Anritsu envision : ensure

PCI-Express Generation 4 RX Test Solution

シグナル クオリティ アナライザ-R MP1900A シリーズ

目次

1.	はじめに	2
2.	機器構成	2
3.	Connection	3
4.	Calibration	4
5.	Link Training	8
6.	まとめ1	.7

1. はじめに

PCI Express (以下 PCIe)の Generation (以下 Gen) 1 は、2.5 GT/s の伝送速度を持ち、主に民生用途の Computer Interface として普及してきました。その後 PCIe は、Gen 2 5 GT/s、Gen 3 8 GT/s と進化を続 け、現在は PCI-SIG の主催する Workshop にて Gen 4 16 GT/s の試験が行われています。さらに、PCI-SIG 内ではすでに Gen 5 32 GT/s の議論も始まっています。

伝送速度の上昇により、Gen 4 16 GT/s は、従来の PCIe が使用されていた民生用途ではなく、主に Data Center 向けの伝送装置、サーバ、ストレージ等の装置類の内部 Interface として使用されるようになってき ています。それら Data Center 向けの装置類は、外部 Interface として 100G / 200G / 400GbE 等を採用し、 そのデータを機器内部に伝達する Interface として PCIe Gen 4 が使用されます。

シグナル クオリティ アナライザ-R MP1900A は、これら装置類の Interface である NRZ の信号はもちろん、外部 Interface の 200G / 400G 等に使用される PAM4 Interface と内部 Interface の PCIe 両方を1台でサポート可能です。また、将来の Gen5 で要求される 32 GT/s にも対応可能なため、現在の投資を将来にまで有効活用することができる最適な Solution と言えます。

本 Application Note では、MP1900A を使用して、現在 PCIe Workshop で注目を集めている PCIe Gen 4の Rx Stress 試験方法と Trouble shooting 方法について記載します。

2. 機器構成

PCIeのRx Testに必要なブロック図と構成を以下に示します。

Fig 2.1 Block Diagram

上記リアルタイムオシロは MP1900A から出力される波形の Calibration のために使用されます。 PCIe としての認証を得るためのテストでは、測定器ベンダごとに使用する機器が決められていますが、手順に従った Calibration にて同等の波形を生成することが可能です。

Model Number	Model Name	Options	Qty	Note
MP1900A	シグナル クオリティ アナラ	-	1	Mainframe
	イザ-R			
MU181000B	12.5GHz 4 ポートシンセサ	002	1	Synthesizer
	イザ			
MU181500B	ジッタ変調源	-	1	Jitter source
MU195020A	21G/32G bit/s SI PPG	001 ^{注1} , 010, 011	1	SI PPG
MU195040A	21G/32G bit/s SI ED	001 ^{注1} , 010, 011, 022	1	SI ED
MU195050A	Noise Generator	-	1	Noise source
MX183000A	ハイスピード シリアルデー	001, 021	1	Link Training,
	タ テストソフトウェア			Jitter Tolerance
				Soft

Table 2.1 PCIe Test configuration

注 1: Gen 5 test のために必要

3. Connection

PCIe Device には、CPU や Mother board のような Master となりうるものとして System (または Root complex)と、それらに接続する Slave として Add-in Card (または End Point、以下 AIC)の二つがあります。 System と AIC では Compliance 試験用の波形の Calibration や試験時の接続が異なりますので注意が必要です。

以下に System と Add-in Card の Calibration, Rx Stress 試験時の接続図を示します。図中の CLB, CBB はそれぞれ Compliance Load Board, Compliance Base Board の略で、PCI-SIG から購入可能です。

Fig 3.2 System Stressed Rx Test

上図の中で MP1900A の接続は下記のようになります。

Fig 3.5 MP1900A Configuration Connection

Fig 3.6 MP1900A Rx test Connection

4. Calibration

本章では、具体的にアンリツソリューションを使用して PCIe Gen 4 の Rx Stressed Test のための波形 Calibration 方法について記載します。

4.1 Channel Loss

Calibration では、まず CBB, CLB と ISI Board, Cable を接続した状態で、Loss の値が 8 GHz で 27 dB から 30 dB になることを確認します。Fig 4.1,Fig 4.2 にそれぞれ System と AIC 各ボード間の Loss Budget を示します。

Fig 4.1 System Loss Budget

上記の Loss Budget を参考にしながら、4port differential VNA で全体の Loss を測定し、ISI Board の中から、適当な Loss Pair を選択します。

Fig 4.3 Loss Measurement by VNA

4.2 Amplitude

次に、BERT 側の Amplitude, Preset, SJ, RJ, DM の値を校正します。特に記載がある場合を除き、Real time scope は BW 25 GHz 以上、Sampling Rate が 80 GS/S 以上のものを使用します。

