Anritsu envision : ensure

TD-SCDMA 測定

ラジオ コミュニケーション アナライザ MT8820B/MT8820C/MT8821C

変更来歴

Ver.No	日付	内容	関連製品ソフトウェア
			ハーション
1.00	2015年 7月	MT8820B/C TD-SCDMA アプリケーションノート 4 版を元に	MX882007C Ver23.01
		MT8820B/20C/21C TD-SCDMA アプリケーションノート 初版を	MX882107C Ver30.00
		作成	
		全般 MT8820B/C から木器へ変更	
		18821 用ソノトリエア規格を追加	

Contents

1.	TD-SCDMA 測定ソフトウェア4
1.1.	規格
1.1.1.	MT8820 用ソフトウェア規格4
1.1.2.	MT8821 用ソフトウェア規格7
1.2.	3GPP 測定規格(3GPP TS 34.122 V11.5.0)対応表10
1.3.	TRX 測定 (FUNDAMENTAL 測定)13
1.3.1.	Test Loop Mode の接続13
1.3.2.	Test Loop Mode の切断13
1.3.3.	呼接続中の Channel Coding の変更14
1.3.4.	ハンドオーバによる Channel の変更14
1.3.5.	ハンドオーバによる Channel および Single Code/Multi Code の変更14
1.3.6.	測定項目の選択15
1.3.7.	5.2 User Equipment maximum output power15
1.3.8.	5.3 UE frequency stability
1.3.9.	5.4.2 Minimum output power16
1.3.10.	5.4.3 Transmit OFF power, 5.4.4 Transmit ON/OFF Time mask
1.3.11.	5.5.1 Occupied bandwidth17
1.3.12.	5.5.2.1 Spectrum emission mask
1.3.13.	5.5.2.2 Adjacent Channel Leakage power Ratio (ACLR)18
1.3.14.	5.7.1 Error Vector Magnitude19
1.3.15.	5.7.2 Peak code domain error19
1.3.16.	6.2 Reference sensitivity level
1.3.17.	- 括測定による測定時間の短縮 20
1.4.	Open Loop Power Control 測定 22
1.4.1.	5.4.1 Open Loop Power Control in the Uplink (RX-middle)22
1.4.2.	5.4.1 Open Loop Power Control in the Uplink (RX Upper dynamic end)
1.4.3.	5.4.1 Open Loop Power Control in the Uplink (RX-Sensitivity level)
1.4.4.	Open Loop Power Control 連続測定23
1.5.	CLOSED LOOP POWER CONTROL 測定24
1.5.1.	5.4.1.4 Closed loop power control
1.6.	その他の測定
1.6.1.	5.4.5 Out-of-synchronisation handling of output power for continuous transmission25
1.6.2.	5.4.6 Out-of-synchronisation handling of output power for discontinuous transmission 25
1.6.3.	6.3 Maximum Input Level

1.6.4.	6.8 Spurious Emissions
1.6.5.	7.2 Demodulation in static propagation conditions
1.7.	HSDPA 測定
1.7.1.	HSDPA RMC の接続
1.7.2.	HSDPA RMC の切断
1.7.3.	呼接続中の HSDPA Data Rate の変更
1.7.4.	5.2B User Equipment maximum output power with HS-SICH and DPCH29
1.7.5.	5.5.2.1B Spectrum emission mask
1.7.6.	5.5.2.2B Adjacent Channel Leakage power Ratio (ACLR) with HS-SICH and DPCH31
1.7.7.	5.7.1B Error Vector Magnitude with HS-SICH and DPCH
1.7.8.	6.3A Maximum Input Level for HS-PDSCH Reception (16QAM)
1.7.9.	9.3.3 Reporting of HS-DSCH Channel Quality Indicator (2.8Mbps UE)
1.8.	HSUPA 測定
1.8.1.	HSUPA RMCの接続
1.8.2.	HSUPA RMC の切断
1.8.3.	5.2A User Equipment maximum output power with E-DCH
1.8.4.	5.5.2.1A Spectrum emission mask
1.8.5.	5.5.2.2A Adjacent Channel Leakage power Ratio (ACLR) with E-DCH
1.8.6.	
	5.7.1A Error vector Magnitude with E-DCH 16QAM
1.8.7.	5.7.1A Error Vector Magnitude with E-DCH 16QAM
1.8.7. 1.8.8.	5.7.1A Error Vector Magnitude with E-DCH 16QAM
1.8.7. 1.8.8. 1.9.	5.7.1A Error Vector Magnitude with E-DCH 16QAM
1.8.7. 1.8.8. 1.9. 1.10.	5.7.1A Error Vector Magnitude with E-DCH 16QAM
1.8.7. 1.8.8. 1.9. 1.10. 1.10.1.	5.7.1A Error Vector Magnitude with E-DCH 16QAM

1. TD-SCDMA 測定ソフトウェア

1.1. 規格

1.1.1. MT8820 用ソフトウェア規格

表 1 1 1-1	MX882007C TD-SCDMA 測定ソフトウェア
1X 1.1.1-1	TIX002007CTD-SCDFIA 原ビノノトノエノ

項目		規格
電気的特性	Typ.値は参考データであり	,規格として保証しているものではありません。
周波数/変調測定	周波数	300~2700 MHz
	入力レベル	– 40~+35 dBm (Main)
	キャリア周波数確度	±(設定周波数×基準発振器確度+10 Hz)
	変調精度	
	残留ベクトル誤差	≦ 2.5% (Single Code 時)
振幅測定	周波数	300~2700 MHz
	入力レベル	– 70~+35 dBm (Main)
	測定確度	MT8820B/MT8815B 時 ±0.5 dB (- 25~+35 dBm), ±0.7 dB (- 55 ~ - 25 dBm), ±0.9 dB (- 70 ~ - 55 dBm), 校正後
		MT8820C時 ±0.5 dB (- 25~+35 dBm), typ. ±0.3 dB (- 20~+35 dBm), ±0.7 dB (- 55~- 25 dBm), ±0.9 dB (- 60~- 55 dBm), 校正後 10~40°C時
	直線性	$\pm 0.2 dB(-40 \sim 0 dB, \ge -55 dBm),$ ±0.4 dB(-40 ~ 0 dB, ≥ -65 dBm)
	測定対象	DPCH, UpPCH
占有帯域幅	周波数	300~2700 MHz
	入力レベル	– 10~+35 dBm (Main)
隣接チャネル	周波数	300~2700 MHz
漏洩電力	入力レベル	– 10~+35 dBm (Main)
	測定ポイント	±1.6 MHz, ±3.2 MHz
	測定範囲	≥ 50 dB (±1.6 MHz), ≥ 55 dB (±3.2 MHz)
RF 信号発生器	出力周波数	300~2700 MHz (1 Hz ステップ)
	チャネルレベル(DPCH)	- 30.0~0.0 dB (0.1 dB ステップ, Ior (トータルレベル) との相 対レベル)
	チャネルレベル確度	±0.2 dB (Ior (トータルレベル) との相対レベル確度)
	AWGN レベル	オフ, - 20~+5 dB (0.1 dB ステップ, Ior (トータルレベル) との相対レベル)
	AWGNレベル確度	±0.2 dB (Ior (トータルレベル) との相対レベル確度)

表 1.1.1	L-1 MX882	007C TD-SCDMA	A 測定ソフ	トウェア	(続き)
---------	-----------	---------------	--------	------	------

項目	規格	
誤り率測定	機能	DTCH に,PN9 パターンまたは PN15 パターンを乗せる。
	測定項目対象	BER, BLER
	BER 測定対象	上り DTCH に乗せられたループバックデータ
	BLER 測定対象	上り DTCH に乗せられたループバックデータ
コールプロセッシング	呼制御	位置登録,発呼,着呼,チャネル切り替え,網側切断,移動機側切 断 (3GPP 規格に準拠した各処理を実行し,合否判定が可能)
	移動機制御	出カレベル,ループバック (3GPP 規格に準拠した各移動機制御を実行可能)

表 1.1.1-2 MX882007C-011 TD-SCDMA HSDPA 測定ソフトウェアオプション規格

項目	規格		
機能	HSDPA に関するRF試験(受信測定)		
リファレンスチャネル	Transferring	RMC 0.5Mbps UE Class (QPSK), RMC 1.1Mbps UE Class (QPSK), RMC 1.1Mbps UE Class (16QAM), RMC 1.6Mbps UE Class (16QAM), RMC 1.6Mbps UE Class (16QAM), RMC 2.2Mbps UE Class (QPSK), RMC 2.2Mbps UE Class (16QAM), RMC 2.8Mbps UE Class (QPSK), RMC 2.8Mbps UE Class (16QAM)	
スループット測定	機能 測定項目対象: 測定対象	リファレンスチャネルを使用したスループット測定 スループット HS-SICH上のACK およびNACK	
CQI測定	測定対象	移動機から定期的に報告されるHS-SICH上のCQI値(RTBS, RMF)	
コールプロセッシング	呼制御 移動機制御	位置登録, HSDPA RMC による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能) 出力レベル	
		(3GPP 現格に準拠した各移動機制御を実行可能)	

表 1.1.1-3 MX882007C-012 TD-SCDMA HSDPA Evolution 測定ソフトウェアオプション規格

項目	規格		
機能	HSDPA に関するRF試験(き	受信測定)	
リファレンスチャネル	Transferring	RMC Category 16-18UE(64QAM), RMC Category 19-21UE(64QAM), RMC Category 22-24UE(64QAM), RMC Category 18 Max, RMC Category 21 Max, RMC Category 24 Max,	
	機能	リファレンスチャネルを使用したスループット測定	
スループット測定	測定項目対象:	スループット	
	測定対象	HS-SICH上のACK およびNACK	
CQI測定	測定対象	移動機から定期的に報告されるHS-SICH上のCQI値	
コールプロセッシング	呼制御	位置登録, HSDPA RMC による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能)	
	移動機制御	出力レベル (3GPP 規格に準拠した各移動機制御を実行可能)	

表 1.1.1-4 MX882007C-021 TD-SCDMA HSUPA 測定ソフトウェアオプション規格

項目	規格		
機能	HSUPA に関するRF試験(送信測定)		
変調測定	MX882007Cの性能による。		
コールプロセッシング	呼制御	位置登録, FRC1, FRC2 による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能)	
	移動機制御	出カレベル (3GPP 規格に準拠した各移動機制御を実行可能)	

