/inritsu

シグナルアナライザと Visual System Simulator[™]の連携

MS2690A/MS2830A シリーズ シグナルアナライザ

目次

1. 概	要	2
1.1.	使用機器	2
1.2.	シグナルアナライザ MS2690A/MS2830A シリーズ	3
1.3.	AWR 社システムシミュレータ Visual System Simulator [™]	3
1.4.	シグナルアナライザと Visual System Simulator [™] の連携	4
2. セ	ットアップ	5
2.1.	VISA (Virtual Instrument Software Architecture)ドライバのセットアップ	5
2.2.	PC とシグナルアナライザの Ethernet 接続セットアップ	5
2.3.	Ethernet インタフェースの設定	6
2.4.	評価信号波形パターンの保存先フォルダ設定	7
3. シ	グナルアナライザと Visual System Simulator™ の連携	8
3.1.	ベクトル信号発生器へのシミュレーション評価信号波形パターンのタウンロード	9
3.2.	シグナルアナライザからの測定データのフィードバック1	0
4. LT	TE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション12	2
4. LT 4.1.	E FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション12 システムダイアグラム1	2 2
4. LT 4.1. 4.2.	E FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション12 システムダイアグラム1 解析結果グラフ表示機能1	2 2 3
4. LT 4.1. 4.2. 5. ま	TE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション12 システムダイアグラム1 解析結果グラフ表示機能1	2 2 3 4

1. 概要

シグナルアナライザ MS2690A/MS2691A/MS2692A および MS2830A と AWR 社シミュレーションソフトウェ ア Visual System Simulator[™]の連携により、通信システム設計の効率化を支援します。

<主な用途>

- ▶ 実機とシミュレーションの融合設計
- > 無線通信規格のテスト
- ▶ 回路との協調シミュレーション、エンドツーエンドのシミュレーション
- ▶ RF コンポーネント仕様の開発

シグナルアナライザ/ベクトル信号発生器を使用するテスト工程とシミュレーション工程とを連携した設計が簡 単に実現でき、RF コンポーネントやシステム全体のパフォーマンスの最適化を効率良く行えます。

実際の測定データをもとにしたシミュレーション環境によって、設計・試作回数を減らし、開発期間を短縮,開 発コストを削減できます。さらに、必要とする仕様を満たすように性能調整を行うことができ、オーバースペック化 を抑え製品コストを削減できます。

本ソリューションは、競争の激しい通信市場への早期製品投入、コスト削減に貢献します。

本アプリケーションノートでは、シグナルアナライザとシミュレーションソフトウェア Visual System Simulator[™]の連携によるシステム設計の概要,使用機器のセットアップ手順,シグナルアナライザと Visual System Simulator[™]との連携方法,最後に、LTE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション例について説明します。

1.1. 使用機器

本アプリケーションノートの説明で使用する機器を表 1-1に示します。

シグナルアナライザ(最小構成例)	
形名	品名	備考
MS2690A	ー本体ー シグナルアナライザ (50Hz ~ 6.0GHz) ーオプションー	MS2690A シリーズ、または
MS2690A-020	ベクトル信号発生器 (125MHz ~ 6.0GHz)	MS2830A シリーズのシグナル マナライザヤトバベクトル信号
MS2830A	ー本体ー シグナルアナライザ ーオプションー	発生器オプションを使用しま す。 参照:「6、オーダリングインフ+
MS2830A-040	シグナルアナライザ (9kHz ~ 3.6GHz)	多点: 0. オータウンクインフォ メーション(抜粋)
MS2830A-005	解析帯域幅 10MHz	
MS2830A-020	3.6GHz ベクトル信号発生器 (250kHz ~ 3.6GHz)	
AWR 社ソフトウェア		
Visual System Sir AWR Connected ¹	nulator [™] ^M for Anritsu	
外部コントローラ PC		
PC 本体		
VISA ドライバ	(NATIONAL INSTRUMENTS 社 Web サイトかう す。)	ら NI-VISA をダウンロードできま
Ethernet ケーブル	(クロスケーブル)	

