Troubleshooting Hints

These two tables provide guidance from the first indication of a fault, a poor Key Performance Indicator (KPI), to the BTS or Spectrum Master test, and finally, to the field replaceable unit. To test a BTS Over-the-Air (OTA) it is necessary to find a location with good pilot dominance and low multipath. The BTS Master pilot dominance and multi-path measurements are ideal for this task. OTA testing requires a pilot dominance higher than 10 dB and a multipath number less than 0.3 dB.

Locating Over-the-Air Test Spots

To test a BTS Over-the-Air (OTA) it is necessary to find a location with good pilot dominance and low multipath. The BTS Master pilot dominance and multi-path measurements are ideal for this task. OTA testing requires a pilot dominance higher than 10 dB and a multipath number less than 0.3 dB.

Find location with high pilot dominance, low multipath.

Troubleshooting Hints

<table>
<thead>
<tr>
<th>Key Performance Indicators vs. Test</th>
<th>Pilot Pwr</th>
<th>ACPR</th>
<th>SEM</th>
<th>Rho</th>
<th>RMS Phase Error</th>
<th>Freq Error</th>
<th>Code Noise Floor</th>
<th>Rx Noise Floor</th>
<th>E/I</th>
<th>OTA Pilot Power</th>
<th>Excess PN Codes</th>
<th>Multi-path</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Blocking/Denial</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power shortage</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Code Shortage</td>
<td>x xx x</td>
<td></td>
</tr>
<tr>
<td>UL Interference</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Call Drop</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Radio Link Timeout</td>
<td>x x x x x</td>
<td></td>
</tr>
<tr>
<td>UL Interference</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DL Interference</td>
<td>x x x x x</td>
<td></td>
</tr>
</tbody>
</table>

OTA Start

- Use BTS Over-the-Air (OTA) tests to spot-check a transmitter's coverage and signal quality. Use the Direct Connect tests to check transmitter power and when the OTA test results are ambiguous.

PN Code overlap: is checked by the pilot scanner. Too many strong pilots create pilot pollution.


Pilot Dominance: indicates signal source distance.

Guidelines:

- OTA Code overlap: Three or fewer codes, within 15 dB of the dominant code, over 95% of the coverage area.
- OTA Pilot Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Code overlap: Higher than 9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
- OTA Power: Higher than -93 dBm over 95% of the coverage area.
- OTA Code overlap: Higher than -9 dB over 95% of the coverage area.
Single Path Coverage Checks

Multipath measurements show how many, how long, and how strong the various radio signal paths are, for the selected PN Code. Multipath signals outside tolerances set by the cell phone or other UE devices become interference.

Guidelines: Limits are set by User Equipment (UE) needs. Multipath signals within -15 dB of the strongest signal should be within the time range the UE can deal with and be numerically equal to, or fewer than, the UE’s fingers.

OTA signal quality testing requires a multipath power less than 0.3 dBm

Consequences: The primary issue is co-channel interference leading to dropped calls and low data rates.

Common Faults: Building shadows, antenna tilt, and repeaters.

RX Noise Floor

When looking for uplink interference a good first step is to check the RX Noise Floor. To do this, hookup to a RX test port, or the RX antenna, for the affected sector and make measurements when calls are not up.

Look first for a high received RX noise floor by using the calma2000 RF channel power measurement on the uplink channel. Also, use the spectrum analyzer and a RX test port, if present, to check for signals outside the RX channel but still passed through the RX filter. These sort of signals can cause receiver desense, a reduction in receiver sensitivity that effectively lowers the cell’s receive coverage.

RX Noise Floor (continued)

Guideline: Less than approximately –90 dBm received noise floor when no calls are up.

Consequences: Call blocking, denial of services, call drops, low data rate, and low performance.

Common Faults: Receiver de-sense from co-channel interference, in-band interference, or passive intermodulation (PIM).

Intermodulation products can cause interference and in turn may be caused by a combination of strong signals and corruption. This corrosion can be in the antenna, connectors, or nearby rusty metal. This issue is often called the rusty bolt syndrome.

Cell Size

BTS Power and Pilot Power

Pilot & MAC Power sets cell size. A 1.5 dB change in power levels means approximately 15% change in coverage area. This can be an in-service measurement.

Channel Power is measured using a test signal. For the best accuracy, use the High Accuracy Power Meter (+/-0.16 dB) when setting power with a test signal.

Guidelines: Pilot & MAC Power as well as Channel Power are typically set to within +/- 1/2 dB of specification values.

The standard allows BTS power to be as far off as +/- 2.0 dB and +/- 4.0 dB from specification during extreme environmental conditions but this is not ideal.

Consequences: High values will create pilot pollution. High or low values will cause dead spots/dropped calls and cell loading imbalances/blocked calls.

Common Faults: The first thing to check is the MCPA calibration. Next, look for large VSWR faults and damaged connectors.

Out-of-Channel Emissions

Spectral Emission Mask (SEM)

Adjacent Channel Power Ratio (ACPR)

Multi-Channel ACPR

SEM is a way to check out-of-channel spurious emissions near the carrier. These spurious emissions both indicate distortion in the signal and can create interference with carriers in the adjacent channels.

This test is required by a number of regulatory agencies around the world.

Guidelines: Must be below the mask:

- Power levels matter so be sure to enter the external attenuation value for the BTS Master and use full power on the BTS.

For the most accurate testing, use a test signal as defined in the standard.

Consequences: Faults lead to interference and thus, lower data rates, for adjacent carriers. Faults also may lead to legal liability and low in-channel signal quality.

Common Faults: Check amplifier output filtering first. Also look for intermodulation distortion, spectral re-growth and ACPR faults.

ACPR measures how much of the carrier gets into neighboring RF channels. ACPR, and multi-channel ACPR, check the closest (adjacent) and second closest (alternate) RF channels for single and multicarrier signals.

Guidelines: Typical values are -45 dBc for adjacent and -62 dBc for alternate channels.

Common Faults: Rho faults can be caused by distortion in the channel cards, power amplifier, filter, or antenna system.

Consequences: Rho faults lead to interference for neighboring carriers. This is also an indication of low signal quality and low capacity, which can lead to blocked calls.

Common Faults: First, check the Tx filter, then the MCPA and the channel cards. Antenna system corrosion will also affect ACPR.

Signal Quality Tests

Rho

Frequency Error

Rho is a measure of modulation quality. A Rho of 1.000 indicates a perfect signal.

Rho Pilot, Rho Mac, and Rho Data are the primary signal quality tests for EVDO base stations.

Guideline: Rho Pilot is available on this screen. The others are on the screen to the right.

Guidelines: Rho Pilot should be 0.97 with a test signal that includes data, or 0.954 if the test signal does not include data.

Rho Mac should be 0.912 when transmitting a test signal.

Rho Data should be 0.97 for all test signal data rates.

OTA values will likely be lower.

Consequences: Dropped calls, low signal quality, low data rate, low sector capacity, and blocked calls.

Common Faults: A high noise floor can be caused by cross talk in the channel cards, co-channel interference if OTA, and low Rho.

RMS Phase Error is a measure of signal distortion caused by frequency instability. Any changes in the reference frequency or the radio’s internal local oscillators will cause problems with phase error.

Guideline: 3 degrees or less is typical, with a test signal and attached to the BTS.

Consequences: Calls will drop when mobiles travel at higher speed. In some cases, cell phones cannot hand off into, or out of the cell, creating island cells.

Common Faults: Phase instability originates with the frequency reference and local oscillators in the channel cards and upconverters. Stray FM signals can also cause phase problems.