1.1.2. MT8821 用ソフトウェア規格

項目	規格		
電気的特性	Typ.値は参考データであり,規格として保証しているものではありません。		
周波数/変調測定	周波数	350~2700 MHz	
		(ただし 500 MHz 以下は, 下記周波数のみ規定する	
		452.5 \sim 457.5 MHz (LTE Operating Band31)	
	入力レベル	– 30~+35 dBm (Main1/2)	
	キャリア周波数確度	±(設定周波数×基準発振器確度+10 Hz)	
	変調精度		
	残留ベクトル誤差	≦ 2.5% (Single Code 時)	
	周波数	350~2700 MHz	
		(ただし 500 MHz 以下は, 下記周波数のみ規定する	
		452.5 \sim 457.5 MHz (LTE Operating Band31)	
	入力レベル	– 70~+35 dBm (Main1/2)	
振幅測定	測定確度	±0.5 dB (- 30~+35 dBm), typ. ±0.3 dB (- 30~+35 dBm), ±0.7 dB (- 55~- 30 dBm), ±0.9 dB (- 70~- 55 dBm), 校正後 10~40°C時	
	直線性	$\pm 0.2 \text{ dB}$ (- 40~0 dB, ≥ - 50 dBm), $\pm 0.4 \text{ dB}$ (- 40~0 dB, ≥ - 60 dBm), 400~6000 MHz	
	測定対象	DPCH, UpPCH	
占有帯域幅	周波数	300~2700 MHz	
		(ただし 500 MHz 以下は, 下記周波数のみ規定する	
		452.5 \sim 457.5 MHz (LTE Operating Band31)	
	入力レベル	- 10~+35 dBm (Main1/2)	
隣接チャネル	周波数	350~2700 MHz	
漏洩電力		(ただし 500 MHz 以下は, 下記周波数のみ規定する	
		452.5 \sim 457.5 MHz (LTE Operating Band31)	
	入力レベル	– 10~+35 dBm (Main)	
	測定ポイント	±1.6 MHz, ±3.2 MHz	
	測定範囲	≥ 50 dB (±1.6 MHz), ≥ 55 dB (±3.2 MHz)	
RF 信号発生器	出力周波数	300~2700 MHz (1 Hz ステップ)	
	チャネルレベル(DPCH)	– 30.0~0.0 dB (0.1 dB ステップ, Ior (トータルレベル) との相 対レベル)	
	チャネルレベル確度	±0.2 dB (Ior (トータルレベル) との相対レベル確度)	
	AWGN レベル	オフ, - 20~+5 dB (0.1 dB ステップ, Ior (トータルレベル) との相対レベル)	
	AWGNレベル確度	±0.2 dB (Ior (トータルレベル) との相対レベル確度)	

表1.1.2-1 MX882107C TD-SCDMA 測定ソフトウェア規格

項目	規格				
誤り率測定	機能	DTCH に, PN9 パターンまたは PN15 パターンを乗せる。			
	測定項目対象	BER, BLER			
	BER 測定対象	上り DTCH に乗せられたループバックデータ			
	BLER 測定対象	上り DTCH に乗せられたループバックデータ			
コールプロセッシング	呼制御	位置登録, 発呼, 着呼, チャネル切り替え, 網側切断, 移動機側切 断 (3GPP 規格に準拠した各処理を実行し, 合否判定が可能)			
	移動機制御	出カレベル, ループバック (3GPP 規格に準拠した各移動機制御を実行可能)			

表1.1.2-2 MX882107C-011 TD-SCDMA HSDPA 測定ソフトウェアオプション規格

項目	規格				
機能	HSDPA に関するRF試験(3	受信測定)			
リファレンスチャネル	Transferring	RMC 0.5Mbps UE Class (QPSK), RMC 1.1Mbps UE Class (QPSK), RMC 1.1Mbps UE Class (16QAM), RMC 1.6Mbps UE Class (QPSK), RMC 1.6Mbps UE Class (16QAM), RMC 2.2Mbps UE Class (QPSK), RMC 2.2Mbps UE Class (16QAM), RMC 2.8Mbps UE Class (QPSK), RMC 2.8Mbps UE Class (16QAM)			
スループット測定	機能 測定項目対象: 測定対象	リファレンスチャネルを使用したスループット測定 スループット HS-SICH上のACK およびNACK			
CQI測定	測定対象	移動機から定期的に報告されるHS-SICH上のCQI値(RTBS, RMF)			
コールプロセッシング	呼制御 移動機制御	位置登録, HSDPA RMC による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能) 出力レベル			
		(3GPP 規格に準拠した各移動機制御を実行可能)			

表1.1.2-3 MX882107C-012 TD-SCDMA HSDPA Evolution 測定ソフトウェアオプション規格

項目	規格				
機能	HSDPA に関するRF試験(き	受信測定)			
リファレンスチャネル	Transferring	RMC Category 16-18UE(64QAM), RMC Category 19-21UE(64QAM), RMC Category 22-24UE(64QAM), RMC Category 18 Max, RMC Category 21 Max, RMC Category 24 Max,			
	機能	リファレンスチャネルを使用したスループット測定			
スループット測定	測定項目対象:	スループット			
	測定対象	HS-SICH上のACK およびNACK			
CQI測定	測定対象	移動機から定期的に報告されるHS-SICH上のCQI値(RTBS)			
コールプロセッシング	呼制御	位置登録, HSDPA RMC による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能)			
	移動機制御	出カレベル (3GPP 規格に準拠した各移動機制御を実行可能)			

表1.1.2-4 MX882107C-021 TD-SCDMA HSUPA 測定ソフトウェアオプション規格

項目	規格			
機能	HSUPA に関するRF試験(送信測定)			
変調測定	MX882007Cの性能による。			
コールプロセッシング	呼制御	位置登録, FRC1, FRC2 による呼接続(3GPP 規格に準拠した各処 理を実行し、合否判定が可能)		
	移動機制御	出カレベル (3GPP 規格に準拠した各移動機制御を実行可能)		

1.2. 3GPP 測定規格(3GPP TS 34.122 V11.5.0)対応表

	Item	Comment	
5	Transmitter Characteristics		\searrow
5.2	User Equipment maximum output power		0
5.2A	User Equipment maximum output power with E-DCH	MX882007C-021	O
		MX882107C-021	
5.2B	User Equipment maximum output power with HS-SICH and	MX882007C-011	O
	DPCH	MX882107C-011	
5.3	UE frequency stability		O
5.4	Output Power Dynamics		
5.4.1.3	Open loop power control		O
5.4.1.4	Closed loop power control		O
5.4.2	Minimum output power		O
5.4.3	Transmit OFF power		O
5.4.4	Transmit ON/OFF Time mask		O
5.4.5	Out-of-synchronisation handling of output power for		O
	continuous transmission		
5.4.6	Out-of-synchronisation handling of output power for		O
	discontinuous transmission		
5.5	Output RF spectrum emissions		
5.5.1	Occupied bandwidth		O
5.5.2	Out of band emission		
5.5.2.1	Spectrum emission mask		O
5.5.2.1A	Spectrum emission mask	MX882007C-021	O
		MX882107C-021	
5.5.2.1B	Spectrum emission mask	MX882007C-011	O
		MX882107C-011	
5.5.2.2	Adjacent Channel Leakage power Ratio (ACLR)		O
5.5.2.2A	Adjacent Channel Leakage power Ratio (ACLR) with E-DCH	MX882007C-021	O
		MX882107C-021	
5.5.2.2B	Adjacent Channel Leakage power Ratio (ACLR) with HS-SICH	MX882007C-011	O
	and DPCH	MX882107C-011	
5.5.3	Spurious Emissions	Requires SPA	0
5.6	Transmit Intermodulation	Requires SG and SPA	0
5.7	Transmit Modulation		
5.7.1	Error Vector Magnitude		O
5.7.1A	Error Vector Magnitude with E-DCH 16QAM	MX882007C-021	0
		MX882107C-021	
5.7.1B	Error Vector Magnitude with HS-SICH and DPCH	MX882007C-011	O
		MX882107C-011	

	Item	Comment	
5.7.2	Peak code domain error		O
6	Receiver Characteristics		
6.2	Reference sensitivity level		O
6.3	Maximum Input Level		Ø
6.3A	Maximum Input Level for HS-PDSCH Reception (16QAM)	MX882007C-011	O
		MX882107C-011	
6.4	Adjacent Channel Selectivity (ACS)	Requires SG	0
6.5	Blocking Characteristics	Requires SG	\bigcirc
6.6	Spurious Response	Requires SG	\bigcirc
6.7	Intermodulation Characteristics	Requires SG	0
6.8	Spurious Emissions	Requires SPA	0
7	Performance requirements		
7.2	Demodulation in static propagation conditions	Requires SG	0
7.3	Demodulation of DCH in multipath fading conditions		
7.3.1	Multipath fading Case 1	Requires Fading Simulator	0
		and SG	
7.3.2	Multipath fading Case 2	Requires Fading Simulator	\bigcirc
		and SG	
7.3.3	Multipath fading Case 3	Requires Fading Simulator	0
7 5	Power control in downlink	Pequires Fading Simulator	\bigcirc
7.5		and SG	0
9	Performance requirements for HSDPA		
9.3	Performance requirement for 1.28 Mcps TDD option		
9.3.1	HS-DSCH Throughput for Fixed Reference Channels		
9.3.1A	HS-DSCH throughput for Fixed Reference Channels 0.5 Mbps	MX882007C-011	\cap
	UE class QPSK	MX882107C-011	_
		Requires Fading Simulator	
9.3.1B	HS-DSCH throughput for Fixed Reference Channels 1.1 Mbps	MX882007C-011	\bigcirc
	UE class 16QAM	MX882107C-011	
		Requires Fading Simulator	~
9.3.1C	HS-DSCH throughput for Fixed Reference Channels 1.6 Mbps	MX882007C-011 MX882107C-011	0
	UE Class QPSK/16QAM	Requires Fading Simulator	
931D	HS-DSCH throughput for Fixed Reference Channels 2.2 Mbps	MX882007C-011	\bigcirc
5.5.10	UE class QPSK/16QAM	MX882107C-011	0
		Requires Fading Simulator	
9.3.1E	HS-DSCH throughput for Fixed Reference Channels 2.8 Mbps	MX882007C-011	0
	UE class QPSK/16QAM	MX882107C-011	
		Requires Fading Simulator	
9.3.2	HS-DSCH Throughput for Variable Reference Channels		

