Product Introduction

/inritsu

MX882000C W-CDMA Measurement Software

MT8820B

Radio Communication Analyzer

MX882000C W-CDMA Measurement Software Product Introduction

Including MT8820B-001/-011, MX882000C-001/-011/-013/-021,031 MX88205xC, MX88205xC-002/-003/-008/-009/-011

Version 4.0 February 2009

ANRITSU CORPORATION

Contents

- **1. Key Features of MX882000C W-CDMA Measurement Software**
- 2. MX882000C W-CDMA Measurement Software
- 3. MX882000C-001 W-CDMA Voice Codec
- 4. MX88205xC-002 W-CDMA External Packet Data
- 5. MX88205xC-003 W-CDMA Video Phone Test
- 6. MX882050C-009 W-CDMA Band IX
- 7. MX882000C-011 HSDPA Measurement Software
- 8. MX882050C-011 HSDPA External Packet Data
- 9. MX882000C-013 HSDPA High Data Rate
- 10. MX882000C-021 HSUPA Measurement Software
- 11. MX882000C-031 HSPA Evolution Measurement Software

/inritsu

All-in-One Call Processing and RF Tx/Rx Testing of W-CDMA Mobiles

The MT8820B can easily test the basic RF Tx/Rx characteristics of W-CDMA mobiles. And it supports testing of call processing, such as origination and termination.

Discover What's Possible[™] MX882000C-E-L-1

Wide Range of Measurement Functions

In addition to supporting basic Tx/Rx measurements of W-CDMA mobile terminals, power can be measured in the time domain and the spectrum can be checked at the Spectrum Monitor screen. A stable signal can be measured at the Fundamental Measurement screen while a signal changing over time can be measured at the Time Domain screen.

Fundamental Measurement Screen

Discover What's Possible™ MX882000C-E-L-1

Functional Test of W-CDMA Mobiles

Installing optional software supports tests of W-CDMA supplementary functions such as voice calling, video telephony and PPP/IP packet communications with an external server.

/Inritsu

High-speed Tx Measurement

The Tx measurement times except signalling time are shown below. The MT8820B is two times faster than the MT8820A.

/incitsu

/Inritsu

Key Specifications

Frequency range	: 300 to 2700 MHz
Maximum input level	: +35 dBm
Amplitude measurement accuracy	: ±0.5 dB (–25 to +35 dBm)
	±0.7 dB (−55 to −25 dBm)
	\pm 0.9 dB (–65 to –55 dBm) after calibration
EVM (residual vector error)	: ≤2.5%
ACLR	: >50 dB at ±5 MHz
	>55 dB at ±10 MHz
RF Output level range	: –140 to –10 dBm (MAIN)
	–130 to 0 dBm (AUX)
RF Output level accuracy	: ±1.0 dB (–120 to –10 dBm, MAIN)
	\pm 1.0 dB (–110 to 0 dBm, AUX) after
calibration	

/Inritsu

Supported Tx Measurements

	Item	Comment	
5	Transmitter Characteristics		
5.2	Maximum Output Power		$\sqrt{}$
5.3	Frequency Error		$\sqrt{}$
5.4	Output Power Dynamics in Uplink		
5.4.1	Open Loop Power Control in Uplink		$\sqrt{}$
5.4.2	Inner Loop Power Control in Uplink		$\sqrt{}$
5.4.3	Minimum Output Power		$\sqrt{}$
5.4.4	Out-of-Sync Handling of Output Power		$\sqrt{}$
5.5	Transmit ON/OFF Power		$\sqrt{}$
5.6	Change of TFC		$\sqrt{}$
5.7	Power Setting in Uplink Compressed Mode		
5.8	Occupied Bandwidth (OBW)		$\sqrt{}$
5.9	Spectrum Emission Mask		$\sqrt{}$
5.10	Adjacent Channel Leakage Power		$\sqrt{}$
5.11	Spurious Emissions	Requires SPA	\checkmark
5.12	Transmit Intermodulation	Requires SG and SPA	\checkmark
5.13	Transmit Modulation		•
5.13.1	Error Vector Magnitude (EVM)		$\sqrt{}$
5.13.2	Peak Code Domain Error	Single Code Only	$\sqrt{}$
5.13.3	UE Phase Discontinuity		$\sqrt{}$
5.13.4	PRACH Preamble Quality		$\sqrt{}$

 $\sqrt{1}$: Supported $\sqrt{1}$: Requires external equipment (SPA or SG)