Amplitude は、64 bit 0 連続、64 bit 1 連続の後に、128 bit の 01 を繰り返すパターンを使用します。 Emphasis 設定を OFF にした状態で、0101 繰り返し部分が差動で 800 mVp-p になるように振幅を調整して ください。この時、Scope は Average 16 points, Horizontal scale を 100 ns / div にします。

Fig 4.4 Amplitude Calibration

- ・Preset4(Emphasis OFF) で Amplitude を 800 mV に校正
- ・Preset5(または 6)に変更し、Pre-shoot 値を校正
- ・Vd が 800 mV になるよう Amplitude を校正(Vd は Fig4.5 を参照)

4.3 Preset

Emphasis 設定を On にし、Table 4.1、Fig4.5 の規格および算出方法で De-emphasis と Preshoot の値を 調整します。

Preset #	Preshoot (dB)	De-emphasis (dB)	c-1	c+1	Va/Vd	Vb/Vd	Vc/Vd
P4	0.0	0.0	0.000	0.000	1.000	1.000	1.000
P1	0.0	-3.5 ± 1 dB	0.000	-0.167	1.000	0.668	0.668
P0	0.0	-6.0 ± 1.5 dB	0.000	-0.250	1.000	0.500	0.500
P9	3.5 ± 1 dB	0.0	-0.166	0.000	0.668	0.668	1.000
P8	3.5 ± 1 dB	-3.5 ± 1 dB	-0.125	-0.125	0.750	0.500	0.750
P7	3.5 ± 1 dB	-6.0 ± 1.5 dB	-0.100	-0.200	0.800	0.400	0.600
P5	1.9 ± 1 dB	0.0	-0.100	0.000	0.800	0.800	1.000
P6	2.5 ± 1 dB	0.0	-0.125	0.000	0.750	0.750	1.000
P3	0.0	-2.5 ± 1 dB	0.000	-0.125	1.000	0.750	0.750
P2	0.0	-4.4 ± 1.5 dB	0.000	-0.200	1.000	0.600	0.600
P10	0.0	Note 2.	0.000	Note 2.	1.000	Note 2.	Note 2.

Table 4.1 Tx Preset Ratios and Corresponding Coefficient Values

Notes:

- Reduced swing signaling must implement presets P4, P1, P9, P5, P6, and P3. Full swing signaling must implement all the above presets.
- P10 boost limits are not fixed, since its de-emphasis level is a function of the LF level that the Tx advertises during training. P10 is used for testing the boost limit of Transmitter at full swing. P1 is used for testing the boost limit of Transmitter at reduced swing.

De-emphasis = 20log10(Vb/Va)Pre-shoot = 20log10(Vc/Vb)

Fig 4.5 De-emphasis and Preshoot

De-emphasis, Preshoot を測定する場合、Scope は Average 16 points, Horizontal scale 1 ns / div に 設定しておきます。

4.4 SJ (Sinusoidal Jitter)

SJ は、PPG に Compliance Pattern を使用し、Scope で Capture したデータを SigTest に入力します。 SigTest で算出した値が 100 MHz 0.1 UI p-p (6.25 ps p-p)になるよう調整します。Scope でデータを Capture する場合は、Horizontal Scale 10 µs / div で Averaging は Off に設定してください。

ターゲットに追い込む手順としては、まず SJ 設定を 0mUI にした状態で波形を Scope でキャプチャし、 SigTest で 5 回 TJ を算出し平均値を計算します。その後 SJ を 100mUI に設定して同様に SigTest にて 5 回 平均をとり、差分が 6.25 psp-p になるよう SJ 値を調整します。

4.5 RJ (Random Jitter)

RJ は、PPG が発生する Pattern Dependent Jitter の影響を排除するため、0101 の Clock pattern を使用 します。RJ は 10 MHz の HPF を使用し 0.228 UI p-p (1 ps rms)をターゲットとして、Scope でキャプチャ したデータを SigTest に入力し、調整を行います。データキャプチャと SigTest の計算を 5 回行い、平均値が 0.228 UI p-p (1 ps rms)になれば完了です。

Scope で SigTest に入力するデータをキャプチャする場合は、Horizontal Scale 10 µs / div で Averaging は Off にしておきます。

4.6 DMI (Differential Mode Interference)

DM は、PPG の出力を Off にし、DM を 14 mVp-p, 2.1 GHz になるよう Scope で調整します。DM を測定 する場合のみ、Scope の BW は、8 GHz に設定してください。