	Item	Comment	
9.3.2A	HS-DSCH throughput for Variable Reference Channels 0.5	MX882007C-011	0
	Mbps UE class	MX882107C-011	
		Requires Fading Simulator	
9.3.2B	HS-DSCH throughput for Variable Reference Channels 1.1	MX882007C-011	0
	Mbps UE class	MX882107C-011	
		Requires Fading Simulator	
9.3.2C	HS-DSCH throughput for Variable Reference Channels 1.6	MX882007C-011	0
	Mbps UE class	MX882107C-011	
		Requires Fading Simulator	
9.3.2D	HS-DSCH throughput for Variable Reference Channels 2.2	MX882007C-011	0
	Mbps UE class	MX882107C-011	
		Requires Fading Simulator	
9.3.2E	HS-DSCH throughput for Variable Reference Channels 2.8	MX882007C-011	0
	Mbps UE class	MX882107C-011	
		Requires Fading Simulator	
9.3.3	Reporting of HS-DSCH Channel Quality Indicator		
9.3.3A	Reporting of HS-DSCH Channel Quality Indicator-0.5Mbps UE	MX882007C-011	\circ
	class※Median CQI 時のみの Throughput を測定する機能がない。	MX882107C-011	
		Requires Fading Simulator	
9.3.3B	Reporting of HS-DSCH Channel Quality Indicator-1.1Mbps UE	MX882007C-011	0
	class※Median CQI 時のみの Throughput を測定する機能がない。	MX882107C-011	
		Requires Fading Simulator	
9.3.3C	Reporting of HS-DSCH Channel Quality Indicator-1.6Mbps UE	MX882007C-011	0
	 class※Median CQI 時のみの Throughput を測定する機能がない。	MX882107C-011	
		Requires Fading Simulator	
9.3.3D	Reporting of HS-DSCH Channel Quality Indicator-2.2Mbps UE	MX882007C-011	0
	class※Median CQI 時のみの Throughput を測定する機能がない。	MX882107C-011	
		Requires Fading Simulator	
9.3.3E	Reporting of HS-DSCH Channel Quality Indicator-2.8Mbps UE	MX882007C-011	0
	class※Median CQI 時のみの Throughput を測定する機能がない。	MX882107C-011	
		Requires Fading Simulator	
9.3.4	HS-SCCH Detection Performance	MX882007C-011	0
		MX882107C-011	
		Requires Fading Simulator	
11	Performance requirement (E-DCH)		
11 1	Detection of F-DCH HARO ACK Indicator Channel (F-HICH)	MX882007C-021	$\left \right\rangle$
± ± • ±		MX882107C-021	
		Requires Fading Simulator	
11 7	Demodulation of E-DCH Absolute Grant Channel (E-ACCH)	MX882007C-021	\bigcirc
11.2		MX882107C-021	
		Requires Fading Simulator	
		Requires rauling Simulator	1

©: Support | ○: Requires external equipment (SPA or SG) | △: Future Support | ×: Not Support

1.3. TRX 測定 (Fundamental 測定)

本項以降の測定手順の説明は、GPIB で制御ソフトウェアを作成することを前提としています。GPIB コマンドの詳細やマニュアル操作に関しては取扱説明書を参照してください。赤太字は GPIB コマンドとなります。なお、UE の Power Classは 2 であることを前提としています。

1.3.1. Test Loop Mode の接続

以下の測定では Test Loop Mode1 で接続して測定を行います。Test Loop Mode1 の接続は次の手順で行います。すでに 位置登録が完了している場合は 4 から実行してください。

- 1. PRESET を実行して初期パラメータに設定します。
- 2. 端末の電源を On にします。
- 3. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。
- 4. CALLSA を実行して Test Loop Mode1 で接続を行います。
- 5. CALLSTAT?を実行して、レスポンスが 7(=Test Loop Mode)になるまで待ちます。

Call Status の確認に CALLSTATIC?を使用することも可能です。

以下に CALLSTATIC?を使用した例を記述します。

- 1. PRESET を実行して、初期パラメータに設定します。
- 2. 端末の電源を On にします。
- 3. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。
- 4. CALLSA を実行して Test Loop Mode1 で接続を行います。
- 5. CALLSTATIC?を実行します。Call Status が 7(=Test Loop Mode)になると、レスポンスが返ってきます。

1.3.2. Test Loop Mode の切断

- 1. CALLSO を実行して Test Loop Mode1 を切断します。
- 2. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。

以下に CALLSTATIC?を使用した例を記述します。

- 1. CALLSO を実行して HSDPA RMC の切断を行います。
- 2. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。

1.3.3. 呼接続中の Channel Coding の変更

呼接続中に Channel Coding を変更することが可能です。呼接続中の Channel Coding の変更は次の手順で行います。

- 1. 呼接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. Single Code で TRX 測定を行います。
- 4. CHCODING RMC_MULTI を実行して Channel Coding を RMC(Multi Code)に設定します。
- 5. Multi Code で TRX 測定を行います。

1.3.4. ハンドオーバによる Channel の変更

測定は通常 L,M,H の 3 周波数ポイントで行います。このとき、ハンドオーバによりチャネル変更を行えば、再接続をする 必要がないため高速にチャネル変更を行うことができます。ハンドオーバ時にはハンドオーバに失敗しないように Output Level を少し高めにしておきます。また、ハンドオーバ実行中に送信された GPIB コマンドはハンドオーバが終了するまで 実行待ち状態になります。

- 1. L チャネルで TRX 測定を行います。
- 2. CHAN 10087 を実行して M チャネルにハンドオーバします。
- 3. TRX 測定を行います。
- 4. CHAN 10121 を実行してHチャネルにハンドオーバします。
- 5. TRX 測定を行います。

1.3.5. ハンドオーバによる Channel および Single Code/Multi Code の変更

測定は通常 L,M,H の 3 周波数ポイントで行います。また、Single Code と Multi Code で測定を行います。このとき、ハ ンドオーバによりパラメータの変更を行えば、再接続をする必要がないため高速に変更を行うことができます。ハンドオ ーバ時にはハンドオーバに失敗しないように Output Level を少し高めにしておきます。また、ハンドオーバ実行中に送 信された GPIB コマンドはハンドオーバが終了するまで実行待ち状態になります。

- 1. HO 10053, RMC_SINGLE を実行して L チャネル, Single Code にハンドオーバします。
- 2. L チャネル, Single Code で TRX 測定を行います。
- 3. HO 10053, RMC_MULTI を実行して L チャネル, Multi Code にハンドオーバします。
- 4. L チャネル, Multi Code で TX 測定を行います。
- 5. HO 10087, RMC_SINGLE を実行して M チャネル, Single Code にハンドオーバします。
- 6. M チャネル, Single Code で TRX 測定を行います。
- 7. HO 10087, RMC_MULTI を実行して M チャネル, Multi Code にハンドオーバします。
- 8. M チャネル, Multi Code で TX 測定を行います。
- 9. HO 10121, RMC_SINGLE を実行して H チャネル, Single Code にハンドオーバします。
- 10. H チャネル, Single Code で TRX 測定を行います。
- 11. HO 10121, RMC_MULTI を実行して H チャネル, Multi Code にハンドオーバします。
- 12. H チャネル, Multi Code で TX 測定を行います。

1.3.6. 測定項目の選択

本器の初期設定ではすべての測定項目が On となっていますが、測定時間を短縮するために、BER 測定や BLER 測定など 測定が不要な項目については Off にして(BER_MEAS OFF, BLER_MEAS OFF)、測定を行ってください。

ALLMEASITEMS_OFF ですべての測定項目を Off とすることができます。

1.3.7. 5.2 User Equipment maximum output power

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. PWR_AVG 20 を実行して Power 測定の平均回数を 20 回とします。
- 6. SWP を実行して Power 測定を行います。
- 7. AVG_POWER?を実行して Power 測定結果を読み出します。
- 8. 測定結果が+24dBm(+1.7dB/-3.7dB)となることを確認します。
- 9. CHCODING RMC_MULTI を実行して Channel Coding を RMC(Multi Code)にします。
- 10. SWP を実行して Power 測定を行います。
- 11. AVG_POWER?を実行して Power 測定結果を読み出します。
- 12. 測定結果が+21dBm(+1.7dB/-3.7dB)となることを確認します。

Power Measurement			(Meas.	Count :	20/	20)
	Avg.	Max.	Min.		Limit	
TX Power	25.13	25.18	24.98	dBm 20	.3to 28	5,7 dBm
RRC Filtered Power	24.90	24.95	24.74	dBm		
Judgement	Pass					

TX Power は Mean power (2MHz 帯域)に相当します。

1.3.8. 5.3 UE frequency stability

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_BERSENS を実行して Test Parameter を Call BER (Reference Sensitivity Level)にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. FREQ_AVG 200 を実行して Frequency 測定の平均回数を 200 回とします。
- 6. SWP を実行して Frequency 測定を行います。
- 7. MAXABS_CARRFERR? PPM を実行して Frequency Error 測定結果を読み出します。
- 8. 測定結果が(0.1ppm+10Hz)以下であることを確認します。

Frequency Error			(Meas.	Count	: 200/200)
	Avg.				
Carrier Frequency	2010.80	00016 <mark>MHz</mark>	1		
	Avg.	Max.	Min.		Limit
Cannier Frequency Error	0.0160	0.0360	-0.0020	kHz	
	0.01	0.02	0.00	ppm	\leq 0.1ppm+10Hz
Judgement	Pass				

1.3.9. 5.4.2 Minimum output power

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_MINPWR を実行して Test Parameter を Call Minimum Output Power にします。
- 4. UE が最小パワーに達するまで待ちます。
- 5. PWR_AVG 20 を実行して Power 測定の平均回数を 20 回とします。
- 6. SWP を実行して Power 測定を行います。
- 7. AVG_POWER?を実行して、測定結果を読み出します。
- 8. 測定結果が-48dBm 以下であることを確認します。

Power Measurement			(Meas.	Count :	20/	20)
	Avg.	Max.	Min.		Limit	
TX Power	-51.14	-50.92	-51.31	dBm -99	. 9 to -48.	0 dBm
RRC Filtered Power	-52.12	-51.86	-52.31	dBm		
Judgement	Pass					

