Queries the stop frequency of the RF Band Spectrum. Note that this command is valid only if the current view is set to RF Band Spectrum.
 \item **Parameter:** \texttt{<freq>}
 \item **Default Unit:** Hz
\end{itemize}
[:SENSe]:OTA:RESet

Title: OTA Reset

Description: This command forces the instrument to reset the over-the-air measurement and start fresh without any history. When the auto scrambling code feature is ON the RESet command will clear the list of scrambling codes and attempt to detect new codes. When the auto scrambling code feature is OFF the RESet command will force the instrument to take new measurements for all of the user-selected scrambling codes.

Front Panel Access: Measurements, Over-the-Air, Scrambling Code, Code Lock Reset

[:SENSe]:OTA:SCODE:AUTO OFF|ON|0|1
[:SENSe]:OTA:SCODE:AUTO?

Title: Automatic OTA Scrambling Code Detection

Description: Sets the state of the automatic scrambling code detection feature. Setting the value to ON or 1 will result in the scrambling codes being set to the codes of the strongest detected signals. That is, the instrument will detect the strongest signals present. Setting the value to OFF or 0 will force the instrument to base all over-the-air measurements on the user-selected scrambling code values. The default value is ON. That is, sending :SENS:DEM:OTA:SCOD:AUTO is equivalent to sending :SENS:DEM:OTA:SCOD:AUTO ON.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: [:SENSe]:DEMod:OTA:SCODe

[:SENSe]:OTA:SCODE:LOCK OFF|ON|0|1
[:SENSe]:OTA:SCODE:LOCK?

Title: OTA Scrambling Code Lock

Description: This command refers to the primary scrambling codes used for W-CDMA over-the-air measurements. When scrambling code lock is ON, the instrument will not search for any new scrambling codes and will only measure the codes that have already been detected. When scrambling code lock is OFF, the instrument will dynamically update the list of scrambling codes that are to be included in the current measurements. This feature has no effect when scrambling code auto detection is OFF for over-the-air measurements. The default value for this command is ON. That is, sending SENS:DEM:OTA:LOCK is equivalent to SENS:DEM:OTA:LOCK ON.

Parameter: OFF | ON | 0 | 1
Parameter Type: <boolean>
Default Value: OFF
Front Panel Access: Measurements, Over-the-Air, Scrambling Code, Code Lock

[:SENSe]:OTA:SCODE{1|2|3|4|5|6}<scrambling code>
[:SENSe]:OTA:SCODE{1|2|3|4|5|6}?

Title: OTA Scrambling Code

Description: This command refers to the primary scrambling codes used for W-CDMA over-the-air measurements. To disable the specified code use a scrambling code value of ‘–1’. When the auto scrambling code feature is turned on, setting this value has no direct effect on measurement results.

Parameter: <scrambling code>
Default Value: –1
Range: –1 to 511
[:SENSe]:OTA:SORT CODE|POWer

Title: OTA Sort Parameter
Description: This command refers to the parameter that is used to sort the over-the-air measurement results.
Parameter: CODE|POWer
Parameter Type: <char>
Default Value: CODE
Front Panel Access: Measurements, Over-the-Air, Scrambling Code, Sort By

[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. For more information on loading test sets to the instrument, see the :MMEMory:STORe:PFail command. NOTE: The first test set in the list would be test set 0, the next test set would be 1, etc.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel
Access: Amplitude, Auto Range

[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.

Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO
Front Panel
Access: Amplitude, Adjust Range

[:SENSe]:RF:ACLR:ADJCchannelcount <num of channels>
[:SENSe]:RF:ACLR:ADJCchannelcount?

Title: ACLR ADJC Channel Count
Description: This command refers to the number of Adjacent channels in the ACLR view.

Parameter: <num of channels>
Default Value: 2
Range: 1 to 4
Front Panel
Access: Measurements, RF Measurements, ACLR, Select # of Adjacent Channels
[SENSe]:RF:ACLR:MAINchannelcount <num of main channels>
[SENSe]:RF:ACLR:MAINchannelcount?

Title: ACLR MAIN Channel Count
Description: This command refers to the number of main channels in the ACLR view.
Parameter: <num of main channels>
Default Value: 1 Main Channel
 Range: 1 to 4
Front Panel
 Access: Measurements, RF Measurements, ACLR, Select # of Main Channels
Chapter 9 — TDSCDMA Commands

9-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
9-2 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMARY|PFail

Title: Configure Summary and Pass/Fail Measurements
Description: This command configures the summary and PASS/FAIL measurements. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMARY|PFail
Parameter Type: <char>
Front Panel Access: Shift-4 (Measure), TD-SCDMA Summary or Pass/Fail Mode

:CONFigure:DEMod <char>

Title: Configure Demodulation Measurement
Description: Valid <char> parameter options: SUMMARY|CDPData

This command configures the selected demodulation measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement. When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Modulation Summary from the front panel. When the CDPData option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then CDP from the front panel.

Parameter: <char>
Front Panel Access: Measurements, Demodulator
:CONFigure:OTA

Title: Configure Over-The-Air Measurement
Description: Valid parameter options: CSCan | TSCan

This command configures the selected Over The Air measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified before initiating a measurement. When the CSCan option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Code Scan from the front panel. When the TSCan option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then OTA, then Tau Scan from the front panel.

:CONFigure:RF <char>

Title: Configure RF Measurement
Description: Valid parameter options: SUMMary | SPECtrum | PVTSlot | EMISsion

This command configures the selected RF measurement. It disables any other active measurements. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMMary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF Measurements, then RF Summary from the front panel. When the SPECtrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF Measurements, then Channel Spectrum from the front panel. When the PVTSlot option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Power vs. Time from the front panel. When the EMISsion option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF Measurements, then Spectrum Emission from the front panel.

Parameter: <char>
Related Command: [:SENSe]:FREQuency
9-3 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCAlE]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCAlE]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to +100 dB
Front Panel
Access: Amplitude, Power Offset

:DISPlay:WINDow:TRACe:Y[:SCAlE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCAlE]:PDIVision?

Title: Scale
Description: Sets the scale (dB/division) for the y-axis.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel
Access: Amplitude, Scale/div
9-4 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:CDPData?

Title: Fetch Demodulator Code Domain Power Data
Description: Returns the most recent Code Domain Data measurement results.

Data is returned as 24 comma-delimited values: Slot Power in dBm, DwPTS Power in dBm, Channel Power RRC in dBm, Freq Error in Hz, Freq Error in PPM, EVM RMS percentage, EVM Peak in percentage, RMS Phase Error in percentage, Carrier Feed Through in dB, DwPTS EVM in percentage, DwPTS PCDE in dB, CDP Noise Floor in dB, CDP Threshold hold in dB, Tau in nanoseconds, Sync DL Code in unitless number, Scrambling Code in unitless number, Max User in unitless number, Spread Factor in dB, Data Modulation Type (0 = Noise, 1 = QPSK, 2 = 8PSK, 3 = 16QAM), Scrambling Code 1 in dB, Scrambling Code 2 in dB, Scrambling Code 3 in dB, and Scrambling Code 4 in dB.

Related Command: :CONFigure:DEMod CDPData
:MEASure:DEMod:CDPData?
:READ:DEMod:CDPData?

Front Panel Access: Measurements, Demodulator, CDP Data

:FETCh:DEMod:SUMMary?

Title: Fetch Modulation Summary
Description: Returns the most recent Modulation Summary measurement results.

Data is returned as 9 comma-delimited values: Slot Power, EVM, Peak EVM, Frequency error, Frequency Error PPM, Tau, Noise Floor, Carrier Feed Through, Peak CDE. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:DEMod SUMMary
:MEASure:DEMod:SUMMary?
:READ:DEMod:SUMMary?

Front Panel Access: Measurements, Demodulator, Modulation Summary
!:FETCh:OTA?

Title: Fetch OTA Pilot Scan

Description: Returns the most recent Pilot Scan measurement results.

Data is returned as 2 comma-delimited values: DwPTS Power in dBm, and Pilot Dominance in dBm. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA
 :MEASure:OTA?
 :READ:OTA?

Front Panel Access: Measurements, Over-the-Air, Code Scan

!:FETCh:RF:EMISsion?

Title: Fetch RF Spectrum Emission

Description: Returns the most recent Spectrum Emission measurement result.

Data is returned as 3 comma-delimited values for Left Power, Center Power, and Right Power in dBm. They are followed by 8 comma-delimited values for each marker/boundary: Marker number, Marker Start Frequency in MHz, Marker Stop Frequency in MHz, Marker Peak Power Frequency in MHz, Marker Peak Power in dBm, Marker Power Margin in dB, RBW in MHz, and Pass/Fail.

Related Command: :CONFigure:RF:EMISsion
 :MEASure:RF:EMISsion?
 :READ:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spectrum Emission

!:FETCh:RF:SPECTrums?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Channel Spectrum measurement results.

Data is returned as 6 comma-delimited values: Channel Power in dBm, Occupied Bandwidth in Hz, Left Channel Power in dBm, Left Channel Occupied Bandwidth in Hz, Right Channel Power in dBm and Right Channel Occupied Bandwidth in Hz.

Related Command: :CONFigure:RF:SPECTrums
 :MEASure:RF:SPECTrums?
 :READ:RF:SPECTrums?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
Title: Fetch RF Summary

Description: Returns the most recent RF Summary measurement results.

- Data is returned as 11 comma-delimited values: Channel Power, Channel Power RRC, Occupied Bandwidth, DwPTS Power, UpPTS Power, ON/OFF Ratio, Slot PAR, Left Channel Power, Right Channel Power, Left Channel Occupied Bandwidth, Right Channel Occupied Bandwidth.
- All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command:
- :CONFigure:RF SUMMary
- :MEASure:RF:SUMMary?
- :READ:RF:SUMMary?

Front Panel
Access: Measurements, RF, RF Summary
This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32

**:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCII|INTeger,32|REAL,32

Parameter Type: <char>

Default Value: ASCII

Related Command: :TRACE[:DATA]
9-6 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous?

Title: Continuous/Single Sweep
Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: :INITiate[:IMMediate]
Front Panel
Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement
Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous
:STATus:OPERation?

Front Panel
Access: Shift-3 (Sweep), Trigger Sweep
9-7 :MEASURE Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCH command.
:MEASURE:DEMOD:CDPDATA?

Title: Measure Demodulator Code Domain Power Data

Description: Sets the active measurement to Code Domain Data, sets the default measurement parameters, triggers a new measurement and returns the Slot Power, DwPTS Power, Channel Power RRC, Frequency Error in Hz, Frequency Error in PPM, EVM RMS, EVM Peak, RMS Phase Error, Carrier Feed Through, DwPTS EVM, DwPTS PCDE, CDP Noise Floor, CDP Threshold, Tau, Selected Slot, Sync DL Code, Scrambling Code, Max Users, Spread Factor, Data Modulation Type, Scrambling Code 1, Scrambling Code 2, Scrambling Code 3, and Scrambling Code 4 measurement results. It is a combination of the commands :CONFigure:DEMod CDPower and :READ:DEMod:CDPData? To make a CDP Data measurement with settings other than the default values, send:

:CONFigure:DEMod CDPData
:READ:DEMod:CDPData?

Commands to set desired settings

Data is returned as 24 comma-delimited values: Slot Power in dBm, DwPTS Power in dBm, Channel Power RRC in dBm, Freq Error in Hz, Freq Error in PPM, EVM RMS percentage, EVM Peak in percentage, RMS Phase Error in percentage, Carrier Feed Through in dB, DwPTS EVM in percentage, DwPTS PCDE in dB, CDP Noise Floor in dB, CDP Threshold hold in dB, Tau in nanoseconds, Sync DL Code in unitless number, Scrambling Code in unitless number, Max User in unitless number, Spread Factor in dB, Data Modulation Type (0 = Noise, 1 = QPSK, 2 = 8PSK, 3 = 16QAM), Scrambling Code 1 in dB, Scrambling Code 2 in dB, Scrambling Code 3 in dB, and Scrambling Code 4 in dB. All invalid values are replaced with “--”.

Related Command: :CONFigure:DEMod CDPData
:READ:DEMod:CDPData?
:FETCh:DEMod:CDPData?

Front Panel Access: Measurements, Demodulator, CDP Data
:MEASure:DEMod:SUMMarry?

Title: Measure Modulation Summary

Description: Sets the active measurement to Modulation Summary, sets the default measurement parameters, triggers a new measurement and returns Slot Power, EVM, Peak EVM, Frequency error, Frequency Error PPM, Tau, Noise Floor, Carrier Feed Through, Peak CDE. It is a combination of the commands :CONFigure:DEMod SUMMarry and :READ:DEMod:SUMMarry?

To make a Demodulator Summary measurement with settings other than the default values, send:

:CONFigure:DEMod SUMMarry
Commands to set desired settings
:READ:DEMod:SUMMarry?

Data is returned as 9 comma-delimited values: Slot Power, EVM, Peak EVM, Frequency error, Frequency Error PPM, Tau, Noise Floor, Carrier Feed Through, Peak CDE. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:DEMod SUMMarry
:READ:DEMod:SUMMarry?

Front Panel Access: Measurements, Demodulator, Modulation Summary

:MEASure:OTA?

Title: Measure OTA Pilot Scan

Description: Sets the active measurement to Pilot Scan, sets the default measurement parameters, triggers a new measurement and returns DwPTS Power and Pilot Dominance. It is a combination of the commands :CONFigure:OTA PSCAn and :READ:OTA? To make an OTA Pilot Scan measurement with settings other than the default values, send:

:CONFigure:OTA
Commands to set desired settings
:READ:OTA?

Data is returned as 2 comma-delimited values: DwPTS Power in dBm, and Pilot Dominance in dBm. All invalid values are replaced with “--”.

Related Command: :CONFigure:OTA
:READ:OTA?
:FETCh:OTA?

Front Panel Access: Measurements, Over-the-Air, Code Scan
:MEASure:RF:EMISsion?

Title: Measure RF Spectrum Emission

Description: Sets the active measurement to Spectrum Emission, sets the default measurement parameters, triggers a new measurement and returns the Left Power, Center Power, Right Power, followed by Marker Number, Marker Start Frequency, Marker Stop Frequency, Marker Peak Power Frequency, Marker Peak Power, Marker Power Margin, Marker RBW, Marker’s Pass/Fail Status for all markers/boundaries. It is a combination of the commands :CONFigure:RF EMISsion and :READ:RF:EMISsion? To make an RF Spectrum Emission measurement with settings other than the default values, send:

:CONFigure:RF EMISsion
Commands to set desired settings
:READ:RF:EMISsion?

Data is returned as 3 comma-delimited values for Left Power, Center Power, and Right Power in dBm. They are followed by 8 comma-delimited values for each marker/boundary: Marker number, Marker Start Frequency in MHz, Marker Stop Frequency in MHz, Marker Peak Power Frequency in MHz, Marker Peak Power in dBm, Marker Power Margin in dB, RBW in MHz, and Pass/Fail.

Related Command: :CONFigure:RF EMISsion
:READ:RF:EMISsion?
:FETCh:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spectrum Emission
:MEASure:RF:SPECTrum?

Title: Measure RF Spectrum

Description: Sets the active measurement to Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Occupied Bandwidth, Left Channel Power, Left Channel Occupied Bandwidth, Right Channel Power and Right Channel Occupied Bandwidth measurement results. It is a combination of the commands :CONFigure:RF SPECtrum and :READ:RF:SPECtrum?

To make an RF Spectrum measurement with settings other than the default values, send:

:CONFigure:RF SPECtrum

Commands to set desired settings

:READ:RF:SPECtrum?

Data is returned as 5 comma-delimited values: Channel Power in dBm, Occupied bandwidth in Hz, Left Channel Power, Left Channel Occupied Bandwidth, Right Channel Power, and Right Channel Occupied Bandwidth.

Related Command:

:CONFigure:RF SPECtrum

:READ:RF:SPECtrum?

:FETCh:RF:SPECtrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
:MEASure:RF:SUMMary?

Title: Measure RF Summary

Description: Sets the active measurement to RF Summary, sets the default measurement parameters, triggers a new measurement and returns Channel Power, Channel Power RRC, Occupied Bandwidth, DwPTS Power, UpPTS Power, ON/OFF Ratio, Slot PAR, Left Channel Power, Right Channel Power, Left Channel Occupied Bandwidth, Right Channel Occupied Bandwidth. It is a combination of the commands :CONFigure:RF SUMMary and :READ:RF:SUMMary?

To make a RF Summary measurement with settings other than the default values, send:

:CONFigure:RF SUMMary
Commands to set desired settings
:READ:RF:SUMMary?

Data is returned as 11 comma-delimited values: Channel Power, Channel Power RRC, Occupied Bandwidth, DwPTS Power, UpPTS Power, ON/OFF Ratio, Slot PAR, Left Channel Power, Right Channel Power, Left Channel Occupied Bandwidth, Right Channel Occupied Bandwidth. All invalid values are replaced with “--”.

Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:RF SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel Access: Measurements, RF, RF Summary
This set of commands combines the ABORt, INITiate and FETCH commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCH command.

```
:READ:DEMod:CDPData?
```

Title: Read Demodulator Code Domain Data

Description: Triggers a new measurement and returns the Slot Power, DwPTS Power, Channel Power RRC, Frequency Error in Hz, Frequency Error in PPM, EVM RMS, EVM Peak, RMS Phase Error, Carrier Feed Through, DwPTS EVM, DwPTS PCDE, CDP Noise Floor, CDP Threshold, Tau, Selected Slot, Sync DL Code, Scrambling Code, Max Users, Spread Factor, Data Modulation Type, Scrambling Code 1, Scrambling Code 2, Scrambling Code 3, and Scrambling Code 4 measurement results. It is a combination of the following commands: ABORt; INITiate; FETCH:DEMod:CDPData?

In order for the data to be accurate, the Code Domain Power measurement must be the active measurement (specified by :CONFigure:DEMod CDPData). The current measurement can be queried using :CONFigure?

Data is returned as 24 comma-delimited values: Slot Power in dBm, DwPTS Power in dBm, Channel Power RRC in dBm, Freq Error in Hz, Freq Error in PPM, EVM RMS percentage, EVM Peak in percentage, RMS Phase Error in percentage, Carrier Feed Through in dB, DwPTS EVM in percentage, DwPTS PCDE in dB, CDP Noise Floor in dB, CDP Threshold hold in dB, Tau in nanoseconds, Sync DL Code in unitless number, Scrambling Code in unitless number, Max User in unitless number, Spread Factor in dB, Data Modulation Type (0 = Noise, 1 = QPSK, 2 = 8PSK, 3 = 16QAM), Scrambling Code 1 in dB, Scrambling Code 2 in dB, Scrambling Code 3 in dB, and Scrambling Code 4 in dB. All invalid values are replaced with “--”.

Related Command:
- :CONFigure:DEMod CDPData
- :MEASure:DEMod:CDPData?
- :FETCH:DEMod:CDPData?

Front Panel Access: Measurements, Demodulator, CDP Data
:READ:DEMod:SUMMary?

Title: Read Modulation Summary

Description: Triggers a new RF Summary measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:DEMod:SUMMary? The current measurement can be queried using :CONFigure?

Data is returned as 9 comma-delimited values: Slot Power, EVM, Peak EVM, Frequency Error, Frequency Error PPM, Tau, Noise Floor, Carrier Feed Through, Peak CDE. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command:
:CONFigure:DEMod SUMMary
:READ:DEMod:SUMMary?
:FETCh:DEMod:SUMMary?

Front Panel Access: Measurements, Demodulator, Modulation Summary

:READ:OTA?

Title: Read OTA Pilot Scan

Description: Sets the active measurement to Pilot Scan, sets the default measurement parameters, triggers a new measurement and returns DwPTS Power and Pilot Dominance. It is a combination of the following commands :ABORt; :INITiate; :FETCh:OTA? In order for the data to be accurate, the Pilot Scan must be the active measurement (specified by :CONFigure:OTA). The current measurement can be queried using :CONFigure?

Data is returned as 2 comma-delimited values: DwPTS Power in dBm, and Pilot Dominance in dBm. All invalid values are replaced with “--”.

Related Command:
:CONFigure:OTA
:MEASure:OTA?
:FETCh:OTA?

Front Panel Access: Measurements, Over-the-Air, Code Scan
:READ:RF:EMISsion?

Title: Read RF Spectrum Emission

Description: Triggers a new measurement and returns the Left Power, Center Power, Right Power, followed by Marker Number, Marker Start Frequency, Marker Stop Frequency, Marker Peak Power Frequency, Marker Peak Power, Marker Power Margin, Marker RBW, Marker's Pass/Fail Status for all markers/boundaries markers/boundaries. It is a combination of the commands :ABORt; :INITiate; :FETCh:RF:EMISsion? In order for the data to be accurate, the Spectrum Emission measurement must be the active measurement (specified by :CONFigure:RF EMISsion). The current measurement can be queried using :CONFigure?

Data is returned as 3 comma-delimited values for Left Power, Center Power, and Right Power in dBm. They are followed by 8 comma-delimited values for each marker/boundary: Marker number, Marker Start Frequency in MHz, Marker Stop Frequency in MHz, Marker Peak Power Frequency in MHz, Marker Peak Power in dBm, Marker Power Margin in dB, RBW in MHz, and Pass/Fail.

Related Command: :CONFigure:RF EMISsion
:MEASure:RF:EMISsion?
:FETCh:RF:EMISsion?

Front Panel Access: Measurements, RF Measurements, Spectrum Emission

:READ:RF:PVTSlot?

Title: Read Power vs. Time

Description: Triggers a new measurement and returns the Channel Power RRC, Sync Download Power, Sync Upload Power, On Off Ratio, Peak Average Ratio, Dw Up Delta, Slot 1 Power, Slot 2 Power, Slot 3 Power, Slot 4 Power, Slot 5 Power, Slot 6 Power, and Slot 7 Power. It is a combination of the commands :CONFigure:RF PVTSlot and :READ:RF:PVTSlot? To make an RF ACPR measurement with settings other than the default values, send:

:CONFigure:RF PVTSlot
Commands to set desired settings
:READ:RF:PVTSlot?

Data is returned as 13 comma-delimited values: The Channel Power RRC in dBm, Sync Download Power in dBm, Sync Upload Power in dBm, On Off Ratio in dB, Peak Average Ratio in dB, Dw Up Delta in dB, Slot 1 to 7 Power in dBm.

Related Command: :CONFigure:RF PVTSlot
:MEASure:RF:PVTSlot?
:FETCh:RF:PVTSlot?
:READ:RF:SPECTrum?

Title: Read RF Spectrum

Description: Triggers a new measurement and returns the Channel Power, Occupied Bandwidth, Left Channel Power, Left Channel Occupied Bandwidth, Right Channel Power and Right Channel Occupied Bandwidth measurement results. It is a combination of the following commands: :ABORt; :INITiate; :FETCh:RF:SPECTrum? In order for the data to be accurate, the Channel Spectrum measurement must be the active measurement (specified by :CONFigure:RF SPECTrum). The current measurement can be queried using :CONFigure?

Data is returned as 6 comma-delimited values: Channel Power in dBm, Occupied bandwidth in Hz, Left Channel Power, Left Channel Occupied Bandwidth, Right Channel Power, and Right Channel Occupied Bandwidth.

Related Command: :FETCh:RF:SPECTrum?
:CONFigure:RF SPECTrum
:MEASure:RF:SPECTrum?

Front Panel Access: Measurements, RF Measurements, Channel Spectrum

:READ:RF:SUMMary?

Title: Read RF Summary

Description: Triggers a new RF Summary measurement and returns the results. It is combination of the commands: :ABORT, :INITiate, and FETCh:RF:SUMMary? The current measurement can be queried using :CONFigure?

Data is returned as 11 comma-delimited values: Channel Power, Channel Power RRC, Occupied Bandwidth, DwPTS Power, UpPTS Power, ON/OFF Ratio, Slot PAR, Left Channel Power, Right Channel Power, Left Channel Occupied Bandwidth, Right Channel Occupied Bandwidth. All invalid values are replaced with “--”. Power units are in watt or dBm as per what is set by the user. Frequency is always in Hz.

Related Command: :CONFigure:RF SUMMary
:READ:RF:SUMMary?
:FETCh:RF:SUMMary?

Front Panel Access: Measurements, RF, RF Summary
9-9 \textbf{\texttt{:TRACe Subsystem}}

This subsystem contains commands related to the transfer of trace data to and from the instrument.

\textbf{\texttt{:TRACe:PREAMble? <trace type>}}

\begin{tabular}{ll}
\textbf{Title:} & Trace Header Transfer \\
\textbf{Description:} & Returns trace header information for the specified trace. The \texttt{<trace type>} must be one of the following: SPECtrum | EMISsion | DEMod | OTA | PVTSlot. \\
& Data can be transferred to and from the 5 available display trace types. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like \#AX, where A is the number of digits in X and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in “TDSCDMA Parameter Names” on page 2-29. \\
\textbf{Parameter:} & \texttt{<trace type>} \\
\textbf{Related Command:} & \texttt{:TRACe:DATA?} \\
\end{tabular}
Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The trace type must be one of the following: SPECtrum | EMISsion | DEMod | OTA | PVTSlot.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory.

The RF measurements Power vs. Time and Channel Spectrum both only have one value per data point that is returned in dBm. Each value is 4 bytes.

For the RF Spectrum Emission measurement, each data point will have two values. The first value is the wave data, while the second value is the mask data. Both values are four bytes and returned in dBm. Note that the second value, which is the mask, may contain default value 300 dBm. This is to signify the mask for the frequency point isn't valid and out of range.

The Demodulator Code Domain Power measurement has six values per data point. The first value is the point number, which has no unit. The second value is the relative power returned in dB of I data. The third value is the absolute power returned in dBm of I data. The fourth value is the relative power returned in dB of Q data. The fifth value is the absolute power returned in dBm of Q data. The sixth value is the type, which is defined in the following table.

<table>
<thead>
<tr>
<th>Return Value</th>
<th>Signal Type & Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Inactive (appears as gray on the screen)</td>
</tr>
<tr>
<td>1</td>
<td>QPSK (appears as orange on the screen)</td>
</tr>
<tr>
<td>2</td>
<td>8PSK (appears as purple on the screen)</td>
</tr>
<tr>
<td>3</td>
<td>16QAM (appears as brown on the screen)</td>
</tr>
</tbody>
</table>

All values are four bytes each.

Over the Air (OTA) measurements will have three values per data point. The first value is the type, which can be 0 (Noise, Grey), 1 (Primary, Blue), and 2 (Secondary, Red), or. The second value is the Ec/Io returned in dB. The third value is Tau returned in s. All three values are the same and are 4 bytes each.
Note that the instrument must be set in the selected view. Use the CONFigure command to set the unit to the selected view.

Parameter: <trace type>

Related Command:
:FORMat[:DATA]
:TRACe[:DATA]:PREamble?
9-10 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|W
:UNIT:POWer?

 Title: Measurement Units
 Description: Sets the default amplitude units for input, output and display.
 Parameter: DBM | W
 Parameter Type: <char>
 Default Value: dBm
 Front Panel
 Access: Amplitude, Units
9-11 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:DEMod:CDPData:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPData:UNITs?

Title: Code Domain Data Unit Type
Description: Sets the Code Domain Power unit type. The query form returns either a “REL” for relative units, or an “ABS” for absolute units in Ascii (without the double quotes).
Default Value: RELative
Range: RELative, ABSolute
Front Panel Access: Measurements, Demodulator, CDP Data, CDP Units

[:SENSe]:DEMod:MODType Auto|QPSK|8PSK|16QAM
[:SENSe]:DEMod:MODType?

Title: Modulation Type
Description: This command sets the Data Slot Modulation Type. Options are: auto-detection, assumed QPSK, assumed 8PSK, assumed 16QAM. The query version of this command returns the current setting.
Default Value: Auto
Range: Auto|QPSK|8PSK|16QAM
Front Panel Access: Setup, More, Modulation Type

[:SENSe]:DEMod:MUSer Auto|2-16 (even)
[:SENSe]:DEMod:MUSer?

Title: Max Users
Description: Sets the Walsh codes.
Default Value: Auto
Range: Auto|2 to 16 (even numbers only)
Front Panel Access: Setup, Max Users
[SENSe]:DEMod:SCRamblingcode Auto|0-127

Title: Scrambling Code
Description: This command sets the Scrambling/Midamble Code of downlink data slot to be demodulated.
Default Value: Auto
Range: Auto | 0 to 127
Front Panel
Access: Setup, Scrambling Midamble Code

[SENSe]:DEMod:SPRFactor Auto|16|1

Title: Spread Factor
Description: This command sets the spreading factor of the downlink data slot to be demodulated.
Default Value: Auto
Range: Auto | 16 | 1
Front Panel
Access: Setup, More, Spreading Factor

[SENSe]:DWPTs Auto|On|Off

Title: DwPTS
Description: This command sets the Downlink Pilot Time Slot. Options are: auto-detection, assumed ON or assumed OFF.
The query form of this command will returns the current setting.
Default Value: Auto
Range: Auto | On | Off
Front Panel
Access: Setup, More, DwPTS
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.
Parameter: <freq>
Default Value: 2.01 GHz
Default Unit: Hz
Range: 2.5 MHz to 2.7 GHz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently-selected Signal Standard on the list.
Parameter: <string>
Front Panel Access: Freq, Signal Standard
[:SENSe]:NUMCarriers 1|3
[:SENSe]:NUMCarriers?

Title: Number of Carriers
Description: This command sets the number of main/center TD-SCDMA carriers, for multicarrier configuration. The query version returns the current setting.

Default Value: 1
Range: 1|3
Front Panel
Access: Setup, More, Number of Carriers

[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel
Access: Measurements, Pass Fail/Mode, Select Pass/Fail Test
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe

Front Panel
Access: Amplitude, Auto Range

[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.

Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO

Front Panel
Access: Amplitude, Adjust Range

[:SENSe]:SLOTselection Auto|0-6
[:SENSe]:SLOTselection?

Title: Slot Selection
Description: Sets the Walsh codes.
Default Value: Auto (7)
Range: Auto, 0 to 6
Front Panel
Access: Setup, Slot Selection
[SENSe]:SWEP:SPEed FAST|NORM|SLOW
[SENSe]:SWEP:SPEed?

Title: Measurement Speed
Description: Sets the measurement speed. The query form returns either “FAST”, “NORM”, or “SLOW” in Ascii (without the double quotes).
Parameter: FAST | NORM | SLOW
Parameter Type: <char>
Default Value: Norm
Range: FAST, NORM, SLOW
Front Panel Access: Setup, Meas Speed

[SENSe]:SYDLcode Auto|0-31
[SENSe]:SYDLcode?

Title: Sync-DL Code
Description: This command sets the Sync-DL code of the Downlink Pilot Time Slot used in subframe sync.
Default Value: Auto (32)
Range: Auto, 0 to 31
Front Panel Access: Setup, SYNC-DL Code

[SENSe]:TAU:OFFSet <integer>
[SENSe]:TAU:OFFSet?

Title: Tau Offset
Description: Sets the Tau offset in microsecond.
Default Value: 0
Range: –5000000 to +5000000
Front Panel Access: Setup, Trigger, Tau Offset
[:SENSe]:TRIGger NOTRig|GPS|EXT
[:SENSe]:TRIGger?
 Title: External Trigger
 Description: Sets the external trigger. The query form returns either “NOTRIG”, “GPS”, or “EXT” in Ascii (without the double quotes).
 Default Value: No Trig
 Range: NOTRig, GPS, EXT
 Front Panel
 Access: Setup, Trigger, Trigger Type

[:SENSe]:ULSWitchpoint 0-6
[:SENSe]:ULSWitchpoint?
 Title: Uplink Switch Point
 Description: Index of the last downlink slot in the subframe.
 Default Value: 3
 Range: 0 to 6
 Front Panel
 Access: Setup, Uplink Switch Point
Chapter 10 — GSM Commands

10-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
10-2 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure:SUMMary

Title: Configure Summary Measurement
Description: This command configures the summary of all the related numerical measurement results. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Front Panel
Access: Shift-4 (Measure), GSM/EDGE Summary

:CONFigure:DEMod

Title: Configure Demodulation Measurement
Description: This command configures the Demodulator measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Front Panel
Access: Shift-4 (Measure), Demodulator
:CONFigure:PFail
Title: Configure PASS/FAIL Measurement
Description: This command configures the PASS/FAIL measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement. The measurement results are equivalent to the results that are displayed by choosing Measurements, then Pass/Fail mode from the front panel.

Related Command: :FETCh:PFail?
:MEASure:PFail?
:READ:PFail?

Front Panel Access: Shift-4 (Measure), Pass/Fail Mode

:CONFigure:PVTFrame
Title: Configure Power vs. Time (Frame) Measurement
Description: This command configures the Power vs. Time (Frame) measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Related Command: MEASure:PVTFrame?
READ:PVTFrame?
FETCh:PVTFrame?

Front Panel Access: Shift-4 (Measure), Power vs. Time (Frame)

:CONFigure:PVTSlot
Title: Configure Power vs. Time (Slot) Measurement
Description: This command configures the Power vs. Time (Slot) measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Related Command: MEASure:PVTSlot?
READ:PVTSlot?
FETCh:PVTSlot?

Front Panel Access: Shift-4 (Measure), Power vs. Time (Slot)
:CONFigure:SPECTrum:MULTi

Title: Configure Multi-Channel Spectrum Measurement

Description: This command configures the Multi-Channel Spectrum measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

Front Panel Access: Shift-4 (Measure), Spectrum, Multi-Channel Spectrum

:CONFigure:SPECTrum:SINGle

Title: Configure Single Channel Spectrum Measurement

Description: This command configures the Single Channel Spectrum measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

Related Command: MEASure:SPECTrum:SINGle?
READ:SPECTrum:SINGle?
FETCh:SPECTrum:SINGle?

Front Panel Access: Shift-4 (Measure), Spectrum, Channel Spectrum

:CONFigure?

Title: Configure Query

Description: :CONFigure? query returns the name of the measurement previously set up using a CONFigure command or a MEASure? query. The list below shows the possible return values and the actual names of each configuration.

Returns Value Actual Name

<table>
<thead>
<tr>
<th>Value</th>
<th>Actual Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC</td>
<td>Single Channel Spectrum</td>
</tr>
<tr>
<td>SPEC</td>
<td>Multi-Channel Spectrum</td>
</tr>
<tr>
<td>PVTF</td>
<td>Power vs. Time (Frame)</td>
</tr>
<tr>
<td>PVTS</td>
<td>Power vs. Time (Slot)</td>
</tr>
<tr>
<td>DEM</td>
<td>Demodulator</td>
</tr>
<tr>
<td>PFPF</td>
<td>Pass/Fail Mode</td>
</tr>
<tr>
<td>SUMM</td>
<td>Summary</td>
</tr>
</tbody>
</table>

10-2 :CONFigure Subsystem GSM Commands
10-3 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to 100 dB
Front Panel
Access: Amplitude, Power Offset
10-4 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod?

Title: Fetch Demodulator
Description: Returns the most recent Demodulator measurement results. The Demodulator measurement must be the active measurement. The current measurement can be queried using CONFigure?. Use the CONFigure:DEMod command to set Demodulator as the active measurement.

Data is returned as 9 comma-delimited values: Phase Error (rms), Phase Error (peak), EVM (rms) in %, EVM (peak) in %, Origin Offset in dB, C/I in dB, Magnitude Error (rms) in %, Modulation Type, and TSC. “--” is returned for data that is not valid at that instance.

Related Command: MEASure:DEMod?
CONFigure:DEMod
READ:DEMod?

:FETCh:PFail?

Title: Fetch PASS/FAIL
Description: Returns the most recent PASS/FAIL measurement results. Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”). To receive valid measurements, the Pass/Fail measurement must be the active. The current measurement can be queried using CONFigure?. Use the :CONFigure:PFail command to set Pass/Fail as the active measurement.

Related Command: MEASure:PFail?
:CONFigure:PFail
READ:PFail?
:**FETCh:PVTFrame?**

Title: Fetch Power vs. Time (Frame)

Description:
Returns the most recent Power vs. Time (Frame) measurement results. The Power vs. Time (Frame) measurement must be the active measurement. The current measurement can be queried using CONFigure?. Use the CONFigure:PVTFrame command to set Power vs. Time (Frame) as the active measurement.

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error in ppb, Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command:
- MEASure:PVTFrame?
- CONFigure:PVTFrame
- READ:PVTFrame?

:**FETCh:PVTSlot?**

Title: Fetch Power vs. Time (Slot)

Description:
Returns the most recent Power vs. Time (Slot) measurement results. The Power vs. Time (Slot) measurement must be the active measurement. The current measurement can be queried using CONFigure?. Use the CONFigure:PVTSlot command to set Power vs. Time (Slot) as the active measurement.

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error in ppb, Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

:**FETCh:SPECTrum:MULTi?**

Title: Fetch Multi-Channel Spectrum

Description:
Returns the most recent Multi-Channel Spectrum measurement results. The Multi-Channel Spectrum measurement must be the active measurement. The current measurement can be queried using CONFigure?. Use the CONFigure:SPECTrnum:MULTi command to set Multi-Channel Spectrum as the active measurement.

Data is returned as 1 value: Span in MHz.

Related Command:
- MEASure:SPECTrnum:MULTi?
- :CONFigure:SPECTrnum:MULTi
- READ:SPECTrnum:MULTi?
:FETCH:SPECtrum:SINGle?

Title: Fetch Single Channel Spectrum

Description: Returns the most recent Single Channel Spectrum measurement results. The Single Channel Spectrum measurement must be the active measurement. The current measurement can be queried using CONFigure?. Use the CONFigure:SPECtrum:SINGle command to set Single Channel Spectrum as the active measurement.

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error in ppb, Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command: MEASure:PVTSlot?
:CONFigure:PVTSlot
READ:PVTSlot?
10-5 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCII format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you've chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCII|INTeger,32|REAL,32
Parameter Type: <char>
Default Value: ASCII
Related Command: :TRACe[:DATA]
10-6 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous?

Title: Continuous/Single Sweep
Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: :INITiate[:IMMediate]

Front Panel
Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement
Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous
:STATus:OPERation?

Front Panel
Access: Shift-3 (Sweep), Trigger Sweep
10-7 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASure:DEMod?

Title: Measure Demodulator

Description: Sets the active measurement to Demodulator, sets the default measurement parameters, triggers a new measurement and returns the Phase Error (rms), Phase Error (peak), EVM (rms), EVM (peak), Origin Offset, C/I, Magnitude Error (rms), Modulation Type, and TSC measurement. It is a combination of the commands :CONFigure:DEMod and :READ:DEMod? To make a Demodulator measurement with settings other than the default values, send:

CONFigure:DEMod

Commands to set desired settings

READ:DEMod?

Data is returned as 9 comma-delimited values: Phase Error (rms), Phase Error (peak), EVM (rms) in %, EVM (peak) in %, Origin Offset in dB, C/I in dB, Magnitude Error (rms) in %, Modulation Type, and TSC.

“--” is returned for each data that is not valid at that instance.

Related Command:

CONFigure:DEMod
READ:DEMod?
FETCh:DEMod?

Front Panel Access: Shift-4 (Measure), Demodulator
Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure:PFail and :READ:PFail? To configure the PASS/FAIL measurement with settings other than the default values, send:

:CONFigure:PFail

Commands to set desired settings

:READ:PFail?

Related Command:

:CONFigure:PFail

READ:PFail?

FETCH:PFail?

Front Panel Access: Shift-4 (Measure), PASS/FAIL mode

Title: Measure Power vs. Time (Frame)

Description: Sets the active measurement to Power vs. Time (Frame), sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. It is a combination of the commands :CONFigure:PVTFrame and :READ:PVTFrame? To make a Power vs. Time (Frame) measurement with settings other than the default values, send:

:CONFigure:PVTFrame

Commands to set desired settings

READ:PVTFrame?

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.
:MEASure:PVTSlot?

Title: Measure Power vs. Time (Slot)

Description: Sets the active measurement to Power vs. Time (Slot), sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. It is a combination of the commands :CONFigure:PVTSlot and :READ:PVTSlot? To make a Power vs. Time (Slot) measurement with settings other than the default values, send:

CONFigure:PVTSlot
Commands to set desired settings
READ:PVTSlot?

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command: CONFigure:PVTSlot
:READ:PVTSlot?
:FETCh:PVTSlot?

Front Panel Access: Shift-4 (Measure), Power vs. Time (Slot)

:MEASure:SPECTrumn:MULTi?

Title: Measure Multi-Channel Spectrum

Description: Sets the active measurement to Multi-Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Span. It is a combination of the commands :CONFigure:SPECTrumn:MULTi and :READ:SPECTrumn:MULTi? To make a Multi-Channel Spectrum measurement with settings other than the default values, send:

CONFigure:SPECTrumn:MULTi
Commands to set desired settings
READ:SPECTrumn:MULTi?

Data is returned as 1 value: Span in MHz.

Related Command: CONFigure:SPECTrumn:MULTi
:READ:SPECTrumn:MULTi?
:FETCh:SPECTrumn:MULTi?

Front Panel Access: Shift-4 (Measure), Spectrum, Multi-Channel Spectrum
Title: Measure Single Channel Spectrum

Description: Sets the active measurement to Single Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. It is a combination of the commands :CONFigure:SPECtrum:SINGle and :READ:SPECtrum:SINGle? To make a Single Channel Spectrum measurement with settings other than the default values, send:

`CONFigure:SPECtrum:SINGle`
Commands to set desired settings
`READ:SPECtrum:SINGle?`

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command:
`CONFigure:SPECtrum:SINGle`
`:READ:SPECtrum:SINGle?`
`:FETCh:SPECtrum:SINGle?`

Front Panel Access: Shift-4 (Measure), Spectrum, Channel Spectrum
10-8 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:DEMod?

Title: Read Demodulator
Description: Triggers a new Demodulator measurement and returns the results:
Phase Error (rms), Phase Error (peak), EVM (rms), EVM (peak), Origin Offset, C/I, Magnitude Error (rms), Modulation Type, and TSC measurement. It is a combination of the commands :ABORT, :INITiate, and FETCh:DEMod? The Demodulator measurement must be the active measurement (specified by CONFigure:DEMod). The current measurement can be queried using CONFigure?

Data is returned as 9 comma-delimited values: Phase Error (rms), Phase Error (peak), EVM (rms) in %, EVM (peak) in %, Origin Offset in dB, C/I in dB, Magnitude Error (rms) in %, Modulation Type, and TSC. “..” is returned for each data that is not valid at that instance.

Related Command: MEASure:DEMod?
 :CONFigure:DEMod
 :FETCh:DEMod?

Front Panel Access: Shift-4 (Measure), Demodulator

:READ:PFail?

Title: Read PASS/FAIL
Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCh:PFail?
 :CONFigure:PFail
 :MEASure:PFail?

Front Panel Access: Shift-4 (Measure), PASS/FAIL Mode
:READ:PVTFrame?

Title: Read Power vs. Time (Frame)

Description: Triggers a new Power vs. Time (Frame) measurement and returns the results: Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. It is a combination of the commands :ABORT, :INITiate, and FETCh:PVTFrame? The Power vs. Time (Frame) measurement must be the active measurement (specified by CONFigure:PVTFrame). The current measurement can be queried using CONFigure?

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command: MEASure:PVTFrame?

:READ:PVTSlot?

Title: Read Power vs. Time (Slot)

Description: Triggers a new Power vs. Time (Slot) measurement and returns the results: Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. Result Format See FETCh:PFail? It is a combination of the commands :ABORT, :INITiate, and FETCh:PVTSlot? The Power vs. Time (Slot) measurement must be the active measurement (specified by CONFigure:PVTSlot). The current measurement can be queried using CONFigure?

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “--” is returned for each data that is not valid at that instance.

Related Command: MEASure:PVTSlot? CONFigure:PVTSlot FETCh:PVTSlot?
:READ:SPECTrum:MULTi?