4.7 EH / EW (Eye Height / Eye Width)

最後に、EH/EW を調整して Calibration は完了です。PPG に Compliance Pattern を設定し、ここまで調整した SJ, RJ, DM, Preset (Emphasis)をすべて On にします。Preset 値は、0 から 10 までありますが、いずれか一つの Preset で EH / EW の規格を満たす必要があります。PCIe Workshop #102 では、Preset 5 または Preset 6 のいずれかを使用することが推奨されていました。この波形を Averaging Off, Horizontal Scale 10 μ s / div, BW 25 GHz に設定した Scope でキャプチャし、SigTest に入力します。SigTest の結果を見ながら、SJ と DM を調整し、ターゲットとなる EH (13.5 ~ 16.5 mV) / EW (18.25 ~ 19.25 ps)に追い込みます。なお、SigTest は、5 回の測定結果の平均値を最終結果とします。

5. Link Training

Calibration が完了したら、Fig 3.2 や Fig 3.4 に示す測定系に接続を変更し、Rx Stress 試験を開始します。 PCIe Device は、LTSSM (Link Training State Status Machine)と呼ばれる State Machine を内蔵してい ます。

Fig 5.1 LTSSM

Rx Stress 試験には、Device の State を初期状態の Detect から Loopback に遷移させる必要があります。 Loopback に遷移する方法としては、Detect→Polling→Configuration から Loopback へ遷移する方法と、 Detect→Polling→Configuration から LO→Recovery を経由して Loopback へ遷移する二通りの方法があります。

Configuration から Loopback に遷移する Configuration Route では、DUT と測定器間で Gen1 2.5 GT/s の Link が確立した後、すぐに 16 GT/s の Link へと遷移します。この際、Preset 値は、DUT、測定器がそれ ぞれあらかじめ決めていた固定値が使用されます。一方 Configuration から Recovery を経由する Recovery Route では、Gen1 2.5 GT/s の後、Gen3 8 GT/s を経て Gen4 16 GT/s に遷移します。また、この時、DUT と測定器の間では、相互に最適な Preset 値を指定し合うことで最適な Loopback 状態を確立することができ ます。Recovery Route での Link Training を LEQ Test(Link Equalization Test)とも呼びます。

Gen4の Workshop では、Link Training による Loopback 確立に多くの時間が費やされています。そのため、ここからは、Link Training の際に直面するさまざまな問題の解決方法を紹介します。

アンリツでは、PCIe 試験用に、MP1900A と同時に使用する PCIe Link Training MX183000A-PL021 とい うソフトウェアパッケージを用意しています。このソフトを使用することで、DUT の Loopback 状態への遷 移、BER 測定また Link Training 時の Debug を簡単に行うことができます。

Fig. 5.2 のように、MP1900A 起動画面から MX183000A を起動し、PCIe Link Training を選択して Start ボタンを押します。すると右側の図のような Module を選択する画面がでてきますので、Search Start で MP1900A 本体内に実装されている Module を探します。Module を検索したら Connect ボタンを押してソフ

			☑ No.1 TCPIP0::127.0.0.1::5001::SOCKET ▼
Davice Rost Utility	Apple a torns	MX183000A - Selector	No.2 TCPIP0::192.168.2.100::5001::SOCKET No.3 TCPIP0::192.168.2.100::S001::SOCKET Search Start
		\bigcirc	

Fig 5.2 Running MX183000A PL-021

MX183000A 起動後、Link Training タブをクリックしてください。次に CBB 上のリセットボタンを押して、 DUT をリセット後、MX183000A 上の Link Start ボタンを押すと、Link Training が始まります。

The Setup Help	aning			Adjust RF		
automent Setup Link Tr	aining Run Test Gran	Report	Electric	al Idle		n Stal
Specification	DUT	report			RA (🔍 -	
4.0(16.0 GT/s) •	Endpoint •	Result More		Link Start	10/10	
LTSSM State		Received		BER Measurement		131
		Tx Preset		Configure		

Fig 5.3 Start Link Training

以降に Loopback 状態にならない場合、Loopback に遷移後 Sync Loss になってしまい BER が測定できない場合、Loopback に遷移後 Error が発生してしまう場合の対処をそれぞれ記載します。

5.1 Loopback 状態にならない場合

MX183000A の Link Training タブ上で Link Start ボタンを押すと、LTSSM State という項目の横に現在の Link 状態が表示されます。Fig 5.4 の左側のように、Loopback.Active.Master と表示されていれば Link が成功し、Loopback 状態になっていることを示しています。Link が成功していない場合には、右側のように、Detect.Quit 等 Loopback.Active.Master ではない状態が表示されます。