1.3.10. 5.4.3 Transmit OFF power, 5.4.4 Transmit ON/OFF Time mask

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_OFFPWR を実行して Test Parameter を Call Off Power にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. PWRTEMP_AVG 20 を実行して Power Template 測定の平均回数を 20 回とします。
- 6. SWP を実行して Power Template 測定を行います。
- 7. **POWERPASS?**を実行して Power Template 測定の判定結果を読み出します。
- 8. 測定結果が PASS であることを確認します。

Power Template View			(Meas.	Count	: 20/ 20)
	Avg.	Max.	Min.		Limit
Off Power (TS s-1)	-76.50	-73.70	-79.27	dBm	≦ -63,5 dBm
Off Power (TS s+1)	-76.76	-73.77	-81.68	dBm	≦ -63,5 dBm
-50dBm	-79.50	-74.76	-86.17	dBm	≦ -50,0 dBm
Template Judgement	Pass				

Transmit OFF Power 測定はフロアノイズからの影響を避けるために Input Level よりも低いレベルで実行されます。 測定状態は Level Over になりますが、測定結果に影響はありません。

1.3.11. 5.5.1 Occupied bandwidth

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. OBW_AVG 20 を実行して OBW 測定の平均回数を 20 回とします。
- 6. **SWP** を実行して OBW 測定を行います。
- 7. **OBW?**を実行して OBW 測定結果を読み出します。
- 8. 測定結果が 1.6MHz 以下であることを確認します。

Occupied Bandwidth View			(Meas.	Count :	20/	20)
			Limit			
OBW	1.365	MHz	≤ 1.6 MHz			
Upper Frequency	0.697	MHz				
Lower Frequency	-0.667	MHz				
Center(Upper+Lower)/2	2010.815	MHz				
Judgement	Pass					

1.3.12. 5.5.2.1 Spectrum emission mask

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. SMASK_AVG 20 を実行して SEM 測定の平均回数を 20 回とします。
- 6. **SWP** を実行して SEM 測定を行います。
- 7. SMASKPASS?を実行して SEM 測定の判定結果を読み出します。
- 8. 測定結果が PASS であることを確認します。

Spectrum Emission Mask 📕	View		(Mea	as. Cou	unt : 20/	20)
Worst Value of Each Frequency Range						
Frequency Range	Level		Mask Marg	(in 👘	Frequency	
0.8MHz	-46.15	dBc	-12.65	dB	0.800	MHz
0.8 to 1.8MHz	-49.94	dBc	-10.84	dB	-1.200	MHz
1.8 to 2.4MHz	-57.97	dBc	-9.45	dB	-1.860	MHz
2.4 to 4.0MHz	-55.14	dBc	-12.64	dB	-2.910	MHz
Template Judgement	Pass					

1.3.13. 5.5.2.2 Adjacent Channel Leakage power Ratio (ACLR)

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. ADJ_AVG 20 を実行して ACLR 測定の平均回数を 20 回とします。
- 6. **SWP** を実行して ACLR 測定を行います。
- 7. AVG_MODPWR? LOW16; AVG_MODPWR? UP16 を実行して ACLR 測定結果を読み出します。
- 8. 測定結果が-32.2dB以下であることを確認します。
- 9. AVG_MODPWR? LOW32; AVG_MODPWR? UP32 を実行して ACLR 測定結果を読み出します。
- 10. 測定結果が-42.2dB以下であることを確認します。

Adjacent Channel Power			(Meas.	Count :	20/ 20)
Offset Frequency	Powen				
	Avg.	Max.	Min.		Limit
-3.2MHz	-62.57	-61.86	-63.29	dB	≦-42.2 dB
-1.6MHz	-40.51	-40.18	-40.96	dB	≦-32.2 dB
1.6MHz	-44.38	-44.24	-44.51	dB	≦-32.2 dB
3.2MHz	-62.97	-62.32	-63.73	dB	≦-42.2 dB
Judgement	Pass				

1.3.14. 5.7.1 Error Vector Magnitude

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_20DBM を実行して Test Parameter を Call EVM & PCDE@-20dBm にします。
- 4. UE のパワーが-20dBm になるまで待ちます。
- 5. MOD_AVG 20 を実行して Modulation Analysis 測定の平均回数を 20 回とします。
- 6. SWP を実行して Modulation Analysis 測定を行います。
- 7. AVG_EVM?を実行して EVM 測定結果を読み出します。
- 8. 測定結果が 17.5%以下であることを確認します。

Modulation Analysis View (Meas. Count : 20/20)					
	Avg.	Max.	Min.	Limit	
Error Vector Magnitude	5.36	5.66	5.19	%(rms) ≦17.5 %(rms)	
Peak Vector Error	56.12	64.31	46.27	8	
Phase Error	2.28	2.41	2.16	deg.(nms)	
Magnitude Error	3.62	3.82	3.39	%(rms)	
Origin Offset	-27.82	-27.54	-28.02	dB	
IQ Imbalance	100.39	100.77	100.05	%(I/Q)	
Rho	0.99713	0.99731	0.99680		
Judgement	Pass				

1.3.15. 5.7.2 Peak code domain error

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_MULTI を実行して Channel Coding を RMC(Multi Code)に設定します。
- 3. TESTPRM CALL_20DBM を実行して Test Parameter を Call EVM & PCDE@-20dBm にします。
- 4. UE パワーが-20dBm に達するまで待ちます。
- 5. PCDE_AVG 20 を実行して Peak Code Domain Error 測定の平均回数を 20 回とします。
- 6. SWP を実行して Peak Code Domain Error 測定を行います。
- 7. AVG_PCDERR?を実行して Peak Code Domain Error 測定結果を読み出します。
- 8. 測定結果が-20dB以下であることを確認します。

1.3.16. 6.2 Reference sensitivity level

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. TESTPRM CALL_BERSENS を実行して Test Parameter を Call BER (Reference Sensitivity Level)にします。
- 4. UE が最大パワーに達するまで待ちます。
- 5. BER_SAMPLE 10000 を実行して BER 測定サンプル数を 10000 ビットにします。
- 6. SWP を実行して BER 測定を行います。
- 7. **BER?**を実行して BER 測定結果を読み出します。
- 8. 測定結果が 0.001 以下であることを確認します。

Bit Error Rate	End		Limit
Bit Error Rate	0.0000 (=	0.00 <mark>%)</mark>	≦0.001
	0.00E+00		
Error Count	0		
Transmitted/Sample	10229 /	10000 Bit	
Judgement	Pass		

1.3.17. 一括測定による測定時間の短縮

同一の測定条件で行う測定を一括に測定することにより、測定時間を短縮することができます。

[Maximum Output Power, OBW, ACLR, SEM]

- 1. Test Loop Mode1 で接続を行います。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. ALLMEASITEMS ON,20,ON,20,ON,20,ON,20,ON,20,ON,20,ON,20,ON,20,ON,0FF を実行し BLER 測 定以外の測定を On、Frequency Error 測定の平均回数を 200 回、その他の測定の平均回数を 20 回とします。
- 4. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 5. UE が最大パワーに達するまで待ちます。
- 6. **SWP** を実行して測定を行います。
- 7. AVG_POWER?を実行して Power 測定結果を読み出します。
- 8. **OBW?**を実行して OBW 測定結果を読み出します。
- 9. AVG_MODPWR? LOW16; AVG_MODPWR? UP16 を実行して ACLR 測定結果を読み出します。
- 10. AVG_MODPWR? LOW32; AVG_MODPWR? UP32 を実行して ACLR 測定結果を読み出します。
- 11. SMASKPASS?を実行して SEM 測定の判定結果を読み出します。

[Frequency Error, BER]

- 12. TESTPRM CALL_BERSENS を実行して Test Parameter を Call BER (Reference Sensitivity Level)にします。
- 13. BER_SAMPLE 10000 を実行して BER 測定サンプル数を 10000 ビットにします。
- 14. SWP を実行して、測定を行います。
- 15. MAXABS_CARRFERR? PPM を実行して Frequency Error 測定結果を読み出します。
- 16. **BER?** を実行して BER 測定結果を読み出します。

[Transmit ON/OFF Time mask]

- 17. TESTPRM CALL_OFFPWR を実行して Test Parameter を Call Off Power にします。
- 18. **SWP** を実行して、測定を行います。
- 19. **POWERPASS?**を実行して Power Template 測定の判定結果を読み出します。

[Minimum Output Power]

- 20. TESTPRM CALL_MINPWR を実行して Test Parameter を Call Minimum Output Power にします。
- 21. UE が最小パワーに達するまで待ちます。
- 22. **SWP** を実行して、測定を行います。
- 23. AVG_POWER? を実行して Power 測定結果を読み出します。

[EVM]

- 24. TESTPRM CALL_20DBM を実行して Test Parameter を Call EVM&PCDE@-20dBm にします。
- 25. UEパワーが-20dBm に達するまで待ちます。
- 26. SWP を実行して、測定を行います。
- 27. AVG_EVM?を実行して EVM 測定結果を読み出します。

[PCDE (Multi Code)]

- 28. OLVL -66.0 を実行して Output Level を-66.0dBm にします。
- 29. CHCODING RMC_MULTI を実行して Channel Coding を RMC(Multi Code)にします。
- 30. OLVL -93.0 を実行して Output Level を-93.0dBm にします。
- 31. **SWP** を実行して、測定を行います。
- 32. AVG_PCDERR? を実行して Peak Code Domain Error 測定結果を読み出します。

[Maximum Output Power (Multi Code)]

- 33. TESTPRM CALL_MAXPWR を実行して Test Parameter を Call Maximum Output Power にします。
- 34. UE が最大パワーに達するまで待ちます。
- 35. **SWP** を実行して、測定を行います。
- 36. AVG_POWER?を実行して Power 測定結果を読み出します。

1.4. Open Loop Power Control 測定

以下の測定は Fundamental Measurement Parameter の Measurement Object を Open Loop Power Control にして 行います。

- 1. MEASOBJ OLPC を実行して Measurement Object を Open Loop Power Control にします。
- 2. MAXULPWR 24 を実行して Maximum Allowed UL TX Power を 24dBm にします。
- 3. RABCONNECT OFF を実行して RAB Connection を Off にします。

Maximum Allowed UL TX Power は端末の Cell Selection and Reselectionの判定基準となるパラメータです。 Sensitivity Level でも端末が Cell Selection and Reselection を行うようにするためには、端末の Power Class に よる最大送信パワー以下の値に設定する必要があります。たとえば、Power Class 2 のときは、MAXULPWR 24 とし ます。

