

ユニバーサルワイヤレステストセット

MT8870A/MT8872A

高密度製造ラインの課題に応える

4 スロット

MT8870A

5G NR

LTE/ LTE-Advanced

WLAN 802.11ax/be LTE-V2X

Bluetooth5

アンリツの二つのソリューション

2 スロット

MT8872A

スマートフォンや無線モジュールの検査ラインに

5Gをはじめとする近年の無線通信は、スマートフォン市場をはじめとしてオートモティブやIoT 用通信機器などの市場にまで広がりを見せています。また、周波数帯域の拡張やより効率的な 伝送方式の策定をはじめ、5GやIEEE 802.11ax/be、8Bluetooth®などの無線通信規格も進化・発展を続けており、81台の無線通信デバイスに搭載する無線規格の多様化が進んでいます。

このような背景から、無線通信デバイス製造におけるテストは複雑化してきており、生産の効率化と同時に多様な通信規格へ対応できる柔軟性を持つ測定器が求められています。

ユニバーサルワイヤレステストセット MT8870A/MT8872Aは、測定稼働率に応じてテストユニットを入替できる柔軟性を持つ、2つの選択可能なアンリツのソリューションです。

MT8870Aは、1台に最高4つのテストユニットが搭載可能な筐体であり、過密化する製造ラインの中でも高効率な検査が実施出来、生産性向上に貢献します。

MT8872Aは、標準ラックサイズ (19 inch)よりも狭い設置場所で使用できるよう設計された MT8870Aと完全互換の小型筐体であり、さらなる省スペース化に貢献します。

共通のテストユニットである送受信テストモジュール MU887002Aは、24個のRFテストポートを有しており、高密度な製造ラインの構築に貢献します。

拡張性の高い ハイスペックテストユニット

MU887000A/01A/

MU887000A

送受信テストモジュール 送受信テストモジュール MU887000A MU887000A-002 (オーディオ) 付き

送受信テストモジュール MU887001A

送受信テストモジュール MU887001A MU887001A-002 (オーディオ) 付き

送受信テストモジュール MU887002A

送受信テストモジュール MU887002A MU887007A-007 (7 GHz 拡張機能) 付き

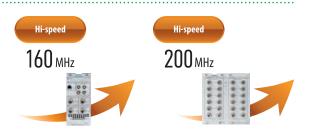
これからの検査ラインに

日々進化を続けるワイヤレス通信端末の製造メーカには、生産の効率化と同時に、多様な通信 規格に対応できる柔軟性が求められています。送受信テストユニット は、さまざまなワイヤレ ス通信規格に対応し、高性能な信号発生器とシグナルアナライザを搭載した拡張性の高いハ イスペックテストユニットです。

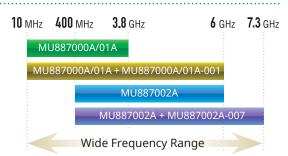
ライセンスの取得により各種の通信規格へ対応できるので、送受信テストユニットは共通で使 用できます。また、送受信テストユニットの交換が必要になった場合も、簡単に行えます。

ひとつのテストユニットに 信号発生器とシグナルアナライザを搭載

MU887000A/01A/02A (MU88700xA) は、 通信モジュールの検査ラインでの使用を想 定しており、高性能な信号発生器とシグナル アナライザを独立して内蔵しています。



広帯域幅


100 MHz以上の帯域幅が要求されるワイヤレス通信規格であるWLAN 11ac、 11axや11be、5G NR sub-6 GHzの2CAに対応できるように、 MU887000A/01Aは160 MHz、MU887002Aは200 MHzまでの測定帯域幅 に対応しています。

広い周波数範囲

MU887000A/01Aに内蔵される信号発生器やシグナルアナライザは、上 限周波数が標準で3.8 GHz、オプションで6 GHzまで拡張できます。 MU887002Aに内蔵される信号発生器やシグナルアナライザは6 GHzま で標準搭載し、オプションで7.3 GHzまで拡張できます。 特定周波数のみに対応した専用測定器では対応できない新しいワイヤレ ス通信規格にも、柔軟に対応できます。

ひとつのテストユニットで さまざまなワイヤレス通信規格に対応

MU88700xAは、ひとつのテストユニットで複数のワイヤレス通信規格 に対応できます。

各通信規格への対応は、測定ソフトウェアと波形ファイルの追加によっ て行うため、送受信テストユニットは共通で使用できます。

通信システム	規格	
5G NR sub-6 GHz	3GPP TS 38.101-1V15.0.0	
W-CDMA/HSDPA	3GPP TS 34.121-1 3GPP TS 25.141	
GSM/EDGE	3GPP TS 51.010-1	
LTE/LTE-Advanced/ LTE-V2X/NB-IoT/ Cat-M	3GPP TS 36.521-1 3GPP TS 36.141	
CDMA2000	3GPP2 TSG-C.S0011-C	
1xEV-DO	3GPP2 TSG-C.S0033-B	
TD-SCDMA	3GPP TS 34.122	
WLAN	IEEE 802.11a/b/g/n/p/ac (Wave 2) /ax/be*2	
Bluetooth®	Basic Rate/EDR/Bluetooth low energy (Bluetooth v5.4)	
ZigBee	IEEE 802.15.4	
Z-Wave	ITU-T G.9959	
FM*1	RDS (IEC 62106 Edition 2.0)	
GPS	GPS standard Positioning Service Signal	
Galileo	European GNSS (Galileo) Open Service Signal In Space Interface Control Document	
GLONASS	GLONASS ICD Navigational radiosignal In bands L1, L2	
BeiDou	BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.0)	
QZSS	Quasi-Zenith Satellite System Interface Specification	
DVB-H	ETSI EN300 744	
ISDB-T/Tmm*1	ARIB STD-B31/B46	

- *1: MU887000A/MU887001Aのみ
- *2: MU887002Aのみ

Bluetooth®ワードマークおよびロゴは、Bluetooth SIG, Inc.が所有する登録商標であり、アンリツはこれらのマークをライセンスに基づいて使用しています。

ライセンス1つをテストユニット4個まで適用可能

測定ソフトウェアと波形ファイルは、それぞれのライセンスを取得することで使用できます。 1つのライセンスは、最大で4個の送受信テストユニットに適用できるため、試験設備コストの抑制に貢献します。 各通信規格の試験について、送信試験には測定ソフトウェア、受信試験には波形ファイルが必要です。

試験システムを柔軟に構築

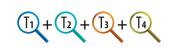
最大 **8**台

【8台同時接続 - PingPong測定】

テストユニットに被測定端末を2台繋げて交互に連続して測定するPingPong測定手法を利用することで、製造効率を向上させることができます。

MT8870Aには、最大4個のテストユニットを搭載できるため、4台ずつ交互に連続して試験できます。

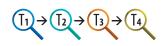
MU887000A/01Aは、1台に4つのRFテストポートを備えており、アンテナ2本までの端末を、MU887002Aは、1台に2つの送受信機能と、1つの送受信機能あたり12個のRFテストポートを備えており、アンテナ6本までの端末を最大8台接続できます。



最大 **4** 種類

【4種類同時試験】

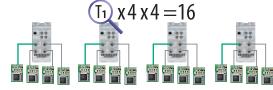
スマートフォンは、セルラのみならず、Bluetooth®、WLANなど、さまざまなワイヤレス通信インタフェースを備えています。 複数のワイヤレス通信規格を同時に試験することにより、 試験時間が短縮できます。



テストユニット **1**個で 連続試験

【複数のワイヤレス通信規格にて連続試験】

測定ソフトウェアと波形ファイルのライセンスを取得すること により、テストユニット1個で複数の試験を連続して行えます。



_{最大} 48_個

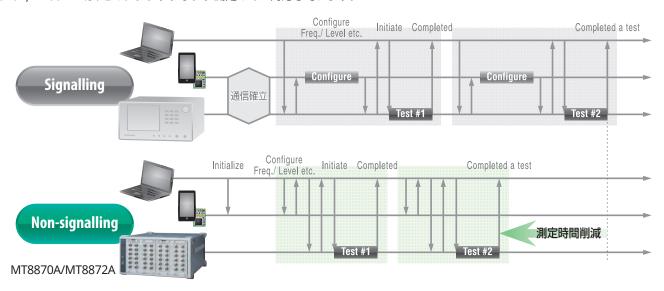
【48個同時接続】

MT8870A 1台に送受信テストユニットが最大で4個搭載できるため、MU887000A/01Aを搭載する場合、16個のテストポートを備えており、MU887002Aを搭載する場合、48個のテストポートを備えています。最大48個のIoTワイヤレス通信デバイスを同時に接続できるので、高密度な製造ラインが構築できます。

$P\ 0\ I\ N\ T$

製造ラインの組み替えにも柔軟に対応

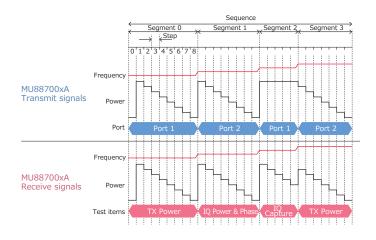
ワイヤレス通信デバイスの製造ラインは、校正、検査、機能試験などの工程に分けられています。各工程で異なる設備を使用した場合、試験時間の差異が出ることや、工程ごとで故障に備えた余剰設備を用意する必要があるなどの問題があります。 MT8870Aは、モジュールデザインにより汎用性が高く、製造ラインの組み替えなどにも最低限の余剰設備にて対応できます。


先進の高速測定法と一括測定 MU887000A/01A/02A

先進のハードウェアアーキテクチャ、および並列測定技術により、移動端末の製造・検査時間を大幅に短縮します。また、一括して処理したい複数の測定項目を自由に選択したり、各測定の繰り返し回数を個別に設定できます。選択した測定項目を一括測定し、送信周波数、変調精度、送信電力、隣接チャネル漏洩電力、占有周波数帯幅、BERなど、主要な試験項目を簡単、かつ高速に測定できます。

ノンシグナリング測定をサポート MU887000A/01A/02A

シグナリング測定では、無線規格の測定を行う際に、通信を確立しつつワイヤレス通信端末の設定を行い、RF測定を実施する手法が一般的です。一方、ワイヤレス通信端末の価格競争力をつけるためには、測定時間の短縮、製造コストの削減が必須となっており、通信を確立する時間を必要としないノンシグナリング測定が製造ラインでの主流となっています。


MT8870A/MT8872Aは、このノンシグナリング測定のみに対応しています。

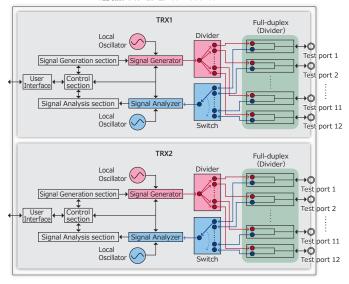
シーケンス測定(移動端末) MU887000A/01A/02A

移動端末が対応している場合においてシーケンス測定(リストモード)は、測定条件を記載したシーケンステーブル(リスト)に従って、 試験装置の送信/受信周波数、入出力レベル、送信信号のパターンを 変えながら送受信試験する機能です。

あらかじめ決められたシーケンス (リスト) を組み立て、リモートコマンドによる制御を必要とせずに各測定を高速で実施できるため、製造タクトタイムを削減できます。

試験システムを容易に構築可能 MU887000A/01A/02A

お客さまの要求やワイヤレス通信デバイスの仕様により、製造ラインの能力を週単位、月単位などで変化させる可能性があります。 MU887000A/01A/02Aは、製造ラインにおける試験項目や、テストステーションでの製造効率の増減に素早く対応できるように、お客さまでのテストユニット挿抜*ができます。製造ライン、テストステーションを変更するために大きな測定器を移動することなく、テストユニット単位にて容易に増減できます。


*:電源を投入した状態での挿抜(活線挿抜:ホットスワップ)は対応していません。

12個のRFテストポート MU887002A

MU887002Aは、1モジュールに2つの送受信 (TRX) 機能を備えて おり、1TRXあたり12個のRFテストポートが搭載されています。

送受信テストモジュール MU887002A

MU887002Aに装着されている12個のテストポートは、400 MHz~ 6.0 GHzまでの広範囲において高いレベル確度を実現しています。 MU887002A-007搭載時、テストポート5~12は7.3 GHzまで最大0 dBmの出力が可能です。

出力側はDividerが搭載されているため、12個のテストポートから同 時に信号を出力することができ、複数アンテナの同時受信による検 査時間の短縮が外部Dividerなしで実現できます。(Broadcast機能) 入力側は内部Switchにより12個のテストポートを切り替えて測定 を行います。

テストポートと無線技術 MU887002A

MU887002A

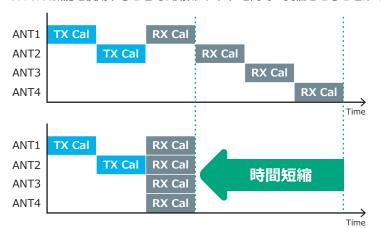
	-, .		
	TRX1 テストポート1~12 TRX2 テストポート1~1		
コネクタ	N (female)		
タイプ (構成部品)	Full-Duplex (ディバイダ) 周波数 ≦ 5900 MHz Half-Duplex (スイッチ) テストポート5~12 5900 MHz ≦ 周波数、MU887002A-007実装時		
概要	移動無線規格を測定する際に要求されるVSAおよびVSGを同時に使用できます。 すべてのテストポートから同時に信号を出力できます。*1		
無線規格*2	Supported standards: 5G NR/ENDC FDD/TDD sub- FDD/TDD、LTE-V2X、W-CDM/ CDMA2000/1xEV-DO、TD-SC WLAN 802.11a/b/g/n/p/ac/ IEEE802.15.4、Z-Wave、GPS、 QZSS、DVB-T、ISDB-T	A/HSPA、GSM/EDGE、 DMA、NB-IoT、Category M、 ax/be、Bluetooth、	

- *1:周波数が6000 MHz以上の場合、MU887002A-007が必要、テストポート5 ~12が同時出力可能。
- *2:対応状況詳細は、ソフトウェア/波形ファイル オーダリング・インフォメー ションを参照してください。

200 MHz帯域幅を標準搭載 MU887002A

測定器の帯域幅を拡張する際には、測定器の入れ替えやオプション購入などで追加費用が発生することが一般的ですが、MU887002Aは標準 で200 MHz帯域幅を搭載しているため、今後のNR 5G sub-6 GHz 2CCの試験がハードウェア変更なしで対応できます。

測定系の電力損失に打ち勝つ高出力 MU887002A MU


一般的に、送受信試験時にはRFケーブル・スイッチ・ディバイダなどの外部デバイスや空間による電力損失を考慮する必要があります。 受信試験において、これらの電力損失に対して測定器の出カレベルが足りないために被試験端末への入力レベルが不十分となってしまい、試 験系に増幅器を追加しなければならない場合があります。

MU887002Aは、24個すべてのRFテストポートで0 dBmの高出力信号の同時出力を実現しているため、外部増幅器を使用せずにMax Input Level測定 (受信試験) などの試験が可能となります (Specに規定する最大出力レベル以上で出力した場合の信号品質は、使用する周波数や波 形によって異なります)。

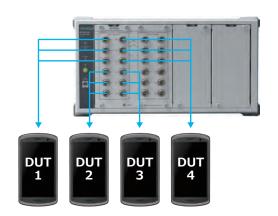
MU887002Aは、複数端末のOTA (Over The Air) 試験において、受信試験を同時に行うことが可能な唯一の測定モジュールです。

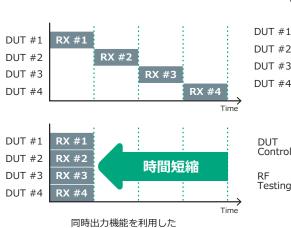
調整工程でBroadcast機能による受信試験時間の短縮 MU887002A

端末の対応Bandの増加に伴い、端末に搭載されるアンテナ数が増えており、製造工程での調整時間が増加しています。 MU887002Aの Broadcast機能を使用することで、複数アンテナを同時に受信させることができ、調整時間の短縮ができます。

検査工程におけるBroadcast機能による受信試験の効率化

DUT


Testing

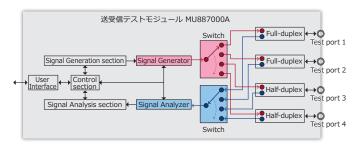

#11

検査工程では、複数の端末を測定器に接続し順番に検査する手法が 普及しています。MU887002Aは同一の信号を最大12port同時に出 力できるため、複数の端末を同時に受信試験させることができ、受信 試験の時間が短縮できます。

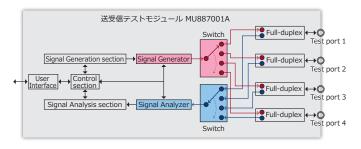
検査工程におけるMulti-DUT Measurement Scheduler 機能による送信試験の効率化 MU887002A

MU887002A内部の専用コントローラにソフトウェア・ハードウェ アリソースを管理させることで、仮想的に複数の測定器として動作 する機能を提供しています。これにより測定器の稼働を最適化し、 端末1台あたりの送信試験時間が短縮できます。

#22


Multi-DUT Measurement Scheduler 機能を利用した複数 DUT の送信試験時間の短縮

ユニークな4種類のRFテストコネクタ MU887000A/01A


MU887000Aは、デュプレックス、およびハーフデュプレックスの2種類のコネクタが、各々2つずつ用意されており、合計で4つのRFコネクタが装着されています。

デュプレックステストポート(テストポート1、2)は、フロントエンド部分にディバイダを装着しており、ワイヤレス通信システムの試験の際、送信信号および受信信号が双方向で同時に使用されます。 ハーフデュプレックスポート(テストポート3、4)は、フロントエンド部分にスイッチが装着されており、送信試験もしくは受信試験を各テストポート間で切り替えて使用できます。

ハーフデュプレックスポートは、デュプレックスポートに比べ感度 が良く、低いレベルを測定するのに適しています。

MU887001Aは、4つのフルデュプレックスRFコネクタが装着されています。4台の移動端末を一度接続し、内部スイッチにより高速に切り替えて同時に測定できます。

MU887000A/01Aに装着されている4つのテストポートは、10 MHz から6 GHz (オプション) までの広範囲において高いレベル確度を実現するためにレベル校正が行われています。4つの送受信できるテストポートは、内部スイッチにより、出力および入力ポートの切り替えができます。通常、複数のアンテナを同時に結合して測定する際に必要な外部ディバイダや外部スイッチを使用した際の煩わしい補正値の算出は不要となり、内部スイッチのレベル偏差を含め、4つのテストポートは、広い周波数範囲で高いレベル確度を実現しています。

テストポートと無線技術 MU887000A/01A

MU887000A

110007000	,, ,	
	テストポート 1、2	テストポート 3、4
名称	High Power Ports	Low Power Ports
コネクタ	N (female)	N (female)
タイプ (構成部品)	Full-Duplex (ディバイダ)	Half-duplex (スイッチ)
概要	移動通信規格を測定する際に要求 されるVSAおよびVSGを同時に 使用できます。 VSAおよびVSGを別々に 使用する場合に使用します。 高感度なため、低いレベルで 測定できます。	
無線規格と推奨ポート	5G NR/ENDC FDD/TDD sub-6 GHz, LTE/LTE-Advanced FDD/TDD, LTE-V2X, W-CDMA/ HSPA, GSM/EDGE, CDMA2000/1xEV-DO, TD-SCDMA, NB-IoT, Category M, WLAN 802.11a/b/g/n/p/ac/ax*, Bluetooth*, IEEE802.15.4*, Z-Wave*, FM/RDS, GPS, Galileo, GLONASS, BeiDou, OZSS, DVB-T, ISDB-T/Tmm	Cellular Diversity, WLAN 802.11a/b/g/n/p/ ac/ax, Bluetooth, IEEE802.15.4, Z-Wave*, FM/RDS, GPS, Galileo, GLONASS, BeiDou, QZSS, DVB-T, ISDB-T/Tmm

MU887001A

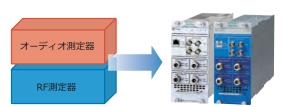
	テストポート 1~4
名称	High Power Ports
コネクタ	N (female)
タイプ (構成部品)	Full-Duplex (ディバイダ)
概要	移動通信規格を測定する際に要求されるVSAおよびVSGを同時に 使用できます。
無線規格と推奨ポート	5G NR/ENDC FDD/TDD sub-6GHz, LTE/LTE-Advanced FDD/TDD, LTE-V2X, W-CDMA/HSPA, GSM/EDGE, CDMA2000/1xEV-DO, TD-SCDMA, NB-IoT, Category M, WLAN 802.11a/b/g/n/p/ac/ax, Bluetooth, IEEE802.15.4, Z-Wave, FM/RDS, GPS, Galileo, GLONASS, BeiDou, QZSS, DVB-T, ISDB-T/Tmm

*: テストポート1、2は、テストポート3、4よりも測定できる入力レベルが高いため、入力レベルが低い場合には、テストポート3、4を使用する必要があります。

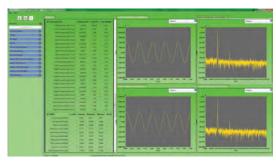
高性能オーディオアナライザ/オーディオジェネレータ内蔵

MU887000A/01A

MU887000A/01Aに、オーディオ測定ハードウェア MU887000A/01A-002を装着することで、高性能なオーディオアナライザおよびオーディオジェネレータを内蔵できます。

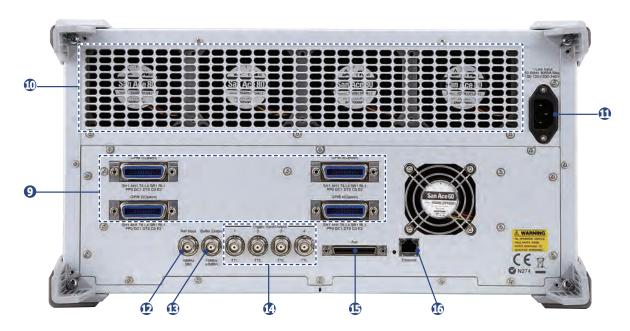

MU887000A/01A-002は、アナログオーディオおよびディジタルオーディオに対応できます。通信デバイスの音声入出力がアナログオーディオの際には、4つのBNCコネクタ(各L/Rおよび入出力)を使用して、ステレオおよびモノラルの音声に適応した測定ができます。また、AD/DCコンバータが搭載されておらず、アナログオーディオが入出力できない通信モジュールのディジタルオーディオに対しても、MU887000A/01Aに装着されるRJ45コネクタを使用して、オーディオ信号の標準的な伝送フォーマットであるI2S (Inter-IC Sound) 方式に対応したディジタルオーディオ信号の測定ができます。

オーディオ測定ハードウェア MU887000A/01A-002


送受信テストモジュール MU887000A/01A

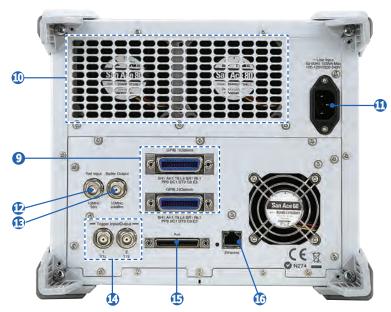
MU887000A/01A-002は、従来では要求されていたRF測定器とは 別のオーディオ測定器を別途製造ラインに準備することなく、生産 ラインの省スペース化、RF測定およびオーディオ測定の合理化が図 れるため、コスト削減に貢献します。

送受信テストモジュール MU887000A/01A オーディオ測定ハードウェア MU887000A/01A-002


*:オーディオアナライザ機能とオーディオジェネレータ機能は、同時に使用できません。

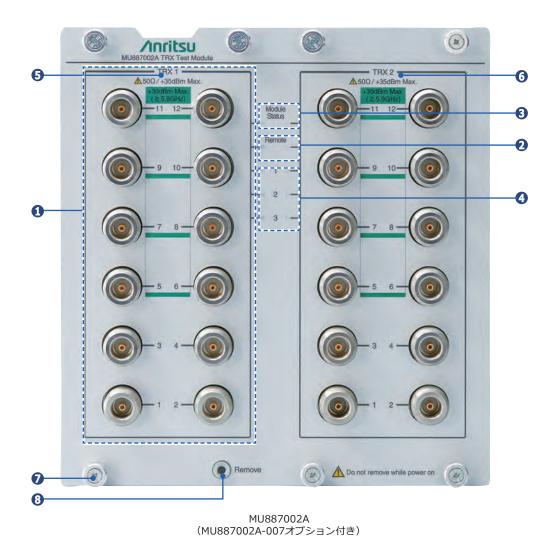
CombiViewによるオーディオ測定画面

正面パネル


背面パネル

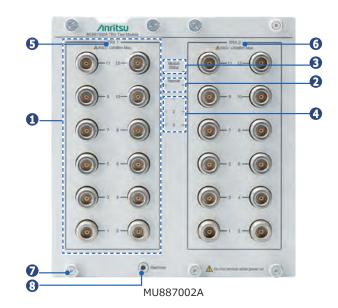
- 1 イーサネットコネクタ
- 2 アクセスランプ
- 電源スイッチ (Power)
- 4 スタンバイランプ
- 5 IPアドレスリセットボタン (IP Reset)
- ⑥ 外部基準信号ランプ (Ext Reference)
- **⊘** エラーランプ (Error)
- ❸ スロット1~4

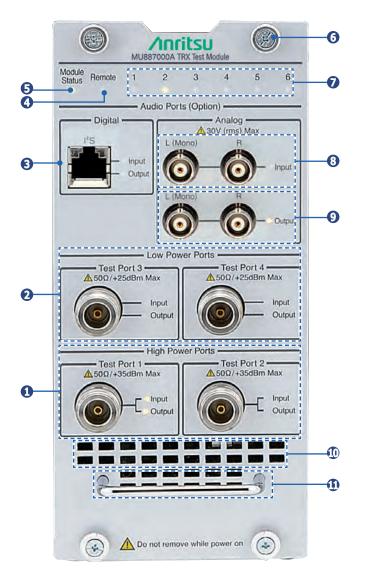
- **⑤** GPIBコネクタ (オプション)
- ⊕ 冷却ファン
- ① インレット
- 外部基準信号入力 (Ref Input)
- 基準信号出力 (Buffer Output)
- 🚯 トリガ入出力コネクタ (Trigger Input/Output)
- ₲ AUXコネクタ
- € イーサネットコネクタ

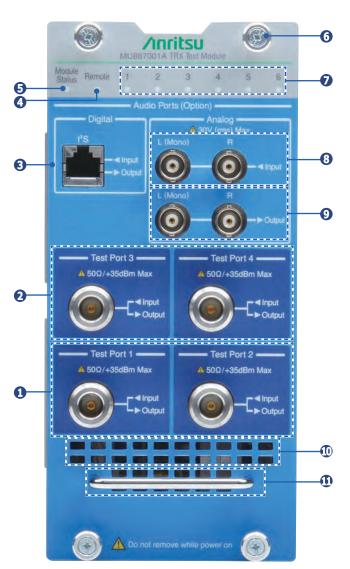

正面パネル

背面パネル

- 1 イーサネットコネクタ
- 2 アクセスランプ
- 3 パワースイッチ
- 4 スタンバイランプ
- 5 IPアドレスリセットボタン (IP Reset)
- ⑥ 外部標準信号ランプ (Ext Reference)
- **⊘** エラーランプ (Error)
- ❸ スロット1~2

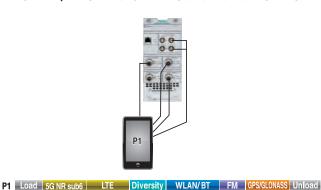

- **⑤** GPIBコネクタ (オプション)
- ⊕ 冷却ファン
- ① インレット
- 外部基準信号入力 (Ref Input)
- 基準信号出力 (Buffer Output)
- ⑤ トリガ入出力コネクタ (Trigger Input/Output)
- ₲ AUXコネクタ
- **(6)** イーサネットコネクタ

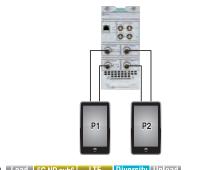



- 2 リモートランプ (Remote)
- 3 ステータスランプ (Module Status)
- 4 状態表示ランプ

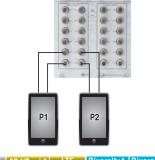
1 テストポート1~12

- **5** TRX 1
- **6** TRX 2
- 7 取り付けネジ (7か所)
- ③ 取り外しノブ用穴 (1か所)





