IVI COM drivers – Quick start guide

[image: image24.png]Zinritsu

[image: image1.png]

[image: image2.png]

[image: image3.png]

8675 Miralani Drive, Suite 150 • San Diego, California 92126

858.578.6787 • Fax 858.578.6873 • E-mail vektrex@vektrex.com
IVI COM Drivers

Quick start guide
V1.1
[image: image4.png]INTERCHANGEABLE

4]

VIRTUAL INSTRUMENTS

Prepared for:

[image: image25.png]

1. Visual C++

Using the COM component to create an application under Visual C++ is very simple, just a few steps to follow…

· Step 1: Creation of the project.

Let’s create a new MFC project. A simple dialog based program should be sufficient.

[image: image5.png]MFC AppWizard - Step 4 of 4 21|

AppWizard creates the following classes fo you:

Canitsublg

Clase name: Heade f:
[Cantsudpn

Base class: Iplementalion e

<Back Erish Cancel

· Step 2: Design of the dialog box.

Let’s design a very simple dialog box allowing us to ask for the description of the device, to initialize a connection to the device, to perform a self-test.

[image: image6.png]Desciption

Init

Sef test

Cancel

· Step 3: Turning on of COM.

This step is done really simply by adding a call to the AfxOleInit() (CoInitialize(), …) function in InitInstance():

[image: image7.png]Chnritsubpp thedpp:

SILILIIIIIIIIII IS0 010000000000 0000000 007,
/7 Chnritsubpp initialization

BOOL Chnritsubpp: : InitInstance()

Af=Olelnit():
AfzEnableControlCantainer() :

/7 Standard initialization
77 Tf you are not using these features
77 "of your final executable. you shou
77 the specific initialization routin

#ifdef _AFYDLL
Enable3dCantrols(): /7 Call th:
#elss
Ensble3dControlsStatic(); // Call th
#endif

Canritsubly dlg;
" DMainWnd = &dlq:

· Step 4: Importation of the COM component.

The application is now COM enabled. It’s time to import the component itself. For example, let’s take Anritsu68C69B. To be able to use it, just use the keyword “import” and the path to the dll file:

[image: image8.png]#if _MSC_VER > 1000
#pragna once
#endif /7 _WSC_VER > 1000

#ifndef __AFXVIN_H_

#erzor include 'stdafz.h' before including this file for BCH
#endif
#include "resource.h’ /7 wain synbols

#inport "C:\Program Files\Vektrex IVI COM Drivers\Anritsu68C69B_inritsu.dll” no_namespaced

LILILIIIII L1000 000 000000000000 0000000 0000000 0000000 0000000 0000000 0000000007
77 Chnritsubpp

/7 See Anritsu cpp for the implementation of this class
2

class Chnritsudpp : public CWindpp

public
A

· Step 5: Creation of an instance of the object.

Now that the object is imported, it’s time to use it. Let’s create an instance. This will be a very easy task, using pseudo-pointers to the object: “the smart pointers”. Smart pointers are C++ classes which allow a very easy handling of the COM components, just like CString allows a very easy handling of the strings (hiding the allocations, the deallocations, …). No need to declare any smart pointers, they are already known, since they have been imported during the step 4. When an instance of an IVI COM object is created, a pointer to the default interface is returned (root of the compliant interface). For Anritsu68C69B, this interface is called: IIviRfSigGen. The smart pointer type corresponding to this interface is IIviRfSigGenPtr. Let’s add the variable that will allow us to handle the instance of the IVI COM object:

IIviRfSigGenPtr pDevice;

[image: image9.png]afx_msg void OnSysComnand(UINT nID, LPAR
afx_nsg void OnPaint():
afx_nsg HCURSOR OnQueryDragleon():
£/ YTAFE_NSG
DECLARE_MESSAGE_MAP()
private
IIviRSigGenPtr pDevice:
¥

/7{ {AFX_INSERT_LOCATION}}
77 Micrasoft Visual Ci+ vill insert addition

#endif // |defined(AFX_ANRITSUDLG_H_ 3D913E3

Let’s create our instance in the OnInitDialog() function:

[image: image10.png]e o TEE EEEs s A
/7 T0DO: Add extra initialization here

HRESULT hr:
hr = phevice.Createlnstance(__uuidof (Anritsu8C698)):|

return TRUE: /7 return TRUE unless you set the focus to a contral

That’s it. 5 easy steps are all you need to include any IVI COM driver. Let’s use it now…

· Step 6: Utilization.

