User Guide

3659 0.8 mm Calibration/Verification Kit and 2300-580-R System Performance Verification Software

VectorStar™ ME7838D Modular Broadband/Millimeter-Wave VNA System with 3739C BB Test Set and MA25300A mm-Wave Modules

3659 0.8 mm Calibration and Verification Kit
SOFTWARE LICENSE AGREEMENT

1. GRANT OF LICENSE. This License Agreement permits you to use enclosed software program (the “Software”) on a computer. The SOFTWARE is in use on a computer when it is loaded into temporary memory (i.e. RAM), installed into permanent memory (i.e. hard disk, CD-ROM, or other storage device), or installed/loaded into any appropriate ACUS product. All rights not expressly granted are reserved to ACUS. This Grant of License is not subject to transfer or assignment by Licensee.

2. DISTRIBUTION OF SOFTWARE. You may make copies of the SOFTWARE as you wish; give exact copies of the original SOFTWARE to anyone; and distribute the SOFTWARE in its unmodified form via electronic means. You may not charge any fees for the copy or use of the SOFTWARE itself. You must not represent in any way that you are selling the SOFTWARE itself. Your distribution of the SOFTWARE will not entitle you to any compensation from ACUS. You must distribute a copy of this SOFTWARE LICENSE AGREEMENT with any copy of the SOFTWARE and anyone to whom you distribute the SOFTWARE is subject to this SOFTWARE LICENSE AGREEMENT.

3. OTHER RESTRICTIONS. You may not reverse engineer, decompile, or disassemble the SOFTWARE, nor may you publish the SOFTWARE on the internet, or load the SOFTWARE onto your company’s network.

4. NO WARRANTY. ACUS EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE SOFTWARE. THE SOFTWARE AND ANY RELATED DOCUMENTATION IS PROVIDED ‘AS IS’ WITHOUT WARRANTY OF ANY KIND. ACUS DOES NOT WARRANT THAT THE SOFTWARE WILL RUN PROPERLY ON ALL HARDWARE, THAT THE SOFTWARE WILL MEET LICENSEES REQUIREMENTS, OR THAT ALL SOFTWARE ERRORS WILL BE CORRECTED. THE WARRANTIES ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, WHETHER EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ACUS SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, DATA, OR USE, INCURRED BY LICENSEE, REGARDLESS OF WHETHER IN TORT OR CONTRACT, AND REGARDLESS OF WHETHER LICENSEE HAS ADVISED ACUS OF THE POSSIBILITY OF SUCH LOSSES.

5. EXPORT CONTROL. Licensee shall not export or re-export software technical data, goods, or information licensed by ACUS directly or through others, to the proscribed countries, or foreign nationals of those countries, and/or denied parties, in violation of any applicable U.S., U.K., Danish, or Japanese export control laws and regulations or any other applicable export control laws promulgated and administered by the government of any country having jurisdiction over the parties or transaction.

6. TERMINATION. Any breach of the terms or conditions of this Grant of License will result in termination of the license granted hereunder. Upon termination of the license granted hereunder, Licensee shall return all copies of the software to ACUS, or certify their destruction in writing.

7. GOVERNING LAW. This agreement, and all of the rights hereunder, shall be interpreted and determined by the laws of the State of California, and all disputes shall be subject to the jurisdiction of the Courts within the State of California.
Table of Contents

Chapter 1—3659 0.8 mm Calibration/Verification Kit Overview
1-1 Introduction ... 1-1
1-2 Description ... 1-1
1-3 Required Equipment ... 1-1
 GPIB Controller PC Operating System 1-1
 Verification Software Overview 1-2
 Data Output .. 1-2
 GPIB Interface Card and Cable 1-2
 Printer ... 1-2
1-4 Model 3659 0.8 mm Calibration/Verification Kit 1-3
1-5 Related Documentation .. 1-4
 Product Information, Compliance, and Safety 1-4

Chapter 2—Using the 2300-580-R Software with VectorStar ME7838D
2-1 Introduction ... 2-1
2-2 Required Equipment ... 2-1
 Required VectorStar ME7838D Broadband System, 70 kHz to 145 GHz Instruments and Components .. 2-1
2-3 Configuring the Hardware ... 2-1
2-4 0.8 mm Verification Application Installation 2-2
2-5 Running the Verification Software 2-5
 Procedure .. 2-5
 Enter Port 1 BB/mm-Wave Module Information 2-7
 Enter Port 2 BB/mm-Wave Module Information 2-8
 Enter Test Set Information ... 2-9
2-6 Application Interface – Setup Menu Tab 2-10
 Procedure .. 2-10
2-7 Low-Band Calibration .. 2-18
 Procedure .. 2-18
2-8 High-Band Calibration .. 2-21
 Procedure .. 2-21
Table of Contents (Continued)

2-9 Application Interface – Main Menu Tab ... 2-24
 Auto Scale Display Button .. 2-25
 Default Display Scale Button .. 2-26
 Go To Remote Control Button ... 2-26
 Go To Local Control Button .. 2-26
 Restart Button .. 2-26
 Quit Button ... 2-27
 About .. 2-27
 Run All Tests ... 2-27
 Repeat Last Cal .. 2-27
 Save Data ... 2-27
 Matched Thru. .. 2-27
 Matched Thru SN ... 2-27
 Mismatched Thru ... 2-27
 Mismatched Thru SN ... 2-27

2-10 Application Interface – Serial Number Tab Functions 2-28

2-11 Matched Thru Tests .. 2-29
 Procedure ... 2-29

2-12 Mismatched Thru Tests .. 2-31
 Procedure ... 2-31

2-13 Saving Verification Data .. 2-34

2-14 Restart for Alternate Frequency Band .. 2-34
 Procedure ... 2-34

2-15 Troubleshooting .. 2-35
 Difficulty Running the Program ... 2-35
 Difficulty Meeting System Specifications ... 2-35

Chapter 3—GPIB Card and Instrument Settings
3-1 Introduction ... 3-1
3-2 GPIB Board Settings .. 3-1
3-3 Instrument Settings ... 3-2

Chapter 4—Maintenance
4-1 Introduction ... 4-1
 Common Causes of Connector Failure .. 4-1
 Coaxial Connector Care .. 4-1
4-2 Visual Inspection .. 4-2
 Outer Conductor and Thread Inspection ... 4-2
 Center Conductor Inspection .. 4-3
4-3 Connector Cleaning ... 4-4
 Required Cleaning Items ... 4-4
 Procedure ... 4-5
Making a Connection ... 4-6
Before Connection ... 4-6
Initial Connection ... 4-6
Torquing the Connection ... 4-8
Torque Specifications and Tools .. 4-9
Disconnection .. 4-10
Connector Types and Cross-Mating Compatibility 4-10
Chapter 1 — 3659 0.8 mm Calibration/Verification Kit Overview

1-1 Introduction

This manual provides description and maintenance instructions for the Model 3659 0.8 mm Calibration and Verification Kit and describes the use of the Anritsu 2300-580-R Performance Verification Software (PVS) for the VectorStar ME7838D Modular BB/mm-Wave VNA Measurement System.

This chapter provides an illustration and description of the kit components. General connector care instructions applicable to all calibration kits are provided in Chapter 4, “Maintenance”.

Operation and use of the 3659 0.8 mm Calibration/Verification Kit is documented in procedures in the VectorStar Operation Manual and Measurement Guide.

| Note | The components in this kit are of the highest quality and accuracy. All components are NIST (National Institute of Standards Technology) traceable. |

1-2 Description

The 0.8 mm calibration kit allows you to calibrate the performance of the following systems:

- VectorStar ME7838D Series Modular BB/mm-VNA System

The components in this kit provide the basis for issuing a calibration certification label.