MU887000A MU887001A


- 介 テストポート1、2
- 2 テストポート3、4
- 3 ディジタル音声入出力 (オプション)
- 4 リモートランプ (Remote)
- **⑤** ステータスランプ (Module Status)
- 6 取り付けネジ
- √ 状態表示ランプ (1~6)
- 3 アナログ音声入力 (オプション)
- ② アナログ音声出力 (オプション)
- ⑪ 通風孔
- ① ハンドル

スマートフォン/オートモーティブ製造 スマートフォン/オートモーティブ測定(マルチスタンダード測定)

P1 Load 5G NR sub6 LTE Diversity Unload Setup Load 5G NR sub6 LTE Diversity Unload P2

P1 Load 5G NR sub6 LTE Diversity 1 Diversity 2 Unload

Diversity 1 | Diversity 2 | 5G NR sub6 | LTE | Unload P2 Load

セルラLPWAデバイス製造

NB-IoTモジュール測定

Module 1 Load Category M/NB-loT Unload

Module 2

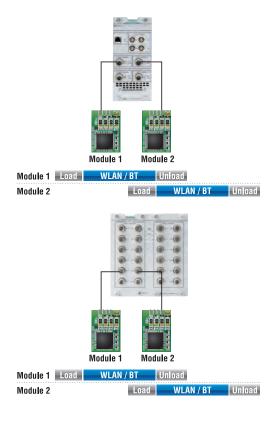
Load | Category M/NB-loT | Unload

2個の送受信テストユニットで1台の無線デバイス/モジュールの多 数の通信規格を測定します。

無線デバイス/モジュールに搭載されているさまざまな通信規格の 複数アンテナに対して1度に接続を行います。測定時間に応じて並 列に実施することで、テストステーションの移動、再起動時間や、異 なる試験設備の自動化対応の煩わしさなどを軽減できます。

推奨構成例

MT8870A/MT8872A コニパーサルワイヤレステストセット 1 MU88700xA 送受信テストモジュール 1 1 MU88700xA-001** 6 4 に日波数拡張 1 1 MU88700xA-002** オーディオ測定ハードウェア 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A LTE FDD Uplink 送信測定 1 MX887018A-001 NR FDD Sub-6 GHz Uplink 送信測定 1 MX887018A-001 NR FDD Contiguous ENDC 送信測定 1 MX887019A NR TDD Sub-6 GHz Uplink 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 ZLE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X 医CH送信測定 1 MX887092A*2 MU887002A VIADUT×ジャントスケジューラ 1 MX887092A*2 MU887002A VIADUT×ジャントスケジューラ 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887040A-001 BLE AoA/AoD 波形ファイル 1 MV887040A-002 GPS L5 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV	形名	品名	数量	
MU88700xA 送受信テストモジュール 1 MU88700xA-001*1 6 GHz周波数拡張 1 MU88700xA-002*1 オーディオ測定人ドウェア 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A-001 LTE-Advanced FDD Uplink CA 送信測定 1 MX887018A NR FDD sub-6 GHz Uplink 送信測定 1 MX887019A NR FDD Sub-6 GHz Uplink 送信測定 1 MX887030A NR FDD Sub-6 GHz Uplink 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ax 送信測定 1 MX887034A*2 WLAN 802.11ax 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 ZLE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887090A ZJJFDUTXジヤメントスケジューラ 1 MX887090A ZJJFDUTXジヤメントスケジューラ 1 MX887090A ZJJFDUTXジヤメントスケジューラ 1 MX88709A*2 MU887002A パスロス測定機能 1 MX88709A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887013A LTE FDD Sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLe AOA/AOD 波形ファイル 1 MV887040A-005 BLR 波形ファイル 1 MV887040A-006 BLE AOA/AOD 波形ファイル 1 MV887040A-007 FM RDS 波形ファイル 1 MV887040A-008 LTE-V2X 波形ファイル 1 MV887040A-009 CPS L5 波形ファイル 1 MV887040A-009 CPS L5 波形ファイル 1 MV887101A Galieo 波形ファイル 1 MV887101A Galieo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1		***		
MU88700xA-001*1 6 GHz周波数拡張 1 MU88700xA-002*1 オーディオ測定ハードウェア 1 MX887010A セルラ規格用シーケンス測定 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A NR FDD Sub-6 GHz Uplink 送信測定 1 MX887018A NR FDD Sub-6 GHz Uplink 送信測定 1 MX887018A NR FDD Sub-6 GHz Uplink 送信測定 1 MX887019A NR TDD Sub-6 GHz Uplink 送信測定 1 MX887019A NR TDD Contiguous ENDC 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887030A WLAN 802.11b 送信測定 1 MX887030A WLAN 802.11b 送信測定 1 MX887030A WLAN 802.11b 送信測定 1 MX887030A WLAN 802.11bc 送信測定 1 MX887040A-0 DLE 送信測定 1 MX887040A-0 Bluetooth 送信測定 1 MX887040A-001 BLE &AOA/AOD 送信測定 1 MX887040A-001 LTE-V2X 送信測定 1 MX887040A-002 と上 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887018A NR FDD Sub-6 GHz Downlink 波形ファイル 1 MV887018A WLAN 802.11bc 波形ファイル 1 MV887031A WLAN 802.11bc 波形ファイル 1 MV887031A WLAN 802.11bc 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 CLE 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887040A-003 GPS 返形ファイル 1 MV88700A-004 GPS 返形ファイル 1 MV88700A-004 GPS 返形ファイル 1 MV88700A-004 GPS 返形ファイル 1 MV88700A-002 GPS L5 波形ファイル 1 MV887100A Gelileo 波形ファイル 1 MV887100A BeiDou 波形				
MU88700xA-002*1				
MX887010A セルラ規格用シーケンス測定 1 MX887013A LTE FDD Uplink 送信測定 1 MX887013A-001 LTE-Advanced FDD Uplink CA 送信測定 1 MX887018A NR FDD sub-6 GHz Uplink 送信測定 1 MX887018A-001 NR FDD Contiguous ENDC 送信測定 1 MX887019A NR FDD Contiguous ENDC 送信測定 1 MX887019A NR TDD Sub-6 GHz Uplink 送信測定 1 MX887019A-001 NR TDD Contiguous ENDC 送信測定 1 MX887030A WLAN 802.11bg/g/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887034A*2 WLAN 802.11be 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 DLE 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887040A-004 DLE VX PSCCH送信測定 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887093A UTE FDD Downlink 波形ファイル 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887013A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11bc 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887000A DRD SURD DRA SURD				
MX887013A				
MX887013A-001 LTE-Advanced FDD Uplink CA 送信測定				
MX887018A NR FDD sub-6 GHz Uplink 送信測定				
MX887018A-001 NR FDD Contiguous ENDC 送信測定 1 MX887019A NR TDD sub-6 GHz Uplink 送信測定 1 MX887019A-001 NR TDD Contiguous ENDC 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887033A WLAN 802.11ac 送信測定 1 MX887033A WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 ZLE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X E信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-001 BLE AOA/AOD 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV88700A-005 GPS L5 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GEIleo 波形ファイル 1 MV887100A				
MX887019A NR TDD sub-6 GHz Uplink 送信測定 1 MX887019A-001 NR TDD Contiguous ENDC 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887034A*2 WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 ZLE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A LTE-V2X ど信測定 1 MX887092A*2 MURX87092A*2 MURX87092A MURX87092A MURX87092A MURX87092A MURX87092A MURX87092A MURX87013A LTE FDD Downlink 波形ファイル 1 MV887013A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887034A*2 WLAN 802.11ac 波形ファイル 1 MV887034A*2 WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 ZLE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887040A-007 DLE 波形ファイル 1 MV887040A-007 DLE 波形ファイル 1 MV887040A-007 DLE 波形ファイル 1 MV887040A-007 BLE AOA/AOD 波形ファイル 1 MV887040A-007 BLE AOA/AOD 波形ファイル 1 MV88700A-007 GPS 法形ファイル 1 MV88700A-007 GPS 法形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS はアファイル 1 MV887100A GPS はアファ			_	
MX887019A-001 NR TDD Contiguous ENDC 送信測定 1 MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887033A WLAN 802.11ac 送信測定 1 MX887033A WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 ZLE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887068A-001 LTE-V2X 学信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887013A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887030A WLAN 802.11ac 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 ZLE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887040A-005 BLR 波形ファイル 1 MV887040A-006 BLE AOA/AOD 波形ファイル 1 MV887040A-007 BLE AOA/AOD 波形ファイル 1 MV887040A-007 BLE AOA/AOD 波形ファイル 1 MV887040A-007 GPS 波形ファイル 1 MV88700A-007 GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS はかアファイル 1 MV887101A Galileo 波形ファイル 1 M		-		
MX887030A WLAN 802.11b/g/a/n 送信測定 1 MX887031A WLAN 802.11ac 送信測定 1 MX887033A WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 2LE 送信測定 1 MX887040A-003 BLK 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887031A WLAN 802.11bc/g/a/n 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887034A*2 WLAN 802.11bc 波形ファイル 1 MV887040A-001 BLE 波形ファイル 1		·	_	
MX887031A WLAN 802.11ac 送信測定				
MX887033A WLAN 802.11ax 送信測定 1 MX887034A+2 WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 2LE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 BLE 波形ファイル 1 <		-		
MX887034A*² WLAN 802.11be 送信測定 1 MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 2LE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*¹ FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887091A TE FDD Downlink 波形ファイル 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887019A WLAN 802.11b/g/a/n 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 BLE 波形ファイル 1				
MX887040A Bluetooth 送信測定 1 MX887040A-001 DLE 送信測定 1 MX887040A-002 2LE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887091 マルチDUTメジヤメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887019A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887034A*2 WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 BLE 液形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV88700				
MX887040A-001 DLE 送信測定 1 MX887040A-002 2LE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A VルチDUTメジヤメントスケジューラ 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887019A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887034A*2 WLAN 802.11be 波形ファイル 1 MV887040A-001 BLE 波形ファイル 1			_	
MX887040A-002 2LE 送信測定 1 MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A プルチDUTメジヤメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887019A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887031A WLAN 802.11bc/ga/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 BLE 波形ファイル 1 MV887040A-002 BLE 液形ファイル 1				
MX887040A-003 BLR 送信測定 1 MX887040A-004 BLE AoA/AoD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887031A WLAN 802.11bc 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 BLE 液形ファイル 1 MV887040A-003 BLR 液形ファイル 1			+ -	
MX887040A-004 BLE AOA/AOD 送信測定 1 MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 BLE 液形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV88700A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1			_	
MX887068A LTE-V2X 送信測定 1 MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジヤメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MX887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11be 波形ファイル 1 MV887034A*2 WLAN 802.11be 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 ZLE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS はアファイル 1 MV887100A GPS はアファイル 1 MV887100A GPS はアファイル 1 MV887100A GPS はアファイル 1 MV887100A GLONASS はアファイル 1 MV887102A GLONASS はアファイル 1 MV887102A GLONASS はアファイル 1 MV887103A BeiDou はアファイル 1 1				
MX887068A-001 LTE-V2X PSCCH送信測定 1 MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV88700A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS より 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887	MX887040A-004		1	
MX887070A*1 FM/Audio 送受信測定 1 MX887090A マルチDUTメジャメントスケジューラ 1 MX887092A*2 MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV88700A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 上5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MX887068A		1	
MX887090A マルチDUTメジャメントスケジューラ 1 MX887092A*² MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV88700A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MX887068A-001	LTE-V2X PSCCH送信測定		
MX887092A*² MU887002A パスロス測定機能 1 MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ac 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV88700A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 上5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MX887070A*1	•		
MV887013A LTE FDD Downlink 波形ファイル 1 MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11be 波形ファイル 1 MV887040A*² WLAN 802.11be 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MX887090A	· · · · · · · · · · · · · · · · · · ·		
MV887018A NR FDD sub-6 GHz Downlink 波形ファイル 1 MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ax 波形ファイル 1 MV887040A*² WLAN 802.11be 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MX887092A*2			
MV887019A NR TDD sub-6 GHz Downlink 波形ファイル 1 MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ax 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887013A	LTE FDD Downlink 波形ファイル		
MV887030A WLAN 802.11b/g/a/n 波形ファイル 1 MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ax 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887018A	NR FDD sub-6 GHz Downlink 波形ファイル		
MV887031A WLAN 802.11ac 波形ファイル 1 MV887033A WLAN 802.11ax 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887019A	NR TDD sub-6 GHz Downlink 波形ファイル	1	
MV887033A WLAN 802.11ax 波形ファイル 1 MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887030A	WLAN 802.11b/g/a/n 波形ファイル	1	
MV887034A*² WLAN 802.11be 波形ファイル 1 MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887031A	WLAN 802.11ac 波形ファイル	1	
MV887040A Bluetooth 波形ファイル 1 MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887033A	WLAN 802.11ax 波形ファイル	1	
MV887040A-001 DLE 波形ファイル 1 MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887034A*2	WLAN 802.11be 波形ファイル	1	
MV887040A-002 2LE 波形ファイル 1 MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887040A	Bluetooth 波形ファイル	1	
MV887040A-003 BLR 波形ファイル 1 MV887040A-004 BLE AoA/AoD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887040A-001	DLE 波形ファイル	1	
MV887040A-004 BLE AOA/AOD 波形ファイル 1 MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887040A-002	2LE 波形ファイル	1	
MV887068A LTE-V2X 波形ファイル 1 MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887040A-003			
MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887040A-004	BLE AoA/AoD 波形ファイル	1	
MV887070A*¹ FM RDS 波形ファイル 1 MV887100A GPS 波形ファイル 1 MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887068A	LTE-V2X 波形ファイル	1	
MV887100A-002 GPS L5 波形ファイル 1 MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887070A*1		1	
MV887101A Galileo 波形ファイル 1 MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887100A	GPS 波形ファイル	1	
MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887100A-002			
MV887102A GLONASS 波形ファイル 1 MV887103A BeiDou 波形ファイル 1	MV887101A			
MV887103A BeiDou 波形ファイル 1				
			1	
		QZSS 波形ファイル	1	


*1: MU887000A/01Aのみ *2: MU887002Aのみ

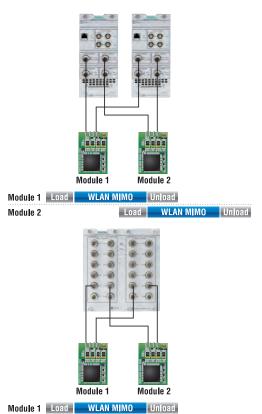
堆将構成例

14关(用风(列			
形 名	品 名 数量		
MT8870A/MT8872A	ユニバーサルワイヤレステストセット	1	
MU88700xA	送受信テストモジュール	1	
MX887010A セルラ規格用シーケンス測定		1	
MX887065A	Category M FDD Uplink 送信測定 1		
MX887067A	X887067A NB-IoT Uplink 送信測定		
MX887090A	MX887090A マルチDUTメジャメントスケジューラ 1		
MV887065A	887065A Category M FDD Downlink 波形ファイル 1		
MV887067A NB-IoT Downlink 波形ファイル :		1	

コネクティビティデバイス製造

コンボモジュール測定

1つの送受信テストユニットでWLAN 802.11a/b/g/n/p、11ac (Wave 2)、11ax、11be*²、Bluetooth v5の通信モジュールを測定します。


推奨構成例

3-2013		
形 名	品 名	数量
MT8870A/MT8872A	ユニバーサルワイヤレステストセット	1
MU88700xA	送受信テストモジュール	
MU88700xA-001*1	6 GHz周波数拡張	1
MU887002A-007*2	7 GHz拡張機能	1
MX887030A	WLAN 802.11b/g/a/n 送信測定	1
MX887031A	WLAN 802.11ac 送信測定	1
MX887032A	WLAN 802.11p 送信測定	1
MX887033A	WLAN 802.11ax 送信測定	1
MX887034A*2	WLAN 802.11be 送信測定	1
MX887040A	Bluetooth 送信測定	1
MX887040A-001	DLE 送信測定	1
MX887040A-002	2LE 送信測定	
MX887040A-003	BLR 送信測定	
MX887040A-004	BLE AoA/AoD 送信測定	
MX887090A	マルチDUTメジャメントスケジューラ	1
MV887030A	WLAN 802.11b/g/a/n 波形ファイル	1
MV887031A	WLAN 802.11ac 波形ファイル	1
MV887032A	WLAN 802.11p 波形ファイル	1
MV887033A	WLAN 802.11ax 波形ファイル	1
MV887034A*2	WLAN 802.11be 波形ファイル	1
MV887040A	Bluetooth 波形ファイル	1
MV887040A-001	DLE 波形ファイル	1
MV887040A-002	2LE 波形ファイル	1
MV887040A-003	BLR 波形ファイル	1
MV887040A-004	BLE AoA/AoD 波形ファイル	1

*1: MU887000A/01Aのみ *2: MU887002Aのみ

WLAN 2×2 MIMOモジュール測定 (True MIMO)

Module 2

Load WLAN MIMO Unload

2つの送受信テストユニットを使用してWLAN 802.11n、11ac 2×2 MIMOの通信モジュールをTrue MIMOで測定します。

推奨構成例

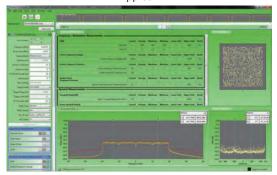
1EX (H)3X(7)			
形 名	品 名		
MT8870A/MT8872A	ユニバーサルワイヤレステストセット	1	
MU88700xA	送受信テストモジュール	2	
MU88700xA-001*	6 GHz周波数拡張 2		
MX887030A	WLAN 802.11b/g/a/n 送信測定 1		
MX887031A	WLAN 802.11ac 送信測定 1		
MX887090A	マルチDUTメジャメントスケジューラ 1		
MV887030A	WLAN 802.11b/g/a/n 波形ファイル 1		
MV887031A	WLAN 802.11ac 波形ファイル 1		

*: MU887000A/01Aのみ

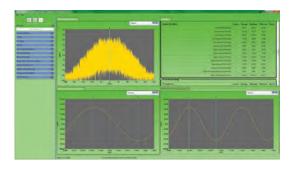
ユニバーサルワイヤレステストセット MT8870A/MT8872A PCアプリケーション

CombiView

CombiViewは、グラフィカルインタフェースを兼ね備えたPCアプリケーションソフトウェアです。


研究開発、製造ライン構築、トラブルシューティングなどの場面において、ワイヤレス通信デバイスの送信パワー状態や、変調コンスタレーションなどの詳細な情報をグラフィカルに表示できます。 CombiViewは、以下の機能を提供します。

主な特長


- Windowsインタフェースにて、送信測定結果のグラフィカル表示 および受信試験用信号発生器の制御
- GPIB (オプション) もしくはEthernetインタフェースにて MT8870A/MT8872A (MU88700xA) をリモート制御* MT8870A/MT8872A (MU88700xA) の設定が可能
- *: MU887002AはEthernetインタフェースのみサポート

NR FDD sub-6 GHz Uplink TX Measurement with Cellular Application Applet

WLAN 802.11ax TX Measurement with SRW Application Applet

Audio Measurement with FM/Audio Application Applet

ユーティリティツール

ユーティリティツールは、PCにインストールできるMT8870A/ MT8872A用ユーティリティツールソフトウェアです。

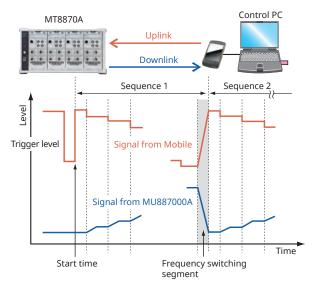
ネットワーク上のMT8870A/MT8872AをEthernetもしくはGPIB (オプション)にて検出でき、内部ファームウェアなどを一括アップデートできるツールです。

主な特長

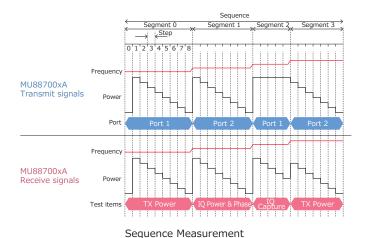
- ネットワーク上に検索されたMT8870A/MT8872Aおよび MU88700xAの詳細表示、通信設定
- MU88700xAのファームウェア更新
- 波形ファイルなどの転送機能
- ライセンス登録
- *: GPIBで制御している場合は、ファームウェア更新、ファイル転送、ライセンス 登録は行えません。

セルラ測定ソリューション

セルラ規格用シーケンス測定


MX887010A

MU887000A/01A/02A


MT8870A/MT8872Aに、セルラ規格用シーケンス測定 MX887010A をインストールすることにより、内蔵の信号発生器とシグナルアナライザをあらかじめ定義した周波数、レベルのシーケンスに従って動作できます。

このソフトウェアと、チップセットに実装されている、高速調整、 シーケンス測定と連動して動作させることにより、調整、検査時間を 大幅に短縮できます。

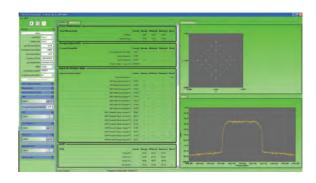
- *1:高速検査を行うためには、MX88701xA 送信測定が必要です。
- *2:下り信号に変調波が必要な場合は、MV88701xA 波形ファイルが必要です。

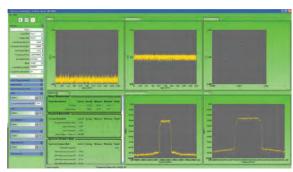
TRX vs. Frequency Measurement

W-CDMA/HSPA Uplink 送信測定

MX887011A

MU887000A/01A/02A


W-CDMA/HSPA Downlink 波形ファイル MV887011A


MU887000A/01A/02

MT8870A/MT8872Aに、W-CDMA/HSPA Uplink 送信測定 MX887011A をインストールすることにより、3GPPで規定されるW-CDMAと HSPAの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

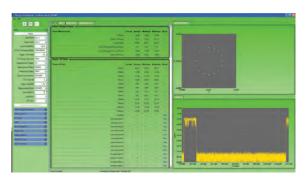
また、W-CDMA/HSPA Downlink 波形ファイル MV887011Aは、ノンシグナリング製造手法で必要とされる一般的な下り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる下り信号を出力できます。

CombiViewを使用したW-CDMA/HSPA Uplink送信測定

セルラ測定ソリューション (つづき)

GSM/EDGE Uplink 送信測定

MX887012A


IU887000A/01A/02A

GSM/EDGE Downlink 波形ファイル MV887012A

MT8870A/MT8872Aに、GSM/EDGE Uplink 送信測定 MX887012A をインストールすることにより、3GPPで規定されるGSMとEDGEの 送信特性の測定ができます。

送信電力 電力 vs. 時間 送信周波数 位相誤差 FVM 原点オフセット 出力RFスペクトラム

また、GSM/EDGE Downlink 波形ファイル MV887012Aは、ノンシ グナリング製造手法で必要とされる一般的な下り信号の波形ファイ ルがパッケージングされており、波形ファイルを選択するだけで、製 造工程で必要とされる下り信号を出力できます。

CombiViewを使用したGSM/EDGE Uplink送信測定

LTE FDD Uplink 送信測定

MX887013A

MU887000A/01A/02A

LTE-Advanced FDD Uplink CA 送信測定 MX887013A-001

LTE FDD Downlink 波形ファイル

MV887013A

MT8870A/MT8872Aに、LTE FDD Uplink 送信測定 MX887013Aを インストールすることにより、3GPPで規定されるLTE FDDの送信

送信電力

周波数誤差

占有周波数帯域幅

特性の測定ができます。

スペクトラム放射マスク

隣接チャネル漏洩電力

変調解析

さらに、MX887013A-001をインストールすることにより、LTE-Advanced FDD Uplink CA (Carrier Aggregation) 測定に拡張でき ます。また、LTE FDD Downlink 波形ファイル MV887013Aは、ノ ンシグナリング製造手法で必要とされる一般的な下り信号の波形 ファイルがパッケージングされており、波形ファイルを選択するだ けで、製造工程で必要とされる下り信号を出力できます。

LTE TDD Uplink 送信測定

MX887014A

MU887000A/01A/02A

LTE-Advanced TDD Uplink CA 送信測定 MX887014A-001

MU887000A/01A/02A

LTE TDD Downlink 波形ファイル

MV887014A MU887000A/01A/02A

MT8870A/MT8872Aに、LTE TDD Uplink 送信測定 MX887014Aを インストールすることにより、3GPPで規定されるLTE TDDの送信 特性の測定ができます。

送信電力

周波数偏差

占有周波数帯域幅

スペクトラム放射マスク

隣接チャネル漏洩電力

変調解析

さらに、MX887014A-001をインストールすることにより、LTE-Advanced TDD Uplink CA (Carrier Aggregation) 測定に拡張でき ます。また、LTE TDD Downlink 波形ファイル MV887014Aは、ノ ンシグナリング製造手法で必要とされる一般的な下り信号の波形 ファイルがパッケージングされており、波形ファイルを選択するだ けで、製造工程で必要とされる下り信号を出力できます。

CDMA2000 Reverse Link 送信測定 MX887015A

/U887000A/01A/02A

CDMA2000 Forward Link 波形ファイル MV887015A

MT8870A/MT8872Aに、CDMA2000 Reverse Link 送信測定 MX887015Aをインストールすることにより、3GPP2で規定される CDMA2000の送信特性の測定ができます。

送信電力

変調解析

占有周波数带域幅

コードドメインパワー

スプリアスエミッション

また、CDMA2000 Forward Link 波形ファイル MV887015Aは、ノ ンシグナリング製造手法で必要とされる一般的な下り信号の波形 ファイルがパッケージングされており、波形ファイルを選択するだ けで、製造工程で必要とされる下り信号を出力できます。

セルラ測定ソリューション (つづき)

1xEV-DO Reverse Link 送信測定

MX887016A

887000A/01A/02

1xEV-DO Forward Link 波形ファイル MV887016A

MT8870A/MT8872Aに、1xEV-DO Reverse Link 送信測定 MX887016A をインストールすることにより、3GPP2で規定されるCDMA2000 1xEV-DOの送信特性の測定ができます。

送信電力 変調解析 占有周波数帯域幅 コードドメインパワー スプリアスエミッション

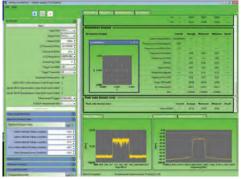
また、1xEV-DO Forward Link 波形ファイル MV887016Aは、ノン シグナリング製造手法で必要とされる一般的な下り信号の波形ファ イルがパッケージングされており、波形ファイルを選択するだけで、 製造工程で必要とされる下り信号を出力できます。

TD-SCDMA Uplink 送信測定

MX887017A

MU887000A/01A/0

TD-SCDMA Downlink 波形ファイル


MV887017A

MT8870A/MT8872Aに、TD-SCDMA Uplink 送信測定 MX887017A をインストールすることにより、3GPPで規定されるTD-SCDMA (1.28 Mcps TDD) の送信特性の測定ができます。

送信電力 周波数偏差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

また、TD-SCDMA Downlink 波形ファイル MV887017Aは、ノンシ グナリング製造手法で必要とされる一般的な下り信号の波形ファイ ルがパッケージングされており、波形ファイルを選択するだけで、製 造工程で必要とされる下り信号を出力できます。

CombiViewを使用したTD-SCDMA Uplink送信測定

NR FDD sub-6 GHz Uplink 送信測定 MX887018A

NR FDD Contiguous ENDC 送信測定 MX887018A-001

NR FDD sub-6 GHz Downlink 波形ファイル MV887018A

MT8870A/MT8872Aに、NR FDD sub-6 GHz Uplink 送信測定 MX887018Aをインストールすることにより、3GPPで規定される 5G NR FDD sub-6 GHzの送信特性の測定ができます。

送信電力 周波数偏差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

さらに、MX887018A-001をインストールすることにより、NR FDD Contiguous ENDC測定に拡張できます。また、NR FDD sub-6 GHz Downlink 波形ファイル MV887018Aは、ノンシグナリング製造手 法で必要とされる一般的な下り信号の波形ファイルがパッケージン グされており、波形ファイルを選択するだけで、製造工程で必要とさ れる下り信号を出力できます。