表 1-1. 使用機器

1.2. シグナルアナライザ MS2690A/MS2830A シリーズ

シグナルアナライザ MS2690A/MS2830A シリーズは、送受信のシミュレーション実測検証環境で必要となる 信号発生器 (ベクトル信号発生器 MS2690A/91A/92A オプション 020 および MS2830A オプション 020/021), デジタイザ機能,波形メモリを"1台"に統合しているため、測定環境が迅速かつ容易に構築できます。

シグナルアナライザのデジタイザ機能では、 Ø 1-1 に示すように測定器内部の誤差を自動補正するため、補 正データを使用した計算や、補正データの検証などの煩わしい作業を省けます。デジタイズした波形データをシ ミュレーションツールにてそのまま使用できます。

図 1-1. デジタイザ機能

1.3. AWR 社システムシミュレータ Visual System Simulator[™]

Visual System Simulator[™]は、ブロックダイアグラムを使用した通信システム/レーダ用シミュレータです。 AWR Connected[™] for Anritsu によって、Visual System Simulator[™]とシグナルアナライザおよびベクトル信 号発生器との連携動作ができます。Ethernet などの外部インタフェースを介して実測検証用の計測器の設定・ 制御を行うためのシステムブロックがエレメント化されています。このエレメントをシステムダイアグラム(*図 1-2*) 上に組み込むことで、実機による検証工程とシミュレーション工程の連携を簡単に実現できます。

図 1-2. Visual System Simulator[™] システムダイアグラム

1.4. シグナルアナライザと Visual System Simulator[™]の連携

図 1-3 にシグナルアナライザと Visual System Simulator[™]の連携による RF コンポーネント(図中 DUT: Device Under Test)の協調設計イメージを示します。

Visual System Simulator[™] で生成したシミュレーション評価信号のベースバンド IQ 波形データをベクトル信 号発生器にダウンロードし、シミュレーションと同じ評価信号をベクトル信号発生器から出力します。実際に試作 した DUT の出力信号をシグナルアナライザのデジタイザに取り込みます。シグナルアナライザのデジタイズデ ータをフィードバックし、シミュレーション設計サイクルにおいて検証できます。

シグナルアナライザの一連の制御は、Visual System Simulator[™]により Ethernet インターフェースを介して 簡単にできます。

シグナルアナライザ/ベクトル信号発生器を使用するテスト工程とシミュレーション工程とを連携した設計を簡 単に実現でき、RF コンポーネントやシステム全体のパフォーマンスの最適化を効率良く行えます。

図 1-3. 計測器とシミュレーションの協調設計

2. セットアップ

2.1. VISA (Virtual Instrument Software Architecture)ドライバのセットアップ

シグナルアナライザを Etherner(TCP/IP)でリモート制御するためには、VISA ドライバを外部コントローラ PC にインストールします。

NATIONAL INSTRUMENTS 社 Web サイトから NI-VISA をダウンロードできます。 使用方法に従って、NI-VISA ドライバを PC 外部コントローラにインストールします。

2.2. PC とシグナルアナライザの Ethernet 接続セットアップ

シグナルアナライザは、リモート制御のためのインタフェースとして、Ethernetを標準装備しています。 シグナルアナライザとリモート制御に使用する外部コントローラ(PC)は、 図2-1 に示すように本器背面の各イ ンタフェース専用コネクタで接続します。

Ethernet ポートに接続

MS2690A/91A/92A 背面パネル

MS2830A 背面パネル

図 2-1. シグナルアナライザの Ethernet 接続

2.3. Ethernet インタフェースの設定

シグナルアナライザの Ethernet インタフェースの設定手順を説明します。 <手順>

- (1) (System Config)を押すと、Configuration 画面が表示されます。次に、「1」(Interface Settings)を押すと、図2-2に示す Interface Settings 画面が表示されます。
 (2) 本器のネットワークの設定を確認・設定できます。 Ethernet Settings の IP Address, Subnet Mask, Host Name を確認してください。 Configuration 画面で IP Address, Subnet Mask, Default Gateway を設定する場合には、DHCP を Off にしてから設定してください。 VISA による制御プログラムを記述する際の Resource Name は以下の例のようになります。 IP Address = 192.168.100.1 の場合 TCPIP0::192.168.100.1::inst0::INSTR
 (3) デリミタの設定を変更します。
- (3) ナリミタの設定を変更します。