Let’s implement the function behind the “Description” button. Here is a description of the “Description” property taken from the help files:

HRESULT get_Description(

BSTR * pDescription
);

We know that this function is located in the “IdBase” interface. Consequently, the name of the smart pointer is IIdBasePtr. Calling “Description is as simple as that:

[image: image11.png]void ChnritsuDlg::OnButtonDescription()

<
£/ TODO: Add your control motification handler cods here
UpdateData(TRUE) :
I1dBaseFtr pldBasePtr(pDevice):
n_Text = CString(BSTR(pIdBasePtr—>Description
@ AddRer
UpdateData(FALSE) :
;P ¢) & ClassType
@ Description
void Chnritsublg::OnButtonInit() | g Driverlocation
@ Drivertiajorversion
77 TODO: hdd your control notif] & pUSUCLIEC
3 @ DriverRevision

& Drivervendor
void ChnritsuDlg: :OnButtonSelftest (| 4 FrmwereReviion

/7 TODO: Add your contral notifl®SetCessTyee

And as you can see, you have the benefit of the “intellisense” functionality to help you to program faster. One other great feature is the possibility to handle the exceptions in a very simple way. Let’s modify our function:

[image: image12.png]void Chnritsublg: :OnButtonDescription()

<
£/ TODO: Add your control notification handler code hers
UpdateData(TRUE) :
try

I1dBaseFtr pldBasePtr(pDevice):
n_Text = CString(BSTR(pIdBasePtr—>Description)):

catch (_com_erroré)

<

m_Text = (charx) =.Description():
b
UpdateData(FALSE) :

The returned description is a very informative string, such as: “the connection has not been established”… You don’t need to manage any numeric error code. You can implement the two remaining function the same way…

2. Labview

In Labview, all the driver functions are contained in the Anritsu68C69B palette under Instr.Lib, as shown below:

[image: image13.png]=0 unctions
Instrument 1/0

instrament 170 |

—instument Drivers

Aniitsu68C698

! Instiument Speciic Inteiaces

»
— IVl CompliantIntetfaces b
»

»
Setuv »
LUty b

—instiument

The final palette that is open in the above illustration contains the Init and Close VIs that will be at the beginning and end of any section of Labview code that talks to the instrument.

The block diagram from a simple program using the driver functions is shown below:

[image: image14.png]

This diagram shows the structure of applications using the driver, a string of functions joined by an “instrument handle” and the error cluster. This example shows how to implement a VI that runs a Self Test on the instrument. The Self Test function returns a result (numeric) and a message (string) that are passed to front panel indicators.

3. Visual Basic

This section describes the steps required to access the COM object from Visual Basic. Building a simple project will be described to illustrate this process.

· Step1: Making the COM object available to the project

Once a new project has been created select References from the Project Menu. A dialog similar to that shown below will appear. This box contains a list of the registered COM objects on the computer. Select the Anritsu 68C69B object (highlighted in the list below) and press OK.

[image: image15.png]avalable References: o

I OLE Automation Browse.
|

ctve DS Type Lbrary
Active Setup Control Lbrary.

ActiveBar Control Pririty
Actveavie cantrol type lbrary tep
ActiveX DLL to perform Migration of 15 Repository 1 ﬂ

i B iy 10T

L53PE o sbase Setup Wiza'd
hoplkation Perormance Exlre 2.0 ntrfaces

iolcation Perfarmance Exclorer Clent
<

AnvitsuGBCE9B_Anrtsu 1.0 Type Library

Lacation: C{PROJECTS|ANRITSLI G3CESB|CODEISERVER CODEVARITE
Language: Standard

· Step 2: Creating an instance of the object

At the top of the Visual Basic Code window type the line shown in the diagram below. The diagram shows Visual Basic’s Intellisense in action, once the space after New has been pressed a list of possible options appears. Select Anritsu68C69B. As well as creating the object this line of code sets RFSigGen to be a reference to the default Interface inside the object – in this case IIviRFSigGen (the top level interface of the IVI compliant functions).

[image: image16.png]1 Project! - Form1 (Code)

[fceneran =] [eciarations)

i REsigcen as New |

Private Sub Form L@ Anffeuescesn
W AnritsuBECBIB_AnritsuLib

End s & Collecton

@ Eronject

& Formt

& olonal

4 projett

· Step 3: Define a reference to the Instrument Specific Interfaces (if required)

The illustration below shows how to define a reference to the root interface of the instrument specific functions (IAnritsu68C69B).