CombiViewを使用したNR FDD sub-6 GHz Uplink送信測定

NR TDD sub-6 GHz Uplink 送信測定 MX887019A

NR TDD Contiguous ENDC 送信測定 MX887019A-001

NR TDD sub-6 GHz Downlink 波形ファイル MV887019A

MT8870A/MT8872Aに、NR TDD sub-6 GHz Uplink 送信測定 MX887019Aをインストールすることにより、3GPPで規定される 5G NR TDD sub-6 GHzの送信特性の測定ができます。

送信電力 周波数偏差 占有周波数带域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

さらに、MX887019A-001をインストールすることにより、NR TDD Contiguous ENDC測定に拡張できます。また、NR TDD sub-6 GHz Downlink 波形ファイル MV887019Aは、ノンシグナリング製造手 法で必要とされる一般的な下り信号の波形ファイルがパッケージン グされており、波形ファイルを選択するだけで、製造工程で必要とさ れる下り信号を出力できます。

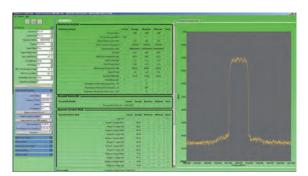
CombiViewを使用したNR TDD sub-6 GHz Uplink送信測定

セルラ測定ソリューション (つづき)

W-CDMA/HSPA Downlink 送信測定 MX887021A

MU887002A

W-CDMA/HSPA Uplink 波形ファイル MV887021A


MU887002A

MT8870A/MT8872Aに、W-CDMA/HSPA Downlink 送信測定 MX887021Aをインストールすることにより、3GPPで規定される W-CDMAとHSPAの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

また、W-CDMA/HSPA Uplink 波形ファイル MV887021Aは、ノンシグナリング製造手法で必要とされる一般的な上り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる上り信号を出力できます。

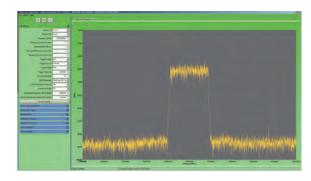
CombiViewを使用したW-CDMA/HSPA Downlink送信測定

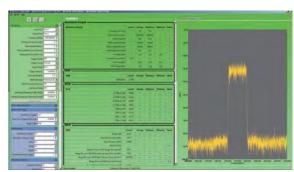
LTE FDD Downlink 送信測定

MX887023A

MU887002A

MU887002A


ル MV887023A


LTE FDD Uplink 波形ファイル

MT8870A/MT8872Aに、LTE FDD Downlink 送信測定 MX887023A をインストールすることにより、3GPPで規定されるLTE FDDの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

また、LTE FDD Uplink 波形ファイル MV887023Aは、ノンシグナリング製造手法で必要とされる一般的な上り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる上り信号を出力できます。

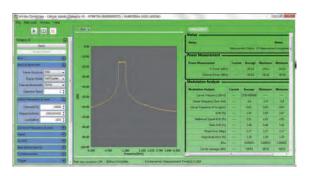
CombiViewを使用したLTE FDD Downlink送信測定

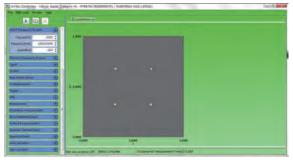
Cellular-IoT測定ソリューション (Cellular-LPWAソリューション)

Category M FDD Uplink 送信測定

MX887065A

887000A/01A/02A


Category M FDD Downlink 波形ファイル MV887065A


MU887000A/01A/02A

Category M FDD Uplink送信測定 MX887065Aをインストールすることにより、3GPPで規定されるLTEのCategory Mの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

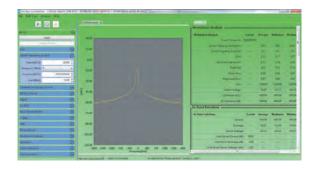
また、Category M FDD Downlink波形ファイル MV887065Aは、ノンシグナリング製造手法で必要とされる一般的な下り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる下り信号を出力できます。

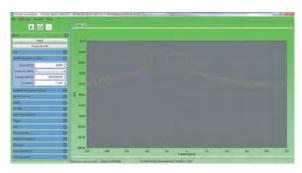
CombiViewを使用したCategory M FDD Uplink送信測定

NB-IoT Uplink 送信測定

MX887067A

MU887000A/01A/02A


MV887067A


NB-IoT Downlink 波形ファイル

NB-IoT Uplink 送信測定 MX887067Aをインストールすることにより、3GPPで規定されるLTEのNB-IoTの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

また、NB-IoT Downlink 波形ファイル MV887067Aは、ノンシグナリング製造手法で必要とされる一般的な下り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる下り信号を出力できます。

CombiViewを使用したNB-IoT Uplink送信測定

WLAN測定ソリューション

WLAN 802.11b/g/a/n 送信測定 MX887030A MU887000A/01A/02A WLAN 802.11b/g/a/n 波形ファイル MV887030A MU887000A/01A/02A

WLAN 802.11a/b/g/nに準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。

MU887000A/01Aで5 GHz帯の802.11a/nを測定する場合には、別途6 GHz周波数拡張オプション MU887000A/01A-001を装着する必要があります。

送信試験

MT8870A/MT8872Aに、WLAN 802.11b/g/a/n 送信測定 MX887030Aをインストールすることにより、IEEE 802.11規格で定められた主要な送信特性の測定ができます。

802.11b送信測定項目

IEEE 802.11b送信測定

802.11b	測定項目		
16.3.7.2	Transmit Power Levels		
16.3.7.3	Transmit Power Level Control		
16.3.7.4	Transmit Spectrum Mask		
16.3.7.5	Transmit Center Frequency Tolerance		
16.3.7.6	Chip Clock Frequency Tolerance		
16.3.7.7	Transmit power-on and power-down ramp		
16.3.7.8	RF Carrier Suppression		
16.3.7.9	Transmit Modulation Accuracy		

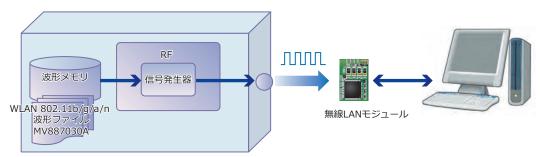
その他の802.11b測定

測定項目
Power crest factor
CCDF
IQ offset
Phase & magnitude error
Occupied bandwidth
Power spectral density

802.11a/g/n送信測定項目

IEEE 802.11a/g/n送信測定

802.11a	802.11g	802.11n	測定項目
17.3.9.2	18.4.7.2	19.3.18.3	Transmit Power Levels
17.3.9.3	18.4.7.3	19.3.18.1	Transmit Spectrum Mask
17.3.9.5	18.4.7.4	19.3.18.4	Transmit center frequency tolerance
17.3.9.6	18.4.7.5	19.3.18.6	Symbol Clock frequency tolerance
17.3.9.7.2	17.3.9.7.2	19.3.18.7.2	Transmitter center frequency leakage
17.3.9.7.3	17.3.9.7.3	19.3.18.2	Transmitter spectral flatness
17.3.9.7.4	17.3.9.7.4	19.3.18.7.3	Transmitter constellation error
17.3.9.8	17.3.9.8	19.3.18.7.4	Transmitter modulation accuracy test


その他の802.11a/g/n測定

測定項目
Power crest factor
CCDF
Occupied bandwidth
Power spectral density

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたWLAN 802.11b/g/a/n 波形ファイル MV887030Aの試験信号を送信することにより、WLAN 802.11a/b/g/n対応デバイスのノンシグナリング受信試験をサポートします。

被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

波形ファイルのパラメータ

802.11規格	データレート/変調	帯域幅	パケット長	補足
802.11b	11、5.5、2、1 Mbps	_	1024または100 bytes	ロングプリアンブル
802.11a/g	54、48、36、24、18、12、9、6 Mbps	_	1000または100 bytes	
802.11n	MCS 0~7, 32	20 MHz、40 MHz	4096または500 bytes	Nss: 1、ガードインターバル: Long

802.11b受信測定項目

IEEE 802.11b送信測定

802.11b	測定項目		
16.3.8.2	Receiver minimum input level sensitivity		
16.3.8.3	Receiver maximum input level		

WLAN測定ソリューション (つづき)

802.11a/g/n受信測定項目

IEEE 802.11a/g/n受信測定

802.11a	802.11g	802.11n	測定項目
17.3.10.2	18.4.8.2	19.3.19.1	Receiver minimum input level sensitivity
17.3.10.5	18.4.8.4	19.3.19.4	Receiver maximum input level

WLAN 802.11ac送信測定 MX887031A MU887000A/01A/02A WLAN 802.11ac波形ファイル MV887031A MU887000A/01A/02A MV887031A MU887000A/01A/02A

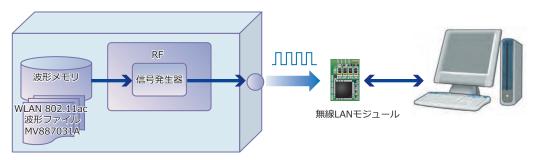
WLAN 802.11acに準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。 MU887000A/01Aでは別途6 GHz周波数拡張オプション MU887000A/01A-001を装着する必要があります。

送信試験

MT8870A/MT8872Aに、WLAN 802.11ac 送信測定 MX887031Aをインストールすることにより、IEEE 802.11ac仕様に定義されている帯域内無線測定をサポートします。

802.11ac送信測定項目

IEEE 802.11ac送信測定


測定項目		
Transmit spectrum mask		
Spectral flatness		
Transmit center frequency tolerance		
Symbol Clock frequency tolerance		
Modulation accuracy		
Transmitter center frequency leakage		
Transmitter constellation error		
Transmitter modulation accuracy (EVM) test		
Transmit power level		

その他の802.11ac測定

測定項目		
Power crest factor		
CCDF		
Occupied bandwidth		
Power spectral density		

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたWLAN 802.11ac 波形ファイル MV887031Aの試験信号を送信することにより、WLAN 802.11ac対応デバイスのノンシグナリング受信試験をサポートします。被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

波形ファイルのパラメータ

802.11規格	データレート/変調	帯域幅	パケット長	補足
802.11ac	MCS 0∼9	20、40、80、160 MHz	4096または500 bytes	Nss: 1、ガードインターバル: Long

802.11ac受信測定項目

IEEE 802.11ac受信測定

1222 002111000101/1/2			
802.11ac	測定項目		
21.3.18.1	Receiver minimum input level sensitivity		
21.3.18.4	Receiver maximum input level		

V2X測定ソリューション

WLAN 802.11p 送信測定 MX887032A MU887000A/01A/02A WLAN 802.11p 波形ファイル MV887032A MU887000A/01A/02A

WLAN 802.11pに準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。

MU887000A/01Aで5.9 GHz帯を測定する場合には、別途6 GHz周波数拡張オプション MU887000A/01A-001を装着する必要があります。

送信試験

MT8870A/MT8872Aに、WLAN 802.11p 送信測定 MX887032Aをインストールすることにより、IEEE 802.11pに定義されている700 MHz 帯、および5.9 GHz帯の帯域内無線測定をサポートします。

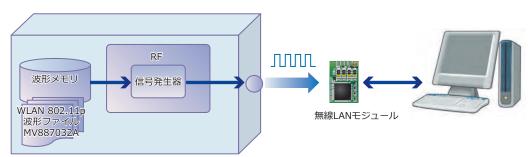
CombiView PCアプリケーションを使用することにより、802.11p送信測定のさまざまな結果をグラフ表示できます。

CombiViewを使用したWLAN 802.11p送信測定

802.11p送信測定項目

IEEE 802.11p送信測定

802.11p	測定項目
17.3.9.2	Transmit power levels
17.3.9.3	Transmit spectrum mask
17.3.9.5	Transmit center frequency tolerance
17.3.9.6	Symbol clock frequency tolerance
17.3.9.7.2	Transmitter center frequency leakage
17.3.9.7.3	Transmitter spectral flatness
17.3.9.7.4	Transmitter constellation error


その他の802.11p測定

測定項目	
Crest Factor	
CCDF	
Occupied Bandwidth	
Power Spectral Density	

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたWLAN 802.11p 波形ファイル MV887032Aの試験信号を送信することにより、WLAN 802.11p対応デバイスのノンシグナリング受信試験をサポートします。

被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

波形ファイルのパラメータ

帯域幅	データレート	パケット長
5 MHz	1.5/2.25/3/4.5/6/9/12/13.5 Mbps	1000 bytes
10 MHz	3/4.5/6/9/12/18/24/27 Mbps	1000 bytes
20 MHz	6/9/12/18/24/36/48/54 Mbps	1000 bytes

802.11p受信測定項目

IEEE 802.11p受信測定

1222 002.115×10.002		
802.11p	測定項目	
17.3.10.2	Receiver minimum input sensitivity	
17.3.10.5	Receiver maximum input level	

V2X測定ソリューション

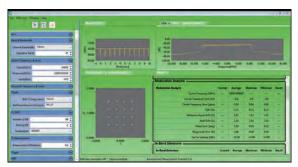
LTE-V2X 送信測定 MX887068A

MU887000A/01A/02A

LTE-V2X PSCCH送信測定 MX887068A-001

MU887000A/01A/02A

LTE-V2X 波形ファイル


MV887068A

MU887000A/01A/02A

LTE-V2X 送信測定 MX887068Aをインストールすることにより、 3GPPで規定されるLTE-V2Xの送信特性の測定ができます。

送信電力 周波数誤差 占有周波数帯域幅 スペクトラム放射マスク 隣接チャネル漏洩電力 変調解析

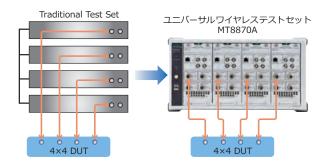
さらに、MX887068A-001をインストールすることにより、PSCCH を含めた送信特性の測定ができます。また、LTE-V2X 波形ファイル MV887068Aは、ノンシグナリング製造手法で必要とされる一般的 な下り信号の波形ファイルがパッケージングされており、波形ファイルを選択するだけで、製造工程で必要とされる下り信号を出力できます。

CombiViewを使用したLTE-V2X 送信測定

WLAN MIMO測定ソリューション

WLAN 802.11n/11ac MIMO測定機能 MU887000A/01A/02A

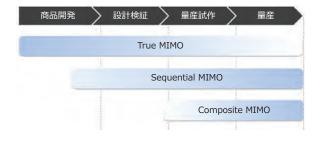
MT8870A/MT8872AにMU88700xA*1を装着し、WLAN送受信測定 ソフトウェアを搭載することで、最大でのWLAN MIMOデバイスを 簡単にセットアップし測定できます。


*1: WLAN 802.11n (5 GHz) もしくは802.11acを測定する場合には、6 GHz周 波数拡張オプション MU887000A/01A-001が必要です。

通常、MIMOデバイスの各アンテナ(ストリーミング)を測定する際 には、同じ測定器を最大で4台用意してシステムセットアップを行 い、MIMO測定に必要な信号発生器のタイミング同期や、10 MHz基 準周波数信号の同期、各測定器の制御を外部でケーブルにて配線す る必要があります。

このようなシステムセットアップは、MIMO測定を行う技術者には 煩わしく、非常に労力を費やすことになります。

MT8870A/MT8872AおよびMU88700xAは、ケーブル配線が必要な 信号同期などは本体の内部で行われるため、従来のMIMO測定を行 う際に必要であった煩わしいシステムセットアップが一切不要にな り、シンプルなシステムセットアップを実現できます。


WLAN 802.11n MIMO測定を行うためには、MX887030A および MV887030Aが必要となります。

WLAN 802.11ac MIMO測定*2を行うためには、MX887031A およ びMV887031Aが必要となります。

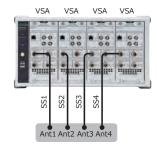
*2: WLAN 802.11acのMIMO測定は4×4まで可能です。

MIMO測定ソリューション

MT8870A/MT8872Aは、WLAN MIMOデバイスの開発から製造まで の各段階において、適切なMIMO測定ソリューションを提供します。

True MIMO MU887000A/01A/02A

MT8870A/MT8872Aでは、複数のMU88700xAを使用して、WLAN MIMOデバイスの各ストリーミング特性を並列に測定できます。


開発、設計段階においては、各アンテナからのストリーミングを実環 境に近い状態で測定することが望まれています。

それぞれのMU88700xAは、内部でタイミングの同期、10 MHz基準 周波数信号の同期が行われるため、外部でのケーブル接続は必要あ りません。

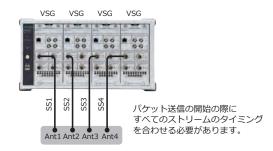
送信試験

- DUTは、最大4つまでのMIMO信号を同時に送信
- ◆各アンテナ(ストリーム)の試験は、各スロットのMU88700xAに て実施
- 全測定は、独立して各MU88700xAで並列に処理
- 測定結果

各送信パワー(クロスパワー値)、EVM、マスクなどの測定結果

Test sequence:

Test results:


- Antenna 1: EVM_1, Power_1, Spectral mask_1 ...
- Antenna 2: EVM_2, Power_2, Spectral mask_2 ... Antenna 3: EVM_3, Power_3, Spectral mask_3 ... Antenna 4: EVM_4, Power_4, Spectral mask_4 ...

受信試験

- 各アンテナに対して、各スロットの送受信テストモジュールに試 験パケットを送信
- 測定結果 各アンテナでの受信感度
- 同期

10 MHz基準周波数信号 ディジタルタイミング

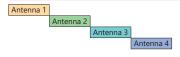
注:RFローカル周波数同期はサポートしておりません

WLAN MIMO測定ソリューション (つづき)

Sequential MIMO MU887000A/01A/02A

特長

開発・設計を行いWLANデバイスのMIMOを測定する際、各アンテ ナ(ストリーミング)の性能の測定が求められることがあります。 True MIMOの測定では、各アンテナの測定を同時、かつ並列に行え る環境を提供できますが、複数のMU88700xAを必要とするためコ ストが高くなります。1台のMU88700xAには、最大で4つのテスト ポートが実装されています。コストを低減しつつMIMOデバイスの 各アンテナ(ストリーミング)を正確に測定する手段として、各アン テナをスイッチで切り替えて測定できます。


- DUTは、1つ、もしくは最大4つまでのMIMO信号を同時に送信
- MT8870A/MT8872Aは、接続されているテストポートを切り替 えて、アンテナごと(ストリームごと)に送信試験を実施して測定

各送信パワー(クロスパワー値*3)、EVM、マスクなどの測定結果

*3:クロスパワー値の測定は、使用するテストポートの組み合わせに制限があ ります。

Test results:

Antenna 1: EVM 1, Power 1, Spectral mask 1 ... Antenna 2: EVM_2, Power_2, Spectral mask_2 ... Antenna 3: EVM_3, Power_3, Spectral mask_3 ... Antenna 4: EVM 4. Power 4. Spectral mask 4 ...

受信試験

- MT8870A/MT8872Aは、各アンテナに対してテスト信号をテス トポートを切り替えつつ送信し、受信感度試験を実施
- 使用する波形は、SISO信号
- 測定結果 各アンテナでの受信感度

Composite MIMO MU887000A/01A/02A

特長

製造ラインでは、測定時間の短縮によるタクトタイムの削減、生産コ ストの削減が強く求められます。MIMOデバイスを測定する際、各 アンテナを1本ずつ測定する方法が主に採用されています。しかし、 製造ラインでは、タクトタイム削減、コスト削減の観点から、MIMO デバイスの全アンテナ(全ストリーミング)を別々に測定するのでは なく、一度に測定することを求めています。

MT8870A/MT8872AおよびMU88700xAは、外部にディバイダ(コ ンバイナ)*を使用して複数のMIMO信号を合成および分岐すること で一度にWLANのRF特性を測定できます。

*:推奨品

Mini-Circuits社製

形名: ZN4PD1-63 + (周波数範囲: 2,000 MHz~6,000 MHz)

送信試験

- DUTは、最大4つのMIMO信号を同時に送信
- MT8870A/MT8872Aは、各アンテナから出力された各ストリー ミングのMIMO信号がディバイダ(コンバイナ)を通して合成さ れたテスト信号を受信し、RF性能を評価
- 測定結果

合成パワー値、推定パワー値 合成されたEVMおよびマスク値

552

Test sequence:

Composite

Test results:

EVM Avg. Power Avg. Spectral mask Avg ...

受信試験

- ダイバーシティ試験(SISO信号)
- ◆MT8870A/MT8872Aからテスト信号を送信し、ディバイダ(コ ンバイナ)で同一信号を分配して各アンテナに入力
- 複数アンテナで同一信号を受信するため、単一アンテナでの受信 感度結果よりも良くなることを評価
- 測定結果

受信感度(測定結果は1つのみ。アンテナ数により感度点のテ スト規格が変更)

WLAN測定ソリューション

WLAN 802.11ax 送信測定 MX887033A MU887000A/01A/02A WLAN 802.11ax 波形ファイル MV887033A MU887000A/01A/02A

WLAN 802.11axに準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。 MU887000A/01Aは、6 GHz周波数拡張オプション MU887000A/01A-001を装着する必要があります。 MU887002Aは、7 GHz 拡張機能オプション MU887002A-007を装着する必要があります。


	2.4 GHz/5 GHz Band	6 GHz Band
MU887000A/01A (with MU887000A/01A-001)	0	×
MU887002A	0	×
MU887002A (with MU887002A-007)	0	0

送信試験

WLAN 802.11ax 送信測定 MX887033Aをインストールすることにより、IEEE802.11ax-2021仕様書に定義されている帯域内無線測定をサポートします。

802.11be 20/40/80/160/320 MHz帯域幅と4096QAM (MCS12/13) 変調方式に対応できます。

CombiView PCアプリケーションを使用することにより、802.11ax 送信測定のさまざまな結果をグラフ表示できます。

CombiViewを使用したWLAN 802.11ax送信測定

802.11 ax送信測定項目

IEEE 802.11ax-2021 送信測定

Chapter	測定項目
27.3.19.1	Transmit spectrum mask
27.3.19.2	Spectrum flatness
27.3.19.3	Transmit center frequency and symbol clock frequency tolerance
27.3.19.4.2	Transmit center frequency leakage
27.3.19.4.3	Transmitter constellation error
27.3.19.4.4	Transmitter modulation accuracy (EVM) test

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたWLAN 802.11ax 波形ファイルの試験信号を送信することにより、WLAN 802.11ax対応デバイスのノンシグナリング受信試験をサポートします。被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

波形ファイルのパラメータ

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11ax	MCS 0~13	20、40、80、160 MHz	4096 bytes	Nss: 1、ガードインターバル: 800 ns

802.11 ax受信測定項目

IEEE 802.11ax-2021 受信測定

Chapter	測定項目
27.3.20.2	Receiver minimum input sensitivity
27.3.20.5	Receiver maximum input level

WLAN測定ソリューション

WLAN 802.11be 送信測定 MX887034A MU887002A WLAN 802.11be 波形ファイル MV887034A MU887002A MU887002A

WLAN 802.11beに準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。

	2.4 GHz/5 GHz Band	6 GHz Band
MU887002A	0	×
MU887002A (with MU887002A-007)	0	0

送信試験

WLAN 802.11be 送信測定 MX887034Aをインストールすることにより、IEEE802.11be D2.0仕様書に定義されている帯域内無線測定をサポートします。

802.11be 20/40/80/160/320 MHzの帯域幅と4096QAM(MCS12/13) 変調方式をサポートします。

CombiView PCアプリケーションを使用することにより、802.11be 送信測定のさまざまな結果をグラフ表示できます。

CombiViewを使用したWLAN 802.11be送信測定

802.11 be送信測定項目

IEEE802.11be D2.0 送信測定

Chapter	測定項目
36.3.19.1	Transmit spectral mask*
36.3.19.2	Spectral flatness
36.3.19.3	Transmit center frequency and symbol clock frequency tolerance
36.3.19.4.2	Transmit center frequency leakage
36.3.19.4.4	Transmitter modulation accuracy (EVM) test

20/40/80/160/320 MHz BW対応

*: 320 MHz BWを除く

受信試験

MU887002Aに内蔵されているベクトル信号発生器から、選択されたWLAN 802.11be 波形ファイルの試験信号を送信することにより、WLAN 802.11be対応デバイスのノンシグナリング受信試験をサポートします。被試験デバイスには、MU887002Aから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

波形ファイルのパラメータ

802.11 Standard	Data Rate/Modulation	Bandwidth	Packet Length	Remarks
802.11be	MCS 0~13	20、40、80、160 MHz	4096 bytes	Nss: 1、ガードインターバル: 800 ns

802.11 be受信測定項目

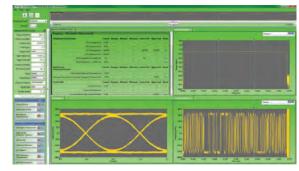
IEEE Std 802.11be-D2.0 受信測定

2011 Std SOLITISE DEIO XIA/MC	
Chapter	測定項目
36.3.20.2	Receiver minimum input sensitivity
36.3.20.3	Adjacent channel rejection
36.3.20.4	Nonadjacent channel rejection
36.3.20.5	Receiver maximum input level

Bluetooth測定ソリューション

Bluetooth 送信測定 MU887000A/01A/02A Bluetooth 波形ファイル MU887000A/01A/02A MX887040A MV887040A DLE 送信測定 MX887040A-001 MU887000A/01A/02A DLE 波形ファイル MV887040A-001 MU887000A/01A/02A MX887040A-002 MU887000A/01A/02A MV887040A-002 MU887000A/01A/02A 2LE 送信測定 2LE 波形ファイル MX887040A-003 MU887000A/01A/02A MV887040A-003 MU887000A/01A/02A BLR 送信測定 BLR 波形ファイル BLE AoA/AoD 送信測定 MX887040A-004 MU887000A/01A/02A BLE AoA/AoD 波形ファイル MV887040A-004 MU887000A/01A/02A

Bluetooth Basic Rate (BR)、Enhanced Data Rate (EDR)、Bluetooth low energy (BLE) のノンシグナリング送信試験および受信試験をサポートします。


送信試験

Bluetooth 送信測定 MX887040Aは、Bluetooth送信機テストのために2つのモードをサポートします。

「SIG Standard」モードでは、Bluetooth RFテスト仕様で定められた方法に従い、被試験デバイスからの送信テストパケット測定が実行されます。このモードでは、選択されたパケットペイロードに対してできる測定のみが実行されます。

「Speed Test」モードの場合、アプリケーションはすべてのBluetooth 測定を実行します。必要なペイロードがない場合は、Bluetooth規格で定められた方法に最も近似したものが使用されます。

Speed Testモードは、シングルパケットタイプでBR/EDR測定を実行できるため、迅速なシンプルテストに適しています。

CombiViewを使用したBluetooth送信測定

Bluetooth送信測定項目

Basic Rate/Enhanced Data Rate (EDR)

Bluetooth RF Test Specification RF.TS.p31に準拠

Cation Kr. 13.p31に李波
測定項目
[Output Power]
[Power Control]
[TX Output Spectrum – 20 dB Bandwidth]
[TX Output Spectrum - Adjacent Channel Power]
[Modulation Characteristics]
[Initial Carrier Frequency Tolerance]
[Carrier Frequency Drift]
[EDR Relative Transmit Power]
[EDR Carrier Frequency Stability and Modulation Accuracy]
[EDR Differential Phase Encoding]
[EDR In-band Spurious Emissions]*1
[Enhanced Power Control]
[EDR Guard Time]

*1:±5Channelまで測定

Bluetooth Low Energy

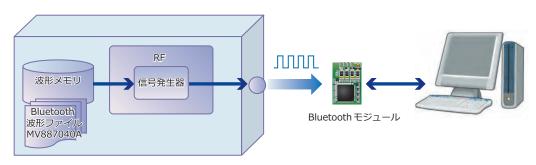
Bluetooth RF Test Specification RF-PHY.TS.P16に準拠