Terminator Settings の Terminator を、"CR/LF", "LF", "None(EOI only)" から選択します。

(4) Raw Socket Port Number を設定します。

Raw Socket 接続する際には、Ethernet Settings の Raw Socket Port Number を設定します。 設定範囲: 1 ~ 65535

初期値: 49153

分解能: 1

📅 Paramo	eter Setting	3			×
Interfac	e Settings	Copy Settings	System Se	ettings	
_ GPIB S	ettings —				
Addres	35	1 🗄			
		[Min0 to Ma	ax 30]		
Etherne	et Settings —				
DHCP		🔍 On 👘	• Off		
IP Add	Iress	192 🛨 168 🗄	100 🗧 1	··	
Subne	t Mask	255 🔁 255 🗄	255 🗧 0	i i	
Defaul	t Gateway	🗄 🗄	🖯 -	•	
Host N	lame	SN620084737)		
Raw S	ocket Port N	umber	49153		
USB(B)	Settings —				
Vendo	r ID	0x0B5B			
Produ	ct ID	0x0006			
Serial	Number	6200847379			
 Termina	ator Settings				
Ter	minator	CR/LF	•		
 _⊂Remote	Language Se	ettings			
Lar	nguage	SCPI	•		
			Set	Cancel	

図 2-2. Interface Settings 画面

2.4. 評価信号波形パターンの保存先フォルダ設定

Visual System Simulator[™]で生成したシミュレーション評価信号のベースバンド IQ 波形データをベクトル信号発生器にダウンロードし、ベクトル信号発生器からしシミュレーションと同じ評価信号を出力します。 波形データのダウンロードから信号出力までの一連の設定制御は、Visual System Simulator[™] により Ethernet インターフェースを介して行われます。

シミュレーション波形データは、ベクトル信号発生器用波形パターンファイルとしてシグナルアナライザ本体内 蔵のハードディスクにダウンロードされます。

シグナルアナライザ本体の波形パターン保存フォルダ [Waveform]の共有化手順について説明します。 <手順>

- (1) シグナルアナライザにマウスを接続します。
- (2) アプリケーション画面上で「右クリック」し、「Show the Desktop」を選択します。

∕1 MS2690	M Signal Analyzer						11/28/20	011 13:18:47
5	Spectrum						🖱 📰 Signal A	inalyzer 🚡
MKR 1	1.999 314 062 50	GHz -85.14 dBm/9	96.1 kHz	Analysis	Start Time	0 s	Irace	L.
				Analysis	Time Leng	th 1.000 00 ms	Trac	e Mode
[dBm]				Det.:	Average	Trace Point : 1025		
0.0								Ŀ,
.10.0							Analy	sis Time
-10.0								
-20.0								Ŀ,
-30.0							s	cale
40.0					Applica	ation Switch		lý.
-50.0					Single		St	orage
60.0			+		Contine	uous	1	
-00.0					Preset			Ļ,
-70.0					Cal		F	₹BW
-80.0					Save Recall			_
					Show t	the Desktop	Ret	turn to
-90.0		~~~~~				~ ~ ~ ~ ~ ~ ~	S	
-100.0		~ ~					opec	trogram
Sta	art 1.994 900 000 00	GHz			Stop	2.004 900 000 00 GHz	Timel	Detection
Common	and Time	l ovol			Trigger		Αν	orago
Center	Freg. 1.999 900 000	GHz Ref. Level	0.00 dE	3m	Triaaer	SG Marker		cruze
Freq. S	Span 10	MHz			Delay	0 s	Sut	Trace 5
© Captur	e Length 1.000 0	0 ms Attenuator	10 dE	3			Se	atting
Ref.Int		Correction On					1 of 2	C