1-3 Required Equipment

This section describes the recommended equipment for installing and running the 2300-580-R software.

GPIB Controller PC Operating System

Make sure that the following minimum requirements are met before installing and using the software:

- Intel® Pentium® III with 1 GB RAM or Intel® Pentium® IV with 512 MB RAM, or equivalent
 - Intel® Pentium® IV with 1 GB RAM recommended
- Windows XP SP2 or Windows 7
 - This application has not been tested on Microsoft® Windows Vista®.
- 20 MB hard-disk free space
- National Instruments® PCI-GPIB Controller and associated drivers installed
- Display resolution 1024 × 768
- USB Port

| Note | This program may not function on international versions of Microsoft Windows that use 4-byte character sets. |
Verification Software Overview

The Anritsu 2300-580-R Broadband Measurement System Performance Verification Software is provided on a USB memory device. The verification software provides for automating measurements of the test components contained in the Anritsu Model 3659 Calibration/Verification Kit.

The software compares the measurements of NIST traceable standards made with your instrument to the standard’s test data provided on the verification kit’s USB stick. This aids in determining if the measurement values are consistent with system specifications.

Data Output

The test data and results are output in the form of four files to a directory (X:\installed directory) on your computer’s hard drive. The default file names, depending on the type of test being performed, are:

- Matched Thru Low.dat
- Mismatched Thru Low.dat
- Matched Thru High.dat
- Mismatched Thru High.dat

This performance verification software allows you to rename these files using the default .dat extension. The tabular data in each file is given at discrete frequencies at 1 GHz intervals, along with separate start and stop frequencies if the start and stop frequencies do not fall on 1 GHz spacing. The test results can be viewed or printed from the Main Menu window.

GPIB Interface Card and Cable

Depending upon the Operating System and hardware used to perform the verification, there are different requirements for the GPIB hardware configurations. This software supports the following GPIB interfaces:

- National Instruments Model PCMCIA-GPIB (Driver Software Versions 1.2 and above)
- National Instruments Model PCI-GPIB (Driver Software Version 1.2 and above)

Regardless of which GPIB hardware and software is used, the GPIB card must be configured as “GPIB0.” You also need a GPIB cable to interface the PC to the broadband measurement system (Anritsu PN: 2100-2).

Printer

A printer is not required for operation because the verification results and data are stored in four files on the computer hard disk drive. These files are saved in ASCII format for easy viewing and printing at a later time.
1-4 Model 3659 0.8 mm Calibration/Verification Kit

The 3659 0.8 mm Calibration/Verification Kit is shown in Figure 1-1 below with the listed components.

<table>
<thead>
<tr>
<th>Callout Number</th>
<th>Component Name and Description</th>
<th>Anritsu Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male Broadband Termination</td>
<td>28.850</td>
</tr>
<tr>
<td>2</td>
<td>Male Open</td>
<td>24.850</td>
</tr>
<tr>
<td>3</td>
<td>Male Offset Short 3</td>
<td>23.850-3</td>
</tr>
<tr>
<td>4</td>
<td>Male Offset Short 2</td>
<td>23.850-2</td>
</tr>
<tr>
<td>5</td>
<td>Male Offset Short 1</td>
<td>23.850-1</td>
</tr>
<tr>
<td>6</td>
<td>Female Broadband Termination</td>
<td>28.8F50</td>
</tr>
<tr>
<td>7</td>
<td>Female Open</td>
<td>24.8F50</td>
</tr>
<tr>
<td>8</td>
<td>Female Offset Short 3</td>
<td>23.8F50-3</td>
</tr>
<tr>
<td>9</td>
<td>Female Offset Short 2</td>
<td>23.8F50-2</td>
</tr>
<tr>
<td>10</td>
<td>Female Offset Short 1</td>
<td>23.8F50-1</td>
</tr>
<tr>
<td>11</td>
<td>W1M-0.8F Adapter</td>
<td>33W.8F50</td>
</tr>
<tr>
<td>12</td>
<td>W1M-0.8M Adapter</td>
<td>33W.850</td>
</tr>
<tr>
<td>13</td>
<td>W1F-0.8F Adapter</td>
<td>33WF.8F50</td>
</tr>
<tr>
<td>14</td>
<td>W1F-0.8M Adapter</td>
<td>33WF.850</td>
</tr>
<tr>
<td>15</td>
<td>0.8 Female-Female Adapter</td>
<td>33.8F.8F50</td>
</tr>
</tbody>
</table>

Figure 1-1. 3659 0.8 mm Calibration/Verification Kit Components (1 of 2)
For more information on VNA systems, calibration/verification kits, and other supporting accessories, refer to the Anritsu web site: http://www.anritsu.com.

This and most other VectorStar manuals are available for download as a PDF file.

Product Information, Compliance, and Safety

Refer to the VectorStar Product Information, Compliance, and Safety (PICS) – 10100-00063 for applicable product information, compliance statements, and safety information, including links to applicable product web pages.
Chapter 2 — Using the 2300-580-R Software with VectorStar ME7838D

2-1 Introduction

This chapter describes the use of the Anritsu 2300-580-R Performance Verification Software (PVS) with the VectorStar ME7838D Modular BB/mm-Wave VNA Measurement System. The ME7838D is based on the VectorStar MS4647A/B Vector Network Analyzer running VectorStar for the MS4647B model Application Version 2.1.0 or higher and equipped with Option 08x or the MS4647A model Application Version 1.7.6 and equipped with Option 08x.

| Note | Anritsu does not support tests or verification processes for wafer probe equipment. Contact the vendor of the wafer probe equipment if such support is desired. |

2-2 Required Equipment

Required VectorStar ME7838D Broadband System, 70 kHz to 145 GHz Instruments and Components

The VectorStar ME7838D Broadband/Millimeter Wave Measurement System consists of:

- VectorStar MS4647A/B VNA, 70 kHz to 70 GHz, V Connectors, equipped with Option 08x
- 3739C Broadband Test Set
- Two (2) MA25300A Millimeter-Wave (mm-Wave) Modules, 70 GHz to 145 GHz.
- Necessary rear panel interconnect cables between the test set and the VNA.
- Necessary front panel interconnect cables between the test set and the VNA
- Necessary interconnect cables to the MA25300A mm-Wave Modules.

2-3 Configuring the Hardware

This section describes how the various system elements are interconnected and describes the preliminary steps required for operation of the verification software. See “Required VectorStar ME7838D Broadband System, 70 kHz to 145 GHz Instruments and Components” on page 2-1 above for a complete equipment list.

1. Ensure that the VNA system is set to “Broadband”.

2. To verify the setting, from the right side MAIN menu, select the broadband test set button:
 - MAIN | Application | APPLICATION | Rcvr Config | RCVR CONFIG | BB/mmWave (3738 Test Set) or BB/mmWave (3739 Test Set)

3. Select the BB test set.

4. Connect a GPIB cable between the PC Controller and the VNA Rear Panel GPIB port labeled IEEE 488.2 GPIB.

| Caution | Do not connect the cable to the VNA Rear Panel GPIB port labeled Dedicated GPIB. |
2-4 0.8 mm Verification Application Installation

Prior to installation of the 0.8 mm Application, the National Instruments GPIB card and drivers must be installed in the Windows PC.

This needs to be done only once per PC Controller. The software is contained on the Disk supplied with each Verification Kit.