RAB Connection を Off にすると、Test Loop Mode 接続時に RAB を接続することなく Idle 状態に戻すことができます。

1.4.1. 5.4.1 Open Loop Power Control in the Uplink (RX-middle)

- 1. TESTPRM IDLE_MIDDLE を実行して Test Parameter を Idle RX middle にします。
- 2. 端末の電源を入れて Registration をさせます。
- 3. SWPANDPG を実行して Test Loop Mode 接続時の UpPCH 測定を行います。
- 4. UPPCHPWR?を実行して UpPCH の Power 測定結果を読み出します。
- 5. 測定結果が-10dBm(+/-10dB)であることを確認します。

Open Loop Power Control		
		Limit
UpPCH Power	-7.11 dBm	-10.0 dBm ± 10dB
SYNC-UL ID	3	
Judgement	Pass	

1.4.2. 5.4.1 Open Loop Power Control in the Uplink (RX Upper dynamic end)

- 1. TESTPRM IDLE_UPPER を実行して Test Parameter を Idle RX Upper Dynamic End にします。
- 2. 端末の電源を入れて Registration をさせます。
- 3. SWPANDPG を実行して Test Loop Mode 接続時の UpPCH 測定を行います。
- 4. UPPCHPWR?を実行して UpPCH の Power 測定結果を読み出します。
- 5. 測定結果が-25dBm(+/-10dB)であることを確認します。

Open Loop Power Control		
		Limit
UpPCH Power	-24.31 dBm	-25,0 dBm ± 10dB
SYNC-UL ID	6	
Judgement	Pass	

1.4.3. 5.4.1 Open Loop Power Control in the Uplink (RX-Sensitivity level)

- 1. TESTPRM IDLE_SENS を実行して Test Parameter を Idle RX Sensitivity Level にします。
- 2. 端末の電源を入れて Registration をさせます。
- 3. SWPANDPG を実行して Test Loop Mode 接続時の UpPCH 測定を行います。
- 4. UPPCHPWR?を実行して UpPCH の Power 測定結果を読み出します。
- 5. 測定結果が+9dBm(+/-10dB)であることを確認します。

Open Loop Power Control		
		Limit
UpPCH Power	12,72 dBr	9,0 dBm ± 10dB
SYNC-UL ID	5	
Judgement	Pass	

1.4.4. Open Loop Power Control 連続測定

Open Loop Power Control 測定では Primary CCPCH TX Power, PRXUpPCHdes を変更して測定を行いますが、これらのパラメータは報知情報のパラメータであり、パラメータ変更後にすぐに端末側で反映されるわけではありません。Open Loop Power Control 測定を連続して行うためには次の三つのいずれかの方法で、端末にパラメータを反映させます。

- 1) パラメータ変更後 5 秒ほど待ちます。上記のパラメータ変更時に、本器は BCCH modification info を PAGING TYPE1 メッセージで端末に送信します。その変更が実際に端末側で反映されるまでには 5 秒ほどかかります。
- 2) 上記のパラメータ変更後に端末を再起動して、端末が Registration するのを待ちます。
- 3) 上記のパラメータに加えて LAC のパラメータを変更して、端末が Registration をするのを待ちます。 LACINC を実行すると、LAC の値をインクリメントすることができます。

1.5. Closed Loop Power Control 測定

1.5.1. 5.4.1.4 Closed loop power control

- 1. Test Loop Mode1 で接続を行います。
- 2. TESTPRM CALL_CLPC を実行して Test Parameter を Call Closed Loop Power Control にします。
- 3. CLPC_MEAS AUTO_ALL を実行して CLPC Measurement Method を Auto(Step All)にします。
- 4. **SWP** を実行して、測定を行います。
- 5. CLPC_PASS? ALL を実行して、測定結果が PASS となることを確認します。

1.6. その他の測定

1.6.1. 5.4.5 Out-of-synchronisation handling of output power for continuous transmission

- 1. TESTPRM IDLE_OSYNC_SET を実行して Test Parameter を Idle Out-of-Sync. Idle Setting にします。
- 2. 端末の電源を入れて Registration をさせます。
- 3. Test Loop Mode1 で接続を行います。
- 4. TESTPRM CALL_OSYNC_CONT を実行して Test Parameter を Call Out-of-Sync. Continuous にします。
- 5. SWP を実行して Power 測定を行います。
- 6. OUTSYNC_PASS? ALL を実行して、測定結果が PASS となることを確認します。

out of synchronisation			
	DPCH_EC/ION	UE Signai	
Step A	-2.4 dB	On	Pass
Step B	-6.0 dB	On	Pass
Step C	-16.0 dB	Turns Off	Pass
Step E	-14.0 dB	Off	Pass
Step F	-3.0 dB	Turns On	Pass

- 1.6.2. 5.4.6 Out-of-synchronisation handling of output power for discontinuous transmission
- 1. TESTPRM IDLE_OSYNC_SET を実行して Test Parameter を Idle Out-of-Sync. Idle Setting にします。
- 2. 端末の電源を入れて Registration をさせます。
- 3. Test Loop Mode1 で接続を行います。
- 4. TESTPRM CALL_OSYNC_DISC を実行して Test Parameter を Call Out-of-Sync. Discontinuous にします。
- 5. SWP を実行して Power 測定を行います。
- 6. OUTSYNC_PASS? ALL を実行して、測定結果が PASS となることを確認します。

out of synchronisa	DPCH Ec/Top	UE Signal	
	Di Ol _207 10		
Step A	-5.4 dB	On	Pass
Step B	-9.0 dB	On	Pass
Step C	-19.0 dB	Turns Off	Pass
Step E	-17.0 dB	Off	Pass
Step F	-6.0 dB	Turns On	Pass

1.6.3. 6.3 Maximum Input Level

- 1. Test Loop Mode1 で接続を行います。
- 2. TESTPRM CALL_BERMAX を実行して Test Parameter を Call BER (Maximum Input Level)にします。
- 3. BER_SAMPLE 10000 を実行して、BER 測定サンプル数を 10000 ビットにします。
- 4. **SWP** を実行して BER 測定を行います。
- 5. **BER?**を実行して BER 測定結果を読み出します。
- 6. 測定結果が 0.001 以下であることを確認します。

Bit Error Rate	End		Limit
Bit Error Rate	0.0000 (=	0.00 <mark>%)</mark>	≤ 0.001
	0.00E+00		
Error Count	0		
Transmitted/Sample	10118 /	10000 Bit	
Judgement	Pass		

1.6.4. 6.8 Spurious Emissions

- 1. RRCSTATE CELLFACH を実行して RRC State を CELL_FACH にします。
- 2. SINTRASCHSW ON を実行して Sintrasearch を On にします。
- 3. SINTERSCHSW ON を実行して Sintersearch を On にします。
- 4. SSCHRATSW ON を実行して Ssearch, RAT を On にします。
- 5. MAXULPWR 24 を実行して Maximum Allowed UL TX Power を 24dBm にします。
- 6. 端末の電源を入れて Registration をさせます。
- 7. OLVL -52.0 を実行して Output Level を-52.0dBm にします。
- 8. AWGNLVL ON を実行して AWGN の出力を On にします。
- 9. AWGNPWR -9.0 を実行して Ior/Ioc を 9.0dB にします。
- 10. PCCPCHLVL -3.0 を実行して PCCPCH Ec/Ior を-3.0dB にします。
- 11. DWPCHLVL 0.0 を実行して DwPCH Ec/Ior を 0.0dB にします。
- 12. CALLSA を実行すると、端末が CELL_FACH の状態になります。
- 13. 外部に Spectrum Analyzer を接続することにより Spurious Emissions を測定することができます。

1.6.5. 7.2 Demodulation in static propagation conditions

[Test1]

- 1. TESTMODE MODE2 を実行して Test Loop Mode を Test Mode2 にします。端末が対応していない場合は TESTMODE MODE1AM を実行して Test Loop Mode を Test Mode1(AM)にします。
- 2. CHCODING RMC_SINGLE を実行して Channel Coding を RMC(Single Code)に設定します。
- 3. Test Loop Mode で接続を行います。
- 4. OLVL -56.1 を実行して Output Level を-56.1dBm にします。
- 5. AWGNLVL ON を実行して AWGN の出力を On にします。
- 6. AWGNPWR -3.9 を実行して Ior/Ioc を-3.9dB にします。
- 7. DDPCHPWR -7.0 を実行して DPCH_Ec/Ior を-7.0dB にします。
- 8. ALLMEASITEMS OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,0N を実行して BLER 測定のみ を On とします。
- 9. BLER_SAMPLE 1000 を実行して BLER 測定サンプル数を 1000 ブロックにします。
- 10. SWP を実行して BLER 測定を行います。
- 11. **BLER?**を実行して BLER 測定結果を読み出します。
- 12. 測定結果が 0.01 以下であることを確認します。

Block Error Rate	End	
Block Error Rate	0.0000 (=	0.00 %)
	0.00E+00	
Error Count	0	
Transmitted/Sample	1000 /	1000 Block

1.7. HSDPA 測定

本項以降の測定手順の説明は、GPIB で制御ソフトウェアを作成することを前提としています。GPIB コマンドの詳細やマニュアル操作に関しては取扱説明書を参照してください。赤太字は GPIB コマンドとなります。

1.7.1. HSDPA RMC の接続

HSDPA での接続を行うには PS で位置登録を行う必要があります。Registration Mode を Combined または CS&PS に設 定して位置登録を行ってください。

- 1. PRESET を実行して初期パラメータに設定します。
- 2. **REGMODE COMBINED** を実行して Registration Mode を Combined にします。
- 3. CHCODING HSDPA_RMC を実行して Channel Coding を HSDPA RMC にします。
- 4. 端末の電源を On にします。
- 5. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。
- 6. CALLSA を実行して HSDPA RMC の接続を行います。
- 7. CALLSTAT?を実行して、レスポンスが 6(=Communication)になるまで待ちます。