(3) 「マイコンピュータ」を開き、

C: ¥Program Files ¥Anritsu Corporation ¥Signal Analyzer ¥System

の「Waveform」フォルダを共有化します。

```
<u>フォルダ名は変更しないでください。</u>
```

	🖥 System			
	File Edit View Favorites Tools He	elp		2
(🌏 Back 👻 🕥 🖌 🏂 🔎 Search	🕞 Folders 🛛 🏠 🎲 🗙 🍤		
ł	Address 🗀 C:\Program Files\Anritsu Corpor	ation\Signal Analyzer\System		💌 🄁 Go
	Bin	digitaliq	Drivers	
	Hardware Objects	Log	Log Files	
	Maintenance	RNC-ATM	Waveform	
	HardwareObjectList XML Document 6 KB			

3. シグナルアナライザと Visual System Simulator[™] の連携

図 3-1 に Visual System Simulator[™]のシステムダイアグラム例を示します。

AWR Connected[™] for Anritsu は、シグナルアナライザおよびベクトル信号発生器オプションと Visual System Simulator[™]の連携動作を可能とします。

Visual System Simulator[™] のソフトウェアオプションである TestWave[™] には、システムダイアグラムからシ グナルアナライザとベクトル信号発生器のコンフィグレーションや制御を行うためのブロックエレメント [TESTWAVE_2PORT]が用意されています。

図 3-2 に示す[TESTWAVE_2PORT]エレメントを使用して、シグナルアナライザとベクトル信号発生器を Ethernet 接続し、波形パターンのダウンロード,実測データ(デジタイズデータ)の読み込みを簡単に行えます。

図 3-1. Visual System Simulator[™] システムダイアグラム

Add System Block [4 of 715]		
Type to filter the list. Ctrl+Click the column header to change the column to filter		TESTWAVE_2PORT
Name 🗸 Description Pat	1	
TESTWAVE_2PORT IQ Instrument Combined Generator and Measurement Test TESTWAVE_REMCTRI. RemoteControl Instrument Script Engine Test TESTWAVE_SIGGEN IQ Signal Generator Instrument Test TESTWAVE_SIGGEN IQ Signal Generator Instrument Test TESTWAVE_VSASRC IQ Vector Signal Analyzer Instrument Measurement Test	Wave¥ Wave¥ Wave¥ Wave¥	GENLVL=D dBm GENRFON=Don't force.RF.QN GENLENGTH=1000 GENATYPE=None GENADDR="19" GENWRAPSMOQTHING=0 VSAFRQ=0 MHz VSAIQOUTMODE=Baseband IQ Mode VSASETTLING=0.ns VSATYPE=None
test	OK Cancel	VSAADDR="16" VSACLK=1 MHz Synchronisation Vector Signal Generator DUT By Analyzer

3.1. ベクトル信号発生器へのシミュレーション評価信号波形パターンのタウンロード

Visual System Simulator[™]で生成したシミュレーション評価信号のベースバンド IQ 波形データをベクトル信号発生器にダウンロードし、ベクトル信号発生器から評価信号を出力します。