Specification	測定項目	必須オプション			
Specification	州 上块口	MX887040A-001	MX887040A-002	MX887040A-003	MX887040A-004
RFPHY/TRM/BV-01-C	[Output power]	√ ∗3			
RFPHY/TRM/BV-03-C	[In-band emissions, uncoded data at 1 Ms/s]*2	√ ∗3			
RFPHY/TRM/BV-05-C	[Modulation Characteristics, uncoded data at 1 Ms/s]	√ *3			
RFPHY/TRM/BV-06-C	[Carrier frequency offset and drift, uncoded data at 1 Ms/s]	√ *3			
RFPHY/TRM/BV-08-C	[In-band emissions at 2 Ms/s]*2	✓	✓		
RFPHY/TRM/BV-09-C	[Stable Modulation Characteristics, uncoded data at 1 Ms/s]	√ *3			
RFPHY/TRM/BV-10-C	[Modulation Characteristics at 2 Ms/s]	✓	✓		
RFPHY/TRM/BV-11-C	[Stable Modulation Characteristics at 2 Ms/s]	✓	✓		
RFPHY/TRM/BV-12-C	[Carrier frequency offset and drift at 2 Ms/s]	✓	✓		
RFPHY/TRM/BV-13-C	[Modulation Characteristics, LE Coded (S = 8)]	✓		✓	
RFPHY/TRM/BV-14-C	[Carrier frequency offset and drift, LE Coded (S = 8)]	✓		✓	
RFPHY/TRM/BV-15-C	[Output power, With Constant Tone Extension]	✓	✓		✓
RFPHY/TRM/BV-16-C	[Carrier frequency offset and drift, uncoded data at 1 Ms/s, Constant Tone Extension]	✓	√ *4		✓
RFPHY/TRM/BV-17-C	[Carrier frequency offset and drift at 2 Ms/s, Constant Tone Extension]	✓	✓		✓
RFPHY/TRM/PS/BV-01-C	[Tx Power Stability, AoD Transmitter at 1 Ms/s with 2 µs Switching Slot]	✓	√ *4		✓
RFPHY/TRM/PS/BV-02-C	[Tx Power Stability, AoD Transmitter at 1 Ms/s with 1 µs Switching Slot]	✓	√ *4		✓
RFPHY/TRM/PS/BV-03-C	[Tx Power Stability, AoD Transmitter at 2 Ms/s with 2 µs Switching Slot]	✓	✓		✓
RFPHY/TRM/PS/BV-04-C	[Tx Power Stability, AoD Transmitter at 2 Ms/s with 1 μ s Switching Slot]	✓	✓		✓

- *2:BLE:±5Channel、2LE:±8Channelまで測定
- *3: PSDU Length >37 byteの信号を測定する場合に必要
- *4:推奨オプション

グラフ表示 (BR/BLE)

203 (- 1)	
Power Burst profile	
Frequency deviation	
Eye diagram	
Spectral profile	
•	


グラフ表示 (EDR)

)) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Power burst profile
Frequency deviation
IQ constellation diagram
DEVM against symbol
Vector diagram
Spectral profile

Bluetooth測定ソリューション (つづき)

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたBluetooth 波形ファイル MV887040Aの試験信号を送信することにより、Bluetooth対応デバイスのノンシグナリング受信試験をサポートします。被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

標準波形

Bluetooth	波形種類
Basic Rate (BR)	DH1/DH3/DH5
Enhanced Data Rate (EDR)	2-DH1/2-DH3/2-DH5/3-DH1/3-DH3/3-DH5
Bluetooth low energy (BLE)	BLE/PER Report Integrity試験用
Others	GFSK/PSK連続波(妨害波用)

Bluetooth受信測定項目

Basic Rate/Enhanced Data Rate (EDR)

Bluetooth RF Test Specification RF.TS.p31に準拠

Specification	測定項目
RF/RCV/CA/BV-01-C	[Sensitivity – single slot packets]
RF/RCV/CA/BV-02-C	[Sensitivity - multi-slot packets]
RF/RCV/CA/BV-06-C	[Maximum Input Level]
RF/RCV/CA/BV-07-C	[EDR Sensitivity]
RF/RCV/CA/BV-08-C	[EDR BER Floor Performance]
RF/RCV/CA/BV-10-C	[EDR Maximum Input Level]

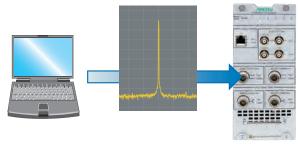
Bluetooth Low Energy

Bluetooth RF Test Specification RF-PHY.TS.P16に準拠

Specification	測定項目	必須オプション			
Specification	<u> </u>	MV887040A-001	MV887040A-002	MV887040A-003	
RF-PHY/RCV/BV-01-C	[Receiver sensitivity, uncoded data at 1 Ms/s]	√ *			
RF-PHY/RCV/BV-06-C	[Maximum input signal level, uncoded data at 1 Ms/s]	√ *			
RF-PHY/RCV/BV-07-C	[PER Report Integrity, uncoded data at 1 Ms/s]	√ *			
RF-PHY/RCV/BV-08-C	[Receiver sensitivity at 2 Ms/s]	✓	✓		
RF-PHY/RCV/BV-12-C	[Maximum input signal level at 2 Ms/s]	✓	✓		
RF-PHY/RCV/BV-13-C	[PER Report Integrity at 2 Ms/s]	✓	✓		
RF-PHY/RCV/BV-14-C	[Receiver Sensitivity, uncoded data at 1 Ms/s, Stable Modulation Index]	√ *			
RF-PHY/RCV/BV-18-C	[Maximum input signal level, uncoded data at 1 Ms/s, Stable Modulation Index]	√ *			
RF-PHY/RCV/BV-19-C	[PER Report Integrity, uncoded data at 1 Ms/s, Stable Modulation Index]	√ *			
RF-PHY/RCV/BV-20-C	[Receiver sensitivity at 2 Ms/s, Stable Modulation Index]	✓	✓		
RF-PHY/RCV/BV-24-C	[Maximum input signal level at 2 Ms/s, Stable Modulation Index]	✓	✓		
RF-PHY/RCV/BV-25-C	[PER Report Integrity at 2 Ms/s, Stable Modulation Index]	✓	✓		
RF-PHY/RCV/BV-26-C	[Receiver sensitivity, LE Coded (S = 2)]	✓		✓	
RF-PHY/RCV/BV-27-C	[Receiver sensitivity, LE Coded (S = 8)]	✓		✓	
RF-PHY/RCV/BV-30-C	[PER Report Integrity, LE Coded (S = 2)]	✓		✓	
RF-PHY/RCV/BV-31-C	[PER Report Integrity, LE Coded (S = 8)]	✓		✓	
RF-PHY/RCV/BV-32-C	[Receiver sensitivity, LE Coded (S = 2), Stable Modulation Index]	✓		✓	
RF-PHY/RCV/BV-33-C	[Receiver sensitivity, LE Coded (S = 8), Stable Modulation Index]	✓		✓	
RF-PHY/RCV/BV-36-C	[PER Report Integrity, LE Coded (S = 2), Stable Modulation Index]	✓		✓	
RF-PHY/RCV/BV-37-C	[PER Report Integrity, LE Coded (S = 8), Stable Modulation Index]	✓		✓	

^{*:} PSDU Length >37 byteの信号を送信する場合に必要

シンプル測定ソリューション


近距離無線パワー/周波数測定機能 MX887050A MU887000A/01A/02A

近距離無線パワー/周波数測定機能 MX887050Aをインストールすることにより、完成品に搭載されているWLANやBluetoothなどの近距離無線の簡易試験を実施できます。MX887050Aでは、無変調信号、もしくは下記の変調方式に対応している連続波のパワーおよび周波数の測定ができます。

無変調信号を使用したコネクティビティデバイスのRFキャリブレーション (調整) もMX887050Aによりサポートされます。

サポートす	る変調方式
WLAN	DSSS、OFDM
Bluetooth	GFSK, PSK

完成品の簡易試験

近距離無線パワー/ 周波数 測定機能 MX887050A

CombiViewを使用したCW送信測定

IEEE 802.15.4測定ソリューション

 IEEE 802.15.4 送信測定
 MX887060A
 MU887000A/01A/02A

 IEEE 802.15.4 波形ファイル
 MV887060A
 MU887000A/01A/02A

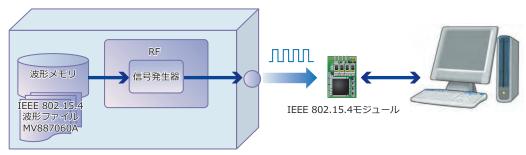
IEEE 802.15.4に準拠したO-QPSK変調信号の通信デバイスの送信試験および受信試験をサポートします。

送信試験

IEEE 802.15.4 送信測定 MX887060Aをインストールすることにより、IEEE 802.15.4 - 2011に定義された主要な送信特性の測定ができます

802.15.4 送信測定項目

IEEE 802.15.4 - 2011:802.15.4送信測定


802.15.4	測定項目
10.3.2	Transmit power spectral density (PSD) mask
10.3.3	Symbol rate
10.3.7	RX-to-TX turnaround time
10.3.8	Error vector magnitude (EVM)
10.3.9	Transmit center frequency tolerance
10.3.10	Transmit power

グラフ表示

Spectral mask	
Constellation diagram	
Power vs. Time	

受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたIEEE 802.15.4 波形ファイル MV887060Aの試験信号を送信することにより、IEEE 802.15.4対応デバイスの受信試験をサポートします。被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

波形ファイルのパラメータ

波形名	変調	使用周波数帯	データレート	チップレート	Filter	信号長
MV887060A_ZB2450_0001	O-QPSK	2450 MHz	250 kbps	2000 kchip/s	Half-sine	1664 chip
MV887060A_ZB2450_0002	O-QPSK	2450 MHz	250 kbps	2000 kchip/s	Half-sine	1024 chip
MV887060A_ZB915_0001	O-QPSK	915 MHz	250 kbps	1000 kchip/s	Half-sine	832 chip
MV887060A_ZB915_0002	O-QPSK	915 MHz	250 kbps	1000 kchip/s	Half-sine	1024 chip
MV887060A_ZB868_0001	O-QPSK	868 MHz	100 kbps	400 kchip/s	Half-sine	832 chip
MV887060A_ZB868_0002	O-QPSK	868 MHz	100 kbps	400 kchip/s	Half-sine	1024 chip
MV887060A_ZB780_0001	O-QPSK	780 MHz	250 kbps	1000 kchip/s	Raised cosine (roll-off 0.8)	832 chip
MV887060A_ZB780_0002	O-QPSK	780 MHz	250 kbps	1000 kchip/s	Raised cosine (roll-off 0.8)	1024 chip

802.15.4 受信測定項目

IEEE 802.15.4 - 2011:802.15.4受信測定

802.15.4	測定項目
10.3.4	Receiver sensitivity
10.3.11	Receiver maximum input level of desired signal

Z-Wave測定ソリューション

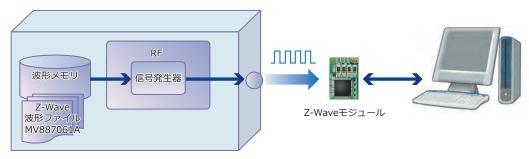
Z-Wave 送信測定 MX887061A MU887000A/01A/02A Z-Wave 波形ファイル MV887061A MU887000A/01A/02A

ITU-T G.9959に準拠した通信デバイスのノンシグナリング送信試験および受信試験をサポートします。

送信試験

Z-Wave 送信測定 MX887061Aをインストールすることにより、ITU-T G.9959 2012に定義された主要な送信測定の測定ができます。

ITU-T G.9959送信測定項目


ITU-T G.9959 2012送信測定

ITU-T G.9959	測定項目
7.1.2.2	Data rates
7.1.2.5.1	Transmit frequency error
7.1.2.5.2	Transmit power adjustments (conducted)

クラフ表示			
I	Data Table		
I	Power vs. Time		
I	Frequency vs. Time		

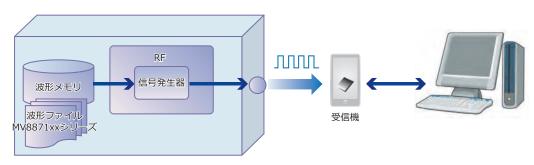
受信試験

MU88700xAに内蔵されているベクトル信号発生器から、選択されたZ-Wave 波形ファイル MV887061Aの試験信号を送信することにより、Z-Waveデバイスの受信試験をサポートします。被試験デバイスには、MU88700xAから定められた数のパケットが送信されます。 被試験デバイスに受信されるパケット数を読み取るには、チップセット開発元のコントロールソフトウェアを使用する必要があります。

送受信テストユニット

レシーバ測定ソリューション

波形ファイル


MV8871xxシリーズ

MT8870A/MT8872A/MU88700xAは、各通信方式を用いた受信機の受信試験をサポートします。

波形ファイルによる受信試験

波形ファイル MV8871xxシリーズは、各通信方式に準拠した出力波形を生成できる任意波形ファイルです。この波形ファイルをMU88700xA 内蔵の波形メモリに格納し選択することで、内蔵されているベクトル信号発生器から任意の波形パターンの信号を出力できます。 MU88700xAの内蔵ベクトル信号発生器から生成される波形ファイルを使用することで、移動端末や通信デバイスが対応しているGPSやデジタル放送を代表とする各受信機の感度テストや簡易BER測定の受信試験*ができます。

*:信号発生器の下限出力値よりも低いレベルでの受信試験を実施する場合には、外部減衰器が必要です。

送受信テストユニット

波形ファイル MV8871xxAシリーズの主な仕様

GPS 波形ファイル MV887100A MU887000A/01A/02A

波形ファイル名	MV887100A_GPS_0002 MV887100A_GPS_0003		
用途	感度テスト/BER測定	パリティ検出/感度テスト	
伝送データ変調方式	BPSK		
サテライトID番号	1		
参照規格	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION		

GPS L5 波形ファイル MV887100A-002 MU887000A/01A/02A

波形ファイル名	MV887100A_GPS_0040
用途	感度テスト
伝送データ変調方式	BPSK
サテライトID番号	1
参照規格	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION

^{*:} GPS波形ファイル MV887100Aが別途必要となります。

Galileo 波形ファイル MV887101A MU887000A/01A/02A

波形ファイル名	MV887101A_GALILEO_0001	
用途	『リティ検出/感度テスト	
伝送データ変調方式	QPSKまたはCBOC (グループごとに変動)	
サテライトID番号	1	
参照規格	European GNSS (Galileo) Open Service Signal In Space Interface Control Document	

GLONASS 波形ファイル MV887102A MU887000A/01A/02A

波形ファイル名	MV887102A_GLONASS_0001	MV887102A_GLONASS_010x MV887102A_GLONASS_011x	
用途	感度テスト/BER測定	GPSとGLONASSの同時測定*、C/No測定	
伝送データ変調方式	BPSK	BPSK	
サテライトID番号	3	_	
参照規格	INTERFACE CONTROL DOCUMENT Navigational radiosignal In bands L1, L2 Edition5.1		

^{*:} GPSとの同時測定には、GPS波形ファイル MV887100Aが別途必要となります。

BeiDou 波形ファイル MV887103A MU887000A/01A/02A

波形ファイル名	MV887103A_BEIDOU_0002
用途	パリティ検出/感度テスト
伝送データ変調方式	QPSK (I相のみ)
サテライトID番号	1、6(グループごとに変動)
参照規格	BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal (Version 2.0)

QZSS 波形ファイル MV887104A MU887000A/01A/02A

-		
波形ファイル名	V887104A_QZSS_0001	
用途	パリティ検出/感度テスト/BER測定	
伝送データ変調方式	BPSK	
サテライトID番号	193	
参照規格	Quasi-Zenith Satellite System Interface Specification	

DVB-H 波形ファイル MV887110A MU887000A/01A/02A

波形ファイル名	MV887110A_DVBH_0001
用途	簡易BER測定
伝送データ	PN9fix*
伝送データ変調方式	QPSK
符号化率	2/3
システム帯域幅	8 MHz
セルID	0x0000
参照規格	ETSI EN 300 744 V1.5.1 (2004-11)

^{*:} fixは、波形パターンのつなぎ目でPNシーケンスが不連続であることを示します。

波形ファイル MV8871xxAシリーズの主な仕様

ISDB-T 波形ファイル MV887111A MU887000A/01A/02A

波形ファイル名	MV887111A_ISDBT_0001	MV887111A_ISDBT_0002	MV887111A_ISDBT_0003	MV887111A_ISDBT_0004
用途	デバイス評価	画像、音声の評価*1		簡易BER測定
波形周期/グループ	2[Frame]	40 [Frame]	40 [Frame]	4[Frame]
伝送データ	PN23fix*2	PN23fix* ²		
伝送データ変調方式	A階層: 64QAM もしくは A階層: QPSK B階層: 64QAM	A階層: QPSK B階層: 64QAM		A階層:QPSK もしくは 16QAM B階層:64QAM
ガードインターバル	1/8			
符号化率	符号化なし	A階層: 2/3 B階層: 7/8	A階層: 2/3 B階層: 3/4	A階層: 2/3 もしくは 1/2 B階層: 3/4 もしくは 7/8
モード	3			
参照規格	ARIB STD-B31			

- *1:すべての受信機で受信できることを保証するものではありません。
- *2: fixは、波形パターンのつなぎ目でPNシーケンスが不連続であることを示します。

ISDB-Tmm 波形ファイル MV887112A MU887000A/01A

MV887112A_ISDBTmm_SSpatA_000x_0M(xは1から6)
MV887112A_ISDBTmm_SSpatA_000x_8M (xは1から6)
MV887112A_ISDBTmm_SSpatC_000x_0M (xは7から12)
MV887112A_ISDBTmm_SSpatC_000x_8M(xは7から12)
XXXX_8Mの波形パターンは、波形ファイル名がXXXX_0Mの波形パターンに8 MHzの周波数オフセットを付加した波形
簡易BER測定
4[Frame]
PN23fix*
QPSKまたは16QAM
AタイプまたはCタイプ
1/4
1/2または2/3
3
ARIB STD-B46

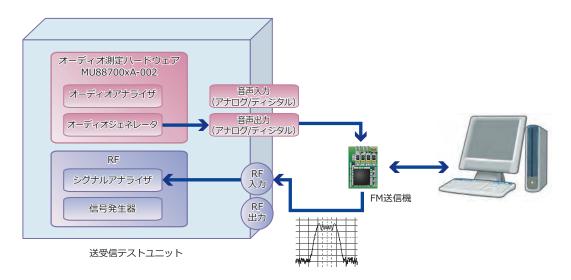
^{*:} fixは、波形パターンのつなぎ目でPNシーケンスが不連続であることを示します。

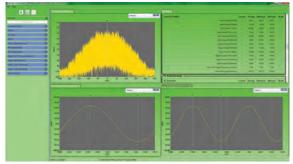
各波形ファイルの詳細に関しては、お問い合わせください。

FM/RDS測定ソリューション

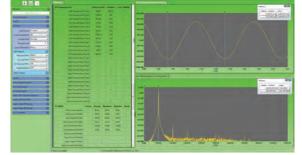
FM/Audio 送受信測定 FM RDS 波形ファイル

MX887070A MU887000A/01A


MV887070A MU887000A/01A


(RDS: ラジオ·データ·システム)

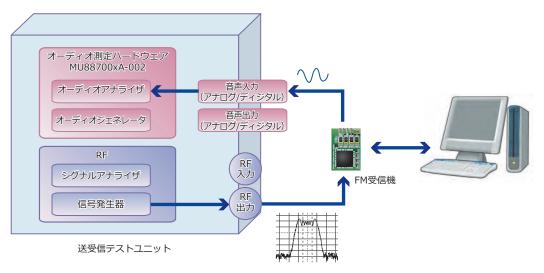
MT8870A/MT8872A/MU887000A/01Aは、FM送受信機 (トランシーバ) の送受信試験をサポートし、オプションを追加することにより、音 声試験にも対応できます。


FM送信機試験

MU887000A/01Aに、オーディオ測定ハードウェア MU887000A/01A-002を装着することにより、最大で左右 (ステレオ時) 8本ずつのマル チトーンに対応した音声信号をアナログもしくはディジタルの形式にてコネクタから出力し、FM送信機の音声入力コネクタに入力できます。 FM/Audio 送受信測定 MX887070Aは、MU88700xAの内蔵シグナルアナライザを使用することにより、FM送信機から出力される音声信号 を搭載したFM信号のRF周波数・レベル、周波数偏差や、AF信号波形を使用してAF信号周波数・レベル(マルチトーン:最大12本)、歪み率、 ステレオクロストークなどの音声試験を実施します。RDS波形を受信する際には、データをDecodeすることにより、内部データを解析し RDSの情報を出力します。

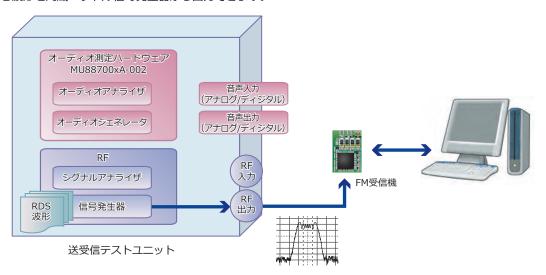
CombiViewを使用したFM送信機試験

CombiViewを使用したFM受信機試験(デバイスのオーディオ出力測定)


105	Detail
RDS Total Data Size(byte/blocks)	143 byte, 44 blocks
RDS Error Rete(%)	0
RDS RTOHEKS	5468652071750963662062726775e2066678206a756d707320676657220746865206c617a79206469672e11

CombiViewを使用したRDS結果例

FM/RDS測定ソリューション (つづき)


FM受信機試験

MX887070Aは、FM受信機を試験するために、指定された試験音声信号をFM変調し、内蔵のベクトル信号発生器から出力できます。 MU887000A/01Aに、MU887000A/01A-002を装着することにより、FM受信機から出力される音声信号 (アナログもしくはディジタル) を MU887000A/01A内部のオーディオアナライザに入力でき、AF信号周波数・レベル (マルチトーン:最大12本)、歪み率、ステレオクロストークなどの音声試験を実施できます。

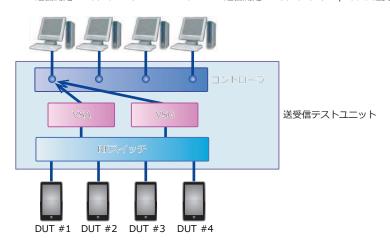
FM受信機試験 RDS(ラジオ・データ・システム)

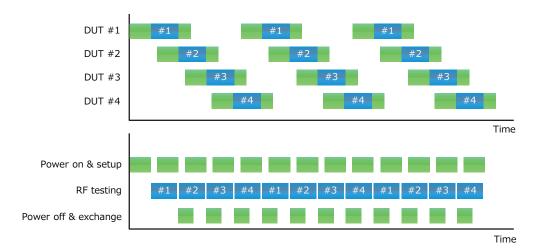
FM RDS 波形ファイル MV887070Aを搭載することにより、FM RDS (ラジオ・データ・システム) 規格に基づいた、Radio Textデータなどの送信情報を含む波形を内蔵ベクトル信号発生器から出力できます。

FM RDS波形の主な仕様

波形ファイル名		MV887070A_FMRDS_0001	MV887070A_FMRDS_0002	MV887070A_FMRDS_0003	MV887070A_FMRDS_0004
用途		DUT RDS受信機能試験 DUT受		DUT受信試験	
トーン数		1			
AF Left Channel	トーン周波数	1 kHz			
Charmer	Tone Deviation	75 kHz × 0.9			
A = D: 1 :	トーン数	1			
AF Right Channel	トーン周波数	2 kHz			
Criarine	Tone Deviation	75 kHz × 0.9			
Pilot Deviation	n .	75 kHz × 0.1			
RDS Deviation	า	75 kHz × 0.05			
参照規格		IEC 62106 Edition 2.0			

FM RDS波形ファイルの詳細に関しては、お問い合わせください。

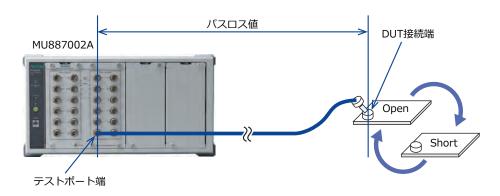

高速測定ソリューション


マルチDUTメジャメントスケジューラ MX887090A MU887000A/01A/02A

マルチDUTメジャメントスケジューラ MX887090Aを搭載することにより、1個のMU88700xAが内部に専用のコントローラを持ち、ソフト ウェア、ハードウェアリソースを管理することにより、仮想的に複数の測定器として動作する機能を提供しています。これにより測定器の稼 働を最適化し、通信デバイス1台あたりの製造コストを低減できます。

*:マルチDUTメジャメントスケジューラは、次のソフトウェアには対応していません。

W-CDMA/HSPA Downlink 送信測定 MX887021A、LTE FDD Downlink 送信測定 MX887023A、FM/Audio 送受信測定 MX887070A



MU887002A パスロス測定機能

MX887092A MU887002A

MX887092A パスロス測定機能 (Pathloss Measurement Function) はDUT接続端にOpen、Shortデバイスを接続したときのそれぞれの反 射信号を測定することでMU887002Aのテストポート端からDUT接続端までのパスロス値を測定する機能を提供します。

*: DUT接続端に接続するOpen、Shortデバイスはお客様に用意していただく必要があります。

電気的特性

スロット数	4
内部基準発振器	起動特性 25℃、電源投入24時間後の周波数を基準 ±5×10 ⁻⁷ (電源投入2分後) ±5×10 ⁻⁸ (電源投入5分後) エージングレート:±1×10 ⁻⁷ /年 温度特性:±2×10 ⁻⁸ (5℃~45℃) 出荷時周波数確度 20℃~30℃、電源投入1時間後 ±2.2×10 ⁻⁸
コネクタ	外部基準入力

一般

寸法・質量		426 (W) × 221.5 (H) × 498 (D) mm (突起物は除く) ≦11.5 kg (オプション、テストユニットを除く) ≦30 kg (オプション、テストユニットを実装時)
電源		電圧: AC 100 V~AC 120 V、AC 200 V~AC 240 V 周波数: 50 Hz/60 Hz 消費電力: ≦900 VA(全オプション、全テストユニットを含む)
温度		+5℃~+45℃ (動作)、-20℃~+60℃ (保管)
	EMC	2014/30/EU、EN61326-1、EN61000-3-2
CE	LVD	2014/35/EU、EN61010-1
	RoHS	2011/65/EU、(EU) 2015/863、EN IEC 63000: 2018
UKCA	EMC	S.I. 2016 No.1091, EN 61326-1, EN61000-3-2
	LVD	S.I. 2016 No.1101、EN 61010-1
	RoHS	S.I. 2012 No.3032、EN IEC 63000: 2018

電気的特性

スロット数	2
内部基準発振器	起動特性 25℃、電源投入24時間後の周波数を基準 ±5 × 10-7 (電源投入2分後) ±5 × 10-8 (電源投入5分後) エージングレート: ±1 × 10-7/年 温度特性: ±2 × 10-8 (5℃~45℃)
コネクタ	外部基準入力 コネクタ: BNC-J (背面パネル)、50Ω (Nom.) 周波数: 10 MHz 動作範囲: ±1 ppm 入力レベル: -15~+20 dBm (AC結合) 基準信号出力 コネクタ: BNC-J (背面パネル)、50Ω (Nom.) 周波数: 10 MHz 出力レベル: ≥ 0 dBm (AC結合) トリガ 入出力切り替え: トリガの入力/出力のどちらかの選択が可能 コネクタ: BNC-J (背面パネル: 2ポート) 入出カレベル: TTLレベル 外部制御 外部コントローラからの制御(電源除く) Ethernet (1000BASE-T) コネクタ: RJ-45 (正面パネル、背面パネル) GPIB (MT8872A-001) コネクタ: IEEE488 バスコネクタ (背面パネル: 2ポート) AUX コネクタ: 50ピン (DX10BM-50S相当品、背面パネル)