Note: In order to correctly install the PVS application, the user (logged in) must have Administrative rights on the Windows PC Controller.

1. Prior to installation of the verification software, the National Instruments GPIB card and its drivers must be installed in the PC Controller.
2. Turn off all other running applications on the PC Controller.
3. Insert the USB drive into the PC Controller USB slot.
4. Open Windows Explorer, browse to the USB Drive, and double click on Startup.htm.
5. The Verification Software navigation page (Figure 2-1) should then appear.

6. On the navigation page, click the Install Anritsu 0.8 mm Verification Application Software link.
7. The first of several installation dialog boxes appears

Figure 2-1. PVS Installation and Documentation Screen
8. Two installation wizard setup dialog boxes appear in sequence. Click Next to proceed through each dialog box. The final dialog box shows an installation progress bar.

Figure 2-2. Installation Confirmation and Progress Dialog Boxes - Click Next on each
9. When the installation progress bar shows complete, click Next. The final Application Information dialog box appears. Click Next, and the Installation Complete dialog box appears.

Figure 2-3. Final Application Information and Installation Complete Dialog Boxes

10. The installer adds all required files and makes the necessary registry updates on the PC Controller. When done, the navigation page Figure 2-1 reappears.

11. If desired, open the User Guide (this document) and save and/or print a copy.

12. The PVS application is available from either the Start or Program menu of the PC Controller.
2-5 Running the Verification Software

After the VNA and PC have been configured as described above, you are ready to run the program and perform the calibration/verification. Make sure you have the following information available:

- Serial number of the 3659 0.8 mm Calibration/Verification Kit
- Serial number of the 3739C Broadband/Millimeter Wave Test Set
- Model number and serial number of the Port 1 BB/mm Module
- Model number and serial number of the Port 2 BB/mm Module

Procedure

1. With the equipment and software configured as described in “Configuring the Hardware” on page 2-1, turn on the computer and allow it to start Windows.

2. Locate the Anritsu 0.8 mm Verification icon (shown below) on the desktop and double-click it.

3. The program displays an About dialog box with version information. Click OK to continue.

4. The Test Operator Name dialog box appears. Enter a user name or other identification.

5. Click OK to continue. The program searches for the GPIB Board in the PC Controller that is set to GPIB Address 0 and displays a confirmation dialog.

6. Click Yes to continue. Click No to search for another GPIB Board.
7. If Yes was clicked, the program searches for a compatible VNA on the GPIB. When the VNA is found, a confirmation dialog box appears.

![Found Instrument Dialog](image)

Figure 2-6. Found Instrument Dialog

8. Click Yes to continue, or click No to search for another VNA.

9. If Yes is clicked above, the program searches for the BB/mm Modules and, when found, requests the model number and the serial number of the test set and each module.
Enter Port 1 BB/mm-Wave Module Information

Enter the Port 1 BB/mm-Wave Module model number and click OK.

10. Enter the Port 1 BB/mm-Wave Module serial number and click OK.

Figure 2-7. Anritsu 0.8 mm Verification Dialog - Port 1 BB/mm-Wave Module - Model Number

Figure 2-8. Anritsu 0.8 mm Verification Dialog - Port 1 BB/mm-Wave Module - Serial Number
Enter Port 2 BB/mm-Wave Module Information

11. Enter the Port 2 BB/mm-Wave Module model number and click OK.

![Anritsu 0.8 mm Verification Dialog - Port 2 BB/mm-Wave Module - Model Number](image)

Figure 2-9. Anritsu 0.8 mm Verification Dialog - Port 2 BB/mm-Wave Module - Model Number

12. Enter the Port 2 BB/mm-Wave Module serial number and click OK.

![Anritsu 0.8 mm Verification Dialog - Port 2 BB/mm-Wave Module - Serial Number](image)

Figure 2-10. Anritsu 0.8 mm Verification Dialog - Port 2 BB/mm-Wave Module - Serial Number
Enter Test Set Information

13. Enter the Test Set model number and click OK.

14. Enter the Test Set serial number found on the rear panel and click OK.

15. The program execution continues to the following Section 2-6, “Application Interface – Setup Menu Tab” on page 2-10.
2-6 Application Interface – Setup Menu Tab

The PVS Application Interface dialog box displays three tabs with configuration, control, and serial number information. Each tabbed dialog box contains buttons to control program operations as outlined in the following sections:

- The Setup Menu tab is described in this section.
- The Main Menu tab display is described in Section 2-9, “Application Interface – Main Menu Tab” on page 2-24.
- The Serial Number Info tab is described in Section 2-10, “Application Interface – Serial Number Tab Functions” on page 2-28.

Procedure

The following procedure continues the program setup from the previous section:

1. In the Calibration Kit Type area, select 0.8 mm Coax.
2. In the Serial Number (5 Digits) area, enter the serial number for the 3659 Calibration/Verification Kit. At least five (5) digits are required.
3. In the Load Cal-Kit Coefficients to VNA area, select Cal-Kit.

4. The Install Calibration-Kit Coefficients to the VNA dialog box appears.
5. Follow the dialog box instructions for installing the 3659 calibration coefficients into the VNA, then click OK.

![Install Calibration Kit Coefficients Dialog](image1.png)

Figure 2-14. Install Calibration Kit Coefficients Dialog

6. The VNA displays an acknowledgement dialog box when the file load is complete, indicating that 10 files were loaded. After the VNA has loaded the 10 Calibration coefficient files, select OK on the PC application. The application will then prompt you to remove the USB drive from the VNA and install the USB drive to the PC.

![Install USB Drive in PC Dialog](image2.png)

Figure 2-15. Install USB Drive in PC Dialog
7. The Application Interface dialog box reappears displaying the Setup Menu tab and Frequency Range area. In the Frequency Range area, select either the low range (40 MHz to 80 GHz) or the high range (80 GHz to 145 GHz). For purposes of this document, the low band is done first. The range that is not selected is calibrated during the Restart Procedure described in Section 2-14 “Restart for Alternate Frequency Band” on page 2-34. After selecting the frequency range, click OK. The Verification Kit Information area appears.
8. Select the 0.8 mm Coax type, and then the Verification Kit Serial Number (usually the same as the Calibration Kit). When the Serial Number is complete, the Locate USB Drive Kit Data on PC area appears.

Figure 2-17. ME7838D Application Interface - Setup Menu Tab
9. In the Locate USB Drive Kit Data on PC area, click the Go To USB Drive Locator button.

10. When the Auto Find Verification Kit Data dialog box first appears, the Verification Kit Data Path text field is blank. Click the Auto-Find USB Drive Verification Kit Data button. The application automatically locates the verification kit data on the USB drive and displays the path in the Verification Kit Data Path text field.

In rare instances, due to PC/USB configurations, the Auto-find function may not be able to locate the verification data on the USB drive. In this case, you may need to use the Manually Locate Verification Data Kit button. This utility allows you to manually select the path where the verification kit data is located. The data path will be on the USB drive shipped with the verification kit. On most PC’s, this will be the E, F, or G drive assignments. Navigate to the verification kit data in the file-path location shown in the example below (for this example, the USB drive was at E:\):

E:\0.8mm_Component_Verification_Data\0.8mm_3659_xxxxxx (where xxxxxx is the serial number of the Kit)
Within each data set on the USB, there is a file named EnableKit.dat. Double click that file to identify the file. This builds the path for the verification kit data and returns back to the Find Verification Kit Data on the removable USB drive. Once the data is found, the Verification Kit Data Path information appears in the text field. Click Next > to return to the Application Interface dialog box.