Title: Read Multi-Channel Spectrum

Description: Triggers a new Multi-Channel Spectrum measurement and returns the results: Span. It is a combination of the commands :ABORT, :INITiate, and FETCh:SPECTrum:MULTi? The Multi-Channel Spectrum measurement must be the active measurement (specified by CONFigure:SPECTrum:MULTi). The current measurement can be queried using CONFigure?

Data is returned as 1 value: Span in MHz.

Default Unit: MHz

Front Panel Access: Shift-4 (Measure), Spectrum, Multi-Channel Spectrum

:READ:SPECTrum:SINGle?

Title: Read Single Channel Spectrum

Description: Triggers a new Single Channel Spectrum measurement and returns the results: Channel Power, Burst Power, Average Burst Power, Span, Occupied Bandwidth, Frequency Error, Frequency Error (ppm), Modulation Type, and TSC measurement. It is a combination of the commands :ABORT, :INITiate, and FETCh:SPECTrum:SINGle? The Single Channel Spectrum measurement must be the active measurement (specified by CONFigure:SPECTrum:SINGle). The current measurement can be queried using :CONFigure?

Data is returned as 9 comma-delimited values: Channel Power in dBm, Burst Power in dBm, Average Burst Power in dBm, Span in MHz, Occupied Bandwidth in MHz, Frequency Error in MHz, Frequency Error (ppm), Modulation Type, and TSC. “-” is returned for each data that is not valid at that instance.

Related Command: MEASure:SPECTrum:SINGle?

:CONFigure:SPECTrum:SINGle FETCh:SPECTrum:SINGle?

Front Panel Access: Shift-4 (Measure), Spectrum, Channel Spectrum
10-9 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Trace Header Transfer

Description: Returns trace header information for the specified trace. The <trace type> must be one of the following:
SINGle | MULTi | PVTFrame | PVTSlot | DEMod

Data can be transferred to and from the 5 available display trace types. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Note that the instrument must be set in the selected view. Use the CONFigure commands to set the unit to the selected view. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameters are shown in “GSM Parameter Names” on page 2-20.

Parameter: <trace type>

Related Command: :TRACe:DATA?

:TRACe[:DATA]? <trace type>

Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The <trace type> must be one of the following:
SINGle | MULTi | PVTFrame | PVTSlot | DEMod.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?.

Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. Except for DEMod, there is only one value per data point. For DEMod, each data point is represented by 2 values, 4 bytes each: IData (no units), and QData (no units). For SINGle, MULTi, PVTFrame, and PVTSlot, the unit is in dBm. Note that the instrument must be set in the selected view. Use the CONFigure commands to set the unit to the selected view.

Parameter: <trace type>

Related Command: :FORMat[:DATA]

:TRACe[:DATA]:PREamble?
10-10 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:FREQuency:BAND AUTO|GSM|EDGE
[:SENSe]:FREQuency:BAND?

Title: GSM/EDGE Measurement Selection

Description: This command toggles the type of signal that is measured. AUTO allows the instrument to search for a GSM or EDGE signal automatically. GSM sets the instrument to measure only GSM signals. EDGE sets the instrument to measure only EDGE signals.

The query form of the command returns the measurement mode that the instrument is currently in.

Parameter: AUTO|GSM|EDGE

Parameter Type: <char>

Default Value: AUTO

Front Panel Access: Setup, GSM/EDGE Select

[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency

Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.

Parameter: <freq>

Default Value: 1 GHz

Default Unit: Hz

Range: 0 Hz to 7.1 GHz

Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection

Description: Sets the channel number for the selected signal standard.

Parameter: <number>

Front Panel Access: Freq, Channel
[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument's current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently-selected Signal Standard on the list.

Parameter: <string>
Front Panel Access: Freq, Signal Standard

[:SENSe]:FREQuency:STARt?

Title: Start Frequency
Description: Queries the start frequency of the Multi-Channel Spectrum. Note that this command is valid only if the current view is set to Multi-Channel Spectrum.

Parameter: <freq>
Default Unit: Hz

Related Command: [:SENSe]:FREQuency:STOP?

[:SENSe]:FREQuency:STOP?

Title: Stop Frequency
Description: Queries the stop frequency of the Multi-Channel Spectrum. Note that this command is valid only if the current view is set to Multi-Channel Spectrum.

Parameter: <freq>
Default Unit: Hz
[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure:PFail
Front Panel Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test

[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being un-coupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range
[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Re-calculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.
Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO
Front Panel Access: Amplitude, Adjust Range

[:SENSe]:PVTFrame:STARt?

Title: Power vs. Time (Frame) Start Time
Description: Queries the Power vs. Time (Frame) start time. Only valid in the Power vs. Time (Frame) measurement.
Default Unit: seconds
Related Command: [:SENSe]:PVTFrame:STOP?

[:SENSe]:PVTFrame:STOP?

Title: Power vs. Time (Frame) Stop Time
Description: Queries the Power vs. Time (Frame) stop time. Only valid in the Power vs. Time (Frame) measurement.
Default Unit: seconds
Related Command: [:SENSe]:PVTFrame:STARt?

[:SENSe]:PVTSlot:STARt?

Title: Power vs. Time (Slot) Start Time
Description: Queries the Power vs. Time (Slot) start time. Only valid in the Power vs. Time (Slot) measurement.
Default Unit: seconds
Related Command: [:SENSe]:PVTSlot:STOP?

[:SENSe]:PVTSlot:STOP?

Title: Power vs. Time (Slot) Stop Time
Description: Queries the Power vs. Time (Slot) stop time. Only valid in the Power vs. Time (Slot) measurement.
Default Unit: seconds
Related Command: [:SENSe]:PVTSlot:STARt?
Chapter 11 — Fixed WiMAX Commands

11-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
:INITiate[:IMMediate]
11-2 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMARY

Title: Configure Summary Measurement
Description: This command configures the summary of all the related numerical measurement results. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMARY
Parameter Type: <char>
Front Panel Access: Shift-4 (Measure), WiMAX Summary
Title: Configure Demodulation Measurement

Description: Valid `<char>` parameters are: SUMMARY | CONStln | SFLatness | EVSCarrier | EVSYymbol.

This command configures the selected demodulation measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement.

When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Modulation Summary from the front panel.
When the CONStln option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Constellation from the front panel.
When the SFLatness option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Spectral Flatness from the front panel.
When the EVSCarrier option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator then EVM vs Sub Carrier from the front panel.
When the EVSYymbol option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator then EVM vs Symbol from the front panel.

Parameter: `<char>`

Front Panel Access: Shift-4 (Measure), Demodulator

Title: Configure PASS/FAIL Measurement

Description: This command configures the PASS/FAIL measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement. The measurement results are equivalent to the results that are displayed by choosing Measurements, then PASS/FAIL from the front panel.

Parameter: PFail

Related Command: :FETCh:PFail?
MEASURE:PFail?
READ:PFail?

Front Panel Access: Shift-4 (Measure), Pass/Fail Mode
:CONFigure:RF <char>

Title: Configure RF Measurement

Description: Valid parameter options: SUMMary | SPECtrum | PVTime | ACPR

This command configures the selected RF measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMMary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then RF Summary from the front panel. When the SPECtrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Spectrum from the front panel. When the PVTime option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Power vs Time from the front panel. When the ACPR option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then ACPR from the front panel.

Parameter: <char>

Related Command: [:SENSe]:FREQuency
11-3 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:MAXHold OFF|ON|0|1
:DISPlay:WINDow:TRACe:MAXHold?

Title: Max Hold State
Description: Specifies whether the Max Hold is ON or OFF. The default value is 0. That is, sending :DISP:WIND:TRAC:MAXH is equivalent to sending :DISP:WIND:TRAC:MAXH ON. The query version of the command returns a 1 if Max Hold is set to ON and returns a 0 if the Max Hold is set to OFF. Note that this command is available only in the Spectrum and EVM vs. Sub-carrier views.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: 0
Related Command: :CONFigure:RF SPECtrum
:CONFigure:DEMod EVSCarrier

Front Panel
Access: Shift-5 (Trace), Max Hold

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: 0 dB to 100 dB
Front Panel
Access: Amplitude, Power Offset
Title: Scale Resolution Per Division

Description: Sets the scale per division for the y-axis. The units change from dB/div to % when EVM is the y-axis value. The resolution per division value is maintained separately for each measurement.

Parameter: `<value>`

Default Value:
- Spectral Flatness: 1 dB/div
- EVM vs. SubCarrier: 0.50 %
- EVM vs. Symbol: 0.50 %
- All others: 10 dB/div

Default Unit: Current active amplitude unit

Range:
- EVM vs. SubCarrier: 0.1 % to 10 %
- EVM vs. SubCarrier: 0.1 % to 10 %
- All others: 1 dB to 15 dB

Title: Y Axis Max

Description: Sets the maximum value of the Y axis. Note that this command is available only in the Spectral Flatness and EVM vs. Symbol/Sub-carrier views.

Parameter: `<amplitude>`

Default Value:
- Spectral Flatness: 5 dB
- EVM vs. Symbol: 5 %
- EVM vs. Sub-carrier: 5 %

Default Unit: Current active amplitude unit

Range:
- Spectral Flatness: –5 to +5
- EVM vs. Symbol: 1 to 100
- EVM vs. Sub-carrier: 1 to 100

Front Panel Access: Amplitude, Y Axis Max
11-4 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:*FETCh:DEMod:CONStIn?
 Title: Fetch Constellation
 Description: Returns the constellation of the demodulated data symbol over one frame measurement results.
 Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:*FETCh:DEMod:EVSCarrier?
 Title: Fetch EVM vs. Sub Carrier
 Description: Returns the EVM vs. Sub Carrier measurement results.
 Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:*FETCh:DEMod:EVSYmbol?
 Title: Fetch EVM vs. Symbol
 Description: Returns the EVM vs. Symbol measurement results.
 Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:*FETCh:DEMod:SFLatness?
 Title: Fetch Spectral Flatness
 Description: Returns the absolute delta of the power between adjacent sub carriers in dB. “--” is returned for data that is not valid at that instance.
`:FETCh:PFail?

Title: Fetch PASS/FAIL

Description: Returns the most recent PASS/FAIL measurement results. Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”). To receive valid measurements, the Pass/Fail measurement must be the active. The current measurement can be queried using CONFigure?. Use the :CONFigure PFail command to set Pass/Fail as the active measurement.

Related Command:
MEASure:PFail?
:CONFigure PFail
READ:PFail?

`:FETCh:RF:ACPR?

Title: Fetch Adjacent Channel Power Ratio

Description: Returns the most recent adjacent channel power ratio measurement results.

Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm. “--” is returned for each data that is not valid at that instance.

Related Command:
:CONFigure:RF ACPR
:MEASure:RF:ACPR?
:READ:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR
:FETCh:RF:PVTime?

Title: Fetch Power vs. Time

Description: Returns the most recent WiMAX 802.16-2004 OFDM signal over approximately one frame time domain measurement results.

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, burst power of data bursts in dBm, and the Crest Factor in dB. “--” is returned for each data that is not valid at that instance.

:FETCh:RF:SPECTrum?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Spectrum measurement results.

Data is returned as 2 comma-delimited values: Channel Power(RSSI) in dBm and Occupied bandwidth measurement in MHz. “--” is returned for each data that is not valid at that instance.

Related Command: :CONFigure:RF SPECTrump

:MEASure:RF:SPECTrump?

:READ:RF:SPECTrump?

Front Panel Access: Measurements, RF Measurements, Spectrum
11-5 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you've chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCii | INTeger,32 | REAL,32
Parameter Type: <char>
Default Value: ASCii
Related Command: :TRACe[:DATA]
11-6 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinue OFF|ON|0|1

:INITiate:CONTinue?

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinue ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel

Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Initiates a sweep/measurement. If :INITiate:CONTinueous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinueous

:STATus:OPERation?

Front Panel

Access: Shift-3 (Sweep),Trigger Sweep
11-7 :MEASURE Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASURE:DEMod:CONSTIn?

Title: Measure Constellation

Description: Sets the active measurement to Constellation, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONFigure:DEMod CONSTIn and :READ:DEMod:CONSTIn? To make a Demodulated Constellation measurement with settings other than the default values, send:

:CONFigure:DEMod CONSTIn

Commands to set desired settings

:READ:DEMod:CONSTIn?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :READ:DEMod:CONSTIn?

:CONFigure:DEMod CONSTIn
:MEASure:DEMod:EVSCarrier?

Title: Measure EVM vs. Sub Carrier

Description: Sets the active measurement to EVM vs. Sub Carrier, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONfigure:DEMod EVSCarrier and :READ:DEMod:EVSCarrier? To make a EVM vs. Symbol measurement with settings other than the default values, send:

:CONfigure:DEMod EVSCarrier

Commands to set the desired settings

:READ:DEMod:EVSCarrier?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :READ:DEMod:EVSCarrier?

:CONfigure:DEMod EVSCarrier

:MEASure:DEMod:EVSYmbol?

Title: Measure EVM vs. Symbol

Description: Sets the active measurement to EVM vs. Symbol, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONfigure:DEMod EVSYmbol and :READ:DEMod:EVSYmbol? To make a EVM vs. Symbol measurement with settings other than the default values, send:

:CONfigure:DEMod EVSYmbol

Commands to set the desired settings

:READ:DEMod:EVSYmbol?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :READ:DEMod:EVSYmbol?

:CONfigure:DEMod EVSYmbol
MEASure:DEMod:SFLatness?

Title: Measure Spectral Flatness

Description: Sets the active measurement to Spectral Flatness, sets the default measurement parameters, triggers a new measurement, and returns the absolute delta of the power between adjacent sub carriers in dB. It is a combination of the commands :CONFigure:DEMod SFLatness and :READ:DEMod:SFLatness?. To make a Spectral Flatness measurement with settings other than the default values, send:

:CONFigure:DEMod SFLatness

Commands to set desired settings

:READ:DEMod:SFLatness?

Related Command: :READ:DEMod:SFLatness?

:**MEASure:PFail?**

Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure PFail and :READ:PFail?. To make a PASS/FAIL measurement with settings other than the default values, send:

:CONFigure PFail

Commands to set desired settings

:READ:PFail?

Related Command: :CONFigure PFail

READ:PFail?

FETCh:PFail?

Front Panel Access: Shift-4 (Measure), Pass/Fail Mode
:MEASure:RF:ACPR?

Title: Measure Adjacent Channel Power Ratio

Description: Sets the active measurement to ACPR, sets the default measurement parameters, triggers a new measurement, and returns the power levels for each channel (both absolute and relative). It is a combination of the commands :CONFigure:RF ACPR and :READ:RF:ACPR? To make an RF ACPR measurement with settings other than the default values, send:

:CONFigure:RF ACPR
Commands to set desired settings
:READ:RF:ACPR?

Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm.

Related Command: :READ:RF:ACPR?
:CONFigure:RF ACPR
:FETCh:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR

:MEASure:RF:PVTime?

Title: Measure Power vs. Time

Description: Sets the active measurement to Power vs. Time, sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Preamble power, burst power of data bursts, and the Crest Factor. It is a combination of the commands :CONFigure:RF PVTime and :READ:RF:PVTime? To make an RF PVT measurement with settings other than the default values, send:

:CONFigure:RF PVTime
Commands to set desired settings
:READ:RF:PVTime?

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, burst power of data bursts in dBm, and the Crest Factor in dB.

Related Command: :READ:RF:PVTime?
:CONFigure:RF PVTime
:MEASure:RF:**SPECTrum**?

Title: Measure RF Spectrum

Description: Sets the active measurement to Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power (RSSI) and Occupied bandwidth measurement. It is a combination of the commands :CONFigure:RF SPECtrum and :READ:RF:SPECtrum? To make an RF Spectrum measurement with settings other than the default values, send:

:CONFigure:RF SPECtrum

Commands to set desired settings

:READ:RF:SPECtrum?

Data is returned as 2 comma-delimited values: Channel Power (RSSI) in dBm Occupied bandwidth measurement in MHz.

Related Command:

:CONFigure:RF SPECtrum

:READ:RF:SPECtrum?

:FETCh:RF:SPECtrum?

Front Panel Access: Measurements, RF Measurements, Spectrum
This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

READ:DEMod:CONStIn?

Title: Read Constellation

Description: Triggers a new Constellation measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStIn). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:CONStIn?

READ:DEMod:EVSCarrier?

Title: Read EVM vs. Sub Carrier

Description: Triggers a new EVM vs. Sub Carrier measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The EVM vs. Sub Carrier measurement must be the active measurement (specified by :CONFigure:DEMod EVSCarrier). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:EVSCarrier?
:READ:DEMod:EVSYmbol?

Title: Read EVM vs. Symbol

Description: Triggers a new EVM vs. Symbol measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The EVM vs. Symbol measurement must be the active measurement (specified by :CONFigure:DEMod EVSYmbol). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:EVSYmbol?
:CONFigure:DEMod EVSYmbol

:READ:DEMod:SFLatness?

Title: Read Spectral Flatness

Description: Triggers a new Spectral Flatness measurement and returns the absolute delta of the power between adjacent sub carriers in dB. The Spectral Flatness measurement must be the active measurement (specified by :CONFigure:DEMod SFLatness). The current measurement can be queried using the command :CONFigure?

Related Command: :FETCh:DEMod:SFLatness?
:CONFigure:DEMod SFLatness

:READ:PFail?

Title: Read PASS/FAIL

Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCh:PFail?
:CONFigure PFail
:MEASure:PFail?

Front Panel Access: Measurements, Pass/Fail Mode

:READ:RF:ACPR?

Title: Read Adjacent Channel Power Ratio

Description: Triggers a new Adjacent Channel Power Ratio measurement and returns the results: Power levels for each channel (both absolute and relative). It is a combination of the commands :ABORT, :INITiate, and :FETCh:RF:ACPR? The ACPR measurement must be the active measurement (specified by :CONFigure:RF ACPR). The current measurement can be queried using :CONFigure?
Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm.

Related Command:
- :FETCh:RF:ACPR?
- :CONFigure:RF:ACPR
- :MEASure:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR

:READ:RF:PVTime?

Title: Read Power vs. Time

Description: Triggers a new Power vs. Time measurement and returns the results: Channel Power, Preamble power, burst power of data bursts, and the Crest Factor. It is a combination of the commands :ABORT, :INITiate, and :FETCh:RF:PVTime? The Power vs. Time measurement must be the active measurement (specified by :CONFigure:RF PVTime). The current measurement can be queried using :CONFigure?

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, burst power of data bursts in dBm, and the Crest Factor in dB.

Related Command:
- :FETCh:RF:PVTime?
- :CONFigure:RF PVTime

:READ:RF:SPECtrum?

Title: Read RF Spectrum

Description: Triggers a new RF Spectrum measurement and returns the results: Channel Power (RSSI) and Occupied bandwidth measurement. It is a combination of the commands :ABORT, :INITiate, and :FETCh:RF:SPECtrum? The Spectrum measurement must be the active measurement (specified by :CONFigure:RF SPECtrum). The current measurement can be queried using :CONFigure?

Data is returned as 2 comma-delimited values: Channel Power (RSSI) in dBm and Occupied bandwidth measurement in MHz.

Related Command:
- :FETCh:RF:SPECtrum?
- :CONFigure:RF SPECtrum
- :MEASure:RF:SPECtrum?
11-9 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Returns trace header information for the specified trace. The <trace type> must be one of the following:
SPECtrum | PVTtime | ACPR | CONStln | SFLatness | EVSCarrier | EVSY mbol

Data can be transferred to and from the 7 available display trace types. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in Chapter 2.

Parameter: <trace type>

Related Command: :TRACe:DATA?
Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The `<trace type>` must be one of the following: SPECtrum | PVTime | CONStIn | SFLatness | EVSCarrier | EVSYmbol.

The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format. The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter. Trace setup information can be acquired using :TRACe[:DATA]:PREamble?.

Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. Except for CONStIn there is only one value per data point. If max hold is set to ON for SPECtrum and EVM vs. Sub Carrier then the max hold value is returned. For CONStIn, each data point is represented by 3 values 4 bytes each: IData (no units), QData (no units), and the constellation type (no units). For SPECtrum and PVTime unit is in dBm. For Spectral Flatness unit is in dB. For EVM vs Sub Carrier and EVM vs Symbol unit is in percent. Note that the instrument must be set in the selected view. Use the CONFigure command to set the unit to the selected view.

Parameter: `<trace type>`

Related Command:

- :FORMat[:DATA]
- :TRACe[:DATA]:PREamble?
11-10 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:BANDwidth|BWIDth[:RESo] <index>
[:SENSe]:BANDwidth|BWIDth[:RESo]?

Title: Resolution Bandwidth

Description: Sets the resolution bandwidth. The <index> argument is a 1-based index of the position of the desired bandwidth in the instrument’s current bandwidth list. The list can be displayed on the instrument by choosing the “BW” submenu button in the “Setup” menu. For example, if the desired bandwidth is the 3rd item on the list then the value of the <index> argument would be 3.

The query form of this command will return the index of the currently-selected bandwidth on the list. The Default is the 1st index in the bandwidth list.

Parameter: <index>

Default Value: The default bandwidth is 1.25MHz which is the 1st index in the bandwidth list.

Front Panel Access: Setup, BW

[:SENSe]:CPRatio <index>
[:SENSe]:CPRatio?

Title: Cyclic Prefix Ratio (G)

Description: Selects the desired Cyclic Prefix Ratio from the list. The <index> argument is a 1-based index of the position of the desired CP Ratio in the instrument’s current CP Ratio list. The list can be displayed on the instrument by choosing the “CP Ratio (G)” submenu button in the “Setup” menu. For example, if the desired CP Ratio is the 3rd item on the list then the value of the <index> argument would be 3.

The query form of this command will return the index of the currently-selected CP Ratio on the list. The default CP ratio is the first index in the CP ratio list.

Parameter: <index>

Default Value: The default CP Ratio is 1/4, which is the first index in the CP Ratio list.

Front Panel Access: Setup, CP Ratio (G)

[:SENSe]:DEMod:CONSTln:POINts?

Title: Number of Constellation Point

Description: Queries the number of Constellation points.
[:SENSe]:DEMod:CONStln:REFPoints[:STATe] OFF|ON|0|1
[:SENSe]:DEMod:CONStln:REFPoints[:STATe]?
 Title: Constellation Reference Points
 Description: Sets the display of the reference points for the various constellations on/off. The query will return 1 for ON and 0 for OFF.
 Parameter: OFF|ON|0|1
 Parameter Type: <boolean>
 Default Value: 1
 Front Panel
 Access: Shift 4 (Measure), Demodulator, Constellation, Reference Points

[:SENSe]:DEMod:EVSCarrier:STARt:X?
 Title: EVM vs. Sub Carrier Start Value
 Description: Queries the EVM vs. Sub Carrier start value.
 Related Command: [:SENSe]:DEMod:EVSCarrier:STOP:X?

[:SENSe]:DEMod:EVSCarrier:STOP:X?
 Title: EVM vs. Sub Carrier Stop Value
 Description: Queries the EVM vs. Sub Carrier stop value.
 Related Command: [:SENSe]:DEMod:EVSCarrier:STARt:X?

[:SENSe]:DEMod:EVSYmbol:STARt:X?
 Title: EVM vs. Symbol Start Value
 Description: Queries the EVM vs. Symbol start value.
 Related Command: [:SENSe]:DEMod:EVSYmbol:STOP:X?

[:SENSe]:DEMod:EVSYmbol:STOP:X?
 Title: EVM vs. Symbol Stop Value
 Description: Queries the EVM vs. Symbol stop value.
 Related Command: [:SENSe]:DEMod:EVSYmbol:STARt:X?

[:SENSe]:DEMod:SFLatness:STARt:X?
 Title: Spectral Flatness Start Value
 Description: Queries the Spectral Flatness start value.
 Related Command: [:SENSe]:DEMod:SFLatness:STOP:X?
[:SENSe]:DEMod:SFLatness:STOP:X?

Title: Spectral Flatness Stop Value
Description: Queries the Spectral Flatness stop value.
Related Command: [:SENSe]:DEMod:SFLatness:STARt:X?

[:SENSe]:DLFLength 2.5|5|10
[:SENSe]:DLFLength?

Title: Down Link Frame Length
Description: Set the Down Link Frame Length. Setting the length to 2.5 will result in setting the Frame Length to 2.5 ms. Setting the length to 5 will result in setting the Frame Length to 5 ms. Setting the length to 10 will result in setting the Frame Length to 10 ms.
The query form of this command will return the Down Link Frame Length in unit of seconds.

Parameter: 2.5|5|10
Default Value: 2500 us
Default Unit: seconds
Front Panel Access: Setup, Frame Length

[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.

Parameter: <freq>
Default Value: 2.5 GHz
Default Unit: Hz
Range: 0 Hz to 7.1 GHz
Front Panel Access: Freq, Center Freq
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel
Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string>
argument is the name of the desired signal standard as displayed in the
instrument’s current signal standard list. The list can be displayed on
the instrument by choosing the Signal Standard submenu button in the
Freq menu. The list can also be downloaded remotely and viewed using
Anritsu Master Software Tools. For example, if the desired Signal
Standard is P-GSM 900 - Uplink then the value of the <string>
argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the
currently-selected Signal Standard on the list.

Parameter: <string>
Front Panel
Access: Freq, Signal Standard
[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test

[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range
[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.
Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO

Front Panel
Access: Amplitude, Adjust Range

[:SENSe]:RF:ACPR:ADJCchannelcount?

Title: ACPR ADJC Channel Count
Description: Returns the number of Adjacent channels in the ACPR view.
Range: 1 to 4

[:SENSe]:RF:ACPR:MAINchannelcount?

Title: ACPR MAIN Channel Count
Description: Returns the number of main channels in the ACPR view.
Range: 1 to 4

[:SENSe]:RF:PVTime:FRAMe:STARt?

Title: Power vs. Time Frame Start Time
Description: Queries the Power vs. Time Frame start time.
Default Unit: seconds
Related Command: [:SENSe]:RF:PVTime:FRAMe:STOP?
[:SENSe]:DLFLength?

[:SENSe]:RF:PVTime:FRAMe:STOP?

Title: Power vs. Time Frame Stop Time
Description: Queries the Power vs. Time frame stop time.
Default Unit: seconds
Related Command: [:SENSe]:RF:PVTime:FRAMe:STARt?
[:SENSe]:DLFLength?
[:SENSe]:RF:SPECTrum:SPAN 5|10|20|30
[:SENSe]:RF:SPECTrum:SPAN?

Title: Spectrum View Span

Description: Sets the span for the Spectrum view. Setting the value to 5 will set the span for the Spectrum view to 5 MHz. Setting the value to 10 will set the span for the Spectrum view to 10 MHz. Setting the value to 20 will set the span for the Spectrum view to 20 MHz. Setting the value to 30 will set the span for the Spectrum view to 30 MHz.

Parameter: 5|10|20|30

Default Value: 5 MHz

Default Unit: MHz

Front Panel Access: Measurements, RF Measurements, Spectrum, Span
Chapter 12 — Mobile WiMAX
Commands

12-1 :ABORe Subsystem
The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. Resets the trigger system. If :INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA

Related Command: :INITiate:CONTinuous
 :INITiate[:IMMediate]
12-2 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure PFail

Title: Configure PASS/FAIL Measurement

Description: This command configures the PASS/FAIL measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement. The measurement results are equivalent to the results that are displayed by choosing Measurements, then PASS/FAIL from the front panel.

Parameter: PFail

Related Command: :FETCH:PFail?
 MEASURE:PFail?
 READ:PFail?

Front Panel Access: Measurements, Pass/Fail Mode

:CONFigure SUMMARY

Title: Configure Summary Measurement

Description: This command configures the summary of all the related numerical measurement results. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMARY

Parameter Type: <char>

Front Panel Access: Measurements, WiMAX Summary
:CONFigure:DEMod <char>

Title: Configure Demodulation Measurement

Description: Valid <char> parameters are:
SUMMary | CONStln | SFLatness | EVSCarrier | EVSYmbol.

This command configures the selected demodulation measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF).
Measurement settings can be modified by using the [:SENSe]:DEMod commands before initiating a measurement.

When the SUMMARY option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Modulation Summary from the front panel.
When the CONStln option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Constellation from the front panel. When the SFLatness option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator, then Spectral Flatness from the front panel. When the EVSCarrier option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator then EVM vs Sub Carrier from the front panel. When the EVSYmbol option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then Demodulator then EVM vs Symbol from the front panel.

Parameter: <char>

Front Panel Access: Measurements, Demodulator
Title: Configure RF Measurement

Description: Valid parameter options: SUMMary | SPECtrum | PVTime | ACPR

This command configures the selected RF measurement. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe]:RF commands before initiating a measurement.

When the SUMMary option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then RF Summary from the front panel. When the SPECtrum option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Spectrum from the front panel. When the PVTime option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then Power vs Time from the front panel. When the ACPR option is selected, the measurement results are equivalent to the results that are displayed by choosing Measurements, then RF, then ACPR from the front panel.

Parameter: <char>

Related Command: [:SENSe]:FREQuency
12-3 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not
modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:MAXHold OFF|ON|0|1
:DISPlay:WINDow:TRACe:MAXHold?

Title: Max Hold State
Description: Specifies whether the Max Hold is ON or OFF. The default value is ON. That is, sending :DISP:WIND:TRAC:MAXH is equivalent to sending :DISP:WIND:TRAC:MAXH ON. The query version of the command returns a 1 if Max Hold is set to ON and returns a 0 if the Max Hold is set to OFF. Note that this command is available only in the Spectrum and EVM vs. Sub-carrier views.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: 0

Front Panel
Access: Shift-5 (Trace), Max Hold

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: 0 dB to 100 dB

Front Panel
Access: Amplitude, Power Offset
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <value>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale Resolution Per Division
Description: Sets the scale per division for the y-axis. The units change from dB/div to % when EVM is the y-axis value. The resolution per division value is maintained separately for each measurement.
Parameter: <value>
Default Value:
- Spectral Flatness: 1 dB/div
- EVM vs. SubCarrier: 0.50%
- EVM vs. Symbol: 0.50%
- All others: 10dB/div
Default Unit: Current active amplitude unit
Range:
- EVM vs. SubCarrier: 0.1 % to 10 %
- EVM vs. SubCarrier: 0.1 % to 10 %
- All others: 1 dB to 15 dB

:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP <amplitude>
:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP?

Title: Y Axis Max
Description: Sets the maximum value of the Y axis. Note that this command is available only in the Spectral Flatness and EVM vs. Symbol/Sub-carrier views.
Parameter: <amplitude>
Default Value:
- Spectral Flatness: 5dB
- EVM vs. Symbol: 5%
- EVM vs. Sub-carrier: 5%
Default Unit: Current active amplitude unit
Range:
- Spectral Flatness: –5dB to 5dB
- EVM vs. Symbol: 1% to 100%
- EVM vs. Sub-carrier: 1% to 100%
Front Panel Access: Amplitude, Y Axis Max
12-4 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:CONStIn?

Title: Fetch Constellation
Description: Returns the constellation of the demodulated data symbol over one frame measurement results.

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:FETCh:DEMod:EVSCarrier?

Title: Fetch EVM vs. Sub Carrier
Description: Returns the EVM vs. Sub Carrier measurement results.

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:FETCh:DEMod:EVSYmbol?

Title: Fetch EVM vs. Symbol
Description: Returns the EVM vs. Symbol measurement results.

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID. “--” is returned for each data that is not valid at that instance.

:FETCh:DEMod:SFLatness?

Title: Fetch Spectral Flatness
Description: Returns the absolute delta of the power between adjacent sub carriers in dB. “--” is returned for data that is not valid at that instance.
:FETCH:PFail?

Title: Fetch PASS/FAIL

Description: Returns the most recent PASS/FAIL measurement results. Measurement results are returned in a block of ASCII text in the format of <header><block>. The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The block consists of a set of records which indicate individual test results. Records are comma-separated. Each record follows the format <test ID>: <input1> <input2> <min> <max> <value1> <value2> <PASS/FAIL/OPTION NOT INSTALLED>. The <test ID> field indicates which test was performed to retrieve these results. The <input1> and <input2> fields indicate the test setup. The <min> and <max> fields indicate the minimum and maximum values against which <value1> and <value2> were compared to arrive at the final PASS/FAIL result. If the specified test is not available in the instrument, the <PASS/FAIL> field will indicate “option not available” instead of “pass” or “fail”. All unused fields for a given test are represented by a double dash (“--”). To receive valid measurements, the Pass/Fail measurement must be the active. The current measurement can be queried using CONFigure?. Use the :CONFigure PFail command to set Pass/Fail as the active measurement.

Related Command: MEASURE:PFail?
:CONFigure PFail
READ:PFail?

:FETCH:RF:ACPR?

Title: Fetch Adjacent Channel Power Ratio

Description: Returns the most recent adjacent channel power ratio measurement results. Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm. “--” is returned for each data that is not valid at that instance.

Related Command: :CONFigure:RF ACPR
:MEASURE:RF:ACPR?
:READ:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR
:FETCh:RF:PVTime?

Title: Fetch Power vs. Time

Description: Returns the most recent WiMAX 802.16-2004 OFDM signal over approximately one frame time domain measurement results.

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, downlink burst power of data bursts in dBm, and uplink burst power of data bursts in dBm. “--” is returned for each data that is not valid at that instance.

:FETCh:RF:SPECTrum?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Spectrum measurement results.

Data is returned as 2 comma-delimited values: Channel Power(RSSI) in dBm and Occupied bandwidth measurement in MHz. “--” is returned for each data that is not valid at that instance.

Related Command: :CONFigure:RF SPECTrum
:MEASure:RF:SPECTrum?
:READ:RF:SPECTrum?
This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format. INTeger 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger,32 and REAL,32 formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger,32 and REAL,32) to get the number of data points (in this example, 551).

Parameter: ASCii | INTeger,32 | REAL,32

Parameter Type: <char>

Default Value: ASCii

Related Command: :TRACe[:DATA]
12-6 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTInuous OFF|ON|0|1
:INITiate:CONTInuous?

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTInuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel
Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Initiates a sweep/measurement. If :INITiate:CONTInuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTInuous
:STATus:OPERation?

Front Panel
Access: Shift-3 (Sweep), Trigger Sweep
12-7 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCH command.

:MEASure:DEMod:CONStIn?

Title: Measure Constellation
Description: Sets the active measurement to Constellation, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONFigure:DEMod CONStIn and :READ:DEMod:CONStIn? To make a Demodulated Constellation measurement with settings other than the default values, send:

* :CONFigure:DEMod CONStIn
* Commands to set desired settings
 * :READ:DEMod:CONStIn?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Freq Error in MHz, CINR in dB, Base Station ID, and the Sector ID.

Related Command:

* :READ:DEMod:CONStIn?
* :CONFigure:DEMod CONStIn
:MEASURE:DEMod:EVSCarrier?

Title: Measure EVM vs. Sub Carrier

Description: Sets the active measurement to EVM vs. Sub Carrier, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONFigure:DEMod EVSCarrier and :READ:DEMod:EVSCarrier? To make a EVM vs. Symbol measurement with settings other than the default values, send:

:CONFigure:DEMod EVSCarrier
Commands to set the desired settings
:READ:DEMod:EVSCarrier?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :READ:DEMod:EVSCarrier?
:CONFigure:DEMod EVSCarrier

:MEASURE:DEMod:EVSYmbol?

Title: Measure EVM vs. Symbol

Description: Sets the active measurement to EVM vs. Symbol, sets the default measurement parameters, triggers a new measurement, and returns the EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. It is a combination of the commands :CONFigure:DEMod EVSYmbol and :READ:DEMod:EVSYmbol? To make a EVM vs. Symbol measurement with settings other than the default values, send:

:CONFigure:DEMod EVSYmbol
Commands to set the desired settings
:READ:DEMod:EVSYmbol?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :READ:DEMod:EVSYmbol?
:CONFigure:DEMod EVSYmbol
:MEASure:DEMod:SFLatness?

Title: Measure Spectral Flatness

Description: Sets the active measurement to Spectral Flatness, sets the default measurement parameters, triggers a new measurement, and returns the absolute delta of the power between adjacent sub carriers in dB. It is a combination of the commands :CONFigure:DEMod SFLatness and :READ:DEMod:SFLatness?. To make a Spectral Flatness measurement with settings other than the default values, send:

:CONFigure:DEMod SFLatness

Commands to set desired settings

:READ:DEMod:SFLatness?

Related Command:

:READ:DEMod:SFLatness?

:CONFigure:DEMod SFLatness

:MEASure:PFail?

Title: Measure PASS/FAIL

Description: Sets the active measurement to PASS/FAIL, sets the default measurement parameters, triggers a new measurement and returns the PASS/FAIL results. It is a combination of the commands :CONFigure PFail and :READ:PFail?. To make a PASS/FAIL measurement with settings other than the default values, send:

:CONFigure PFail

Commands to set desired settings

:READ:PFail?

Related Command:

:CONFigure PFail

READ:PFail?

FETCH:PFail?

Front Panel Access: Measurements, Pass/Fail Mode
Title: Measure Adjacent Channel Power Ratio

Description: Sets the active measurement to ACPR, sets the default measurement parameters, triggers a new measurement, and returns the power levels for each channel (both absolute and relative). It is a combination of the commands :CONFigure:RF ACPR and :READ:RF:ACPR? To make an RF ACPR measurement with settings other than the default values, send:

:CONFigure:RF ACPR

Commands to set desired settings

:READ:RF:ACPR?

Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm.

Related Command: :READ:RF:ACPR?

:CONFigure:RF ACPR

:FETCH:RF:ACPR?

Front Panel Access: Measurements, RF Measurements, ACPR

Title: Measure Power vs. Time

Description: Sets the active measurement to Power vs. Time, sets the default measurement parameters, triggers a new measurement and returns the Channel Power, Preamble power, burst power of data bursts, and the Crest Factor. It is a combination of the commands :CONFigure:RF PVTime and :READ:RF:PVTime? To make an RF PVT measurement with settings other than the default values, send:

:CONFigure:RF PVTime

Commands to set desired settings

:READ:RF:PVTime?

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, burst power of data bursts in dBm, and the Crest Factor in dB.

Related Command: :READ:RF:PVTime?

:CONFigure:RF PVTime
:MEASure:RF:SPECTrum?

Title: Measure RF Spectrum

Description: Sets the active measurement to Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power (RSSI) and Occupied bandwidth measurement. It is a combination of the commands :CONFigure:RF SPECtrum and :READ:RF:SPECTrum? To make an RF Spectrum measurement with settings other than the default values, send:

:CONFigure:RF SPECtrum
Commands to set desired settings
:READ:RF:SPECTrum?

Data is returned as 2 comma-delimited values: Channel Power (RSSI) in dBm Occupied bandwidth measurement in MHz.

Related Command:
- :CONFigure:RF SPECtrum
- :READ:RF:SPECTrum
- :FETCh:RF:SPECTrum

Front Panel Access: Measurements, RF Measurements, Channel Spectrum
12-8 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:DEMod:CONStln?

Title: Read Constellation

Description: Triggers a new Constellation measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStln). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:CONStln?
 :CONFigure:DEMod CONStln

:READ:DEMod:EVSCarrier?

Title: Read EVM vs. Sub Carrier

Description: Triggers a new EVM vs. Sub Carrier measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The EVM vs. Sub Carrier measurement must be the active measurement (specified by :CONFigure:DEMod EVSCarrier). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:EVSCarrier?
 :CONFigure:DEMod EVSCarrier
:READ:DEMod:EVSYmbol?

Title: Read EVM vs. Symbol
Description: Triggers a new EVM vs. Symbol measurement and returns the results: EVM (rms), EVM (pk), RCE (rms), RCE (pk), Carrier Frequency, Freq Error, Freq Error, and the Base Station ID. The EVM vs. Symbol measurement must be the active measurement (specified by :CONFigure:DEMod EVSYmbol). The current measurement can be queried using the command :CONFigure?

Data is returned as 8 comma-delimited values: EVM (rms) in %, EVM (pk) in %, RCE (rms) in dB, RCE (pk) in dB, Carrier Frequency in MHz, Freq Error in MHz, Freq Error in ppm, and the Base Station ID.

Related Command: :FETCh:DEMod:EVSYmbol?
:CONFigure:DEMod EVSYmbol

:READ:DEMod:SFLatness?

Title: Read Spectral Flatness
Description: Triggers a new Spectral Flatness measurement and returns the absolute delta of the power between adjacent sub carriers in dB. The Spectral Flatness measurement must be the active measurement (specified by :CONFigure:DEMod SFLatness). The current measurement can be queried using the command :CONFigure?

Related Command: :FETCh:DEMod:SFLatness?
:CONFigure:DEMod SFLatness

:READ:PFail?

Title: Read PASS/FAIL
Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCh:PFail?
:CONFigure PFail
:MEASure:PFail?

Front Panel Access: Measurements, Pass/Fail Mode

:READ:RF:ACPR?

Title: Read Adjacent Channel Power Ratio
Description: Triggers a new Adjacent Channel Power Ratio measurement and returns the results: Power levels for each channel (both absolute and relative). It is a combination of the commands :ABORT, :INITiate, and FETCh:RF:ACPR? The ACPR measurement must be the active measurement (specified by :CONFigure:RF ACPR). The current measurement can be queried using :CONFigure?
Data is returned as 11 comma-delimited values: The Channel Power in dBm, relative adjacent channel 1 power level, absolute adjacent channel 1 power level, relative adjacent channel 2 power level, absolute adjacent channel 2 power level, relative adjacent channel 3 power level, absolute adjacent channel 3 power level, relative adjacent channel 4 power level, absolute adjacent channel 4 power level, relative adjacent channel 5 power level, absolute adjacent channel 5 power level. The relative adjacent channel power level is in dB and the absolute adjacent channel power level is in dBm.

Related Command:
:FETCH:RF:ACPR?
:CONFIGURE:RF ACPR
:MEASURE:RF:ACPR?

:READ:RF:PVTime?

Title: Read Power vs. Time

Description: Triggers a new Power vs. Time measurement and returns the results: Channel Power, Preamble power, burst power of data bursts, and the Crest Factor. It is a combination of the commands :ABORT, :INITiate, and :FETCH:RF:PVTime? The Power vs. Time measurement must be the active measurement (specified by :CONFIGURE:RF PVTime). The current measurement can be queried using :CONFIGURE?

Data is returned as 4 comma-delimited values: The Channel Power in dBm, Preamble power in dBm, burst power of data bursts in dBm, and the Crest Factor in dB.

Related Command: :FETCH:RF:PVTime?
:CONFIGURE:RF PVTime
Title: Read RF Spectrum

Description: Triggers a new RF Spectrum measurement and returns the results: Channel Power (RSSI) and Occupied bandwidth measurement. It is a combination of the commands :ABORT, :INITiate, and :FETCh:RF:SPECTrum? The Spectrum measurement must be the active measurement (specified by :CONFigure:RF SPECtrum). The current measurement can be queried using :CONFigure?

Data is returned as 2 comma-delimited values: Channel Power (RSSI) in dBm and Occupied bandwidth measurement in MHz.

Related Command:
: FETCh:RF:SPECTrum?
: CONFigure:RF SPECtrum
: MEASure:RF:SPECTrum?
12-9 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe:PREamble? <trace type>

Title: Trace Header Transfer
Description: Returns trace header information for the specified trace. The <trace type> must be one of the following:
SPECtrum | PVTtime | ACPR | CONStln | SFLatness | EVSCarrier | EVSYmbol

Data can be transferred to and from the 7 available display trace types. Use the commands in the MMEMory subsystem to store and recall traces from the instrument memory. The response begins with an ASCII header. The header specifies the number of following bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Parameters are returned in comma-delimited ASCII format. Each parameter is returned as “NAME=VALUE[UNITS],” Valid parameter names are shown in Chapter 2.