Supported Rx Measurements

	Item	Comment	
6	Receiver Characteristics		
6.2	Reference Sensitivity Level		$\sqrt{\sqrt{1}}$
6.3	Maximum Input Level		$\sqrt{}$
6.4	Adjacent Channel Selectivity (ACS)	Requires SG	
6.5	Blocking Characteristics	Requires SG	
6.6	Spurious Response	Requires SG	
6.7	Intermodulation Characteristics	Requires SG	\checkmark
6.8	Spurious Emissions	Requires SPA	\checkmark

 $\sqrt{1}$: Supported $\sqrt{1}$: Requires external equipment (SPA or SG)

/inritsu

Batch Measurements at Fundamental Measurement Screen

The Tx/Rx measurement items below can be measured simultaneously (batch measurement), making measurement much faster.

Measurement item	Comment
Transmitter Characteristics	
RRC Filtered Power and Mean Power	Power in RRC filter and 5-MHz bandwidth
Frequency Error	
Occupied Bandwidth (OBW)	
Spectrum Emission Mask	
Adjacent Channel Leakage Power	
Error Vector Magnitude (EVM)	
Peak Code Domain Error	
Receiver Characteristics	
BER	For sensitivity level and maximum input level
	Test Loop Mode 1 used
BLER	For performance test
	Test Loop Mode 2 used

/inritsu

Batch Measurements at Fundamental Measurement Screen

The batch measurement results screens for both Tx and Rx characteristics are shown below. The results can be read simultaneously via GPIB.

Loop Mode 1 Phone-2 Phone-1 Fundamental Measurement> Output Main W-CDMA Parameter Fundamental UE Report 22.8 dBm Fundamental Tx Power ower Measurement Loop Mode 1 Phone-1 (Fundamental Measurement> Output Main H-CDMA TX Power 23.63 23.10 22.63 dBm Fundamental LIF Renor 204.4 230.4 183.2 mΨ UE Power : 22.3 dBm Fundamental 22.88 23.42 22.40 dBm Filtered Power Adjacent Channel Power Meas. Count : 20/ 20) Power ACLR akage power due to Modula **Frequency Error** Measurement Offset Freq. requency Error Avg. Max Min requency -58.64 -58.52 -58.82 dB -10 MHz 1949.999993 MHz Carrier Frequency Eppor -5 MHz -40.24-39.96 -40.46 dB Loop Mode 1 hone-1 5 MHz -39.90 -39.73 -40.02dB Avg. Max Min undamental Measurement> Output Main Y-CDMA -58.90 10 MHz -58.76 -58.64 Carrier Frequency Error -0.0075 0.0264 -0.0255 kHz Fundamental 0.00 0.01 -0.01 ppm 22.9 dBm Fundamental E Power : Modulation Analysis View **EVM** (Meas, Count BER **OBW** ax Min ccupied Bandwidth View (Meas, Count : Error 5.51 %(rm Error Vector Magnitude 5.94 **OBW** Bit Error Rate Rate Peak Vector Error 14.46 18.55 12.75 2.070 MHz Bit Error Rate Uppen Frequency 0.0000 0.00 % Phase Error 2.27 2.60 1.98 deg. Block -2.059 MHz 0.00E+00 Lowen Enequency Error Magnitude Error 4.06 4.41 3.76 %(rm Center(Upper+Lower)/2 1950.006 MHz Error Count Rate -41.96 -40.44 -44.68 dB 10717 Transmitted/Sample 10000 Bit 100.85 105.63 94.60 %(I) Spectrum Emission Mask ectrum Emission Mask 🛛 🗸 Judgment **BLER** -0.4 -0.2-0.1 chir 5.89 5.42 dB 6.11 Block Error Bate 0.0000 0.00 %) Peak Code Domain Error Peak Code Domain Error 0.00E+00 1000 Block 1000 ansmitted/Sample Pass Judgment Common Parameter Item List Standard Call Processing 0n Test Loop Mode Mode 1 requency UL Channel & Frequency 9750 CH = 1950.000000 MHz DL Channel & Frequency 10700 CH = 2140.000000 MHz

Batch Measurement Result Screen

Discover What's Possible™ MX882000C-E-L-1 **/Inritsu**

Graphical Spectrum Interface

The graphical interface supports faster maintenance because the Tx characteristics of W-CDMA mobiles can be understood at a glance by viewing the spectrum.