Call Status の確認に CALLSTATIC?を使用することも可能です。

以下に CALLSTATIC?を使用した例を記述します。

- 1. PRESET を実行して初期パラメータに設定します。
- 2. **REGMODE COMBINED** を実行して Registration Mode を Combined にします。
- 3. CHCODING HSDPA_RMC を実行して Channel Coding を HSDPA RMC にします。
- 4. 端末の電源を On にします。
- 5. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。
- 6. CALLSA を実行して HSDPA RMC の接続を行います。
- 7. CALLSTATIC?を実行します。Call Status が 6(=Communication)になると、レスポンスが返ってきます。

1.7.2. HSDPA RMC の切断

- 1. CALLSO を実行して HSDPA RMC の切断を行います。
- 2. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。

以下に CALLSTATIC?を使用した例を記述します。

- 1. CALLSO を実行して HSDPA RMC の切断を行います。
- 2. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。

1.7.3. 呼接続中の HSDPA Data Rate の変更

呼接続中に HSDPA Data Rateを変更することが可能です。呼接続中の HSDPA Data Rateの変更は次の手順で行います。

- 1. HSDPA RMC で呼接続を行います。
- 2. HSRATE 0.5M_QPSK を実行して HSDPA Data Rate を 0.5Mbps UE Class(QPSK)にします。
- 3. 測定を行います。
- 4. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 5. 測定を行います。

1.7.4. 5.2B User Equipment maximum output power with HS-SICH and DPCH

- 1. HSTYPE FRC を実行して HSDPA Data Type を FRC にします。
- 2. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 3. TPCPAT ALT を実行して TPC Pattern を Alternate にします。
- 4. HSDPA RMC で呼接続を行います。
- 5. TPCPAT CLPC を実行して TPC Pattern を Closed Loop Power Control にします。
- 6. ILVL 16.2 を実行して Input Level を 16.2dBm にします。
- 7. 端末のパワーが 16.2dBm になるまで 150 ミリ秒程度待ちます。
- 8. TPCPAT ALT を実行して TPC Pattern を Alternate にします。
- 9. ILVL 25.7 を実行して Input Level を 25.7dBm にします。
- 10. TPCPAT ALL1 を実行して TPC Pattern を All1 にします。
- 11. PWR_MEAS ON を実行して Power 測定を On にします。
- 12. PWR_AVG 20 を実行して Power 測定の平均回数を 20 回とします。
- 13. SWP を実行して Power 測定を行います。
- 14. AVG_POWER?を実行して Power 測定結果を読み出します。
- 15. 測定結果が+21.5dBm(+4.2dB/-3.7dB)となることを確認します。

Power Measurement			(Meas.	Count :	20/	20)
	Avg.	Max.	Min.		Limit	
TX Power	23.01	23.02	23.00	dBm -99	.9to 99	.9 dBm
RKC Filtered Power	22.77	22.79	22.75	dBm		
Judgement	Pass					

1.7.5. 5.5.2.1B Spectrum emission mask

- 1. HSTYPE FRC を実行して HSDPA Data Type を FRC にします。
- 2. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 3. HSDPA RMC で呼接続を行います。
- 4. ILVL 30.0 を実行して Input Level を 30.0dBm にします。
- 5. TPCPAT ALL1 を実行して TPC Pattern を All1 にします。
- 6. UE が最大パワーに達するまで待ちます。
- 7. SMASK_MEAS ON を実行して SEM 測定を On にします。
- 8. SMASK_AVG 20 を実行して SEM 測定の平均回数を 20 回とします。
- 9. **SWP** を実行して SEM 測定を行います。
- 10. SMASKPASS?を実行して SEM 測定の判定結果を読み出します。
- 11. 測定結果が PASS であることを確認します。

Spectrum Emission Mask	View	(Mea	as. Cou	unt : 20	/ 20)		
Worst Value of Each Frequency Range							
Frequency Range	Level		Mask Marg	gin	Frequency		
0.8MHz	-46.15	dBc	-12.65	dB	0.800	MHz	
0.8 to 1.8MHz	-49.94	dBc	-10.84	dB	-1.200	MHz	
1.8 to 2.4MHz	-57.97	dBc	-9.45	dB	-1.860	MHz	
2.4 to 4.0MHz	-55.14	dBc	-12.64	dB	-2.910	MHz	
Template Judgement	Pass						

1.7.6. 5.5.2.2B Adjacent Channel Leakage power Ratio (ACLR) with HS-SICH and DPCH

- 1. HSTYPE FRC を実行して HSDPA Data Type を FRC にします。
- 2. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 3. HSDPA RMC で呼接続を行います。
- 4. ILVL 30.0 を実行して Input Level を 30.0dBm にします。
- 5. TPCPAT ALL1 を実行して TPC Pattern を All1 にします。
- 6. UE が最大パワーに達するまで待ちます。
- 7. ADJ_MEAS ON を実行して ACLR 測定を On にします。
- 8. ADJ_AVG 20 を実行して ACLR 測定の平均回数を 20 回とします。
- 9. SWP を実行して ACLR 測定を行います。
- 10. MODPWRPASS?を実行して Adjacent Channel Power 測定結果を読み出します。
- 11. 測定結果が PASS となることを確認します。

Adjacent Channel Power			(Meas.	Count :	20/	20)
Offset Frequency	Power					
	Avg.	Max.	Min.		Limit	
-3.2MHz	-62.57	-61.86	-63.29	dB	≦ −42,2 (dB
-1.6MHz	-40.51	-40.18	-40.96	dB	≤ -32.2	dB
1.6MHz	-44.38	-44.24	-44.51	dB	≦ -32.2)	dB
3.2MHz	-62.97	-62.32	-63.73	dB	≦ −42.2)	dB
Judgement	Pass					

1.7.7. 5.7.1B Error Vector Magnitude with HS-SICH and DPCH

- 1. HSTYPE FRC を実行して HSDPA Data Type を FRC にします。
- 2. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 3. HSDPA RMC で呼接続を行います。
- 4. ILVL -20.0 を実行して Input Level を-20.0dBm にします。
- 5. TPCPAT CLPC を実行して TPC Pattern を Closed Loop Power Control にします。
- 6. UE のパワーが-20dBm になるまで待ちます。
- 7. MOD_MEAS ON を実行して Modulation Analysis 測定を On にします。
- 8. MOD_AVG 20 を実行して Modulation Analysis 測定の平均回数を 20 回とします。
- 9. SWP を実行して Modulation Analysis 測定を行います。
- 10. AVG_EVM?を実行して EVM 測定結果を読み出します。
- 11. 測定結果が 17.5%以下であることを確認します。

Modulation Analysis <mark>Vi</mark> e	<mark>ж.</mark>		(Meas.	Count : 20/ 20)
	Avg.	Max.	Min.	Limit
Error Vector Magnitude	5.36	5.66	5.19	%(rms) ≦17.5 %(rms)
Peak Vector Error	56.12	64.31	46.27	8
Phase Error	2.28	2.41	2.16	deg.(rms)
Magnitude Error	3.62	3.82	3.39	%(rms)
Origin Offset	-27.82	-27.54	-28.02	dB
IQ Imbalance	100.39	100.77	100.05	%(I/Q)
Rho	0.99713	0.99731	0.99680	
Judgement	Pass			

1.7.8. 6.3A Maximum Input Level for HS-PDSCH Reception (16QAM)

- 1. HSTYPE FRC を実行して HSDPA Data Type を FRC にします。
- 2. MAXHARQTX 1 を実行して Maximum number of HARQ transmissions を1にします。
- 3. RVCODINGALL 6,2,1,5 を実行して Redundancy and Constellation Version を 6, 2, 1, 5 にします。
- 4. HSDPA RMC で呼接続を行います。
- 5. HSRATE 1.1M_16QAM を実行して HSDPA Data Rate を 1.1Mbps UE Class(16QAM)にします。
- 6. OLVL -25.0 を実行して Output Level を-25.0dBm にします。
- 7. TPUT_MEAS ON を実行して HSDPA Throughput 測定を On にします。
- 8. **TPUT_TYPE TPUT** を実行して HSDPA Throughput Measurement Type を Throughput にします。
- 9. TPUT_SAMPLE 10000 を実行して HSDPA Throughput 測定サンプル数を 10000Block にします。
- 10. SWP を実行して HSDPA Throughput 測定を行います。
- 11. **TPUT?**を実行して Throughput 測定結果を読み出します。
- 12. 測定結果が 500kbps 以上であることを確認します。

HSDPA Throughput	End
Throughput	1279 kbps
Block Error Rate	0.0000 (= 0.00 %)
	0.00E+00
Error Count	0 (NACK + DTX)
	(NACK 0 DTX 0)
Transmitted/Sample	10000 / 10000 Block

1.7.9. 9.3.3 Reporting of HS-DSCH Channel Quality Indicator (2.8Mbps UE)

- 1. HSTYPE VRC を実行して HSDPA Data Type を VRC にします。
- 2. MAXHARQTX 1 を実行して Maximum number of HARQ transmissions を1にします。
- 3. HSDPA RMC で接続を行います。
- 4. HSRATE 2.8M_QPSK を実行して HSDPA Data Rate を 2.8Mbps UE Class(QPSK)にします。
- 5. HSPDSCHLVL -10.0 を実行して HS-PDSCH_Ec/Ior を-10.0dB にします。
- 6. AWGNLVL ON を実行して AWGN の出力を On にします。
- 7. AWGNPWR -1.0 を実行して Ior/Ioc を-1.0dB にします。
- 8. OLVL -59.0 を実行して Output Level を-59.0dBm にします。
- 9. UE の出力が安定するまで待ちます。
- 10. TPUT_MEAS ON を実行して HSDPA Throughput 測定を On にします。
- 11. **TPUT_TYPE CQI** を実行して HSDPA Throughput Measurement Type を CQI にします。
- 12. TPUT_SAMPLE 10000 を実行して HSDPA Throughput 測定サンプル数を 10000Block にします。
- 13. CQI_MEAS ON を実行して CQI 測定を On にします。
- 14. CQI_SAMPLE 2000 を実行して CQI 測定サンプル数を 2000Block にします。
- 15. CQI_RANGE 2 を実行して CQI counting range を 2 にします。
- 16. SWP を実行して HSDPA Throughput 測定を行います。
- 17. **TPUT_BLER?**を実行して Throughput 測定結果を読み出します。
- 18. 測定結果が 0.1 以下であることを確認します。
- 19. CQI_SUM?を実行して CQI 測定結果を読み出します。
- 20. 測定結果が 1800 以上であることを確認します。