Parameter: <trace type>
Related Command: :TRACe:DATA?
:TRACe[:DATA]? <trace type>

Title: Trace Data Transfer

Description: This command transfers trace data from the instrument to the controller. The `<trace type>` must be one of the following: **SPECtrum**, **PVTime**, **CONSTln**, **SFLatness**, **EVSCarrier**, **EVSYmbol**.

The format of the block data in the query form is specified by **:FORMat:DATA**. The block data in the command form is always sent in ASCII format. The response begins with an ASCII header that specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes that follow the header. Each data point is separated by a comma delimiter. Trace setup information can be acquired using **:TRACe[:DATA]:PREamble?**.

Use the commands in the **MMEemory** subsystem to store and recall traces from the instrument memory. Except for **CONSTln**, there is only one value per data point. If max hold is set to ON for **SPECtrum** and **EVM** vs. **Sub Carrier**, then the max hold value is returned. For **CONSTln**, each data point is represented by 3 values 4 bytes each: **IData** (no units), **QData** (no units), and the constellation type (no units). For **SPECtrum** and **PVTime**, unit is in **dBm**. For **Spectral Flatness**, unit is in **dB**. For **EVM** vs **Sub Carrier** and **EVM** vs **Symbol**, unit is in percent. Note that the instrument must be set in the selected view. Use the **CONFigure** command to set the unit to the selected view.

Parameter: `<trace type>`

Related Command:
- **:FORMat[:DATA]**
- **:TRACe[:DATA]:PREamble?**
12-10 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:BANDwidth|BWIDth[:RESolution] <index>
[:SENSe]:BANDwidth|BWIDth[:RESolution]?

Title: Resolution Bandwidth
Description: Sets the resolution bandwidth. The <index> argument is a 1-based index of the position of the desired bandwidth in the instrument’s current bandwidth list. The list can be displayed on the instrument by choosing the "BW" submenu button in the “Setup” menu. For example, if the desired bandwidth is the 3rd item on the list then the value of the <index> argument would be 3.

The query form of this command will return the index of the currently-selected bandwidth on the list. The Default is the 1st index in the bandwidth list.

Parameter: <index>
Default Value: The default bandwidth is 5 MHz which is the 1st index in the bandwidth list.

Front Panel Access: Setup, BW

[:SENSe]:DEMod:CONStln:REFPoints[:STATe] OFF|ON|0|1
[:SENSe]:DEMod:CONStln:REFPoints[:STATe]?

Title: Constellation Reference Points
Description: Sets the display of the reference points for the various constellations on/off.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON

Front Panel Access: Measurements, Demodulator, Constellation, Reference Points
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency will change the value of the coupled parameters Start Frequency and Stop Frequency. It may also change the value of the span.
Parameter: <freq>
Default Value: 2.5 GHz
Default Unit: Hz
Range: 0 Hz to 7.1 GHz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently-selected Signal Standard on the list.
Parameter: <string>
Front Panel Access: Freq, Signal Standard
[:SENSe]:PFail <test set>
[:SENSe]:PFail?

Title: PASS/FAIL Test Selection
Description: Selects the active test set to be used in subsequent PASS/FAIL measurements. The <test set> value must correspond to a test set that is defined in the test set list. To view the list on the instrument, go into the “Measurement” menu, press the “Pass/Fail Mode” key, and then press the “Select Pass/Fail Test” submenu. Alternatively, the list can be retrieved remotely and viewed using the Anritsu Master Software Tools. The <test set> argument is a 1-based index of the position of the desired Pass/Fail test set in the instrument’s current Pass/Fail test set list. For example, if the desired Pass/Fail test is the 3rd item on the list then the value of the <test set> argument would be 3.

When using the query form of the command, the return value is the currently selected test set number. If there is not a valid test set selected, the return value is “–1” (negative 1).

Parameter: <test set>
Related Command: :CONFigure PFail
Front Panel Access: Measurements, Pass/Fail Mode, Select Pass/Fail Test

[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range
[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.
Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO
Front Panel Access: Amplitude, Adjust Range

[:SENSe]:RF:SPECTrum:SPAN 5|10|20|30
[:SENSe]:RF:SPECTrum:SPAN?

Title: Spectrum View Span
Description: Sets the span for the Spectrum view. Setting the value to 5 will set the span for the Spectrum view to 5 MHz. Setting the value to 10 will set the span for the Spectrum view to 10 MHz. Setting the value to 20 will set the span for the Spectrum view to 20 MHz. Setting the value to 30 will set the span for the Spectrum view to 30 MHz.
Parameter: 5|10|20|30
Default Value: 10 MHz
Default Unit: MHz
Front Panel Access: Measurements, RF Measurements, Spectrum, Span
Chapter 13 — LTE Commands

13-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort

Description: Restarts the current sweep and/or measurement. If INITiate:CONTinuous is OFF (i.e. the instrument is in single sweep mode), send the command :INITiate:[IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e. the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA
13-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the SENSe subsystem.

:CALCulate:MARKer:AOFF

Title: Turn All Markers Off
Description: Turns off all markers in Channel Spectrum.
Front Panel Access: Marker, Markers Off

:CALCulate:MARKer1:DELTa:X <x1 parameter>
:CALCulate:MARKer1:DELTa:X?

Title: Delta Marker 1 X Value
Description: Sets/Queries the relative location of the delta marker from the reference marker on the x-axis.
Note: The query value might not always match the set value since the instrument will round the set value based on the display pixel resolution.
The x1 parameter is used to set the delta position. For example, CALC:MARK1:DELT:X 2 MHz will set the delta value to 2 MHz.
Parameter: <x1 parameter>
Default Unit: Hz
Related Command: :CALCulate:MARKer1:X
Front Panel Access: Marker, Marker Select (M1), Marker State (Delta), (Use arrow keys or rotary knob.)

:CALCulate:MARKer1:DELTa:Y?

Title: Delta Marker 1 Read Y Value
Description: Reads the current absolute Y value for delta marker 1.
Default Unit: dBm

:CALCulate:MARKer1:MAXimum

Title: Set Marker 1 to Peak
Description: Moves marker 1 to peak position on data trace.
Parameter: NA
Front Panel Access: Marker, Marker Select (M1), Peak Search
:CALCulate:MARKer1:STATe OFF|ON|DELta

Title: Set Marker 1 State
Description: Sets marker 1 on/off or delta.
Parameter: OFF | ON | DELta
Parameter Type: <char>
Default Value: OFF
Front Panel Access: Marker, Marker Select (M1), Marker State

:CALCulate:MARKer1:X <x-parameter>
:CALCulate:MARKer1:X?

Title: Set Marker 1 Value
Description: Sets/Queries the location of marker 1 on the x-axis at the specified location.
Parameter: <x-parameter>
Default Unit: Hz
Front Panel Access: Marker, Marker Select [1/2/3/4/5/6] (use arrow keys or rotary knob)

:CALCulate:MARKer1:Y?

Title: Marker 1 Read Y Value
Description: Reads the current Y value for marker 1.
Default Unit: dBm
:CALCulate:MARKer2:DELTa:X <x1 parameter>

:CALCulate:MARKer2:DELTa:X?

Title: Delta Marker X Value
Description: Sets/Queries the relative location of the delta marker from the reference marker on the x-axis.

Note: The query value might not always match the set value since the instrument will round the set value based on the display pixel resolution.
The x1 parameter is used to set the delta position.
For example, :CALC:MARK2:DELT:X 2 MHz will set the delta value to 2 MHz.

Parameter: <x1 parameter>
Default Unit: Hz
Related Command: :CALCulate:MARKer2:X
Front Panel Access: Marker, Marker Select (M2), Marker State (Delta), (Use arrow keys or rotary knob.)

:CALCulate:MARKer2:DELTa:Y?

Title: Delta Marker 2 Read Y Value
Description: Reads the current absolute Y value for delta marker 2.
Default Unit: dBm

:CALCulate:MARKer2:MAXimum

Title: Set Marker 2 to Peak
Description: Moves marker 2 to peak position on data trace.
Parameter: NA
Front Panel Access: Marker, Marker Select (M2), Peak Search

:CALCulate:MARKer2:STATe OFF|ON|DELTa
:CALCulate:MARKer2:STATe?

Title: Set Marker 2 State
Description: Sets marker 2 on/off or delta.
Parameter: OFF|ON|Delta
Parameter Type: <char>
Default Value: OFF
Front Panel Access: Marker, Marker Select (M2), Marker State
::CALCulate::MARKer2:X <x-parameter>
::CALCulate::MARKer2:X?

Title: Set Marker 2 Value
Description: Sets/Queries the location of marker 2 on the x-axis at the specified location.
Parameter: <x-parameter>
Default Unit: Hz
Front Panel Access: Marker, Marker Select (M2), Peak Search

::CALCulate::MARKer2:Y?

Title: Marker2 Read Y Value
Description: Reads the current Y value for marker 2.
Default Unit: dBm
13-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure?

Title: Configure Query

Description: :CONFigure? query returns the name of the measurement previously set up using a CONFigure command or a MEASure? query. The list below shows the possible return values.

- CAGG
- SUMM
- RF,SPEC
- RF,ACLR
- RF,SEM
- RF,SUMM
- DEM,CONS
- DEM,CCPG
- DEM,CCPT
- DEM,PVRB
- DEM,SUMM
- PF
- OTA
- OTA,OTAS
- OTA,OTATX
- OTA,MAP

:CONFigure SUMMary

Title: Set Measurement to LTE Summary

Description: Sets the measurement to LTE Summary. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. (:INITiate:CONTinuous OFF).
Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMary

Parameter Type: <char>

Front Panel Access: Measurements, LTE Summary
LTE Commands 13-3 :CONFigure Subsystem

:CONFigure:DEMod

SUMmary|CONStIn|CCPGraph|CCPTable|TIMEalign

Title: Select the Modulation Measurement
Description: Sets measurement to one of the Modulation screens. This can be one of:
SUMMary: Modulation Summary view
CONStIn: Modulation Constellation diagram
CCPGraph: Control Channel Power - Bar-graph view
CCPTable: Control Channel Power - Table view
TIMEalign: Tx Time Alignment

It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF).
Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMary | CONStIn | CCPGraph | CCPTable | TIMEalign
Parameter Type: <char>

Front Panel Access: Measurements, Modulation, (Constellation, Control Channel Power, Tx Time Alignment, Modulation Summary). If Control Channel Power is selected, press Control Channel Power again, then press Display Mode to select Bar Graph or Table.

:CONFigure:OTA SCANner|TXTEst|MAPping|CAGGregation

Title: Configure Over-the-Air Measurement
Description: Sets the measurement to one of the Over-the-Air screens. This can be one of:
SCANner: Scanner measurement view
TXTEst: Tx Test measurement view
MAPping: Coverage Mapping measurement view
CAGGregation: Carrier Aggregation measurement view

Parameter: SCANner | TXTEst | MAPping | CAGGregation
Parameter Type: <char>

Front Panel Access: Measurements, Over-the-Air, (Scanner, Tx Test, Mapping, Carrier Aggregation)

:CONFigure:RF SUMMary|SPECTrum|ACLR|SEM

Title: Select RF Measurements
Description: This command configures RF measurements. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.
Set measurement to one of the RF measurement screens. This can be one of:

SUMMARY: RF measurement summary screen.
SPECTRUM: RF Channel Spectrum measurement screen.
ACLR: ACLR measurement view.
SEM: Spectral Emission Mask measurement.

Parameter: SUMMARY | SPECTRUM | ACLR | SEM

Front Panel Access: Measurements, RF, (Channel Spectrum, ACLR, Spectral Emission Mask, RF Summary)
13-4 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to +100 dB
Front Panel Access: Amplitude, Power Offset

:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision?

Title: Scale
Description: Sets the Scale/Division setting for the y-axis. This only affects the scale for the Channel Spectrum measurement.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel Access: Amplitude, Scale
13-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:4x4:TIMEalign?

Title: Fetch Tx Time Alignment Data (4x4 MIMO configuration)

Description: Returns the most recent Time Alignment measurement numeric results. This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :FETCh:DEMod:TIMEalign? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 14 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds for each of antenna pairs 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:FETCh:DEMod:CCPData?

Title: Fetch Control Power Data

Description: Returns the most recent Control Channel Power measurement numeric results.

Data is returned as 24 comma-delimited values: RS_POWER, PSS_POWER, SSS_POWER, BCH_POWER, CFI_POWER, RS_TOTAL_POWER, PSS_TOTAL_POWER, SSS_TOTAL_POWER, BCH_TOTAL_POWER, CFI_TOTAL_POWER, TOTAL_POWER, TOTAL_CHANNEL_POWER

Front Panel Access: Measurements, Modulation, Control Channel Power
:FETCH:DEMod:CONSTln?

Title: Fetch Constellation Data

Description: Returns the constellation measurement numeric results of the demodulated data symbol over one sub-frame measurement.

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBm. “-” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation

:FETCH:DEMod:PVRB?

Title: Fetch Power vs Resource Block Data

Description: Returns the PVRB measurement results of the demodulated data.

Data is returned as a string of comma-delimited values: Active RBs, Utilization in %, Channel Power in dBm, OSTP (OFDM Symbol Transmit Power) in dBm, EVM total in %, EVM (QPSK) in %, EVM (16-QAM) in %, EVM (64-QAM) in %, Cell ID.

If Option 886 is installed and activated on the instrument, a value for EVM (256-QAM) in % is returned at the end of the PVRB data string. “-” is returned if the LTE carrier does not use 256-QAM modulation scheme. This value does not immediately follow EVM (64-QAM) in order to maintain backward compatibility with instruments where Option 886 is not installed.

Front Panel Access: Measurements, Modulation, Power vs Resource Block

:FETCH:DEMod:TIMEalign?

Title: Fetch Tx Time Alignment Data

Description: Returns the most recent Time Alignment measurement numeric results.

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “-” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

Title: Fetch OTA Carrier Aggregation (4x4 MIMO configuration)

Description: Returns the result of the most recent Carrier Aggregation measurement numeric results. This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :FETCh:OTA:C4AGGregation? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 70 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 14 fields (CP, tx1 antenna, tx2 antenna, tx3 antenna, tx4 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(pk), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--“ means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

Title: Fetch OTA Carrier Aggregation

Description: Returns the result of the most recent Carrier Aggregation measurement numeric results.

Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(pk), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--“ means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

Title: Fetch OTA Coverage Mapping

Description: Returns the most recent Coverage Mapping measurement results.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Mapping

Title: Fetch OTA Scanner

Description: Returns the most recent OTA Scanner measurement results.
Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Scanner

:FETCh:OTA:TXTEst?

Title: Fetch OTA Tx Test

Description: Returns the most recent OTA Tx Text measurement results.

Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four numbers: Dominance, Antenna Count, Average Power, Delta Power. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Tx Test

:FETCh:RF:ACLR?

Title: Fetch Adjacent Channel Leakage Ratio

Description: Returns the most recent adjacent channel leakage ratio measurement results. If the instrument is sweeping, it will not return until the sweep is complete. Refer to “:READ:RF:ACLR?” on page 13-27 for a description of the returned data.

Default Unit: dBm

Front Panel Access: Measurements, RF, ACLR

:FETCh:RF:SEM?

Title: Fetch Spectral Emission Mask

Description: Returns Spectral Emission Mask measurement results (Pass or Fail).

Front Panel Access: Measurements, RF, Spectral Emission Mask

:FETCh:RF:SPECTrurn?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Spectrum measurement results. Data is returned as 2 comma-delimited values: Channel Power in dBm and Occupied bandwidth measurement in MHz. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, RF, Channel Spectrum
Title: Fetch Summary

Description: Returns the values displayed in a Summary measurement view. If the current display is not a summary screen, the return value is ‘N/A’. The return string is a comma-separated list of the values displayed on the screen, in the order they are listed from top to bottom. The list is preceded by the name of the summary view: “RF Summary,” “Modulation Summary,” or “LTE Summary”.

RF Summary, Channel Power in dBm, Occupied BW in MHz, Lower Adjacent Channel Power 2 in dBm, Lower Adjacent Channel Power 1 in dBm, Upper Adjacent Channel Power 1 in dBm, Upper Adjacent Channel Power 2 in dBm, Spectral Emission Mask (Pass or Fail).

Modulation Summary, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, EVM (rms) in %, EVM (QPSK) in %, EVM (16-QAM) in %, EVM (64-QAM) in %, Freq Error in Hz, Freq Error in ppm, Cell ID, PBCH Power in dBm.

If Option 886 is activated on the instrument, a value for EVM (256-QAM) in % is returned at the end of the Modulation Summary data string. “--” is returned if the LTE carrier does not use 256-QAM modulation scheme. This value does not immediately follow EVM (64-QAM) in order to maintain backward compatibility with instruments where Option 886 is not installed.

LTE Summary, Freq Error in Hz, Occupied BW in MHz, Carrier Frequency in MHz, Channel Power in dBm, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, EVM (rms) in %, PBCH Power in dBm, PCFICH Power in dBm, Spectral Emission Mask (Pass or Fail).

When Option 886 is installed, 256-QAM EVM measurement results are included in the calculation of EVM (rms) percentage value.

Front Panel Access: Measurements, RF, RF Summary
Measurements, Modulation, Modulation Summary
Measurements, LTE Summary
13-6 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format.

INTeger values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks.

REAL values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger and REAL formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger and REAL) to get the number of data points (in this example, 551).

Parameter: ASCii | INTeger,32 | REAL,32

Parameter Type: <char>

Default Value: ASCii
13-7 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1

:INITiate:CONTinuous?

Title: Continuous/Single Sweep
Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: :INITiate[:IMMediate]
Front Panel Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement
Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous
:STATus:OPERation?

Front Panel Access: Shift-3 (Sweep), Sweep (Single), Trigger Sweep
13-8 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEASure:DEMod:4x4:TIMEalign?

Title: Measure Tx Time Alignment Data (4x4 MIMO configuration)
Description: Sets the active measurement to Tx Time Alignment, sets the default measurement parameters, triggers a new measurement, and returns the measured values. This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :MEASure:DEMod:TIMEalign? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 14 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds for each of antenna pairs 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:MEAsure:DEMod:AVErage?

Title: Measure Constellation with Frequency Error Averaging
Description: Triggers a series of new Constellation measurements and returns the results. The number of measurements is set by the [:SENSe]AVErage:FERRor:COUnT n command.

Although ‘n’ measurements are taken, only a single result string returns. This will be the measured results of the last measurement in the set, except for frequency error, which is averaged over the entire ‘n’ measurements.

Note: If n is large, then an appropriately large value for the time-out of the SCPI interface is required.
Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, the Cell ID, and the number of measurements average for Frequency Error. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation

:MEASure:DEMod:CCPData?

Title: Read Modulation Control Channel Power Data
Description: Sets the active measurement to Control Channel Power, sets the default measurement parameters, triggers a new measurement, and returns the measured values:

RS_POWER, PSS_POWER, SSS_POWER, BCH_POWER, CFI_POWER, RS_TOTAL_POWER, PSS_TOTAL_POWER, SSS_TOTAL_POWER, BCH_TOTAL_POWER, CFI_TOTAL_POWER, TOTAL_POWER, TOTAL_CHANNEL_POWER.

Data returned is the same for Bar Graph or Table mode. The Control Channel Power measurement must be the active measurement.

Front Panel Access: Measurements, Modulation, Control Channel Power

:MEASure:DEMod:CONStln?

Title: Measure Constellation
Description: Triggers a new Constellation measurement and returns the results. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStln). The current measurement can be queried using the command :CONFigure?

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBm. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation
:MEASure:DEMod:TIMEalign?

Title: Measure Tx Time Alignment Data

Description: Sets the active measurement to Tx Time Alignment, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:MEASure:OTA:C4AGGregation?

Title: Measure OTA Carrier Aggregation (4x4 MIMO configuration)

Description: Sets the active measurement to Carrier Aggregation, triggers a new measurement, and returns the measured values. This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :MEASure:OTA:CAGGregation? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 70 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 14 fields (CP, tx1 antenna, tx2 antenna, tx3 antenna, tx4 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(pk), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--” means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

:MEASure:OTA:CAGGregation?

Title: Measure OTA Carrier Aggregation

Description: Sets the active measurement to Carrier Aggregation, triggers a new measurement, and returns the measured values.

Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(PK), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--” means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation
Title: Measure OTA Coverage Mapping

Description:
Sets the active measurement to OTA Coverage Mapping, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Mapping

:MEASure:OTA:MAPping:RUN STARt|STOP: Coverage Mapping Data Collection

Description:
Turns On/Off the coverage mapping data collection. The instrument must be in Mapping measurement mode for the command to be effective.

No data is returned.

Front Panel Access: Measurements, Over-the-Air, Mapping, Start/Stop Data Collection (Main menu key)

:MEASure:OTA:SCANner?: Measure OTA Scanner

Description:
Sets the active measurement to OTA Scanner, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Scanner

:MEASure:OTA:TXTEst?: Measure OTA Tx Test

Description:
Sets the active measurement to OTA Tx Test, sets the default measurement parameters, triggers a new measurement, and returns the measured values.
Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four results: Dominance, Antenna count, Average Power, Delta Power.

“--” is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Tx Test

:MEASure:RF:ACLR?

Title: Measure Adjacent Channel Leakage Ratio

Description: Sets the active measurement to adjacent channel power ratio, sets the default measurement parameters, triggers a new measurement and returns the main channel(s) power, and adjacent channel(s) power. It is a combination of the commands :CONFigure:RF ACLR and :READ:RF:ACLR? Refer to “:READ:RF:ACLR?” on page 13-27 for a description of the returned data.

Default Unit: dBm

Front Panel Access: Measurements, RF, ACLR

:MEASure:RF:SEM?

Title: Measure Spectral Emission Mask

Description: Sets the active measurement to Spectral Emission Mask and returns a PASS or FAIL result.

Front Panel Access: Measurements, RF, Spectral Emission Mask
Title: Measure RF Spectrum

Description: Sets the active measurement to Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power and Occupied Bandwidth measurement results. It is a combination of the following commands: :CONFigure:RF SPECtrum and :READ:RF:SPECTrum?.

Data is returned as 2 comma-delimited values: Channel Power in dBm and Occupied bandwidth in MHz.

Front Panel Access: Measurements, RF, Channel Spectrum
13-9 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e., begins the collection of new data). When the measurement is complete, it returns the results. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:DEMod:4x4:TIMEalign?

Title: Read Tx Time Alignment Data (4x4 MIMO configuration)

Description: Triggers a new Time Alignment measurement and returns the results. The Tx Time Alignment measurement must be the active measurement (specified by :CONFigure:DEMod TIMEalign). The current measurement can be queried using the command :CONFigure?

This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :READ:DEMod:TIMEalign? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 14 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds for each of antenna pairs 1-2, 1-3, 1-4, 2-3, 2-4, and 3-4. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:READ:DEMod:CONStIn?

Title: Read Constellation

Description: Triggers a new Constellation measurement and returns the results. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStIn). The current measurement can be queried using the command :CONFigure?

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBm. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation
:READ:DEMod:TIMEalign?

Title: Read Tx Time Alignment Data

Description: Triggers a new Time Alignment measurement and returns the results. The Tx Time Alignment measurement must be the active measurement (specified by :CONfigure:DEMod TIMEalign). The current measurement can be queried using the command :CONfigure?

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:READ:OTA:C4AGGregation?

Title: Read OTA Carrier Aggregation (4x4 MIMO configuration)

Description: Triggers a new Carrier Aggregation measurement and returns the results. OTA Carrier Aggregation must be the active measurement. This command may not be supported if your instrument is loaded with older firmware, in which case you may upgrade to the current firmware version or use the :READ:OTA:CAGGregation? command, instead. Refer to your instrument User Guide for instructions on updating firmware.

Data is returned as 70 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 14 fields (CP, tx1 antenna, tx2 antenna, tx3 antenna, tx4 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(pk), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--” means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation
:READ:OTA:CAGGregation?

Title: Read OTA Carrier Aggregation

Description: Triggers a new Carrier Aggregation measurement and returns the results. The Carrier Aggregation measurement must be the active measurement (specified by :CONFigure:DEMod CAGGregation). The current measurement can be queried using the command :CONFigure?.

Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data, with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(PK), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with "--" means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

:READ:OTA:MAPping?

Title: Read OTA Coverage Mapping

Description: Triggers a new OTA Coverage Mapping measurement and returns the results. The OTA Mapping measurement must be the active measurement (specified by :CONFigure:OTA MAPping). The current measurement can be queried using the command :CONFigure?.

Data is returned as 6 sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR. Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Mapping

:READ:OTA:SCANner?

Title: Read OTA Scanner

Description: Triggers a new OTA Scanner measurement and returns the results. The OTA Scanner measurement must be the active measurement (specified by :CONFigure:OTA SCANner). The current measurement can be queried using the command :CONFigure?.

Data is returned as 6 sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR. Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Scanner
:READ:OTA:TXTEst?

Title: Read OTA Tx Test

Description: Triggers a new OTA Tx Test measurement and returns the results. The OTA Tx Test measurement must be the active measurement (specified by :CONFigure:OTA Tx Test). The current measurement can be queried using the command :CONFigure?

Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four numbers: Dominance, Antenna count, Average Power, Delta Power. “--” is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Tx Test

:READ:PFail?

Title: Read PASS/FAIL

Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and :FETCh:PFail?

The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: :FETCh:PFail?
:CONFigure PFail
:MEASure:PFail?

Front Panel Access: Measurements, Pass/Fail Test
:READ:RF:ACLR?

Title: Read Adjacent Channel Leakage Ratio

Description: Triggers a new Adjacent Channel Leakage Ratio measurement and returns the results: Power levels for each channel (both absolute and relative). If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid it will return error -230. This could occur if there was an *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 11 comma-separated values: Main channel power, Left alternate channel power - relative, absolute, Left adjacent channel power - relative, absolute, Main channel power - relative, absolute, Right adjacent channel power - relative, absolute, Right Alternate channel power - relative, absolute.

Default Unit: dBm

Front Panel Access: Measurements, RF, ACLR

:READ:RF:SEM?

Title: Read RF Spectral Emission Mask

Description: Triggers a new RF Spectral Emission Mask measurement and returns a PASS or FAIL result. It is a combination of the commands :ABORT, :INITiate, and FETCh:RF:SEM? The current measurement can be queried using :CONFigure?

Front Panel Access: Measurements, RF, Spectral Emission Mask

:READ:RF:SPECTrum?

Title: Read RF Spectrum

Description: Triggers a new RF Spectrum measurement and returns the results: Channel Power and Occupied BW measurement. It is a combination of the commands :ABORT, :INITiate, and FETCh:RF:SPECTrum? The current measurement can be queried using :CONFigure?

Data is returned as 2 comma-delimited values: Channel Power in dBm and Occupied bandwidth measurement in MHz.

Related Command:
:FETCh:RF:SPECTrum?
:CONFigure:RF SPECTrum
:MEASure:RF:SPECTrum?

Front Panel Access: Measurements, RF, Channel Spectrum
13-10 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|W
:UNIT:POWer?

 Title: Measurement Units
 Description: Sets/Returns the current display mode for power values as either dBm or in watts.
 Parameter: DBM|W
 Parameter Type: <char>
 Default Value: dBm
 Front Panel Access: Amplitude, Units
13-11 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:4TAE:ACTive OFF|ON
 [:SENSe]:4TAE:ACTive?

Title: Time Alignment Error (4x4 MIMO configuration)
Description: Sets the state of the TAE measurement for OTA carrier aggregation. In 2x2 MIMO, use the command [:SENSe]:TAE:ACTive.
Parameter: OFF|ON
Parameter Type: <boolean>
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, TAE

[:SENSe]:AVERAGE:FERRor:COUNt n
 [:SENSe]:AVERAGE:FERRor:COUNt?

Title: Frequency Error Average
Description: When count is greater than one, the frequency error value is averaged over past measurements. If count is one, then no averaging occurs.
If Count = N, and M is the number of measured values, then when M < N:
FE next = (FE1 + FE2 + ... + FEN–1)/(N–1).
When M >= N:
FE next = [(N–1) * FE previous + FE new]/N
Note: This is commonly called a modified (or running) moving average.
Parameter: 1–15
Parameter Type: <char>
Default Value: 1
Front Panel Access: Setup, Freq Err Ave Cnt

[:SENSe]:AVERAGE:FERRor:RESet

Title: Frequency Error Average Reset
Description: Resets the frequency error averaging. Does not change the value of Count set with [:SENSe]:AVErage:FERRor:COUNt n.
Front Panel Access: Setup, Freq Err Ave Cnt
[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDWidth[:RESolution]?

Title: Bandwidth Resolution
Description: Sets the channel bandwidth. 15 MHz and 20 MHz are only available if Option 543 is installed.
Parameter: 1.4|3|5|10|15|20
Parameter Type: <char>
Default Value: The default bandwidth is 10 MHz.
Front Panel Access: Setup, BW

[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive?

Title: Active Component Carrier
Description: Sets the specified Component Carrier (CC) to be on or off.
Parameter: OFF|ON
Parameter Type: <boolean>
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#, CC#

[:SENSe]:CC{1|2|3|4|5}:BANDWidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDWidth?

Title: Component Carrier Bandwidth
Description: Sets the channel bandwidth of the specified Component Carrier (CC).
Parameter: 1.4|3|5|10|15|20
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#, CC#, BW

[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel?

Title: Component Carrier Channel
Description: Sets the channel number for the selected signal standard for the specified Component Carrier (CC).
Parameter: <number>
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#, CC#, Channel
[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency?

Title: Component Carrier Frequency
Description: Sets the center frequency of the specified Component Carrier (CC).
Parameter: <freq>
Parameter Type: <NRf>
Default Unit: Hz
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#, CC#, Center Freq

[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard?

Title: Component Carrier Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink, then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command returns the name of the currently selected Signal Standard from the list.
Parameter: <string>
Parameter Type: <char>
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#, CC#, Signal Standard

[:SENSe]:CELLID <char>
[:SENSe]:CELLID?

Title: Cell ID
Description: Sets the Cell ID value used when Sync Type is set to ‘RS’.
Parameter: (the known Cell ID)
Parameter Type: <char>
Front Panel Access: Setup, Sync (RS), Cell ID

[:SENSe]:EMF:STATe OFF|ON|0|1
[:SENSe]:EMF:STATe?

Title: EMF State
Description: Switches EMF ON or OFF.
The query form of this command returns a 0 or 1 when EMF state is OFF or ON, respectively.

Note: EMF will turn ON only if the start and stop frequencies are within the frequency range of the signal analyzer and isotropic antenna used. The antenna must be connected.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Front Panel Access: Measurements, Over-the-Air, EMF

[:SENSe]:EVM?
Title: EVM
Description: Returns the measured EVM value. This consists of 4 comma-separated numbers: mean value, maximum value, minimum value and standard deviation.

[:SENSe]:EVM:MAXHold ON|OFF
[:SENSe]:EVM:MAXHold?
Title: EVM Max Hold
Description: Turns Max Hold on or off (toggle) for measured EVM value.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: [:SENSe]:EVM?
Front Panel Access: Setup, EVM Max Hold

[:SENSe]:EVM:MODe AUTO|PBCHonly
[:SENSe]:EVM:MODe?
Title: Set EVM Mode
Description: Sets/Returns the EVM Mode to either Auto or PBCH Only.
Parameter: AUTO|PBCHonly
Parameter Type: <char>
Default Value: AUTO
Front Panel Access: Setup, EVM Mode

[:SENSe]:EVM:RESet
Title: Reset EVM Max Hold
Description: Resets the maximum value stored for the EVM measurement. Also resets minimum, mean and standard deviation.
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency.
Parameter: <freq>
Default Value: 1 GHz
Default Unit: Hz
Range: 10 MHz to 4 GHz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Frequency, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe [String]
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink, then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently selected Signal Standard from the list.

Parameter: <string>
Front Panel Access: Freq, Signal Standard

[:SENSe]:LTE:STATus?

Title: Sweep Status
Description: Returns 1 when the sweep is complete. Returns 0 when the sweep is in progress.
Front Panel Access: None
[:SENSe][:OTA]:MAPping:MEASurement SSSP|RSRP|RSRQ|SINR
[:SENSe][:OTA]:MAPping:MEASurement?

Title: Coverage Mapping Measurement Parameter

Description: Selects the measurement parameter used by the mapping system. The selected parameter's threshold levels will be used to determine the signal quality and corresponding color displayed on the map. This will also be the parameter name and value shown if a kml file is created and loaded into Google Earth.

Parameter: <string> SSSP|RSRP|RSRQ|SINR

Default Value: SSSP

Example: [:SENSe][:OTA]:MAPping:MEASurement SSSP

Related Command:
[:SENSe][:OTA]:MAPping:SSSP:THRESHold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:SSSP:THRESHold?

[:SENSe][:OTA]:MAPping:RSRP:THRESHold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:RSRP:THRESHold?

[:SENSe][:OTA]:MAPping:RSRQ:THRESHold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:RSRQ:THRESHold?

[:SENSe][:OTA]:MAPping:SINR:THRESHold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:SINR:THRESHold?

Front Panel Access: Measurement, Over-the-Air, Mapping, Measurement Setup, Measurement
Title: Coverage Mapping Thresholds

Description: The above commands set/return the threshold levels used in coverage mapping.

There are five defined levels: Excellent, Very Good, Good, Fair and Poor. For each level, there is a threshold power that sets the lower boundary for that level. Setting the Excellent threshold to –100.0 dBm, for instance, means that measurement greater than –100.0 dBm will be considered excellent in the report and as display on the coverage map.

Thresholds are set as a comma separated list of power values in order from Excellent to Poor. No units are used, and when setting the threshold values, enclose the all five values in a single set of quote markers.

Examples: Sending: SENSe:OTA:MAPping:SSSPower:THREShold?
Returns: –107.0,–110.0,–114.0,–117.0,–120.0

Sending: SENSe:OTA:MAPping:SSSPower:THREShold
“–100.0,–103.0,–104.5,–112.0,–118.0 “
Sets the S-SS Power thresholds to:
Excellent: 100.0 dBm
Very Good: 103.0 dBm
Good: 104.5 dBm
Fair: 112.0 dBm
Poor: 118.0 dBm
Parameter: <string> “xxx.x,xxx.x,xxx.x,xxx.x,xxx.x”

 Thresholds
 Measurement, Over-the-Air, Mapping, Measurement Setup, RSRP
 Thresholds
 Measurement, Over-the-Air, Mapping, Measurement Setup, RSRQ
 Thresholds
 Measurement, Over-the-Air, Mapping, Measurement Setup, SINR
 Thresholds

[:SENSe]:[OTA]:MAPping:POInts:DELeTe

Title: Clear Coverage Mapping measurement
Description: Clears all data points collected for the coverage map.

Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup,
 Delete All Points

[:SENSe]:[OTA]:MAPping:RECall:MAP <filename>

Title: Recall Coverage Map
Description: Recalls a saved coverage map from memory.

Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Recall a
 Map

[:SENSe]:[OTA]:MAPping:RECall:MAP:DEFAult

Title: Coverage Map Default Grid
Description: Recalls a default grid for coverage mapping.

Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Recall
 Default Grid

[:SENSe][:OTA]:MAPping:REPeat:TYPe TIME|DISTance
[:SENSe][:OTA]:MAPping:REPeat:TYPe?

Title: Coverage Map Repeat Type
Description: Sets the mode for determining data collection trigger. Setting is either
 Time or Distance. In Time mode, data is collected at fixed intervals in
 time. In Distance mode, data is collected at fixed intervals in distance.

Related Command: [:SENSe][:OTA]:MAPping:REPeat:TIME
 [:SENSe][:OTA]:MAPping:REPeat:DISTance

Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup,
 Repeat Type
[:SENSe][:OTA]:MAPping:REPeat:TIme <microseconds>
[:SENSe][:OTA]:MAPping:REPeat:TIme?

Title: Coverage Map Repeat Time Interval
Description: Sets the time interval for data collection.
Related Command: [:SENSe][:OTA]:MAPping:REPeat:TYPe TIME|DISTance
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Repeat Time

[:SENSe][:OTA]:MAPping:REPeat:DISTance <millimeters>
[:SENSe][:OTA]:MAPping:REPeat:DISTance?

Title: Coverage Map Repeat Distance Interval
Description: Sets the distance interval for data collection.
Related Command: [:SENSe][:OTA]:MAPping:REPeat:TYPe TIME|DISTance
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Repeat Distance

[:SENSe][:OTA]:MAPping:SAVe:KML “<filename>”

Title: Coverage Map Save KML data file
Description: Saves all collected data to a KML data file. This file is compatible with various GIS programs, including Google Maps and Google Earth. The filename must be enclosed in quotation marks. Do not include the file extension.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Save KML Points

[:SENSe][:OTA]:MAPping:SAVe:TEXt “<filename>”

Title: Coverage Map Save KML data file
Description: Saves all collected data to a tab delimited text file. The filename must be enclosed in quotation marks. Do not include the file extension.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Save Tab Delimited Points

[:SENSe][:OTA]:SORTby
CELLid|GROUPid|SECTorid|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby?

Title: OTA Scanner Sort By
Description: Sets the parameter used for sorting the OTA Scanner table. This is used by all OTA displays (Scanner, Tx Test and Mapping).
S-SS Power, RSRP, SINR, RSRQ are descending. Cell ID, Sector ID, Group ID are ascending.
Front Panel Access: Measurement, Over-the-Air, Scanner, Sort By
[:SENSe]:POWer[:RF]:RANGe[:IMMediate]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.
Related Command: [:SENSe]:POWer[:RF]:RANGe:AUTO
Front Panel Access: Amplitude, Adjust Range

[:SENSe]:POWer[:RF]:RANGe:AUTO <Boolean (default=1 [ON])>
[:SENSe]:POWer[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range. When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWer[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range

[:SENSe]:RF:SPECTrum:SPAN Auto|1.4|3|5|10|15|20|30
[:SENSe]:RF:SPECTrurn:SPAN?

Description: Sets the span for the Spectrum view. For example, setting the value to 5 will set the span for the Spectrum view to 5 MHz and setting the value to 20 will set the span for the Spectrum view to 20 MHz.

Parameter: Auto|1.4|3|5|10|15|20|30
Default Value: Auto
Default Unit: MHz
Front Panel Access: Measurements, RF, Channel Spectrum, Span
[SENSe]:SYNC:TYPe SS|RS
[SENSe]:SYNC:TYPe?

Title: Set Sync Type
Description: Sets the sync type setting.
Parameter: SS|RS
Parameter Type: <char>
Default Value: SS
Front Panel Access: Setup, Sync, Sync Type

[SENSe]:TAE:ACTive OFF|ON
[SENSe]:TAE:ACTive?

Title: Time Alignment Error
Description: Sets the state of the TAE measurement for OTA carrier aggregation.
Parameter: OFF|ON
Parameter Type: <boolean>
Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, TAE
Chapter 14 — TD-LTE Commands

14-1 :ABORt Subsystem

The abort subsystem includes commands that allow the user to stop current measurement activities on the instrument.

:ABORt

Title: Abort
Description: Restarts the current sweep and/or measurement. If INITiate:CONTinuous is OFF (i.e., the instrument is in single sweep mode), send the command :INITiate[:IMMediate] to trigger the next sweep. If :INITiate:CONTinuous is ON (i.e., the instrument is in continuous sweep mode), a new sweep will start immediately.

Parameter: NA
14-2 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the SENSe subsystem.

:CALCulate:MARKer:AOFF

Title: Turn All Markers Off

Description: Turn off All markers in RF Channel Spectrum and RF Power vs. Time.

Front Panel Access: Marker, Markers Off

:CALCulate:MARKer1:DELTa:X <x1 parameter>,<x2 parameter>

:CALCulate:MARKer1:DELTa:X?

Title: Delta Marker 1 X Value

Description: Sets/Queries the relative location of the delta marker from the reference marker on the x-axis. Note: The query value might not always match the set value since the instrument will round the set value based on the display pixel resolution.

In Channel Spectrum view, the x1 parameter is used to set the delta position. The x2 parameter is ignored. For example, :CALC:MARK1:DELT:X 2 MHz will set the delta value to 2 MHz. In Power vs. Time view, the x2 parameter is used to set the delta position.

The units must be specified (valid units are us, ms, s). The x1 parameter value is ignored but is required. For example, :CALC:MARK1:DELT:X 0,1 ms will set the delta value to 1 ms.

Parameters: <x1 parameter>,<x2 parameter>

Default Unit: Hz in RF Channel Spectrum view and microseconds in Power vs Time view.

Related Command: :CALCulate:MARKer1:X

Front Panel Access: Marker, Marker Select (M1), Marker State (Delta), (Use arrow keys or rotary knob.)

:CALCulate:MARKer1:DELTa:Y?

Title: Delta Marker 1 Read Y Value

Description: Reads the current absolute Y value for delta marker 1.

Default Unit: dBm

:CALCulate:MARKer1:MAXimum

Title: Set Marker 1 to Peak

Description: Moves marker 1 to peak position on data trace.

Parameter: NA

Front Panel Access: Marker, Marker Select (M1), Peak Search
:CALCulate:MARKer1:STATe OFF|ON|DELta
:CALCulate:MARKer1:STATe?

Title: Set Marker 1 State
Description: Sets marker 1 on/off or delta.
Parameter: OFF|ON|DELta
Parameter Type: <char>
Default Value: OFF
Front Panel Access: Marker, Marker Select (M1), Marker State

:CALCulate:MARKer1:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer1:X?

Title: Set Marker 1 Value
Description: Sets/Queries the location of marker 1 on the x-axis at the specified location.
In Channel Spectrum view, the x1 parameter is used to set the position. The x2 parameter is ignored. For example, :CALC:MARK1:X 756.24 MHz will set Marker 1 to 756.24 MHz.
In Power vs. Time view, the x2 parameter is used to set the position of the marker in time units.
The units must be specified (valid units are us, ms, s). The x1 parameter value is ignored but is required. For example, :CALC:MARK1:X 0,1 ms will set Marker 1 to 1 ms.
Parameters: <x1 parameter>,<x2 parameter>
Default Unit: Hz in RF Channel Spectrum view and microseconds in Power vs. Time view.
Front Panel Access: Marker, Marker Select [1/2/3/4/5/6] (use arrow keys or rotary knob)

:CALCulate:MARKer1:Y?

Title: Marker 1 Read Y Value
Description: Reads the current Y value for marker 1.
Default Unit: dBm

:CALCulate:MARKer2:DELTa:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer2:DELTa:X?

Title: Delta Marker 2 X Value
Description: Sets/Queries the relative location of the delta marker from the reference marker on the x-axis. Note: The query value might not always match the set value since the instrument will round the set value based on the display pixel resolution.
In Channel Spectrum view, the x1 parameter is used to set the delta position. The x2 parameter is ignored. For example,
:CALC:MARK2:DELT:X 2 MHz will set the Marker 2 delta value to 2 MHz.

In Power vs. Time view, the x2 parameter is used to set the delta position. The units must be specified (valid units are us, ms, s). The x1 parameter value is ignored but is required.

For example, :CALC:MARK2:DELT:X 0,1 ms will set the Marker 2 delta value to 1 ms.

Parameters: <x1 parameter>,<x2 parameter>
Default Unit: Hz in RF Channel Spectrum view and microseconds in Power vs. Time view.
Related Command: :CALCulate:MARKer2:X
Front Panel Access: Marker, Marker Select (M2), Marker State (Delta), (Use arrow keys or rotary knob.)

:CALCulate:MARKer2:DELTa:Y?
Title: Delta Marker 2 Read Y Value
Description: Reads the current absolute Y value for delta marker 2.
Default Unit: dBm

:CALCulate:MARKer2:MAXimum
Title: Set Marker 2 to Peak
Description: Moves marker 2 to peak position on data trace.
Parameter: NA
Front Panel Access: Marker, Marker Select (M2), Peak Search

:CALCulate:MARKer2:STATe OFF|ON|DELta
:CALCulate:MARKer2:STATe?
Title: Set Marker 2 State
Description: Sets marker 2 on/off or delta.
Parameter: OFF|ON|Delta
Parameter Type: <char>
Default Value: OFF
Front Panel Access: Marker, Marker Select (M2), Marker State
:CALCulate:MARKer2:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer2:X?