Spectrum for OBW

Spectrum for Spectrum Emission Mask

At-a-glance understanding because spectrum

There are graphical interfaces for vector error vs. chip, phase error vs. chip, and magnitude error vs. chip. The waveform can be read via GPIB.

Graphical Interface for Power Change in Time Domain

The power of the RACH signal from the W-CDMA mobile and the EVM can be measured at the Time Domain screen. Template masking can be performed too.

RACH Measurement

MX882000C-E-L-1

Graphical Interface for Power Change in Time Domain

The change in power from the W-CDMA mobile with time can be measured at the Time Domain screen. The Slot Marker and Slot List functions help understand the the results easily.

Inner Loop Power Control Measurement

Discover What's Possible™ MX882000C-E-L-1

Modulation Accuracy of Consecutive Slots

The EVM, frequency error, and phase discontinuity of consecutive slots can be measured. The Slot List function helps understand the results easily.

Phase Discontinuity Measurement

Discover What's Possible™ MX882000C-E-L-1

Spectrum Monitor

The spectrum in the 25-MHz bandwidth can be viewed using the spectrum monitor, and the in-band spurious and carrier leakage from the orthogonal modulator can be checked easily. The CW characteristics without AFC can be also measured using the Frequency Measurement function^{*1}.

Spectrum Monitor Screen Loop Mode 1 Phone-1 Spectrum Monitor> Output Main ₩-CDMA Spectrum Moni Parameter UE Power : End 22.9 dBm Spectrum Moni [Free Run] Marker 1946.000000 MHz Marker -38.46<mark>dBm</mark> On Off Input Level : Zone Center 1945.000000 MHz 25MHz 23.0dBm RB₩ 30kHz Span 1937.500000 MHz 1950.000000 1962.500000 Common Parameter Item List Standard Test Loop Mode Mode 1 Call Processing 0n | Frequency. UL Channel & Frequency 9750 CH = 1950.000000 MHz DL Channel & Frequency 10700 CH = 2140.000000 MHz 2

*1: With GPIB

/incitsu

Discover What's Possible™ MX882000C-E-L-1

Slide 18

UE Report

The mobile Tx power and power class can be checked at the UE Report screen. Moreover, reports from the mobile can be checked.

<fundamental measurement=""> Output Main</fundamental>	Loop Mode 1		Phone−1 ₩-CDMA
Parameter Fundamental	UE Report		
End	UE Power :	14.8 dBm	UE Report
UE Report Initial UE Identity	73456789	A	T A UE G Report
IMEI 3578070 RF Capability	00100550		
Called Number			
Measurement Result for Current Cell Primary Scrambling Code 100 CRICH Ec (N) 42	(_35 to _3	dB.)	
CPICH RSCP 43 Pathloss	(-73 to -72 c dB	iBm)	
Quality Measurement DL Transport Channel BLER_LOG 0 UE Internal Measurement	(0		
UE Transmitted Power 86 UE RX-TX Time difference 1026	(15 to 16 c (1025 to 1026	Bm) chip)	
Intra Frequency Measurement Primary Scrambling Code CPICH Ec/NO	()	123

UE Report Screen

Discover What's Possible™ MX882000C-E-L-1

Call Processing Testing Test Items Location registration The call processing test results can be Origination checked easily at the Sequence Monitor Termination screen. **Disconnect from UE Disconnect from network Sequence Monitor Screen** Hard handover Idle(Regist) Phone-1 ence Monitor> Output Main ₩-CDMA Sequence Monitor UE Report -61.2 dBm UE Power : Sequence Sequence Monitor Screen Off

/incitsu

MX882000C-001 W-CDMA Voice CODEC

/inritsu

MX882000C-001 W-CDMA Voice Codec

Overview

The MX882000C-001 W-CDMA Voice Codec software option adds real-time voice encoding/decoding to the W-CDMA measurement software. Live end-to-end communication tests between a handset and W-CDMA mobile are supported by installing the MT8820B-011 Audio Board. Moreover, the MT8820B can measure the audio Tx/Rx without an external audio analyzer and generator.

MX882000C-001 W-CDMA Voice Codec*

Live End-to-End Communication Test

When a handset is connected to the MT8820B RJ11 connector, live end-toend communication between the handset and a W-CDMA mobile can be tested.

*: Requires MT8820B, MT8820B-001, MT8820B-011, MX882000C, MX882000C-001, and MX88205xC

/incitsu

MX882000C-001 W-CDMA Voice Codec*

Audio Tx/Rx Measurement

The audio characteristics of the mobile can be measured with one MT8820B unit using the internal audio generator and audio meter.