Figure 2-19. USB Drive Locator Dialog
11. Click Verify Files on USB Drive. The application checks the files on the USB drive to verify that all files are present and that each has the proper number of data points.
12. When all information is entered and you are ready to start, click the Setup Calibration of VNA button. A confirmation dialog box appears.

13. Click Yes to start. Click No to stop the calibration

14. The program execution continues in either Section 2-7, “Low-Band Calibration” on page 2-18 or Section 2-8, “High-Band Calibration” on page 2-21 depending on the previous band selection.
2-7 Low-Band Calibration

During this procedure, the low-band portion of the VNA is calibrated with a full 12-term SOLT (Short-Open-Load-Thru) calibration. In Section 2-8 “High-Band Calibration” on page 2-21, the high-band portion of the VNA is calibrated with a full 12-term SSST (Short-Short-Short-Thru) calibration.

Procedure

1. The 0.8 mm Verification Install Adapter dialog box appears.
 a. Install a F-F adapter on VNA Port 1 so that a Female connector is available to the operator.
 b. Install a F-M adapter on VNA Port 2 so that a Male connector is available to the operator.
 c. When ready to proceed, click OK.

2. The VNA Calibration: Step 1 of 5 dialog box appears.
 a. Connect the Male Cal Kit Isolation Device to VNA Port 1.
 b. Connect the Female Cal Kit Isolation Device to VNA Port 2.
 c. When ready to proceed, click OK.
3. The VNA measures the load device data, then the VNA Calibration: Step 2 of 5 dialog box appears.
 a. Connect the Male Cal Kit Broadband Load Device to VNA Port 1.
 b. Connect the Female Broadband Load Device to VNA Port 2.
 c. When ready to proceed, click OK.

4. The VNA measures the broadband load device data, then the VNA Calibration: Step 3 of 5 dialog box appears.
 a. Connect the Male Cal Kit Open to VNA Port 1.
 b. Connect the Female Short #1 (2.02 mm) to VNA Port 2.
 c. When ready to proceed, click OK.
5. The VNA measures the open/short device data, then the VNA Calibration: Step 4 of 5 dialog box appears.
 a. Connect the Male Short #1 (2.02 mm) to VNA Port 1.
 b. Connect the Female Open to VNA Port 2.
 c. When ready to proceed, click OK.

6. The VNA measures the short/open device data, then the VNA Calibration: Step 5 of 5 dialog box appears.
 a. Remove the Short and the Open from Port 1 and Port 2, respectively.
 b. Slide the two T-R modules towards each other and connect the VNA Port 1 (Female) to VNA Port 2 (Male) directly.
 c. When ready to proceed, click OK.

7. The program execution skips to Section 2-9 “Application Interface – Main Menu Tab” on page 2-24.
2-8 High-Band Calibration

During this procedure, the high-band portion of the VNA is calibrated with a full 12-term SSST (Short-Short-Short-Thru) calibration. In Section 2-7 “Low-Band Calibration” on page 2-18, the low-band portion of the VNA is calibrated with a full 12-term SOLT (Short-Open-Load-Thru) calibration.

Procedure

1. The 0.8 mm Verification Install Adapter dialog box appears.
 a. Install a F-F adapter on VNA Port 1 so that a Female connector is available to the operator.
 b. Install a F-M adapter on VNA Port 2 so that a Male connector is available to the operator.
 c. When ready to proceed, click OK.

2. When ready to proceed, click OK. The VNA Calibration: Step 1 of 5 dialog box appears.
 a. Connect the Male Cal Kit Isolation Device to VNA Port 1.
 b. Connect the Female Cal Kit Isolation Device to VNA Port 2.
 c. When ready to proceed, click OK.
3. The VNA Calibration: Step 2 of 5 dialog box appears.
 a. Connect the Male 2.02 mm Short #1 to VNA Port 1.
 b. Connect the Female 2.65 mm Short #2 to VNA Port 2.
 c. When ready to proceed, click OK.

4. The VNA Calibration: Step 3 of 5 dialog box appears.
 a. Connect the Male 2.65 mm Short #2 to VNA Port 1.
 b. Connect the Female 3.18 mm Short #3 to VNA Port 2.
 c. When ready to proceed, click OK.

5. The VNA Calibration: Step 4 of 5 dialog box appears.
 a. Connect the Male 3.18 mm Short #3 to VNA Port 1.
 b. Connect the Female 2.02 mm Short #1 to VNA Port 2.
 c. When ready to proceed, click OK.

6. The VNA Calibration: Step 5 of 5 dialog box appears.
a. Remove the offset Shorts from Port 1 and Port 2.
b. Slide the two T-R modules towards each other and connect the VNA Port 1 (Female) to VNA Port 2 (Male) directly.
c. When ready to proceed, click OK.

Figure 2-33. VNA Calibration: Step 5 of 5 Dialog

7. The program execution continues to Section 2-9 “Application Interface – Main Menu Tab” on page 2-24.
2-9 Application Interface – Main Menu Tab

The PVS Application Interface dialog box displays three tabs with configuration, control, and serial number information. Each tabbed dialog box contains buttons to control program operations as outlined in the following sections below.

- The Setup Menu tab is described in Section 2-6, “Application Interface – Setup Menu Tab” on page 2-10.
- The Main Menu tab display is described in the section immediately following and is shown below in Figure 2-34.
- The Serial Number tab is described in Section 2-10, “Application Interface – Serial Number Tab Functions” on page 2-28.

Whenever the program is executing a command from the main menu, the buttons are disabled, due to the event-driven nature of the Windows Operating System, until the current command is finished. While a command is being executed, informational messages are usually displayed on the screen to aid the operator in understanding which steps the application is performing.

![Anritsu ME7838D Verification](image)

Figure 2-34. ME7838D Application Interface - Main Menu Tab
Auto Scale Display Button

This command automatically scales each channel on the Anritsu Vector Network Analyzer. It is the same as using the VectorStar VNA menus to navigate to and select either the Auto Scale Active Channel or Auto Scale All Channels buttons. The full path to these buttons is:

- MAIN | Scale | SCALE | Auto Scale Active Channel
- MAIN | Scale | SCALE | Auto Scale All Channels

When the program detects the VNA has finished a sweep, the program auto-scales all four channels before continuing.

The VNA display during the calibration and verification tests is set to one Channel and four traces. Each trace display is a paired Log Mag (top) and Phase (bottom) display showing the following parameters:

- Upper left quadrant – S21 – Forward Transmission
- Upper right quadrant – S12 – Reverse Transmission
- Lower left quadrant – S11 – Forward Reflection
- Lower right quadrant – S22 – Reverse Reflection

See Figure 2-35 below for a display example. This is a typical display immediately after performing the High Band calibration. Please note this is for reference only and that the actual data on the VNA display may not be identical.

![Figure 2-35. MS4640A/B Series VNA Auto Scale Example Trace Display](image-url)
Default Display Scale Button
This command sets all four channels to a scale of 5 dB/Div for the Magnitude displays and to 40 Degrees for the Phase displays, and the reference value to 0. This allows you to see if the device is properly connected.

Go To Remote Control Button
This command is only available after you have clicked the Go to Local Control button. When you click this button, the program takes control of the VNA Display type and Display scale settings and sets them to the program default values.