Title: Set Marker 2 Value
Description: Sets/Queries the location of marker 2 on the x-axis at the specified location.

In Channel Spectrum view, the x1 parameter is used to set the position. The x2 parameter is ignored. For example, :CALC:MARK2:X 756.24 MHz will set Marker 2 to 756.24 MHz.

In Power vs. Time view, the x2 parameter is used to set the position of the marker in time units. The units must be specified (valid units are us, ms, s). The x1 parameter value is ignored but is required. For example, :CALC:MARK2:X 0,1 ms will set Marker 2 to 1 ms.

Parameters: <x1 parameter>,<x2 parameter>
Default Unit: Hz in RF Channel Spectrum view and microseconds in Power vs. Time view.

Front Panel Access: Marker, Marker Select (M2), Peak Search

:CALCulate:MARKer2:Y?

Title: Marker2 Read Y Value
Description: Reads the current Y value for marker 2.
Default Unit: dBm
14-3 :CONFigure Subsystem

This set of commands prepares the instrument for the selected measurement. It disables any currently-enabled measurements and activates the specified measurement. It sets the instrument to single sweep mode, waiting for an :INITiate command. It will not initiate the taking of a measurement.

Current instrument settings may be changed to default values. These changes are identified with their respective measurement commands.

:CONFigure SUMMary

Title: Set Measurement to TD-LTE Summary

Description: Sets the measurement to TD-LTE Summary. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMary

Parameter Type: <char>

Front Panel Access: Measurements, TD-LTE Summary

:CONFigure?

Title: Configure Query

Description: :CONFigure? query returns the name of the measurement previously set up using a CONfigure command or a MEASure? query. The list below shows the possible return values.

SUMM
RF,SPEC
RF,ACLR
RF,SEM
RF, PVT, SUBF
RF, PVT, FRAM
RF,SUMM
DEM,CONS
DEM,CCPG
DEM,CCPT
DEM,PVRB
DEM,SUMM
PF
OTA,OTAS
OTA,OTATX
OTA,MAP
:CONFigure:DEMod SUMMARY|CONStIn|CCPGraph|CCPTable

Title: Select the Modulation Measurement

Description: Sets measurement to one of the Modulation screens. This can be one of:

- SUMMARY: Modulation Summary view
- CONStIn: Modulation Constellation diagram.
- CCPGraph: Control Channel Powers - Bar-graph view.
- CCPTable: Control Channel Powers - Table view.

It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Parameter: SUMMARY|CONStIn|CCPGraph|CCPTable

Parameter Type: <char>

Front Panel Access: Measurements, Modulation, (Constellation, Control Channel Power, Modulation Summary). If Control Channel Power is selected, press Control Channel Power again then press Display Mode to select Bar Graph or Table.

:CONFigure:OTA SCANner|TXTEst|MAPping

Title: Select the Over-the-Air Scanner Measurement

Description: Sets the measurement to one of the Over-the-Air screens.

Parameter: SCANner|TXTEst|MAPping

Parameter Type: <char>

Front Panel Access: Measurements, Over-the-Air, Scanner
CONFigure:RF SUMMary|SPECtrum|ACLR|SEM|PVTime

Title: Select RF Measurements

Description: This command configures RF measurements. It disables any other active measurements. None of the instrument parameters are changed by the execution of this command. Sets the instrument to single sweep mode (:INITiate:CONTinuous OFF). Measurement settings can be modified by using the [:SENSe] commands before initiating a measurement.

Set measurement to one of the RF measurement screens. This can be one of:

- SUMMary: RF measurement summary screen.
- SPECtrum: RF Channel Spectrum measurement screen.
- ACLR: ACLR measurement view.
- SEM: Spectral Emission Mask measurement.
- PVTime: Power vs. Time measurement

Parameter: SUMMary|SPECtrum|ACLR|SEM|PVTime

Front Panel Access: Measurements, RF, (Channel Spectrum, Power vs. Time, ACLR, Spectral Emission Mask, RF Summary)

CONFigure:RF:PVTime FRAME|SUBFrame

Title: Configure Power vs Time Measurements

Description: Sets the current display mode for Power vs. Time measurements, either ‘Frame’ or ‘Sub-frame’.

Parameter: FRAME|SUBFrame

Parameter Type: <char>

Front Panel Access: Measurements, RF, Power vs. Time, View
This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINdow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINdow:TRACe:Y[:SCALe]:OFFSet?

Title: Power Offset
Description: Sets the power offset value for the y-axis.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: –100 dB to +100 dB
Front Panel Access: Amplitude, Power Offset

:DISPlay:WINdow:TRACe:Y[:SCALe]:PDIvision <rel ampl>
:DISPlay:WINdow:TRACe:Y[:SCALe]:PDIvision?

Title: Scale
Description: Sets the Scale/Division setting for the y-axis. This only affects the scale for the Channel Spectrum and Power vs Time measurements.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB
Front Panel Access: Amplitude, Scale
14-5 :FETCh Subsystem

This set of commands returns the most recent measurement data of the active measurement. They will not switch to another measurement.

To make a new measurement, use the INITiate command. To get new measurement data, use the READ or MEASure query commands.

:FETCh:DEMod:CCPData?

Title: Fetch Demodulator Code Domain Power Data

Description: Returns the most recent Control Channel Power measurement numeric results.

Data is returned as 24 comma-delimited values: RS_POWER, PSS_POWER, SSS_POWER, BCH_POWER, CFI_POWER, RS_TOTAL_POWER, PSS_TOTAL_POWER, SSS_TOTAL_POWER, BCH_TOTAL_POWER, CFI_TOTAL_POWER, TOTAL_POWER, TOTAL_CHANNEL_POWER

Front Panel Access: Measurements, Modulation, Control Channel Power

:FETCh:DEMod:CONStln?

Title: Fetch Constellation

Description: Returns the constellation measurement numeric results of the demodulated data symbol over one sub-frame measurement.

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBm. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation
:FETCh:DEMod:PVRB?

Title: Fetch Power vs Resource Block Data

Description:
Returns the PVRB measurement results of the demodulated data.

Data is returned as a string of comma-delimited values: Active RBs, Utilization in %, Channel Power in dBm, OSTP (OFDM Symbol Transmit Power) in dBm, EVM total in %, EVM (QPSK) in %, EVM (16-QAM) in %, EVM (64-QAM) in %, Cell ID.

If Option 886 is installed and activated on the instrument, a value for EVM (256-QAM) in % is returned at the end of the PVRB data string. “--” is returned if the LTE carrier does not use 256-QAM modulation scheme. This value does not immediately follow EVM (64-QAM) in order to maintain backward compatibility with instruments where Option 886 is not installed.

Front Panel Access: Measurements, Modulation, Power vs Resource Block

:FETCh:DEMod:TIMEalign?

Title: Fetch Tx Time Alignment Data

Description: Returns the most recent Time Alignment measurement numeric results.

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:FETCh:OTA:CAGGregation?

Title: Fetch OTA Carrier Aggregation

Description: Returns the result of the most recent Carrier Aggregation measurement numeric results. Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(PK), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--“ means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation, CC#
:FETCH:OTA:MAPping?

Title: Fetch OTA Coverage Mapping

Description: Returns the most recent Coverage Mapping measurement results.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Mapping

:FETCH:OTA:SCANner?

Title: Fetch OTA Scanner

Description: Returns the most recent OTA Scanner measurement results.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Scanner

:FETCH:OTA:TXTEst?

Title: Fetch OTA Tx Test

Description: Returns the most recent OTA Tx Test measurement results.

Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four numbers: Dominance, Antenna Count, Average Power, Delta Power. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Over-the-Air, Tx Test

:FETCH:RF:ACLR?

Title: Fetch Adjacent Channel Leakage Ratio

Description: Returns the most recent adjacent channel leakage ratio measurement results. If the instrument is sweeping, it will not return until the sweep is complete. Refer to “:READ:RF:ACLR?” on page 14-25 for a description of the returned data.

Default Unit: dBm

Front Panel Access: Measurements, RF, ACLR
:**FETCh:RF:PVTime?**

Title: Fetch Power vs. Time

Description: Returns Power vs. Time measurement results – Total Frame Power, DwPTS Power, Transmit Off Power, Cell ID, Timing Error, Sub-Frame Power 1, 2, ...10. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, RF, Power vs. Time

:FETCh:RF:SEM?

Title: Fetch Spectral Emission Mask

Description: Returns Spectral Emission Mask measurement results (Pass or Fail).

Front Panel Access: Measurements, RF, Spectral Emission Mask

:FETCh:RF:SPECTrum?

Title: Fetch RF Spectrum

Description: Returns the most recent RF Spectrum measurement results. Data is returned as 2 comma-delimited values: Channel Power in dBm and Occupied bandwidth measurement in MHz. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, RF, Channel Spectrum
Title: Fetch Summary

Description: Returns the values displayed in a Summary measurement view. If the current display is not a summary screen, the return value is ‘N/A’. The return string is a comma-separated list of the values displayed on the screen, in the order they are listed from top to bottom. The list is preceded by the name of the summary view: “RF Summary,” “Modulation Summary,” or “TD-LTE Summary”.

RF Summary, Channel Power in dBm, Occupied BW in MHz, Lower Adjacent Channel Power 2 in dBm, Lower Adjacent Channel Power 1 in dBm, Upper Adjacent Channel Power 1 in dBm, Upper Adjacent Channel Power 2 in dBm, Spectral Emission Mask (Pass or Fail), Total Frame Power in dBm, DwPTS (Downlink Pilot Time Slot) Power in dBm, Transmit Off Power in dBm, Timing Error.

Modulation Summary, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, EVM (rms) in %, EVM (QPSK) in %, EVM (16-QAM) in %, EVM (64-QAM) in %, Freq Error in Hz, Freq Error in ppm, Cell ID, PBCH Power in dBm.

If Option 886 is activated on the instrument, a value for EVM (256-QAM) in % is returned at the end of the Modulation Summary data string. “- -” is returned if the LTE carrier does not use 256-QAM modulation scheme. This value does not immediately follow EVM (64-QAM) in order to maintain backward compatibility with instruments where Option 886 is not installed.

TD-LTE Summary, Freq Error in Hz, Occupied BW in MHz, Carrier Frequency in MHz, Channel Power in dBm, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, EVM (rms) in %, PBCH Power in dBm, PCFICH Power in dBm, Spectral Emission Mask (Pass or Fail).

When Option 886 is installed, 256-QAM EVM measurement results are included in the calculation of EVM (rms) percentage value.

Front Panel Access: Measurements, RF, RF Summary
Measurements, Modulation, Modulation Summary
Measurements, TD-LTE Summary
14-6 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred.

The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]?

Title: Numeric Data Format

Description: This command specifies the format in which data is returned in certain commands.

- ASCii format returns the data in comma-separated ASCII format. The units are the current instrument units. This format requires many more bytes so it is the slowest format.
- INTeger values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks.
- REAL values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are the current instrument units.

Both INTeger and REAL formats return a definite block length. Each transfer begins with an ASCII header such as #42204. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204). You then divide the number of following bytes by the number of bytes in the data format you’ve chosen (4 for both INTeger and REAL) to get the number of data points (in this example, 551).

Parameter: ASCii|INTeger,32|REAL,32

Parameter Type: <char>

Default Value: ASCii
14-7 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate:CONTinuous OFF|ON|0|1

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel Access: Shift-3 (Sweep), Sweep

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved.

Related Command: :INITiate:CONTinuous

:STATus:OPERation?

Front Panel Access: Shift-3 (Sweep), Sweep (Single), Trigger Sweep
14-8 :MEASure Subsystem

These commands take the instrument from its current state, enable the specified measurement and put the instrument into single sweep mode. They correct any parameters that are invalid given the new measurement state such that a valid measurement can take place. Other settings may be changed. Refer to the documentation of CONFigure for each measurement. They then initiate the measurement. When the measurement is complete, they return the result.

To make a measurement with settings other than the “default” measurement settings applied by CONFigure, do the following:

- Send the appropriate CONFigure command to set the desired measurement.
- Modify the settings as required.
- Send the appropriate READ command to measure and return the result.

To get the current measurement data, use the appropriate FETCh command.

:MEAsure:DEMod:AVErage?

Title: Measure Constellation with Frequency Error Averaging
Description: Triggers a series of new Constellation measurements and returns the results. The number of measurements is set by the [:SENSe]:AVErage:FERRor:COUNt n command.

Although ‘n’ measurements are taken, only a single result string returns. This will be the measured results of the last measurement in the set, except for frequency error, which is averaged over the entire ‘n’ measurements.

Note: If n is large, then an appropriately large value for the time-out of the SCPI interface is required.

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, the Cell ID, and the number of measurements average for Frequency Error. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation
:MEASure:DEMod:CCPData?

Title: Read Modulation Control Channel Power Data

Description: Sets the active measurement to Control Channel Power, sets the default measurement parameters, triggers a new measurement, and returns the measured values: RS_POWER, PSS_POWER, SSS_POWER, BCH_POWER, CFI_POWER, RS_TOTAL_POWER, PSS_TOTAL_POWER, SSS_TOTAL_POWER, BCH_TOTAL_POWER, CFI_TOTAL_POWER, TOTAL_POWER, TOTAL_CHANNEL_POWER.

Data returned is the same for Bar Graph or Table mode. The Control Channel Power measurement must be the active measurement.

Front Panel Access: Measurements, Modulation, Control Channel Power

:MEASure:DEMod:CONStln?

Title: Measure Constellation

Description: Triggers a new Constellation measurement and returns the results. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStln). The current measurement can be queried using the command :CONFigure?

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBm. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation

:MEASure:DEMod:TIMEalign?

Title: Measure Tx Time Alignment Data

Description: Sets the active measurement to Tx Time Alignment, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBm, Sync Signal (SS) Power in dBm, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment

:MEASure:OTA:CAGGregation?

Title: Measure OTA Carrier Aggregation

Description: Sets the active measurement to Carrier Aggregation, triggers a new measurement, and returns the measured values.
Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(PK), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with “--” means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

:MEASure:OTA:MAPping?

Title: Measure OTA Coverage Mapping
Description: Sets the active measurement to OTA Coverage Mapping, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Mapping

:MEASure:OTA:MAPping:RUN START|STOP

:MEASure:OTA:MAPping:RUN?

Title: Coverage Mapping Data Collection
Description: Turns On/Off the coverage mapping data collection. The instrument must be in Mapping measurement mode for the command to be effective.

No data is returned.

Front Panel Access: Measurements, Over-the-Air, Mapping, Start/Stop Data Collection (Main Menu key)

:MEASure:OTA:SCANner?

Title: Measure OTA Scanner
Description: Sets the active measurement to OTA Scanner, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.
Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm
Front Panel Access: Measurements, Over-the-Air, Scanner

:MEASure:OTA:TXTEst?

Title: Measure OTA Tx Test

Description: Sets the active measurement to OTA Tx Test, sets the default measurement parameters, triggers a new measurement, and returns the measured values.

Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four results: Dominance, Antenna count, Average Power, Delta Power.

Default Unit: dBm
Front Panel Access: Measurements, Over-the-Air, Tx Test

:MEASure:RF:ACLR?

Title: Measure Adjacent Channel Leakage Ratio

Description: Sets the active measurement to adjacent channel power ratio, sets the default measurement parameters, triggers a new measurement and returns the main channel(s) power, and adjacent channel(s) power. It is a combination of the commands :CONFigure:RF ACLR and :READ:RF:ACLR? Refer to "**:READ:RF:ACLR?**" on page 14-25 for a description of the returned data.

Default Unit: dBm
Front Panel Access: Measurements, RF, ACLR

:MEASure:RF:PVTime?

Title: Measure Power vs. Time (Frame)

Description: Sets the active measurement to Power vs. Time (Frame), sets the default measurement parameters, triggers a new measurement and returns the Total Frame Power, DwPTS Power, Transmit Off Power, Cell ID, Timing Error, Sub-Frame Power 1, 2, ...10. "--" is returned for each data that is not valid at that instance. It is a combination of the commands :CONFigure:RF:PVTime and :READ:RF:PVTime?

Front Panel Access: Measurements, RF, Power vs. Time
:MEASure:RF:SEM?

Title: Measure Spectral Emission Mask
Description: Sets the active measurement to Spectral Emission Mask and returns a PASS or FAIL result.
Front Panel Access: Measurements, RF, Spectral Emission Mask

:MEASure:RF:SPECTrum?

Title: Measure RF Spectrum
Description: Sets the active measurement to Channel Spectrum, sets the default measurement parameters, triggers a new measurement and returns the Channel Power and Occupied Bandwidth measurement results. It is a combination of the following command: CONFigure:RF SPECtrum and :READ:RF:SPECTrum?. Data is returned as 2 comma-delimited values: Channel Power in dBm and Occupied bandwidth in MHz.
Front Panel Access: Measurements, RF, Channel Spectrum
14-9 :READ Subsystem

This set of commands combines the ABORt, INITiate and FETCh commands. It aborts any current triggering sequence and sets the trigger state to idle. It then initiates a new active measurement (i.e. begins the collection of new data). When the measurement is complete, it returns the result. These commands will not switch to another measurement.

To get the current measurement data, use the FETCh command.

:READ:DEMod:CONStln?

Title: Read Constellation

Description: Triggers a new Constellation measurement and returns the results. The Constellation measurement must be the active measurement (specified by :CONFigure:DEMod CONStln). The current measurement can be queried using the command :CONFigure?

Data is returned as 10 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBM, Sync Signal (SS) Power in dBM, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, the number of measurements used in the frequency error average (if on), and OSTP (OFDM Symbol Transmit Power) in dBM. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Constellation

:READ:DEMod:TIMEalign?

Title: Read Tx Time Alignment Data

Description: Triggers a new Time Alignment measurement and returns the results. The Tx Time Alignment measurement must be the active measurement (specified by :CONFigure:DEMod TIMEalign). The current measurement can be queried using the command :CONFigure?

Data is returned as 9 comma-delimited values: EVM (rms) in %, EVM (pk) in %, Ref Signal (RS) Power in dBM, Sync Signal (SS) Power in dBM, Carrier Frequency in MHz, Freq Error in Hz, Freq Error in ppm, Cell ID, and Time Alignment Error (TAE) in nanoseconds. “--” is returned for each data that is not valid at that instance.

Front Panel Access: Measurements, Modulation, Tx Time Alignment
Title: Read OTA Carrier Aggregation

Description: Triggers a new Carrier Aggregation measurement and returns the results. The Carrier Aggregation measurement must be the active measurement (specified by :CONFigure:DEMod CAGGregation). The current measurement can be queried using the command :CONFigure?.

Data is returned as 60 comma delimited values. The values consist of 5 sets of Component Carrier (CC) data with each set containing 12 fields (CP, tx1 antenna, tx2 antenna, RS Power, RS Delta Power, SS Power, EVM(rms), EVM(PK), Freq Error, Freq Error (ppm), TAE (nS), and Cell ID). The data is in sequential CC order. A field with "--" means the data was invalid. An inactive Component Carrier will show N/A for the entire set of data.

Front Panel Access: Measurements, Over-the-Air, Carrier Aggregation

Title: Read OTA Coverage Mapping

Description: Triggers a new OTA Coverage Mapping measurement and returns the results. The OTA Mapping measurement must be the active measurement (specified by :CONFigure:OTA MAPping). The current measurement can be queried using the command :CONFigure?.

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. "--" is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Mapping
:READ:OTA:SCANner?

Title: Read OTA Scanner

Description: Triggers a new OTA Scanner measurement and returns the results. The OTA Scanner measurement must be the active measurement (specified by :CONFigure:OTA SCANner). The current measurement can be queried using the command :CONFigure?

Data is returned as six sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the six sets of data is a final value for the Dominance. “--” is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Scanner

:READ:OTA:TXTEst?

Title: Read OTA Tx Test

Description: Triggers a new OTA Tx Test measurement and returns the results. The OTA Tx Test measurement must be the active measurement (specified by :CONFigure:OTA Tx Test). The current measurement can be queried using the command :CONFigure?

Data is returned as three sets of comma-delimited values. Each set consists of: Cell ID, Group ID, Sector ID, S-SS Power, RSRP, RSRQ, and SINR.

Following the three sets of data is an additional set of four numbers: Dominance, Antenna count, Average Power, Delta Power. “--” is returned for each data that is not valid at that instance.

Default Unit: dBm

Front Panel Access: Measurements, Over-the-Air, Tx Test

:READ:PFail?

Title: Read PASS/FAIL

Description: Triggers a new PASS/FAIL measurement and returns the results. It is a combination of the commands :ABORT, :INITiate, and FETCh:PFail? The PASS/FAIL measurement must be active. The current measurement can be queried using :CONFigure?

Related Command: FETCh:PFail?

:CONFigure PFail

:MEASure:PFail?

Front Panel Access: Measurements, Pass/Fail Test
:READ:RF:ACLR?

Title: Read Adjacent Channel Leakage Ratio

Description: Triggers a new Adjacent Channel Leakage Ratio measurement and returns the results: Power levels for each channel (both absolute and relative). If the instrument is sweeping, it will not return until the sweep is complete. If the instrument is not sweeping and the current data is not valid it will return error -230. This could occur if there was a *RST immediately before the :FETCh? or if a measurement parameter was changed without an :INITiate.

Data is returned as 11 comma-separated values: Main channel power, Left alternate channel power - relative, absolute, Left adjacent channel power - relative, absolute, Main channel power - relative, absolute, Right adjacent channel power - relative, absolute, Right Alternate channel power - relative, absolute.

Default Unit: dBm

Front Panel Access: Measurements, RF, ACLR

:READ:RF:PVTime?

Title: Read Power vs. Time

Description: Triggers a new Power vs. Time measurement and returns the results: Total Frame Power, DwPTS Power, Transmit Off Power, Cell ID, Timing Error, Sub-Frame Power 1, 2, ...10. “--” is returned for each data that is not valid at that instance. It is a combination of the commands :ABORT; :INITiate; :FETCh:RF:PVTime?

The Power vs. Time measurement must be the active measurement (specified by :CONFigure:RF PVTime). The current measurement can be queried using :CONFigure?

Related Command: :FETCh:RF:PVTime?

:CONFigure:RF PVTime

Front Panel Access: Measurements, RF, Power vs. Time

:READ:RF:SEM?

Title: Read RF Spectral Emission Mask

Description: Triggers a new RF Spectral Emission Mask measurement and returns a PASS or FAIL result. It is a combination of the commands :ABORT, :INITiate, and FETCH:RF:SEM? The current measurement can be queried using :CONFigure?

Front Panel Access: Measurements, RF, Spectral Emission Mask
:READ:RF:SPECTrum?

Title: Read RF Spectrum

Description: Triggers a new RF Spectrum measurement and returns the results: Channel Power and Occupied BW measurement. It is a combination of the commands :ABORT, :INITiate, and FETCH:RF:SPECTrum? The current measurement can be queried using :CONFigure?

Data is returned as 2 comma-delimited values: Channel Power(RSSI) in dBm and Occupied bandwidth measurement in MHz.

Related Command:
- :FETCH:RF:SPECTrum?
- :CONFigure:RF SPECTrum
- :MEASure:RF:SPECTrum?

Front Panel Access: Measurements, RF, Channel Spectrum
14-10 :TRIGger Subsystem

This subsystem contains commands related to the triggering of instrument functions for the purposes of synchronization. Related commands appear in the ABORt and INITiate subsystems.

:TRIGger:SEQuence:SLOPe RISing|FALLing
:TRIGger:SEQuence:SLOPe?

 Title: External Trigger Polarity
 Description: This command sets/returns the external trigger polarity. Note that this setting can only be changed when the Trigger Source is set to “Ext”.
 Parameter: RISing | FALLing
 Parameter Type: <char>
 Default Value: RISing
 Default Unit: NA
 Range: RISing, FALLing
 Front Panel Access: Setup, Trigger, Trigger Source (Ext), Trigger Polarity
14-11 :UNIT Subsystem

The unit subsystem is used to modify the default units used for related parameters. These changes affect parameters in both commands and responses.

:UNIT:POWer dBM|W
:UNIT:POWer?

Title: Measurement Units
Description: Sets/Returns the current display mode for power values as either dBm or in watts.
Parameter: DBM|W
Parameter Type: <char>
Default Value: dBm
Front Panel Access: Amplitude, Units
14-12 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:AVERAGE:FERRor:COUNt n
[:SENSe]:AVERAGE:FERRor:COUNt?

Title: Frequency Error Average
Description: When count is greater than one, the frequency error value is averaged over past measurements. If count is one, then no averaging occurs.

If Count = N, and M is the number of measured values, then when M < N:
FE next = (FE1 + FE2 + ... + FEN−1)/(N−1).

When M ≤ N:
FE next = [(N−1) * FE previous + FE new]/N

Note: This is commonly called a modified (or running) moving average.

Parameter: 1–15
Parameter Type: <char>
Default Value: 1
Front Panel Access: Setup, Freq Err Ave Cnt

[:SENSe]:AVERAGE:FERRor:RESet

Title: Frequency Error Average Reset
Description: Resets the frequency error averaging. Does not change the value of Count set with [:SENSe]:AVERAGE:FERRor:COUNt n.

Front Panel Access: Setup, Freq Err Ave Cnt

[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDWidth[:RESolution]?

Title: Bandwidth
Description: Sets the channel bandwidth. 15 MHz and 20 MHz are only available if Option 543 is installed.

Parameter: 1.4|3|5|10|15|20
Parameter Type: <char>
Default Value: The default bandwidth is 10 MHz.
Front Panel Access: Setup, BW
[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive?

Title: Active Component Carrier
Description: Sets the specified Component Carrier (CC) to be on or off.
Parameter: OFF|ON
Parameter Type: <boolean>

[:SENSe]:CC{1|2|3|4|5}:BANDwidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDwidth?

Title: Component Carrier Bandwidth
Description: Sets the channel bandwidth of the specified Component Carrier (CC).
Parameter: 1.4|3|5|10|15|20

[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel?

Title: Component Carrier Channel
Description: Sets the channel number for the selected signal standard for the specified Component Carrier (CC).
Parameter: <number>

[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency?

Title: Component Carrier Frequency
Description: Sets the center frequency of the specified Component Carrier (CC).
Parameter: <freq>
Parameter Type: <NRf>
Default Unit: Hz
[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard?

Title: Component Carrier Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink, then the value of the <string> argument would be “P-GSM 900 - Uplink”. The query form of this command returns the name of the currently selected Signal Standard from the list.

Parameter: <string>
Parameter Type: <char>

[:SENSe]:CELLID <char>
[:SENSe]:CELLID?

Title: Cell ID
Description: Sets the Cell ID value used when Sync Type is set to ‘RS’.

Parameter: (the known Cell ID)
Parameter Type: <char>
Front Panel Access: Setup, Sync (RS), Cell ID

[:SENSe]:EVM?

Title: EVM
Description: Returns the measured EVM value. This consists of 4 comma-separated numbers:
Mean value, maximum value, minimum value and standard deviation.

[:SENSe]:EVM:MAXHold ON|OFF
[:SENSe]:EVM:MAXHold?

Title: EVM Max Hold
Description: Turns Max Hold on or off (toggle) for measured EVM value.

Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Related Command: [:SENSe]:EVM?
Front Panel Access: Setup, EVM Max Hold
[:SENSe]:EVM:MODE AUTO|PBCHonly

[:SENSe]:EVM:MODE?

Title: Set EVM Mode
Description: Sets/Returns the EVM Mode to either Auto or PBCH Only.
Parameter: AUTO|PBCHonly
Parameter Type: <char>
Default Value: AUTO
Front Panel Access: Setup, EVM Mode

[:SENSe]:EVM:RESet

Title: Reset EVM Max Hold
Description: Resets the maximum value stored for the EVM measurement. Also resets minimum, mean and standard deviation.

[:SENSe]:FREQuency:CENTer <freq>

[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency.
Parameter: <freq>
Default Value: 1 GHz
Default Unit: Hz
Range: 10 MHz to 4 GHz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>

[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Frequency, Channel
[:SENSe]:FREQuency:SIGStandard:NAME [String]
[:SENSe]:FREQuency:SIGStandard:NAME?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is P-GSM 900 - Uplink, then the value of the <string> argument would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently selected Signal Standard from the list.

Parameter: <string>
Front Panel Access: Freq, Signal Standard

[:SENSe]:LTE:STATus?

Title: Sweep Status
Description: Returns 1 when the sweep is complete. Returns 0 when the sweep is in progress.
Front Panel Access: None
[:SENSe][:OTA]:MAPping:MEASurement SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:MAPping:MEASurement?

Title: Coverage Mapping Measurement Parameter
Description: Selects the measurement parameter used by the mapping system. The selected parameter's threshold levels will be used to determine the signal quality and corresponding color displayed on the map. This will also be the parameter name and value shown if a kml file is created and loaded into Google Earth.

Parameter: <string> SSSPower | RSRP | RSRQ | SINR
Default Value: SSSPower

Example: [:SENSe][:OTA]:MAPping:MEASurement SSSPower

Related Command:
[:SENSe][:OTA]:MAPping:SSSPower:THREShold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:SSSPower:THREShold?

[:SENSe][:OTA]:MAPping:RSRP:THREShold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:RSRP:THREShold?

[:SENSe][:OTA]:MAPping:RSRQ:THREShold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:RSRQ:THREShold?

[:SENSe][:OTA]:MAPping:SINR:THREShold
"xx.x,xx.x,xx.x,xx.x,xx.x"
[:SENSe][:OTA]:MAPping:SINR:THREShold?

Title: Coverage Mapping Thresholds

Description: The above commands set/return the threshold levels used in coverage mapping. There are five defined levels: Excellent, Very Good, Good, Fair and Poor. For each level, there is a threshold power that sets the lower boundary for that level. Setting the Excellent threshold to –100.0 dBm, for instance, means that measurement greater than –100.0 dBm will be considered excellent in the report and as display on the coverage map.

Thresholds are set as a comma separated list of power values in order from Excellent to Poor. No units are used, and when setting the threshold values, enclose the all five values in a single set of quote markers.

Examples:

Sending: SENSe:OTA:MAPping:SSSPower:THREShold?
Returns: –107.0,–110.0,–114.0,–117.0,–120.0

Sending: SENSe:OTA:MAPping:SSSPower:THREShold
“–100.0,–103.0,–104.5,–112.0,–118.0 “
Sets the S-SS Power thresholds to:

Excellent: 100.0 dBm
Very Good: 103.0 dBm
Good: 104.5 dBm
Fair: 112.0 dBm
Poor: 118.0 dBm
Parameter: <string> “xxx.x,xxx.x,xxx.x,xxx.x,xxx.x”

Measurement, Over-the-Air, Mapping, Measurement Setup, RSRP Thresholds
Measurement, Over-the-Air, Mapping, Measurement Setup, RSRQ Thresholds
Measurement, Over-the-Air, Mapping, Measurement Setup, SINR Thresholds

[:SENSe][:OTA]:MAPping:POInts:DELeTe

Title: Clear Coverage Mapping measurement
Description: Clears all data points collected for the coverage map.
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Delete All Points

[:SENSe][:OTA]:MAPping:RECall:MAP <filename>

Title: Recall Coverage Map
Description: Recalls a saved coverage map from memory.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Recall a Map

[:SENSe][:OTA]:MAPping:RECall:MAP:DEFAult

Title: Coverage Map Default Grid
Description: Recalls a default grid for coverage mapping.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Recall Default Grid

[:SENSe][:OTA]:MAPping:REPeat:TYPe TIMe|DISTance
[:SENSe][:OTA]:MAPping:REPeat:TYPe?

Title: Coverage Map Repeat Type
Description: Sets the mode for determining data collection trigger. Setting is either Time or Distance. In Time mode, data is collected at fixed intervals in time. In Distance mode, data is collected at fixed intervals in distance.
Related Command: [:SENSe][:OTA]:MAPping:REPeat:TIMe
[:SENSe][:OTA]:MAPping:REPeat:DISTance
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Repeat Type
[:SENSe][:OTA]:MAPping:REPeat:TIMe <microseconds>
[:SENSe][:OTA]:MAPping:REPeat:TIMe?

Title: Coverage Map Repeat Time Interval
Description: Sets the time interval for data collection.
Related Command: [:SENSe][:OTA]:MAPping:REPeat:TYPe TIMe|DISTance
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Repeat Time

[:SENSe][:OTA]:MAPping:REPeat:DISTance <millimeters>
[:SENSe][:OTA]:MAPping:REPeat:DISTance?

Title: Coverage Map Repeat Distance Interval
Description: Sets the distance interval for data collection.
Related Command: [:SENSe][:OTA]:MAPping:REPeat:TYPe TIMe|DISTance
Front Panel Access: Measurement, Over-the-Air, Mapping, Point Distance/Time Setup, Repeat Distance

[:SENSe][:OTA]:MAPping:SAVe:KML "<filename>"

Title: Coverage Map Save KML data file
Description: Saves all collected data to a KML data file. This file is compatible with various GIS programs, including Google Maps and Google Earth. The filename must be enclosed in quotation marks. Do not include the file extension.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Save KML Points

[:SENSe][:OTA]:MAPping:SAVe:TEXt "<filename>"

Title: Coverage Map Save Text data file
Description: Saves all collected data to a tab delimited text file. The filename must be enclosed in quotation marks. Do not include the file extension.
Front Panel Access: Measurement, Over-the-Air, Mapping, Save/Recall Points/Map, Save Tab Delimited Points

[:SENSe][:OTA]:SORTby
CELLid|GROUPid|SECTorid|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby?

Title: OTA Scanner Sort By
Description: Sets the parameter used for sorting the OTA Scanner table. This is used by all OTA displays (Scanner, Tx Test and Mapping).
S-SS Power, RSRP, SINR, RSRQ are descending. Cell ID, Sector ID, Group ID are ascending.
Front Panel Access: Measurement, Over-the-Air, Scanner, Sort By
[:SENSe]:POWe[r[:RF]:RANGe[:IMMediate]]

Title: Amplitude Range
Description: Recalculates amplitude range. Note that issuing this command will set the automatic dynamic range OFF.
Related Command: [:SENSe]:POWe[r[:RF]:RANGe:AUTO
Front Panel Access: Amplitude, Adjust Range

[:SENSe]:POWe[r[:RF]:RANGe:AUTO {Boolean (default=1 [ON])}]
[:SENSe]:POWe[r[:RF]:RANGe:AUTO?

Title: Automatic Amplitude Range
Description: Sets the automatic amplitude range. Setting the value to ON or 1 will result in the amplitude range being coupled to the detected input signal level. Setting the value to OFF or 0 will result in the input attenuation being uncoupled from the input signal level. That is, changing the input signal level will not change the amplitude range.
When this command is issued, the amplitude range itself will not change. The default value is ON. That is, sending :SENS:POW:RANG:AUTO is equivalent to sending :SENS:POW:RANG:AUTO ON.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: ON
Related Command: [:SENSe]:POWe[r[:RF]:RANGe
Front Panel Access: Amplitude, Auto Range

[:SENSe]:RF:SPECTrum:SPAN Auto|1.4|3|5|10|15|20|30
[:SENSe]:RF:SPECTrum:SPAN?

Title: Automatic Amplitude Range
Description: Sets the span for the Spectrum view. For example, setting the value to 5 will set the span for the Spectrum view to 5 MHz and setting the value to 20 will set the span for the Spectrum view to 20 MHz.
Parameter: Auto|1.4|3|5|10|15|20|30
Default Value: Auto
Default Unit: MHz
Front Panel Access: Measurements, RF, Channel Spectrum, Span
[:SENSe]:SUBFrame <Sub-frame number 0-9>
[:SENSe]:SUBFrame?

Title: Set Sub-Frame Number
Description: Sets/returns the sub-frame number. The sub-frame number is used in Power vs. Time to zoom in the trace data to a particular sub-frame.
Parameter: 0–9
Parameter Type: <char>
Default Value: 0
Front Panel Access: Measurement, RF, Power vs. Time, View (Sub-Frame), Sub-Frame Number

[:SENSe]:SYNC:TYPE SS|RS
[:SENSe]:SYNC:TYPE?

Title: Set Sync Type
Description: Sets the sync type setting.
Parameter: SS|RS
Parameter Type: <char>
Default Value: SS
Front Panel Access: Setup, Sync, Sync Type

[:SENSe]:TAE:ACTive OFF|ON
[:SENSe]:TAE:ACTive?

Title: Time Alignment Error
Description: Sets the state of the TAE measurement for OTA carrier aggregation.
Parameter: OFF|ON
Parameter Type: <boolean>

[:SENSe]:TRIGger NOTRIGger|EXTERNAL
[:SENSe]:TRIGger?

Title: External Trigger
Description: Sets the external trigger. The query form returns either “NOTRIG” or “EXT” in Ascii (without the double quotes).
Default Value: No Trig
Front Panel Access: Setup, Trigger, Trigger Source
Chapter 15 — AM/FM/PM Commands

15-1 :CALCulate Subsystem

The commands in this subsystem process data that has been collected via the SENSE subsystem. Commands may require the instrument to be in the proper mode or set up to use the feature of the command. For example, Marker commands function in one of the spectrum modes, Summary commands require the Summary mode. Use the :AFP:DEM:MODE command to set the desired mode.

:CALCulate:MARKer{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATe]?

Title: Marker State
Description: Sets the specified marker on/off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn off reference marker #1:
:CALCulate:MARKer1:STATe OFF

Front Panel Access: Marker, On/Off

:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe]?

Title: Delta Marker State
Description: Sets the specified delta marker on or off.
Parameter: OFF|ON|0|1
Parameter Type: <boolean>
Default Value: OFF
Example: To turn on delta marker #3:
:CALCulate:MARKer3:DELTa ON
:CALCulate:MARKer3:DELTa 1
:CALCulate:MARKer3:DELTa:STATe ON
:CALCulate:MARKer3:DELTa:STATe 1

To turn off delta marker #6:
:CALCulate:MARKer6:DELTa OFF
:CALCulate:MARKer6:DELTa:STATe OFF
:CALCulate:MARKer6:DELTa:STATe 0

Front Panel Access: Marker, Delta
::CALCulate::MARKer{1|2|3|4|5|6}:DELTa:X <x-parameter>
::CALCulate::MARKer{1|2|3|4|5|6}:DELTa:X?

Title: Delta Marker X Value
Description: Sets the location of the delta marker on the x-axis at the specified location <x-parameter> plus the reference marker x-axis. <x-parameter> is defined in the current x-axis units. The query version of the command returns the location of the delta marker on the x-axis.
Parameter: <x-parameter>
Default Unit: Hz or seconds if in Audio Waveform.
Example: If both the reference and delta marker #1 is currently at 1 GHz on the x-axis, send the command below to set the delta marker #1 to 2 GHz on the x-axis:
::CALCulate::MARKer1::DELTa:X 1GHz
(In Audio Waveform) If both the reference and delta marker #1 is currently at 25 µs on the x-axis, send the command below to set the delta marker to 50 µs on the x-axis:
::CALCulate::MARKer1::DELTa:X 25µs
Related Command: ::CALCulate::MARKer[1]|2|3|4|5|6::X
Front Panel Access: Marker, Delta

::CALCulate::MARKer{1|2|3|4|5|6}:DELTa:Y?

Title: Delta Marker Read Y Value
Description: Reads the current absolute Y value for the specified delta marker. The units are the units of the y-axis. In RF spectrum view, the value is returned in dBm. In Audio Spectrum or Audio Waveform view, the value is returned in % for AM, Hz for FM and Radians for PM.
Default Unit: Current y-axis unit

::CALCulate::MARKer{1|2|3|4|5|6} [:SET]:CENTER

Title: Marker Frequency to Center
Description: In RF spectrum view, this command sets the center frequency equal to the frequency of the specified marker. Note that this will result in a change to the start and stop frequencies and may also result in a change to the span. Note that this command is not valid in Audio Spectrum, Audio Waveform and Summary view.
Front Panel Access: Marker, Marker Freq to Center
:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum

Title: Marker (Maximum) Peak Search

Description: Puts the specified marker at the maximum amplitude in the trace.

Front Panel Access: Marker, Marker [1/2/3/4/5/6], Peak Search
Marker, Marker [1/2/3/4/5/6], More Peak Options, Peak Search

:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:RLEVEL

Title: Marker to Reference Level

Description: Sets the reference level equal to the measured amplitude of the specified marker. Note that this may result in a change to the input attenuation. Note that this command is not valid in Audio Spectrum, Audio Waveform and Summary view.

Front Panel Access: Marker, Marker to Ref Lvl

:CALCulate:MARKer{1|2|3|4|5|6}::X <x-parameter>

:CALCulate:MARKer{1|2|3|4|5|6}::X?

Title: Marker X Value

Description: Sets the location of the marker on the x-axis at the specified location.
<x-parameter> is defined in the current x-axis units. The query version of the command returns the location of the marker on the x-axis. Note that the marker is snapped to the data point closest to the specified value. If the specified marker is not on it is set to on.

Parameter: <x-parameter>

Default Unit: Hz or seconds if in Audio Waveform.

Example:
To set reference marker #2 to 5 hertz on the x-axis:
:CALCulate:MARKer2::X 5
:CALCulate:MARKer2::X 5Hz

To set reference marker #1 to 1.5 GHz on the x-axis:
:CALCulate:MARKer::X 1.5GHz
:CALCulate:MARKer1::X 1.5GHz

(In Audio Waveform) To set reference marker #3 to 1.5 milli-seconds on the x-axis:
:CALCulate:MARKer3::X .0015
:CALCulate:MARKer3::X 1.5ms

:CALCulate:MARKer{1|2|3|4|5|6}::Y?

Title: Marker Read Y Value

Description: In RF spectrum view, the value is returned in dBm. In Audio Spectrum or Audio Waveform view, the value is returned in % for AM, Hz for FM and Radians for PM.

Default Unit: Current y-axis unit
::CALCulate::MARKer::AOFF

 Title: Turn All Markers Off
 Description: Turns off all markers.
 Front Panel Access: Marker, More, All Markers Off

::CALCulate::MARKer::TABLE[:STATe] OFF|ON
::CALCulate::MARKer::TABLE[:STATe]?

 Title: Marker Table State
 Description: Turns the Marker Table on or off. Setting the value to ON will turn on
 the marker table. Setting the value to OFF will turn off the marker table.
 Parameter: OFF|ON
 Parameter Type: <boolean>
 Default Value: OFF
 Example: To turn on marker table:
 ::CALCulate::MARKer::TABLE ON
15-2 :DISPlay Subsystem

This subsystem provides commands that modify the display of data for the user. They do not modify the way in which data are returned to the controller.

:DISPlay:WINDow:TRACe:Y:ADJust

Title: Adjust Range
Description: Automatically adjusts reference level if input signal strength is too high (ADC error) or too low.
Example: :DISPlay:WINDow:TRACe:Y:ADJust

Front Panel Access: Amplitude, Adjust Range

:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision?

Title: Scale
Description: Sets the scale (dB/division) for the y-axis in RF Spectrum view.
Parameter: <rel ampl>
Default Value: 10 dB/div
Default Unit: dB
Range: 1 dB to 15 dB

Front Panel Access: Amplitude, Scale

Title: Power Offset
Description: Sets the power offset value for the y-axis in RF Spectrum view.
Parameter: <rel ampl>
Default Value: 0 dB
Default Unit: dB
Range: -100 dB to 100 dB

Front Panel Access: Amplitude, Power Offset
15-3 :FORMat Subsystem

This subsystem contains commands that determine the formatting of numeric data when it is transferred. The format setting affects data in specific commands only. If a command is affected, it is noted in the command description.

:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,[<length>]
:FORMat[:READings][:DATA]?