*: Requires MT8820B, MT8820B-001, MT8820B-011, MX882000C, MX882000C-001, and MX88205xC

MX882000C-001 W-CDMA Voice Codec

Specifications

Voice codec	AMR 12.2 Kbps			
Codoo lovol adjustmont	Encoder input gain: –3.00 to 3.00 dB, in increments of 0.01 dB			
Codec level adjustment	Handset microphone volume: 0, 1, 2, 3, 4, 5			
	Handset speaker volume: 0, 1, 2, 3, 4, 5			
	Frequency range: 30 Hz to 10 kHz, 1-Hz resolution			
	Setting range: 0 Vpeak to 5 Vpeak (AF Output connector)			
	Setting resolution: 1 mV (≤5 V peak), 100 µV (≤500 mVpeak), 10 µV (≤50 mVpeak)			
	Accuracy: ±0.2 dB (≥10 mVpeak, ≥50 Hz), ±0.3 dB (≥10 mVpeak, <50 Hz)			
AF Oulpul	Waveform distortion: ≤30 kHz band			
	3 –60 dB (≥500 mV peak, ≤5 kHz), ≤–54 dB (≥70 mVpeak)			
	Output impedance: $\leq 1 \Omega$			
	Max. output current: 100 mA			
	Frequency range: 50 Hz to 10 kHz			
AE loout	Input voltage range: 1 mVpeak to 5 Vpeak (AF Input connector)			
AF Input	Max. allowable input voltage: 30 Vrms			
	Input impedance: 100 k Ω			
Frequency measurement	Accuracy: Reference oscillator accuracy + 0.5 Hz			
Level measurement	Accuracy: ±0.2 dB (≥10 mVpeak), ±0.4 dB (≥1 mVpeak, ≥1 kHz)			
SINAD Magguramont	Frequency: 1 kHz in ≤30 kHz band			
SINAD Measurement	≥60 dB (≥1000 mVpeak), ≥54 dB (>50 mVpeak), ≥46 dB (≥10 mVpeak)			
Distortion rate measurement	Frequency: 1 kHz in ≤30 kHz band			
	≤–60 dB (≥1000 mVpeak), ≤–54 dB (>50 mVpeak), ≤–46 dB (≥10 mVpeak)			

MX88205xC-002 W-CDMA External Packet Data

/Inritsu

MX88205xC-002 W-CDMA External Packet Data

Overview

End-to-end data transfer between an application server connected to the MT8820B and a W-CDMA mobile or client PC connected to the W-CDMA mobile can be tested using the MX88205xC-002 W-CDMA External Packet Data Option. The transferred PPP and IP packet data can be measured.

/incitsu

MX88205xC-002 W-CDMA External Packet Data*

PPP Packet Data

As shown below, packet data transfer via the W-CDMA mobile PPP connection can be tested by a client PC using a server PC service such as FTP, HTPP, POP, or SMTP. The W-CDMA mobile operates as a modem for the client PC.

MX882000C-E-L-1

MX88205xC-002 W-CDMA External Packet Data*

IP Packet Data

As shown below, the operation of a W-CDMA mobile application based on IP packet transfer, such as I-mode, can be tested.

*: Requires MT8820B, MT8820B-001, MX882000C, MX88205xC, and MX88205xC-002

/incitsu

MX88205xC-002 W-CDMA External Packet Data

Specifications

Ethernet	10BASE-T
Data Rate	Downlink: 384 Kbps, Uplink: 64 Kbps
Server IP Address	0.0.0.0 to 255.255.255.255
Client IP Address	0.0.0.0 to 255.255.255.255
Channel Coding	Interactive or background/UL: 64 DL: 384 Kbps/PS RAB
DTCH Data Pattern	External PPP Packet, External IP Packet

/Inritsu

MX88205xC-003 W-CDMA Video Telephony Test

/Inritsu

MX88205xC-003 W-CDMA Video Phone Test

Outline

The MX88205xC-003 W-CDMA Video Phone Test option can test end-to-end video communication between two W-CDMA mobiles using either two MT8820B units or one MT8820B unit with the Parallelphone Measurement option. Moreover, video communication can be tested with a single W-CDMA mobile using the video loopback function.