HSDPA CQI	End			
	Avg.	Median	Max.	Min.
CQI (RTBS)	52.1	53	54	50
Sum in Median CQI ± 2	1993			
Rate	99.65	8		
RMF	QPSK	0 16	SQAM 2	2000
Received/Sample	2000	/ 200	00 Block	

1.8. HSUPA 測定

本項以降の測定手順の説明は、GPIB で制御ソフトウェアを作成することを前提としています。GPIB コマンドの詳細やマニュアル操作に関しては取扱説明書を参照してください。赤太字は GPIB コマンドとなります。

1.8.1. HSUPA RMC の接続

HSUPA での接続を行うには PS で位置登録を行う必要があります。Registration Mode を Combined または CS&PS に設定して位置登録を行ってください。

- 1. PRESET を実行して初期パラメータに設定します。
- 2. **REGMODE COMBINED** を実行して Registration Mode を Combined にします。
- 3. CHCODING HSUPA_RMC を実行して Channel Coding を HSUPA RMC にします。
- 4. 端末の電源を On にします。
- 5. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。
- 6. CALLSA を実行して HSUPA RMC の接続を行います。
- 7. CALLSTAT?を実行して、レスポンスが7(=Loop Mode 1)になるまで待ちます。

Call Status の確認に CALLSTATIC?を使用することも可能です。

以下に CALLSTATIC?を使用した例を記述します。

- 1. PRESET を実行して初期パラメータに設定します。
- 2. **REGMODE COMBINED** を実行して Registration Mode を Combined にします。
- 3. CHCODING HSUPA_RMC を実行して Channel Coding を HSUPA RMC にします。
- 4. 端末の電源を On にします。
- 5. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。
- 6. CALLSA を実行して HSUPA RMC の接続を行います。
- 7. CALLSTATIC?を実行します。Call Status が 7(= Loop Mode 1)になると、レスポンスが返ってきます。

1.8.2. HSUPA RMC の切断

- 1. CALLSO を実行して HSUPA RMC の切断を行います。
- 2. CALLSTAT?を実行して、レスポンスが 2(=Idle(Regist))になるまで待ちます。

以下に CALLSTATIC?を使用した例を記述します。

- 1. CALLSO を実行して HSUPA RMC の切断を行います。
- 2. CALLSTATIC?を実行します。Call Status が 2(=Idle(Regist))になると、レスポンスが返ってきます。

1.8.3. 5.2A User Equipment maximum output power with E-DCH

- 1. HSURATE FRC3 を実行して HSUPA Data Rate を FRC3 にします。
- 2. PERFORM_MEAS ON を実行して HSUPA Performance 測定を On にします。
- 3. PERFORM_SAMPLE 15 を実行して HSUPA Performance Number of Sample を 15 にします。
- 4. HSUPA RMC で呼接続を行います。
- 5. TPCPAT CLPC を実行して TPC Pattern を Closed Loop Power Control にします。
- 6. ILVL 7.3 を実行して Input Level を 7.3dBm にします。
- 7. 端末のパワーが 7.3dBm になるまで 150 ミリ秒程度待ちます。
- 8. TPCPAT ALT を実行して TPC Pattern を Alternate にします。
- 9. ILVL 25.7 を実行して Input Level を 25.7dBm にします。
- 10. SWP を実行して HSUPA Performance 測定を行い、E-DCH TB Index 測定結果が 53 であることを確認します。
- 11. TPC_CMD_UP を実行して UE の送信電力を 1dB 上げ、150 ミリ秒程度待ちます。
- 12. SWP を実行して HSUPA Performance 測定を行います。
- 13. AVE_TBI?を実行して E-DCH TB Index 測定結果を読み出し、53 であることを確認します。
- 14. E-DCH TB Index 測定結果が 53 でなくなるまで手順 11~13 を繰り返します。
- 15. TPC_CMD_DOWN を実行して UE の送信電力を 1dB 下げ、150 ミリ秒程度待ちます。
- SWP を実行して HSUPA Performance 測定を行い、E-DCH TB Index 測定結果が 53 であることを確認します。
 (E-DCH TB Index 測定結果が 53 ではない場合、もう一度手順 15,16 を繰り返します。)
- 17. PWR_MEAS ON を実行して Power 測定を On にします。
- 18. PWR_AVG 20 を実行して Power 測定の平均回数を 20 回とします。
- 19. SWP を実行して Power 測定を行います。
- 20. AVG_POWER?を実行して Power 測定結果を読み出します。
- 21. 測定結果が+22.5dBm(+3.2dB/-5.2dB)となることを確認します。

Power Measurement			(Meas.	Count :	20/	20)
	Avg.	Max.	Min.		Limit	
TX Power	23.01	23.02	23.00	dBm -99	.9 to 99.	9 dBm
RRC Filtered Power	22.77	22.79	22.75	dBm		
Judgement	Pass					

1.8.4. 5.5.2.1A Spectrum emission mask

- 1. HSURATE FRC3 を実行して HSUPA Data Rate を FRC3 にします。
- 2. HSUPA RMC で呼接続を行います。
- 3. ILVL 30.0 を実行して Input Level を 30.0dBm にします。
- 4. TPCPAT ALL1 を実行して TPC Pattern を All1 にします。
- 5. UE が最大パワーに達するまで待ちます。
- 6. SMASK_MEAS ON を実行して SEM 測定を On にします。
- 7. SMASK_AVG 20 を実行して SEM 測定の平均回数を 20 回とします。
- 8. SWP を実行して SEM 測定を行います。
- 9. SMASKPASS?を実行して SEM 測定の判定結果を読み出します。
- 10. 測定結果が PASS であることを確認します。

1.8.5. 5.5.2.2A Adjacent Channel Leakage power Ratio (ACLR) with E-DCH

- 1. HSURATE FRC3 を実行して HSUPA Data Rate を FRC3 にします。
- 2. HSUPA RMC で呼接続を行います。
- 3. ILVL 30.0 を実行して Input Level を 30.0dBm にします。
- 4. TPCPAT ALL1 を実行して TPC Pattern を All1 にします。
- 5. UE が最大パワーに達するまで待ちます。
- 6. ADJ_MEAS ON を実行して ACLR 測定を On にします。
- 7. ADJ_AVG 20 を実行して ACLR 測定の平均回数を 20 回とします。
- 8. **SWP** を実行して ACLR 測定を行います。
- 9. MODPWRPASS?を実行して Adjacent Channel Power 測定結果を読み出します。
- 10. 測定結果が PASS となることを確認します。

Adjacent Channel Power			(Meas.	Count	: 20/ 20)
Offset Frequency	Power				
	Avg.	Max.	Min.		Limit
-3.2MHz	-62.57	-61.86	-63.29	dB	≦ -42.2 dB
-1.6MHz	-40.51	-40.18	-40.96	dB	≦ -32,2 dB
1.6MHz	-44.38	-44.24	-44.51	dB	≦ -32,2 dB
3.2MHz	-62.97	-62.32	-63.73	dB	≦ -42.2 dB
Judgement	Pass				

1.8.6. 5.7.1A Error Vector Magnitude with E-DCH 16QAM

- 1. HSURATE FRC2 を実行して HSUPA Data Rate を FRC2 にします。
- 2. HSUPA RMC で呼接続を行います。
- 3. TESTPRM CALL_20DBM を実行して Test Parameter を Call EVM & PCDE@-20dBm にします。
- 4. UE のパワーが-20dBm になるまで待ちます。
- 5. MOD_AVG 20 を実行して Modulation Analysis 測定の平均回数を 20 回とします。
- 6. EPUCH_MEAS_SLOT 4 を実行して E-PUCH Measurement Slot を 4 に設定します。
- 7. SWP を実行して Modulation Analysis 測定を行います。
- 8. AVG_EVM?を実行して EVM 測定結果を読み出します。
- 9. 測定結果が14%以下であることを確認します。

Modulation Analysis <mark>Vi</mark> e	ew -		(Meas.	Count : 20/ 20)
	Avg.	Max.	Min.	Limit
Error Vector Magnitude	5.36	5.66	5.19	%(rms) ≦17.5 %(rms)
Peak Vector Error	56.12	64.31	46.27	8
Phase Error	2.28	2.41	2.16	deg.(nms)
Magnitude Error	3.62	3.82	3.39	%(rms)
Origin Offset	-27.82	-27.54	-28.02	dB
IQ Imbalance	100.39	100.77	100.05	%(I/Q)
Rho	0.99713	0.99731	0.99680	
Judgement	Pass			

1.8.7. 11.1 Detection of E-DCH HARQ ACK Indicator Channel (E-HICH)

[test1]

- 1. EHICHPAT NACK を実行して E-HICH Pattern を NACK に設定します。
- 2. OLVL -60.0 を実行して Output Level を-60.0dBm にします。
- 3. AWGNLVL ON を実行して AWGN の出力を On にします。
- 4. AWGNPWR 0.0 を実行して Ior/Ioc を 0dB にします。
- 5. EHICHLVL -7.5 を実行して E-HICH Ec/Ior を-7.5dB にします。
- 6. HSURATE FRC1_CAT3_6 を実行して HSUPA Data Rate を FRC1 (Category3-6)にします。端末の E-DCH Category が 1-2 の場合は HSURATE FRC1_CAT1_2 を実行して FRC1 (Category1-2)にします。
- 7. HSUPA RMC で呼接続を行います。
- 8. ALLMEASITEMS_OFF ですべての測定項目を Off にします。
- 9. PERFORM_MEAS ON を実行して HSUPA Performance 測定を On にします。
- 10. PERFORM_SAMPLE 1000 を実行して HSUPA Performance 測定サンプル数を 1000 ブロックにします。
- 11. SWP を実行して HSUPA Performance 測定を行います。
- 12. FALSE_ACK_NACK_PROB? EXP を実行して False ACK Probability 測定結果を読み出します。
- 13. 測定結果が 2E-3 以下であることを確認します。

[test2]