Title: Numeric Data Format
Description: This command specifies the format in which data is returned in certain commands. The optional <length> parameter is needed for REAL format only. It defines the length of the floating point number in bits. Valid values are 32 and 64. If no length is specified, the default length of REAL data is set to 64 bits.

ASCII format returns the data in comma-separated ASCII format. The units are dBm for RF Spectrum, % for AM Audio Spectrum/Waveform, Hz for FM Audio Spectrum/Waveform, Radians for PM Audio Spectrum/Waveform.

This format requires many more bytes so it is the slowest format.

INTeger, 32 values are signed 32-bit integers in little-endian byte order. This format returns the data in 4-byte blocks. The units are dBm for RF Spectrum, 1000*% for AM Audio Spectrum/Waveform, Hz for FM Audio Spectrum/Waveform, milli-Radians for PM Audio Spectrum/Waveform.

For example, if the measured result was -12.345 dBm, that value would be sent as -12345. REAL,32 values are 32-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 4-byte binary format. The units are dBm for RF Spectrum, % for AM Audio Spectrum/Waveform, Hz for FM Audio Spectrum/Waveform, Radians for PM Audio Spectrum/Waveform.

REAL,64 values are 64-bit floating point numbers conforming to the IEEE 754 standard in little-endian byte order. This format returns the data in 8-byte binary format. The units are dBm for RF Spectrum, % for AM Audio Spectrum/Waveform, Hz for FM Audio Spectrum/Waveform, Radians for PM Audio Spectrum/Waveform.
Both INTeger and REAL formats return a definite block length. Each transfer begins with an ASCII header such as #42204 for INTeger,32 and REAL,32 and #44408 for REAL,64. The first digit represents the number of following digits in the header (in this example, 4). The remainder of the header indicates the number of bytes that follow the header (in this example, 2204 for INT,32 and REAL,32 and 4408 for REAL,64). Divide the number of following bytes by the number of bytes in the data format chosen (4 for both INTeger,32 and REAL,32, and 8 for REAL,64) to get the number of data points (in this example, 551).

Parameter: ASCII | INTeger,32 | REAL,[<length>]
Parameter Type: <char>
Default Value: ASCII
Related Command: :TRACe[:DATA]
15-4 :INITiate Subsystem

This subsystem controls the triggering of measurements.

:INITiate[:IMMediate]

Title: Trigger Sweep/Measurement

Description: Initiates a sweep/measurement. If :INITiate:CONTinuous is set to ON, this command is ignored. Use this command in combination with :STATus:OPERation? to synchronize the capture of one complete set of data. When this command is sent, the “sweep complete” bit of :STATus:OPERation? is set to 0, indicating that the measurement has not completed. The data collection is then triggered. The controlling program can poll :STATus:OPERation? to determine the status. When the “sweep complete” bit is set to 1, data is ready to be retrieved. An :INITiate[:IMMediate] command must be issued for each additional sweep desired.

Related Command: :INITiate:CONTinuous
:STATus:OPERation?

Front Panel Access: Shift-3 (Sweep), Manual Trigger

:INITiate:CONTinuous OFF|ON|0|1

:INITiate:CONTinuous?

Title: Continuous/Single Sweep

Description: Specifies whether the sweep/measurement is triggered continuously. If the value is set to ON or 1, another sweep/measurement is triggered as soon as the current one completes. If continuous is set to OFF or 0, the instrument enters the “idle” state and waits for the :INITiate[:IMMediate] command or for :INITiate:CONTinuous ON. The default value is ON. That is, sending :INIT:CONT is equivalent to sending :INIT:CONT ON. The query version of the command returns a 1 if the instrument is continuously sweeping/measuring and returns a 0 if the instrument is in single sweep/measurement mode. Note that rapid toggling between ON and OFF is not allowed. The instrument must be allowed to make a full sweep before toggling can be done.

Parameter: OFF|ON|0|1

Parameter Type: <boolean>

Default Value: ON

Related Command: :INITiate[:IMMediate]

Front Panel Access: Shift-3 (Sweep), Sweep
15-5 :MMEemory Subsystem

The Mass Memory subsystem contains functions that provide access to the instrument’s setup and data storage.

:MMEemory:DELeTe <filename>

Title: Delete Setup/Measurement

Description: Removes a file specified by <filename> from the current mass storage device. <filename> should be enclosed in either single quotes (‘’) or double quotes (“ ”) and it must include the file extension. Use the command MMEemory:MSIS to set the current file location.

Parameter: <filename>

Related Command: :MMEemory:STORE:STATe
 :MMEemory:STORE:TRAcE
 :MMEemory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Delete, Delete Selected File

:MMEemory:LOAD:STATe <integer>,<filename>

Title: Recall Setup

Description: Recalls a previously stored instrument setup in the current save location. The setup file to be loaded is specified by <filename>. <filename> should be enclosed in either single quotes (‘’) or double quotes (“ ”) and should contain a file extension “.stp”. Use the command MMEemory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a 1.

Parameter: <integer>, <filename>

Related Command: :MMEemory:STORE:STATe
 :MMEemory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Recall

:MMEemory:LOAD:TRAcE <integer>,<filename>

Title: Recall Measurement

Description: The instrument must be in the mode of the saved trace in order to recall that trace. Use :INStrument:SELect or :INStrument:NSELect to set the mode. Recalls a previously stored measurement trace from the current save location. The saved measurement trace to be loaded is specified by <filename>. <filename> should be enclosed in either single quotes (‘’) or double quotes (“ ”) and should contain a file extension. Note that the trace specified by <filename> should be available at the current save location.

Use the command MMEemory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a 1.

File name extensions:
“.spa” for SPA measurement
“.mna” for VNA and VVM measurements
“.hipm” for HiPM measurements
“.pm” for PM measurements
“.cwsg” for CWSG measurements
“.afp” for AM/FM/PM measurements
“.ia” for Interference Analysis measurements
“.cs” for Channel Scanner measurements
“.wmxd” for WiMAX
“.wmxe” for Mobile WiMAX
“.lte” for LTE measurements
“.p25” for P25 measurements
“.p252” for P25p2 measurements
“.nxdn” for NXDN measurements
“.dpmr” for dPMR measurements
“.dmr2” for DMR measurements
“.ptc” for PTC measurements
“.tetra” for TETRA measurements
“.nbfm” for NBFM measurements

Note: Extensions not available for T1 and Hi_PM.

Parameter: <integer>, <filename>

Example: To recall trace with file name “trace”:

```
:MMEMory:LOAD:TRACe 1,"trace.afp"
```

Related Command: :MMEMory:STORe:TRACe

Title: Save Setup

Description: Stores the current setup into the file specified by <filename>.

<filename> should be enclosed in either single quotes (‘’) or double quotes (“”) and should not contain a file extension. Use the command MMEMory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a value of 0.

Parameter: <integer>, <filename>

Related Command: :MMEMory:LOAD:STATe

Front Panel Access: Shift-7 (File), Recall Measurement

Title: Save Setup

Description: Stores the current setup into the file specified by <filename>.
:MMEMory:STORe:TRACe <integer>,<filename>

Title: Save Measurement

Description: Stores the trace into the file specified by <filename>. <filename> should be enclosed in either single quotes (‘’) or double quotes (“”) and should not contain a file extension. Use the command MMEory:MSIS to set the current save location. The <integer> parameter is not currently used, but it must be sent. Send a 0. Note that existing files of the same name will not be overwritten.

Parameter: <integer>, <filename>

Example: To save the trace into the file name “trace”:

:MMEMory:STORe:TRACe 0,“trace”

Related Command: :MMEMory:LOAD:TRACe
:MMEMory:MSIS INTernal|USB

Front Panel Access: Shift-7 (File), Save
15-6 :TRACe Subsystem

This subsystem contains commands related to the transfer of trace data to and from the instrument.

:TRACe[:DATA] ?

Title: Trace Data Transfer

Description: This command transfers data from the controlling program to the instrument. The query form transfers trace data from the instrument to the controller. Data is transferred to the instrument enclosed in parentheses as (<header><block>) and from the instrument as <header><block>.

The ASCII header specifies the number of data bytes. It looks like #AX, where A is the number of digits in X and X is the number of bytes in the <block>. The format of the block data in the query form is specified by :FORMat:DATA. The block data in the command form is always sent in ASCII format.

To acquire the data from the trace in the instrument, send :TRACe[:DATA]? A 551 point trace is returned as #42204<block data>. <block> data could be in either INTeger,32 or REAL,32 format. In both cases, there is 4 bytes per data point. So, 4 bytes per point * 551 data points gives 2204 bytes in <block> data. This example assumes that :FORMat:DATA INTeger,32 or :FORMat:DATA REAL,32 has been sent to the instrument before the query command is sent.

The query command will return a #0 if data is invalid for the active trace.

Related Command: :FORMat:DATA
15-7 [:SENSe] Subsystem

The commands in this subsystem relate to device-specific parameters, not signal-oriented parameters.

[:SENSe]:AFPanaly:AVERage:COUNt <avg count>
[:SENSe]:AFPanaly:AVERage:COUNt?

Title: Measurement Average

Description: Sets the average count for the measurement data when in the summary mode (use :AFP:DEM:MODE SUMM to set summary mode). The query format of this command returns the value only in the summary mode. The query format returns nothing in other measurement modes.

Parameter: <number>
Range: 1 to 65535
Front Panel Access: Shift-4 (Measure), Average (access only in Summary mode)

[:SENSe]:AFPanaly:DEM:DATA?

Title: Summary data

Description: This query returns the measurement values when in the summary mode (use :AFP:DEM:MODE SUMM to set summary mode). The order of the values are as follows:

<Modulation rate> in Hz, <RMS Deviation> in % or Hz or Rad depending on the demod type, <Peak-Peak/2 Dev> in % or Hz or Rad depending on the demod type, <SINAD> in dB, <THD> in % and <Distortion> in %. All values are comma separated.

Front Panel Access: Shift-4 (Measure), Audio Spectrum/Waveform

[:SENSe]:AFPanaly:DEM:MODE RFSP|AFSP|AFWV|SUMmary
[:SENSe]:AFPanaly:DEM:MODE?

Title: Demodulation Mode

Description: This command sets the demodulation mode (graph type) to RF Spectrum (RFSP), Audio Spectrum (AFSP), Audio Waveform (AFWV), or Summary (SUMM).

Parameter: RFSP|AFSP|AFWV|SUMmary
Default Value: RFSP

Example: To set the demodulation mode to Audio Waveform:

SENSe:AFPanaly:DEM:MODE AFWV

Front Panel Access: Shift-4 (Measure)
[SENSe]:AFPanalyzer:DEMod:TYPE AM|FM|PM
[SENSe]:AFPanalyzer:DEMod:TYPE?

Title: Demodulation Type
Description: This command sets the demodulation type.
Parameter: AM | FM | PM
Default Value: AM
Example: To set the demodulation type to FM:

SENSe:AFPanalyzer:DEMod:TYPE FM

Front Panel Access: Setup, Demod Type

[SENSe]:AFPanalyzer:FM:SCALe <percentage>
[SENSe]:AFPanalyzer:FM:SCALe?

Title: FM Y-axis reference level percentage
Description: This command sets the Y-axis reference level as the percentage of the IF bandwidth while in the FM Audio spectrum/waveform display.
Parameter: <percentage>
Default Value: 50
Default Unit: %
Range: 0% to 100%
Front Panel Access: Shift-4 (Measure), Audio Spectrum/Waveform, Scale: % IFBW

[SENSe]:AFPanalyzer:IFBW <freq>
[SENSe]:AFPanalyzer:IFBW?

Title: IF bandwidth
Description: Sets the IF bandwidth. Note that using this command turns the automatic IF bandwidth setting OFF.
Parameter: <freq>
Default Value: 300 kHz
Default Unit: Hz
Range: 1 kHz to 300 kHz in a 1:3 sequence
Related Command: :AFPanalyzer:IFBW:AUTO
Front Panel Access: Setup, IFBW
[:SENSe]:AFPanalyzer:IFBW:AUTO 0|1
[:SENSe]:AFPanalyzer:IFBW:AUTO?

Title: IF bandwidth coupling
Description: Sets the state of the coupling of the IF bandwidth to the span. Setting the value to 1 will result in the IF bandwidth being coupled to the span. That is, when the span changes, the IF bandwidth changes. Setting the value to 0 will result in the IF bandwidth being un-coupled from the span. That is, changing the span will not change the IF bandwidth.

Parameter: 0|1
Parameter Type: <boolean>
Default Value: 1
Front Panel Access: Setup, Auto IFBW

[:SENSe]:AFPanalyzer:PM:SCALe <Radians>
[:SENSe]:AFPanalyzer:PM:SCALe?

Title: PM Y-axis reference level
Description: This command sets the Y-axis reference level while in the PM Audio spectrum/waveform display.

Parameter: <number>
Default Value: 3.140
Range: 3.140 to 3140
Front Panel Access: Shift-4 (Measure), Audio Spectrum/Waveform, Scale: milli-Rad

[:SENSe]:AFPanalyzer:RFSPectrum:DATA?

Title: Summary data
Description: This query returns the measurement values while in the RF spectrum mode (use :AFP:DEM:MODE SUMM to set summary mode). The order of the values are as follows:
<carrier power> in dBm, <carrier freq> in Hz, <Occ BW> in Hz. All values are comma separated.

Front Panel Access: Shift-4 (Measure), RF Spectrum.
[:SENSe]:AFPanalyz er:SPAN <freq>
[:SENSe]:AFPanalyz er:SPAN?

Title: Audio Frequency Span
Description: Sets the audio frequency span while in the Audio Spectrum mode (use :AFP:DE M:MODE AFSP to set audio spectrum mode). Valid values are 2 kHz, 5 kHz, 10 kHz, 20 kHz and 70 kHz.

Parameter: <freq>
Default Unit: Hz
Front Panel Access: Shift-4 (Measure), Audio Spectrum, Span

[:SENSe]:AFPanalyz er:SWEep:TIME <time>
[:SENSe]:AFPanalyz er:SWEep:TIME?

Title: Audio Waveform sweep time
Description: Sets the audio waveform sweep time while in the Audio Spectrum mode (use :AFP:DE M:MODE AFSP to set audio spectrum mode).

Parameter: <time>
Default Unit: Secs
Range: 50 µs to 50 ms.
Front Panel Access: Shift-4 (Measure), Audio Waveform, Sweep Time

[:SENSe]:AFPanalyz er:SUMM ary:DATA?

Title: Summary data
Description: This query returns the measurement values in the Summary view (use :AFP:DE M:MODE SUMM to set summary mode). The order of the values are as follows:
<demod type> (AM | FM | PM), <RMS Deviation> in % or Hz or Rad depending on the demod type, <Peak+ Deviation> in % or Hz or Rad depending on the demod type, <Peak-Dev> in % or Hz or Rad depending on the demod type, <Peak-Peak/2 Dev> in % or Hz or Rad depending on the demod type, <carrier power> in dBm, <carrier freq> in Hz, <Occ BW> in Hz, <Modulation rate> in Hz, <SINAD> in dB, <THD> in % and <Distortion> in %. All values are comma separated.
Front Panel Access: Shift-4 (Measure), Summary.
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?

Title: Center Frequency
Description: Sets the center frequency. Note that changing the value of the center frequency may also change the value of the span.
Parameter: <freq>
Default Unit: Hz
Front Panel Access: Freq, Center Freq

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?

Title: Channel Selection
Description: Sets the channel number for the selected signal standard.
Parameter: <number>
Front Panel Access: Freq, Channel

[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe?

Title: Signal Standard
Description: Selects the desired signal standard from the list. The <string> argument is the name of the desired signal standard as displayed in the instrument’s current signal standard list. The list can be displayed on the instrument by choosing the Signal Standard submenu button in the Freq menu. The list can also be downloaded remotely and viewed using Anritsu Master Software Tools. For example, if the desired Signal Standard is:

P-GSM 900 - Uplink then the value of the <string> would be “P-GSM 900 - Uplink”.

The query form of this command will return the name of the currently selected Signal Standard on the list.

Parameter: <string>
Front Panel Access: Freq, Signal Standard
[:SENSe]:FREQuency:SPAN <freq>
[:SENSe]:FREQuency:SPAN?

Title: Frequency Span
Description: Sets the frequency span. Minimum value and the maximum value are 10 kHz and 10 MHz respectively. Note that changing the value of the frequency span may change the Center Frequency.
Parameter: <freq>
Default Unit: Hz
Front Panel Access: Freq, Span

[:SENSe]:FREQuency:SPAN:FULL

Title: Frequency Span – Full
Description: Sets the frequency span to maximum span (10 MHz). Note that changing the value of the frequency span may change the Center Frequency.
Front Panel Access: Freq, Span, Max Span

[:SENSe]:FREQuency:SPAN:MINimum

Title: Frequency Span – Minimum
Description: Sets the frequency span to minimum span (10 kHz). Note that changing the value of the frequency span may change the Center Frequency.
Front Panel Access: Freq, Span, Min Span

[:SENSe]:FREQuency:SPAN:PREVIOUS

Title: Frequency Span – Last
Description: Sets the frequency span to the previous span value. Note that changing the value of the frequency span may change the Center Frequency.
Default Unit: Hz
Front Panel Access: Freq, Span, Last Span

[:SENSe]:FREQuency:STEP[:INCRement] <freq>
[:SENSe]:FREQuency:STEP[:INCRement]?

Title: Frequency Step
Description: Sets the frequency step to the given frequency value.
Parameter: <freq>
Default Value: 1 MHz
Default Unit: Hz
Range: 1 Hz to 20 GHz
Front Panel Access: Freq, Freq Step
[:SENSe]:OBWidth:METHOD XDB|PERCent
[:SENSe]:OBWidth:METHOD?

Title: Occupied Bandwidth Measurement Method
Description: Sets the method for calculating occupied bandwidth. XDB calculates the occupied bandwidth based on points a specified number of dB below the carrier. Issue command [:SENSe]:OBWidth:XDB to set the number of dB to be used. PERCent calculates the occupied bandwidth based on points a specified percentage of the carrier power below the carrier. Issue command [:SENSe]:OBWidth:PERCent to set the percentage to be used.
Parameter: XDB|PERCent
Parameter Type: <char>
Default Value: PERCent
Related Command: :OBWidth:XDB :OBWidth:PERCent
Front Panel Access: Shift-4 (Measure), RF Spectrum, Occ BW Method

[:SENSe]:OBWidth:PERCent <percentage>
[:SENSe]:OBWidth:PERCent?

Title: Occupied Bandwidth Percent of Power
Description: This command sets the percentage of carrier power used to measure the occupied bandwidth. This value is used in the measurement if :SENSe:OBWidth:METHOD is set to PERCent.
Parameter: <percentage>
Default Value: 99
Default Unit: %
Range: 0% to 100%
Related Command: :OBWidth:METHOD
Front Panel Access: Shift-4 (Measure), RF Spectrum, %
[SENSe]:OBWidth:XDB <rel ampl>
[SENSe]:OBWidth:XDB?

Title: Occupied Bandwidth dB Down

Description: This command sets the number of dB below the carrier used to measure the occupied bandwidth. This value is used in the measurement if :SENSe:OBWidth:METHod is set to XDB.

Parameter: <rel ampl>

Default Value: 3 dBc

Default Unit: dBc

Range: 0 to 100 dBc

Related Command: :OBWidth:METHod

Front Panel Access: Shift-4 (Measure), RF Spectrum, dBc
Appendix A — Programming Example

A-1 C/C++

This example is run on the command line. It sends the *IDN? query to the instrument and prints the response to the console.
// IdnExample.cpp : Microsoft Visual Studio-Generated Example
// Based on Example 2-1 in the NI-VISA User Manual
// Usage : IdnExample “USB0::0x0B58::0xFFF9::xxxxxxxx_xxx_xx::INSTR”
// where xxxxxxxx_xxx_xx is the USB Device ID of the instrument.
// Output : The string identity string returned from the instrument.
// VISA Header : visa.h (must be included)
// VISA Library : visa32.lib (must be linked with)

#include "stdafx.h"
#include "stdio.h"
#include "string.h"
#include "visa.h"

#define BUFFER_SIZE 255

int main(int argc, char* argv[]) {
 ViStatus status; /* For checking errors */
 ViSession defaultRM, instr; /* Communication channels */
 ViUInt32 retCount; /* Return count from string I/O */
 ViChar buffer[BUFFER_SIZE]; /* Buffer for string I/O */
 char tempDisplay[BUFFER_SIZE]; /* Display buffer for example */
 char *pAddress;

 /* Make sure we got our address. */
 if (argc < 2) {
 printf("Usage: IdnExample "USB0::0x0B58::0xFFF9::xxxxxxxx_xxx_xx::INSTR"\n"where xxxxxxxx_xxx_xx is the USB Device ID of your instrument.\n"");
 return -1;
 }
/* Store the address. */
pAddress = argv[1];

/* Begin by initializing the system*/
status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS)
{
/* Error Initializing VISA...exiting*/
printf("Can't initialize VISA\n");
return -1;
}

/* USB0::0x0B58::0xFFF9::xxxxxxxx_xxx_xx::INSTR*/
/* NOTE: For simplicity, we will not show error checking*/
/* TODO: Add error handling. */
status = viOpen(defaultRM, pAddress, VI_NULL, VI_NULL, &instr);

/* Set the timeout for message-based communication*/
/* TODO: Add error handling. */
status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 120000);

/* Ask the device for identification */
sprintf(buffer, "*IDN?\n");
status = viWrite(instr, (unsigned char *)&buffer[0], 6, &retCount);
status = viRead(instr, (unsigned char *)buffer, BUFFER_SIZE, &retCount);

/* TODO: Add code to process data. */
strncpy(tempDisplay, buffer, retCount);
tempDisplay[retCount] = 0; /* Null-terminate display string. */
printf("*IDN? Returned %d bytes: %s\n", retCount, tempDisplay);

/* Close down the system */
/* TODO: Add error handling. */
status = viClose(instr);
status = viClose(defaultRM);

return 0;
}
A-2 Visual Basic

This function can be called in a Visual Basic program. It sends the *IDN? query to the instrument and returns the byte count and ASCII response string.

Rem This example is based on Example 2-1 from the NI-VISA User Manual.

Public Sub IdnMain(ByVal address As String, ByRef byteCount As String, ByRef returnBytes As String)
 Const BUFFER_SIZE = 200
 Dim stat As ViStatus
 Dim dfltRM As ViSession
 Dim sesn As ViSession
 Dim retCount As Long
 Dim buffer As String * BUFFER_SIZE

 Rem ***Include visa32.dll as a reference in your project.***

 Rem Begin by initializing the system
 stat = viOpenDefaultRM(dfltRM)
 If (stat < VI_SUCCESS) Then
 Rem Error initializing VISA...exiting
 MsgBox “Can't initialize VISA”
 Exit Sub
 End If

 Rem Open communication with Device
 Rem NOTE: For simplicity, we will not show error checking
 Rem TODO: Add error handling.
 stat = viOpen(dfltRM, address, VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication
 Rem TODO: Add error handling.
 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 120000)

 Rem Ask the device for identification
 Rem TODO: Add error handling.
stat = viWrite(sesn, "*IDN?", 5, retCount)
stat = viRead(sesn, buffer, BUFFER_SIZE, retCount)

Rem TODO: Add code to process the data.
byteCount = retCount
returnBytes = Left(buffer, retCount)

Rem Close down the system
Rem TODO: Add error handling.
stat = viClose(sesn)
stat = viClose(dfltRM)
End Sub

A-3 LabVIEW™

This example shows how to read the trace data from the instrument in 32-bit integer format. The output is an array of data point magnitudes. Figure A-1 shows the data capture and conversion to 32-bit integers in the format used by LabVIEW. Figure A-2 shows the details of the conversion.

Note Your instrument must first be defined to the VISA resource manager using NI-MAX. The VISA resource for your instrument serves as the VISA resource input to the vi.
Figure A-1. Data Capture
Figure A-2. Data Conversion
Appendix B — IQ Waveform Capture

Example of Metafile and C++ code are shown below. The MATLAB script is used to read a WCAP file from the instrument and unpack the data into a MATLAB array. The C++ sample program uses the SCPI commands to initiate a capture and save it directly to the PC.
function Data = getdata_simple_24()
% target file has 24 bit data
% I/Q both contained in same file, 1-by-1
% use with *.wcap files captured manually on unit
% Data contains complex-valued contents of filename.wcap

fidIQ = fopen('filename.wcap','r');

% fetch # of complex data samples
stat = fseekStr(fidIQ, "CaptureSample" Value="");
if stat == -1
 disp 'ERROR: data size could not be found in file';
 fclose(fidIQ);
 return;
else
 samples = fscanf(fidIQ, '%d', 1);
end

% fetch sample rate
stat = fseekStr(fidIQ, "SamplingClock" Value="");
if stat == -1
 disp 'ERROR: sample rate could not be found in file';
 samp_rate = 1;
else
 samp_rate = fscanf(fidIQ, '%d', 1);
end

% fetch freq_offset
stat = fseekStr(fidIQ, "FreqOffset" Value="");
if stat == -1
 disp 'ERROR: sample rate could not be found in file';
 freq_offset = 0;
else
freq_offset = fscanf(fidIQ, '%e', 1);
end
freq_offset

% find data section
stat = fseekStr(fidIQ, '<Data>');
if stat == -1
 disp 'ERROR: data could not be found in file';
 fclose(fidIQ);
 return;
end
DataIQ = fread(fidIQ,samples*2,'bit24');
Data = DataIQ(1:2:end) + j*DataIQ(2:2:end);
fclose(fidIQ);

len = length(Data);
% t = [0:len-1]/samp_rate;
freqs = [-len/2:len/2-1]*samp_rate/len;
f = fftshift(20*log10(abs(fft(Data)+eps)));
f = f-max(f);
plot(freqs,f);

length(Data)

function status = fseekStr(fid, str)
% read from fid until we find str
% used to extract values from the XML-based .wcap files
status = 0;
len = length(str);
ii = 1;
fseek(fid,0,'bof');
while (1)
 cc = fread(fid,1);
 if cc == str(ii);
 if ii == len
break; %found it, ready to import
end
ii = ii + 1;
else
 ii = 1;
end
if feof(fid)
 status = -1;
 return
end
end
B-2 C++ Code (IQ_SCPI.cpp)

This script initiates a capture but does not allow for the data to be saved on the instrument. Instead, data is saved directly to the PC.

/*
Anritsu Company
Example SCPI-based program to initiate IQ capture and receive data on PC

Data captured using this program will be written to binary output, data.bin.
Data points are packed in an alternating fashion: I0, Q0, I1, Q1...
Each data point is 3 bytes in size (I0 = 3 bytes, Q0 = 3 bytes).
*/

#include "stdafx.h"
#include "stdio.h"
#include "string.h"
#include "visa.h"
#include <windows.h>

#define BUFFER_SIZE 0x80000/* maximum size of scpi response buffer */

int _tmain(int argc, _TCHAR* argv[])
{
 ViStatus status; /* For checking errors */
 ViSession defaultRM, instr; /* Communication channels */
 ViUInt32 retCount; /* Return count from string I/O */
 char *pAddress;
 char *pFileName;
 FILE * fd;

 int i;
 ViChar cmdBuf[256];
 ViChar statStr[256];
 char dataBuf[BUFFER_SIZE];
/the VISA address of the instrument
pAddress = "TCPIP::10.0.0.10::inst0::INSTR";
// the output filename of the data
pFileName = "data.bin";

/* Begin by initializing the system*/
status = viOpenDefaultRM(&defaultRM);
if (status != VI_SUCCESS)
{
 /* Error Initializing VISA...exiting*/
 printf("Can't initialize VISA\n");
 return -1;
}

/* Open communication with TCP/IP device at xxx.xxx.xxx.xxx*/
/* NOTE: For simplicity, we will not show error checking*/
/* TODO: Add error handling. */
status = viOpen(defaultRM, pAddress, VI_NULL, VI_NULL, &instr);
if (status != VI_SUCCESS)
{
 printf("viOpen failed %d\n",status);
 return -1;
}

/* Set the timeout for message-based communication*/
/* TODO: Add error handling. */
status = viSetAttribute(instr, VI_ATTR_TMO_VALUE,30000);

fd = fopen(pFileName,"wb");
if (fd == NULL)
{
 printf("Can't open the file\n");
 status = viClose(instr);
 status = viClose(defaultRM);
 return -1;
}
/* initiate capture */
sprintf(&cmdBuf[0], "MEASure:IQ:CAPture REMote\n");
status = viWrite(instr, (unsigned char *) &cmdBuf[0], (ViUInt32) strlen(cmdBuf), &retCount);
/* printf("%d, %d, %d\n",i,(numBytes - bytesLeft),retCount); */
if (status != VI_SUCCESS)
{
printf("viWrite 1 failed 0x%x\n",status);
viStatusDesc(instr,status,statStr);
printf("statStr 1 = %s\n",statStr);
}

fclose(fd);
/* Close down the system */
status = viClose(instr);
status = viClose(defaultRM);
return -1;
}

i = 0;
while (1)
{
/* initiate capture */
sprintf(&cmdBuf[0], "MEASure:IQ:GET?\n");
status = viWrite(instr, (unsigned char *) &cmdBuf[0], (ViUInt32) strlen(cmdBuf), &retCount);
if (status != VI_SUCCESS)
{
printf("viWrite 1 failed 0x%x\n",status);
viStatusDesc(instr,status,statStr);
printf("statStr 1 = %s\n",statStr);
break;
}
status = viRead(instr, (unsigned char *) dataBuf,BUFFER_SIZE,&retCount);
if (status != VI_SUCCESS)
{

printf("viRead 1 failed 0x%x\n",status);
viStatusDesc(instr,status,statStr);
printf("statStr 1 = %s\n",statStr);
break;
}

if(!strncmp(dataBuf, "#10", strlen("#10")))
{
 break;
}
else
{
 /* append data to end of file */
 /* data comes back in form #xyyyyyyy
 where yyyyyy indicates the size of the buffer and x indicates the
 number of digits in the buffer size
 the data immediately follows the buffer size */
 char tempBuf[16];
 int numDigits,size;
 strncpy(tempBuf,&dataBuf[1],1);
 tempBuf[1] = '\0';
 sscanf(tempBuf,"%d\n",&numDigits);
 strncpy(tempBuf,&dataBuf[2],numDigits);
 tempBuf[numDigits] = '\0';
 sscanf(tempBuf,"%d\n",&size);
 fwrite(&dataBuf[2+numDigits],size,1,fd);
}
printf("i=%d,retCount=%d\n",i++,retCount);

fclose(fd);
/* Close down the system */
/* TODO: Add error handling. */
status = viClose(instr);
status = viClose(defaultRM);
return 0;
}
Appendix C — List of Commands by Mode

Chapter 1—General Information

Chapter 2—Programming with SCPI

Chapter 3—All Mode Commands

Chapter 4—Spectrum Analyzer Commands
List of Commands by Mode

.CALCulate:LIMit:CENTer .. 4-2
.CALCulate:LIMit:ENVelope:CREate 4-3
.CALCulate:LIMit:ENVelope:OFFSet <amplitude> 4-3
.CALCulate:LIMit:ENVelope:OFFSet? 4-3
.CALCulate:LIMit:ENVelope:POIn t <number> 4-4
.CALCulate:LIMit:ENVelope:POIn t? 4-4
.CALCulate:LIMit:ENVelope:SHApe SQUare|SLOPe
.CALCulate:LIMit:ENVelope:SHApe? 4-4
.CALCulate:LIMit:ENVelope:UPDATE:X 4-4
.CALCulate:LIMit:ENVelope:UPDATE:Y 4-5
.CALCulate:LIMit:FAIL? .. 4-5
.CALCulate:LIMit:LOWer:ALARm OFF|ON|0|1 4-5
.CALCulate:LIMit:LOWer:ALARm? ... 4-5
.CALCulate:LIMit:LOWer:FAIL? .. 4-5
.CALCulate:LIMit:LOWer:POIn t? ... 4-6
.CALCulate:LIMit:LOWer[:STATe] OFF|ON|0|1 4-6
.CALCulate:LIMit:LOWer[:STATe]? 4-6
.CALCulate:LIMit:LTYPe ABSolute|RELative
.CALCulate:LIMit:LTYPe? ... 4-7
.CALCulate:LIMit:MIRRor .. 4-7
.CALCulate:LIMit:POIn t:ADD .. 4-7
.CALCulate:LIMit:POIn t:DELete ... 4-8
.CALCulate:LIMit:POIn t:LEFT .. 4-8
.CALCulate:LIMit:POIn t:RIGHt ... 4-8
.CALCulate:LIMit:POIn t:X <x-parameter> 4-9
.CALCulate:LIMit:POIn t:X? ... 4-9
.CALCulate:LIMit:POIn t:Y <y-parameter> 4-10
.CALCulate:LIMit:POIn t:Y? ... 4-10
.CALCulate:LIMit:TYPe 0|1 .. 4-10
.CALCulate:LIMit:TYPe? .. 4-10
.CALCulate:LIMit:UPPer:ALARm OFF|ON|0|1 4-11
.CALCulate:LIMit:UPPer:ALARm? .. 4-11
.CALCulate:LIMit:UPPer:FAIL? ... 4-11
.CALCulate:LIMit:UPPer:POIn t? ... 4-11
.CALCulate:LIMit:UPPer[:STATe] OFF|ON|0|1 4-12
.CALCulate:LIMit:UPPer[:STATe]? ... 4-12
.CALCulate:LIMit:VALue <value> .. 4-13
.CALCulate:LIMit:VERTical:ADD .. 4-13
.CALCulate:LIMit:X <x-parameter> 4-13
.CALCulate:LIMit:Y <y-parameter> 4-14
.CALCulate:LIMit[:SET]:DEFault ... 4-14
.CALCulate:LIMit[:STATe] OFF|ON|0|1 4-14
List of Commands by Mode

:CALCulate:LIMIT[:STATE]? ... 4-15
:CALCulate:MARKer:AOFF ... 4-15
:CALCulate:MARKer:PEAK:THRESHold <percentage>
:CALCulate:MARKer:PEAK:THRESHold? 4-17
:CALCulate:MARKer:TABLE[:STATE] OFF|ON
:CALCulate:MARKer:TABLE[:STATE]? 4-16
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA:NOISE[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA:NOISE[:STATE]? 4-17
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA:X? 4-18
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA:Y? 4-18
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA[:SET]:SPAN 4-18
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTA[:STATE]? 4-19
:CALCulate:MARKer{1|2|3|4|5|6}:FCOUNT[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:FCOUNT[:STATE]? 4-19
:CALCulate:MARKer{1|2|3|4|5|6}:FIXED[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:FIXED[:STATE]? 4-20
:CALCulate:MARKer{1|2|3|4|5|6}:MAXIMUM .. 4-20
:CALCulate:MARKer{1|2|3|4|5|6}:MAXIMUM:LEFT 4-20
:CALCulate:MARKer{1|2|3|4|5|6}:MAXIMUM:NEXT 4-21
:CALCulate:MARKer{1|2|3|4|5|6}:MAXIMUM:RIGHT 4-21
:CALCulate:MARKer{1|2|3|4|5|6}:NOISE[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:NOISE[:STATE]? 4-21
:CALCulate:MARKer{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:X? .. 4-22
:CALCulate:MARKer{1|2|3|4|5|6}:Y? .. 4-22
:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:CENTEr 4-22
:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:RLEVel 4-23
:CALCulate:MARKer{1|2|3|4|5|6}[:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATE]? 4-23
:CONFigure:ACPoweR .. 4-24
:CONFigure:CHPower .. 4-24
:CONFigure:FSIZEt .. 4-25
:CONFigure:OBWidth .. 4-25
:DISPlay:WINDow:TRACe:Y:ADJ ust 4-26
:DISPlay:WINDow:TRACe:Y[:SCAle]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCAle]:PDIVision? 4-26
:DISPlay:WINDow:TRACe:Y[:SCAle]:RLEVel <amplitude>
:DISPlay:WINDow:TRACe:Y[:SCAle]:RLEVel? 4-26
:DISPlay:WINDow:TRACe:Y[:SCAle]:RLEVel:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCAle]:RLEVel:OFFSet? 4-27
:FETCh:ACPoweR? .. 4-28
List of Commands by Mode

:FETCh:CHPower:CHPower? .. 4-28
:FETCh:CHPower:DENSity? ... 4-28
:FETCh:CHPower? .. 4-29
:FETCh:OBWidth:FREQuency? 4-29
:FETCh:OBWidth? .. 4-29
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,[<length>] 4-30
:FORMat[:READings][:DATA]? 4-30
:INITiate:CONTinuous OFF|ON|0|1 4-31
:INITiate[:IMMediate] ONCE|AVERage 4-32
:INITiate:SAVE:ON:EVENt:CROSsing:LIMit OFF|ON|0|1 4-32
:INITiate:SAVE:ON:EVENt:SWEep OFF|ON|0|1 4-32
:INITiate:SAVE:THEn:STOp OFF|ON|0|1 4-33
:MEASure:ACPower? .. 4-34
:MEASure:CHPower? .. 4-35
:MEASure:CHPower:CHPower? 4-35
:MEASure:CHPower:DENSity? 4-36
:MEASure:IQ:CAPture SINGle|REMote 4-36
:MEASure:IQ:GET? .. 4-37
:MEASure:OBWidth? .. 4-37
:MMEMory:STORe:LIMit <filename> 4-38
:READ:ACPower? .. 4-39
:READ:CHPower:DENSity? ... 4-39
:READ:CHPower? .. 4-40
:READ:OBWidth? .. 4-40
:TRACe:COPY TRACE1,TRACE2|TRACE3 4-41
:TRACe:EXChange TRACE2,TRACE3 4-41
:TRACe:PREamble? {1|2|3} .. 4-42
:TRACe[:DATA] {1|2|3},(<header><block>) 4-42
:TRACe[:DATA]? {1|2|3} .. 4-43
:TRACe{1|2|3}:DISPlay[:STATe] OFF|ON|0|1 4-44
:TRACe{1|2|3}:DISPlay[:STATe]? 4-44
:TRACe{1|2|3}:WRITE[:STATe] OFF|ON|0|1 4-45
:TRACe{1|2|3}:WRITE[:STATe]? 4-45
:TRACe1:OPERation NORMal|MAXHold|MINHold|AVERage 4-46
:TRACe1:OPERation? .. 4-46
:TRACe2:OPERation MAXHold|MINHold 4-46
:TRACe2:OPERation? .. 4-46
:TRACe3:OPERation MAXHold|MINHold|A-B|B-A 4-47
:TRACe3:OPERation? .. 4-47
:TRIGger[:SEQuence]:SOURce IMMediate|EXTernal|VIDeo .. 4-48
:TRIGger[:SEQuence]:SOURce? 4-48
:TRIGger[:SEQuence]:VIDeo:DELay <percentage> or <time>
List of Commands by Mode

:TRIGger[:SEQUence]:VIDeo:DELay? ... 4-48
:TRIGger[:SEQUence]:VIDeo:LEVel <amplitude>
:TRIGger[:SEQUence]:VIDeo:LEVel? ... 4-49
:TRIGger[:SEQUence]:VIDeo:POSition <percentage>
:TRIGger[:SEQUence]:VIDeo:POSition? ... 4-49
:UNIT:POWer dBM|DBV|DBMV|DBUV|V|W
:UNIT:POWer? ... 4-50
[:SENSe]:ACPower:BANDwidth|BWIDth:ADJacent <freq>
[:SENSe]:ACPower:BANDwidth|BWIDth:ADJacent? ... 4-51
[:SENSe]:ACPower:BANDwidth|BWIDth:MAIN <freq>
[:SENSe]:ACPower:BANDwidth|BWIDth:MAIN? ... 4-51
[:SENSe]:ACPower:BANDwidth|BWIDth:SPACing <freq>
[:SENSe]:ACPower:BANDwidth|BWIDth:SPACing? ... 4-52
[:SENSe]:ACPower:STATe OFF|ON|0|1
[:SENSe]:ACPower:STATe? ... 4-52
[:SENSe]:AVERage:COUNt <integer>
[:SENSe]:AVERage:COUNt? ... 4-52
[:SENSe]:AVERage:TYPE NONE|SCALar|MAXimum|MINimum
[:SENSe]:AVERage:TYPE? ... 4-53
[:SENSe]:BANDwidth|BWIDth[:RESolution] <freq>
[:SENSe]:BANDwidth|BWIDth[:RESolution]? ... 4-53
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO? ... 4-54
[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio <number>
[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio? ... 4-54
[:SENSe]:BANDwidth|BWIDth:VIDeo <freq>
[:SENSe]:BANDwidth|BWIDth:VIDeo? ... 4-55
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO? ... 4-55
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio <number>
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio? ... 4-56
[:SENSe]:BANDwidth|BWIDth:VIDeo:TYPE LOGarithmic|LINear
[:SENSe]:BANDwidth|BWIDth:VIDeo:TYPE? ... 4-56
[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration <freq>
[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration? ... 4-56
[:SENSe]:CHPower:STATe OFF|ON|0|1
[:SENSe]:CHPower:STATe? ... 4-57
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude] <integer>
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude]? ... 4-57
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet <rel ampl>
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet? ... 4-58
[:SENSe]:DETector[:FUNCtion] POSitive|RMS|NEGative|SAMPLE|QUASI
[:SENSe]:DETector[:FUNCtion]? ... 4-58
List of Commands by Mode

[:SENSe]:EMF:STATe OFF|ON|0|1 .. 4-59
[:SENSe]:EMF:STATe? .. 4-59
[:SENSe]:EXTRefstatus? .. 4-59
[:SENSe]:FREQuency:CENTer <freq> 4-60
[:SENSe]:FREQuency:CENTer? .. 4-60
[:SENSe]:FREQuency:SIGStandard:CHANnel <number> 4-60
[:SENSe]:FREQuency:SIGStandard:CHANnel? 4-60
[:SENSe]:FREQuency:SIGStandard:NAMe <string> 4-60
[:SENSe]:FREQuency:SIGStandard:NAMe? 4-60
[:SENSe]:FREQuency:SPAN <freq> 4-61
[:SENSe]:FREQuency:SPAN? .. 4-61
[:SENSe]:FREQuency:SPAN:FULL 4-61
[:SENSe]:FREQuency:SPAN:PREVIOUS 4-62
[:SENSe]:FREQuency:STARt <freq> 4-62
[:SENSe]:FREQuency:STARt? .. 4-62
[:SENSe]:FREQuency:STEP[:INCRement] <freq> 4-63
[:SENSe]:FREQuency:STEP[:INCRement]? 4-63
[:SENSe]:FREQuency:STOP <freq> 4-63
[:SENSe]:FSTRength:ANTenna <antenna> 4-64
[:SENSe]:FSTRength:ANTenna? 4-64
[:SENSe]:FSTRength:STATe OFF|ON|0|1 4-64
[:SENSe]:FSTRength:STATe? .. 4-64
[:SENSe]:IQ:LENgth <number> 4-65
[:SENSe]:IQ:LENgth? .. 4-65
[:SENSe]:IQ:SAMPlerate <freq> 4-65
[:SENSe]:IQ:SAMPlerate? ... 4-65
[:SENSe]:OBWidth:METHod XDB|PERCent 4-66
[:SENSe]:OBWidth:METHod? ... 4-66
[:SENSe]:OBWidth:PERCent <percentage> 4-66
[:SENSe]:OBWidth:PERCent? .. 4-66
[:SENSe]:OBWidth:STATe OFF|ON|0|1 4-67
[:SENSe]:OBWidth:STATe? .. 4-67
[:SENSe]:OBWidth:XDB <rel ampl> 4-67
[:SENSe]:OBWidth:XDB? .. 4-67
[:SENSe]:OPTion:IF:BWSTate 1|2|3|4|5 4-67
[:SENSe]:OPTion:IF:BWSTate? 4-67
[:SENSe]:POWer[:RF]:ATTenuation <rel ampl> 4-68
[:SENSe]:POWer[:RF]:ATTenuation? 4-68
[:SENSe]:POWer[:RF]:ATTenuation:AUTO OFF|ON|0|1 4-68
[:SENSe]:POWer[:RF]:ATTenuation:AUTO? 4-68
[:SENSe]:POWer[:RF]:GAIN[:STATe] OFF|ON|0|1 4-69
[:SENSe]:POWer[:RF]:GAIN[:STATe]? 4-69
List of Commands by Mode