Go To Local Control Button
This command allows you access to the front panel buttons while the program is running. The instrument is in Local Lock Out unless this button is pushed. This prevents an inadvertent front panel button actuation from affecting the proper operation of the program.

| Caution | Modifying the VNA settings (such as power level, bandwidth, averaging, etc.) could adversely affect the measurement results. This should only be used to view the data or for using markers. |

Restart Button
The Restart button command allows you to change the tested instrument, the frequency range, or the selected verification kit. Selecting Yes causes the program to return to the program initialization stage.

Usually, this button is used to test for second frequency band and program execution continues below in Section 2-14 “Restart for Alternate Frequency Band” on page 2-34 and the Choose The Restart Method dialog box appears.

Choose The Restart Method dialog box provides selectable options for a full restart, a restart with another verification kit, or a restart with another calibration kit.

Figure 2-36. Choose The Restart Method Dialog
Quit Button

Selecting Quit brings up a confirmation dialog box. Selecting Yes exits the program; selecting No returns you to the previous screen.

About

Displays version information, copyright, other legal notices, and company contact information.

Run All Tests

This command button runs both the Matched Thru and Mismatched Thru tests. Program execution starts with Section 2-11 “Matched Thru Tests” on page 2-29 and then continues with Section 2-12 “Mismatched Thru Tests” on page 2-31. When both tests are completed, program execution returns to the Main Menu tab shown above in Table 2-34 on page 2-24 above.

Repeat Last Cal

This command button re-calibrates the VNA according to the CURRENT calibration. This provides a way to recalibrate the VNA without having to reset the program parameters in case the original calibration was flawed for some reason. When the calibration sequence is complete, program execution continues to the Main Menu tab shown previously in Table 2-34 on page 2-24.

Save Data

This command button writes data files to the PC/GPIB Controller and stores the files at C:\mmdcsvc\Data. The program does not write data to the verification kit USB memory device. If selected, program execution continues below as described in Section 2-13 “Saving Verification Data” on page 2-34.

The number of saved files varies depending on the user settings:

- If both the matched and mismatched thru tests are run, two files are written to the PC/GPIB Controller's hard drive at C:\mmdcsvc\data
- If only one of the tests was run, only one file is written to the PC/GPIB Controller's hard drive at C:\mmdcsvc\data

Matched Thru

This command button only runs the Matched Thru tests. If selected, program execution continues as described below in Section 2-11 “Matched Thru Tests” on page 2-29. When the tests are completed, the program returns to the Main Menu tab shown above in Section 2-9 “Application Interface – Main Menu Tab” on page 2-24 above.

Matched Thru SN

This field is used to enter the serial number of the matched thru.

Mismatched Thru

This command button only runs the Mismatched Thru tests. If selected, program execution continues below in Section 2-12 “Mismatched Thru Tests” on page 2-31. When the tests are completed, the program returns to the Main Menu tab shown above in Table 2-34 on page 2-24 above.

Mismatched Thru SN

This field is used to enter the serial number of the matched thru.
2-10 Application Interface – Serial Number Tab Functions

The Serial Number Info tab displays a summary of the model number and serial number for the following devices. All screen information is included in the report headers.

- Operator Name
- Calibration Kit
- Test Set
- Verification Kit
- Vector Network Analyzer
- mm-Wave Modules

![Anritsu ME7838D Verification](image)

Figure 2-37. ME7838D Application Interface - Serial Number Tab
Using the 2300-580-R Software with VectorStar ME7838D

2-11 Matched Thru Tests

If the Run All Tests button on the Application Interface - Main Menu tab was selected, the Matched Thru tests (immediately below) are executed followed by the Mismatched Thru tests described in Section 2-12 “Mismatched Thru Tests” on page 2-31 below.

If the Matched Thru test button was selected, only the steps in this section are executed. When this test is complete, the program returns to the main menu described Section 2-9 “Application Interface – Main Menu Tab” on page 2-24 above.

| Note | The verification devices must be connected to the 0.8 mm Connector Coupler Ports and not to the VNA Ports. Use the torque wrench supplied with the verification kit when tightening the device connections. |

Procedure

1. The Enter Serial Number Match Thru dialog box appears.

![Anritsu 0.8mm Verification](image)

Figure 2-38. Enter Serial Number Thru Dialog

2. Ensure that the correct device is connected.
 - The Matched Thru verification standard is the device with one scribe line.
 - The Mismatched Thru verification standard is the device with two scribe lines.

| Note | The verification standards must be connected to the 0.8 mm Coupler Ports and not to the VNA ports. |

3. Enter the serial number of the Matched Thru.
4. When ready to proceed, click OK. The Connect Mismatched Thru Male Connector dialog box appears.

![Hi Test Operator](image)

Figure 2-39. Connect the Mismatched Thru Dialog

5. Connect the Matched Thru male connector to VNA Port 1 with the label facing up.
6. Connect the Matched Thru female connector to VNA Port 2.
7. When ready to proceed, click OK. The matched thru test starts and the Matched Thru Test - Sweep 1 dialog box appears. After it completes, the Matched Thru Test - Sweep 2 dialog box appears.

8. When the test completes, the next action depends on what the user selected in the Main Menu tab above. The VNA main display should be similar to the one below. This is a typical display immediately after measuring the Matched Thru in the Low Band. Please note this is for reference only and that the actual data on the VNA display may not be identical.

Figure 2-40. Matched Thru Test, Sweep 1 and Sweep 2 Dialog Boxes

Figure 2-41. MS4640A/B Series VNA, Typical Matched Thru Data in Low Band

- Upper left quadrant= S21 - Forward Transmission
- Upper right quadrant= S12 - Reverse Transmission
- Lower left quadrant= S11 - Forward Reflection
- Lower right quadrant= S22 - Reverse Reflection
9. If only the Matched Thru button was selected, the program returns to the “Application Interface – Main Menu Tab” on page 2-24. The dialog box is shown in Figure 2-34, “ME7838D Application Interface - Main Menu Tab” on page 2-24 above.

10. If the Run All Tests button was selected, the program execution continues with the following Section 2-12, “Mismatched Thru Tests”.

2-12 Mismatched Thru Tests

If the Run All Tests button on the Application Interface - Main Menu tab was selected, the Matched Thru tests (described above in Section 2-11 “Matched Thru Tests” on page 2-29 is executed first, followed by the Mismatched Thru tests described in this section.

If the Matched Thru test button was selected, only the steps in this section are executed. When this test is complete, the program returns to the main menu described Section 2-9 “Application Interface – Main Menu Tab” on page 2-24 above.

The entry point for this portion of the verification software depends on the user selections made in the Application Interface – Main Menu tab described in Section 2-9 “Application Interface – Main Menu Tab” on page 2-24 above.

The dialog box is shown in Figure 2-34, “ME7838D Application Interface - Main Menu Tab” on page 2-24 above.

If only the Mismatched Thru button was selected above, program execution starts here.

If the Run All Tests button was selected above, program execution continues here after the Matched Thru tests (described above in Section 2-11 “Matched Thru Tests” on page 2-29) have been completed.

Procedure

1. The Enter Serial Number Offset Set Mismatch Device dialog box appears. Enter the serial number of the offset mismatch device.

![Anritsu 0.8mm Verification](image)

Figure 2-42. Serial Number Dialog

2. Ensure that the correct device is connected.
 - The Matched Thru verification standard is the device with one scribe line.
 - The Mismatched Thru verification standard is the device with two scribe lines.

Note: The verification standards must be connected to the 0.8 mm Connector Coupler Ports and not to the VNA Ports.

Note: The verification devices must be connected to the 0.8 mm Connector Coupler Ports and not to the VNA Ports. Use the torque wrench supplied with the verification kit when tightening the device connections.
3. When ready to continue, click OK. The Connect Mismatched Thru Airline dialog box appears.