MX88205xC-003 W-CDMA Video Phone Test

Specifications

MX88205xA-03 W-CDMA Video Phone Test

Ethernet	10BASE-T
Data Rate	Downlink: 64 Kbps, Uplink: 64 Kbps
Channel Coding	Conversation/Unknown/UL: 64 DL: 64 Kbps/CS RAB

/inritsu

MX882050C-008 W-CDMA Band XI MX882050C-009 W-CDMA Band IX

/inritsu

MX882050C-008/-009 W-CDMA Band XI/IX

Outline

The MX882050C-008 W-CDMA Band XI option supports 3GPP Band XI in the call processing mode. In addition, the MX882050C-009 W-CDMA Band IX option supports 3GPP Band IX in the call processing mode.

Parameter Settings

MX882050C-008 W-CDMA Band XI

Frequency Separation	Linked with Channel and set to 48.0 MHz
Band Indicator	Band XI can be selected

MX882050C-009 W-CDMA Band IX

Band Indicator	Band IX can be selected
SIB 5 Type	Auto, SIB5, and SIB5bis can be selected

/Inritsu

Overview

- Easy to connect to HSDPA terminal with call processing
- HSDPA Tx/Rx measurements for up to 3.6-Mbps class HSDPA terminals

/inritsu

Features

- Upgrade via software*1
- Transmit and receive HSDPA physical channels Support Fixed Reference Channel specified (RFC) in 3GPP (FRC used for HSDPA Tx/Rx measurement)
- HSDPA Tx/Rx Measurement

Throughput, CQI, Tx measurements with HS-DPCCH

- Easy to connect to HSDPA-UE and easy to measure Tx/Rx
- Supports Tx/Rx measurements of categories 1 to 6, 11, and 12 Supports H-Set 1 to 5 and QPSK and 16QAM modulation

*1: MT8820B, MT8820B-001, MX882000C, MX882000C-011, and MX882050C

Connections for HSDPA Measurements

3GPP specifies a connection with RMC12.2K plus FRC for HSDPA Tx/Rx measurements. The various HSDPA measurements can be performed after establishing a RMC12.2K connection with the HSDPA terminal and then generating an FRC signal from the MT8820B.

*1: MT8820B, MT8820B-001, MX882000C, MX882000C-011, and MX882050C

Anritsu

HSDPA Tx/Rx Measurements

The MX882000C-011 supports the RF Tx/Rx measurement items shown below.

	3GPP TS34.121	Test Items
	5.2A	Maximum Output Power with HS-DPCCH (Release 5 Only)
	5.2AA	Maximum Output Power with HS-DPCCH (Release 6 and later)
	5.2C	UE relative code domain power accuracy
	5.7A	HS-DPCCH power control
Transmittor	5.9A	Spectrum Emission Mask with HS-DPCCH
Toete	5 104	Adjacent Channel Leakage Power Ratio (ACLR)
16313	J. 10A	with HS-DPCCH
	5.13.1A	Error Vector Magnitude (EVM) with HS-DPCCH
	5.13.1AA	Error Vector Magnitude (EVM) and phase
		discontinuity with HS-DPCCH
	5.13.2A	Relative Code Domain Error with HS-DPCCH
Receiver	6 34	Maximum Input Level with HS-PDSCH
Tests	0.0	Reception (16QAM)

/inritsu

Throughput Measurement

Throughput is measured using the MT8820B to calculate ACK, NACK, and DTx reported from the HSDPA terminal. The throughput of categories 1 to 6, 11, and 12 HSDPA terminals can be measured by selecting H-Set 1 to 5 and the modulation QPSK or 16QAM as a test signal.

••	nougnput	mousure			
Loop Mode 1				Phone-1	
Panameter	Fundamental	UE Report		W-CDMA	
End		UE Power :	22,2 dBm	Fundamental	
HSDPA Throughput				Ţ	Throughput (Kbps) and
Throughput	534	kbps		A ISUPH 6 Throughout	Block Error Mossuromont
Block Error Rate	0.0000 0.00E+00	(= 0.00 %)			BIOCK EITOI Weasurement
Error Count	0				
Transmitted/Sample Judgment	(NACK 2000 Pass	0 DTX J / 2000 Block	0)		Error Type, NACK or DTX
RX Measurement Timeo	ut Length <u>10</u> sec				
HSDPA Throughput					
Number of Sample Lower Limit	2000 Block 500 kbps				
CQI Number of Servic	2000 Rinet				
Range of Counting	Median CQI ± 2				
				12	

Throughput Measurement

Discover What's Possible™ MX882000C-E-L-1

CQI Measurement

The MT8820B decodes the CQI value from the HSDPA terminal, calculates the statistical results (average, median, maximum, minimum, etc.) and displays the histogram shown below. The CQI value reported from the HSDPA terminal can be checked using this functionality.