[:SENSe]:SWEep:MODE FAST|PERformance|NOFFt|BURSt
[:SENSe]:SWEep:MODE? ... 4-69
[:SENSe]:SWEep:STATus? 4-69
[:SENSe]:SWEep:TIME[:LLIMIt]
[:SENSe]:SWEep:TIME[:LLIMIt]? 4-70
[:SENSe]:SWEep:TIME:ACTual? 4-70
[:SENSe]:SWEep:TIME:AUTO ON|OFF|1|0
[:SENSe]:SWEep:TIME:AUTO? 4-70
[:SENSe]:SWEep:TRACE? ... 4-70

Chapter 5—Tracking Generator Commands

:CONFigure:GENerator:TRACking POWStats|TXStats
:CONFigure? ... 5-2
:FETCh:TGENerator:POWStats?
:FETCh:TGENerator:TXStats? 5-3
:GENerator:OUTput:POWer <amplitude>
:GENerator:OUTput:POWer? .. 5-4
:GENerator:OUTput:POWer:OFFSet[:MAGNitude] <value>
:GENerator:OUTput:POWer:OFFSet[:MAGNitude]? 5-5
:INITiate:GENerator OFF|ON|0|1
:INITiate:GENerator? ... 5-6
:MEASure:TGENerator:POWStats?
:READ:TGENerator:POWStats? 5-7
:READ:TGENerator:TXStats? 5-8
[:SENSe]:CW:FREQuency
[:SENSe]:CW:FREQuency? ... 5-9
[:SENSe]:GENerator:MODE CW|TRACking
[:SENSe]:GENerator:MODE? ... 5-9
[:SENSe]:TGENerator:POWStats[:STATE] OFF|ON|0|1
[:SENSe]:TGENerator:POWStats[:STATE]? 5-10
[:SENSe]:TGENerator:TX:NORMALize[:STATE] OFF|ON|0|1
[:SENSe]:TGENerator:TX:NORMALize[:STATE]? 5-10
[:SENSe]:TGENerator:TX[:SCALe]:PDIvision <rel ampl>
[:SENSe]:TGENerator:TX[:SCALe]:PDIvision? 5-11
[:SENSe]:TGENerator:TX[:SCALe]:REference
 :AMPLItude <amplitude>
[:SENSe]:TGENerator:TX[:SCALe]:REference:AMPLItude? 5-11
[:SENSe]:TGENerator:TX[:SCALe]:REference:POSition <integer>
[:SENSe]:TGENerator:TX[:SCALe]:REference:POSition? 5-12
[:SENSe]:TGENerator:TX[:SCALe]:RLEVel:OFFSet <rel ampl>
[:SENSe]:TGENerator:TX[:SCALe]:RLEVel:OFFSet? 5-12
[:SENSe]:TGENerator:TXStats[:STATE] OFF|ON|0|1
[:SENSe]:TGENerator:TXStats[:STATE]? 5-13
List of Commands by Mode

Chapter 6—CDMA Commands

:ABORt ... 6-1
:CALCulate:MARKer:AOFF ... 6-2
:CALCulate:MARKer{1|2|3|4|5|6}:Y? 6-2
:CALCulate:MARKer{1|2|3|4|5|6}:STATe OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:STATe? 6-2
:CONFigure SUMMARY|PFail ... 6-3
:CONFigure:DEMod <char> ... 6-3
:CONFigure:OTA <char> .. 6-4
:CONFigure:RF <char> ... 6-4
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:FETCh:DEMod:CDPower? .. 6-6
:FETCh:OTA:MPATH? .. 6-6
:FETCh:PFail? .. 6-7
:FETCh:RF:ACPR? .. 6-7
:FETCh:RF:EMISSion? .. 6-8
:FETCh:RF:SPEctrum? .. 6-8
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 6-9
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 6-10
:INITiate[:IMMediate] ... 6-10
:MEASure:DEMod:CDPower? 6-11
:MEASure:OTA:MPATH? .. 6-12
:MEASure:PFail? .. 6-12
:MEASure:RF:ACPR? ... 6-13
:MEASure:RF:EMISSion? .. 6-14
:MEASure:RF:SPEctrum? .. 6-15
:READ:DEMod:CDPower? .. 6-16
:READ:OTA:MPATH? ... 6-17
:READ:PFail? .. 6-17
:READ:RF:ACPR? .. 6-18
:READ:RF:EMISSion? .. 6-18
:READ:RF:SPEctrum? .. 6-19
:TRACe:PREamble? <trace type> 6-20
:TRACe[:DATA]? <trace type> 6-21
:TRIGger:SEQuence:SLOPe RISing|FALLing
:TRIGger:SEQuence:SLOPe .. 6-23
:UNIT:POWer dBM|W
:UNIT:POWer? .. 6-24
[:SENSe]:ACPow:BW:MAIN <freq>
[:SENSe]:ACPow:BW:MAIN? ... 6-25
[:SENSe]:DEMod:CDPow:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPow:UNITs? .. 6-25
[:SENSe]:DEMod:CDPow:ZOOM 16|32|64
[:SENSe]:DEMod:CDPow:ZOOM? 6-26
[:SENSe]:DEMod:CDPow:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPow:ZOOM:STARt? 6-26
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? .. 6-26
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 6-27
[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME? 6-27
[:SENSe]:FREQuency:SPAN? ... 6-27
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 6-28
[:SENSe]:PN:OFFSet <integer>
[:SENSe]:PN:OFFSet? .. 6-28
[:SENSe]:PN:STYPe:AUTO 1|0|ON|OFF
[:SENSe]:PN:STYPe:AUTO? ... 6-29
[:SENSe]:PN:TRIGger NOTRig|GPS|EXT
[:SENSe]:PN:TRIGger? ... 6-29
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO? 6-30
[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount? 6-30
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed? ... 6-31
[:SENSe]:WCODE 64|128
[:SENSe]:WCODE? .. 6-31

Chapter 7—EV-DO Commands
:ABORt ... 7-1
:CALCulate:MARKer:AOFF ... 7-2
:CALCulate:MARKer{1|2|3|4|5|6}? Y? 7-2
:CALCulate:MARKer{1|2|3|4|5|6} [:STATE] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6} [:STATE]? 7-2
:CONFigure SUMMary|PFail ... 7-3
:CONFigure:DEMod <char> ... 7-3
:CONFigure:OTA <char> .. 7-4
:CONFigure:RF <char> .. 7-4
:DISPlay:WINDow:TRACe:Y [:SCALe]:OFFSet <rel ampl>
List of Commands by Mode

[:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet? 7-5
[:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
[:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision? 7-5
:FETCH:DEMod:CDPData? 7-6
:FETCH:DEMod:CDPMac? 7-6
:FETCH:DEMod:SUMMary? 7-7
:FETCH:OTA:MPATH? .. 7-8
:FETCH:PFail? .. 7-8
:FETCH:RF:ACPR? .. 7-9
:FETCH:RF:EMISSsion? 7-9
:FETCH:RF:SPECtrum? 7-10
:FETCH:RF:SUMMary? 7-10
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 7-11
:INITiate:CONTinuous OFF|ON|0|1
:INITiate[:IMMediate] .. 7-12
:MEASure:DEMod:CDPData? 7-13
:MEASure:DEMod:CDPMac? 7-14
:MEASure:DEMod:SUMMary? 7-15
:MEASure:OTA:MPATH? 7-16
:MEASure:PFail? .. 7-16
:MEASure:RF:ACPR? .. 7-17
:MEASure:RF:EMISSsion? 7-18
:MEASure:RF:SPECtrum? 7-18
:MEASure:RF:SUMMary? 7-19
:READ:OTA:MPATH? ... 7-20
:READ:PFail? .. 7-20
:READ:RF:ACPR? .. 7-21
:READ:RF:EMISSsion? 7-21
:READ:RF:SPECtrum? 7-22
:READ:RF:SUMMary? 7-22
:TRACe:PREamble? <trace type> 7-23
:TRACe[:DATA]? <trace type> 7-24
:TRIGger:SEQuence:SLOPe RISing|FALLing
:TRIGger:SEQuence:SLOPe? 7-26
:UNIT:POWer dBM|W
:UNIT:POWer? .. 7-27
[:SENSe]:ACPower:BANDwidth:MAIN <freq>
[:SENSe]:ACPower:BANDwidth:MAIN? 7-28
[:SENSe]:DEMod:CDPower:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPower:UNITs? 7-28
[:SENSe]:DEMod:CDPower:ZOOM 16|32|64
List of Commands by Mode

[:SENSe]:DEMod:CDPower:ZOOM? .. 7-29
[:SENSe]:DEMod:CDPower:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPower:ZOOM:STARt? 7-29
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? .. 7-29
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 7-30
[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME? 7-30
[:SENSe]:FREQuency:SPAN? .. 7-30
[:SENSe]:PFail <test set>
[:SENSe]:PFail? ... 7-31
[:SENSe]:PN:OFFSet <integer>
[:SENSe]:PN:OFFSet? ... 7-31
[:SENSe]:PN:STYPe:AUTO 1|0|ON|OFF
[:SENSe]:PN:STYPe:AUTO? .. 7-32
[:SENSe]:PN:TRIGger NOTRig|GPS|EXT
[:SENSe]:PN:TRIGger? ... 7-32
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO? ... 7-33
[:SENSe]:POWer[:RF]:RANGe:[IMMediate] 7-33
[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount? 7-33
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed? ... 7-34
[:SENSe]:WCODe 64|128
[:SENSe]:WCODe? ... 7-34

Chapter 8—WCDMA Commands

:ABORt ... 8-1
:CALCulate:MARKer:AOFF .. 8-2
:CALCulate:MARKer{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:X? .. 8-2
:CALCulate:MARKer{1|2|3|4|5|6}:Y? .. 8-2
:CALCulate:MARKer{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}[:STATe]? 8-3
:CONFigure SUMMary|PFail .. 8-4
:CONFigure:DEMod <char> .. 8-5
:CONFigure:OTA ... 8-5
:CONFigure:RF <char> .. 8-6
:DISPlay:WINDow:TRACE:X[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACE:X[:SCALe]:OFFSet? 8-7
:DISPlay:WINDow:TRACE:X[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACE:X[:SCALe]:PDIVision? 8-7
List of Commands by Mode

:FETCh:ACLR? .. 8-8
:FETCh:CHPower? ... 8-8
:FETCh:DEMod:ACTChannels? 8-9
:FETCh:DEMod:CDPower? 8-10
:FETCh:DEMod:CFTHrough? 8-10
:FETCh:DEMod:EVM? .. 8-10
:FETCh:DEMod:FERRor:PPM? 8-11
:FETCh:DEMod:FERRor:PRECise? 8-11
:FETCh:DEMod:FERRor? .. 8-11
:FETCh:DEMod:HSDPa:FERRor:PPM? 8-12
:FETCh:DEMod:HSDPa:FERRor? 8-12
:FETCh:DEMod:HSDPa:TXFRequency? 8-12
:FETCh:DEMod:NUMChannels? 8-13
:FETCh:DEMod:SPOWER? 8-13
:FETCh:DEMod:SUMMary? 8-14
:FETCh:DEMod:TXFRequency:PRECise? 8-14
:FETCh:DEMod:TXFRequency? 8-14
:FETCh:EMISSsion:FAIL? 8-15
:FETCh:EMISSsion:TEMPLate:DATA? 8-16
:FETCh:EMISSsion:TEMPLate? 8-16
:FETCh:EMISSsion? .. 8-17
:FETCh:OBWidth? .. 8-17
:FETCh:OTA {1|2|3|4|5|6}? 8-17
:FETCh:PFail? .. 8-18
:FETCh:PTAPower? ... 8-18
:FETCh:RF:SUMMary? ... 8-19
:FORMat[:READings][[:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][[:DATA]]? 8-20
:INITiate:CONTInuous OFF|ON|0|1
:INITiate:CONTInuous? 8-21
:INITiate[:IMMediate] ... 8-21
:MEASure:ACLR? ... 8-22
:MEASure:CHPower? .. 8-23
:MEASure:DEMod:ACTChannels? 8-23
:MEASure:DEMod:CDPower? 8-23
:MEASure:DEMod:CFTHrough? 8-24
:MEASure:DEMod:EVM? ... 8-24
:MEASure:DEMod:FERRor:PPM? 8-25
:MEASure:DEMod:FERRor:PRECise? 8-25
:MEASure:DEMod:FERRor? 8-26
:MEASure:DEMod:HSDPa:FERRor:PPM? 8-26
:MEASure:DEMod:HSDPa:FERRor? 8-27
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEASure:DEMod:NFLoor?</td>
<td>8-28</td>
</tr>
<tr>
<td>:MEASure:DEMod:NUMChannels?</td>
<td>8-28</td>
</tr>
<tr>
<td>:MEASure:DEMod:SPOWer?</td>
<td>8-29</td>
</tr>
<tr>
<td>:MEASure:DEMod:SUMMary?</td>
<td>8-29</td>
</tr>
<tr>
<td>:MEASure:DEMod:TXFRequency?</td>
<td>8-30</td>
</tr>
<tr>
<td>:MEASure:EMISsion:FAIL?</td>
<td>8-31</td>
</tr>
<tr>
<td>:MEASure:EMISsion:TEMPPlate:DATA?</td>
<td>8-31</td>
</tr>
<tr>
<td>:MEASure:EMISsion:TEMPPlate?</td>
<td>8-32</td>
</tr>
<tr>
<td>:MEASure:EMISsion?</td>
<td>8-32</td>
</tr>
<tr>
<td>:MEASure:OBWidth?</td>
<td>8-33</td>
</tr>
<tr>
<td>:MEASure:OTA{1</td>
<td>2</td>
</tr>
<tr>
<td>:MEASure:PFail?</td>
<td>8-34</td>
</tr>
<tr>
<td>:MEASure:PTAPower?</td>
<td>8-34</td>
</tr>
<tr>
<td>:MEASure:RF:SUMMary?</td>
<td>8-35</td>
</tr>
<tr>
<td>:MMEMory:STORe:PFail <header><block></td>
<td>8-36</td>
</tr>
<tr>
<td>:READ:ACLR?</td>
<td>8-37</td>
</tr>
<tr>
<td>:READ:CHPower?</td>
<td>8-37</td>
</tr>
<tr>
<td>:READ:DEMod:ACTChannels?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:CDPower?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:CFTHrough?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:EVM?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor:PPM?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor:PRECise?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:HSDPa:FERRor:PPM?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:HSDPa:FERRor?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:NUMChannels?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:SPOWer?</td>
<td>8-41</td>
</tr>
<tr>
<td>:READ:DEMod:SUMMary?</td>
<td>8-41</td>
</tr>
<tr>
<td>:READ:DEMod:TXFRequency?</td>
<td>8-42</td>
</tr>
<tr>
<td>:READ:EMISsion:FAIL?</td>
<td>8-42</td>
</tr>
<tr>
<td>:READ:EMISsion:TEMPPlate:DATA?</td>
<td>8-43</td>
</tr>
<tr>
<td>:READ:EMISsion:TEMPPlate?</td>
<td>8-43</td>
</tr>
<tr>
<td>:READ:EMISsion?</td>
<td>8-43</td>
</tr>
<tr>
<td>:READ:OBWidth?</td>
<td>8-44</td>
</tr>
<tr>
<td>:READ:OTA{1</td>
<td>2</td>
</tr>
<tr>
<td>:READ:RF:SUMMary?</td>
<td>8-44</td>
</tr>
<tr>
<td>:READ:PFail?</td>
<td>8-45</td>
</tr>
</tbody>
</table>
List of Commands by Mode

:READ:PTAPower? .. 8-45
:TRACe:PREamble? <trace type> 8-46
:TRACe[:DATA] ACLR|SPECTrum|EMISSION|DEMod,(<header><block>)
:TRACe[:DATA]? ACLR|SPECTrum|EMISSION|DEMod. 8-47
[:SENSe]:AVERage:FERRor OFF|ON|0|1
[:SENSe]:AVERage:FERRor? 8-48
[:SENSe]:AVERage:FERRor:COUNt <integer>
[:SENSe]:AVERage:FERRor:COUNt? 8-48
[:SENSe]:DEMod:CODogram:TIME <seconds>
[:SENSe]:DEMod:CODogram:TIME? 8-49
[:SENSe]:DEMod:CPICh:ABSolute? 8-49
[:SENSe]:DEMod:CPICh:RELative? 8-49
[:SENSe]:DEMod:CPICh:RELative? 8-49
[:SENSe]:DEMod:CTRLchannels:UNIT RELative|ABSolute|DELTa
[:SENSe]:DEMod:CTRLchannels:UNIT? 8-49
[:SENSe]:DEMod:HSDPa:IQPersistence <integer>
[:SENSe]:DEMod:HSDPa:IQPersistence? 8-50
[:SENSe]:DEMod:HSDPa:TIME <seconds>
[:SENSe]:DEMod:HSDPa:TIME? 8-50
[:SENSe]:DEMod:PCCPch:RELative? 8-50
[:SENSe]:DEMod:PCDerror? 8-50
[:SENSe]:DEMod:PICH:CODE <code number>
[:SENSe]:DEMod:PICH:CODE? 8-51
[:SENSe]:DEMod:SCCPch:CODE <code number>
[:SENSe]:DEMod:SCCPch:CODE? 8-51
[:SENSe]:DEMod:SCCPch:SFACtor 4|8|16|32|64|128|256
[:SENSe]:DEMod:SCCPch:SFACtor? 8-51
[:SENSe]:DEMod:SCODE <scrambling code>
[:SENSe]:DEMod:SCODE? 8-52
[:SENSe]:DEMod:SCODE:AUTO OFF|ON|0|1
[:SENSe]:DEMod:SCODE:AUTO? 8-52
[:SENSe]:DEMod:SFACtor 256|512
[:SENSe]:DEMod:SFACtor? 8-52
[:SENSe]:DEMod:THRShold <rel ampl>
[:SENSe]:DEMod:THRShold? 8-53
[:SENSe]:DEMod:THRShold:AUTO OFF|ON|0|1
[:SENSe]:DEMod:THRShold:AUTO? 8-53
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 8-53
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 8-54
[:SENSe]:FREQuency:STOP? 8-54
[:SENSe]:OTA:RESet ... 8-55
List of Commands by Mode

[:SENSe]:OTA:SCODe:AUTO OFF|ON|0|1
[:SENSe]:OTA:SCODe:AUTO? ... 8-55
[:SENSe]:OTA:SCODe:LOCK OFF|ON|0|1
[:SENSe]:OTA:SCODe:LOCK? ... 8-56
[:SENSe]:OTA:SCODe{1|2|3|4|5|6}<scrambling code>
[:SENSe]:OTA:SCODe{1|2|3|4|5|6}? ... 8-56
[:SENSe]:OTA:SORT CODE|POWer
[:SENSe]:OTA:SORT? ... 8-57
[:SENSe]:PFail <test set>
[:SENSe]:PFail? ... 8-57
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO? .. 8-58
[:SENSe]:POWer[:RF]:RANGe[:IMMediate] .. 8-58
[:SENSe]:RF:ACLR:ADJCchannelcount <num of channels>
[:SENSe]:RF:ACLR:ADJCchannelcount? .. 8-58
[:SENSe]:RF:ACLR:MAINchannelcount <num of main channels>
[:SENSe]:RF:ACLR:MAINchannelcount? .. 8-59

Chapter 9—TDSCDMA Commands

:ABORt .. 9-1
:CONFigure SUMMary|PFail .. 9-2
:CONFigure:DEMod <char> ... 9-2
:CONFigure:OTA .. 9-3
:CONFigure:RF <char> .. 9-3
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet? .. 9-4
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision? .. 9-4
:FETCh:OTA? .. 9-6
:FETCh:RF:EMISSion? .. 9-6
:FETCh:RF:SPECtrum? ... 9-6
:FETCh:RF:SUMMary? ... 9-7
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? .. 9-8
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 9-9
:INITiate[:IMMediate] .. 9-9
:MEASure:DEMod:CDPData? ... 9-11
:MEASure:DEMod:SUMMary? ... 9-12
:MEASure:OTA? ... 9-12
:MEASure:RF:EMISSion? .. 9-13
:MEASure:RF:SPECtrum? .. 9-14
List of Commands by Mode

:MEASure:RF:SUMMary?..9-15
:READ:DEMod:CDPData?..9-16
:READ:DEMod:SUMMary?..9-17
:READ:OTA?...9-17
:READ:RF:EMISSION?...9-18
:READ:RF:PVTSlot?...9-18
:READ:RF:SPECTrum?...9-19
:READ:RF:SUMMary?...9-19
:TRACe:PREamble? <trace type>...9-20
:TRACe[:DATA]? <trace type>..9-21
:UNIT:POWer dBM|W..9-23
:UNIT:POWer?...9-23
[:SENSe]:DEMod:CDPData:UNITs RELative|ABSolute
[:SENSe]:DEMod:MODEType Auto|QPSK|8PSK|16QAM
[:SENSe]:DEMod:MODEType?...9-24
[:SENSe]:DEMod:MUSER Auto|2-16 (even)
[:SENSe]:DEMod:MUSER?...9-24
[:SENSe]:DEMod:SCRamblingcode Auto|0-127
[:SENSe]:DEMod:SCRamblingcode?......................................9-25
[:SENSe]:DEMod:SPRFactor Auto|16|1
[:SENSe]:DEMod:SPRFactor?...9-25
[:SENSe]:DWPTs Auto|On|Off
[:SENSe]:DWPTs?...9-25
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer?...9-26
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel?........................9-26
[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME?..............................9-26
[:SENSe]:NUMCarriers 1|3
[:SENSe]:NUMCarriers?...9-27
[:SENSe]:PFail <test set>
[:SENSe]:PFail?...9-27
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO?....................................9-28
[:SENSe]:POWer[:RF]:RANGe[:IMMediate]............................9-28
[:SENSe]:SLOTselection Auto|0-6
[:SENSe]:SLOTselection?..9-28
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed?..9-29
[:SENSe]:SYDLcode Auto|0-31
[:SENSe]:SYDLcode?..9-29
List of Commands by Mode

[:SENSe]:TAU:OFFSet <integer>
[:SENSe]:TAU:OFFSet? .. 9-29
[:SENSe]:TRIgger NOTRig|GPS|EXT
[:SENSe]:TRIgger? ... 9-30
[:SENSe]:ULSWitchpoint 0-6
[:SENSe]:ULSWitchpoint? ... 9-30

Chapter 10—GSM Commands

:ABORt ... 10-1
:CONFigure:SUMMary ... 10-2
:CONFigure:DEMod .. 10-2
:CONFigure:PFail .. 10-3
:CONFigure:PVTFrame .. 10-3
:CONFigure:PVTSlot ... 10-3
:CONFigure:SPECTrum:MULTi 10-4
:CONFigure:SPECTrum:SINGle 10-4
:CONFigure? .. 10-4
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:FETCh:DEMod? ... 10-6
:FETCh:PFail? ... 10-6
:FETCh:PVTFrame? ... 10-7
:FETCh:PVTSlot? .. 10-7
:FETCh:SPECTrum:MULTi? .. 10-7
:FETCh:SPECTrum:SINGle? 10-8
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 10-9
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? .. 10-10
:INITiate:[IMMediate] .. 10-10
:MEASure:DEMod? .. 10-11
:MEASure:PFail? .. 10-12
:MEASure:PVTFrame? ... 10-12
:MEASure:PVTSlot? ... 10-13
:MEASure:SPECTrum:MULTi? 10-13
:MEASure:SPECTrum:SINGle? 10-14
:READ:DEMod? ... 10-15
:READ:PFail? ... 10-15
:READ:PVTFrame? .. 10-15
:READ:PVTSlot? .. 10-16
:READ:SPECTrum:MULTi? 10-17
:READ:SPECTrum:SINGle? 10-17
:TRACe:PREamble? <trace type> 10-18
:TRACe[:DATA]? <trace type> 10-18
[:SENSe]:FREQuency:Band AUTO|GSM|EDGE
[:SENSe]:FREQuency:Band? .. 10-19
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? ... 10-19
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 10-19
[:SENSe]:FREQuency:SIGStandard:NAME <string>
[:SENSe]:FREQuency:SIGStandard:NAME? 10-20
[:SENSe]:FREQuency:STARt? ... 10-20
[:SENSe]:FREQuency:STOP? .. 10-20
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 10-21
[:SENSe]:POWer[:RF]:RANGe:AUTO|OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO? 10-21
[:SENSe]:POWer[:RF]:RANGe[:IMMediate] 10-22
[:SENSe]:PVTFrame:STARt? .. 10-22
[:SENSe]:PVTFrame:STOP? .. 10-22
[:SENSe]:PVTSlot:STARt? ... 10-22
[:SENSe]:PVTSlot:STOP? ... 10-22

Chapter 11—Fixed WiMAX Commands
:ABORt .. 11-1
:CONFigure SUMMary ... 11-2
:CONFigure:DEMod <char> .. 11-3
:CONFigure:PFail .. 11-3
:CONFigure:RF <char> ... 11-4
:DISPlay:WINDow:TRACe:MAXHold OFF|ON|0|1
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <value>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision? 11-6
:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP <amplitude>
:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP? 11-6
:FETCH:DEMod:CONStln? .. 11-7
:FETCH:DEMod:EVSCarrier? .. 11-7
:FETCH:DEMod:EVSYmbol? ... 11-7
:FETCH:DEMod:SFLatness? .. 11-7
:FETCH:PFail? ... 11-8
:FETCH:RF:ACPR? .. 11-8
:FETCH:RF:PVTime? .. 11-9
:FETCH:RF:SPECTrum? .. 11-9
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? ... 11-10
List of Commands by Mode

:INITiate:CONTinue OFF|ON

:INITiate:CONTinue?

:INITiate[:IMMediate]

:MEASure:DEMod:CONSult

:MEASure:DEMod:EVSCarrier?

:MEASure:DEMod:EVSYmbol?

:MEASure:DEMod:SFLatness?

:MEASure:PFail?

:MEASure:RF:ACPR?

:MEASure:RF:PVTime?

:READ:DEMod:CONSult

:READ:DEMod:EVSCarrier?

:READ:DEMod:EVSYmbol?

:READ:DEMod:SFLatness?

:READ:PFail?

:READ:RF:ACPR?

:READ:RF:PVTime?

:READ:RF:CONSult?

:TRACe:PREamble? <trace type>

:TRACe[:DATA]? <trace type>

[:SENSe]:BANDwidth[:WIDth[:RESolution] <index>

[:SENSe]:BANDwidth[:WIDth[:RESolution]?

[:SENSe]:CPRatio <index>

[:SENSe]:CPRatio?

[:SENSe]:DEMod:CONSult:POINts?

[:SENSe]:DEMod:CONSult:REFPoints[:STATe] OFF|ON

[:SENSe]:DEMod:CONSult:REFPoints[:STATe]?

[:SENSe]:DEMod:EVSCarrier:STARt:X?

[:SENSe]:DEMod:EVSCarrier:STOP:X?

[:SENSe]:DEMod:EVSYmbol:STARt:X?

[:SENSe]:DEMod:EVSYmbol:STOP:X?

[:SENSe]:DEMod:SFLatness:STARt:X?

[:SENSe]:DEMod:SFLatness:STOP:X?

[:SENSe]:DLFLength 2.5|5|10

[:SENSe]:DLFLength?

[:SENSe]:FREQuency:CENTer <freq>

[:SENSe]:FREQuency:CENTer?

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>

[:SENSe]:FREQuency:SIGStandard:CHANnel?

[:SENSe]:FREQuency:SIGStandard:NAME <string>

[:SENSe]:FREQuency:SIGStandard:NAME?

[:SENSe]:PFail <test set>
List of Commands by Mode

[:SENSe]:PFail? ... 11-26
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1 11-26
[:SENSe]:POWer[:RF]:RANGE:AUTO? ... 11-26
[:SENSe]:POWer[:RF]:RANGe[:IMMediate] .. 11-27
[:SENSe]:RF:ACPR:ADJCchannelcount? .. 11-27
[:SENSe]:RF:ACPR:MAINchannelcount? ... 11-27
[:SENSe]:RF:PVTime:FRAMe:STARt? ... 11-27
[:SENSe]:RF:PVTime:FRAMe:STOP? .. 11-27
[:SENSe]:RF:SPECtrum:SPAN 5|10|20|30 ... 11-28
[:SENSe]:RF:SPECtrum:SPAN? .. 11-28

Chapter 12—Mobile WiMAX Commands

:ABORt .. 12-1
:CONFigure PFail ... 12-2
:CONFigure SUMMary ... 12-2
:CONFigure:DEMod <char> ... 12-3
:CONFigure:RF <char> ... 12-4
:DISPlay:WINDow:TRACe:MAXHold OFF|ON|0|1 12-5
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl> 12-5
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision <value> 12-6
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision? 12-6
:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP <amplitude> 12-6
:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP? 12-6
:FETCh:DEMod:CONStln? ... 12-7
:FETCh:DEMod:EVSCarrier? .. 12-7
:FETCh:DEMod:EVSYmbol? ... 12-7
:FETCh:DEMod:SFLatness? ... 12-7
:FETCh:PFail? .. 12-8
:FETCh:RF:ACPR? .. 12-8
:FETCh:RF:PVTime? ... 12-9
:FETCh:RF:SPECtrum? ... 12-9
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32 12-10
:FORMat[:READings][:DATA]? .. 12-10
:INITiate:CONTinuous OFF|ON|0|1 .. 12-11
:INITiate:CONTinuous? .. 12-11
:INITiate[:IMMediate] ... 12-11
:MEASure:DEMod:CONStln? .. 12-12
:MEASure:DEMod:EVSCarrier? ... 12-13
:MEASure:DEMod:SFLatness? .. 12-14
:MEASure:PFail? .. 12-14
:MEASure:RF:ACPR? ... 12-15
List of Commands by Mode

:MEASure:RF:PVTime? .. 12-15
:MEASure:RF:SPECTrum? ... 12-16
:READ:DEMod:CONStln? ... 12-17
:READ:DEMod:EVSCarrier? ... 12-17
:READ:DEMod:EVSYmbol? .. 12-18
:READ:DEMod:SFLatness? .. 12-18
:READ:PFail? ... 12-18
:READ:RF:ACPR? ... 12-18
:READ:RF:PVTime? .. 12-19
:READ:RF:SPECTrum? ... 12-20
:TRACe:PREamble? <trace type> .. 12-21
:TRACe[:DATA]? <trace type> ... 12-22
[:SENSe]:BANDwidth|BWIDth[:RESolution] <index>
[:SENSe]:BANDwidth|BWIDth[:RESolution]? 12-23
[:SENSe]:DEMod:CONStln:REFPoints[:STATe] OFF|ON|0|1
[:SENSe]:DEMod:CONStln:REFPoints[:STATe]? 12-23
[:SENSe]:FREQuency:CENTer <freq> 12-24
[:SENSe]:FREQuency:CENTer? .. 12-24
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 12-24
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 12-24
[:SENSe]:PFail <test set> ... 12-25
[:SENSe]:PFail? ... 12-25
[:SENSe]:POWer[:RF]:RANGe:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGe:AUTO? 12-25
[:SENSe]:POWer[:RF]:RANGe:IMMediate 12-26
[:SENSe]:RF:SPECTrum:SPAN 5|10|20|30
[:SENSe]:RF:SPECTrum:SPAN? ... 12-26

Chapter 13—LTE Commands

:ABORt ... 13-1
:CALCulate:MARKer:AOFF ... 13-2
:CALCulate:MARKer1:DELTA:X <x1 parameter>
:CALCulate:MARKer1:MAXimum 13-2
:CALCulate:MARKer1:STATe OFF|ON|DELta
:CALCulate:MARKer1:STATe? ... 13-2
:CALCulate:MARKer1:X <x-parameter>
:CALCulate:MARKer1:X? .. 13-3
:CALCulate:MARKer1:Y? .. 13-3
:CALCulate:MARKer2:DELTA:X <x1 parameter>
List of Commands by Mode

:CALCulate:MARKer2:DELTa:Y? .. 13-4
:CALCulate:MARKer2:MAXimum .. 13-4
:CALCulate:MARKer2:STATe OFF|ON|DELta
:CALCulate:MARKer2:STATe? .. 13-4
:CALCulate:MARKer2:X <x-parameter>
:CONFigure? .. 13-6
:CONFigure SUMMARY .. 13-6
:CONFigure:DEMod SUMMARY|CONStln|CCPGraph|CCPTable|TIMEalign. 13-7
:CONFigure:OTA SCANner|TXTEst|MAPping|CAGGregation 13-7
:CONFigure:RF SUMMARY|SPECTrum|ACLR|SEM .. 13-7
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet? 13-9
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <rel ampl>
:FETCh:DEMod:4x4:TIMEalign? .. 13-10
:FETCh:DEMod:CCPData? .. 13-10
:FETCh:DEMod:CONStln? .. 13-11
:FETCh:DEMod:PVRB? .. 13-11
:FETCh:DEMod:TIMEalign? .. 13-11
:FETCh:OTA:C4AGGregation? ... 13-12
:FETCh:OTA:CAGGregation? .. 13-12
:FETCh:OTA:MAPping? .. 13-12
:FETCh:OTA:SCANner? .. 13-12
:FETCh:RF:ACLR? .. 13-13
:FETCh:RF:SEM? .. 13-13
:FETCh:RF:SPECTrum? .. 13-13
:FETCh:SUMMary? ... 13-14
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? ... 13-15
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? .. 13-16
:INITiate[:IMMediate] .. 13-16
:MEASure:DEMod:4x4:TIMEalign? .. 13-17
:MEASure:DEMod:AVERage? .. 13-17
:MEASure:DEMod:CCPData? .. 13-18
:MEASure:DEMod:CONStln? .. 13-18
:MEASure:OTA:MAPping? .. 13-20
List of Commands by Mode

:MEASure:OTA:MAPping:RUN STARt|STOP
:MEASure:OTA:MAPping:RUN?.. 13-20
:MEASure:OTA:SCANner?.. 13-20
:MEASure:OTA:TXTEst?.. 13-20
:MEASure:RF:ACLR?... 13-21
:MEASure:RF:SEM?.. 13-21
:MEASure:RF:SPECTrum?.. 13-22
:READ:DEMod:4x4:TIMEalign?.. 13-23
:READ:DEMod:CONSTln?.. 13-23
:READ:DEMod:TIMEalign?.. 13-24
:READ:OTA:C4AGGregation?... 13-24
:READ:OTA:CAGGregation?.. 13-25
:READ:OTA:MAPping?... 13-25
:READ:OTA:SCANner?... 13-25
:READ:OTA:TXTEst?.. 13-26
:READ:PFail?... 13-26
:READ:RF:ACLR?.. 13-27
:READ:RF:SEM?.. 13-27
:READ:RF:SPECTrum?... 13-27
:UNIT:POWer dBM|W.. 13-28
[:SENSe]:4TAE:ACTive OFF|ON
[:SENSe]:4TAE:ACTive?.. 13-29
[:SENSe]:AVERage:FERRor:COUNt n
[:SENSe]:AVERage:FERRor:COUNt?...................................... 13-29
[:SENSe]:AVERage:FERRor:RESet.. 13-29
[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDWidth[:RESolution]?................................... 13-30
[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive?.. 13-30
[:SENSe]:CC{1|2|3|4|5}:BANDWidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDWidth?.................................... 13-30
[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel?.. 13-30
[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency?.................................... 13-31
[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard?.................................. 13-31
[:SENSe]:CELLID <char>
[:SENSe]:CELLID?... 13-31
[:SENSe]:EMF:STATe OFF|ON|0|1
[:SENSe]:EMF:STATe?.. 13-31
[:SENSe]:EVM?... 13-32
List of Commands by Mode

[:SENSe]:EVM:MAXHold ON|OFF
[:SENSe]:EVM:MAXHold? .. 13-32
[:SENSe]:EVM:MODE AUTO|PBCHonly
[:SENSe]:EVM:MODE? .. 13-32
[:SENSe]:EVM:RESET .. 13-32
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? ... 13-33
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 13-33
[:SENSe]:FREQuency:SIGStandard:NAMe [String]
[:SENSe]:FREQuency:SIGStandard:NAMe? 13-33
[:SENSe]:LTE:STATus? .. 13-33
[:SENSe][:OTA]:MAPping:MEASurement SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:MAPping:MEASurement? 13-34
[:SENSe][:OTA]:MAPping:SSSPower:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x “
[:SENSe][:OTA]:MAPping:SSSPower:THREShold? 13-35
[:SENSe][:OTA]:MAPping:RSRP:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRP:THREShold? 13-35
[:SENSe][:OTA]:MAPping:RSRQ:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRQ:THREShold? 13-35
[:SENSe][:OTA]:MAPping:SINR:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SINR:THREShold? 13-35
[:SENSe][:OTA]:MAPping:POInts:DELeete 13-36
[:SENSe][:OTA]:MAPping:RECall:MAP <filename> 13-36
[:SENSe][:OTA]:MAPping:RECall:MAP:DEFAult 13-36
[:SENSe][:OTA]:MAPping:REPeat:TYPe TIMe|DISTance
[:SENSe][:OTA]:MAPping:REPeat:TYPe? 13-36
[:SENSe][:OTA]:MAPping:REPeat:TIMe <microseconds> 13-37
[:SENSe][:OTA]:MAPping:REPeat:TIMe? 13-37
[:SENSe][:OTA]:MAPping:REPeat:DISTance <millimeters> 13-37
[:SENSe][:OTA]:MAPping:REPeat:DISTance? 13-37
[:SENSe][:OTA]:MAPping:SAVe:KML “<filename>” 13-37
[:SENSe][:OTA]:MAPping:SAVe:TEXt “<filename>” 13-37
[:SENSe][:OTA]:SORTby CELLid|GROUpid|SECTorid|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby? .. 13-37
[:SENSe]:POWer[:RF]:RANGe[:IMMediate] 13-38
[:SENSe]:POWer[:RF]:RANGe:AUTO <Boolean (default=1 [ON])> [:SENSe]:POWer[:RF]:RANGe:AUTO? 13-38
[:SENSe]:RF:SPECtrum:SPAN Auto[1.4|3|5|10|15|20|30]
[:SENSe]:RF:SPECtrum:SPAN? .. 13-38
[:SENSe]:SYNC:TYPe SS|RS
[:SENSe]:SYNC:TYPe? .. 13-39
[:SENSe]:TAE:ACTive OFF|ON
List of Commands by Mode

Chapter 14—TD-LTE Commands

[:SENSe]:TAE:ACTive? ... 13-39

:ABORt ... 14-1
:CALCulate:MARKer:AOFF .. 14-2
:CALCulate:MARKer1:DELTa:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer1:MAXimum 14-2
:CALCulate:MARKer1:STATe OFF|ON|DELta
:CALCulate:MARKer1:STATe? 14-3
:CALCulate:MARKer1:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer1:X? ... 14-3
:CALCulate:MARKer1:Y? ... 14-3
:CALCulate:MARKer2:DELTa:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer2:DELTa:Y? 14-4
:CALCulate:MARKer2:MAXimum 14-4
:CALCulate:MARKer2:STATe OFF|ON|DELta
:CALCulate:MARKer2:STATe? 14-4
:CALCulate:MARKer2:X <x1 parameter>,<x2 parameter>
:CONFigure SUMMary ... 14-6
:CONFigure? .. 14-6
:CONFigure:DEMod SUMMary|CONSTln|CCPGraph|CCPTable 14-7
:CONFigure:OTA SCANner|TXTEst|MAPping 14-7
:CONFigure:RF SUMMary|SPECTrum|ACLR|SEM|PVTime 14-8
:CONFigure:RF:PVTime FRAMe|SUBFrame 14-8
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet? 14-9
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALe]:PDIvision? 14-9
:FETCh:DEMod:CCPData? 14-10
:FETCh:DEMod:CONSTln? 14-10
:FETCh:DEMod:PVRB? .. 14-11
:FETCh:DEMod:TIMEalign? 14-11
:FETCh:OTA:CAGGregation? 14-11
:FETCh:OTA:MAPping? ... 14-12
:FETCh:OTA:SCANner? .. 14-12
:FETCh:OTA:TXTEst? ... 14-12
:FETCh:RF:ACLR? .. 14-12
:FETCh:RF:PVTime? ... 14-13
:FETCh:RF:SEM? .. 14-13
List of Commands by Mode

:FETCh:RF:SPECtrum? ... 14-13
:FETCh:SUMMary? ... 14-14
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 14-15
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? .. 14-16
:INITiate:[IMMediate] .. 14-16
:MEAsure:DEMod:AVERage? .. 14-17
:MEAsure:DEMod:CCPData? .. 14-18
:MEAsure:DEMod:CONStIn? .. 14-18
:MEAsure:DEMod:TIMEalign? 14-18
:MEAsure:OTA:CAGGregation? 14-18
:MEAsure:OTA:MAPping? .. 14-19
:MEAsure:OTA:MAPping:RUN STARt|STOP
:MEAsure:OTA:MAPping:RUN? 14-19
:MEAsure:OTA:SCANner? .. 14-19
:MEAsure:OTA:TXTEst? ... 14-20
:MEAsure:RF:ACLR? ... 14-20
:MEAsure:RF:PVTime? ... 14-20
:MEAsure:RF:SEM? .. 14-20
:MEAsure:RF:SPECtrum? .. 14-21
:READ:DEMod:CONStIn? ... 14-21
:READ:OTA:CAGGregation? ... 14-23
:READ:OTA:MAPping? .. 14-23
:READ:OTA:SCANner? .. 14-24
:READ:OTA:TXTEst? .. 14-24
:READ:PFail? .. 14-24
:READ:RF:ACLR? .. 14-25
:READ:RF:PVTime? .. 14-25
:READ:RF:SEM? ... 14-25
:READ:RF:SPECtrum? ... 14-26
:TRIGger:SEQuence:SLOPe RISing|FALLing
:TRIGger:SEQuence:SLOPe? ... 14-27
:UNIT:POWer dBM|W
:UNIT:POWer? ... 14-28
[:SENSe]:AVErage:FERRor:COUNt n
[:SENSe]:AVErage:FERRor:COUNt? 14-29
[:SENSe]:AVErage:FERRor:RESet 14-29
[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDWidth[:RESolution]? 14-29
[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive? 14-30
List of Commands by Mode

[:SENSe]:CC{1|2|3|4|5}:BANDWidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDWidth? ... 14-30
[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel? ... 14-30
[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency? ... 14-30
[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard? ... 14-31
[:SENSe]:CELLID <char>
[:SENSe]:CELLID? ... 14-31
[:SENSe]:EVM? .. 14-31
[:SENSe]:EVM:MAXHold ON|OFF
[:SENSe]:EVM:MAXHold? ... 14-31
[:SENSe]:EVM:MODE AUTO|PBCHonly
[:SENSe]:EVM:MODE? .. 14-32
[:SENSe]:EVM:RESET .. 14-32
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? .. 14-32
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 14-32
[:SENSe]:FREQuency:SIGStandard:NAMe [String]
[:SENSe]:FREQuency:SIGStandard:NAMe? 14-33
[:SENSe]:LTE:STATus? .. 14-33
[:SENSe][:OTA]:MAPping:MEASurement SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:MAPping:MEASurement? 14-34
[:SENSe][:OTA]:MAPping:SSSPower:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x “
[:SENSe][:OTA]:MAPping:SSSPower:THREShold? 14-35
[:SENSe][:OTA]:MAPping:RSRP:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRP:THREShold? 14-35
[:SENSe][:OTA]:MAPping:RSRQ:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRQ:THREShold? 14-35
[:SENSe][:OTA]:MAPping:SINR:THREShold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SINR:THREShold? 14-35
[:SENSe][:OTA]:MAPping:POInts:DELete 14-36
[:SENSe][:OTA]:MAPping:RECall:MAP <filename> 14-36
[:SENSe][:OTA]:MAPping:RECall:MAP:DEFAult 14-36
[:SENSe][:OTA]:MAPping:REPeat:TYPe TIMe|DISTance
[:SENSe][:OTA]:MAPping:REPeat:TYPe? 14-36
[:SENSe][:OTA]:MAPping:REPeat:TIMe <microseconds>
[:SENSe][:OTA]:MAPping:REPeat:TIMe? 14-37
[:SENSe][:OTA]:MAPping:REPeat:DISTance <millimeters>
[:SENSe][:OTA]:MAPping:REPeat:DISTance? 14-37
[:SENSe][:OTA]:MAPping:SAVe:KML “<filename>” 14-37
List of Commands by Mode