![Instruction Dialog](image)

Figure 2-43. Instruction Dialog

4. Connect the Mismatched Thru Airline male connector to VNA Port 1 with the device label facing up.

5. Connect the Mismatched Thru Airline female connector to VNA Port 2.

6. When ready to continue, click OK. The Mismatched Thru Test - Sweep 1 dialog box is displayed first followed by the Mismatched Thru Test - Sweep 2 dialog box.

![Status Dialogs](image)

Figure 2-44. Status Dialogs
7. When the test completes, the program returns to the main menu described Section 2-9 “Application Interface – Main Menu Tab” on page 2-24 above, and the display should look similar to Figure 2-45 below. This is a typical display immediately after measuring the Mismatched Thru in the Low Band. Please note this is for reference only and that the actual data on the VNA display may not be identical.

Figure 2-45. MS4640A/B Series VNA, Typical Mismatched Thru Data in Low Band
2-13 Saving Verification Data

If the Save Data button on the Main Menu tab was selected, the save data dialogs described below appear. When the save data procedure is completed, the program returns to the main menu as described previously in Section 2-9 “Application Interface – Main Menu Tab” on page 2-24.

The default directory path and file names are:

- C:\mmdcsvc\Data\Matched Thru Low.dat
- C:\mmdcsvc\Data\Mismatched Thru Low.dat
- C:\mmdcsvc\Data\Matched Thru High.dat
- C:\mmdcsvc\Data\Mismatched Thru High.dat

If the default file names should be changed, select Yes and enter the new file names. Otherwise, select No.

![Confirmation Dialog](image)

Figure 2-46. Confirmation Dialog

The following dialog is shown when the files are successfully saved to disk.

![Information Dialog](image)

Figure 2-47. Information Dialog

2-14 Restart for Alternate Frequency Band

After the Matched Thru and Mismatched Thru tests have been successfully completed and the data saved, it is necessary to restart the program and test the other frequency band. For example, if you tested for 40 MHz to 80 GHz Frequency Range on your first calibration pass, on the second pass, select the 80 GHz to 145 GHz Frequency Range.

Procedure

1. Ensure that the verification results of the previous test have been saved to the C:\mmdcsvc\Data.

2. To perform the verification tests for the second frequency range, on the System Verification Software Main Menu - Main Menu Tab, select the Restart button. The main menu is described in Section 2-9, “Application Interface – Main Menu Tab” on page 2-24 above.

3. The Choose The Restart Method dialog box appears. If you selected Full Restart, the calibration process starts again and the procedure steps are the same as the procedures described previously starting in Section 2-5, “Running the Verification Software”, Step 7 on page 2-6.
4. On the Setup Menu, repeat the data entry for the following items. Click OK when ready to proceed to the next step.

5. Enter the GPIB Address 6.

6. Enter the Test Set Serial Number.

7. Enter the User Name.

8. Enter the Cal Kit Type selection.

9. Enter the Cal Kit Serial Number selection.

10. Enter the Load Cal Kit Disk from VNA Floppy selection.

11. Enter the Frequency Range selection. Select the frequency range that has not been tested.
 a. If the first calibration procedure selected the 40 MHz to 80 GHz Frequency Range, select the 80 GHz to 145 GHz Frequency Range.
 b. If the first calibration procedure selected the 80 GHz to 145 GHz Frequency Range, select the 40 MHz to 80 GHz Frequency Range.

12. Enter the Verification Kit Type selection.

13. Enter the Verification Kit Serial Number selection.

14. Click the Go to USB Drive Locator button.

15. Click the Verify Files on USB Drive button.

16. Complete the calibration and verification of the devices for the second frequency range.

17. Save the second set of calibration data and verification results to C:\mmdcsvc\Data.

18. This series of automated tests has verified that the VectorStar ME7838D Broadband S-parameter measurement accuracy meets factory specifications and ends the calibration and verification procedure.

19. The program returns to the main menu described in Section 2-9, “Application Interface – Main Menu Tab” on page 2-24.

2-15 Troubleshooting

Difficulty Running the Program

If you have difficulty getting the program to run properly:

1. Check your GPIB interconnection cables and addresses.

2. Check to see that the Windows GPIB is present on the boot drive, that it is properly configured, and that it passes the National Instruments hardware and software tests.

If, after checking the above, you are still having difficulty, contact your Anritsu customer service center and ask for the Vector Network Analyzer support engineer for further assistance.

Difficulty Meeting System Specifications

If the verification software appears to run properly, but the results are not within the measurement limits associated with the verification kit:

1. Check both the verification kit and calibration kit devices for signs of physical damage. Make sure that the connectors are clean.

2. Ensure that the serial number of the verification kit USB drive matches that shown on the verification kit.

3. Repeat the process with a fresh calibration. Save the results of both measurements as an aid in troubleshooting, and in case you require factory assistance.
4. When installing calibration devices, and when measuring verification devices, pay particular attention to proper connector alignment and torque. Torque the connector using the torque wrench supplied with the calibration kit.

5. Assure all active systems have been powered on at least one hour before the start of the calibrations.

If you still have difficulty after following the above steps, please contact Anritsu customer service and ask for the Vector Network Analyzer support engineer for further assistance.
Chapter 3 — GPIB Card and Instrument Settings

3-1 Introduction

The following sections describe the recommended GPIB Card and GPIB Instrument Settings. These settings apply to the VectorStar ME7838D.

3-2 GPIB Board Settings

Use these settings for your GPIB controller board.

Table 3-1. GPIB Board Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Address</td>
<td>0</td>
</tr>
<tr>
<td>Secondary Address</td>
<td>NONE or 0</td>
</tr>
<tr>
<td>Time-out Setting</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Terminate Read on EOS</td>
<td>NO or unchecked</td>
</tr>
<tr>
<td>Set EOI with EOS on Writes</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Type of compare on EOS</td>
<td>8-bit</td>
</tr>
<tr>
<td>EOS Byte</td>
<td>0Ah or decimal 10</td>
</tr>
<tr>
<td>Send EOI at End of Write</td>
<td>YES or checked</td>
</tr>
<tr>
<td>System Controller</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Assert REN When SC</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Enable Auto Serial Polling</td>
<td>NO or unchecked</td>
</tr>
<tr>
<td>Enable CIC Protocol</td>
<td>NO or unchecked</td>
</tr>
<tr>
<td>Bus Timing</td>
<td>2_seconds</td>
</tr>
<tr>
<td>Parallel Poll Duration</td>
<td>Default</td>
</tr>
</tbody>
</table>

The following settings may vary depending on the selected GPIB Card type and Operating System.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use this GPIB Interface</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Board Type</td>
<td>Your board type such as PCIIA or PCI</td>
</tr>
<tr>
<td>Base I/O Address</td>
<td>Consult the GPIB card manual</td>
</tr>
<tr>
<td>DMA Channel</td>
<td>Consult the GPIB card manual</td>
</tr>
<tr>
<td>Interrupt Level</td>
<td>Consult the GPIB card manual</td>
</tr>
</tbody>
</table>
Instrument Settings

Table 3-2. Instrument Setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary GPIB Address</td>
<td>6</td>
</tr>
<tr>
<td>Secondary GPIB Address</td>
<td>NONE</td>
</tr>
<tr>
<td>Time-out Setting</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Serial Poll Time-out</td>
<td>1 second</td>
</tr>
<tr>
<td>Terminate Read on EOS</td>
<td>NO or unchecked</td>
</tr>
<tr>
<td>Set EOI with EOS on Writes</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Type of compare on EOS</td>
<td>8-bit</td>
</tr>
<tr>
<td>EOS Byte</td>
<td>0Ah or decimal 10</td>
</tr>
<tr>
<td>Send EOI at End of Write</td>
<td>YES or checked</td>
</tr>
<tr>
<td>Enable Repeat Addressing</td>
<td>NO or unchecked</td>
</tr>
</tbody>
</table>
Chapter 4 — Maintenance

4-1 Introduction

This appendix provides instructions for the maintenance and proper connection and torquing of the RF connectors on your Anritsu instrument, and components you connect to the instrument, including the calibration kit components described in this manual. Following the recommendations in this document prevents shortened connector life and less equipment downtime due to connector-related failures. The topics covered in this chapter are:

- Inspection and cleaning
- Connection techniques
- Torque specifications and tools

Common Causes of Connector Failure

Following are common causes of connector-related instrument failures and effects on measurement accuracy and repeatability.