TESTWAVE_2PORT エレメントのパラメータを設定します。

- <手順>
- (1) TESTWAVE_2PORT エレメントをダブルクリックします。
- (2) Element Options ダイアログが開きます。

Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Description	
N ID	"MS2690A"							Element ID	
	Ho Foode		Ξ.	Ξ.	Ξ.	0	0	Face Sindston to Compare Equipment / Transfer	
GENFRQ	2000	MHz				0	0	Signal Generator Carrier Frequency	
B GENLVL	-10	dBm				30	30	Signal Generator Carrier Level	
E GENRFON	Switch RF ON					0	0	Force Signal Generator Output On	
B GENLENGTH	10000					0	0	Signal Generator ARB sequence length	
E GENTYPE	Anritsu MS269xA opt 020, MS2830A opt 020/021					0	0	Signal Generator Instrument Type	
GENINITSTR 1	-							SCPI/GPIB Command sent to Signal Generator at simulation start	
GENINITSTR2								SCPI/GPIB Command sent to Signal Generator at each simulation pass	
GENDESTSELECT	0					0	0	SoftPlot Index to Measurement Data Store	
S GENADDR	"TCPIP0:: 192. 168. 100. 1::inst0::INSTR"							GPIB Address COMx LAN Address VISA Descriptor	
B GENCLK	0	MHz				0	0	Signal Generator ARB Clock Rate	
GENWRAPSMOOTHING	0					0	0	Signal Generator Wraparound Smoothing Points	
GENSINGLEDOWNLOAD	Download All					0	0	D Download repeatedly, or once only first GENLENGTH samples	
- reneral	2000		2	8	8			Vector Dignal Analyzer Centre Frequency	
VSAIQOUTMODE	Modulated Complex Envelope Mode		=	닅	닅	0	0	Output representation can be either baseband IQ or modulated complex envelope at carri	
VSASETTLING	0	ns	<u>u</u>	는	<u>L</u>	0	0	Measurement Settling Time	
VSATYPE	Anritsu MS2690A/91A/92A, MS2830A		LL	Π.	L	0	0	Vector Signal Analyzer Instrument Type	
S VSAINITSTR1	":INST:SEL SIGANA;:TRIGger:SOURce SG;:SENS:FREQ:SPAN							SCPI/GPIB Command sent to VSA at simulation start	
S VSAINITSTR2	•							SCPI/GPIB Command sent to VSA at each simulation pass	
S VSASRCSELECT	"40"							SoftPlot Index to Measurement Data Store	
S VSAADDR	"TCPIP0::192.168.100.1::inst0::INSTR"							GPIB Address COMx LAN Address VISA Descriptor	
B VSACLK	50	MHz				0	0	Vector Signal Analyzer Acquisition Clock Rate	
Element ID									

(3) [Secondary] ボタンをクリックし、表 3-1 に示す項目を設定します。

設定項目の詳細は、ダイアログ内の[Element Help]で参照できます。

設定項目	設定値
GENFREQ	出力信号の中心周波数
GENLVL	出力信号レベル
GENRFON	[Switch RF ON]を選択
GENLENGTH	ベクトル信号発生器にダウンロードするシミュレーション波形データのサ
	ンプル数
GENTYPE	[Anritsu MS269xA opt 020, MS2830A opt 020/021] を選択
GENDESTSELECT	0
GENADDR	VISA 制御するためのシグナルアナライザ側のリソース名
	IP Address = 192.168.100.1 の場合
	TCPIP0::192.168.100.1::inst0::INSTR

3.2. シグナルアナライザからの測定データのフィードバック

実際に試作した DUT の出力信号をシグナルアナライザのデジタイザで取り込み、デジタイズデータをシミュレーション設計サイクルにフィードバックします。

シグナルアナライザのデジタイザ機能では、 Ø 3-3 に示すように測定器内部の誤差を自動補正するため、補 正データを使用した計算や、補正データの検証などの煩わしい作業を省けます。デジタイズした波形データをシ ミュレーションツールにてそのまま使用できます。