[:SENSe][:OTA]:MAp:SAV:TEXt "<filename>" ... 14-37
[:SENSe][:OTA]:SORTby CELLid|GROUpId|SECTorId|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby? ... 14-37
[:SENSe]:POWer[:RF]:RANGe[:IMMediate] 14-38
[:SENSe]:POWer[:RF]:RANGe:AUTO {Boolean (default=1 [ON])} 14-38
[:SENSe]:RF:SPECtrum:SPAN Auto|1.4|3|5|10|15|20|30
[:SENSe]:RF:SPECtrum:SPAN? .. 14-38
[:SENSe]:SUBFrame <Sub-frame number 0-9>
[:SENSe]:SUBFrame? .. 14-39
[:SENSe]:SYNC:TYPe SS|RS
[:SENSe]:SYNC:TYPe? .. 14-39
[:SENSe]:TAE:ACTive OFF|ON ... 14-39
[:SENSe]:TAE:ACTive? ... 14-39
[:SENSe]:TRIGger NOTRIGger|EXternal
[:SENSe]:TRIGger? ... 14-39

Chapter 15—AM/FM/PM Commands

:CALCulate:MARKer{1|2|3|4|5|6} [:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}? ... 15-1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe]? 15-1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:X? 15-2
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:Y? 15-2
:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:CENTer
:CALCulate:MARKer{1|2|3|4|5|6}:MAXimum 15-3
:CALCulate:MARKer{1|2|3|4|5|6}[:SET]:RLEVel
:CALCulate:MARKer{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:X? ... 15-3
:CALCulate:MARKer{1|2|3|4|5|6}:Y? ... 15-3
:CALCulate:MARKer:AOFF ... 15-4
:CALCulate:MARKer:TABLE[:STATe] OFF|ON
:CALCulate:MARKer:TABLE[:STATe]? 15-4
:DISPlay:WINDow:TRACe:Y[:SCAlE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCAlE]:PDIVision?
:FORMat[:READings][:DATA] ASCii|INTeger,32|REAL,[<length>]
:FORMat[:READings][:DATA]? ... 15-6
:INITiate[:IMMediate] .. 15-8
:INITiate:CONTInuous OFF|ON|0|1
:INITiate:CONTInuous? ... 15-8
List of Commands by Mode

:MMEMory:DELete <filename> .. 15-9
:MMEMory:LOAD:STATe <integer>,<filename> 15-9
:MMEMory:LOAD:TRACe <integer>,<filename> 15-9
:MMEMory:STORE:STATe <integer>,<filename> 15-10
:MMEMory:STORE:TRACe <integer>,<filename> 15-11
:TRACe[:DATA]? ... 15-12
[:SENSe]:AFPanalyzer:AVERage:COUNt <avg count>
[:SENSe]:AFPanalyzer:AVERage:COUNt? 15-13
[:SENSe]:AFPanalyzer:DEMod:DATA? 15-13
[:SENSe]:AFPanalyzer:DEMod:MODE RFSP|AFSP|AFWV|SUMMary
[:SENSe]:AFPanalyzer:DEMod:MODE? 15-13
[:SENSe]:AFPanalyzer:DEMod:TYPE AM|FM|PM
[:SENSe]:AFPanalyzer:DEMod:TYPE? 15-14
[:SENSe]:AFPanalyzer:FM:SCALe <percentage>
[:SENSe]:AFPanalyzer:FM:SCALe? .. 15-14
[:SENSe]:AFPanalyzer:IFBW <freq>
[:SENSe]:AFPanalyzer:IFBW? .. 15-14
[:SENSe]:AFPanalyzer:IFBW:AUTO 0|1
[:SENSe]:AFPanalyzer:PM:SCALe <Radians>
[:SENSe]:AFPanalyzer:PM:SCALe? .. 15-15
[:SENSe]:AFPanalyzer:RFSPectrum:DATA? 15-15
[:SENSe]:AFPanalyzer:SPAN <freq>
[:SENSe]:AFPanalyzer:SPAN? .. 15-16
[:SENSe]:AFPanalyzer:SWEep:TIME <time>
[:SENSe]:AFPanalyzer:SWEep:TIME? 15-16
[:SENSe]:AFPanalyzer:SUMMary:DATA? 15-16
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? ... 15-17
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 15-17
[:SENSe]:FREQuency:SIGStandard:NA Me <string>
[:SENSe]:FREQuency:SIGStandard:NA Me? 15-17
[:SENSe]:FREQuency:SPAN <freq>
[:SENSe]:FREQuency:SPAN? .. 15-18
[:SENSe]:FREQuency:SPAN:FULL ... 15-18
[:SENSe]:FREQuency:SPAN:MINimum 15-18
[:SENSe]:FREQuency:SPAN:PREVious 15-18
[:SENSe]:FREQuency:STEP[:INCRement] <freq>
[:SENSe]:FREQuency:STEP[:INCRement]? 15-18
[:SENSe]:OBWidth:METHod XDB|PERCent
[:SENSe]:OBWidth:METHod? .. 15-19
[:SENSe]:OBWidth:PERCent <percentage>
[:SENSe]:OBWidth:PERCent? 15-19
[:SENSe]:OBWidth:XDB <rel ampl>
[:SENSe]:OBWidth:XDB? 15-20
Appendix D — List of All Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:ABORt</td>
<td>10-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>11-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>12-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>13-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>14-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>4-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>6-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>7-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>8-1</td>
</tr>
<tr>
<td>:ABORt</td>
<td>9-1</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ALARm OFF</td>
<td>ON</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ALARm?</td>
<td>4-2</td>
</tr>
<tr>
<td>:CALCulate:LIMit:CENTER</td>
<td>4-2</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:CREate</td>
<td>4-3</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:OFFSet <amplitude></td>
<td>4-3</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:OFFSet?</td>
<td>4-3</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:POINt <number></td>
<td>4-4</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:POINt?</td>
<td>4-4</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:SHApe SQUare</td>
<td>SLOPe</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:SHApe?</td>
<td>4-4</td>
</tr>
<tr>
<td>:CALCulate:LIMit:ENVelope:UPDATE:X</td>
<td>4-5</td>
</tr>
<tr>
<td>:CALCulate:LIMit:FAIL?</td>
<td>4-5</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LOWer:ALARm OFF</td>
<td>ON</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LOWer:ALARm?</td>
<td>4-5</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LOWer:POINt?</td>
<td>4-6</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LOWer[:STATe] OFF</td>
<td>ON</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LOWer[:STATe]?</td>
<td>4-6</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LTYPE ABSolute</td>
<td>RELative</td>
</tr>
<tr>
<td>:CALCulate:LIMit:LTYPE?</td>
<td>4-7</td>
</tr>
<tr>
<td>:CALCulate:LIMit:MIRRor</td>
<td>4-7</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:ADD</td>
<td>4-7</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:DELETE</td>
<td>4-8</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:LEFT</td>
<td>4-8</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:RIGHT</td>
<td>4-8</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:X <x-parameter></td>
<td>4-9</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:X?</td>
<td>4-9</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:Y <y-parameter></td>
<td>4-10</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt:Y?</td>
<td>4-10</td>
</tr>
<tr>
<td>:CALCulate:LIMit:POINt?</td>
<td>4-10</td>
</tr>
</tbody>
</table>
:CALCulate:LIMit:TYPe 0|1
:CALCulate:LIMit:TYPe?
:CALCulate:LIMit:UPPer:ALARm OFF|ON|0|1
:CALCulate:LIMit:UPPer:ALARm?
:CALCulate:LIMit:UPPer:FAIL?
:CALCulate:LIMit:UPPer:POINt?
:CALCulate:LIMit:UPPer[:STATe] OFF|ON|0|1
:CALCulate:LIMit:UPPer[:STATe]?
:CALCulate:LIMit:VALue <value>
:CALCulate:LIMit:VERTical:ADD
:CALCulate:LIMit:X <x-parameter>
:CALCulate:LIMit:Y <y-parameter>
:CALCulate:LIMit[:SET]:DEFault
:CALCulate:LIMit[:STATe] OFF|ON|0|1
:CALCulate:LIMit[:STATe]?
:CALCulate:MARKer:AOFF
:CALCulate:MARKer:PEAK:THReshold <percentage>
:CALCulate:MARKer:PEAK:THReshold?
:CALCulate:MARKer:TABLe[:STATe] OFF|ON
:CALCulate:MARKer:TABLe[:STATe]?
:CALCulate:MARKer:TABLe[:STATe] OFF|ON
:CALCulate:MARKer:TABLe[:STATe]?
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:NOISe[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:NOISe[:STATe]?
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:X <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:X?
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:Y <x-parameter>
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa:Y?
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:SET]:SPAN
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:DELTa[:STATe]?
:CALCulate:MARKer{1|2|3|4|5|6}:FCOunt[:STATe] OFF|ON|0|1
:CALCulate:MARKer{1|2|3|4|5|6}:FCOunt[:STATe]?
List of All Commands

:CALCulate:MARKe{1|2|3|4|5|6}:FIXed[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}:FIXed[:STATe]? 4-20
:CALCulate:MARKe{1|2|3|4|5|6}:MAXimum . 4-20
:CALCulate:MARKe{1|2|3|4|5|6}:MAXimum . 15-3
:CALCulate:MARKe{1|2|3|4|5|6}:MAXimum:LEFT 4-20
:CALCulate:MARKe{1|2|3|4|5|6}:MAXimum:NEXT 4-21
:CALCulate:MARKe{1|2|3|4|5|6}:MAXimum:RIGHt 4-21
:CALCulate:MARKe{1|2|3|4|5|6}:NOISe[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}:NOISe[:STATe]? 4-21
:CALCulate:MARKe{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKe{1|2|3|4|5|6}:X? . 15-3
:CALCulate:MARKe{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKe{1|2|3|4|5|6}:X? . 4-22
:CALCulate:MARKe{1|2|3|4|5|6}:X <x-parameter>
:CALCulate:MARKe{1|2|3|4|5|6}:X? . 8-2
:CALCulate:MARKe{1|2|3|4|5|6}:Y? . 4-22
:CALCulate:MARKe{1|2|3|4|5|6}:Y? . 6-2
:CALCulate:MARKe{1|2|3|4|5|6}:Y? . 7-2
:CALCulate:MARKe{1|2|3|4|5|6}:Y? . 15-3
:CALCulate:MARKe{1|2|3|4|5|6}[:SET]:CENTer . 4-22
:CALCulate:MARKe{1|2|3|4|5|6}[:SET]:CENTer . 15-2
:CALCulate:MARKe{1|2|3|4|5|6}[:SET]:RLEVel . 4-23
:CALCulate:MARKe{1|2|3|4|5|6}[:SET]:RLEVel . 15-3
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe]? . 15-1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe]? . 4-23
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe]? . 6-2
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe]? . 7-2
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe] OFF|ON|0|1
:CALCulate:MARKe{1|2|3|4|5|6}[:STATe]? . 8-3
:CALCulate:MARKe{1|2}:DELTa:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKe{1|2}:DELTa:X? . 14-2
:CALCulate:MARKe{1|2}:DELTa:X <x1 parameter>
:CALCulate:MARKe{1|2}:DELTa:X? . 13-2
:CALCulate:MARKe{1|2}:DELTa:Y? . 13-2
:CALCulate:MARKe{1|2}:DELTa:Y? . 14-2
:CALCulate:MARKe{1|2}:MAXimum . 14-2
:CALCulate:MARKe{1|2}:MAXimum . 14-2
:CALCulate:MARKe{1|2}:STATe OFF|ON|DELTa

MS2720T PM PN: 10580-00341 Rev. J D-3
List of All Commands

:CALCulate:MARKer1:STATE? ... 13-3
:CALCulate:MARKer1:STATE OFF|ON|DELta
:CALCulate:MARKer1:STATE? ... 14-3
:CALCulate:MARKer1:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer1:X? ... 14-3
:CALCulate:MARKer1:X <x-parameter>
:CALCulate:MARKer1:X? ... 13-3
:CALCulate:MARKer1:Y? ... 13-3
:CALCulate:MARKer1:Y? ... 14-3
:CALCulate:MARKer2:DELTa:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer2:DELTa:X? .. 14-3
:CALCulate:MARKer2:DELTa:X <x1 parameter>
:CALCulate:MARKer2:DELTa:X? .. 13-4
:CALCulate:MARKer2:DELTa:Y? .. 14-4
:CALCulate:MARKer2:DELTa:Y? .. 13-4
:CALCulate:MARKer2:MAXimum .. 13-4
:CALCulate:MARKer2:MAXimum .. 14-4
:CALCulate:MARKer2:STATE OFF|ON|DELta
:CALCulate:MARKer2:STATE? ... 13-4
:CALCulate:MARKer2:STATE OFF|ON|DELta
:CALCulate:MARKer2:STATE? ... 14-4
:CALCulate:MARKer2:X <x1 parameter>,<x2 parameter>
:CALCulate:MARKer2:X <x-parameter>
:CONFigure PFail ... 11-3
:CONFigure PFail ... 12-2
:CONFigure SUMMARY .. 11-2
:CONFigure SUMMARY .. 12-2
:CONFigure SUMMARY .. 13-6
:CONFigure SUMMARY .. 14-6
:CONFigure SUMMARY|PFail .. 6-3
:CONFigure SUMMARY|PFail .. 7-3
:CONFigure SUMMARY|PFail .. 8-4
:CONFigure SUMMARY|PFail .. 9-2
:CONFigure:ACPower ... 4-24
:CONFigure:CHPower ... 4-24
:CONFigure:DEMod <char> ... 11-3
:CONFigure:DEMod <char> ... 12-3
:CONFigure:DEMod <char> ... 6-3
:CONFigure:DEMod <char> ... 7-3
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:CONFigure:DEMod <char></td>
<td>8-5</td>
</tr>
<tr>
<td>:CONFigure:DEMod <char></td>
<td>9-2</td>
</tr>
<tr>
<td>:CONFigure:DEMod SUMMary</td>
<td>CONStln</td>
</tr>
<tr>
<td>:CONFigure:DEMod SUMMary</td>
<td>CONStln</td>
</tr>
<tr>
<td>:CONFigure:DEMod</td>
<td>10-2</td>
</tr>
<tr>
<td>:CONFigure:FSTrength</td>
<td>4-25</td>
</tr>
<tr>
<td>:CONFigure:GENerator:TRACking POWStats</td>
<td>TXStats</td>
</tr>
<tr>
<td>:CONFigure?</td>
<td>5-2</td>
</tr>
<tr>
<td>:CONFigure:OBWidth</td>
<td>4-25</td>
</tr>
<tr>
<td>:CONFigure:OTA <char></td>
<td>6-4</td>
</tr>
<tr>
<td>:CONFigure:OTA <char></td>
<td>7-4</td>
</tr>
<tr>
<td>:CONFigure:OTA SCANner</td>
<td>TXTEst</td>
</tr>
<tr>
<td>:CONFigure:OTA SCANner</td>
<td>TXTEst</td>
</tr>
<tr>
<td>:CONFigure:OTA</td>
<td>8-5</td>
</tr>
<tr>
<td>:CONFigure:OTA</td>
<td>9-3</td>
</tr>
<tr>
<td>:CONFigure:PFail</td>
<td>10-3</td>
</tr>
<tr>
<td>:CONFigure:PVTFrame</td>
<td>10-3</td>
</tr>
<tr>
<td>:CONFigure:PVTSlot</td>
<td>10-3</td>
</tr>
<tr>
<td>:CONFigure:RF <char></td>
<td>11-4</td>
</tr>
<tr>
<td>:CONFigure:RF <char></td>
<td>12-4</td>
</tr>
<tr>
<td>:CONFigure:RF <char></td>
<td>6-4</td>
</tr>
<tr>
<td>:CONFigure:RF <char></td>
<td>7-4</td>
</tr>
<tr>
<td>:CONFigure:RF</td>
<td>8-6</td>
</tr>
<tr>
<td>:CONFigure:RF SUMMary</td>
<td>SPECtrum</td>
</tr>
<tr>
<td>:CONFigure:RF SUMMary</td>
<td>SPECtrum</td>
</tr>
<tr>
<td>:CONFigure:RF:PVTime FRAME</td>
<td>SUBFrame</td>
</tr>
<tr>
<td>:CONFigure:SPECtrum:MULTi</td>
<td>10-4</td>
</tr>
<tr>
<td>:CONFigure:SPECtrum:SINGle</td>
<td>10-4</td>
</tr>
<tr>
<td>:CONFigure:SUMMary</td>
<td>10-2</td>
</tr>
<tr>
<td>:CONFigure?</td>
<td>10-4</td>
</tr>
<tr>
<td>:CONFigure?</td>
<td>13-6</td>
</tr>
<tr>
<td>:CONFigure?</td>
<td>14-6</td>
</tr>
<tr>
<td>:DISPlay:WINDow:TRACe:MAXHold OFF</td>
<td>ON</td>
</tr>
<tr>
<td>:DISPlay:WINDow:TRACe:MAXHold OFF</td>
<td>ON</td>
</tr>
<tr>
<td>:DISPlay:WINDow:TRACe:Y:ADJust</td>
<td>4-26</td>
</tr>
<tr>
<td>:DISPlay:WINDow:TRACe:Y[:SCALe]:OFFSet <rel ampl></td>
<td></td>
</tr>
</tbody>
</table>
:DISPlay:WINDow:TRACe:Y[:SCALE]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:OFFSet? 8-7
:DISPlay:WINDow:TRACe:Y[:SCALE]:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:OFFSet? 9-4
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision? 4-26
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision? 8-7
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision? 9-4
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <value>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision? 11-6
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision <value>
:DISPlay:WINDow:TRACe:Y[:SCALE]:PDIVision? 12-6
:DISPlay:WINDow:TRACe:Y[:SCALE]:RLEVel <amplitude>
:DISPlay:WINDow:TRACe:Y[:SCALE]:RLEVel? 4-26
:DISPlay:WINDow:TRACe:Y[:SCALE]:RLEVel:OFFSet <rel ampl>
:DISPlay:WINDow:TRACe:Y[:SCALE]:RLEVel:OFFSet? 4-27
:DISPlay:WINDow:TRACe:Y[:SCALE]:TOP <amplitude>
:DISPlay:WINDow:TRACe:Y[:SCALE]:TOP? 11-6
:DISPlay:WINDow:TRACe:Y[:SCALE]:TOP <amplitude>
List of All Commands

:DISPlay:WINDow:TRACe:Y[:SCALe]:TOP? .. 12-6
:FETCh:ACLR? ... 8-8
:FETCh:ACPower? .. 4-28
:FETCh:CHPower:CHPower? ... 4-28
:FETCh:CHPower:DENSity? ... 4-28
:FETCh:CHPower? .. 8-8
:FETCh:DEMod:4x4:TIMEalign? .. 13-10
:FETCh:DEMod:ACTChannels? ... 8-9
:FETCh:DEMod:CCPData? .. 13-10
:FETCh:DEMod:CCPData? .. 14-10
:FETCh:DEMod:CDPData? .. 7-6
:FETCh:DEMod:CDPMac? ... 7-6
:FETCh:DEMod:CDPower? ... 6-6
:FETCh:DEMod:CDPower? ... 8-10
:FETCh:DEMod:CFTThrough? ... 8-10
:FETCh:DEMod:CONStln? ... 11-7
:FETCh:DEMod:CONStln? ... 12-7
:FETCh:DEMod:CONStln? ... 13-11
:FETCh:DEMod:CONStln? ... 14-10
:FETCh:DEMod:EVM? ... 8-10
:FETCh:DEMod:EVSCarrier? .. 11-7
:FETCh:DEMod:EVSCarrier? .. 12-7
:FETCh:DEMod:EVSYmbol? .. 11-7
:FETCh:DEMod:EVSYmbol? .. 12-7
:FETCh:DEMod:FERRor:PPM? .. 8-11
:FETCh:DEMod:FERRor:PRECise? 8-11
:FETCh:DEMod:FERRor? .. 8-11
:FETCh:DEMod:HSDPa:FERRor:PPM? 8-12
:FETCh:DEMod:HSDPa:FERRor? .. 8-12
:FETCh:DEMod:HSDPa:TXFRequency? 8-12
:FETCh:DEMod:NFLoor? ... 8-13
:FETCh:DEMod:NUMChannels? ... 8-13
:FETCh:DEMod:PVRB? ... 14-11
:FETCh:DEMod:SFLatness? ... 11-7
:FETCh:DEMod:SFLatness? ... 12-7
:FETCh:DEMod:SPower? ... 8-13
:FETCh:DEMod:SUMMary? .. 7-7
:FETCh:DEMod:SUMMary? .. 8-14
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:FETCh:DEMod:TIMEalign?</td>
<td>14-11</td>
</tr>
<tr>
<td>:FETCh:DEMod:TXFRequency:PRECise?</td>
<td>8-14</td>
</tr>
<tr>
<td>:FETCh:DEMod:TXFRequency?</td>
<td>8-14</td>
</tr>
<tr>
<td>:FETCh:DEMod?</td>
<td>10-6</td>
</tr>
<tr>
<td>:FETCh:EMISsion:FAIL?</td>
<td>8-15</td>
</tr>
<tr>
<td>:FETCh:EMISsion:TEMPLate:DATA?</td>
<td>8-16</td>
</tr>
<tr>
<td>:FETCh:EMISsion:TEMPLate?</td>
<td>8-16</td>
</tr>
<tr>
<td>:FETCh:EMISsion?</td>
<td>8-17</td>
</tr>
<tr>
<td>:FETCh:GPS?</td>
<td>3-1</td>
</tr>
<tr>
<td>:FETCh:OBWidth:FREQuency?</td>
<td>4-29</td>
</tr>
<tr>
<td>:FETCh:OBWidth?</td>
<td>4-29</td>
</tr>
<tr>
<td>:FETCh:OBWidth?</td>
<td>8-17</td>
</tr>
<tr>
<td>:FETCh:OTA:C4AGGregation?</td>
<td>13-12</td>
</tr>
<tr>
<td>:FETCh:OTA:CAGGregation?</td>
<td>13-12</td>
</tr>
<tr>
<td>:FETCh:OTA:CAGGregation?</td>
<td>14-11</td>
</tr>
<tr>
<td>:FETCh:OTA:MAPping?</td>
<td>13-12</td>
</tr>
<tr>
<td>:FETCh:OTA:MAPping?</td>
<td>14-12</td>
</tr>
<tr>
<td>:FETCh:OTA:MPATh?</td>
<td>6-6</td>
</tr>
<tr>
<td>:FETCh:OTA:MPATh?</td>
<td>7-8</td>
</tr>
<tr>
<td>:FETCh:OTA:SCANner?</td>
<td>13-12</td>
</tr>
<tr>
<td>:FETCh:OTA:SCANner?</td>
<td>14-12</td>
</tr>
<tr>
<td>:FETCh:OTA:TXTEst?</td>
<td>14-12</td>
</tr>
<tr>
<td>:FETCh:OTA?</td>
<td>9-6</td>
</tr>
<tr>
<td>:FETCh:OTA{1</td>
<td>2</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>10-6</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>11-8</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>12-8</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>6-7</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>7-8</td>
</tr>
<tr>
<td>:FETCh:PFail?</td>
<td>8-18</td>
</tr>
<tr>
<td>:FETCh:PTAPower?</td>
<td>8-18</td>
</tr>
<tr>
<td>:FETCh:PVTFrame?</td>
<td>10-7</td>
</tr>
<tr>
<td>:FETCh:PVTSlot?</td>
<td>10-7</td>
</tr>
<tr>
<td>:FETCh:RF:ACLR?.</td>
<td>13-13</td>
</tr>
<tr>
<td>:FETCh:RF:ACLR?</td>
<td>14-12</td>
</tr>
<tr>
<td>:FETCh:RF:ACPR?.</td>
<td>11-8</td>
</tr>
<tr>
<td>:FETCh:RF:ACPR?</td>
<td>12-8</td>
</tr>
<tr>
<td>:FETCh:RF:EMISsion?</td>
<td>6-7</td>
</tr>
<tr>
<td>:FETCh:RF:EMISsion?</td>
<td>7-9</td>
</tr>
<tr>
<td>:FETCh:RF:EMISsion?</td>
<td>9-6</td>
</tr>
</tbody>
</table>
List of All Commands

:FETCH:RF:PVTime? .. 11-9
:FETCH:RF:PVTime? .. 12-9
:FETCH:RF:PVTime? .. 14-13
:FETCH:RF:SPECTrum? ... 11-9
:FETCH:RF:SPECTrum? ... 12-9
:FETCH:RF:SPECTrum? ... 6-8
:FETCH:RF:SPECTrum? ... 7-10
:FETCH:RF:SPECTrum? ... 9-6
:FETCH:RF:SUMMary? ... 7-10
:FETCH:RF:SUMMary? ... 8-19
:FETCH:RF:SUMMary? ... 9-7
:FETCH:SPECTrum:MULTi? 10-7
:FETCH:SPECTrum:SINGle? 10-8
:FETCH:SUMMary? .. 13-14
:FETCH:SUMMary? .. 14-14
:FETCH:TGENerator:POWStats? 5-3
:FETCH:TGENerator:TXStats? 5-3
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,[<length>]
:FORMat[:READings][:DATA]? 4-30
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 10-9
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 11-10
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 12-10
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 13-15
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 14-15
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 6-9
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 7-11
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 8-20
:FORMat[:READings][:DATA] ASCII|INTeger,32|REAL,32
:FORMat[:READings][:DATA]? 9-8
LIST OF ALL COMMANDS

:GENErator:OUTput:POWer <amplitude>
:GENErator:OUTput:POWer? ... 5-4
:GENErator:OUTput:POWER:OFFSet[:MAGNitude] <value>
:GENErator:OUTput:POWER:OFFSet[:MAGNitude]? 5-5
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 15-8
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 10-10
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 11-11
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 12-11
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 13-16
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 14-16
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 4-31
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 6-10
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 7-12
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 8-21
:INITiate:CONTinuous OFF|ON|0|1
:INITiate:CONTinuous? ... 9-9
:INITiate:GENerator OFF|ON|0|1
:INITiate:GENerator? .. 5-6
:INITiate:SAVE:ON:EVENt:CROSsing:LIMit OFF|ON|0|1 4-32
:INITiate:SAVE:ON:EVENt:SWEep OFF|ON|0|1 4-32
:INITiate:SAVE:THEn:STOp OFF|ON|0|1 4-33
:INITiate[:IMMediate] ONCE|AVERage ... 4-32
:INITiate[:IMMediate] .. 10-10
:INITiate[:IMMediate] .. 11-11
:INITiate[:IMMediate] .. 12-11
:INITiate[:IMMediate] .. 13-16
:INITiate[:IMMediate] .. 14-16
:INITiate[:IMMediate] .. 6-10
:INITiate[:IMMediate] .. 7-12
:INITiate[:IMMediate] .. 8-21
:INITiate[:IMMediate] .. 9-9
:INITiate[:IMMediate] .. 15-8
:INSTrument:CATalog:FULL? .. 3-2
List of All Commands

:INSTrument:NSELect <integer>
:INSTrument:NSELect? ... 3-2
:INSTrument[:SELect] <string>
:INSTrument[:SELect]? ... 3-3
:MEASure:ACLR? ... 8-22
:MEASure:ACPower? ... 4-34
:MEASure:CHPower:CHPower? .. 4-35
:MEASure:CHPower:DENSity? .. 4-36
:MEASure:CHPower? .. 4-35
:MEASure:CHPower? .. 8-23
:MEASure:DEMod:4x4:TIMEalign? ... 13-17
:MEASure:DEMod:ACTChannels? .. 8-23
:MEASure:DEMod:AVERage? .. 13-17
:MEASure:DEMod:AVERage? .. 14-17
:MEASure:DEMod:CCPD ata? .. 13-18
:MEASure:DEMod:CCPD ata? .. 14-18
:MEASure:DEMod:CDPData? .. 7-13
:MEASure:DEMod:CDPData? .. 9-11
:MEASure:DEMod:CDPMac? .. 7-14
:MEASure:DEMod:CDPower? ... 6-11
:MEASure:DEMod:CDPower? ... 8-23
:MEASure:DEMod:CFTHrough? ... 8-24
:MEASure:DEMod:CONStln? .. 11-12
:MEASure:DEMod:CONStln? .. 12-12
:MEASure:DEMod:CONStln? .. 13-18
:MEASure:DEMod:CONStln? .. 14-18
:MEASure:DEMod:EVM? .. 8-24
:MEASure:DEMod:EVSCarrier? ... 11-13
:MEASure:DEMod:EVSCarrier? ... 12-13
:MEASure:DEMod:FERRor:PPM? ... 8-25
:MEASure:DEMod:FERRor:PRECise? 8-25
:MEASure:DEMod:FERRor? ... 8-26
:MEASure:DEMod:HSDPa:FERRor:PPM? 8-26
:MEASure:DEMod:HSDPa:FERRor? ... 8-27
:MEASure:DEMod:NFLoor? .. 8-28
:MEASure:DEMod:NUMChannels? .. 8-28
:MEASure:DEMod:SFLatness? ... 11-14
:MEASure:DEMod:SFLatness? ... 12-14
:MEASure:DEMod:SPOWer? .. 8-29
:MEASure:DEMod:SUMMary? .. 7-15
List of All Commands

:MEASure:DEMod:SUMMarY? ... 8-29
:MEASure:DEMod:SUMMarY? ... 9-12
:MEASure:DEMod:TIMEalign? .. 14-18
:MEASure:DEMod:TXFRequency? .. 8-30
:MEASure:DEMod? ... 10-11
:MEASure:EMISsion:FAIL? ... 8-31
:MEASure:EMISsion:TEMPLate:DATA? 8-31
:MEASure:EMISsion:TEMPLate? ... 8-32
:MEASure:EMISsion? .. 8-32
:MEASure:IQ:CAPture SINGle|REMote 4-36
:MEASure:IQ:GET? ... 4-37
:MEASure:OBWidth? .. 4-37
:MEASure:OBWidth? .. 8-33
:MEASure:OTA:CAGGregation? ... 14-18
:MEASure:OTA:MAPping:RUN STARt|STOP 13-20
:MEASure:OTA:MAPping:RUN? ... 13-20
:MEASure:OTA:MAPping? .. 13-20
:MEASure:OTA:MAPping? .. 14-19
:MEASure:OTA:MPATh? ... 6-12
:MEASure:OTA:MPATh? ... 7-16
:MEASure:OTA:SCANner? ... 13-20
:MEASure:OTA:SCANner? ... 14-19
:MEASure:OTA:TXTEst? .. 14-20
:MEASure:OTA? ... 9-12
:MEASure:OTA\{1|2|3|4|5|6}\? .. 8-33
:MEASure:PFail? ... 10-12
:MEASure:PFail? ... 11-14
:MEASure:PFail? ... 12-14
:MEASure:PFail? ... 6-12
:MEASure:PFail? ... 7-16
:MEASure:PFail? ... 8-34
:MEASure:PTAPower? ... 8-34
:MEASure:PVFrame? ... 10-12
:MEASure:PVTFrame? ... 10-13
:MEASure:RF:ACLR? .. 13-21
:MEASure:RF:ACLR? .. 14-20
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:MEASure:RF:ACPR?</td>
<td>11-15</td>
</tr>
<tr>
<td>:MEASure:RF:ACPR?</td>
<td>6-13</td>
</tr>
<tr>
<td>:MEASure:RF:ACPR?</td>
<td>7-17</td>
</tr>
<tr>
<td>:MEASure:RF:EMISsion?</td>
<td>6-14</td>
</tr>
<tr>
<td>:MEASure:RF:EMISsion?</td>
<td>7-18</td>
</tr>
<tr>
<td>:MEASure:RF:EMISsion?</td>
<td>9-13</td>
</tr>
<tr>
<td>:MEASure:RF:PVTtime?</td>
<td>11-15</td>
</tr>
<tr>
<td>:MEASure:RF:PVTtime?</td>
<td>12-15</td>
</tr>
<tr>
<td>:MEASure:RF:PVTtime?</td>
<td>14-20</td>
</tr>
<tr>
<td>:MEASure:RF:SEM?</td>
<td>13-21</td>
</tr>
<tr>
<td>:MEASure:RF:SEM?</td>
<td>14-21</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>11-16</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>12-16</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>14-21</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>6-15</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>7-18</td>
</tr>
<tr>
<td>:MEASure:RF:SPECrum?</td>
<td>9-14</td>
</tr>
<tr>
<td>:MEASure:RF:SUMMary?</td>
<td>7-19</td>
</tr>
<tr>
<td>:MEASure:RF:SUMMary?</td>
<td>8-35</td>
</tr>
<tr>
<td>:MEASure:RF:SUMMary?</td>
<td>9-15</td>
</tr>
<tr>
<td>:MEASure:SPECrum:MULTi?</td>
<td>10-13</td>
</tr>
<tr>
<td>:MEASure:SPECrum:SINGle?</td>
<td>10-14</td>
</tr>
<tr>
<td>:MEASure:TGENerator:POWStats?</td>
<td>5-7</td>
</tr>
<tr>
<td>:MMEMory:DATA? <filename></td>
<td>3-4</td>
</tr>
<tr>
<td>:MMEMory:DELe te <filename></td>
<td>3-4</td>
</tr>
<tr>
<td>:MMEMory:DELe te <filename></td>
<td>15-9</td>
</tr>
<tr>
<td>:MMEMory:INITialize USB</td>
<td>3-5</td>
</tr>
<tr>
<td>:MMEMory:LOAD:STATe <integer>,<filename></td>
<td>3-6</td>
</tr>
<tr>
<td>:MMEMory:LOAD:STATe <integer>,<filename></td>
<td>15-9</td>
</tr>
<tr>
<td>:MMEMory:LOAD:TRACe <integer>,<filename></td>
<td>3-7</td>
</tr>
<tr>
<td>:MMEMory:LOAD:TRACe <integer>,<filename></td>
<td>15-9</td>
</tr>
<tr>
<td>:MMEMory:MSIS INTernal</td>
<td>USB</td>
</tr>
<tr>
<td>:MMEMory:MSIS?</td>
<td>3-8</td>
</tr>
<tr>
<td>:MMEMory:MSIS:COPY</td>
<td>3-8</td>
</tr>
<tr>
<td>:MMEMory:MSIS:DESTination INTernal</td>
<td>USB</td>
</tr>
<tr>
<td>:MMEMory:MSIS:DESTination?</td>
<td>3-9</td>
</tr>
<tr>
<td>:MMEMory:STORE:JPEG <filename></td>
<td>3-10</td>
</tr>
<tr>
<td>:MMEMory:STORE:LIMIT <filename></td>
<td>4-38</td>
</tr>
<tr>
<td>:MMEMory:STORE:PFail <header><block></td>
<td>8-36</td>
</tr>
<tr>
<td>:MMEMory:STORE:STATe <integer>,<filename></td>
<td>3-10</td>
</tr>
<tr>
<td>:MMEMory:STORE:STATe <integer>,<filename></td>
<td>15-10</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>:MMEMory:STORe:TRACe <integer>,<filename></td>
<td>3-11</td>
</tr>
<tr>
<td>:MMEMory:STORe:TRACe <integer>,<filename></td>
<td>15-11</td>
</tr>
<tr>
<td>:READ:ACLR?</td>
<td>8-37</td>
</tr>
<tr>
<td>:READ:ACPower?</td>
<td>4-39</td>
</tr>
<tr>
<td>:READ:CHPower:DENSity?</td>
<td>4-39</td>
</tr>
<tr>
<td>:READ:CHPower?</td>
<td>4-40</td>
</tr>
<tr>
<td>:READ:DEMod:ACTChannels?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:CDPData?</td>
<td>9-16</td>
</tr>
<tr>
<td>:READ:DEMod:CDPower?</td>
<td>6-16</td>
</tr>
<tr>
<td>:READ:DEMod:CDPower?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:CFTThrough?</td>
<td>8-38</td>
</tr>
<tr>
<td>:READ:DEMod:CONStln?</td>
<td>11-17</td>
</tr>
<tr>
<td>:READ:DEMod:CONStln?</td>
<td>12-17</td>
</tr>
<tr>
<td>:READ:DEMod:EVM?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:EVSCarrier?</td>
<td>11-17</td>
</tr>
<tr>
<td>:READ:DEMod:EVSCarrier?</td>
<td>12-17</td>
</tr>
<tr>
<td>:READ:DEMod:EVSYmbol?</td>
<td>11-18</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor:PPM?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor:PRECise?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:FERRor?</td>
<td>8-39</td>
</tr>
<tr>
<td>:READ:DEMod:HSDPa:FERRor:PPM?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:HSDPa:FERRor?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:NFLoor?</td>
<td>8-40</td>
</tr>
<tr>
<td>:READ:DEMod:NUMChannels?</td>
<td>8-41</td>
</tr>
<tr>
<td>:READ:DEMod:SFLatness?</td>
<td>11-18</td>
</tr>
<tr>
<td>:READ:DEMod:SFLatness?</td>
<td>12-18</td>
</tr>
<tr>
<td>:READ:DEMod:SPOWER?</td>
<td>8-41</td>
</tr>
<tr>
<td>:READ:DEMod:SUMMary?</td>
<td>8-41</td>
</tr>
<tr>
<td>:READ:DEMod:SUMMary?</td>
<td>9-17</td>
</tr>
<tr>
<td>:READ:DEMod:TXFRequency?</td>
<td>8-42</td>
</tr>
<tr>
<td>:READ:DEMod?</td>
<td>10-15</td>
</tr>
<tr>
<td>:READ:EMISSsion:FAIL?</td>
<td>8-42</td>
</tr>
<tr>
<td>:READ:EMISSsion:TEMPPlate:DATA?</td>
<td>8-43</td>
</tr>
<tr>
<td>:READ:EMISSsion:TEMPPlate?</td>
<td>8-43</td>
</tr>
</tbody>
</table>
List of All Commands

:READ:EMISSION? .. 8-43
:READ:OBWidth? .. 4-40
:READ:OBWidth? .. 8-44
:READ:OTA:CAGGregation? 14-23
:READ:OTA:MAPPING? ... 14-23
:READ:OTA:MPTH? .. 6-17
:READ:OTA:MPTH? .. 7-20
:READ:OTA:SCANner? .. 13-25
:READ:OTA:SCANner? .. 14-24
:READ:OTA:TXTest? ... 13-26
:READ:OTA:TXTest? ... 14-24
:READ:OTA? ... 9-17
:READ:OTA {1|2|3|4|5|6}? 8-44
:READ:PFail? ... 10-15
:READ:PFail? ... 11-18
:READ:PFail? ... 12-18
:READ:PFail? ... 13-26
:READ:PFail? ... 14-24
:READ:PFail? ... 6-17
:READ:PFail? ... 7-20
:READ:PFail? ... 8-45
:READ:PTAPower? .. 8-45
:READ:PVTFrame? ... 10-16
:READ:PVTSlot? .. 10-16
:READ:RF:ACLR? .. 13-27
:READ:RF:ACLR? .. 14-25
:READ:RF:ACPR? .. 11-18
:READ:RF:ACPR? .. 12-18
:READ:RF:ACPR? .. 6-18
:READ:RF:ACPR? .. 7-21
:READ:RF:EMISSION? ... 6-18
:READ:RF:EMISSION? ... 7-21
:READ:RF:EMISSION? ... 9-18
:READ:RF:PVTime? .. 11-19
:READ:RF:PVTime? .. 12-19
:READ:RF:PVTime? .. 14-25
:READ:RF:PVTSlot? .. 9-18
:READ:RF:SEM? .. 14-25
:READ:RF:SPECTRum? ... 11-19
List of All Commands