- Connectors contaminated with material such as metal debris and dust particles will increase the risk of damaging connector. A dusty connector affects the measurement accuracy due to lack of repeatability.
- Worn or damaged threads can damage mating connectors.
- Over torquing connectors will introduce excessive stress to connector interface. Under torquing will increase repeatability uncertainty.
- Improper pin depth of the center conductor can permanently damage the mating connector.
- ESD – A connector is a perfect conductor for electrostatic discharge (ESD). Excessive charge accumulation will damage expensive and sensitive electronic devices residing in the instrument.

Coaxial Connector Care

Most coax connectors are assembled into a system and forgotten, but some, especially on test equipment interfaces are used almost continuously. The care and cleaning of these connectors is critical to maintain accurate and reliable performance. Good connector performance can be achieved with the following:

- Periodic visual inspection
- Routine cleaning
- Proper connection and disconnection techniques using a torque wrench
4-2 Visual Inspection

Connectors contaminated with material such as metal debris and dust particles will increase the risk of damaging the connector. A dusty connector affects the measurement accuracy due to lack of repeatability. Careful visual inspection with a magnification aid and lighting should be performed at least once per day before connecting. A “good” connector may get damaged if it is mated with a “bad” one.

Any connector with the following defects should be repaired or discarded:

- Plating concerns that include bubbles, blisters, and deep scratches showing bare metal on the mating plane.
- Center conductors with bent, broken or damaged contacts.

Magnification

Use a device with a magnification range of 2X to 10X depending on the connector type.

<table>
<thead>
<tr>
<th>Connector Type</th>
<th>Minimum Magnification for Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type N</td>
<td>2X</td>
</tr>
<tr>
<td>3.5 mm</td>
<td></td>
</tr>
<tr>
<td>K (2.92 mm)</td>
<td>7X</td>
</tr>
<tr>
<td>V (1.85 mm)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-1. Magnification for Connector Inspection

Outer Conductor and Thread Inspection

When connector threads are clean and free from defects, coupling nuts should move freely. Inspect for defects such as:

- Dirt, dust, metal particles and oil
- Damaged threads (distorted, dented, or crushed)
- Dents or raised edges on the mating plane

Note

Connectors may lose some gloss over time due to normal usage. Light scratches, marks, and other cosmetic imperfections found on the mating plane surfaces are signs of normal wear and should not be considered cause for replacement.

Regular cleaning and proper connection techniques will minimize wear on the plating due to abrasion from debris.
Center Conductor Inspection

Inspect for bent, broken, or damaged center conductors:

![Diagram of connector damage states]

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New condition</td>
</tr>
<tr>
<td>2</td>
<td>Normal use – Slight gap</td>
</tr>
<tr>
<td>3</td>
<td>Bent pin section - Discard connector</td>
</tr>
<tr>
<td>4</td>
<td>Fingers spread or collapsed - Discard connector</td>
</tr>
<tr>
<td>5</td>
<td>Broken pin or pin section - Discard connector</td>
</tr>
</tbody>
</table>

Figure 4-2. Example Connector Damage States

Inspect for center pin concentricity:

![Diagram of connector concentricity]

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Centered</td>
</tr>
<tr>
<td>2</td>
<td>Maximum allowable off-center</td>
</tr>
<tr>
<td>3</td>
<td>Fail - off center - Discard connector</td>
</tr>
</tbody>
</table>

Figure 4-3. Example Connector Concentricity
4-3 Connector Cleaning

With repeated connections and disconnections, the threads and outer conductor mating interface builds up a layer of dirt and metal chips which can severely degrade connector electrical and mechanical performance. This debris can also increase the coupling torque required for a good connection which can then damage the mating interfaces. Cleaning of connectors is essential for maintaining good electrical performance. Therefore, connectors should be checked for cleanliness before making any measurements (or calibration).

| Caution | Use the correct sized cotton swabs that are made specifically for cleaning small areas. Oversized cotton swabs can put lateral pressure on the center pin and damage it. Inspect after cleaning to be sure that no cotton strands get caught in the connector. |

Required Cleaning Items

- Low-pressure dry, compressed air (oil free, solvent free), maximum pressure: 40 PSI
- Lint-free cotton swabs
- Isopropyl alcohol (IPA), 90 %
- Microscope Cleaning Procedure

Teflon Tuning Washers:	The center conductor on some RF components contains a small teflon tuning washer located near the point of mating (interface). This washer compensates for minor impedance discontinuities at the interface. The washer’s location is critical to the RF component’s performance. Be careful not to disturb it with a cotton swab or compressed air and don’t apply alcohol to it.
Caution	Compressed Air: Do not use compressed air on power sensors. Some power sensors have components internally located near the connector that can be damaged from excessive air pressure.
Solvents:	Do not use industrial solvents or water to clean the connector. Use 90 % Isopropyl Alcohol (IPA) only. Do not spray alcohol directly onto connector surfaces. Do not saturate the swab with alcohol. Instead, lightly dampen it by touching the tip onto a bead of alcohol formed at the bottle tip as shown in Figure 4-4.

Figure 4-4. Isopropyl Alcohol Only
Procedure

1. Remove loose particles on the mating surfaces, threads, and similar surfaces using low-pressure clean (oil free, solvent free) compressed air (40 PSI max) applied at a shallow angle so foreign particles are not forced down into the connector.

2. Clean the threads of the connector with a lint-free cotton swab dampened with IPA.

Caution

Do not insert cotton swabs at an angle or use a swab that is too large (Figure 4-6). Doing so can damage the center pin.

3. Clean the mating surfaces and connector threads by gently moving the cotton swab around the center pin. Avoid applying pressure to the center pin.

When the connector is clean, you should be able to hand tighten the connector to within approximately one half turn of the specified torque.

4. After cleaning with swabs, again use low-pressure compressed air to remove any remaining small particles and dry the connector surfaces.

5. Using magnification and adequate lighting, inspect the connectors for damage or debris.
4-4 Making a Connection

This section provides connection and torquing instructions for making a repeatable connection and avoiding damage to the connector.

<table>
<thead>
<tr>
<th>Caution</th>
<th>Connectors should never be forced together when making a connection since forcing often indicates incorrectness and incompatibility.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use a torque wrench with the correct setting to tighten the connector. Over torquing connectors may damage the connector center pin.</td>
</tr>
<tr>
<td></td>
<td>Never use pliers or adjustable wrenches to tighten connectors.</td>
</tr>
</tbody>
</table>

Before Connection

1. Verify the power and voltage levels of the device you are connecting to and the input limits of your test equipment.
2. Visually inspect the connectors for damage, cleanliness, and center pin concentricity as described in Section 4-2
 - The coupling nut should move freely. If necessary, clean the connectors
3. Before touching instrument connectors, make sure you have grounded yourself and eliminated all static charge by following proper ESD handling procedures that conform to ANSI/ESD S20.20-2007.