一般

132		
寸法・質量		250 (W) × 221.5 (H) × 498 (D) mm (突起物は除く) ≦9.5 kg (オプション、テストユニットを除く) <18.0 kg (オプション、テストユニットを実装時)
電源		電圧: AC 100 V~AC 120 V、AC 200 V~AC 240 V 周波数: 50 Hz/60 Hz 消費電力: ≤500 VA(全オプション、全テストユニットを含む)
温度		+5℃~+45℃ (動作)、-20℃~+60℃ (保管)
	EMC	2014/30/EU、EN61326-1、EN61000-3-2
CE	LVD	2014/35/EU、EN61010-1
	RoHS	2011/65/EU、(EU) 2015/863、EN IEC 63000: 2018
UKCA	EMC	S.I. 2016 No.1091, EN 61326-1, EN61000-3-2
	LVD	S.I. 2016 No.1101, EN 61010-1
	RoHS	S.I. 2012 No.3032, EN IEC 63000 : 2018

入出力コネクタ

	ポート数
	4
	コネクタ
	N (female)
	インピーダンス
	50Ω (Nom.)
	VSWR
	テストポート1、2
	< 1.5 (10 MHz ≦ 周波数 < 400 MHz)
RFテストポート	< 1.2 (400 MHz ≤ 周波数 ≤ 2.7 GHz)
	< 1.3 (2.7 GHz < 周波数 ≦ 3.8 GHz)
	< 1.5 (3.8 GHz < 周波数 ≦ 6.0 GHz)
	テストポート3、4
	< 1.8 (10 MHz ≦ 周波数 < 30 MHz)
	< 1.5 (30 MHz ≦ 周波数 ≦ 3.8 GHz)
	< 1.6 (3.8 GHz < 周波数 ≤ 6.0 GHz)
	最大入力レベル
	+35 dBm (テストボート1、2)
	+25 dBm (テストポート3、4)
	ポート
	アナログポート、ディジタルポート
AFテストポート	コネクタ
	アナログポート: BNC (female)
	ディジタルポート:RJ-45

信号発生器

設定	10 - 770 — 1111	
周波数 10 MHz~6.0 GHz (MU887000A-001) 設定分解能 1 hz 確度 MT8870Aの基準発振器確度による 設定範囲 デストポート1、2 -130~-10 dBm (≤3.8 GHz) -130~18 dBm(>3.8 GHz) -130~18 dBm(>3.8 GHz) -120~0 dBm (≤3.8 GHz) -120~8 dBm(>3.8 GHz) -13 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) -11.0 dB ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) -11.3 dB (10 MHz ≤ 周波数 < 400 MHz) -11.3 dB (10 MHz ≤ 周波数 < 400 MHz) -11.3 dB (10 MHz ≤ 周波数 ≤ 3.8 GHz) -11.3 dB (10 MHz ≤ 周波数 < 400 MHz) -11.3 dB (10 MHz ≤ 周波数 ≤ 6.0 GHz) -11.3 dB (10 MHz ≤ 周波数 < 400 MHz) -11.3 dB (10 MHz ≤ 周波数 ≤ 6.0 GHz) -11.3 dB ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) -11.3 dB ±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) -120		設定範囲
周波数		10 MHz~3.8 GHz
1 Hz 福度 MT8870Aの基準発振器確度による 設定範囲 デストボート1、2 -130~-10 dBm(≤3.8 GHz) -130~-18 dBm(>3.8 GHz) -130~-18 dBm(>3.8 GHz) -120~0 dBm(≤3.8 GHz) -120~-8 dBm(>3.8 GHz) -130 dBm(>3.8 GHz) -130 dBm(>3.8 GHz) -13.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル:+15 dBm) -13.3 dB +1.0 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) -13.3 dB +1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz)		10 MHz~6.0 GHz (MU887000A-001)
確度 MT8870Aの基準発振器確度による 設定範囲 デストボート1、2 -130~-10 dBm (≤3.8 GHz) -130~-18 dBm (>3.8 GHz) -130~-18 dBm (>3.8 GHz) -7ストボート3、4 -120~0 dBm (≤3.8 GHz) -120~-8 dBm (>3.8 GHz) 20	周波数	設定分解能
版定範囲		1 Hz
設定範囲 テストボート1、2 -130~-10 dBm (≤3.8 GHz) -130~-18 dBm (>3.8 GHz) -120~0 dBm (≤3.8 GHz) -120~0 dBm (≤3.8 GHz) -120~8 dBm (>3.8 GHz) -120 dBm (≤3.8 GHz) -120 dBm (≤3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) ±1.0 dB. ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB, ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz)		確度
デストポート1、2 -130~-10 dBm (≤3.8 GHz) -130~-18 dBm (>3.8 GHz) -130~-18 dBm (>3.8 GHz) デストポート3、4 -120~0 dBm (≤3.8 GHz) -120~-8 dBm (>3.8 GHz) -13 dB (10 MHz ≤ 周波数 < 400 MHz) (>3.8 GHz) -13 dB (10 MHz ≤ 周波数 < 400 MHz) (>3.8 GHz) -13 dB, ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) -13 dB (10 MHz ≤ 周波数 < 400 MHz) -13 dB (10 MHz ≤ 周波数 < 400 MHz) -13 dB (10 MHz ≤ 周波数 ≤ 6.0 GHz) -13 dB, ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) -25 dBc -25 dBc -25 dBc -3 dBm (=3.8 GHz) -3 dBm (=3.8		MT8870Aの基準発振器確度による
-130~-10 dBm (≤3.8 GHz) -130~-18 dBm(>3.8 GHz) -120~0 dBm (≤3.8 GHz) -120~0 dBm (≤3.8 GHz) -120~-8 dBm (>3.8 GHz) bgc分解能 0.1 dB 確度 CW, CAL実行後、+10℃~+40℃ デストポート1. 2 出カレベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストポート3、4 出カレベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc 帯域幅		設定範囲
-130~-18 dBm (>3.8 GHz) テストポート3、4 -120~0 dBm (≤3.8 GHz) -120~-8 dBm (>3.8 GHz) 202 分解能 0.1 dB 確度 CW、CAL実行後、+10℃~+40℃ テストポート1、2 出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入力レベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストポート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.3 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) ボ1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) ボフリアス 高調波歪み <-25 dBc 帯域幅		テストポート1、2
		-130~-10 dBm (≤3.8 GHz)
-120~0 dBm (≤3.8 GHz) -120~-8 dBm (>3.8 GHz) 設定分解能 0.1 dB 確度 CW、CAL実行後、+10℃~+40℃ テストボート1、2 出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストボート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz) ±1.3 dB (10 MHz ≤ 周波数 ≤ 6.0 GHz) ボート3、4 コンベル・シー110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.3 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) 高調波歪み <-25 dBc 帯域幅		-130~-18 dBm (>3.8 GHz)
-120~-8 dBm (>3.8 GHz) 設定分解能 0.1 dB 確度 CW、CAL実行後、+10℃~+40℃ テストポート1、2 出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入力レベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストボート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.3 dB、10 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、10 MHz ≤ 周波数 ≤ 400 MHz) ±1.3 dB、10 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、+0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc 帯域幅		テストポート3、4
設定分解能		-120~0 dBm (≤3.8 GHz)
振幅 0.1 dB 確度 CW、CAL実行後、+10℃~+40℃ テストポート1、2 出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入力レベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストボート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc 帯域幅		-120~-8 dBm (>3.8 GHz)
振幅 CW、CAL実行後、+10℃~+40℃ テストポート1、2 出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストボート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc 帯域幅		設定分解能
振幅 CW、CAL実行後、+10℃~+40℃ テストポート1、2 出力レベル:≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入力レベル:+15 dBm) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストポート3、4 出力レベル:≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc ボダトル奈羽		0.1 dB
		確度
出力レベル: ≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz) ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入力レベル: +15 dBm) ±1.0 dB, ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB, ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストボート3、4 出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB, ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB, ±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc	振幅	CW、CAL実行後、+10℃~+40℃
#1.3 dB (10 MHz ≤ 周波数 < 400 MHz) (シグナルアナライザ入カレベル: +15 dBm) #1.0 dB, ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) #1.3 dB, ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) デストポート3、4 出カレベル: ≥ -110 dBm #1.3 dB (10 MHz ≤ 周波数 < 400 MHz) #1.0 dB, ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) #1.3 dB, ±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) 高調波歪み <-25 dBc ボクトル変調		
#1.0 dB、 ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) #1.3 dB、 ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストポート3、4 出カレベル: ≥ −110 dBm #1.3 dB (10 MHz ≤ 周波数 < 400 MHz) #1.0 dB、 ±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) #1.3 dB、 ±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc 帯域幅		
#1.3 dB、 ±1.0 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) テストポート3、4 出カレベル: ≥ −110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <−25 dBc ボクトル変調		
デストポート3、4 出カレベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc ボクトル変調		
出力レベル: ≥ -110 dBm ±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc		
±1.3 dB (10 MHz ≤ 周波数 < 400 MHz) ±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc ボクトル変調		
±1.0 dB、±0.7 dB (Typ.) (400 MHz ≤ 周波数 ≤ 3.8 GHz) ±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み		
±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≤ 6.0 GHz) スプリアス 高調波歪み <-25 dBc ボクトル変調 帯域幅		,
スプリアス 高調波歪み <-25 dBc		71
スプリアス <-25 dBc ボカトル変調		±1.3 dB、±0.7 dB (Typ.) (3.8 GHz < 周波数 ≦ 6.0 GHz)
<-25 dBc ボクトル 変担	スプリアス	· · · · · · · · · · · · · · · · · · ·
ベクトII 変調		<-25 dBc
^ ~ ~ 1 7 D 夕 回	ベクトル変調	帯域幅
		160 MHz (最大)

シグナルアナライザ

	設定範囲	
	10 MHz~3.8 GHz	
	10 MHz~6.0 GHz (MU887000A-001)	
周波数	設定分解能	
	1 Hz	
	測定分解能	
	0.1 Hz	

```
設定範囲
                           \mathsf{CW}
                           テストポート1、2
                            -65~+15 dBm (10 MHz ≦ 周波数 < 350 MHz)
                            -65~+35 dBm (350 MHz ≤ 周波数 ≤ 6.0 GHz)
                           テストポート3、4
                            -65~+15 dBm (10 MHz ≦ 周波数 < 350 MHz)
                             -65~+25 dBm (350 MHz ≤ 周波数 ≤ 6.0 GHz)
                          設定分解能
                           0.1 dB
                          測定分解能
                           0.01 dB
                          確度
                           CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後
                           テストポート1、2
                            10 MHz ≦ 周波数 < 400 MHz、信号発生器: Off、+10℃~+40℃
                              ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +15 dBm)
                              ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm)
                              ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm)
                            400 MHz ≦ 周波数 ≦ 3.8 GHz、+10℃~+40℃
                              ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm)
                              ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm)
振幅
                              ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm)
                            3.8 GHz < 周波数 ≦ 6.0 GHz、+20℃~+30℃
                              ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm)
                              ±0.9 dB (-55 dBm ≦ 入力レベル < -30 dBm)
                              ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm)
                           テストポート3、4
                            10 MHz ≦ 周波数 < 400 MHz、+10℃~+40℃
                              ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +15 dBm)
                              ±0.9 dB (-55 dBm ≦ 入力レベル < -30 dBm)
                              ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm)
                            400 MHz ≦ 周波数 ≦ 3.8 GHz、+10℃~+40℃
                              ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +25 dBm)
                              ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm)
                              ±1.1 dB (-65 dBm ≦ 入力レベル < -55 dBm)
                            3.8 GHz < 周波数 ≦ 6.0 GHz、+20℃~+30℃
                              ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +25 dBm)
                              ±0.9 dB (-55 dBm ≦ 入力レベル < -30 dBm)
                              ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm)
                           CW、測定帯域幅: 300 kHz、RBW: 100 kHz
                            \pm 0.2 \text{ dB} (0 \sim -40 \text{ dB}_{x} \ge -55 \text{ dBm})
                             ±0.4 dB (0~-40 dB, ≥ -65 dBm)
                          最大帯域幅
                           25 MHz (10 MHz ≦ 周波数 < 500 MHz)
変調解析
                           80 MHz (500 MHz ≤ 周波数 < 1.9 GHz)
                           160 MHz (1.9 GHz ≤ 周波数 ≤ 6.0 GHz)
```

一般

インタフェース		トリガ トリガ入出力コネクタ (背面パネル) リモートコントロール Ethernet: MT8870A インタフェースを介す GPIB: MT8870A GPIBオプション (MT8870A-001) インタフェースファンクション: SH1、AH1、T6、L4、SR1、RL1、PP0、DC1、DT0、C0、E2
寸法・質量		90 (W) × 193.6 (H) × 325 (D) mm (突起物は除く)、≦5 kg (オプションを含む)
	EMC	2014/30/EU、EN61326-1、EN61000-3-2
CE	LVD	2014/35/EU、EN61010-1
	RoHS	2011/65/EU、(EU) 2015/863、EN IEC 63000: 2018
UKCA	EMC	S.I. 2016 No.1091, EN 61326-1, EN61000-3-2
	LVD	S.I. 2016 No.1101, EN 61010-1
	RoHS	S.I. 2012 No.3032, EN IEC 63000 : 2018

オーディオ測定ハードウェア MU887000A-002

アナログオーディオ	オーディオ発生器 周波数範囲: 20 Hz~20 kHz 出力レベル範囲: 0 (off)、1 mV~5 Vpeak (100kΩ終端) インピーダンス: 1Ω (AC結合) (Nom.) オーディオアナライザ 周波数範囲: 20 Hz~20 kHz 入力レベル範囲: 1 mVpeak~5 Vpeak (30 V rms max.) インピーダンス: 100kΩ (AC結合)
ディジタルオーディオ	オーディオ発生器 周波数範囲: 20 Hz~20 kHz (サンプリングレート: 44.1 kHz、48 kHz) 20 Hz~14 kHz (サンプリングレート: 32 kHz) 20 Hz~7 kHz (サンプリングレート: 16 kHz) ビット分解能: 16 bits/24 bits オーディオアナライザ サンプリングレート: 16、32、44.1、48 kHz ビット分解能: 16 bits/24 bits

入出力コネクタ

71777	
RFテストポート	ポート数 4 コネクタ N (female) インピーダンス 50Ω (Nom.) VSWR < 1.5 (10 MHz ≤ 周波数 < 400 MHz) < 1.2 (400 MHz ≤ 周波数 ≤ 2.7 GHz) < 1.3 (2.7 GHz < 周波数 ≤ 3.8 GHz) < 1.5 (3.8 GHz < 周波数 ≤ 6.0 GHz) 最大入力レベル +35 dBm
AFテストポート	ポート アナログポート、ディジタルポート コネクタ アナログポート: BNC (female) ディジタルポート: RJ-45

信号発生器

	設定範囲
	10 MHz~3.8 GHz
	10 MHz~6.0 GHz (MU887001A-001)
周波数	設定分解能
	1 Hz
	確度
	MT8870Aの基準発振器確度による
	設定範囲
	-130~-10 dBm (≤3.8 GHz)
	-130~-18 dBm (>3.8 GHz)
	設定分解能
	0.1 dB
振幅	確度
	CW、CAL実行後、+10℃~+40℃
	出力レベル:≥-120 dBm (≤3.8 GHz)、≥-100 dBm (>3.8 GHz)
	±1.3 dB (10 MHz ≦ 周波数 < 400 MHz) (シグナルアナライザ入カレベル:+15 dBm)
	±1.0 dB, ±0.7 dB (Typ.) (400 MHz ≦ 周波数 ≦ 3.8 GHz)
	±1.3 dB、±1.0 dB (Typ.) (3.8 GHz < 周波数 ≦ 6.0 GHz)
スプリアス	高調波歪み
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<-25 dBc
ベクトル変調	帯域幅
パントラレタ。刷	160 MHz(最大)

シグナルアナライザ

	設定範囲
	10 MHz∼3.8 GHz
	10 MHz~6.0 GHz (MU887001A-001)
周波数	設定分解能
	1 Hz
	測定分解能
	0.1 Hz
	設定範囲
	CW
	-65~+15 dBm (10 MHz ≦ 周波数 < 350 MHz)
	-65~+35 dBm (350 MHz ≤ 周波数 ≤ 6.0 GHz)
	設定分解能
	0.1 dB
	測定分解能
	0.01 dB
	確度
	CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後
	10 MHz ≤ 周波数 < 400 MHz、信号発生器:Off、+10℃~+40℃
	±0.7 dB (-30 dBm ≦ 入力レベル ≦ +15 dBm)
15-4-5	±0.9 dB (-55 dBm ≦ 入力レベル < -30 dBm)
振幅	±1.1 dB (-65 dBm ≦ 入力レベル < -55 dBm)
	400 MHz ≦ 周波数 ≦ 3.8 GHz、+10℃~+40℃
	±0.3 dB (Typ.) ±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm)
	±0.7 dB (-55 dBm ≦ 入力レベル < -30 dBm)
	±0.9 dB (-65 dBm ≦ 入力レベル < -55 dBm)
	3.8 GHz < 周波数 ≦ 6.0 GHz、+20℃~+30℃
	±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm)
	±0.9 dB (-55 dBm ≦ 入力レベル < -30 dBm)
	±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm)
	直線性
	CW、測定帯域幅:300 kHz、RBW:100 kHz
	±0.2 dB (0~-40 dB、≥ -55 dBm)
	±0.4 dB (0~-40 dB, ≥ -65 dBm)
	最大帯域幅
 変調解析	25 MHz (10 MHz ≦ 周波数 < 500 MHz)
交 前 門 千 7	80 MHz (500 MHz ≦ 周波数 < 1.9 GHz)
	160 MHz (1.9 GHz ≦ 周波数 ≦ 6.0 GHz)

一般

1327		
インタフェース		トリガ トリガ入出力コネクタ (背面パネル) リモートコントロール Ethernet: MT8870A インタフェースを介す GPIB: MT8870A GPIBオプション (MT8870A-001) インタフェースファンクション: SH1、AH1、T6、L4、SR1、RL1、PP0、DC1、DT0、C0、E2
寸法・質量		90 (W) × 193.6 (H) × 325 (D) mm (突起物は除く) ≤5 kg (オプションを含む)
	EMC	2014/30/EU、EN61326-1、EN61000-3-2
CE	LVD	2014/35/EU、EN61010-1
	RoHS	2011/65/EU、(EU) 2015/863、EN IEC 63000: 2018
	EMC	S.I. 2016 No.1091, EN 61326-1, EN61000-3-2
UKCA	LVD	S.I. 2016 No.1101, EN 61010-1
	RoHS	S.I. 2012 No.3032, EN IEC 63000 : 2018

オーディオ測定ハードウェア MU887001A-002

	オーディオ発生器
	周波数範囲:20 Hz~20 kHz
	出力レベル範囲: 0 (off)、1 mV~5 Vpeak (100kΩ終端)
アナログオーディオ	インピーダンス: 1Ω(AC結合)(Nom.)
	オーディオアナライザ
	周波数範囲:20 Hz~20 kHz
	入力レベル範囲:1 mVpeak~5 Vpeak (30V rms max.)
	インピーダンス: 100kΩ(AC結合)
	オーディオ発生器
	周波数範囲: 20 Hz~20 kHz (サンプリングレート: 44.1 kHz、48 kHz)
	20 Hz~14 kHz (サンプリングレート:32 kHz)
ディジタルオーディオ	20 Hz~7 kHz (サンプリングレート:16 kHz)
74297071-7471	ビット分解能:16bits/24bits
	オーディオアナライザ
	サンプリングレート: 16、32、44.1、48 kHz
	ビット分解能: 16 bits/24 bits

入出力コネクタ

	ポート数
	TRX1:12
	TRX2:12
	コネクタ
	N (female)
	インピーダンス
	50Ω (Nom.)
	VSWR
	<1.4 (20℃~30℃) 400 MHz ≦ 周波数 < 450 MHz
	<1.3 (20℃~30℃) 450 MHz ≦ 周波数 ≦ 2700 MHz
	<1.4 (20℃~30℃) 2700 MHz < 周波数 ≦ 3800 MHz
RFテストポート	<1.4(20℃~30℃) 3800 MHz < 周波数 ≦ 6000 MHz
	MU887002A-007搭載時、テストポート5~12
	設定周波数 <5900 MHz
	<1.4 (20℃~30℃) 400 MHz ≦ 周波数 < 450 MHz
	<1.3 (20℃~30℃) 450 MHz ≤ 周波数 ≤ 2700 MHz
	<1.4 (20℃~30℃) 2700 MHz < 周波数 ≦ 3800 MHz
	<1.4 (20℃~30℃) 3800 MHz < 周波数 < 6000 MHz
	設定周波数 ≥5900 MHz
	<1.7 (20℃~30℃) 5800 MHz ≦ 周波数 ≦ 7400 MHz
	最大入力レベル
	+35 dBm
	+30 dBm (MU887002A-007搭載時、テストポート5~12、周波数 ≧ 5900 MHz)
L	

信号発生器

后与无工品	
周波数	設定範囲 400 MHz~6.0 GHz 400 MHz~7.3 GHz (MU887002A-007搭載時、テストポート5~12) 設定分解能 1 Hz 確度 MT8870Aの基準発振器確度による
振幅	設定範囲 -130~0 dBm (保証範囲上限 -5 dBm (400 MHz ≤ 周波数 ≤ 3.8 GHz) -8 dBm (3.8 GHz < 周波数 ≤ 6.0 GHz) MU887002A-007搭載時、テストポート5~12 -5 dBm (400 MHz ≤ 周波数 ≤ 3.8 GHz) -8 dBm (3.8 GHz < 周波数 ≤ 5.9 GHz) -10 dBm (周波数 ≥ 5.9 GHz) -10 dBm (周波数 ≥ 5.9 GHz) ※ 変調波の場合はRMS値 設定分解能 0.1 dB 確度 CW、CAL実行後、20℃~30℃ ±0.7 dB (Typ.) (-120 dBm ≤ 出力レベル ≤ 0 dBm)、±1.0 dB (-120 dBm ≤ 出力レベル ≤ -5 dBm)、400 MHz ≤ 周波数 ≤ 3800 MHz ±1.0 dB (Typ.) (-100 dBm ≤ 出力レベル ≤ 0 dBm)、±1.3 dB (-100 dBm ≤ 出力レベル ≤ -8 dBm)、3800 MHz < 周波数 ≤ 6000 MHz MU887002A-007搭載時、テストポート 5~12 ±0.7 dB (Typ.) (-120 dBm ≤ 出力レベル ≤ 0 dBm)、±1.3 dB (-120 dBm ≤ 出力レベル ≤ -5 dBm)、400 MHz ≤ 周波数 ≤ 3800 MHz ±1.0 dB (Typ.) (-100 dBm ≤ 出力レベル ≤ 0 dBm)、±1.3 dB (-100 dBm ≤ 出力レベル ≤ -8 dBm)、3800 MHz ≤ 周波数 ≤ 3800 MHz ±1.0 dB (Typ.) (-100 dBm ≤ 出力レベル ≤ 0 dBm)、±1.3 dB (-100 dBm ≤ 出力レベル ≤ -8 dBm)、3800 MHz < 周波数 < 5900 MHz ±1.0 dB (Typ.) (-100 dBm ≤ 出力レベル ≤ 0 dBm)、±1.3 dB (-100 dBm ≤ 出力レベル ≤ -10 dBm)、5900 MHz ≤ 周波数 ≤ 7300 MHz
ケーブルロス設定時のレベル直線性	Broadcast時、かつ、Test PortごとのCableLoss値が異なるとき、 ケーブルロス 0 dB基準にて ±0.2 dB (Typ.) ただし、テストポート間の損失補正テーブル値の差 ≤8 dB
出力レベル偏差	Broadcast時 ≤0.6 dB (Nom.)
スプリアス	高調波歪み CW、800 MHz ≤ 高調波周波数 ≤ 6.0 GHz、-120 dBm≤ 出力レベル ≤ -5 dBm、20℃~30℃ <-25 dBc CW、800 MHz ≤ 高調波周波数 ≤ 7.3 GHz (MU887002A-007搭載時、テストポート5~12)、-120 dBm≤ 出力レベル ≤ -5 dBm、20℃~30℃ <-25 dBc
ベクトル変調	帯域幅 200 MHz (最大)