:READ:RF:SPECTrum? ... 12-20
:READ:RF:SPECTrum? ... 14-26
:READ:RF:SPECTrum? ... 6-19
:READ:RF:SPECTrum? ... 7-22
:READ:RF:SPECTrum? ... 9-19
:READ:RF:SUMMary? ... 7-22
:READ:RF:SUMMary? ... 8-44
:READ:RF:SUMMary? ... 9-19
:READ:SPECTrum:MULTi? ... 10-17
:READ:SPECTrum:SINGLE? .. 10-17
:READ:TGENerator:POWStats? ... 5-8
:READ:TGENerator:TXStats? ... 5-8
:STATus:OPERation? ... 3-13
:SYSTem:MSIS[:STATe]? INTernal|USB .. 3-14
:SYSTem:OPTions? ... 3-14
:SYSTem:PRESet .. 3-14
:TRACe:COPY TRACE1,TRACE2|TRACE3 4-41
:TRACe:EXChange TRACE2,TRACE3 .. 4-41
:TRACe:PREamble? {1|2|3} .. 4-42
:TRACe:PREamble? <trace type> .. 10-18
:TRACe:PREamble? <trace type> .. 11-20
:TRACe:PREamble? <trace type> .. 12-21
:TRACe:PREamble? <trace type> .. 6-20
:TRACe:PREamble? <trace type> .. 7-23
:TRACe:PREamble? <trace type> .. 8-46
:TRACe:PREamble? <trace type> .. 9-20
:TRACe[:DATA] {1|2|3},(<header><block>) 4-43
:TRACe[:DATA] ACLR|SPECTrum|EMISSsion|DEMod,(<header><block>) .. 8-47
:TRACe[:DATA]? ACLR|SPECTrum|EMISSsion|DEMod. 8-47
:TRACe[:DATA]? <trace type> ... 10-18
:TRACe[:DATA]? <trace type> ... 11-21
:TRACe[:DATA]? <trace type> ... 12-22
:TRACe[:DATA]? <trace type> ... 6-21
:TRACe[:DATA]? <trace type> ... 7-24
:TRACe[:DATA]? <trace type> ... 9-21
:TRACe[:DATA]? .. 15-12
:TRACe{1|2|3}:DISPlay[:STATe] OFF|ON|0|1 4-44
:TRACe{1|2|3}:DISPlay[:STATe]? ... 4-44
:TRACe{1|2|3}:WRITE[:STATe] OFF|ON|0|1 4-45
:TRACe{1|2|3}:WRITE[:STATe]? ... 4-45
:TRACe1:OPERation NORMal|MAXHold|MINHold|AVERage
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>:TRACe1:OPERation?</td>
<td>4-46</td>
</tr>
<tr>
<td>:TRACe2:OPERation MAXHold</td>
<td>MINHold</td>
</tr>
<tr>
<td>:TRACe2:OPERation?</td>
<td>4-46</td>
</tr>
<tr>
<td>:TRACe3:OPERation MAXHold</td>
<td>MINHold</td>
</tr>
<tr>
<td>:TRACe3:OPERation?</td>
<td>4-47</td>
</tr>
<tr>
<td>:TRIGger:SEQUence:SLOPe RISing</td>
<td>FALLing</td>
</tr>
<tr>
<td>:TRIGger:SEQUence:SLOPe?</td>
<td>6-23</td>
</tr>
<tr>
<td>:TRIGger:SEQUence:SLOPe RISing</td>
<td>FALLing</td>
</tr>
<tr>
<td>:TRIGger:SEQUence:SLOPe?</td>
<td>7-26</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:SOURce IMMEDIATE</td>
<td>EXTERNAL</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:SOURce?</td>
<td>4-48</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:DELAY <percentage> or <time></td>
<td>4-48</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:DELAY?</td>
<td>4-48</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:LEVEL <amplitude></td>
<td>4-49</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:LEVEL?</td>
<td>4-49</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:POSITION <percentage></td>
<td>4-49</td>
</tr>
<tr>
<td>:TRIGger[:SEQUence]:VIDEO:POSITION?</td>
<td>4-49</td>
</tr>
<tr>
<td>:UNIT:POWer dBM</td>
<td>DBV</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>13-28</td>
</tr>
<tr>
<td>:UNIT:POWer dBM</td>
<td>W</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>6-24</td>
</tr>
<tr>
<td>:UNIT:POWer dBM</td>
<td>W</td>
</tr>
<tr>
<td>:UNIT:POWer?</td>
<td>9-23</td>
</tr>
<tr>
<td>[:SENSe]:4TAE:ACTive OFF</td>
<td>ON</td>
</tr>
<tr>
<td>[:SENSe]:4TAE:ACTive?</td>
<td>13-29</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:MAIN <freq></td>
<td>6-25</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:MAIN?</td>
<td>7-28</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:ADJacent <freq></td>
<td>4-51</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:ADJacent?</td>
<td>4-51</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:MAIN <freq></td>
<td>4-51</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:SPACING <freq></td>
<td>4-52</td>
</tr>
<tr>
<td>[:SENSe]:ACPower:BWIDth:SPACING?</td>
<td>4-52</td>
</tr>
</tbody>
</table>
[:SENSe]:ACPower:STATe OFF|ON|0|1
[:SENSe]:ACPower:STATe? ... 4-52
[:SENSe]:AFPanalyzer:AVERage:COUNt <avg count>
[:SENSe]:AFPanalyzer:AVERage:COUNt? 15-13
[:SENSe]:AFPanalyzer:DEMod:DATA? 15-13
[:SENSe]:AFPanalyzer:DEMod:MODE RFSP|AFSP|AFWV|SUMMary
[:SENSe]:AFPanalyzer:DEMod:MODE? 15-13
[:SENSe]:AFPanalyzer:DEMod:TYPE AM|FM|PM
[:SENSe]:AFPanalyzer:DEMod:TYPE? 15-14
[:SENSe]:AFPanalyzer:FM:SCALE <percentage>
[:SENSe]:AFPanalyzer:FM:SCALE? .. 15-14
[:SENSe]:AFPanalyzer:IFBW <freq>
[:SENSe]:AFPanalyzer:IFBW? ... 15-14
[:SENSe]:AFPanalyzer:IFBW:AUTO 0|1
[:SENSe]:AFPanalyzer:IFBW:AUTO? 15-15
[:SENSe]:AFPanalyzer:PM:SCALE <Radians>
[:SENSe]:AFPanalyzer:PM:SCALE? .. 15-15
[:SENSe]:AFPanalyzer:RFSPectrum:DATA? 15-15
[:SENSe]:AFPanalyzer:SPAN <freq>
[:SENSe]:AFPanalyzer:SPAN? ... 15-16
[:SENSe]:AFPanalyzer:SUMMary:DATA? 15-16
[:SENSe]:AFPanalyzer:SWEep:TIME <time>
[:SENSe]:AFPanalyzer:SWEep:TIME? 15-16
[:SENSe]:AVERage:COUNt <integer>
[:SENSe]:AVERage:COUNt? .. 4-52
[:SENSe]:AVERage:FERRor OFF|ON|0|1
[:SENSe]:AVERage:FERRor? .. 8-48
[:SENSe]:AVERage:FERRor:COUNt <integer>
[:SENSe]:AVERage:FERRor:COUNt? 8-48
[:SENSe]:AVERage:FERRor:COUNt n
[:SENSe]:AVERage:FERRor:COUNt? n 13-29
[:SENSe]:AVERage:FERRor:COUNt n
[:SENSe]:AVERage:FERRor:RESet .. 14-29
[:SENSe]:AVERage:FERRor:RESet .. 13-29
[:SENSe]:AVERage:FERRor:RESet .. 14-29
[:SENSe]:AVERage:TYPE NONE|SCALar|MAXimum|MINimum
[:SENSe]:AVERage:TYPE? .. 4-53
[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDWidth[:RESolution]? 13-30
[:SENSe]:BANDWidth[:RESolution] 1.4|3|5|10|15|20
[:SENSe]:BANDwidth|BWIDth:VIDeo <freq>
[:SENSe]:BANDwidth|BWIDth:VIDeo? 4-55
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth:VIDeo:AUTO? 4-55
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio <number>
[:SENSe]:BANDwidth|BWIDth:VIDeo:RATio? 4-56
[:SENSe]:BANDwidth|BWIDth:VIDeo:TYPE LOGarithmic|LINear
[:SENSe]:BANDwidth|BWIDth:TYPE? .. 4-56
[:SENSe]:BANDwidth|BWIDth[:RESolution] <freq>
[:SENSe]:BANDwidth|BWIDth[:RESolution]? .. 4-53
[:SENSe]:BANDwidth|BWIDth[:RESolution] <index>
[:SENSe]:BANDwidth|BWIDth[:RESolution]? .. 11-22
[:SENSe]:BANDwidth|BWIDth[:RESolution] <index>
[:SENSe]:BANDwidth|BWIDth[:RESolution]? .. 12-23
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO OFF|ON|0|1
[:SENSe]:BANDwidth|BWIDth[:RESolution]:AUTO? 4-54
[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio <number>
[:SENSe]:BANDwidth|BWIDth[:RESolution]:RATio? 4-54
[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive? .. 13-30
[:SENSe]:CC{1|2|3|4|5}:ACTive OFF|ON
[:SENSe]:CC{1|2|3|4|5}:ACTive? .. 14-30
[:SENSe]:CC{1|2|3|4|5}:BANDWidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDWidth? .. 13-30
[:SENSe]:CC{1|2|3|4|5}:BANDWidth 1.4|3|5|10|15|20
[:SENSe]:CC{1|2|3|4|5}:BANDWidth? .. 14-30
[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel? .. 13-30
[:SENSe]:CC{1|2|3|4|5}:CHANnel <number>
[:SENSe]:CC{1|2|3|4|5}:CHANnel? .. 14-30
[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency? .. 13-31
[:SENSe]:CC{1|2|3|4|5}:FREQuency <freq>
[:SENSe]:CC{1|2|3|4|5}:FREQuency? .. 14-30
[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard? .. 13-31
[:SENSe]:CC{1|2|3|4|5}:SIGStandard <string>
[:SENSe]:CC{1|2|3|4|5}:SIGStandard? .. 14-31
[:SENSe]:CELLID <char>
[:SENSe]:CELLID? ... 13-31
[:SENSe]:CELLID <char>
[:SENSe]:CELLID? ... 14-31
[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration <freq>
[:SENSe]:CHPower:BANDwidth|BWIDth:INTegration? 4-56
[:SENSe]:CHPower:STATe OFF|ON|0|1
[:SENSe]:CHPower:STATe? .. 4-57
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet <rel ampl>
[:SENSe]:CORRection:IMPedance[:INPut]:OFFSet? 4-58
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude] <integer>
[:SENSe]:CORRection:IMPedance[:INPut][:MAGNitude]? 4-57
[:SENSe]:CPRatio <index>
[:SENSe]:CPRatio? .. 11-22
[:SENSe]:CW:FREQuency
[:SENSe]:CW:FREQuency? .. 5-9
[:SENSe]:DEMod:CDPData:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPData:UNITs? 9-24
[:SENSe]:DEMod:CDPower:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPower:UNITs? 6-25
[:SENSe]:DEMod:CDPower:UNITs RELative|ABSolute
[:SENSe]:DEMod:CDPower:UNITs? 7-28
[:SENSe]:DEMod:CDPower:ZOOM 16|32|64
[:SENSe]:DEMod:CDPower:ZOOM? 6-26
[:SENSe]:DEMod:CDPower:ZOOM 16|32|64
[:SENSe]:DEMod:CDPower:ZOOM? 7-29
[:SENSe]:DEMod:CDPower:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPower:ZOOM:STARt? 6-26
[:SENSe]:DEMod:CDPower:ZOOM:STARt <integer>
[:SENSe]:DEMod:CDPower:ZOOM:STARt? 7-29
[:SENSe]:DEMod:CODogram:TIME <seconds>
[:SENSe]:DEMod:CODogram:TIME? 8-49
[:SENSe]:DEMod:CONStln:POINts? 11-22
[:SENSe]:DEMod:CONStln:REFPoints[:STATe] OFF|ON|0|1
[:SENSe]:DEMod:CONStln:REFPoints[:STATe]? 11-23
[:SENSe]:DEMod:CONStln:REFPoints[:STATe] OFF|ON|0|1
[:SENSe]:DEMod:CONStln:REFPoints[:STATe]? 12-23
[:SENSe]:DEMod:CPICh:ABSolute? 8-49
[:SENSe]:DEMod:CPICh:RELative? 8-49
[:SENSe]:DEMod:CTRLchannels:UNIT RELative|ABSolute|DELTa
[:SENSe]:DEMod:CTRLchannels:UNIT? 8-49
[:SENSe]:DEMod:EVSCarrier:STARt:X? 11-23
[:SENSe]:DEMod:EVSCarrier:STOP:X? 11-23
[:SENSe]:DEMod:EVSYmbol:STARt:X? 11-23
[:SENSe]:DEMod:EVSYmbol:STOP:X? 11-23
[:SENSe]:DEMod:HSDPa:IQPersistence <integer>
[:SENSe]:DEMod:HSDPa:IQPersistence? 8-50
[:SENSe]:DEMod:HSDPa:TIME <seconds>
[:SENSe]:DEMod:HSDPa:TIME? 8-50
[:SENSe]:DEMod:MODType Auto|QPSK|8PSK|16QAM
List of All Commands

[:SENSe]:DEMod:MODType? ... 9-24
[:SENSe]:DEMod:MUSer Auto|2-16 (even) 9-24
[:SENSe]:DEMod:MUSer? .. 9-24
[:SENSe]:DEMod:PCCPch:RELative? 8-50
[:SENSe]:DEMod:PCDerror? ... 8-50
[:SENSe]:DEMod:PICH:CODE <code number> 8-51
[:SENSe]:DEMod:PICH:CODE? 8-51
[:SENSe]:DEMod:SCCPch:CODE <code number> 8-51
[:SENSe]:DEMod:SCCPch:CODE? 8-51
[:SENSe]:DEMod:SCCPch:SFACtor 4|8|16|32|64|128|256 8-51
[:SENSe]:DEMod:SCCPch:SFACtor? 8-51
[:SENSe]:DEMod:SCODE <scrambling code> 8-52
[:SENSe]:DEMod:SCODE? ... 8-52
[:SENSe]:DEMod:SCODE:Auto OFF|ON|0|1 8-52
[:SENSe]:DEMod:SCODE:Auto? 8-52
[:SENSe]:DEMod:SFRamblingcode Auto|0-127 9-25
[:SENSe]:DEMod:SFACtor 256|512 8-52
[:SENSe]:DEMod:SFACtor? .. 8-52
[:SENSe]:DEMod:SFLatness:START:X? 11-23
[:SENSe]:DEMod:SFLatness:STOP:X? 11-24
[:SENSe]:DEMod:SPRFactor Auto|16|1 9-25
[:SENSe]:DEMod:SPRFactor? 9-25
[:SENSe]:DEMod:THRShold <rel ampl> 9-25
[:SENSe]:DEMod:THRShold? 8-53
[:SENSe]:DEMod:THRShold:Auto OFF|ON|0|1 8-53
[:SENSe]:DEMod:THRShold:Auto? 8-53
[:SENSe]:DETector[:FUNCtion] POSitive|RMS|NEGative|SAMPlE|QUASI
[:SENSe]:DETector[:FUNCtion]? 4-58
[:SENSe]:DLFLength 2.5|5|10 11-24
[:SENSe]:DWPTs Auto|On|Off 9-25
[:SENSe]:DWPTs? .. 9-25
[:SENSe]:EMF:STATe OFF|ON|0|1 13-31
[:SENSe]:EMF:STATe? ... 13-31
[:SENSe]:EMF:STATe OFF|ON|0|1 13-32
[:SENSe]:EMF:STATe .. 4-59
[:SENSe]:EVM:MAXHold ON|OFF 14-31
[:SENSe]:EVM:MAXHold? .. 14-31
[:SENSe]:EVM:MAXHold ON|OFF 13-32
[:SENSe]:EVM:MAXHold ... 13-32
[:SENSe]:EVM:MODE AUTO|PBCHonly 13-32
[:SENSe]:EVM:MODE? .. 13-32
[:SENSe]:EVM:MODe AUTO|PBCHonly
[:SENSe]:EVM:MODe? .. 14-32
[:SENSe]:EVM:RESet .. 13-32
[:SENSe]:EVM:RESet .. 14-32
[:SENSe]:EVM? ... 13-32
[:SENSe]:EVM? ... 14-31
[:SENSe]:EXTRefstatus? ... 4-59
[:SENSe]:FREQuency:BAND AUTO|GSM|EDGE
[:SENSe]:FREQuency:BAND? .. 10-19
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 15-17
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 10-19
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 11-24
[:SENSe]:FREQuency:CENTer? 12-24
[:SENSe]:FREQuency:CENTer? 13-33
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 14-32
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 4-60
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 6-26
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 7-29
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 8-53
[:SENSe]:FREQuency:CENTer <freq>
[:SENSe]:FREQuency:CENTer? 9-26
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 15-17
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 10-19
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 11-25
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 12-24
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 13-33
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 14-32
List of All Commands

[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 4-60
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 6-27
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 7-30
[:SENSe]:FREQuency:SIGStandard:CHANnel <number>
[:SENSe]:FREQuency:SIGStandard:CHANnel? 9-26
[:SENSe]:FREQuency:SIGStandard:NAMe [String]
[:SENSe]:FREQuency:SIGStandard:NAMe? 13-33
[:SENSe]:FREQuency:SIGStandard:NAMe [String]
[:SENSe]:FREQuency:SIGStandard:NAMe? 14-33
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 15-17
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 10-20
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 11-25
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 12-24
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 4-60
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 6-27
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 7-30
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 8-54
[:SENSe]:FREQuency:SIGStandard:NAMe <string>
[:SENSe]:FREQuency:SIGStandard:NAMe? 9-26
[:SENSe]:FREQuency:SPAN <freq>
[:SENSe]:FREQuency:SPAN? .. 15-18
[:SENSe]:FREQuency:SPAN <freq>
[:SENSe]:FREQuency:SPAN? .. 4-61
[:SENSe]:FREQuency:SPAN:FULL .. 4-61
[:SENSe]:FREQuency:SPAN:FULL .. 15-18
[:SENSe]:FREQuency:SPAN:MINimum 15-18
[:SENSe]:FREQuency:SPAN:PREVious 4-62
[:SENSe]:FREQuency:SPAN:PREVious 15-18
[:SENSe]:FREQuency:SPAN? .. 6-27
[:SENSe]:FREQuency:SPAN? .. 7-30
[:SENSe]:FREQuency:STARt <freq>
[:SENSe]:FREQuency:STARt? ... 4-62
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[:SENSe]:FREQuency:STARt?</td>
<td>10-20</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STARt?</td>
<td>8-54</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STEP[:INCRement] <freq></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STEP[:INCRement]?</td>
<td>15-18</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STEP[:INCRement] <freq></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STEP[:INCRement]?</td>
<td>4-63</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STOP <freq></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STOP?</td>
<td>4-63</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STOP?</td>
<td>10-20</td>
</tr>
<tr>
<td>[:SENSe]:FREQuency:STOP?</td>
<td>8-54</td>
</tr>
<tr>
<td>[:SENSe]:FSTRe ngth:ANTenna <antenna></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:FSTRe ngth:ANTenna?</td>
<td>4-64</td>
</tr>
<tr>
<td>[:SENSe]:FSTRe ngth:STATe OFF</td>
<td>ON</td>
</tr>
<tr>
<td>[:SENSe]:FSTRe ngth:STATe?</td>
<td>4-64</td>
</tr>
<tr>
<td>[:SENSe]:GENerator:MODe CW</td>
<td>TRACking</td>
</tr>
<tr>
<td>[:SENSe]:GENerator:MODe?</td>
<td>5-9</td>
</tr>
<tr>
<td>[:SENSe]:GPS ON</td>
<td>OFF</td>
</tr>
<tr>
<td>[:SENSe]:GPS?</td>
<td>3-12</td>
</tr>
<tr>
<td>[:SENSe]:GPS:CURRent?</td>
<td>3-12</td>
</tr>
<tr>
<td>[:SENSe]:GPS:RESet</td>
<td>3-12</td>
</tr>
<tr>
<td>[:SENSe]:GPS:VOLTage 0</td>
<td>1</td>
</tr>
<tr>
<td>[:SENSe]:GPS:VOLTage?</td>
<td>3-12</td>
</tr>
<tr>
<td>[:SENSe]:IQ:LENgth <number></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:IQ:LENgth?</td>
<td>4-65</td>
</tr>
<tr>
<td>[:SENSe]:IQ:SAMPlerate <freq></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:IQ:SAMPlerate?</td>
<td>4-65</td>
</tr>
<tr>
<td>[:SENSe]:LTE:STATus?</td>
<td>13-33</td>
</tr>
<tr>
<td>[:SENSe]:LTE:STATus?</td>
<td>14-33</td>
</tr>
<tr>
<td>[:SENSe]:NUMCarriers 1</td>
<td>3</td>
</tr>
<tr>
<td>[:SENSe]:NUMCarriers?</td>
<td>9-27</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:METHod XDB</td>
<td>PERCent</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:METHod?</td>
<td>15-19</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:METHod XDB</td>
<td>PERCent</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:METHod?</td>
<td>4-66</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:PERCent <percentage></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:PERCent?</td>
<td>15-19</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:PERCent <percentage></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:PERCent?</td>
<td>4-66</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:STATe OFF</td>
<td>ON</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:STATe?</td>
<td>4-67</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:XDB <rel ampl></td>
<td></td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:XDB?</td>
<td>15-20</td>
</tr>
<tr>
<td>[:SENSe]:OBWidth:XDB <rel ampl></td>
<td></td>
</tr>
</tbody>
</table>
[:SENSe]:OBWidth:XDB? .. 4-67
[:SENSe]:OPTion:IF:BWSTate 1|2|3|4|5
[:SENSe]:OPTion:IF:BWSTate? 4-67
[:SENSe]:OTA:RESet .. 8-55
[:SENSe]:OTA:SCODE:AUTO OFF|ON|0|1
[:SENSe]:OTA:SCODE:AUTO? 8-55
[:SENSe]:OTA:SCODE:LOCK OFF|ON|0|1
[:SENSe]:OTA:SCODE:LOCK? 8-56
[:SENSe]:OTA:SCODE{1|2|3|4|5|6}<scrambling code>
[:SENSe]:OTA:SCODE{1|2|3|4|5|6}? 8-56
[:SENSe]:OTA:SORT CODE|POWer
[:SENSe]:OTA:SORT? .. 8-57
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 10-21
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 11-26
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 12-25
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 6-28
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 7-31
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 8-57
[:SENSe]:PFail <test set>
[:SENSe]:PFail? .. 9-27
[:SENSe]:PN:OFFSet <integer>
[:SENSe]:PN:OFFSet? .. 6-28
[:SENSe]:PN:OFFSet <integer>
[:SENSe]:PN:OFFSet? .. 7-31
[:SENSe]:PN:STYPe:AUTO 1|0|ON|OFF
[:SENSe]:PN:STYPe:AUTO? .. 6-29
[:SENSe]:PN:STYPe:AUTO 1|0|ON|OFF
[:SENSe]:PN:STYPe:AUTO? .. 7-32
[:SENSe]:PN:TRIGger NOTRig|GPS|EXT
[:SENSe]:PN:TRIGger? .. 6-29
[:SENSe]:PN:TRIGger NOTRig|GPS|EXT
[:SENSe]:PN:TRIGger? .. 7-32
[:SENSe]:POWer[:RF]:ATTenuation <rel ampl>
[:SENSe]:POWer[:RF]:ATTenuation? 4-68
[:SENSe]:POWer[:RF]:ATTenuation:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:ATTenuation:AUTO? 4-68
[:SENSe]:POWer[:RF]:GAIN[:STATe] OFF|ON|0|1
[:SENSe]:POWer[:RF]:GAIN[:STATe]? ... 4-69
[:SENSe]:POWer[:RF]:RANGE:AUTO {Boolean (default=1 [ON])}
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 14-38
[:SENSe]:POWer[:RF]:RANGE:AUTO <Boolean (default=1 [ON])>
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 13-38
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 10-21
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 11-26
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 12-25
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 6-30
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 7-33
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:AUTO? .. 8-58
[:SENSe]:POWer[:RF]:RANGE:AUTO OFF|ON|0|1
[:SENSe]:POWer[:RF]:RANGE:IMMediate 10-22
[:SENSe]:POWer[:RF]:RANGE:IMMediate 11-27
[:SENSe]:POWer[:RF]:RANGE:IMMediate 12-26
[:SENSe]:POWer[:RF]:RANGE:IMMediate 13-27
[:SENSe]:POWer[:RF]:RANGE:IMMediate 14-38
[:SENSe]:POWer[:RF]:RANGE:IMMediate 6-30
[:SENSe]:POWer[:RF]:RANGE:IMMediate 7-33
[:SENSe]:POWer[:RF]:RANGE:IMMediate 8-58
[:SENSe]:POWer[:RF]:RANGE:IMMediate 9-28
[:SENSe]:PVTFrame:STARt? ... 10-22
[:SENSe]:PVTFrame:STOP? .. 10-22
[:SENSe]:PVTSlot:STARt? .. 10-22
[:SENSe]:PVTSlot:STOP? ... 10-22
[:SENSe]:RF:ACLR:ADJCchannelcount <num of channels>
[:SENSe]:RF:ACLR:ADJCchannelcount? 8-58
[:SENSe]:RF:ACLR:ADJCchannelcount <num of main channels>
[:SENSe]:RF:ACLR:MAINchannelcount? 8-59
[:SENSe]:RF:ACPR:ADJCchannelcount? 11-27
[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount? 6-30
[:SENSe]:RF:ACPR:MAINchannelcount <integer>
[:SENSe]:RF:ACPR:MAINchannelcount? 7-33
[:SENSe]:RF:ACPR:MAINchannelcount? 11-27
[:SENSe]:RF:PVTTime:FRAMe:STARt? 11-27
List of All Commands

[:SENSe]:RF:PVTime:FRAMe:STOP? 11-27
[:SENSe]:RF:SPECTrum:SPAN 5|10|20|30
[:SENSe]:RF:SPECTrum:SPAN? 11-28
[:SENSe]:RF:SPECTrum:SPAN 5|10|20|30
[:SENSe]:RF:SPECTrum:SPAN? 12-26
[:SENSe]:RF:SPECTrum:SPAN Auto|1.4|3|5|10|15|20|30
[:SENSe]:RF:SPECTrum:SPAN? 13-38
[:SENSe]:RF:SPECTrum:SPAN Auto|1.4|3|5|10|15|20|30
[:SENSe]:RF:SPECTrum:SPAN? 14-38
[:SENSe]:SLOTselection Auto|0-6
[:SENSe]:SLOTselection? 9-28
[:SENSe]:SUBFrame <Sub-frame number 0-9>
[:SENSe]:SUBFrame? 14-39
[:SENSe]:SWEep:MODE FAST|PERFormance|NOFFt|BURSt
[:SENSe]:SWEep:MODE? 4-69
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed? 6-31
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed? 7-34
[:SENSe]:SWEep:SPEed FAST|NORM|SLOW
[:SENSe]:SWEep:SPEed? 9-29
[:SENSe]:SWEep:STATus? 4-69
[:SENSe]:SWEep:TIME:ACTual? 4-70
[:SENSe]:SWEep:TIME:AUTO ON|OFF|1|0
[:SENSe]:SWEep:TIME:AUTO? 4-70
[:SENSe]:SWEep:TIME[:,:LLIMit]
[:SENSe]:SWEep:TIME[:,:LLIMit]? 4-70
[:SENSe]:SWEep:TRACE? 4-70
[:SENSe]:SYDLcode Auto|0-31
[:SENSe]:SYDLcode? 9-29
[:SENSe]:SYNC:TYPe SS|RS
[:SENSe]:SYNC:TYPe? 13-39
[:SENSe]:SYNC:TYPe SS|RS
[:SENSe]:SYNC:TYPe? 14-39
[:SENSe]:TAE:ACTive OFF|ON
[:SENSe]:TAE:ACTive? 13-39
[:SENSe]:TAE:ACTive OFF|ON
[:SENSe]:TAE:ACTive? 14-39
[:SENSe]:TAU:OFFSet <integer>
[:SENSe]:TAU:OFFSet? 9-29
[:SENSe]:TGENerator:POWStats[:STATe] OFF|ON|0|1
[:SENSe]:TGENerator:POWStats[:STATe]? 5-10
[:SENSe]:TGENerator:TX:NORMalize[:STATe] OFF|ON|0|1
List of All Commands

[:SENSe]:TGENerator:TX:NORMalize[:STATe]? 5-10
[:SENSe]:TGENerator:TX[:SCALe]:PDIVision <rel ampl>
[:SENSe]:TGENerator:TX[:SCALe]:PDIVision? 5-11
[:SENSe]:TGENerator:TX[:SCALe]:REference
 :AMPLitude <amplitude>
[:SENSe]:TGENerator:TX[:SCALe]:REFerence:AMPLitude? 5-11
[:SENSe]:TGENerator:TX[:SCALe]:REFerence:POSITion <integer>
[:SENSe]:TGENerator:TX[:SCALe]:REFerence:POSITion? 5-12
[:SENSe]:TGENerator:TX[:SCALe]:RLEVel:OFFSet <rel ampl>
[:SENSe]:TGENerator:TX[:SCALe]:RLEVel:OFFSet? 5-12
[:SENSe]:TGENerator:TXStats[:STATe] OFF|ON|0|1
[:SENSe]:TGENerator:TXStats[:STATe]? 5-13
[:SENSe]:TRIGger NOTRig|GPS|EXT
[:SENSe]:TRIGger? 9-30
[:SENSe]:TRIGger NOTRIGger|EXTernal
[:SENSe]:TRIGger? 14-39
[:SENSe]:ULSWitchpoint 0-6
[:SENSe]:ULSWitchpoint? 9-30
[:SENSe]:WCODe 64|128
[:SENSe]:WCODe? 6-31
[:SENSe]:WCODe 64|128
[:SENSe]:WCODe? 7-34
[:SENSe]:[OTA]:MAPping:MEASurement SSSPower|RSRP|RSRQ|SINR
[:SENSe]:[OTA]:MAPping:MEASurement? 13-34
[:SENSe]:[OTA]:MAPping:MEASurement SSSPower|RSRP|RSRQ|SINR
[:SENSe]:[OTA]:MAPping:MEASurement? 14-34
[:SENSe]:[OTA]:MAPping:POInts:DELete 13-36
[:SENSe]:[OTA]:MAPping:POInts:DELete 14-36
[:SENSe]:[OTA]:MAPping:RECall:MAP <filename> 13-36
[:SENSe]:[OTA]:MAPping:RECall:MAP <filename> 14-36
[:SENSe]:[OTA]:MAPping:RECall:MAP:DEFAult 13-36
[:SENSe]:[OTA]:MAPping:RECall:MAP:DEFAult 14-36
[:SENSe]:[OTA]:MAPping:REPeat:DISTance <millimeters>
[:SENSe]:[OTA]:MAPping:REPeat:DISTance? 13-37
[:SENSe]:[OTA]:MAPping:REPeat:DISTance <millimeters>
[:SENSe]:[OTA]:MAPping:REPeat:DISTance? 14-37
[:SENSe]:[OTA]:MAPping:REPeat:TIMe <microseconds>
[:SENSe]:[OTA]:MAPping:REPeat:TIMe? 13-37
[:SENSe]:[OTA]:MAPping:REPeat:TIMe <microseconds>
[:SENSe]:[OTA]:MAPping:REPeat:TIMe? 14-37
[:SENSe]:[OTA]:MAPping:REPeat:TYPe TIMe|DISTance
[:SENSe]:[OTA]:MAPping:REPeat:TYPe? 13-36
[:SENSe]:[OTA]:MAPping:REPeat:TYPe|DISTance

D-28 PN: 10580-00341 Rev. J MS2720T PM
[:SENSe][:OTA]:MAPping:REPeat:TYPe? .. 14-36
[:SENSe][:OTA]:MAPping:RSRP:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRP:THRESHold? ... 13-35
[:SENSe][:OTA]:MAPping:RSRP:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRP:THRESHold? ... 14-35
[:SENSe][:OTA]:MAPping:RSRQ:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRQ:THRESHold? ... 13-35
[:SENSe][:OTA]:MAPping:RSRQ:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:RSRQ:THRESHold? ... 14-35
[:SENSe][:OTA]:MAPping:SINR:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SINR:THRESHold? ... 13-35
[:SENSe][:OTA]:MAPping:SINR:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SINR:THRESHold? ... 14-35
[:SENSe][:OTA]:MAPping:SSSPower:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SSSPower:THRESHold? 13-35
[:SENSe][:OTA]:MAPping:SSSPower:THRESHold “xx.x,xx.x,xx.x,xx.x,xx.x”
[:SENSe][:OTA]:MAPping:SSSPower:THRESHold? 14-35
[:SENSe][:OTA]:SORTby CELLid|GROUPid|SECTORid|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby? .. 13-37
[:SENSe][:OTA]:SORTby CELLid|GROUPid|SECTORid|SSSPower|RSRP|RSRQ|SINR
[:SENSe][:OTA]:SORTby? .. 14-37
MMEM:DIR? ... 3-5
Index

A

ABORt subsystem
CDMA 6-1
EVDO 7-1
GSM 10-1
LTE 13-1
SPA 4-1
TDLTE 14-1
TDSCDMA 9-1
WCDMA 8-1
WiMAX F 11-1
WiMAX M 12-1
About this Manual 1-1

C

cables
Ethernet 1-3
USB 1-4
CALCulate subsystem
AM/FM/PM 15-1
CDMA 6-2
EVDO 7-2
LTE 13-2
SPA 4-2
TDLTE 14-2
WCDMA 8-2
CONFigure subsystem
CDMA 6-3
EVDO 7-3
GSM 10-2
LTE 13-6
SPA 4-24
TDLTE 14-6
TDSCDMA 9-2
TG 5-2
WCDMA 8-4
WiMAX F 11-2
WiMAX M 12-2

D
default gateway 1-2
DHCP
for LAN 1-3

E

Ethernet
address 1-2
cable 1-3
enabling the port 1-4
LAN address 1-3
setup 1-2

F

FETCh subsystem
CDMA 6-6
EVDO 7-6
GSM 10-6
LTE 13-10
SPA 4-28
TDLTE 14-10
TDSCDMA 9-5
TG 5-3
WCDMA 8-8
WiMAX F 11-7
WiMAX M 12-7
FORMat subsystem
CDMA 6-9
EVDO 7-11
GSM 10-9
LTE 13-15
SPA 4-30
TDLTE 14-15
TDSCDMA 9-8
WCDMA 8-20
WiMAX F 11-10
WiMAX M 12-10

G
gateway, IP address 1-3
GENerator subsystem 5-4
I
INITiate subsystem
- CDMA: 6-10
- EVDO: 7-12
- GSM: 10-10
- LTE: 13-16
- SPA: 4-31
- TDLTE: 14-16
- TDSCDMA: 9-9
- TG: 5-6
- WCDMA: 8-21
- WiMAX F: 11-11
- WiMAX M: 12-11

INSTrument subsystem
- 3-2

IP address setting
- 1-2

LAN connections
- 1-3

M
MEASure subsystem
- CDMA: 6-11
- EVDO: 7-13
- GSM: 10-11
- LTE: 13-17
- SPA: 4-34
- TDLTE: 14-17
- TDSCDMA: 9-10
- TG: 5-7
- WCDMA: 8-22
- WiMAX F: 11-12
- WiMAX M: 12-12

MEMory subsystem
- 3-4

MMEEMory subsystem
- SPA: 4-38
- WCDMA: 8-36

R
READ subsystem
- CDMA: 6-16
- EVDO: 7-20
- GSM: 10-15
- LTE: 13-23
- SPA: 4-39
- TDLTE: 14-22
- TDSCDMA: 9-16
- TG: 5-8
- WCDMA: 8-37
- WiMAX F: 11-17
- WiMAX M: 12-17

RJ45 connector
- 1-3

S
SENSe subsystem
- CDMA: 6-25
- EVDO: 7-28
- GSM: 10-19
- LTE: 13-29
- SPA: 4-51
- TDLTE: 14-29
- TDSCDMA: 9-24
- TG: 5-9
- WCDMA: 8-48
- WiMAX F: 11-22
- WiMAX M: 12-23

setup
- Ethernet: 1-2
- TCP/IP: 1-2
- USB: 1-4

STATus subsystem, AllModes
- 3-13

subnet mask
- 1-2

subnet mask, IP address
- 1-3
<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMat, SPA</td>
<td>4-30</td>
</tr>
<tr>
<td>FORMat, TDLTE</td>
<td>14-15</td>
</tr>
<tr>
<td>FORMat, TDSCDMA</td>
<td>9-8</td>
</tr>
<tr>
<td>FORMat, WCDMA</td>
<td>8-20</td>
</tr>
<tr>
<td>FORMat, WiMAX F</td>
<td>11-10</td>
</tr>
<tr>
<td>FORMat, WiMAX M</td>
<td>12-10</td>
</tr>
<tr>
<td>GENerator, TG</td>
<td>5-4</td>
</tr>
<tr>
<td>INITiate, CDMA</td>
<td>6-10</td>
</tr>
<tr>
<td>INITiate, EVDO</td>
<td>7-12</td>
</tr>
<tr>
<td>INITiate, GSM</td>
<td>10-10</td>
</tr>
<tr>
<td>INITiate, LTE</td>
<td>13-16</td>
</tr>
<tr>
<td>INITiate, SPA</td>
<td>4-31</td>
</tr>
<tr>
<td>INITiate, TDLTE</td>
<td>14-16</td>
</tr>
<tr>
<td>INITiate, TDSCDMA</td>
<td>9-9</td>
</tr>
<tr>
<td>INITiate, TG</td>
<td>5-6</td>
</tr>
<tr>
<td>INITiate, WCDMA</td>
<td>8-21</td>
</tr>
<tr>
<td>INITiate, WiMAX F</td>
<td>11-11</td>
</tr>
<tr>
<td>INITiate, WiMAX M</td>
<td>12-11</td>
</tr>
<tr>
<td>INSTRument, AllModes</td>
<td>3-2</td>
</tr>
<tr>
<td>MEASURE, CDMA</td>
<td>6-11</td>
</tr>
<tr>
<td>MEASURE, GSM</td>
<td>10-11</td>
</tr>
<tr>
<td>MEASURE, LTE</td>
<td>13-17</td>
</tr>
<tr>
<td>MEASURE, SPA</td>
<td>4-34</td>
</tr>
<tr>
<td>MEASURE, TDLTE</td>
<td>14-17</td>
</tr>
<tr>
<td>MEASURE, TDSCDMA</td>
<td>9-10</td>
</tr>
<tr>
<td>MEASURE, TG</td>
<td>5-7</td>
</tr>
<tr>
<td>MEASURE, WCDMA</td>
<td>8-22</td>
</tr>
<tr>
<td>MEASURE, WiMAX F</td>
<td>11-12</td>
</tr>
<tr>
<td>MEASURE, WiMAX M</td>
<td>12-12</td>
</tr>
<tr>
<td>MMEMory, AllModes</td>
<td>3-4</td>
</tr>
<tr>
<td>MMEMory, SPA</td>
<td>4-38</td>
</tr>
<tr>
<td>MMEMory, WCDMA</td>
<td>8-36</td>
</tr>
<tr>
<td>READ, CDMA</td>
<td>6-16</td>
</tr>
<tr>
<td>READ, EVDO</td>
<td>7-20</td>
</tr>
<tr>
<td>READ, GSM</td>
<td>10-15</td>
</tr>
<tr>
<td>READ, LTE</td>
<td>13-23</td>
</tr>
<tr>
<td>READ, SPA</td>
<td>4-39</td>
</tr>
<tr>
<td>READ, TDLTE</td>
<td>14-22</td>
</tr>
<tr>
<td>READ, TDSCDMA</td>
<td>9-16</td>
</tr>
<tr>
<td>READ, TG</td>
<td>5-8</td>
</tr>
<tr>
<td>READ, WCDMA</td>
<td>8-37</td>
</tr>
<tr>
<td>READ, WiMAX F</td>
<td>11-17</td>
</tr>
<tr>
<td>READ, WiMAX M</td>
<td>12-17</td>
</tr>
<tr>
<td>SENSE, CDMA</td>
<td>6-25</td>
</tr>
<tr>
<td>SENSE, EVDO</td>
<td>7-28</td>
</tr>
<tr>
<td>SENSE, GSM</td>
<td>10-19</td>
</tr>
<tr>
<td>SENSE, LTE</td>
<td>13-29</td>
</tr>
<tr>
<td>SENSE, SPA</td>
<td>4-51</td>
</tr>
<tr>
<td>SENSE, TDLTE</td>
<td>14-29</td>
</tr>
<tr>
<td>SENSE, TDSCDMA</td>
<td>9-24</td>
</tr>
<tr>
<td>SENSE, TG</td>
<td>5-9</td>
</tr>
<tr>
<td>SENSE, WCDMA</td>
<td>8-48</td>
</tr>
<tr>
<td>SENSE, WiMAX F</td>
<td>11-22</td>
</tr>
<tr>
<td>SENSE, WiMAX M</td>
<td>12-23</td>
</tr>
<tr>
<td>STATus, AllModes</td>
<td>3-13</td>
</tr>
<tr>
<td>SYSTem, AllModes</td>
<td>3-14</td>
</tr>
<tr>
<td>TRACe, CDMA</td>
<td>6-20</td>
</tr>
<tr>
<td>TRACe, EVDO</td>
<td>7-23</td>
</tr>
<tr>
<td>TRACe, GSM</td>
<td>10-18</td>
</tr>
<tr>
<td>TRACe, SPA</td>
<td>4-41</td>
</tr>
<tr>
<td>TRACe, TDSCDMA</td>
<td>9-20</td>
</tr>
<tr>
<td>TRACe, WCDMA</td>
<td>8-46</td>
</tr>
<tr>
<td>TRACe, WiMAX F</td>
<td>11-20</td>
</tr>
<tr>
<td>TRACe, WiMAX M</td>
<td>12-21</td>
</tr>
<tr>
<td>TRIGger, CDMA</td>
<td>6-23</td>
</tr>
<tr>
<td>TRIGger, EVDO</td>
<td>7-26</td>
</tr>
<tr>
<td>TRIGger, SPA</td>
<td>4-48</td>
</tr>
<tr>
<td>TRIGger, TDLTE</td>
<td>14-27</td>
</tr>
<tr>
<td>UNIT, CDMA</td>
<td>6-24</td>
</tr>
<tr>
<td>UNIT, EVDO</td>
<td>7-27</td>
</tr>
<tr>
<td>UNIT, LTE</td>
<td>13-28</td>
</tr>
<tr>
<td>UNIT, SPA</td>
<td>4-50</td>
</tr>
<tr>
<td>UNIT, TDLTE</td>
<td>14-28</td>
</tr>
<tr>
<td>UNIT, TDSCDMA</td>
<td>9-23</td>
</tr>
</tbody>
</table>

subsystem ABORT, CDMA 6-1
subsystem ABORT, EVDO 7-1
subsystem ABORT, GSM 10-1
subsystem ABORT, LTE 13-1
subsystem ABORT, SPA 4-1
subsystem ABORT, TDLTE 14-1
subsystem ABORT, TDSCDMA 9-1
subsystem ABORT, WCDMA 8-1
subsystem ABORT, WiMAX F 11-1
subsystem ABORT, WiMAX M 12-1
subsystem CALCulate, AM/FM/PM 15-1
subsystem CALCulate, CDMA 6-2
subsystem CALCulate, EVDO 7-2
subsystem CALCulate, LTE 13-2
subsystem CALCulate, SPA 4-2
subsystem CALCulate, TDLTE 14-2
subsystem CALCulate, TDSCDMA 9-2
subsystem CALCulate, WCDMA 8-2
subsystem CONFigure, CDMA 6-3
subsystem CONFigure, EVDO 7-3
subsystem CONFigure, GSM 10-2
subsystem CONFigure, LTE 13-6
subsystem CONFigure, SPA 4-24
subsystem CONFigure, TDLTE 14-6
subsystem CONFigure, TDSCDMA 9-2
subsystem CONFigure, TG 5-2
subsystem CONFIGure, WCDMA	8-4
subsystem CONFIGure, WiMAX F	11-2
subsystem CONFIGure, WiMAX M	12-2
subsystem DISPlay, CDMA	6-5
subsystem DISPlay, EVDO	7-5
subsystem DISPlay, GSM	10-5
subsystem DISPlay, LTE	13-9
subsystem DISPlay, SPA	4-26
subsystem DISPlay, TDLTE	14-9
subsystem DISPlay, TDSCDMA	8-7
subsystem DISPlay, WiMAX F	11-5
subsystem DISPlay, WiMAX M	12-5
subsystem FETCH, CDMA	6-6
subsystem FETCH, EVDO	7-6
subsystem FETCH, GSM	10-6
subsystem FETCH, LTE	13-10
subsystem FETCH, SPA	4-28
subsystem FETCH, TDLTE	14-10
subsystem FETCH, TDSCDMA	9-5
subsystem FETCH, TG	5-3
subsystem FETCH, WCDMA	8-8
subsystem FETCH, WiMAX F	11-7
subsystem FETCH, WiMAX M	12-7
subsystem FORMat, CDMA	6-9
subsystem FORMat, EVDO	7-11
subsystem FORMat, GSM	10-9
subsystem FORMat, LTE	13-15
SYSTem subsystem, AllModes	3-14

TCP/IP setup 1-2

TCP/IP setup

<table>
<thead>
<tr>
<th>subsystem TRACe</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA</td>
</tr>
<tr>
<td>EVDO</td>
</tr>
<tr>
<td>GSM</td>
</tr>
<tr>
<td>SPA</td>
</tr>
<tr>
<td>TDSCDMA</td>
</tr>
<tr>
<td>WCDMA</td>
</tr>
<tr>
<td>WiMAX F</td>
</tr>
<tr>
<td>WiMAX M</td>
</tr>
</tbody>
</table>

TCP/IP setup

<table>
<thead>
<tr>
<th>subsystem TRIGGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA</td>
</tr>
<tr>
<td>EVDO</td>
</tr>
<tr>
<td>SPA</td>
</tr>
<tr>
<td>TDLTE</td>
</tr>
</tbody>
</table>

TCP/IP setup

<table>
<thead>
<tr>
<th>subsystem UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA</td>
</tr>
<tr>
<td>EVDO</td>
</tr>
<tr>
<td>LTE</td>
</tr>
<tr>
<td>SPA</td>
</tr>
<tr>
<td>TDLTE</td>
</tr>
<tr>
<td>TDSCDMA</td>
</tr>
</tbody>
</table>

TCP/IP setup

<table>
<thead>
<tr>
<th>subsystem USB</th>
</tr>
</thead>
<tbody>
<tr>
<td>cables</td>
</tr>
<tr>
<td>setup</td>
</tr>
</tbody>
</table>

TCP/IP setup