				· · · · ·			
Equipment Setup	Link Trainin	g Run Test	Gr	Equipment Setup	Link Training	Run Test	G
Specification	DUT			Specification	DUT		
4.0(16.0 GT/s)	- Endp	oint		4.0(16.0 GT/s)	▼ Endpo	pint .	٣
LTSSM State	Loopb	ack.Active.Mast	ter	LTSSM State		Detect.Qu	iet
Linkup Speed		16.0 Gb	ps	Linkup Speed		2.5 Gb	ps
, [av eau			_	8b10b	Received	Transmitted	_
86106	Received	Transmitted	_	SKP Count	0		0
SKP Count				Symbol Err	0		

Fig 5.4 LTSSM State Indication

Link が成功しなかった場合は、同じ Link Training タブ上の LTSSM Log ボタンを押して Link Training の Log を確認します。

Fig 5.5 LTSSM Log Button

Fig 5.6 に LTSSM Log の成功例と失敗例を示します。

lime [ns]	∆Time [ns]	State	Speed[GT/s]	Time [r	ns]	∆Time [State	Speed[GT/s
244122144	1936	RECOVERY_IDLE	8.0	0		٥	INITIAL	16.
244124080	24	LO	8.0	17280		17280	DETECT_QUITE	16.
244124104	2512	RECOVERY_RCVR_LOCK	8.0	12017	280	12000000	DETECT_ACTIVE	16.
244126616	2504	RECOVERY_RCVR_CFG_EQTS2	8.0	12017	296	16	POLLING ACTIVE TS1	16
244129120	8518400	RECOVERY_SPEED	8.0	36017	296	2400000	INITIAL	16
52647520	481600	RECOVERY_SPEED	16.0	36017	200	1000000	DETECT OUNTE	10
53129120	8	RECOVERY_RCVR_LOCK	16.0	50017	512	10	Derect_dorre	10.
253129128	535352	RECOVERY_EQUALIZATION_PHASE1	16.0	48017	312	12000000	DETECT_ACTIVE	16.
253664480	6002296	RECOVERY_EQUALIZATION_PHASE2	16.0	48017	328	16	POLLING_ACTIVE_TS1	16.
259666776	23009232	RECOVERY_EQUALIZATION_PHASE2	16.0	72017	328	24000000	INITIAL	16.
82676008	1999976	RECOVERY_EQUALIZATION_PHASE3	16.0	72017	344	16	DETECT_QUITE	16.
84675984	2000000	RECOVERY_EQUALIZATION_PHASE3	16.0	84017	344	12000000	DETECT_ACTIVE	16.
86675984	2000000	RECOVERY_EQUALIZATION_PHASE3	16.0	84017	360	16	POLLING_ACTIVE_TS1	16.
288675984	24	RECOVERY_EQUALIZATION_PHASE3	16.0	10801	7360	24000000	INITIAL	16.
288676008	1504	RECOVERY_RCVR_LOCK	16.0	10801	7376	16	DETECT OUITE	16
288677512	552	RECOVERY_RCVR_CFG_TS2	16.0	12001	7376	12000000	DETECT ACTIVE	10
288678064	1536	LOOPBACK ENTRY MASTER TS1	15.0	12001	/3/6	12000000	DETECT_ACTIVE	16.
288679600		LOOPBACK_ACTIVE_MASTER	16.0	12001	7392	16	POLLING_ACTIVE_TS1	16.
				14401	7392	24000000	INITIAL	16.
				14401	7408	16	DETECT_QUITE	16
				15001	7400	10000000		10

Fig 5.6 LTSSM Log Examples

成功している場合、左側の例のように Status 欄の最後に LOOPBACK_ACTIVE_MASTER と表示されます が、失敗している場合は、右側のように、DETECT と POLLING の State を繰り返している状態が表示されま す。Link 失敗の場合はこの他にもさまざまな状態があります。ここで Loopback にならない代表的な状態と その Trouble shooting の方法を解説していきます。

5.1.1 Link Speed が 2.5 GT/s を繰り返す場合

まず Link Speed が 2.5 GT/s のまま DETECT, POLLING を繰り返している場合です。この場合は、測定系の接続、特に Pos / Neg や Trace の Pair 番号等が間違えていないか、DUT への電源電圧は十分か等を確認してください。また、DUT 内の LTSSM が異常状態になっている可能性もあるため、電源再投入や、CBB 上のReset ボタン押下が有効な場合もあります。