- 1. EHICHPAT ACK を実行して E-HICH Pattern を ACK に設定します。
- 2. OLVL -60.0 を実行して Output Level を-60.0dBm にします。
- 3. AWGNLVL ON を実行して AWGN の出力を On にします。
- 4. AWGNPWR 0.0 を実行して Ior/Ioc を 0dB にします。
- 5. EHICHLVL -7.5 を実行して E-HICH Ec/Ior を-7.5dB にします。
- 6. HSURATE FRC1_CAT3_6 を実行して HSUPA Data Rate を FRC1 (Category3-6)にします。端末の E-DCH Category が 1-2 の場合は HSURATE FRC1_CAT1_2 を実行して FRC1 (Category1-2)にします。
- 7. HSUPA RMC で呼接続を行います。
- 8. ALLMEASITEMS_OFF ですべての測定項目を Off にします。
- 9. PERFORM_MEAS ON を実行して HSUPA Performance 測定を On にします。
- 10. PERFORM_SAMPLE 1000 を実行して HSUPA Performance 測定サンプル数を 1000 ブロックにします。
- 11. SWP を実行して HSUPA Performance 測定を行います。
- 12. FALSE_ACK_NACK_PROB? EXP を実行して False NACK Probability 測定結果を読み出します。
- 13. 測定結果が 2E-2 以下であることを確認します。

1.8.8. 11.2 Demodulation of E-DCH Absolute Grant Channel (E-AGCH)

- 1. HSURATE FRC1_CAT3_6 を実行して HSUPA Data Rate を FRC1 (Category3-6)にします。端末の E-DCH Category が 1-2 の場合は HSURATE FRC1_CAT1_2 を実行して FRC1 (Category1-2)にします。
- 2. EHICHPAT ACK を実行して E-HICH Pattern を ACK に設定します。
- 3. ABSGNTVAL 31 を実行して E-AGCH Absolute Grant Value を 31(*1)に設定します。
- 4. OLVL -51.4 を実行して Output Level を-51.4dBm にします。
- 5. AWGNLVL ON を実行して AWGN の出力を On にします。
- 6. AWGNPWR -8.6 を実行して Ior/Ioc を 8.6dB にします。
- 7. EAGCHLVL -3.0 を実行して E-AGCH Ec/Ior を-3.0dB にします。
- 8. HSUPA RMC で呼接続を行います。
- 9. ALLMEASITEMS_OFF ですべての測定項目を Off にします。
- 10. PERFORM_MEAS ON を実行して HSUPA Performance 測定を On にします。
- 11. PERFORM_SAMPLE 1000 を実行して HSUPA Performance 測定サンプル数を 1000 ブロックにします。
- 12. SWP を実行して HSUPA Performance 測定を行います。
- 13. MISSED_DTCTN_PROB? EXP を実行して Missed E-AGCH Detection Probability 測定結果を読み出します。
- 14. 測定結果が 0.01(1E-2)以下であることを確認します。

(*1) PRRIの値は 3GPP34.122 (9.4.0)の規格上 To be Defined になっていますが、ここでは 31 と設定しています。

1.9. UE Report

端末に対して Measurement Report を報告させることができます。Primary CCPCH RSCP の Report 値の取得方法について説明します。

- 1. Test Loop Mode1 で呼接続を行います。
- 2. MEASREP ON を実行して端末に Measurement Report を報告させます。
- 3. CALLRFR を実行して UE Report 値を初期化します。
- 4. PCCPCH_RSCP? FLAG を実行して、レスポンスが1であれば Report が報告されています。
- 5. PCCPCH_RSCP?を実行して P-CCPCH Ec/N0 値を読み出します。
- 6. 再度 Report 値を読み出す場合は 3 に戻ります。

UE Report	
IMSI (DEC)	001010123456789
UE Power Class	2
HS-DSCH Category	
Primary CCPCH RSCP	89 (-27 to -26 dBm)

UE Report は一定間隔で報告され、表示が更新されていきます。PCCPCH_RSCP? 1~10 を使用すると、指定した回数 だけ UE Report が更新されるまで待機し、その後レスポンスを返します。Output Level の変更し、それが UE Report に 反映された結果を取得するような場合には次の手順で行います。

- 1. Test Loop Mode1 で呼接続を行います。
- 2. MEASREP ON を実行して、端末に Measurement Report を報告させます。
- 3. OLVL -90.0 を実行して Output Level を-90.0dBm にします。
- 4. PCCPCH_RSCP? 3 を実行して UE Report が 3 回更新された後の P-CCPCH Ec/NO 値を読み出します。

1.10. その他

1.10.1. 校正 (Calibration)

入力レベルと出力レベルに対するレベル確度の周波数特性をフラットにし、内部の温度変化によるレベル確度のずれを校正します。本器単体で行うことのできる Calibration には、Band Calibration (BANDCAL) と Full Calibration (FULLCAL) があります。Band Calibration は TD-SCDMA 帯域で校正を行います。Full Calibration は本器の入出力帯域(30~2700 MHz)で校正を行います。

Full Calibration は Band Calibration の実行内容を含みますが、Band Calibration よりも時間がかかります。Full Calibration は季節の変わり目やソフトウェアのバージョンアップ後などに行ってください。その際、電源投入後1時間ぐらいエージングしてから行ってください。

Band Calibration は温度変化が無視できる間隔、たとえば端末1台の測定に対して1回行ってください。

1.10.2. External Loss

本器ではケーブルロスなどの External Loss をオフセット値として設定することができます。 External Loss は Main DL, Main UL, Aux それぞれで設定します。

Level				
Input Level	-10.0	dBm		
Output Level (Total)	-66.0	dBm	On	Level Continuous Off
AWGN Level	-20.0	dB	Off	
External Loss	On			
Main UL	0.0	dB		
Main DL	0.0	dB		
AUX	0.0	dB		

たとえば Main DL のロス値を 3.0dB, Main UL のロス値を 5.0dB に設定する場合は次のようにします。

- 1. DLEXTLOSSW ON を実行して Main DL の External Loss を有効にします。
- 2. ULEXTLOSSW ON を実行して Main ULの External Loss を有効にします。
- 3. DLEXTLOSS 3.0 を実行して Main DL のロス値を 3.0dB に設定します。
- 4. ULEXTLOSS 5.0 を実行して Main UL のロス値を 5.0dB に設定します。

上記のコマンドでは全周波数で同じロス値の設定しかできませんが、GPIBのみの機能として External Loss テーブルに 100 周波数ポイントまでのロス値を設定することができます。このテーブルは W-CDMA と GSM で共通に使用することが できます。なお、テーブルでロス値が設定されていない周波数でのロス値は、テーブルで設定されている最も近い左隣と 右隣の 2 周波数ポイントのロス値で線形補完した値となります。

たとえば周波数 2140MHz で Main DL のロス値を 3.0dB に、周波数 1950MHz で Main UL のロス値を 5.0dB に設定す る場合は次のようにします。

- 1. **DLEXTLOSSW COMMON** を実行して Main DL の External Loss で共通テーブルを使用します。
- 2. ULEXTLOSSW COMMON を実行して Main UL の External Loss で共通テーブルを使用します。
- 3. LOSSTBLVAL 1950MHz, 0.0, 5.0, 0.0 を実行して 1950MHz の Main UL のロス値を 5.0dB に設定します。
- 4. LOSSTBLVAL 2140MHz, 3.0, 0.0, 0.0 を実行して 2140MHz の Main DL のロス値を 3.0dB に設定します。

テーブルに設定されている周波数ポイント数は画面上の External Loss Table に表示されます。 または、LOSSTBLSAMPLE?を実行して読み出すことも可能です。テーブルに設定されている全周波数ポイントのロス値 を消去する場合は DELLOSSTBL を実行します。

※バージョンによる External Loss 設定時の動作の違いについて

パラメータ設定時の連動動作で入出力レベルが変わってしまう場合があります。

測定条件の設定(外部ロス,周波数など)後は測定開始前に必ず入出力レベルを設定するようにしてください。 (W/G,TDSのみ)

V20.00以降のバージョンでは、外部ロス設定時や周波数変更時に入出力レベルが変わらないように仕様変更いたしました。

Anritsu envision : ensure

アンリツ株式会社

http://www.anritsu.com

〒243-8555 神奈川県厚木市恩名 5-1-1 本社 TEL 046-223-1111 厚木 〒243-0016 神奈川県厚木市田村町8-5 計測器営業本部 TEL 046-296-1202 FAX 046-296-1239 計測器営業本部 営業推進部 TEL 046-296-1208 FAX 046-296-1248 〒243-8555 神奈川県厚木市恩名 5-1-1 ネットワークス営業本部 TEL 046-296-1205 FAX 046-225-8357 新宿 〒160-0023 東京都新宿区西新宿6-14-1 新宿グリーンタワービル ネットワークス営業本部 TEL 03-5320-3552 FAX 03-5320-3570 TEL 03-5320-3559 FAX 03-5320-3562 東京支店 (官公庁担当) 〒980-6015 宮城県仙台市青葉区中央4-6-1 住友生命仙台中央ビル 仙台 計測器営業本部 TEL 022-266-6134 FAX 022-266-1529 ネットワークス営業本部東北支店 TEL 022-266-6132 FAX 022-266-1529 名古屋 〒450-0002 愛知県名古屋市中村区名駅3-20-1 サンシャイン名駅ビル 計測器営業本部 TEL 052-582-7283 FAX 052-569-1485 大阪 〒564-0063 大阪府吹田市江坂町1-23-101 大同生命江坂ビル 計測器営業本部 TEL 06-6338-2800 FAX 06-6338-8118 ネットワークス営業本部関西支店 TEL 06-6338-2900 FAX 06-6338-3711 〒732-0052 広島県広島市東区光町1-10-19 日本生命光町ビル 広島 ネットワークス営業本部中国支店 TEL 082-263-8501 FAX 082-263-7306 福岡 〒812-0004 福岡県福岡市博多区榎田1-8-28 ツインスクェア 計測器営業本部 TEL 092-471-7656 FAX 092-471-7699 ネットワークス営業本部九州支店 TEL 092-471-7655 FAX 092-471-7699

お見積り、ご注文、修理などは、下記までお問い合わせください。 記載事項は、おことわりなしに変更することがあります。

計測器の使用方法、その他については、下記までお問い合わせください。

計測サポートセンター

びてTEL: 0120-827-221 (046-296-6640) 受付時間/9:00~12:00、13:00~17:00、月~金曜日(当社休業日を除く) E-mail: MDVPOST@anritsu.com

● ご使用の前に取扱説明書をよくお読みのうえ、正しくお使いください。

■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府の 輸出許可または役務取引許可が必要となる場合があります。また、米国の輸出管理規則に より、日本からの再輸出には米国商務省の許可が必要となる場合がありますので、必ず弊 社の営業担当までご連絡ください。

再生紙を使用しています。

1506