Initial Connection

1. Carefully align the connectors as shown in Figure 4-9 on page 4-7.
 - The male connector center pin must slip concentrically into the contact fingers of the female connector. Never apply excessive force when making a connection.
2. Push the connectors straight together.
3. Do not twist while pushing them together and do not turn the connector body. As the center conductors mate, there is usually a slight resistance. Finger-tighten the connection first by turning the connector nut.
4. Back off the connection by turning the connector nut counter clockwise 1/4 turn. The final tightening is done using the appropriate torque wrench from the kit and as described in Table 4-1.

Figure 4-8. Do Not Use Pliers or Adjustable Wrenches
Index Description

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aligned connectors</td>
</tr>
<tr>
<td>2</td>
<td>Misalignment can cause pin damage</td>
</tr>
<tr>
<td>3</td>
<td>Damaged pin</td>
</tr>
</tbody>
</table>

Figure 4-9. Avoid Pin Damage Due to Misalignment

Caution
Do not turn the connector body. Major damage to the center conductor and the outer conductor can occur if the connector body is twisted.

Index Description

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turn nut only</td>
</tr>
<tr>
<td>2</td>
<td>Do not turn body</td>
</tr>
</tbody>
</table>

Figure 4-10. Tightening the Connector Nut
Torquing the Connection

Connectors must be correctly torqued to their required settings to make sure the connector is tight enough to ensure an accurate RF measurement but not so tight as to damage the connector or the instrument. Use the correct torque wrench for the connector type. Applying proper torque will improve connection repeatability and reproducibility. Over torquing connectors is destructive as it may damage the connector center pin. Never use pliers to tighten connectors.

1. Select a torque wrench of proper size and rating for the connector and an open end wrench. The open end wrench is used to prevent the body of the connector from turning. Refer to Table 4-1 for torque specifications.

2. Place the two wrenches at an angle of less than 90° as shown in Figure 4-11.

Caution

Using two wrenches with an angle greater than 90° causes the devices to lift up, which tends to misalign and stress the connectors. This becomes more of a problem when multiple devices are connected together.

Breaking the handle fully can cause the wrench to kick back which may loosen the connection.

Figure 4-11. Using Wrenches at Proper Angle

3. Hold the torque wrench at the end as shown in Figure 4-12 on page 4-9.

Caution

Holding the torque wrench anywhere but at the end applies an unknown amount of torque and can damage contacts and/or connectors.
4. Before torquing, make sure long or heavy devices or cables are supported so there is no lateral pressure on the connection.

5. Rotate only the connector nut when tightening the connection. Apply torque to the fitting until the handle begins to break as shown in Figure 4-12.

Torque Specifications and Tools

Torque values are listed below for connectors used with the 365xx-x mechanical calibration kits. If you are not sure which connector types are available on your instrument, consult the instrument Technical Data Sheet available on the web at www.anritsu.com.

Table 4-1. Connector Torque Settings and Recommended Tools

<table>
<thead>
<tr>
<th>Connector Type/Size</th>
<th>Wrench Size</th>
<th>Torque Setting</th>
<th>Recommended Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 mm<sup>a</sup></td>
<td>8 mm 5/16 in</td>
<td>0.9 N·m 8 lbf·in</td>
<td>01-201 5/16 in in Torque End Wrench</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01-204 5/16 in or 8 mm Open End Wrench</td>
</tr>
<tr>
<td>GPC-7</td>
<td>19 mm 3/4 in</td>
<td>12 lbf·in 1.36 N·m</td>
<td>01-200 3/4 in in Torque End Wrench</td>
</tr>
<tr>
<td>K (2.92 mm)</td>
<td>8 mm 5/16 in</td>
<td>0.9 N·m 8 lbf·in</td>
<td>01-201 5/16 in in Torque End Wrench</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01-204 5/16 in or 8 mm Open End Wrench</td>
</tr>
<tr>
<td>V (1.85 mm)</td>
<td>8 mm 5/16 in</td>
<td>0.9 N·m 8 lbf·in</td>
<td>01-201 5/16 in in Torque End Wrench</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01-204 5/16 in or 8 mm Open End Wrench</td>
</tr>
<tr>
<td>0.8 mm</td>
<td>6 mm</td>
<td>0.45 N·m 4 lbf·in</td>
<td>01-524 6 mm Torque End Wrench</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01-525 6 mm x 7 mm Combination Open End Wrench</td>
</tr>
</tbody>
</table>

^a3.5 mm, 2.92 mm and K connectors are electrically compatible with SMA and have the same connector nut size (8 mm) and torque requirement. Refer to Table 4-2 for connector compatibility information.

^bAlthough the 2.4 mm, 1.85 mm, and V connectors have the same connector nut size (8 mm) and torque requirement, they are not mechanically compatible with 3.5 mm. Refer to Table 4-2 for connector compatibility information.
Disconnection

To properly separate an RF connection:

1. Use the same wrench usage technique as shown in Figure 4-11.
2. Use one to prevent the connector body from turning. Use the other to loosen the connector nut.
3. Complete the disconnection by hand, turning only the connector nut.
4. Pull the connectors straight apart without twisting or bending.

Connector Types and Cross-Mating Compatibility

The following table lists RF connector characteristics and cross-mating compatibilities.

Table 4-2. RF Connector Characteristics

<table>
<thead>
<tr>
<th>Connector Type/Parameter</th>
<th>7/16 DIN</th>
<th>20 GHz Type N</th>
<th>Type N</th>
<th>7 mm</th>
<th>SMA</th>
<th>3.5 mm</th>
<th>K (2.92 mm)</th>
<th>2.4 mm</th>
<th>V (1.85 mm)</th>
<th>W1 (1 mm)</th>
<th>0.8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Frequency Limit (GHz)</td>
<td>7.5</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>26.5</td>
<td>40</td>
<td>50</td>
<td>67</td>
<td>110</td>
<td>145</td>
</tr>
<tr>
<td>Mating Type</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>Sexless</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
<td>M/F</td>
</tr>
<tr>
<td>Cross-mating Compatibility</td>
<td>7/16 DIN only</td>
<td>Type N</td>
<td>20 GHz Type N</td>
<td>7 mm only</td>
<td>3.5 mm, K, SMA</td>
<td>3.5 mm, SMA</td>
<td>V</td>
<td>2.4 mm</td>
<td>W1 only</td>
<td>0.8 mm only</td>
<td></td>
</tr>
<tr>
<td>Dielectric</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
<td>Teflon</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
<td>Air</td>
</tr>
<tr>
<td>Thread</td>
<td>M29 x 1.5</td>
<td>5/8–24</td>
<td>5/8–24</td>
<td>0.6785–24</td>
<td>1/4–36</td>
<td>1/4–36</td>
<td>1/4–36</td>
<td>M7 x 0.75</td>
<td>M7 x 0.75</td>
<td>M4 x 0.7</td>
<td>M3.5 x 0.35</td>
</tr>
<tr>
<td>Outer Conductor (mm)</td>
<td>16</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>4.2</td>
<td>3.5</td>
<td>2.92</td>
<td>2.4</td>
<td>1.85</td>
<td>1</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Anritsu utilizes recycled paper and environmentally conscious inks and toner.