30005050	0000404	BUTTAL	
70685952	2000464	INITIAL	8
70685968	16	DETECT_QUITE	8
79337088	8651120	DETECT_QUITE	2.5
82685968	3348880	DETECT_ACTIVE	2.5
82685984	16	POLLING_ACTIVE_TS1	2.5
106685984	24000000	INITIAL	2.5
106686000	16	DETECT_QUITE	2.5
118686000	12000000	DETECT ACTIVE	2.5
118686016	16	POLLING ACTIVE TS1	2.5
142686016	24000000	INITIAL	2.5
142686032	16	DETECT QUITE	2.5
154686032	12000000	DETECT ACTIVE	2.5
154686048	16	POLLING ACTIVE TS1	2.5
178686048	24000000	INITIAL	2.5
178686064	16	DETECT QUITE	2.5
190686064	12000000	DETECT ACTIVE	2.5
190686080	16	POLLING ACTIVE TS1	2.5
214686080	24000000	INITIAL	2.5
214686096	16	DETECT QUITE	2.5
226686096	12000000	DETECT ACTIVE	2.5
226686112	16	POLLING ACTIVE TS1	2.5
250686112	24000000	INITIAL	2.5

Fig 5.7 Repeating at 2.5GT/s

5.1.2 Link Speed 切り替え後にタイムアウトする場合

Link speed が 2.5 GT/s から 8 GT/s または、16 GT/s に遷移した後、RECOVERY_EQUALIZATION_ PHASE1 の State で 2.5 T/s に戻ることを繰り返す場合があります。

0	13,592	INITIAL	16
13,592	12,000,000	DETECT_QUITE	16
766.776	16	DETECT_ACTIVE	2.5
766.792	8,650,760	POLLING ACTIVE TS1	2.5
8.664.352	3.349.240	DETECT_QUITE	2.5
12.013.592	16	DETECT_ACTIVE	2.5
12.013.608	24,000,000	POLLING ACTIVE TS1	2.5
24,766,792	16	INITIAL	2.5
24.766.808	24,000,000	DETECT QUITE	2.5
36.013.608	16	INITIAL	2.5
36.013.624	12,000,000	DETECT_QUITE	2.5
36.766.808	16	DETECT_ACTIVE	2.5
36,766,824	66,000	POLLING_ACTIVE_TS1	2.5
36,832,824	1,352	POLLING_CONFIGURATION	2.5
36.834.176	3.368	CONFIGURATION LINKWIDTH START	2.5
36.837.544	128	CONFIGURATION LINKWIDTH ACCEPT	2.5
36,837,672	3,408	CONFIGURATIONS LANE WAIT	2.5
36.841.080	128	CONFIGURATIONS LANE ACCEPT	2.5
36.841.208	4.256	CONFIGURATION COMPLETE	2.5
36.845.464	4.672	CONFIGURATION IDLE	2.5
36,850,136	24	LO	2.5
36.850.160	4.008	RECOVERY_RCVR_LOCK	2.5
36.854.168	2.392	RECOVERY RCVR CFG EQTS2	2.5
36,856,560	8.534.400	RECOVERY SPEED	2.5
45,390,960	465,600	RECOVERY SPEED	8
45,856,560	8	RECOVERY ROVE LOCK	
45,856,568	12,000,000	RECOVERY_EQUALIZATION_PHASE1	8
48,013,624	16	DETECT ACTIVE	2.5

Fig 5.8 Timeout after Changing Link Speed

RECOVERY_EQUALIZATION_PHASE1 では、Link speed を変化させた後に、DUT-測定器間で最適な Preset の値を選択する Negotiation が行われます。この Negotiation に失敗すると、Link が Initial 状態に戻 ってしまいます。そこで、測定系から ISI Channel を外して Link が成功するか、Preset の値を変更して変化 があるか等を試す方法があります。Gen4 では、Preset 5,6,8,9 が適当な値として推奨されています。

5.1.3 CONFIGURATION_COMPLETE ステートでタイムアウトする場合

Configuration Complete の State で Timeout が発生する場合は、 Data Rate Identifier の Negotiation に 失敗していることが考えられます。 DUT が発生させる Data Rate Identifier の内容を確認してください。

3,348,848 DETECT_QUITE	2.5
16 DETECT_ACTIVE	2.5
66,000 POLLING_ACTIVE_TS1	2.5
1,352 POLLING_CONFIGURATION	2.5
3,584 CONFIGURATION_LINKWIDTH_START	2.5
128 CONFIGURATION_LINKWIDTH_ACCEPT	2.5
3,648 CONFIGURATIONS_LANE_WAIT	2.5
128 CONFIGURATIONS_LANE_ACCEPT	2.5
2.000.000 CONFIGURATION COMPLETE	2.5
16 INITIAL	2.5
16 DETECT_QUITE	2.5

Fig 5.9 Timeout at CONFIGURATION_COMPLETE

5.1.4 LOOPBACK_ENTRY_MASTER_TS1 ステートでタイムアウトする場合

LOOPBACK_ENTRY_MASTER_TS1 は、Negotiation の最終段階で、次の Link Speed への遷移を確定さ せる状態です。この場合、DUT からの TS (Training Sequence)を測定器が正常に受け取れていない可能性が あります。