図 3-3. デジタイザ機能

TESTWAVE_2PORT エレメントのパラメータを設定します。

<手順>

- (1) TESTWAVE_2PORT エレメントをダブルクリックします。
- (2) Element Options ダイアログが開きます。

Name	Value	Unit	Tune	Opt	Limit	Lower	Upper	Description
N ID	"MS2690A"							Element ID
SETUPPAUSE	No Pause					0	0	Pause Simulation to Configure Equipment / Transfer
GENFRQ	2000	MHz				0	0	Signal Generator Carrier Frequency
B GENLVL	-10	dBm				30	30	Signal Generator Carrier Level
E GENRFON	Switch RF ON					0	0	Force Signal Generator Output On
B GENLENGTH	10000					0	0	Signal Generator ARB sequence length
GENTYPE	Anritsu MS269xA opt 020, MS2830A opt 020/021					0	0	Signal Generator Instrument Type
GENINITSTR 1	-							SCPI/GPIB Command sent to Signal Generator at simulation start
GENINITSTR2								SCPI/GPIB Command sent to Signal Generator at each simulation pass
GENDESTSELECT	0					0	0	SoftPlot Index to Measurement Data Store
S GENADDR	"TCPIP0:: 192. 168. 100. 1::inst0::INSTR"							GPIB Address COMx LAN Address VISA Descriptor
GENCLK	0	MHz				0	0	Signal Generator ARB Clock Rate
GENWRAPSMOOTHING	i 0					0	0	Signal Generator Wraparound Smoothing Points
	Download Ar		-	Ξ.			U	pownload repeatedly, or once only instructive misamples
VSAFRQ	2000	MHz				0	0	Vector Signal Analyzer Centre Frequency
VSAIQOUTMODE	Modulated Complex Envelope Mode					0	0	Output representation can be either baseband IQ or modulated complex envelope at carrie
VSASETTLING	0	ns				0	0	Measurement Settling Time
VSATYPE	Anritsu MS2690A/91A/92A, MS2830A					0	0	Vector Signal Analyzer Instrument Type
S VSAINITSTR 1	":INST:SEL SIGANA;:TRIGger:SOURce SG;:SENS:FREQ:SPAN							SCPI/GPIB Command sent to VSA at simulation start
S VSAINITSTR2	-							SCPI/GPIB Command sent to VSA at each simulation pass
VSASRCSELECT	"40"							SoftPlot Index to Measurement Data Store
S VSAADDR	"TCPIP0:: 192.168.100.1::inst0::INSTR"							GPIB Address COMx LAN Address VISA Descriptor
VSACLK	50	MHz				0	0	Vector Signal Analyzer Acquisition Clock Rate
Jement ID								

(3) [Secondary] ボタンをクリックし、 表 3-2 に示す項目を設定します。

設定項目の詳細は、ダイアログ内の[Element Help]で参照できます。

設定項目	設定値
VSAFREQ	解析信号の中心周波数
VSAIQOUTMODE	[Modulated Complex Envelope Mode] を選択
VSATYPE	[Anritsu MS2690A/91A/92A, MS2830A] を選択
VSAINITSTR1	シミュレーション開始時のシグナルアナライザの設定コマンド
	(例) シグナルアナライザ機能に切替, トリガ信号源: SG marker, 解析周波数スパン:
	31.25MHz, Save captured data 実行時の出力レート: 50MHz, 波形のキャプチ
	ャ時間: 1ms, 信号発生器機能に切替
	":INST:SEL SIGANA;:TRIGger:SOURce SG;:SENS:FREQ:SPAN
	31250000;:MMEMory:STORe:IQData:RATE 50000000;:SENSe:SWEep:TIME
	0.001;:INST:SEL SG"
	コマンドの詳細は、
	MS2690A/MS2691A/MS2692A および MS2830A シグナルアナライザ取扱説明書
	「本体 リモート制御編」,「シグナルアナライザ機能 リモート制御編」
	を参照してください。
VSASRCSELECT	40
VSAADDR	VISA 制御するためのシグナルアナライザ側のリソース名
	IP Address = 192.168.100.1 の場合
	TCPIP0::192.168.100.1::inst0::INSTR
VSACLK	解析周波数スパンの設定にしたがって、表 3-3の値を設定

表 3-2. シグナルアナライザの制御パラメータ設定

周波数スパン	VSACLK	備考
1 kHz	2 kHz	*1
2.5 kHz	5 kHz	*1
5 kHz	10 kHz	*1
10 kHz	20 kHz	*1
25 kHz	50 kHz	*1
50 kHz	100 kHz	*1
100 kHz	200 kHz	*1
250 kHz	500 kHz	*1
500 kHz	1 MHz	*1
1 MHz	2 MHz	*1

表 3-3. VSACLK 設定値

周波数スパン	VSACLK	備考
2.5 MHz	5 MHz	*1
5 MHz	10 MHz	*1
10 MHz	20 MHz	*1
25 MHz	50 MHz	*2
31.25 MHz	50 MHz	*2
50 MHz *	100 MHz	*3
62.5 MHz *	100 MHz	*3
100 MHz *	200 MHz	*4
125 MHz *	200 MHz	*4