シグナルアナライザ

部連報		
機定が解離 1 比2 測定が解離 0.1 Hz 設定範囲 CW テストポート1~12, MU887000A-007搭載時テストボート1~4 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 6.0 GHz) MU887000A-007搭載時テストボート5~12 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 確度 CW. 測定帯域幅: 300 kHz, RBW: 100 kHz, CAL実行後, 20℃~30℃ テストボート1~12, MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル ≤ -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (~30 dBm ≤ 入力レベル ≤ -55 dBm) メ1.0 dB (~55 dBm ≤ 入力レベル ≤ -55 dBm) メ1.1 dB (~65 dBm ≤ 入力レベル ≤ -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル ≤ -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz < 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入力レベル ≤ -30 dBm) ±1.0 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.0 dB (~30 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (~65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < -55 dBm)		設定範囲
周波数		400 MHz∼6.0 GHz
1 H2 測定分解能 0.1 Hz 設定範囲 CW デストボート1~12. MU887000A-007搭載時テストボート1~4 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.0 GHz) MU887000A-007搭載時・テストボート5~12 -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 測定分解能 0.01 dB 利定分解能 0.01 dB 初定 CW. 測定帯域編: 300 kHz. RBW: 100 kHz. CAL実行後、20°C~30°C デストボート1~12. MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB(-33 dBm ≤ 入力レベリレ ≤ +35 dBm) ±0.7 dB(-55 dBm ≤ 入力レベリと < -30 dBm) ±0.9 dB(-65 dBm ≤ 入力レベリと < -55 dBm) 3.8 GHz く 周波数 ≤ 6.0 GHz ±0.7 dB(-30 dBm ≤ 入力レベリと -55 dBm) 1±0.9 dB(-55 dBm ≤ 入力レベリと -55 dBm) が 15.9 dB(-55 dBm ≤ 入力レベリと -55 dBm) ±0.9 dB(-55 dBm ≤ 入力レベリと -55 dBm) 1±0.9 dB(-55 dBm ≤ 入力レベリと -30 dBm) 1±0.9 dB(-55 dBm ≤ 入力レベリと -30 dBm) 1±0.9 dB(-55 dBm ≤ 入力レベリと -30 dBm) 1±1.1 dB(-65 dBm ≤ 入力レベリと -30 dBm) 1±1.2 dB(-55 dBm ≤ 入力レベリと -30 dBm) 1±1.2 dB(-55 dBm ≤ 入力レベリと -30 dBm) 1±1.2 dB(-55 dBm ≤ 入力レベリと -30 dBm)		400 MHz~7.3 GHz (MU887002A-007搭載時、テストポート5~12)
 測定分解能 0.1 Hz 設定範囲	周波数	設定分解能
② 1. Hz お定範囲 CW テストポート1~12、MU887000A-007搭載時テストポート1~4 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 6.0 GHz) MU887000A-007搭載時、テストボート5~12 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 ③ 0.1 dB 適度 CW. 測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ テストポート1~12、MU887000A-007搭載時テストポート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入カレベル ≤ +35 dBm) ±0.7 dB (~55 dBm ≤ 入カレベル < ~55 dBm) 3.8 GHz ← 風波数 ≤ 6.0 GHz ±0.7 dB (~30 dBm ≤ 入カレベル < ~55 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~55 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~55 dBm) MU887000A-007搭載時テストホート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.7 dB (~30 dBm ≤ 入力レベル < ~55 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.7 dB (~30 dBm ≤ 入力レベル < ~55 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) 3.8 GHz ← 風波数 < 7.3 GHz ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~35 dBm) ±1.0 dB (~30 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm)		1 Hz
設定範囲 CW		測定分解能
CW		0.1 Hz
CW		
デストボート1~12、MU887000A-007搭載時テストボート1~4 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 6.0 GHz) MU887000A-007搭載時・テストボート5~12 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 7.3 GHz) -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 測定分解能 0.01 dB 確度 CW、測定帯域幅:300 kHz、RBW:100 kHz、CAL実行後、20℃~30℃ デストボート1~12、MU887000A-007搭載時デストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ, ±0.5 dB(-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB(-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz ≤ 10.9 dB(-55 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.0 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB(-55 dBm ≤ 入力レベル < -30 dBm) 4.0 gB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -30 dBm) 4.0 gB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.0 gB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -30 dBm)		
-65~+35 dBm (400 MHz ≤ 周波数 ≤ 6.0 GHz) MU887000A-007搭載時、テストボート5~12 -65~+35 dBm (400 MHz ≤ 周波数 ≤ 5.9 GHz) -65~+35 dBm (400 MHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 測定分解能 0.01 dB 複度 CW. 測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ テストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ± 0.3 dB Typ, ±0.5 dB (~30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < ~55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (~30 dBm ≤ 入力レベル < ~55 dBm) 40.9 dB (~65 dBm ≤ 入力レベル < ~55 dBm) 10.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) 40.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ, ±0.5 dB (~30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~55 dBm) 3.8 GHz < 周波数 ≤ 3.8 GHz ±0.7 dB (~55 dBm ≤ 入力レベル < ~55 dBm) 10.9 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.2 dB (~55 dBm ≤ 入力レベル < ~30 dBm)		
MU887000A-007搭載時、テストボート5~12 -65~+33 dBm (400 MHz ≤ 周波数 < 5.9 GHz) -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 潮度 CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ テストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ ±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (−30 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±0.3 dB Typ. ±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.3 dB Typ. ±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±0.9 dB (−65 dBm ≤ 入力レベル < −35 dBm) ±0.9 dB (−65 dBm ≤ 入力レベル < −35 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.2 dB (−55 dBm ≤ 入力レベル < +30 dBm)		
-65~+35 dBm (400 MHz ≤ 周波数 < 5.9 GHz) -65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 測定分解能 0.01 dB 機度		,
-65~+30 dBm (5.9 GHz ≤ 周波数 ≤ 7.3 GHz) 設定分解能 0.1 dB 測定分解能 0.01 dB 確度 CW. 測定帯域幅: 300 kHz. RBW: 100 kHz. CAL東行後、20℃~30℃ テストボート1~12. MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 db (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 db (-55 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -55 dBm) MN887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 db (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -55 dBm) MN887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 db (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 db (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 db (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 db (-55 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 5.9 GHz ±0.7 db (-30 dBm ≤ 入力レベル < -55 dBm) ±0.9 db (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 db (-65 dBm ≤ 入力レベル < -35 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 db (-55 dBm ≤ 入力レベル < -30 dBm) ±1.2 db (-55 dBm ≤ 入力レベル < -30 dBm)		
設定分解能		•
0.1 dB 測定分解能 0.01 dB 確度 CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ デストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入カレベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入カレベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入カレベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入カレベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入カレベル ≤ +35 dBm) ±0.9 dB (-65 dBm ≤ 入カレベル < -55 dBm) 3.8 GHz < 周波数 ≤ 5.9 GHz ±0.7 dB (-30 dBm ≤ 入カレベル < -55 dBm) ±0.9 dB (-65 dBm ≤ 入カレベル < -55 dBm) 10.9 dB (-65 dBm ≤ 入カレベル < -55 dBm) 10.9 dB (-65 dBm ≤ 入カレベル < -55 dBm) 10.9 dB (-65 dBm ≤ 入カレベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入カレベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入カレベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入カレベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入カレベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入カレベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入カレベル < -30 dBm)		
測定分解能 0.01 dB 確度 CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ テストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル < -55 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
の.01 dB 確度 CW、測定帯域幅:300 kHz、RBW:100 kHz、CAL実行後、20℃~30℃ テストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入カレベル ≤ +35 dBm) ±0.9 dB (~55 dBm ≤ 入カレベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (~30 dBm ≤ 入カレベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入カレベル ≤ +35 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~30 dBm) ±0.7 dB (~55 dBm ≤ 入カレベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~35 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~35 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~35 dBm) ±0.9 dB (~65 dBm ≤ 入カレベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~35 dBm) ±1.1 dB (~65 dBm ≤ 入カレベル < ~35 dBm) ±1.0 dB (~30 dBm ≤ 入カレベル < ~35 dBm)		
確度 CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ デストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ、±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±0.9 dB (−65 dBm ≤ 入力レベル < −55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ、±0.5 dB (−30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −30 dBm) ±0.7 dB (−55 dBm ≤ 入力レベル < −55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (−30 dBm ≤ 入力レベル < −55 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −55 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −35 dBm) ±0.9 dB (−55 dBm ≤ 入力レベル < −35 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm) ±1.1 dB (−65 dBm ≤ 入力レベル < −30 dBm)		
CW、測定帯域幅: 300 kHz、RBW: 100 kHz、CAL実行後、20℃~30℃ テストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (~30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~55 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < ~55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (~30 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~35 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.7 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.7 dB (~55 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < ~35 dBm) ±0.9 dB (~65 dBm ≤ 入力レベル < ~55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (~30 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~30 dBm) ±1.1 dB (~65 dBm ≤ 入力レベル < ~35 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (~30 dBm ≤ 入力レベル ≤ +30 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (~30 dBm ≤ 入力レベル ≤ +30 dBm) 5.9 GHz ≤ 周波数 ≤ 入力レベル < ~30 dBm) ±1.2 dB (~55 dBm ≤ 入力レベル < ~30 dBm)		
デストボート1~12、MU887000A-007搭載時テストボート1~4 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -55 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -55 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
### 400 MHz ≤ 周波数 ≤ 3.8 GHz		
#0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -55 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -55 dBm) ±0.9 dB (-50 dBm ≤ 入力レベル < -55 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.7 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB(-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB(-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB(-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB(-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB(-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB(-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB(-65 dBm ≤ 入力レベル ≤ +35 dBm) ±1.1 dB(-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB(-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB(-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB(-55 dBm ≤ 入力レベル < -30 dBm)		
±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 < 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -50 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -50 dBm)		
振幅 3.8 GHz < 周波数 ≤ 6.0 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストポート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -55 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
振幅 ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストボート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
振幅 ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストポート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) MU887000A-007搭載時テストポート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)	振幅	
MU887000A-007搭載時テストポート5~12 400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
400 MHz ≤ 周波数 ≤ 3.8 GHz ±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.3 dB Typ. ±0.5 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル < -30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.7 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.9 dB (-65 dBm ≤ 入力レベル < -55 dBm) 3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		· · · · · · · · · · · · · · · · · · ·
3.8 GHz < 周波数 < 5.9 GHz ±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.7 dB (-30 dBm ≤ 入力レベル ≤ +35 dBm) ±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±0.9 dB (-55 dBm ≤ 入力レベル < -30 dBm) ±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±1.1 dB (-65 dBm ≤ 入力レベル < -55 dBm) 5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
5.9 GHz ≤ 周波数 ≤ 7.3 GHz ±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±1.0 dB (-30 dBm ≤ 入力レベル ≤ +30 dBm) ±1.2 dB (-55 dBm ≤ 入力レベル < -30 dBm)		
±1.2 dB (-55 dBm ≦ 入力レベル < -30 dBm)		
$\pm 1.0 dD / EE dDm < \lambda \pm 1.0 M = EE dDm$		±1.8 dB (-65 dBm ≦ 入力レベル < -55 dBm)
±1.0 db (-05 dbiii ≥ 入カレ √レ < -55 dbiii) 直線性		
□ □		
400 MHz ≦ 周波数 ≦ 7.3 GHz		
$\pm 0.2 \text{ dB} (0\sim -40 \text{ dB}_{\odot} \ge -55 \text{ dBm})$ $\pm 0.4 \text{ dR} (0\sim 40 \text{ dR}_{\odot} \ge 65 \text{ dRm})$		
±0.4 dB (0~-40 dB, ≥-65 dBm)		
変調解析	変調解析	
200 MHz (最大)		200 MHz (最大)

一般

インタフェース	トリガ トリガ入出力コネクタ (背面パネル) リモートコントロール Ethernet: MT8870A インタフェースを介す
寸法・質量	181 (W) × 193.6 (H) × 325 (D) mm (突起物は除く) ≦12.5 kg
動作温度範囲	+5℃~+40℃
保管温度範囲	-20℃~+60℃

セルラ規格用シーケンス測定 MX887010A

	ン入剤に MAOO/UIUA 測定対象
	W-CDMA/TD-SCDMA/GSM/LTE/LTE-Advanced/NR sub-6 GHz uplink、CDMA2000/1xEV-DO reverse link
共通	周波数範囲
	400 MHz~6.0 GHz
	解析時間
	1 ms, 10 ms
	スパン
	1、2.5、5、10、25、50、100、160、200* MHz
	RBW
	スパン RBW
	1 MHz 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz
	2.5 MHz 1 kHz, 3 kHz, 10 kHz, 30 kHz
	5 MHz 3 kHz, 10 kHz, 30 kHz, 100 kHz
スペクトラムモニタ	10 MHz 3 kHz, 10 kHz, 100 kHz
	25 MHz 10 kHz, 30 kHz, 100 kHz, 300 kHz
	50 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz
	100 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz
	160 MHz 30 kHz, 100 kHz, 300 kHz, 1 MHz
	200 MHz* 30 kHz, 100 kHz, 300 kHz, 1 MHz
	検波モード
	Average \ Peak
	振幅測定帯域幅
	範囲: 0.001 MHz~ (設定スパン) MHz、分解能: 0.001 MHz
	ステップ数
	10~100ステップ
	振幅ステップ時間
	0.5、1、2、4、5、10、20、30、40、50、60、70、80 ms
フリイパロ 別点	フィルタタイプ
マルチパワー測定	Low-passフィルタ: 1.23、1.4、3、5、10、15、20 MHz
	RRCフィルタ: 3.84 MHz 測定画面
	瀬足画面 範囲:1~90%、分解能:1%
	トリガレベル
	-40~0 dB (入力レベル設定値を基準)
	セグメント期間
	範囲: 1~80 ms、WCDMA、CDMA2K、LTE
	分解能:1 ms
	測定フィルタ
	Low-passフィルタ: 1.23、1.4、3、5、10、15、20 MHz
TV/DV 田本粉	RRCフィルタ: 3.84 MHz
TX/RX vs. 周波数	測定画面
	範囲:1~90%、分解能:1%
	セグメント数
	1~1600
	シーケンス数
	1~400
	セグメント期間
	範囲: 200 μs~20000 μs、分解能: 1 μs
	帯域幅
狭帯域振幅 vs. 時間	15 kHz
	測定画面
	範囲:1~90%、分解能:1%
	セグメント数 1~1000
	タイムスパン 第四・10000 いっ 八畑性・1・1・1
ロナープチャ	範囲:1000 μs~10000 μs、分解能:1 μs
IQキャプチャ	帯域幅 Low-passフィルタ: 100、300、500 kHz、1、3、5、20 MHz
	Low-pass フィルタ: 100、300、500 kHz、1、3、5、20 MHz ガウシアンフィルタ: 1 MHz
	NOON OF THE PROPERTY OF THE PR

^{*:} MU887002Aの場合に設定できます。

W-CDMA/HSPA Uplink 送信測定 MX887011A

共通	測定対象 W-CDMA uplink 周波数範囲 400 MHz~2.7 GHz (MU887000A/01A) 400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること)
振幅測定	入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストボート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 入力レベル確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート ±0.3 dB (Typ.) (-20~+35 dBm、20℃~30℃) ±0.5 dB (-20~+35 dBm) ±0.7 dB (-55~-25 dBm) ±0.9 dB (-65~-55 dBm) MU887000A テストポート3、4 ±0.7 dB (-25~+25 dBm) ±0.9 dB (-55~-25 dBm) ±1.1 dB (-65~-55 dBm) idle (-55~-25 dBm) ±1.1 dB (-65~-55 dBm) idle (-55~-55 dBm)
周波数/変調解析	入力レベル範囲 -30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -30~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 ± (設定周波数 × 基準発振器確度 + 10 Hz) 変調精度 残留EVM: 1つのDPCCHと1つのDPDCH入力時 ≤2.5%
占有帯域幅	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) OBW比 80.0~99.9%
隣接チャネル漏洩電力	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) 測定ポイント ±5 MHz、±10 MHz 測定範囲 ≥50 dB (±5 MHz)、≥55 dB (±10 MHz)

GSM/EDGE Uplink 送信測定 MX887012A

	測定対象
	Normal Burst (GMSK, 8PSK)
共通	周波数範囲
	400 MHz~2.0 GHz (MU887000A/01A)
	400 MHz~2.0 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること)
	入力レベル範囲
	バースト内平均電力にて
	-30∼+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
	-30~+25 dBm (MU887000A テストポート3、4)
	入力レベル確度
	CAL実行後、10℃~40℃(MU887000A/01A)、20℃~30℃(MU887002A)
振幅測定	MU887000A テストポート1、2、MU887001Aすべてのテストポート
THE POLICE OF TH	±0.3 dB (Typ.) (−20~+35 dBm, 20℃~30℃)
	±0.5 dB (-20~+35 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-30~+25 dBm)
	直線性
	±0.2 dB (≥-30 dBm, 0~40 dB)
	キャリアOFFパワー測定範囲
	≥65 dB (≥-10 dBm), ≥45 dB (-30~-10 dBm)
	入力レベル範囲
	バースト内平均電力にて
	-30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
	-30~+25 dBm (MU887000A テストポート3、4)
	キャリア周波数確度
周波数/変調解析	# ± (設定周波数 × 基準発振器確度 + 10 Hz)
	養調利度 残留位相誤差 (GMSK)
	残田位相訣定(GiriSK) ≦0.5°rms (周波数 ≥500 MHz)、≦0.7°rms (周波数 <500 MHz)
	=0.5 mis (ha//kgx ≥ 500 min2) (=0.7 mis (ha//kgx < 500 min2) ≤2° peak
	乗留EVM (8PSK)
	≤1.5% rms
	入力レベル範囲
	バースト内平均電力にて
	-10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
	-10~+25 dBm (MU887000A テストポート3、4)
	別定ポイント
出カスペクトラム測定	±100 kHz, ±200 kHz, ±250 kHz, ±400 kHz, ±600 kHz, ±800 kHz, ±1000 kHz, ±1200 kHz, ±1600 kHz, ±1800 kHz,
	±2000 kHz
	変調部測定範囲
	10回測定平均にて
	≤-55 dB (200 kHz、250 kHzオフセット)、≤-66 dB (≥400 kHzオフセット)
	過渡部測定範囲
	≤-57 dB (≥400 kHzオフセット)

LTE FDD Uplink 送信測定 MX887013A LTE TDD Uplink 送信測定 MX887014A

	た MX88/U14A
共通	測定対象 PUSCH、PUCCH 周波数範囲 600 MHz~2.7 GHz、3.4 GHz~3.8 GHz 600 MHz~2.7 GHz、3.4 GHz~4.2 GHz (MU88700xA-001/101搭載時)
振幅測定	入力レベル範囲 -65~+35 dBm (MU887000A テストボート1、2、MU887001Aすべてのテストボート、 MU887002A (TRX1/2) すべてのテストボート) -65~+25 dBm (MU887000A テストボート3、4) 確度 600 MHz~2.7 GHz、3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストボート1、2、MU887001Aすべてのテストボート、MU887002A (TRX1/2) すべてのテストボート ±0.3 dB (Typ.) (-20~+35 dBm、20℃~30℃) ±0.5 dB (-20~+35 dBm) ±0.7 dB (-50~-20 dBm) ±0.9 dB (-60~-50 dBm) MU887000A テストボート3、4 ±0.7 dB (-20~+25 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~50 dBm) 3.8 GHz~4.2 GHz、CAL実行後、20℃~30℃ MU887000A、MU887001Aすべてのテストボート、MU887002A (TRX1/2) すべてのテストボート ±0.7 dB (-20~+35 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~50 dBm) ±1.1 dB (-60~50 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~50 dBm) 10.9 dB (-50~-20 dBm) ±1.1 dB (-60~50 dBm) 10.9 dB (-50~-20 dBm) ±1.1 dB (-60~50 dBm) 10.4 dB (≥-60 dBm) 相対測定誤差 2 dB未満の範囲において ±0.1 dB (Typ.)
周波数/変調解析	入力レベル範囲 -40~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -40~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 ±(設定周波数 × 基準発振器確度 + 15 Hz) 変調精度 残留EVM (測定回数20回平均時) ≤2.5% 帯域内エミッション 入力レベル ≥-10 dBm、Allocated RB≤18 ≤-40 dBc
占有帯域幅	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) OBW比 80.0~99.9%
隣接チャネル漏洩電力	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) -10~+35 dBm (MU887002A (TRX1/2) すべてのテストポート、600 MHz ≤ 周波数 ≤ 2700 MHz) -14~+35 dBm (MU887002A (TRX1/2) すべてのテストポート、3400 MHz ≤ 周波数 ≤ 4200 MHz) 測定範囲 ≥45 dB (E-UTRA ACLR1)、≥50 dB (UTRA ACLR1)、≥55 dB (UTRA ACLR2)
スペクトラムエミッションマスク	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4)

LTE-Advanced FDD Uplink CA 送信測定 MX887013A-001 LTE-Advanced TDD Uplink CA 送信測定 MX887014A-001

共通	測定対象 PUSCH
/ 1/2	周波数範囲
	698 MHz~2.7 GHz、3.4 GHz~3.8 GHz 698 MHz~2.7 GHz、3.4 GHz~4.2 GHz (MU88700xA-001/101搭載時)
	入力レベル範囲
	-65〜+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65〜+25 dBm (MU887000A テストポート3、4)
	確度 MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A(TRX1/2)すべてのテストポート (Intraband Contiguous CA SCC、PCC + SCC測定時を除く) 698 MHz~2.7 GHz、3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) ±0.3 dB (Typ.) (-20~+35 dBm、20℃~30℃) ±0.5 dB (-20~+35 dBm) ±0.7 dB (-50~-20 dBm) ±0.9 dB (-60~-50 dBm) 3.8 GHz~4.2 GHz、CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) ±0.7 dB (-20~+35 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~-50 dBm) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2)すべてのテストポート (Intraband Contiguous CA SCC、PCC + SCC測定時) 698 MHz~2.7 GHz、CAL実行後、10℃~40℃
振幅測定	±0.5 dB (Typ.) (-20~+35 dBm、20℃~30℃) ±0.7 dB (-50~+35 dBm) ±0.9 dB (-60~-50 dBm) 3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃ 3.8 GHz~4.2 GHz、CAL実行後、20℃~30℃ ±1.0 dB (-50~+35 dBm) ±1.3 dB (-60~-50 dBm)
	MU887000A テストポート3、4 (Intraband Contiguous CA SCC、PCC + SCC測定時を除く) 698 MHz~2.7 GHz、3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃ 3.8 GHz~4.2 GHz、CAL実行後、20℃~30℃ ±0.7 dB (-20~+25 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~-50 dBm) MU887000A テストポート3、4 (Intraband Contiguous CA SCC、PCC + SCC測定時)
	698 MHz~2.7 GHz、CAL実行後、10℃~40℃ ±0.7 dB (-20~+25 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~-50 dBm) 3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃ 3.8 GHz~4.2 GHz、CAL実行後、20℃~30℃ ±1.0 dB (-50~+25 dBm) ±1.3 dB (-60~-50 dBm) 直線性 0~30 dB (20℃~30℃) ±0.2 dB (≥−50 dBm) ±0.4 dB (≥−50 dBm)
周波数/変調解析	入力レベル範囲 -40~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -40~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 ± (設定周波数 × 基準発振器確度 + 15 Hz) 変調精度 残留EVM (測定回数20回平均時) ≤2.5% 帯域内エミッション 入力レベル≥-10 dBm、Allocated RB≤18 ≤-40 dBc
占有帯域幅	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストボート) -10~+25 dBm (MU887000A テストポート3、4) OBW比 80.0~99.9%
隣接チャネル漏洩電力	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) -10~+35 dBm (MU887002A (TRX1/2) すべてのテストポート、698 MHz ≦ 周波数 ≦ 2700 MHz) -14~+35 dBm (MU887002A (TRX1/2) すべてのテストポート、3400 MHz ≦ 周波数 ≦ 4200 MHz) 測定範囲 ≥45 dB (E-UTRA ACLR1)、≥50 dB (UTRA ACLR1)、≥55 dB (UTRA ACLR2)
スペクトラムエミッションマスク	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート)

CDMA2000 Reverse Link 送信測定 MX887015A

	測定対象 Reverse RC-1/2/3/4
 共通	周波数範囲
700	400 MHz~2.7 GHz (MU887000A/01A)
	400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること)
	入力レベル範囲
	-65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU997092A (TDV4 (2) まずてのコストポート)
	MU887002A (TRX1/2) すべてのテストポート)
	-65~+25 dBm (MU887000A テストポート3、4)
	確度
	CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A)
	MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
	±0.3 dB (Typ.) (-20~+35 dBm, 20℃~30℃)
	$\pm 0.5 \text{ dB} (-20 \sim +35 \text{ dBm})$
振幅測定	±0.7 dB (-55~-25 dBm)
	±0.9 dB (-65~-55 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-25~+25 dBm)
	±0.9 dB (-55~-25 dBm)
	±1.1 dB (-65~-55 dBm)
	直線性
	0∼40 dB
	±0.2 dB(≧-55 dBm)
	±0.4 dB (≥-65 dBm)
	入力レベル範囲
	-30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
周波数/変調解析	-30~+25 dBm (MU887000A テストポート3、4)
/可//又数/ 友间//年/7	キャリア周波数確度
	± (設定周波数 × 基準発振器確度 + 10 Hz)
	波形品質
	>0.999
	Reverse RC3 or RC4
	入力レベル範囲
	-30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
コードドメインパワー測定	MU887002A (TRX1/2) すべてのテストポート)
	-30~+25 dBm (MU887000A テストポート3、4)
	測定確度
	±0.2 dB (コードパワー:≧-15 dBc)、±0.4 dB (コードパワー:≧-23 dBc)
	入力レベル範囲
	-10∼+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
上有思想幅	MU887002A (TRX1/2) すべてのテストポート)
占有帯域幅	−10~+25 dBm (MU887000A テストポート3、4)
	OBW比
	80.0~99.9%
	1

1xEV-DO Reverse Link 送信測定 MX887016A

測定対象 Reverse link Rev. 0/Rev. A 周波数範囲 400 MHz~2.7 GHz (MU887000A/01A) 400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること) 入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート ±0.3 dB (Typ.) (-20~+35 dBm、20℃~30℃)
共通 周波数範囲 400 MHz~2.7 GHz (MU887000A/01A) 400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること) 入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
400 MHz~2.7 GHz (MU887000A/01A) 400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること) 入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
400 MHz~2.7 GHz (MU887002A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること) 入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
-65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
-65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
確度 CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート
±0.5 dB (-20~+35 dBm)
振幅測定 ±0.7 dB (-55~-25 dBm)
±0.9 dB (-65~-55 dBm)
MU887000A テストポート3、4
±0.7 dB (-25~+25 dBm)
±0.9 dB (-55~-25 dBm)
±1.1 dB (-65~-55 dBm)
直線性
0~40 dB
±0.2 dB (≥-55 dBm)
±0.4 dB (≥ -65 dBm)
入力レベル範囲
-30~+35 dBm (MU887000A テストボート1、2、MU887001Aすべてのテストボート、
MU887002A (TRX1/2) すべてのテストポート)
-30~+25 dBm (MU887000A テストボート3. 4)
周波数/変調解析 キャリア周波数確度
±(設定周波数×基準発振器確度 + 10 Hz)
波形品質
>0.999
入力レベル範囲
-30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
MU887002A (TRX1/2) すべてのテストポート)
コードドメインパワー測定
測定確度
±0.2 dB (コードパワー:≥-15 dBc)、±0.4 dB (コードパワー:≥-23 dBc)
入力レベル範囲
−10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
MU887002A (TRX1/2) すべてのテストポート)
占有帯域幅
OBW比
80.0~99.9%

TD-SCDMA Uplink 送信測定 MX887017A

共通	測定対象 TD-SCDMA uplink 周波数範囲 400 MHz~2.7 GHz (MU887000A/01A) 400 MHz~2.7 GHz (MU887000A、ただし、測定対象信号の帯域が左記周波数範囲に含まれること)
振幅測定	入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
周波数/変調解析	入力レベル範囲 -30~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -30~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 ± (設定周波数 × 基準発振器確度 + 10 Hz) 変調精度 残留EVM (シングルコード入力時) ≤2.5%
占有帯域幅	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) OBW比 99.0%
隣接チャネル漏洩電力	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、 MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4) 測定ポイント ±1.6 MHz、±3.2 MHz 測定範囲 ≥50 dB (±1.6 MHz)、≥55 dB (±3.2 MHz)