21,737,848	14,344 LOOPBACK_ENTRY_MASTER_CHANGE	2.
21,752,192	562,968 LOOPBACK_ENTRY_MASTER_CHANGE	2.5
22,315,160	16 LOOPBACK_ENTRY_MASTER_CHANGE	2.
22,315,176	24 LOOPBACK_ENTRY_MASTER_CHANGE	2.
22,315,200	488,840 LOOPBACK_ENTRY_MASTER_CHANGE	1
22,804,040	8 LOOPBACK ENTRY MASTER TS1	1
22,804,048	99,999,992 LOOPBACK_ENTRY_MASTER_TS1	1
122,804,040	2,000,488 LOOPBACK_EXIT_MASTER	-
124,804,528	16 INITIAL	1
124,804,544	16 DETECT_QUITE	1

Fig 5.10 Timeout at LOOPBACK_ENTRY_MASTER

そこで、DUT の発生する Preset の値を測定器から指定する方法があります。Link Training タブから Option ボタンを押下し、Option 画面を開き State Machine タブから Loopback Entry 項目で、TS1 を EQTS1 に変 更します。これにより、DUT から発生する TS の Preset を測定器側から指定できるようになります。TS の Preset の値は、同じ Option 画面内の Link EQ タブの Preset(DE, PS [dB])項目で行います。Preset 設定に は、Upstream と Downstream がありますが、DUT が System の場合は、Downstream, DUT が AIC の場 合には、Upstream 側を変更します。

Fig 5.11 Loopback Entry Preset Setting

LOOPBACK_ENTRY_MASTER_TS1 で Timeout が発生し、Preset を変更しても Loopback に遷移しない 場合、MX183000A には、強制的に Loopback_Active へと遷移させるデバッグ機能があります。Option 画 面内の State Machine タブで、Timeout to 項目から Loopback_Active を選択すると、Loopback Entry で Timeout が発生した場合に強制的に Loopback 状態へ遷移します。これにより、BER 試験や Jitter 耐力試験 等、他の試験を進めることができるようになります。

State Machine	SKP	Link EQ	RF Parameter	Trigger
TS Paramete	r			
FT	S	127 🌲	Timeout to	Loopback.Activ
	100			Loopback.Exit
Link Numbe	er	1		Loopback.Activ
Lana Numb	ar	0		

Fig 5.12 Loopback Active Debugging Function

5.1.5 トリガ機能

Link Training 中のパラメータを変更しても、Loopback 状態に遷移できない場合、各 State の遷移タイミングを確認した方がいい場合があります。State 遷移では、応答を返す側は一定時間内に応答を返す必要があり、応答を待つ側は一定時間応答を待つ必要があります。一定時間内に相手から応答がなかった場合、応答を待つ側は Timeout と認識し、Negotiation 再スタートとなります。デバイスによっては、デバイスが待つべき一定時間を待たずに規定よりも早めに Timeout と判断してしまうものもあります。

たとえば、ある状態に遷移する場合、相手側の応答が来るまでの待ち時間の規定は 24 mS にもかかわらず、 それよりも短く 2 mS 程度待っただけで「応答が来ない」と判断し Timeout になっているデバイスもありま した。このデバイスは、相手の応答が 2 mS よりも早ければ通常通り Link すると考えられます。しかし相手 が規定の 24 mS 以内に応答したとしても、応答時間が、このデバイスとして Timeout と判断する 2 mS より も長い場合には、Timeout となり正常に Link しません。このあたりの確認が明確になされない状態で市場に 出回った場合、デバイス同士の「相性が悪い」ということで接続できたりできなかったりする現象が発生する 可能性があります。

このようなタイミングを確認するために、MX183000A には、各 State を通過時に Trigger を発生させる 機能があります。Option 画面内の Trigger タブ内に、Trigger 項目がありますので、ここで LTSSM を選択し ます。次に観測したい State とその Link Speed を選択すると、MU195020A SI-PPG の AUX Output からそ のタイミングの Trigger が発生します。

state Machine	SKP	Link EQ	RF Parameter	Trigge	
PPG Aux Outp	out Trigg	er			
Trigger LT	SSM	•]			
State	Recovery.Equalization.Phase1				
Link Speed	16.0 G		•		
Terri FO	DDC To		Descal		

Fig 5.13 LTSSM Trigger

LTSSM Trigger を使用してタイミングを測定する場合の接続方法を以下に示します。この測定系と Trigger により、DUT の各 State がどういうタイミングで遷移しているか詳細に解析することが可能です。