*1: MS2690A/91A/92A: 標準

MS2830A: MS2830A-006 または MS2830A-005/006 搭載時

*2: MS2690A/91A/92A: 標準 MS2830A: MS2830A

MS2830A: MS2830A-005/006 搭載時

*3: MS2790A/91A/92A: MS269xA-077 または MS269xA-077/078 搭載時

*4: MS2790A/91A/92A: MS269xA-077/078 搭載時

4. LTE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション

LTE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション例を紹介します。

4.1. システムダイアグラム

システムダイアグラム例を図 4-1 に示します。

図 4-1. LTE FDD Uplink テスト信号を用いたアンプモジュールのシステムシミュレーション

Visual System Simulator[™]で生成したLTE FDD Uplinkテスト信号を用いて、アンプモジュールのシミュレーション解析と、計測器を用いた実測との比較検証を行います。

DUT 設計モデルブロック部分は、回路シミュレーションソフトウェア Microwave Office[®]を使用して設計したア ンプモジュールの設計モデルです。

一方、LTE FDD Uplink テスト信号のベースバンド IQ 波形データは、ベクトル信号発生器にダウンロードされ、 実際に試作したアンプモジュールにシミュレーションと同じ信号を入力します。アンプモジュールの出力信号をシ グナルアナライザでデジタイジングします。実測データをシミュレーションにフィードバックし、試作したアンプモジ ュールの特性をシミュレーション上で解析します。

図 4-2. 実測検証の様子

4.2. 解析結果グラフ表示機能

解析結果は、Visual System Simulator[™]の各種グラフ表示機能を用いて分析できます。

図 4-3 にスペクトラム, コンスタレーション, CCDF, EVM グラフの表示例を示します。図中の青線で示す結果 は、実際に試作したアンプモジュールの実測データを用いた解析結果です。ピンク線で示す結果は、アンプモジ ュールのシミュレーション設計モデルの解析結果です。

解析結果を比較検証しながら、最終開発製品に必要とする仕様を満たすように設計パラメータの最適化を行います。

図 4-3. 解析結果グラフ表示例

5. まとめ

システム設計の初期段階においては、シミュレーション設計と試作品の実測検証の繰り返しに貴重な時間を 費やしています。仮定条件や不確定要素を含むシミュレーションに実測データを利用することで、RF コンポーネ ントや通信システム全体のパフォーマンスの最適化を効率的に行うことができます。

本ソリューションは、シグナルアナライザ MS2690A/MS2691A/MS2692A および MS2830A とシミュレーショ ンソフトウェア Visual System Simulator[™] の連携により、通信システム設計の効率化に貢献します。評価信号 の出力から実測データの取得まで一連の計測器制御や、実測データを利用したシミュレーションを簡単に実現 できます。

6. オーダリングインフォメーション(抜粋)

形名	品名	備考
	一本体一	
MS2690A	シグナルアナライザ	50Hz ~ 6.0GHz
MS2691A	シグナルアナライザ	50Hz ~ 13.5GHz
MS2692A	シグナルアナライザ	50Hz ~ 26.5GHz
	解析帯域幅 31.25MHz	標準搭載
	ーオプションー	
MS269xA-077	解析帯域幅拡張 62.5MHz	
MS269xA-078	解析帯域幅拡張 125MHz	MS269xA-077 必須
MS2692A-067	マイクロ波プリセレクタバイパス	MS2692A のみ搭載可能
MS269xA-020	ベクトル信号発生器	125MHz ~ 6.0GHz

シグナルアナライザ MS2690A シリーズ

シグナルアナライザ MS2830A シリーズ

形名	品名	備考
	一本体一	
MS2830A	シグナルアナライザ	
	ーオプションー	
MS2830A-040	3.6GHz シグナルアナライザ	9kHz ~ 3.6GHz
MS2830A-041	6GHz シグナルアナライザ	9kHz ~ 6.0GHz
MS2830A-043	13.5GHz シグナルアナライザ	9kHz ~ 13.5GHz
MS2830A-005	解析帯域幅拡張 31.25MHz	MS2830A-006 必須
MS2830A-006	解析帯域幅 10MHz	
MS2830A-020	3.6GHz ベクトル信号発生器	250kHz ~ 3.6GHz
MS2830A-021	6GHz ベクトル信号発生器	250kHz ~ 6GHz