CQI Measurement

HS-DPCCH Power Control Measurement

The changes in power due to the HS-DPCCH (ACK/NACK and CQI) send burst can be measured. The power difference at each power step point can be viewed using the slot list function.

/incitsu

Tx Measurement at HS-DPCCH Transmission

The transmit power, SEM, and ACLR during HS-DPCCH transmission can be measured. To perform these measurements using the ACK/NACK repetition factor, CQI repetition factor, and CQI feedback cycle, the HS-DPCCH must be sending continuously.

EVM and CDP Measurement

EVM and code domain power (CDP) can be measured in the periods when HS-DPCCH is transmitted and before and after HS-DPCCH transmission. EVM and CDP in each period can be viewed using the slot list function.

MX882050C-011 HSDPA External Packet Data

/Inritsu

MX882050C-011 HSDPA External Packet Data*

Outline

The MX882050C-011 HSDPA External Packet Data option can test the end-toend IP packet data transfer between an external server and a HSDPA terminal. This option supports QPSK and 16QAM modulation as the downlink signal. <u>The maximum downlink data rate is 267 Kbps for QPSK and 388 Kbps for 16QAM.</u>

Specifications

MX882050C-011 HSDPA External Packet Data

Ethernet	10Base-T
Data Rate	Downlink: 267 Kbps max. for QPSK, 388 Kbps max. for 16QAM Uplink: 64 Kbps
Server IP Address	0.0.0.0 ~ 255.255.255.255
Client IP Address	0.0.0.0 ~ 255.255.255.255
Channel Coding	Interactive or background/UL: 64 DL: 267 Kbps/PS RAB for QPSK, 388 Kbps/PS RAB for 16QAM
DTCH Data Pattern	External PPP Packet, External IP Packet

/inritsu

MX882000C-013 HSDPA High Data Rate

/Inritsu

MX882000C-013 HSDPA High Data Rate

Overview

- This option supports the Throughput Test for HSDPA terminals supporting the 3.6-Mbps (category 6), 7.2-Mbps (categories 7 and 8), and 14-Mbps (category 10) classes.

Features

- Upgrade via software*
- Supports following signals for HSDPA Throughput Test

Parameter (Channel Coding)	Maximum data rate (Prioritised RABs DL Max Rate)	Explanation
H-Set 6 (QPSK)	3219 kbps	Signal defined by 3GPP to test throughput of HSDPA terminal of HS-DSCH category 7, 8 (7.2 Mbps class). (QPSK modulation)
H-Set 6 (16QAM)	4689 kbps	Signal defined by 3GPP to test throughput of HSDPA terminal of HS-DSCH category 7, 8 (7.2Mbps class). (16QAM modulation)
Category 6, Max.	3649 kbps	Signal to test throughput of HSDPA terminal of HS-DSCH category 6 (3.6 Mbps class) with maximum data rate.
Category 8, Max.	7205.5 kbps	Signal to test throughput of HS-DSCH category 8 (7.2 Mbps class) HSDPA terminal with maximum data rate.
Category 10, Max.	13976 kbps	Signal to test throughput of HS-DSCH category 10 (14 Mbps class) HSDPA terminal with maximum data rate.

*: Requires MT8820B, MT8820B-001, MX882000C, MX882000C-011, MX882000C-013, and MX882050C

MX882000C-013 HSDPA High Data Rate

High-speed Throughput Measurement

Throughput is measured using the MT8820B to calculate ACK, NACK, and DTx reported from the HSDPA terminal. The throughput can be measured for 7.2-Mbps class HSDPA terminals with FRC H-Set 6 (QPSK/6QAM) defined by 3GPP and 3.6/7.2/14-Mbps class HSDPA terminals with maximum data rate.

Parameter Setting

Throughput Measurement (Ex. Category 8, Max.)