NR FDD sub-6 GHz Uplink 送信測定 MX887018A NR TDD sub-6 GHz Uplink 送信測定 MX887019A

PUSCH サース・JAM Mail (Met 2) 5、11.1、15、20、25、30、40、50、60、70、80、90、100 5、11.1、15、20、25、30、40、50、60、70、80、90、100 3人プレース (AABE) MISSY (7000A -65.0 + 15.5 0 dBm テストボート1、2 -65.0 + 15.5 0 dBm テストボート1、2 -65.0 + 15.5 0 dBm テストボート1・4 MISSY (7000A -65.0 + 15.5 0 dBm テストボート1・4 MISSY (7000A -65.0 + 15.5 0 dBm テストボート1・12 -65.0 + 15.5 0 dBm テストボート1・14 -65.0 + 15.5 0 dBm テストボート1・14 -65.0 + 15.5 0 dBm テストボート1・14 MISSY (7000A -65.0 + 15.5 0 dBm テストボート1・12 -65.0 + 15.5 0 dBm テストボート1・12 Met 2 MISS (7000A テストボート1・12 Met 2) MISS (7000A FX N T - 12 Met 2) MISS (7000A FX N T - 12 Met 2) MISS (7000A FX N T - 12 Met 2) MISS (7000A FX N T - 13 Met 2) MISS (7000A FX N T - 13 Met 2) MISS (7000A FX N T - 15 Met 2) MISS (7000A FX N T - 1		測定対象	
まつから、			
20mm 10mm		チャネル帯域幅 (MHz)	
**** *** *** *** *** *** ***	· 八旭		
入力レベリ部別			
MUSSTOODA		π/2BPSK, QPSK, 16QAM, 64QAM	
-65.0 ~ + 25.0 dBm テストボート1.2 -65.0 ~ + 25.0 dBm テストボート3.4		入力レベル範囲	
### ### ### ### ### ### ### ### ### ##			
MUS870001A - 65.0 0~43.5.0 dBm テストボート1~4 MUS87002A - 65.0 ~43.5.0 dBm テストボート1~12, 600 MHz~2700 MHz, 3300 MHz~5000 MHz - 65.0 ~43.5.0 dBm テストボート5~12, 500 MHz~2700 MHz, 3300 MHz~5000 MHz - 65.0 ~43.5.0 dBm テストボート5~12, 500 MHz~27.50 MHz, 7300 MHz~5000 MHz - 65.0 ~43.5.0 dBm テストボート1~12, MUS87001Aサインのアストボート MUS87002A+07所蔵時、			
(-6.5.0 ~+ 35.0 dBm テストボート1~4 MU887002A -65.0 ~+ 35.0 dBm テストボート1~12.6 00 MHz~2700 MHz, 3300 MHz~5000 MHz -65.0 ~+ 30.0 dBm テストボート5~12.5 900 MHz~7125 MHz (MU887002A-007高載時、たたし、Channel Edge ≤ 7125 MHz)			
MLS87002A - 65.0 ~ 30.0 dBm テストボート1~12.600 MHz~2700 MHz, 3300 MHz~5000 MHz - 65.0 ~ 35.0 dBm テストボート5~12.900 MHz~71.25 MHz (MLS87002A-027搭載時, ただし、Channel Edge 3 71.25 MHz (MLS87002A)			
-65.0→30.0 dBm テストボート5~12. 5900 MHz~7125 MHz (MU887002A-007搭載時. ただし、Channel Edge 5 7125 MHz MU887000A デストボート 1.2 MU887001Aすべてのテストボート、MU887002A (TRX1/2) すべてのテストボート 600 MHz~2.7 GHz、CAL 実行後、10℃~40℃(MU887000A/01A)、20℃~30℃(MU887002A) 1.0 5.0 代 (PD) (220~43 GBm . 20℃~30℃) 1.0 5.0 代 (PD) (220~43 GBm . 20℃~30℃) 1.0 の (6.50~20 dBm) 1.0 の (6.50~20 dBm) 1.0 の (6.50~20 dBm) 1.1 0.0 (6.50~43 dBm) 1.1 0.0 (6.50~42 dBm) 1.1 0.0 (6.50~42 dBm) 1.1 0.0 (6.50~42 dBm) 1.1 0.0 (6.50~43 dBm) 1.1 0.0 (6.50~50 dBm) 1.1 0.0 (6.50~43 dBm) 1.1 0.0 (6.50~50 dBm) 1.1 0.0 (6.50~43 dBm) 1.1 0.0 (6.50~50 dBm) 1.1 0.0 (6.50~30 dBm) 1.1 0.0 (6.50			
機度 MUB87000A テストボート1.2、MUB87001Aすべてのテストボート、MUB87002A(TRX1/2)すべてのテストボート 600 MMセ-2.7 GHz, CAL来行後、10で~40で (MUB87000A/01A)、20で~30で (MUB87002A) 10.7 dB (~20~+25 dBm, 20で~30で) 10.7 dB (~20~+25 dBm, 20で~30で) 10.7 dB (~20~+25 dBm, 20で~30で) 10.7 dB (~20~+25 dBm) 10.0 dB (~20~+25 dBm) 11.3 dB (~60~50 dBm) 3.8 GHz ~5.0 GHz CAL来行後、20で~30で 11.0 dB (~50~+25 dBm) 11.3 dB (~60~50 dBm) 11.3 dB (~60~50 dBm) 11.1 dB (~60~50 dBm) 11.3 dB (~60~50 dBm) 11.		-65.0~+35.0 dBm テストポート1~12、600 MHz~2700 MHz、3300 MHz~5000 MHz	
機理 MUSS7000A テストボート1、2、MUSS7001Aすべてのテストボート、MUSS7002A (TRX1/2) すべてのテストボート 600 MHz~2.7 GHz、CALま行後、10℃~40℃(MUSS7000A/01A)、20℃~30℃(MUSS7002A) 1.0.5 dB (***)			
MUSS7000A テストボート 1、2、MUSS7001A すべてのテストボート、MUSS7002A (TRX1/2) すべてのテストボート 600 MHz~2.7 CHz (人出来学 10で~40° (MUSS7000A)1A)、20°で~30°C (MUSS7002A) ±0.5 dB (Typ.) (~20°~435 dBm. 20°C~30°C) ±0.7 dB (~50~20 dBm) ±0.7 dB (~50~20 dBm) ±0.9 dB (~60~50 dBm) ±0.9 dB (~60~50 dBm) ±0.9 dB (~60~50 dBm) ±0.9 dB (~60~50 dBm) ±1.3 dB (~60~50 dBm) ±1.3 dB (~60~50 dBm) ±1.3 dB (~60~50 dBm) ±1.3 dB (~60~50 dBm) ±1.0 dB (~50~43 dBm) ±1.0 dB (~50~45 dBm) ±1.0 dB (~50~45 dBm) ±1.3 dB (~60~50 dBm) ±1.3 dB (~60~			
660 MHz~2.7 GHz, CAL東行後、10で~40で(MUS87000A/01A)、20で~30で(MUS87002A) ±0.7 dB (-20~+35 dBm) ±0.7 dB (-50~+20 dBm) ±0.7 dB (-50~+20 dBm) ±0.9 dB (-60~-50 dBm) ±0.9 dB (-60~-50 dBm) ±1.0 dB (-50~+25 dBm) 3.6 GHz~50 GHz, CAL東行後、10で~40で(MUS87000A/01A)、20で~30で(MUS87002A) ±1.0 dB (-50~+35 dBm) ±1.1 dB (-60~-50 dBm) MUS87000A テストポート3・4 650 MHz~2.7 GHz, CAL東行後、10で~40で ±0.7 dB (-20~+±25 dBm) ±1.1 dB (-50~+25 dBm) ±1.3 dB (-50~+25 dBm) *1.1 dB (-50~+30 dBm) *1.1 dB (-60~50 dBm) MUS87002A (TRX1/2) デストボート5~12、MUS87002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz \$500 MHz~27125 MHz CAL東行後、20°C~30°C ±1.3 dB (-50~+30 dBm) *2.0 dB (-60~50 dBm) Minimum output power*~±35 dBm (MUS87000A デストボート1.2、MUS87001A サペプのテストボート Minimum output power*~±35 dBm (MUS87000A デストボート5.4 dBm) *2.0 dB (-60~50 dBm) Minimum output power*~±35 dBm (MUS87000A デストボート5.4 dBm) *3 dBm (-30~4) dBm (MUS87000A FZ Nボート5.4 dBm) Minimum output power*~±25 dBm (MUS87000A FZ Nボート5.4 dBm) *5 10. 15. 20 -40 -25 -39 -30 -38.2 -40 -33.5 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -335.2 -70 -34.6 -36 -36 -60 -355.2 -70 -34.6 -36 -36 -60 -355.2 -70 -34.6 -36 -36 -36 -36 -36 -36 -36 -36 -36 -3			
±0.5 d8 (Typ.) (~20~~35 dBm. 20℃~30℃) # ±0.7 dB (~50~~20 dBm) # ±0.7 dB (~50~~20 dBm) # ±0.9 dB (~50~~50 dBm) # ±0.9 dB (~60~~50 dBm) # ±0.9 dB (~60~~50 dBm) # ±1.0 dB (~60~~50 dBm) # ±1.0 dB (~50~~43 dBm) # ±1.0 dB (~50~~42 dBm) # ±0.7 dB (~50~~42 dBm) # ±0.7 dB (~50~~42 dBm) # ±0.7 dB (~50~~42 dBm) # ±1.1 dB (~50~~42 dBm) # ±1.1 dB (~50~~42 dBm) # ±1.1 dB (~50~~50 dBm) # ±1.1 dB (~50~~50 dBm) # ±1.1 dB (~60~~50 dBm) # ±1.1 dB (
# ±0.7 dB (-20~+35 dBm)			
無極剛定 ま1.0 db (~50~+25 dBm) ま1.0 db (~50~+25 dBm) ま1.0 db (~50~+35 dBm) ま1.3 db (~60~~50 dBm) ま1.3 db (~50~+35 dBm) ま1.3 db (~50~+20 dBm) ま1.3 db (~50~+20 dBm) ま1.3 db (~20~+25 dBm) ま1.3 db (~20~+25 dBm) ま1.3 db (~50~+25 dBm) ま1.3 db (~50~+35 dBm) は1.3 db (~50~+35 dBm) ま1.3 db (~50~+35 dBm) ま1.3 db (~50~+35 dBm) は1.3 db (~50~+35 dBm) ま1.3 db (~50~+35 dBm) は1.3 db (~50~		· // · · ·	
3.3 GHz~3.8 GHz. CAL実行後、10で~40で(MU887000A/01A)、20で~30で(MU887002A) ±1.1 db (~50~+35 dBm) ±1.3 db (~60~+50 dBm) 1.1 db (~50~+35 dBm) 1.1 db (~50~+25 dBm) MU887000A デストボート3.4 600 MHz~2.7 GHz、CAL実行後、20で~30で ±1.0 db (~50~+20 dBm) MU88700A デストボート3.4 600 MHz~2.7 GHz、CAL実行後、10で~40で ±0.7 db (~50~+25 dBm) ±1.1 db (~50~+20 dBm) ±1.1 db (~50~+25 dBm) ±1.1 db (~50~+25 dBm) 1.1 db (~50~+25 dBm)			
無能測定 # 1.0 dB (~50~+35 dBm) 1			
# 1.3 aB (-50~-50 dBm) 3.8 GHz~5.0 GHz. CAL 果行後、20℃~30℃ ±1.0 dB (-50~-50 dBm) MISS7000A テストボート3.4 600 MHz~2.7 GHz. CAL 果行後、10℃~40℃ ±0.7 dB (-20~+25 dBm) ±1.1 dB (-50~-20 dBm) ±1.1 dB (-50~-20 dBm) ±1.1 dB (-50~-20 dBm) ±1.1 dB (-50~-25 dBm) ±1.1 dB (-50~-25 dBm) ±1.1 dB (-50~-25 dBm) ±1.3 dB (-50~-50 dBm) 3.3 GHz~5.0 GHz. CAL 果行後、10℃~40℃ ±1.0 dB (-50~+25 dBm) ±1.3 dB (-50~-50 dBm) 3.1 GHz~5.0 GHz. CAL 果行後、20℃~30℃ ±1.0 dB (-50~-425 dBm) ±1.3 dB (-50~-50 dBm) 3.1 GHz~5.0 GHz. CAL 果行後、20℃~30℃ ±1.0 dB (-50~-425 dBm) ±1.3 dB (-50~-50 dBm) MISS7002A (TRX1/2) 学入ボート5~12. MUSS7002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz. CAL 果行後、20℃~30℃ ±1.2 dB (-50~-30 dBm) ±2.0 dB (-50~-30 dBm) Aカレベル極圏 Minimum output power*~+35 dBm (MUSS7002A (TRX1/2) 学入ドボート5~12. MUSS7002A-007搭載時、 Minimum output power*~+45 dBm (MUSS7002A (TRX1/2) 学入ドボート5~12. MUSS7002A-007搭載時、 * : Minimum output power*~+55 dBm (MUSS7002A (TRX1/2) デストボート5~12. MUSS7002A-007搭載時、 5.10.15.20 40 -37 50 -38.2 40 -37 50 -38.2 40 -37 50 -34.6 80 -34.9 90 -333.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -33.5 100 -34.6 80 M3.3 GHz~50. GHz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 3.3 GHz~2.7 GHz 4 (30定周数数 × 基準発信器極度) + 15 Hz 4 (30定周数数 × 36 Hz			
3.8 GHz~S.I. GHz. CAL 東行後、20で~30で ±1.0 dB(-50~45 dBm) ±1.1 dB(-50~50 dBm) MUS87000A テストボート3.4 600 MHz~2.7 GHz. CAL 東行後、10で~40で ±0.7 dB(-20~42 dBm) ±0.9 dB(-50~20 dBm) ±1.1 dB(-60~50 dBm) 3.3 GHz~3.8 GHz. CAL 東行後、10で~40で ±1.0 dB(-50~42 GBm) ±1.3 dB(-60~50 dBm) MUS87002A (TRXI/2) テストボート5~12. MUS87002A~007搭載時、ただし、Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz. CAL 東行後、20°C~30°C ±1.3 dB(-50~430 dBm) ±2.0 dB(-50~430 dBm) ±2.0 dB(-50~430 dBm) Minimum output power*~+35 dBm (MUS87000A テストボート1, 2. MUS87001Aすべてのテストボート MUS87002A (TRXI/2) デストボート30 dBm (MUS87000A テストボート3.4) *: Minimum output power*~+30 dBm (MUS87000A テストボート3.4) *: Minimum output power*~+30 dBm (MUS87000A テストボート3.4) *: Minimum output power*~+30 dBm (MUS87000A テストボート3.4) *: Minimum output power *-25 dBm (MHz) Minimum output power (dBm) 5.10. 15.20 -40 25 -39 30 -38.2 40 -37 50 -34.6 80 -34.6 90 -33.5 100 -30.0 100 -33.5 100 -30.0 100	振幅測定		
±1.0 dB (~50~~35 dBm) ±1.3 dB (~60~~50 dBm) MU887000A テストポート3.4 600 MHz~27 CHz (Az 長行後、10℃~40℃ ±0.7 dB (~20~~25 dBm) ±0.9 dB (~50~~20 dBm) ±1.1 dB (~60~~50 dBm) ±1.1 dB (~60~~50 dBm) ±1.3 dB (~60~~50 dBm) 3.3 GHz~36 GHz (Az 果行後、20℃~30℃ ±1.0 dB (~50~~25 dBm) ±1.3 dB (~60~~50 dBm) 3.8 GHz~50 dBm) ±1.3 dB (~60~~50 dBm) MU887002A (TRX1/2) ¬Z トポート5~12 MU887002A~007搭載時、ただし、Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz (Az 果行後、20℃~30℃ ±1.0 dB (~50~~25 dBm) ±1.3 dB (~50~~30 dBm) ±2.0 dB (~60~~50 dBm) MIN87002A (TRX1/2) ¬Z トポート ト (MU887002A (TRX1/2) ¬Z トポート (MU88702			
MUS87000A テストボート3.4 600 MH2~27.GHz.CAL実行後、10℃~40℃ ±0.7 dB (~20~+25 dBm) ±0.9 dB (~50~~20 dBm) ±1.1 dB (~60~~50 dBm) ±1.1 dB (~60~~50 dBm) ±1.1 dB (~60~~50 dBm) ±1.3 dB (~60~~50 dBm) ±2.0 dB (~50~~50 dBm) ±2.0 dB (~50~~50 dBm) ±2.0 dB (~50~~43 dBm) ±2.0 dB (~60~~50 dBm) ±2.0 dB (~60 ~30 dBm) ±2.0 dB (~60			
600 MHz~2.7 GHz. CAL東行後、10℃~40℃ ±0.7 dB(-20→+25 dBm) ±0.9 dB(-50→-20 dBm) ±1.1 dB(-60~-50 dBm) 3.3 GHz~3.8 GHz. CAL東行後、10℃~40℃ ±1.0 dB(-50→+25 dBm) ±1.3 dB(-60~-50 dBm) 3.8 GHz~5.0 GHz. CAL東行後、20℃~30℃ ±1.0 dB(-50→+25 dBm) ±1.3 dB(-60~-50 dBm) MU887002A(TRX1/2)テストボート5~12. MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz 5900 MHz~7125 MHz. CAL東行後、20℃~30℃ ±1.1 dB(-50→+30 dBm) ±2.0 dB(-60~-50 dBm) A力レベル総制 Minimum output power*~+35 dBm (MU887000A テストボート1、2. MU887001Aすべてのテストボート MINImimum output power*~+30 dBm (MU887002A (TRX1/2) すべてのテストボート5~12. MU887002A-007搭載時、5000 MHz~7.125 MHz. ただし、Channel Edge ≦ 7125 MHz) Minimum output power*~+25 dBm (MU887000A テストボート5~12. Mu887002A-007搭載時、5000 MHz~7.125 MHz. ただし、Channel Edge ≦ 7125 MHz) * * Minimum output power*~+25 dBm (MU887000A テストボート3、4) * * Minimum output power*~+25 dBm (MU887000A テストボート3、4) * * Minimum output power*~+25 dBm (MU887000A テストボート3、4) * * Minimum output power*~+25 dBm (MU88700A テストボート5~12. Mu887002A-007搭載時、500 MHz~3.46		±1.3 dB (-60~-50 dBm)	
### 1.0.7 dis (~20~+25 dBm) # 0.0 dis (~50~~20 dBm) # 1.1 dis (~60~~50 dBm) # 1.1 dis (~60~~50 dBm) # 1.3 dis (~60			
# 1.0.9 dis (~50~~20 dBm) # 1.1 dis (~60~~50 dBm) # 1.1 dis (~60~~50 dBm) # 1.1 dis (~60~~50 dBm) # 1.3 dis (~50~~50 dBm) #			
# ±1.1 dB (~60~~50 dBm)			
3.3 GHz~3.8 GHz CAL集行後、10℃~40℃ ±1.0 dB (~50~+25 dBm) ±1.3 dB (~60~+50 dBm) 3.8 GHz~5.0 GHz CAL集行後、20℃~30℃ ±1.0 dB (~50~+25 dBm) ±1.3 dB (~60~+50 dBm) ±1.3 dB (~60~+50 dBm) #1.3 dB (~60~+30 dBm) #1.0 dB (~60~-50 dBm) #1.0 dB (~60~-60~-60 dBm) #1.0 dB (~60~-60 dB			
# 1.3 dB (~60~~50 dBm) 3.8 GHz~~5.0 GHz, CAL 実行後、20℃~30℃ # 1.0 dB (~50~+25 dBm) # 1.3 dB (~60~~50 dBm) MUSB87002A (TRX1/2) テストボート5~12、MUSB7002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz、CAL 実行後、20℃~30℃ # 1.3 dB (~50~43 dBm) # 2.0 dB (~60~43 dBm) # 2.0 dB (~60~50 dBm) ★2.0 dB (~60~~50 dBm) ★2.0 dB (~60~~50 dBm) ★3.0 dBm (MUSB7002A (TRX1/2) ずスてのテストボート Minimum output power*~+35 dBm (MUSB7002A (TRX1/2) ずスてのテストボート) Minimum output power*~+30 dBm (MUSB7002A (TRX1/2) ずスてのテストボート) Minimum output power*~+25 dBm (MUSB7002A (TRX1/2) ずスてのテストボート) Minimum output power*~+25 dBm (MUSB7002A (TRX1/2) ずスてのテストボート) * : Minimum output power*~+25 dBm (MUSB7000A テストボート3、4) * : Minimum output power* (Bm) 5, 10, 15, 20			
3.8 GHz~5.0 GHz, CAI 実行後、20℃~30℃ ±1.0 dB (~50~~25 dBm)		±1.0 dB (-50~+25 dBm)	
# 1.0 dB (~50~+25 dBm)			
# 1.3 dB (~60~~50 dBm) MU887002A (TRX1/2) テストボート5~12, MU887002A-007搭載時, ただし, Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz, CAL実行後、20°C~30°C ±1.3 dB (~50~+30 dBm) ±2.0 dB (~60~50 dBm) スカレベル範囲 Minimum output power*~+35 dBm (MU887000A テストボート1, 2, MU887001Aすべてのテストボート、 MU887002A (TRX1/2) すべてのテストボート、 Minimum output power*~+30 dBm (MU887002A (TRX1/2) テストボート5~12, MU887002A-007搭載時、 5900 MHz~7125 MHz, ただし、Channel Edge ≤ 7125 MHz) Minimum output power*~+25 dBm (MU887000A テストボート3、4) * : Minimum output power ### *********************************			
MU887002A (TRX1/2) テストボート5~12, MU887002A-007搭載時, ただし, Channel Edge ≤ 7125 MHz 5900 MHz~7125 MHz、CAL実行後、20°C~30°C ±1.3 dB (~50~+30 dBm) ±2.0 dB (~50~+50 dBm)			
5900 MHz~7125 MHz、CAL実行後、20°C~30°C			
±1.3 dB (~50~+30 dBm) ±2.0 dB (~60~-50 dBm) 入力レベル範囲 Minimum output power*~+35 dBm (MU887000A テストボート1、2、MU887001Aすべてのテストボート、MU887002A (TRX1/2) すべてのテストボート、MU887002A (TRX1/2) すべてのテストボート、S00 MHz~71.25 MHz, ただし、Channel Edge ≤ 7125 MHz) Minimum output power*~+35 dBm (MU887000A テストボート5~12、MU887002A-007搭載時、5900 MHz~71.25 MHz, ただし、Channel Edge ≤ 7125 MHz) Minimum output power ** ** : Minimum output power (dBm)			
入力レベル範囲 Minimum output power*~+35 dBm (MU887000A テストボート1、2、MU887001Aすべてのテストボート、 MU887002A (TRX1/2) すべてのテストボート) Minimum output power*~+30 dBm (MU887002A (TRX1/2) すべてのテストボート) Minimum output power*~+30 dBm (MU887002A (TRX1/2) テストボート5~12、MU887002A-007搭載時、 5900 MHz~7125 MHz、ただし、Channel Edge ≦ 7125 MHz) * : Minimum output power Fヤネル帯域幅 (MHz)			
Minimum output power*~+35 dBm (MU887000A テストボート1、2、MU887001Aすべてのテストボート、MU887002A (TRX1/2) すべてのテストボート、MU887002A (TRX1/2) すべてのテストボート)、Minimum output power*~+30 dBm (MU887002A (TRX1/2) すべてのテストボート5~12、MU887002A-007搭載時、5900 MHz~7125 MHz、ただし、Channel Edge ≤ 7125 MHz) Minimum output power (MU887000A テストボート3、4) * : Minimum output power Fヤネル帯域幅 (MHz)		±2.0 dB (-60~-50 dBm)	
Minimum output power*~+30 dBm (MU887002A (TRX1/2) すべてのテストポート) Minimum output power*~+30 dBm (MU887002A (TRX1/2) テストポート5~12, MU887002A-007搭載時、5900 MHz~7125 MHz、ただし、Channel Edge ≤ 7125 MHz) Minimum output power*~+25 dBm (MU887000A テストポート3、4) *: Minimum output power Fャネル帯域幅 (MHz)		入カレベル範囲	
Minimum output power*~+30 dBm (MU887002A (TRX1/2) テストボート5~12、MU887002A-007搭載時、5900 MHz~7125 MHz、ただし、Channel Edge ≦ 7125 MHz) Minimum output power*~+25 dBm (MU887000A テストボート3、4) *: Minimum output power チャネル帯域幅 (MHz)			
S900 MHz~7125 MHz、ただし、Channel Edge ≤ 7125 MHz Minimum output power*~+25 dBm (MU887000A テストポート3、4) * : Minimum output power チャネル帯域幅 (MHz)			
Minimum output power*~+25 dBm (MU887000A テストポート3、4) *: Minimum output power			
*: Minimum output power チャネル帯域幅 (MHz) Minimum output power (dBm) 5、10、15、20			
### ### #############################			
5、10、15、20 -40 25 -39 30 -38.2 40 -37 50 -36 60 -35.2 70 -34.6 80 -34 90 -33.5 100 -33 キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
25		チャネル帯域幅 (MHz) Minimum output power (dBm)	
周波数/変調解析 30 -38.2 40 -37 50 -36 60 -35.2 70 -34.6 80 -34 90 -33.5 100 -33 キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz		5, 10, 15, 20 -40	
周波数/変調解析 40		25 –39	
周波数/変調解析 50		30 -38.2	
周波数/変調解析 60		40 -37	
周波数/変調解析 60		50 -36	
周波数/変調解析 70			
80 -34 90 -33.5 100 -33 キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
90 -33.5 100 -33 キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz	周波数/変調解析		
100 -33 キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≤ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
キャリア周波数確度 600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz		100 -33	
600 MHz~2.7 GHz ± (設定周波数 × 基準発信器確度) + 15 Hz 3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz		キャリア周波数確度	
3.3 GHz~5.0 GHz 5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
5.9 GHz~7.125 GHz (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、ただし、Channel Edge ≦ 7125 MHz ± (設定周波数 × 基準発信器確度) + 36 Hz			
±(設定周波数 × 基準発信器確度) + 36 Hz			、
			HZ)
公司精世		ェ(設定局次数 × 基準光信益唯度) + 36 MZ 変調精度	
-25 dBm < 入力レベル範囲		-25 dBm < 入力レベル範囲	
≤2.5%		≤2.5%	
Minimum output power ≤ 入力レベル範囲 ≤ -25 dBm			
≤3.0% (600 MHz ≤ 周波数 ≤ 2.7 GHz、3.3 GHz ≤ 周波数 ≤ 4.2 GHz)			C),
≦3.0% (4.2 GHz < 周波数 ≤ 5.0 GHz、5.9 GHz ≦ 周波数 ≦ 7.125 GHz (ただし、Channel Edge ≦ 7.125 GHz、20℃~30℃)		⇒3.0% (4.2 GHZ < 周波数 ≥ 5.0 GHZ、5.9 GHZ ≥ 周波数 ≥ 7.125 GHZ (7.7.7.0)、Channel Edge ≤ 7.125 GHZ、20℃~30°	<i>-11</i>

	周波数範囲
	チャネル帯域幅 ≦ 60 MHz
	600 MHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
	600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
	600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	60 MHz < チャネル帯域幅
	2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
占有帯域幅	2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
	2.0 GHz~2.7 GHz, 3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	3.5 GHZ 7.125 GHZ (1.0007002A 007)日本から、
	-10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
	-10~+30 dBm (MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、テストポート5~12、
	5900 MHz~7125 MHz、ただし、Channel Edge ≦ 7125 MHz)
	-10∼+25 dBm (MU887000A テストポート3、4)
	周波数範囲
	チャネル帯域幅 ≦ 60 MHz
	600 MHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
	600 MHz~2.7 GHz. 3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
	600 MHz~2.7 GHz, 3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	60 MHz < チャネル帯域幅
	2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
	·
	2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
隣接チャネル漏洩電力	2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	スカレベル範囲
	-10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストボート、
	MU887002A (TRX1/2) すべてのテストボート)
	-10~+30 dBm (MU887002A-007搭載時、(TRX1/2)テストポート5~12、5900 MHz~7125 MHz、
	ただし、Channel Edge ≦ 7125 MHz)
	-10~+25 dBm (MU887000A テストポート3、4)
	測定範囲
	≥42 dB (NR ACLR)、≥45 dB (UTRA ACLR1)、≥48 dB (UTRA ACLR2)
	周波数範囲
	チャネル帯域幅 ≤ 60 MHz
	600 MHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
	600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
	600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	60 MHz < チャネル帯域幅
	2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)
スペクトラムエミッションマスク	2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時)
	2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A)
	5.9 GHz~7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≦ 7125 MHz)
	入力レベル範囲
	−10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、
	MU887002A (TRX1/2) すべてのテストポート)
	-10~+30 dBm (MU887002A-007搭載時、(TRX1/2)テストポート5~12、5900 MHz~7125 MHz、
	ただし、Channel Edge ≦ 7125 MHz)
	-10~+25 dBm (MU887000A テストポート3、4)
	10 125 dbit (100070000 7 X1 70 1 1 5 7 7)

NR FDD Contiguous ENDC 送信測定 MX887018A-001 NR TDD Contiguous ENDC 送信測定 MX887019A-001

NK TDD Contiguous ENDC 达信测定 MX88/019A-001		
	測定対象	
	PUSCH	
共通	チャネル帯域幅 (MHz)	
	5、10、15、20、25、30、40、50、60、70、80、90、100 流車十十	
	変調方式 ZORDEN ODEN 160AM 640AM	
	π/2BPSK、QPSK、16QAM、64QAM	
	入力レベル範囲	
	-65~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、	
	MU887002A (TRX1/2) すべてのテストポート)	
	-65~+25 dBm (MU887000A テストポート3、4) 確度	
	唯反 MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート	
	600 MHz~2.7 GHz、CAL実行後、10℃~40℃ (MU887000A/01A)、20℃~30℃ (MU887002A)	
	±0.7 dB (Nom50~+35 dBm)	
	±0.9 dB (Nom60~-50 dBm)	
	3.3 GHz~3.8 GHz、CAL実行後、10℃~40℃(MU887000A/01A)、20℃~30℃(MU887002A)	
	±1.0 dB (Nom. −50∼+35 dBm)	
	±1.3 dB (Nom. −60~−50 dBm)	
 振幅測定	3.8 GHz~5.0 GHz、CAL実行後、20℃~30℃	
JACTED/KIAC	±1.0 dB (Nom50~+35 dBm)	
	±1.3 dB (Nom. −60~−50 dBm)	
	MU887000A テストポート3、4	
	600 MHz~2.7 GHz、CAL実行後、10℃~40℃ ±0.7 dB (Nom. −20~+25 dBm)	
	±0.9 dB (Nom50~-20 dBm)	
	±1.1 dB (Nom60~-50 dBm)	
	3.3 GHz~3.8 GHz、CAL実行後、10℃~40℃	
	±1.0 dB (Nom50~+25 dBm)	
	±1.3 dB (Nom. −60~−50 dBm)	
	3.8 GHz~5.0 GHz、CAL実行後、20℃~30℃	
	±1.0 dB (Nom. −50~+25 dBm)	
	±1.3 dB (Nom. −60~−50 dBm)	
	入力レベル範囲	
	E-UTRAがnon-allocatedの場合において	
	Minimum output power*~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、	
	MU887002A (TRX1/2) すべてのテストポート)	
	Minimum output power*~+25 dBm (MU887000A テストポート3、4)	
	* : Minimum output power	
	チャネル帯域幅 (MHz) Minimum output power (dBm)	
	5, 10, 15, 20 -40	
変調解析	25 –39	
	30 -38.2	
	40 –37	
	50 -36	
	60 -35.2	
	70 -34.6	
	80 -34	
	90 -33.5	
	100 -33	
	周波数範囲	
	チャネル帯域幅 ≦ 60 MHz 600 MHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)	
	600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A)	
	600 MHz~2.7 GHz, 3.3 GHz~5.0 GHz (MU887002A)	
1		
	60 MHz < チャネル帯域幅	
占有帯域幅		
占有帯域幅	60 MHz < チャネル帯域幅	
占有帯域幅	60 MHz < チャネル帯域幅 2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A)	
占有帯域幅	60 MHz < チャネル帯域幅 2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz(MU887000A/01A) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz(MU887000A/01A-001/101搭載時)	
占有帯域幅	60 MHz < チャネル帯域幅 2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A)	
占有帯域幅	60 MHz < チャネル帯域幅 2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A) 入力レベル範囲	