AWR Corporation 製ソフトウェア (詳細は AWR Japan 株式会社にお問い合わせください)

AWR ConnectedTM for Anritsu

Visual System Simulator[™]

TestWave™

Note

お見積り、ご注文、修理などは、下記までお問い合わせください。記載事項は、おことわりなしに変更することがあります。

アンリツ株式会社

<u>۲</u>	ノリン林式云社	http://www.anritsu.com
本社	〒243-8555 神奈川県厚木市恩名 5-1-1	TEL 046-223-1111
厚木	〒243-0016 神奈川県厚木市田村町8-5	;
	計測器営業本部	TEL 046-296-1202 FAX 046-296-1239
	計測器営業本部 営業推進部	TEL 046-296-1208 FAX 046-296-1248
	〒243-8555 神奈川県厚木市恩名 5-1-1	
	ネットワークス営業本部	TEL 046-296-1205 FAX 046-225-8357
新宿	〒160-0023 東京都新宿区西新宿6-14-	1 新宿グリーンタワービル
	計測器営業本部	TEL 03-5320-3560 FAX 03-5320-3561
	ネットワークス営業本部	TEL 03-5320-3552 FAX 03-5320-3570
	東京支店(官公庁担当)	TEL 03-5320-3559 FAX 03-5320-3562
札幌	〒060-0042 北海道札幌市中央区大通路	西5-8 昭和ビル
	ネットワークス営業本部北海道支店	TEL 011-231-6228 FAX 011-231-6270
仙台	〒980-6015 宮城県仙台市青葉区中央4	-6-1 住友生命仙台中央ビル
	計測器営業本部	TEL 022-266-6134 FAX 022-266-1529
	ネットワークス営業本部東北支店	TEL 022-266-6132 FAX 022-266-1529
大宮	〒330-0081 埼玉県さいたま市中央区新	i都心4-1 FSKビル
	計測器営業本部	TEL 048-600-5651 FAX 048-601-3620
名古屋	〒450-0002 愛知県名古屋市中村区名馬	R3-20-1 サンシャイン名駅ビル
	計測器営業本部	TEL 052-582-7283 FAX 052-569-1485
	ネットワークス営業本部中部支店	TEL 052-582-7285 FAX 052-569-1485
大阪	〒564-0063 大阪府吹田市江坂町1-23-	101 大同生命江坂ビル
	計測器営業本部	TEL 06-6338-2800 FAX 06-6338-8118
	ネットワークス営業本部関西支店	TEL 06-6338-2900 FAX 06-6338-3711
広島	〒732-0052 広島県広島市東区光町1-10	0-19 日本生命光町ビル
	ネットワークス営業本部中国支店	TEL 082-263-8501 FAX 082-263-7306
福岡	〒812-0004 福岡県福岡市博多区榎田1	-8-28 ツインスクェア
	計測器営業本部	TEL 092-471-7656 FAX 092-471-7699
	ネットワークス営業本部九州支店	TEL 092-471-7655 FAX 092-471-7699

計測器の使用方法、その他については、下記までお問い合わせください。

計測サポートセンター

びて TEL: 0120-827-221、FAX: 0120-542-425 受付時間/9: 00~12: 00、13: 00~17: 00、月~金曜日(当社休業日を除く) E-mail: MDVPOST@anritsu.com

● ご使用の前に取扱説明書をよくお読みのうえ、正しくお使いください。

■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府の輸 出許可または役務取引許可が必要となる場合かあります。また、米国の輸出管理規則により、 日本からの再輸出には米国商務省の許可が必要となる場合かありますので、必ず弊社の営業 担当までご連絡ください。

No. MS269xA/MS2830A-J-F-3-(1.01)

2012-2 MG

公知

¹¹⁰⁶