[image: image17.png][Form = Jrosa

Dim RESigeen 4s Nev bmitsusncess
ain TanéecsoB as i
Privace Sus Forrgy

& AnrisuBECoSBCalbraion
End s 8 lAnrsuBaCB9BConfiguration

8 IAnrsuBECHIBCWErequency

£ IAnrsuBECB9BFastFrequencySwich

8 IAnrsuBaC9BFrequencySweep

& nritsupECoSBListEwep 5

· Step 4: The Form_Load Procedure

When a Visual Basic program is run, the form_load procedure is executed first, so this is an ideal place to place the call to the driver’s Init function. It is also the place where the reference to the Instrument Specific Interfaces needs to be associated with the instance of the driver object that was created. This is done by the line Set IAn68C69B = RFSigGen and is the Visual Basic way of implementing the COM Query Interface. The diagram below shows this code and also shows the user starting to enter the code that will run the Init function (at the bottom of the Intellisense window).

[image: image18.png][Form

Dim RFSigGen As New Anritsusscess
Dim IAn6ECESE hs IinritsusSCE9E
Private Sub Form Load(

Set IAn6BCESE = RFSigGen

RFSigGen.
End Sw egfBace
- Ciose

&' DigitalModulation
e FrequencysStep
e FrequencySweep
el

S Init

The next diagram shows the help “tooltip” that is displayed when space is pressed after Init.

[image: image19.png]™ Project] - Form (Code) =k
[Form El= =l
Dim RFSigoen is New Anritsuscess =

Din

IAn6SCE9E Ls Ihnritsusecsss

Privi

End

ate Sub Form Load()
Set IAn6BCESE = RFSigGen

RFSigGen. Init
Sup Init{ResourceDescriptor As String, icQuery As Boolean, Reset As Boolean, OptionString As String) |

The finished Form_Load procedure is shown below:

[image: image20.png]Private Sub Form_Load()
Set IAn6BCESE = RFSigGen

RFSigGen.Init "GPIB1::S", True, True, "QueryInstrStatus=True"

End Sub

If more help is needed to complete the function, click on the word Init and hit F1, this will open the driver’s help file to the appropriate place.

· Step 5: Coding a Function

The diagram below shows a completed Visual Basic procedure that calls a method in the Instrument Specific CW Frequency Interface. Once again, Intellisense will help each step of the way including listing options for the enumerated type that is passed into the method. This code assumes that on the Visual Basic form is a button named Get Frequency for the user to press and a text box named Frequency where the returned value will be displayed. This code snippet also shows how error handling is accomplished within the procedures – if an error occurs an error handler routine will be called (see step 7).

[image: image21.png]Private Sub GetFrequency Click()
on Error GoTo handler

Frequency = IAn6C69B.CUFrequency.GetFrequency (AnritsusSC69B_FREQUENCY F1)

Exit Sub
handler:
Handle_Errors
Resume Next
End Sub

· Step 6: Tidying Up at the end of the Program

The code snippet below is run when the user presses a button on the form named Close.
[image: image22.png]Private Sub Close Click(
on Error GoTo handler

RFSigGen.Close
Set RFSigen = Nothing
Set IAn6ECESE = Nothing
Unlosd e

Exit Sub
handler:
Handle_Errors
Resume Next
End Sub

Here the COM object’s Close function is run, the references are released and the program is stopped.

· Step 7: Error Handler

If an error occurs inside the COM object, information about what happened will be passed back to Visual Basic inside an error object. This simple error handler causes a dialog box to appear with the error number and description. When the user clears the dialog box, program execution continues.

[image: image23.png]Private Sub Handle Errors()
Msg = "Error Number = " + Str§ (Ecr.Number) + Chr§(10) + Chr§(10) + Err.Description
MsgBox Msg, , MError!"

End Sub

4. Lab Windows CVI, v6.0 or greater

This section describes the steps required to access the COM object from Lab Windows CVI, v6.0 or greater. Older versions of CVI do not support COM-based drivers.

1. Go to the menu Tools->Create ActiveX Controller.

2. Follow the on screen instructions.

3. When it prompts to choose the server, select either server:

Anritsu68C69B_Anritsu 1.0 Type Library

AnritsuMG3690 1.0 Type Library

4. On the next window, click the "Advanced Options..." button.

5. A message will appear about duplicate entries, click OK.

6. On the top list, select:

"IAnritsu68C69BMarker" or

"IAnritsuMG3690Marker"
7. On the bottom list find the two "GetFrequency" entries. Click on one that shows "method GetFrequency" in the "Method Description" box.

8. Change the "Method Tag" entry to "GetFrequency2"

9. Repeat steps 7 and 8 for the two "SetFrequency" entries.

10. Click Ok, then Next, then Close to finish.

Electronic Systems, Inc.

��
��
�

10/11