Fig 5.14 LTSSM Timing Measurement Connection

5.1.6 その他

Gen4のBase specificationでは、EIEOSの扱いがRevision 0.5とRevision 0.7の間で変更されています。 Link Training MX183000A タブ内の Option ボタンをクリックし、EIEOSの対応 Revision 設定が、DUT 対応のRevision と合致しているか確認してください。これがあっていない場合は正常に動作しません。

また、Recovery Route での Link が成功しない場合、Recovery Route ではなく、Configuration Route で Loopback 状態に遷移するかどうか確認する方法もあります。Configuration Route でも Loopback 状態に 遷移すれば、BER 測定や Jitter 耐力測定が可能になります。

5.2 Loopback に遷移後 Sync Loss になってしまう場合

次に、Loopback に遷移しても、パターンの同期が確立せず BER 測定ができない Sync Loss 状態になって いる場合に考えられる対処法を記載します。

Link Training タブ内の BER Measurement ボタンをクリックすると画面中央に BER 測定画面が表示されます。その画面の左下にある Sync Loss の LED が、赤く点滅していたら Sync Loss 発生を示しています。

もし Sync Loss も Error も発生していない場合には、この段階で Go / No Go 試験を実施することができ ます。BER Measurement ボタンを押すと、以下のような測定画面が開きます。ここで 63 秒間に Error が 1 個以下しか発生しなかった場合、DUT は、PCIe Gen4 Rx Stress 試験に合格となります。

quipment Setup Link Training Run Test G			raph Report	utting Test Pattern		
pecification	DUT				Unlink	
1.0(16.0 GT/s)	* Endp	ooint *	PCIe 4.0	Preset P5:0.0, 1.9		
LTSSM State Loopb		ack.Active.Master	EC Threshold	1	Test case 📄 Setti Rx LEO	
Linkup Speed		16.0 Gbps	Pass/Fail	PASS	Configure	
8b10b	Received	Transmitted			BER Measurement	
SKP Count			Cycle	Single 🔻		
Symbol Err			Cation Time	63 🔶 [s]	LTSSM Log	
Symbol Lock			Gating Time		opback through	
	· · · · · · · · · · · · · · · · · · ·		Switch To	Error Addition	ecovery *	
128b130b	30b Received Transmitted		Manual DER Test	0.00005.40	st Pattern	
SKP Count	47702	47703	Total BER	0.0000E-12	ompliance -	
DCBalance	0	0	Total Error Count	0		
Sync Header Err	0		Total Bits	1.0080E12	MCP	
Parity Err	0		Current BER	0.0000E-09	Timeout	
BIOCK LOCK	Aligned	1	Sync Loss 🔳	Clock Loss	Option	

Fig 5.15 Sync Loss Indication

5.2.1 Tx / Rx Sync Loss Parameter 設定

Link Training タブ右下の Option をクリックして内部のパラメータを変更します。

Fig 5.16 Sync Loss Parameters

RF Parameter タブ内に、CTLE Gain と Loopback Preset という二つのパラメータがあります。

DUT から ED への Trace が短く入力信号の Eye が開いているような場合には、CTLE Gain を 0 dB に設定 してください。CTLE は、Channel の損失によって閉じてしまった入力信号の Eye を再び開く機能を持ってい ますが、かけ過ぎると信号自体の Loss が大きくなり過ぎ、かえって BER 測定ができなくなる場合があります のでご注意ください。MP1900A の ED では 0 dB から-12 dB の間で CTLE Gain を設定可能ですが、Eye が 開いているようであれば、Gain は大き目の値にした方が測定しやすくなります。

Loopback Preset は、Loopback 後の MP1900A から発生する信号の Preset を変更するものです。

RF Parameter タブ内の Loopback Preset を Manual に変更すると、Preset 値が変更できるようになります。このパラメータの変更により、Channel 経由後の MP1900A 信号を DUT が正しく受信し、Loopback できるようになるか否かを確認することができます。Link Training タブ内 BER 測定画面右上の Preset 項目でも同様の変更が可能ですので、Preset 値を変更しながら Sync Loss 状態を確認できます。

5.2.2 独立の Reference clock を使用する場合の Sync Loss Parameters

DUT と測定器が、それぞれ独立の Reference clock を使用する場合、DUT と測定器側では動作周波数が微妙に異なります。PCIe デバイスは、通常、内部の FIFO と SKP ordered set を使ってこの動作周波数の差を吸収しています。Common Clock を使用する場合、デバイス間の動作周波数は同一ですので、本章で説明するパラメータを変更しても動作に影響はありません。

P Option							×
State Mag	chine SKP	Link EQ	RF Parameter	Trigger			
SRIS	Disable	•					
SKP							
Insert	Enable	•					
Filter	Enable	•					
Symbol Length	8b/10b COM + 3	↓ 128	b/130b Symbols 🔻				
Interva	153	8	375 🔶				
x 2	OFF	OFF	-				
		OFF					
						Close	