Discover What's Possible™ MX882000C-E-L-1 23

Phone-1

W-CDMA

Fundamental

HSDPA

Throughput

/Inritsu

Overview

- Easy to connect to HSUPA terminal with call processing
- HSUPA Tx measurements for up to 5.76-Mbps class HSUPA terminals Supports categories 1 to 6, and 2 and 10 ms TTI

/incitsu

Features

- Upgrade via software*
- Transmit and receive HSUPA physical channels
- HSUPA Tx Measurements

Transmit power, spectrum emission mask, adjacent channel leakage power ratio with E-DCH

- Easy to connect to HSUPA UE and easy to measure Tx characteristics
- Throughput Monitor

Measures E-DCH throughput from E-TFCI reported from HSUPA terminal

*: Requires MT8820B, MT8820B-001, MX882000C, MX882000C-011, MX882000C-021, and MX882050C

Connections for HSUPA RF Tx Measurements

3GPP specifies a connection with RMC 12.2k, FRC H-Set 1 (QPSK), HS-DPCCH and E-DCH for HSUPA Tx measurements. The various HSUPA measurements can be performed by the MT8820B establishing a RMC 12.2k connection with the terminal and then transmitting data with FRC, and the terminal transmitting data on E-DCH.

HSUPA Tx Measurement Items

The MX882000C-021 supports the RF Tx measurement items shown below.

	3GPP TS34.121	Test Items		
5.2 Transmitter 5.2 Tests 5.2 5.2 5.2	5.2B	Maximum Output Power with HS-DPCCH and E-DCH		
	5.2D	UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH		
	5.9B	Spectrum Emission Mask with E-DCH		
	5.10B	Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH		
	5.13.2B	Relative Code Domain Error with HS-DPCCH and E-DCH		

/inritsu

HSUPA Tx Measurement Items

The transmit power, SEM, and ACLR during HS-DPCCH and E-DCH transmission can be measured. The code domain power (CDP) of E-DCH can be also measured.

Loop Mode 1 12 20:31 Phone-1 mental Measurement> Output Main ₩-CDMA Fundamental Parameter 23.2 dBm Fundamental UE Power : (Meas, Count wer Measurement Power Min Ave Max Moasunomont TX Power 22.95 22.95 22.95 dBm 197 197 197.3 mΨ Spectrum Emission Filtered Power 22.69 22.6922.69 dBm Mask 185.8 185. Ad iacent Channel pectrum Emission Mask View (Meas, Count : 1/ 1) Power emplate Judgment Judgment Pass diacent Channel Power (Meas, Count : 1/ 1) eakage power due to Modulation Offset Freq. Power Avg. Max Min -10 MHz -60.0 -60.00 -5 MHz -47.2-47.0 -47.275 MHz -45.60 -45.62 -45.62 10 MHz -59.8-59.86 -59.86

Transmit Power, SEM, ACLR

Relative Code Domain Power

Throughput Monitor

Throughput is calculated from E-TFCI reported from the HSUPA terminal. The statistical results (average, median, maximum and minimum) of E-TFCI can be also viewed.

2007/03/05 18:20 <fundamental measurem<="" th=""><th>Loop Mode 1 ent> Output Main</th><th>Phone−1 ₩-CDMA</th><th></th></fundamental>	Loop Mode 1 ent> Output Main	Phone−1 ₩-CDMA	
Parameter	Fundamental UE Report		
End	UI Pomor .	0,0 d Pn Fundamental	
HSUPA Throughput	Avg Median Max	Min A HSUPA	
E-TFCI	92.0 92 92	92 <mark>G Throughput</mark>	
Throughput Received (Sample	482.8 kbps		Throughput Monitor
necer vedy sampre	1000 y 1000 brack		
Bange of Counting	Median COT ± 3		
Hange of boartering			
HSUPA Throughput			
Number of Sample			
Audio Parameter Item	List <u>Standard</u>		

/inritsu

MX882000C-031 HSPA Evolution

Measurement Software

/Inritsu

Overview

- Easy to connect to HSPA terminal with call processing
- HSPA Tx and Rx measurements for up to 21-Mbps class HSPA terminals Supports HS-DSCH Category 14

Features

- HSPA Tx and Rx Measurements*

UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH with 16QAM, Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM, and Maximum Input Level for HS-PDSCH Reception (64QAM)

- Transmit and receive HSPA physical channels
- Easy to connect to HSPA UE and to measure Tx and Rx characteristics

*: Requires MT8820B, MT8820B-001, MX882000C, MX882000C-011, MX882000C-021, MX882000C-031, and MX882050C

Connections for HSPA RF Tx and Rx Measurements

3GPP specifies a connection with RMC 12.2k, FRC H-Set 1 (QPSK), H-Set 8 (64QAM), HS-DPCCH and E-DCH for HSPA Tx and Rx measurements. The various HSPA measurements can be performed by the MT8820B establishing a RMC 12.2k connection with the terminal and then transmitting data with FRC.