Fig 5.17 独立の Reference clock を使用する場合の Sync Loss Parameters

Option 画面内の SKP タブで、SKP Filter を Enable にすると、SKP ordered set を BER カウントの対象か ら外すことができます。SKP ordered set は、動作周波数の差を吸収するためのもので、それ自体通信上の意 味を持つわけではないため、Filter を Enable にして BER 測定対象から外します。

デバイス間がやり取りするデータの中には SKP ordered set が含まれており、この SKP を増減させることで FIFO の中が Full や Empty にならないように調整されます。Sync Loss が発生している原因として、デバイ ス間の動作周波数の差を、SKP やデバイス内の FIFO が吸収しきれていない可能性があります。MX183000A では、標準量の SKP では動作周波数のズレを吸収しきれない場合のために、SKP Symbol length を長くした り、SKP を 2 回連続で発生したりすることができます。SKP を多く発生させることで、FIFO に収容されるデ ータの数が減少し、動作周波数の差が吸収されて、Sync loss を回避できる可能性があります。

5.3 Loopback に遷移後 Error が発生してしまう場合

最後に、Loopback で BER を測定できるような状態で、Error が発生してしまう場合の対処法を記載します。 5.2.1 で記載しました CTLE Gain や Loopback Preset の値を再度調整してみると、Error がなくなる可能性 があります。それでも Error がなくならない場合には、SJ, RJ, DM 等印加しているストレスを 1 つずつ Off にしていく、または値を少しずつ下げていくことで、Error Free となる点を探すことができます。ストレスを Off にした状態あるいは規定よりも少なくした状態で Error がなくなった場合には、デバイスのストレス耐力 を上げる必要があるかもしれません。

6. まとめ

本稿では、MP1900A を使用して、現在 PCIe Workshop で注目を集めている PCIe Gen 4の Rx Stress 試験 方法と Trouble shooting 方法について記載しました。PCIe Gen4 はまだ PCIe Workshop でも試験方法が完 全に確立されていません。アンリツは今後とも Workshop での動向を把握し、お客様と業界発展に貢献する Solution をタイムリーに提供し続けます。

Anritsu envision : ensure

お見積り、ご注文、修理などは、下記までお問い合わせください。 記載事項は、おことわりなしに変更することがあります。

本社 〒243-8555 神奈川県厚木市恩名5-1-1 TEL 046-223-1111	ご使用の前に取扱説明書をよくお読みのうえ、正しくお使いください。	1804
厚木 〒243-0016 神奈川県厚木市田村町8-5		
計測器営業本部 TEL 046-296-1202 FAX 046-296-1239		
計測器営業本部 営業推進部 TEL 046-296-1208 FAX 046-296-1248		
仙台 〒980-6015 宮城県仙台市青葉区中央4-6-1 SS30		
計測器営業本部 TEL 022-266-6134 FAX 022-266-1529		
名古屋 〒450-0003 愛知県名古屋市中村区名駅南2-14-19 住友生命名古屋ビル		
計測器営業本部 TEL 052-582-7283 FAX 052-569-1485		
大阪 〒564-0063 大阪府吹田市江坂町1-23-101 大同生命江坂ビル		
計測器営業本部 TEL 06-6338-2800 FAX 06-6338-8118		
福岡 〒812-0004 福岡県福岡市博多区複田1-8-28 ツインスクエア		
■カタログのご請求、価格・納期のお問い合わせは、下記または営業担当までお問い合わせください。		
計測器営業本部 営業推進部		
びて TEL: 0120-133-099 (046-296-1208) FAX: 046-296-1248 受付時間 / 9:00~12:00、13:00~17:00、月~金曜日(当社休業日を除く)		
E-mail : SJPost@zy.anritsu.co.jp		
■計測器の使用方法 、その他については、下記までお問い合わせください。		
計測サポートセンター		
TEL: 0120-827-221 (046-296-6640) 受付時間/9:00~12:00、13:00~17:00、月~金曜日(当社休業日を除く) E-mail: MDVPOST@anritsu.com		
■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府	の輸出許可または役務取引許可が必要となる場合があります。	

■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府の輸出許可または役務取引許可か必要となる場合があります。 また、米国の輸出管理規則により、日本からの再輸出には米国商務省の許可が必要となる場合がありますので、必ず弊社の営業担当までご連絡ください。

https://www.anritsu.com

また、不固め物山目柱が知らなり、日本がつりの特制山には不固向初目のからすが必要である物口があるなりて、あず井口の日本に当またのと伴唱くたたい

アンリツ株式会社

公知 2018-6 MJM No. MP1900A_PCIE-J-F-1-(1.01)