HSPA Tx and Rx Measurement Items

The MX882000C-031 supports the RF Tx and Rx measurement items shown below.

	3GPP TS34.121	Test Items
Transmitter	5.2E	UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH with 16QAM
Tests	5.13.2C	Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM
Receiver Tests	6.3B	Maximum Input Level for HS-PDSCH Reception (64QAM)

/inritsu

HSPA Tx and Rx Measurements

UE Relative Code Domain Power Accuracy and Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM can be measured. The HSDPA throughput with FRC H-Set 8 (64QAM) can be measured. The throughput can be measured for 21-Mbps class HSDPA terminals with Category 14 with maximum data rate.

UE Relative Code Domain Power Accuracy

Loop Mode 1 <time domain="" measurement=""> Output Main</time>				Phone−1 ₩-CDMA		
Parameter	Time D	Domain	Point L	ist		
En	ıd		UE Powe:	r: -1	1.3 dBm	Point List
HS-DPCCH(Modulation Analysis)(Internal Trigger)			EVM			
Ref. Line :	Mark	ken Off				and Phase Disc.
-9.0 dBm Judg	ment :					
Pa: (2-IR /-IL-2)	88			E TEC	τ. <u>ο</u> ο	CDP
(200/017)				C-IFU	,1, 82	Ratio
the distribution of the second	አሳት ኤስአሳት ሲሳ ት	ynhawraydrawyd	nhagan hada ka	YMYM		
and the second s				him	~~~~~	
·····						
-1.0000 [ms]		6.0000			13.0000	
UE relative code	domain po	wer ratio	in dB:			
Point DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2	
1 -9.77	-14.18	-3.74	-3.74	-19.41	-54.29	
2 -14.63	-19.05	-8.60	-8.60	-4.73	-4.68	
<u> </u>	-14.19	-3.75	-3.14	-19.25	-54.32	
						12

*: For terminal connectivity, contact your Anritsu sales representative

Throughput Measurement (Ex. FRC H-Set 8 (64QAM))

Discover What's Possible™ MX882000C-E-L-1 /inritsu

/Incitsu

Anritsu Corporation

5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1264

• U.S.A.

Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

 Canada Anritsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brazil

Anritsu Eletrônica Ltda. Praca Amadeu Amaral, 27 - 1 Andar 01327-010-Paraiso-São Paulo-Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

 Mexico Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

• U.K.

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

France

Anritsu S.A. 16/18 avenue du Québec-SILIC 720 91961 COURTABOEUF CEDEX, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Germany

Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

• Italy

Anritsu S.p.A. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden Anritsu AB

Borgafjordsgatan 13, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

• Finland

Anritsu AB Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark

Anritsu A/S Kirkebjerg Allé 90, DK-2605 Brøndby, Denmark Phone: +45-72112200 Fax: +45-72112210

Spain Anritsu EMEA Ltd. Oficina de Representación en España

Edificio Veganova Avda de la Vega, n° 1 (edf 8, pl 1, of 8) 28108 ALCOBENDAS - Madrid, Spain Phone: +34-914905761 Fax: +34-914905762

Russia

Anritsu EMEA Ltd. **Representation Office in Russia**

Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962

United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

Specifications are subject to change without notice.

Singapore

Anritsu Pte. Ltd. 60 Alexandra Terrace, #02-08, The Comtech (Lobby A) Singapore 118502 Phone: +65-6282-2400 Fax: +65-6282-2533

India Anritsu Pte. Ltd.

India Branch Office 3rd Floor, Shri Lakshminarayan Niwas, #2726, 80 ft Road, HAL 3rd Stage, Bangalore - 560 075, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

• P.R. China (Hong Kong)

Anritsu Company Ltd. Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong Phone: +852-2301-4980 Fax: +852-2301-3545

• P.R. China (Beijing) Anritsu Company Ltd.

Beijing Representative Office

Room 2008, Beijing Fortune Building,

No. 5, Dong-San-Huan Bei Road, Chao-Yang District, Beijing 100004, P.R. China Phone: +86-10-6590-9230 Fax: +86-10-6590-9235

Korea

Anritsu Corporation, Ltd. 8F Hyunjuk Building, 832-41, Yeoksam Dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604

Australia

Anritsu Pty. Ltd. Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

• Taiwan

Anritsu Company Inc. 7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

Please Contact:	
	081225