隣接チャネル漏洩電力	周波数範囲
スペクトラムエミッションマスク	周波数範囲 チャネル帯域幅 ≤ 60 MHz 600 MHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A) 600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時) 600 MHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A) 60 MHz < チャネル帯域幅 2.0 GHz~2.7 GHz、3.3 GHz~3.8 GHz (MU887000A/01A) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887000A/01A-001/101搭載時) 2.0 GHz~2.7 GHz、3.3 GHz~5.0 GHz (MU887002A) 入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4)

W-CDMA/HSPA Downlink 送信測定 MX887021A

共通	測定対象 W-CDMA/HSPA downlink 周波数範囲
	600 MHz~2.7 GHz
振幅測定	入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オプション搭載時) すべての テストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、10℃~40℃ MU887000A テストポート1、2、MU887001Aすべてのテストポート ±0.3 dB (Typ.) (-15~+35 dBm、20℃~30℃) ±0.5 dB (-15~+35 dBm) MU887000A テストポート3、4 ±0.7 dB (-15~+25 dBm) MU887002A (TRX1/2、097オプション搭載時) すべてのテストポート ±0.3 dB (Nom.) (-15~+35 dBm、20℃~30℃)
周波数/変調解析	入力レベル範囲 -30~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オブション搭載時) すべての テストポート) -30~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 10回測定平均時、Test Model 4の信号に対して MU887000A/01A: ± (設定周波数 × 基準発振器確度 + 10 Hz) MU887002A: ± (設定周波数 × 基準発振器確度 + 10 Hz) (Nom.) (097オブション搭載時) 変調精度 10回測定平均時、Test Model 4の信号に対して MU887000A/01A: ≤1% MU887000A/01A: ≤1% MU887000A: ≤1% (Nom.) (097オブション搭載時)
隣接チャネル漏洩電力	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オブション搭載時) すべての テストポート) -10~+25 dBm (MU887000A テストポート3、4) 測定ポイント ±5 MHz、±10 MHz 測定範囲 MU887000A/01A: ≥55 dB (UTRA Adj./Alt.) MU887002A: ≥55 dB (Nom.) (UTRA Adj./Alt.) (097オプション搭載時)

LTE FDD Downlink 送信測定 MX887023A

	測定対象
共通	LTE FDD downlink signal
	周波数範囲
	600 MHz~2.7 GHz, 3.4 GHz~3.8 GHz
	入力レベル範囲
	-65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オプション搭載時) すべての
	テストポート)
	-65~+25 dBm (MU887000A テストポート3、4)
	確度 - CAL 字/-// 10°C 10°C
振幅測定	CAL実行後、10℃~40℃ MU887000A テストポート1、2、MU887001Aすべてのテストポート
抵押证则是	#U887000A テストパート1、2、MU887001A 9 八 とのテストパート ±0.3 dB (Typ.) (-15~+35 dBm、20℃~30℃)
	±0.5 dB (-15~+35 dBm), 20 C~30 C) ±0.5 dB (-15~+35 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-15~+25 dBm)
	MU887002A (TRX1/2、097オプション搭載時) すべてのテストポート
	±0.3 dB (Nom.) (-15~+25 dBm)
	入力レベル範囲
	-15~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オプション搭載時) すべての
	テストポート)
	-15~+25 dBm (MU887000A テストポート3、4)
	キャリア周波数確度
	測定間隔:10、Test Model 3.1の信号に対して
周波数/変調解析	MU887000A/01A: ±(設定周波数 × 基準発振器確度 + 10 Hz)
	MU887002A:± (設定周波数 × 基準発振器確度 + 10 Hz) (Nom.) (097オプション搭載時)
	変調精度
	Test Model 3.1の信号に対して、チャネル帯域幅: 3、5、10、15、20 MHz
	MU887000A/01A : ≤1%
	MU887002A: ≦1% (Nom.) (097オプション搭載時)
	入力レベル範囲
	−10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2、097オブション搭載時) すべての
	テストポート)
	-10∼+25 dBm (MU887000A テストポート3、4)
	測定範囲
	チャネル帯域幅: 1.4、3、5 MHz
隣接チャネル漏洩電力	MU887000A/01A: ≥54 dB (E-UTRA Adj.), ≥57 dB (E-UTRA Alt.)
	MU887002A: ≥54 dB (Nom.) (E-UTRA Adj.)、≥57 dB (Nom.) (E-UTRA Alt.) (097オプション搭載時)
	チャネル帯域幅: 10、15、20 MHz
	MU887000A/01A: ≥50 dB (E-UTRA Adj./Alt.) MU887002A: ≥50 dB (Nom.) (E-UTRA Adj./Alt.) (097オプション搭載時)
	MU867/UU2A: ≦50 dB (NOIII.) (E-UTRA Adj./Alt.) (09/オフション指載時) 全チャネル帯域幅
	エアヤインのH3-38/W目 MU887000A/01A:≧54 dB (UTRA Adj./Alt.)
	MU887002A:≧54 dB (Nom.) (UTRA Adj./Alt.) (097オプション搭載時)
	THOSE SOLETTIES THE COUNTY (CITY POLYTICAL (COUNTY) THE COUNTY OF THE COUNTY (CITY POLYTICAL (COUNTY) THE COUNTY (CITY POLYTICAL (COUNTY) THE COUNTY (CITY POLYTICAL (COUNTY) THE COUNTY (CITY POLYTICAL (

W-CDMA/HSPA Downlink 波形ファイル MV887011A

EVM	≤3% rms (400 MHz ≤ 周波数 ≤ 2.7 GHz)	
EVM	※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること	

GSM/EDGE Downlink 波形ファイル MV887012A

位相誤差	≤1° rms (400 MHz ≤ 周波数 ≤ 2.7 GHz、GMSK) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること
EVM	≤1.8% rms (400 MHz ≤ 周波数 ≤ 2.7 GHz、8PSK) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

LTE FDD Downlink 波形ファイル MV887013A

	MU887000A テストポート1、2、MU887001Aすべてのテストポート -12 dBm (周波数 ≦ 3.8 GHz)、-20 dBm (周波数 > 3.8 GHz)
最大出力レベル	MU887000A テストポート3、4 -2 dBm (周波数 ≤ 3.8 GHz)、-10 dBm (周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート -7 dBm (周波数 ≤ 3.8 GHz)、-10 dBm (周波数 > 3.8 GHz)
EVM	≦2% rms (400 MHz ≦ 周波数 ≦ 2.7 GHz)、≦3% rms (3.4 GHz ≦ 周波数 ≦ 3.8 GHz)、≦4% rms (3.8 GHz < 周波数 ≦ 6.0 GHz) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

LTE TDD Downlink 波形ファイル MV887014A

	MU887000A テストポート1、2、MU887001Aすべてのテストポート -12 dBm (周波数 ≤ 3.8 GHz)、-20 dBm (周波数 > 3.8 GHz)
最大出力レベル	MU887000A テストポート3、4 -2 dBm (周波数 ≤ 3.8 GHz)、-10 dBm (周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート -7 dBm (周波数 ≤ 3.8 GHz)、-10 dBm (周波数 > 3.8 GHz)
EVM	≤2% rms (400 MHz ≤ 周波数 ≤ 2.7 GHz)、≤3% rms (3.4 GHz ≤ 周波数 ≤ 3.8 GHz)、≤4% rms (3.8 GHz < 周波数 ≤ 6.0 GHz) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

CDMA2000 Forward Link 波形ファイル MV887015A

波形品質	>0.99 (400 MHz ≦ 周波数 ≦ 2.7 GHz)
<i>版</i> 形如貝	※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

1xEV-DO Forward Link 波形ファイル MV887016A

波形品質	>0.99 (400 MHz ≤ 周波数 ≤ 2.7 GHz, Pilot channel)
	※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

TD-SCDMA Downlink 波形ファイル MV887017A

I EVM	≦3% rms (400 MHz ≦ 周波数 ≦ 2.7 GHz)
	※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

NR FDD sub-6 GHz Downlink 波形ファイル MV887018A NR TDD sub-6 GHz Downlink 波形ファイル MV887019A

最大出力レベル	MU887000A テストポート1、2、MU887001Aすべてのテストポート -10 dBm (周波数 ≦ 3.8 GHz)、-18 dBm (周波数 > 3.8 GHz)
	MU887000A テストポート3、4 0 dBm (周波数 ≤ 3.8 GHz)、-8 dBm (周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート -5 dBm (周波数 ≤ 3.8 GHz)、-8 dBm (周波数 > 3.8 GHz)
	MU887002A (TRX1/2)、MU887002A-007搭載時 -5 dBm (テストポート1~4、周波数 ≤ 3.8 GHz) -8 dBm (テストポート1~4、3.8 GHz < 周波数 ≤ 6 GHz) -8 dBm (テストポート5~12、3.8 GHz < 周波数 < 5.9 GHz) -10 dBm (テストポート5~12、5.9 GHz ≤ 周波数 ≤ 7.125 GHz (MU887002A-007搭載時、テストポート5~12、ただし、Channel Edge ≤ 7.125 GHz)) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること
EVM	≤2% rms (600 MHz ≤ 周波数 ≤ 2.7 GHz)、≤3% rms (3.3 GHz ≤ 周波数 ≤ 3.8 GHz)、 ≤4% rms (3.8 GHz < 周波数 ≤ 5.0 GHz、5.9 GHz ≤ 周波数 ≤ 7.125 GHz (MU887002A-007搭載時、テストポート5~12、 ただし、Channel Edge ≤ 7.125 GHz)) ※ MU887002Aの場合、出力信号の帯域が上記周波数範囲に含まれること

WLAN 802.11b/g/a/n 送信測定 MX887030A

WLAN 002.11D/9/0/1	1 达信測定 MX88/030A
共通	測定対象 WLAN signal packet 周波数範囲 2.4 GHz帯: 2412 MHz~2484 MHz 5 GHz帯: 4920 MHz~5825 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
RFパワー	入力レベル範囲 -65~+25 dBm (MU887000A テストポート3、4) -55~+35 dBm (MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート) 確度 CAL実行後、20℃~30℃ ±0.7 dB (-30 dBm ≤ レベル ≤ +25 dBm)、±1.0 dB (-50 dBm ≤ レベル < -30 dBm) (MU887000A) ±0.7 dB (-20 dBm ≤ レベル ≤ +35 dBm)、±1.0 dB (-40 dBm ≤ レベル < -20 dBm) (MU887001A、MU887002A) 帯域幅 40 MHz、20 MHz (802.11n) 20 MHz (802.11a/b/g) キャプチャー時間 1.34s プリトリガ 1.33s 分解能 (タイムドメイン測定) 5ns/サンブル CCDF 平均パワーに対する dB値とサンプルの発生する確率として定義 パワー分布値 CCDF測定において平均パワーに対するピークパワーの dB値を指定した際に得られるそのピークパワーを超えるサンブルの発生する確率として定義
スペクトラル測定	スパン
EVM (変調精度)	測定範囲 -20~+25 dBm (MU887000A) -10~+35 dBm (MU887001A、MU887002A) 残留EVM 信号レベル:>-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、20パケットの平均において <-28 dB (DSSS) <-40 dB (OFDM、チャネル推定: FULLPACKET) EVMデータ形式 dB、% 分解能 0.1% または 0.1 dB (リミット設定は分解能0.1 dBにて実施) スピード >20回読み込み/s
DSSS EVM測定	受信フィルタタイプ None、Gaussian、Root raised cosine ガウシアン フィルタ設定 BT BT 0.3~1.0、分解能: 0.1 Root raised cosinフィルタ設定 a 0.30~1.00、分解能: 0.01 測定スタート パケット内の最初のデータチップより測定を開始 測定方法 ヘッダおよびペイロード ヘッダを選択した場合、PLCPプリアンプルおよびヘッダの最初の1000チップに対するEVMを測定 ユーザ指定測定範囲 220~11000チップ 測定有効範囲 周波数誤差 <±150 kHz (±60 ppm)

OFDM EVM測定	チャネル推定 Long training sequence もしくはFull packetを選択可能 ユーザ指定測定範囲 16シンボル(最小)、100シンボル(最大) OFDMパイロットトラッキング 位相トラッキングのみ、もしくは位相および振幅トラッキングを選択可能 データ出力形式 全サブキャリアに対するPeakおよびAverage EVM: dB もしくは% 個々のサブキャリアに対するPeakおよびAverage EVM(周波数ドメイン): サブキャリア 対 % シンボルに対するEVM(タイムドメイン): シンボル 対 % (1~最大値)
その他のDSSS測定	送信中心周波数許容値 定義: DSSS変調信号の平均周波数 確度: ±(設定周波数 × 基準発振器確度 + 1 kHz) 分解能: Hz、ppm (小数点第1位) チップクロック周波数許容値 定義: 11 MHzチップクロックに対する周波数エラー。3300チップ (300 µs) のペイロード長が必要 表示形式: Hz、ppm 範囲: ±50 ppm 範囲: ±50 ppm 分解能: Hz、ppm (小数点第1位) データ解析幅: 20 µs (220チップ) (最小) ユーザ指定測定範囲: 3300~30250チップ 送信パワーオン・オフ ランプ 定義: パースト内の立ち上がり/立ち下りのパワーレベルにて、10%から90%、または90%から10%へ推移する時間 データ出力: 10%、90%、デルタ 分解能: 5ns RFキャリア抑圧 方式: IEEE Std 802.11-2007 (18.4.7.7)、IQオフセット IEEE方式: スクランプラを無効にし、データレート2Mbpsのテストパターン10101010にて、搬送波とサイドパンドの高い信号 とのレベル比 IQオフセット方式: ピーク周波数レスポンスとチャネル中心周波数の相対値から算出
その他のOFDM測定	送信中心周波数許容値 定義: OFDM変調信号の平均周波数 データ出力形式: Hz、ppm 確度: ±(設定周波数 × 基準発振器確度 + 1 kHz)(>1ms パケット) 分解能: Hz、ppm (小数点第1位) シンボルクロック周波数許容値 定義: 19.4.7.3/17.3.9.5に準拠したシンボルクロック250 kHzに対する周波数エラー
追加測定 (DSSS、DFDM)	単位: dB パワースペクトラル密度 変調信号帯域内にて1 MHz帯域の範囲での最大パワーを測定 占有帯域幅 指定した割合のパワーが占有される周波数範囲を測定 占有帯域幅パーセント範囲 1~99%

WLAN 802.11ac 送信測定 MX887031A

WLAN 602.11ac 2	S信例是 MX00/USIA
	測定対象
共通	WLAN signal packet
· · · · · · ·	周波数範囲 F. C.
	5 GHz帯: 4920 MHz~5825 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
	入力レベル範囲
	-65~+25 dBm (MU887000A テストポート3、4)
	-55~+35 dBm (MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート) 確度
	TELES TO THE SECOND TO THE SECOND TO THE SECOND THE S
İ	±0.7 dB (-30 dBm ≤ レベル ≤ +25 dBm)、±1.0 dB (-50 dBm ≤ レベル < -30 dBm) (MU887000A)
İ	±0.7 dB (-20 dBm ≤ レベル ≤ +35 dBm)、±1.0 dB (-40 dBm ≤ レベル < -20 dBm) (MU887001A、MU887002A)
İ	帯域幅
	160、80、40、20 MHz
RFパワー	キャプチャー時間
NI/NO	1.34 s
	プリトリガ
	1.33 s
	分解能 (タイムドメイン測定)
i I	5 ns/サンプル CCDF
i I	平均パワーに対する dB値とサンプルの発生する確率として定義
i I	パワー分布値
	CCDF測定において平均パワーに対するピークパワーの dB値を指定した際に得られるそのピークパワーを超えるサンプルの発生
i I	する確率として定義
	スパン
	±80 MHz
	キャプチャー時間
	50 μs
İ	測定時間 (RBW:100 kHz)
İ	-27~+25 dBm (MU887000A)
	-17~+35 dBm (MU887001A, MU887002A)
スペクトラル測定	直線性 CW、RBW:100 kHz、MU887000A テストポート3、4、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべての
	テストポートのレベルリニアリティ参照
	±0.2 dB (≥-55 dBm, -40~0 dB)
	分解能
	0.1 dB
	帯域幅
	100 kHz
	測定範囲
i I	−20~+25 dBm (MU887000A)
	-10~+35 dBm (MU887001A, MU887002A)
	残留EVM (帯域幅:≦80 MHz)
EVM (変調精度)	信号レベル:>-10 dBm (MU887000A)、0 dBm (MU887001A、MU887002A)、20パケットの平均において、チャネル推定: FULLPACKET
	<-38 dB
	EVMデータ形式
i I	dB、%
	分解能
_	0.1% または 0.1 dB(リミット設定は分解能0.1 dBにて実施)
	チャネル推定
OFDM EVM測定	Long training sequence もしくは Full packetを選択可能
	ユーザ指定測定範囲
	16シンボル(最小)、100シンボル(最大)
	OFDMパイロットトラッキング
OLDIT LALIWITE	位相トラッキングのみ、もしくは位相および振幅トラッキングを選択可能
OI DIT EVITABLE	データ出力形式
OF DET EVENINGAE	データ出力形式 全サブキャリアに対する PeakおよびAverage EVM・dB ちしくは %
ST DIT LYTHMIXE	データ出力形式 全サブキャリアに対する PeakおよびAverage EVM: dB もしくは% 個々のサブキャリアに対する PeakおよびAverage EVM (周波数ドメイン): サブキャリア 対 %

	送信中心周波数許容値
	定義:OFDM変調信号の平均周波数
	データ出力形式:Hz、ppm
	確度:± (設定周波数 × 基準発振器確度 + 1 kHz) (>1 ms パケット)
	分解能:Hz、ppm (小数点第1位)
	シンボルクロック周波数許容値
	定義:19.4.7.3/17.3.9.5に準拠したシンボルクロック250 kHzに対する周波数エラー
	16シンボル (64 µs) のペイロード長が必要
	データ出力形式:Hz、ppm
その他のOFDM測定	範囲: ±40 ppm
	分解能:ppm (小数点第1位)
	ユーザ指定測定範囲: 16 - (定義数)
	送信中心周波数漏洩
	定義:センター周波数のリーケージを測定
	データ出力形式:dB
	分解能:dB(小数点第2位)
	送信スペクトラムフラットネス
	定義:RFサブキャリアのパワーレベルを測定
	単位:dB

WLAN 802.11p 送信測定 MX887032A (Automotive Connectivity V2X)

WLAN 602.11p Ala	视定 MX887U32A (Automotive Connectivity V2X)
共通	測定対象 WLAN single packet 周波数範囲 715 MHz~765 MHz 902 MHz~928 MHz 5725 MHz~5925 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
RFパワー	入力レベル範囲 -65~+25 dBm (MU887000A テストポート3、4) -55~+35 dBm (MU887001A、MU887002A (TRX1/2) すべてのテストポート) 確度 CAL実行後、20℃~30℃ ±0.7 dB (-30 dBm ≤ レベル ≤ +25 dBm)、±1.0 dB (-50 dBm ≤ レベル < -30 dBm) (MU887000A) ±0.7 dB (-20 dBm ≤ レベル ≤ +35 dBm)、±1.0 dB (-40 dBm ≤ レベル < -20 dBm) (MU887001A、MU887002A) 帯域幅 5、10、20 MHz
EVM (変調確度)	測定範囲 -20~+25 dBm (MU887000A) -10~+35 dBm (MU887001A、MU887002A) 残留EVM (OFDM) 信号レベル:>-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、アベレージ:20パケット以上、チャネル推定:FULL PACKET <-40 dB EVMデータ形式:dB、% 分解能:0.1%または0.1 dB(リミット設定は、分解能0.1 dBで実施)
OFDM EVM測定設定	チャネル推定 「Long training sequence」、「Full packet」をユーザが選択。初期値: Long training sequence ユーザ指定測定範囲 16シンボル(最小)、1000シンボル(最大)、初期値: 40 OFDMパイロットトラッキング 「Phase tracking only」、「Phase and Amplitude Tracking」、初期値: Phase tracking only データ出力形式 全サブキャリアに対するPeakおよびAverage EVM: dBもしくは% 個々のサブキャリアに対するPeakおよびAverage EVM(周波数ドメイン): サブキャリア対% シンボルに対するEVM(タイムドメイン): シンボル対%(1~最大値)
その他のOFDM測定	送信中心周波数許容値 定義: OFDM搬送波のアベレージ周波数 データ出力形式: Hz、ppm 測定確度: ± (設定周波数 × 基準信号発振器確度 + 1 kHz) (>1 msパケット) 分解能: Hz、ppm (小数点第1位) 送信中心周波数リーケージ 定義: 中心搬送波のリーケージの測定 データ出力形式: dB 分解能: dB (小数点第2位) 送信スペクトラルフラットネス 定義: RFサブキャリアのパワーレベル測定 測定単位: dB

WLAN 802.11ax 送信測定 MX887033A

```
測定対象
                           WLAN signal packet
                          周波数範囲
                           MU887000A/01A
                            5 GHz Band: (MU887000A/01A-001が必要)
                             160 MHz BW: 4920 MHz∼5815 MHz
                             80 MHz BW: 4920 MHz~5775 MHz
                             40 MHz BW : 4920 MHz\sim5795 MHz
                             20 MHz BW: 4920 MHz~5825 MHz
                            2.4 GHz Band:
                             40 MHz BW: 2412 MHz~2472 MHz
                             20 MHz BW: 2412 MHz~2484 MHz
                           MU887002A
共通
                            6 GHz Band: (MU887002A-007が必要、テストポート5~12)
                             160 MHz BW : 5900 MHz\sim7135 MHz
                             80 MHz BW: 5900 MHz~7175 MHz
                             40 MHz BW: 5900 MHz~7195 MHz
                             20 MHz BW: 5900 MHz~7205 MHz
                            5 GHz Band:
                             160 MHz BW: 4920 MHz~5815 MHz
                             80 MHz BW: 4920 MHz~5855 MHz
                             40 MHz BW: 4920 MHz~5885 MHz
                             20 MHz BW: 4920 MHz~5885 MHz
                            2.4 GHz Band:
                             40 MHz BW: 2412 MHz~2472 MHz
                             20 MHz BW: 2412 MHz~2484 MHz
                          入力レベル範囲
                           MU887000Aテストポート3、4
                            -65\sim +25 \text{ dBm}
                           MU887001Aテストポート1~4
                            -55∼+35 dBm
                           MU887002A
                            テストポート1~12 (MU887002A-007未搭載)、周波数 ≦ 6000 MHz
                             -55\sim +35 \text{ dBm}
                            テストポート1~4 (MU887002A-007搭載時)、周波数 ≤ 6000 MHz
                             -55∼+35 dBm
                            テストポート5~12 (MU887002A-007搭載時)、周波数 < 5900 MHz
                             -55~+35 dBm
                            テストポート5~12 (MU887002A-007搭載時)、5900 MHz ≤ 周波数 ≤ 7300 MHz
                             -55~+30 dBm
                          確度
                           CAL実行後、20℃~30℃
                            MU887000Aテストポート 3、4
                             \leq BW 80 MHz : ±0.7 dB (−30 dBm \leq \lor\checkmark\lor\lor +25 dBm)
                                          ±1.0 dB (-50 dBm ≤ レベル < -30 dBm)
                             BW 160 MHz: ±1.0 dB (-30 dBm ≤ レベル ≤ +25 dBm)
                                         ±1.3 dB (-50 dBm ≤ レベル < -30 dBm)
                            MU887001Aテストポート1~4
                             \leq BW 80 MHz : ±0.7 dB (−20 dBm \leq \lor\checkmark\lor\lor +35 dBm)
RFパワー
                                          ±1.0 dB (-40 dBm ≤ レベル < -20 dBm)
                             BW 160 MHz: ±1.0 dB (-20 dBm ≤ レベル ≤ +35 dBm)
                                         ±1.3 dB (-40 dBm ≤ レベル < -20 dBm)
                            MU887002A (TRX1/2) テストポート1~12、2.4/5 GHz Band設定時
                             \leq BW 80 MHz : \pm 0.7 dB (-20 dBm \leq \lor \land \lor \lor \lor +35 dBm)
                                          ±1.0 dB (-40 dBm ≤ レベル < -20 dBm)
                             BW 160 MHz: ±1.0 dB (-20 dBm ≤ レベル ≤ +35 dBm)
                                         ±1.3 dB (-40 dBm ≤ レベル < -20 dBm)
                            MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載、6 GHz Band設定時
                             ±1.0 dB (-20 dBm ≤ レベル ≤ +30 dBm)
                             ±1.3 dB (-40 dBm ≤ レベル < -20 dBm)
                          帯域幅
                           160、80、40、20 MHz
                          キャプチャー時間
                           1.34 s
                          プリトリガ
                           1.33 s
                          分解能(タイムドメイン測定)
                           5 ns/サンプル
                          CCDF
                           平均パワーに対する dB値とサンプルの発生する確率として定義
                          パワー分布値
                           CCDF測定において平均パワーに対するピークパワーの dB値を指定した際に得られるそのピークパワーを超えるサンプルの発生
                           する確率として定義
```

	スパン
	±80 MHz キャプエャー時間
	キャプチャー時間 50 µs
	測定範囲 (RBW: 100 kHz)
	MU887000Aテストポート3、4 -27~+25 dBm
	-27ペ+25 ddiii MU887001Aテストポート1~4
	−17∼+35 dBm
スペクトラル測定	MU887002A (TRX1/2) テストポート1~12、2.4/5 GHz Band設定時
スペントンル規定	-17~+35 dBm
	テストポート5~12 MU887002A-007搭載、6 GHz Band設定時
	-17~+30 dBm 直線性
	EDMX IT
	±0.2 dB (≧-55 dBm, -40~0 dB)
	分解能 0.1 dB
	带域幅
	100 kHz
	測定範囲 - MU897000A=-7 b +
	MU887000Aテストポート3、4 -20~+25 dBm
	MU887001Aテストポート1~4
	-10~+35 dBm
	MU887002A (TRX1/2) テストポート1~12、2.4/5 GHz Band設定時
	-10∼+35 dBm
	テストポート5~12 MU887002A-007搭載、6 GHz Band設定時 -10~+30 dBm
EVM (変調精度)	残留EVM
	20℃~30℃
	信号レベル:>-10 dBm (MU887000A)、>0 dBm (MU887001A、MU887002A)、 16 data OFDMシンボル長以上の20パケットの平均値
	パイロットを除く各サブキャリアは、同じdata field patternのOFDMシンボルを持った信号パターン
	チャネル推定: FULLPACKET
	<-45 dB(帯域幅:80 MHz、5210 MHzの実測値) MU887000Aテストポート3、4、MU887001Aテストポート1∼4
	<-40 dB (≦BW 80 MHz)
	<-40 dB (BW 160 MHz, Nom.)
	MU887002A(TRX1/2)テストポート1~12、2.4/5 GHz Band設定 <-40 dB(≦BW 80 MHz)
	<-43 dB (BW 160 MHz, Nom.)
	MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、6 GHz Band設定
	<-45 dB (≦BW 80 MHz, Nom.) <-41 dB (BW 160 MHz, Nom.)
	EVMデータ形式
	dB、%
	分解能 0.1%または0.1 dB(リミット設定は分解能0.1 dBにて実施)
	チャネル推定
	Long training sequenceもしくはFull packetを選択可能
	ユーザ指定測定範囲 16シンボル(最小)、1000シンボル(最大)
OFDM EVM測定	OFDMパイロットトラッキング
OI DIN LVINAILE	位相トラッキングのみ、もしくは位相および振幅トラッキングを選択可能
	データ出力形式 全サブキャリアに対する PeakおよびAverage EVM:dBもしくは%
	個々のサブキャリアに対するPeakおよびAverage EVM (周波数ドメイン): サブキャリア 対 %
	シンボルに対するEVM (タイムドメイン): シンボル 対 % (1~最大値)
	送信中心周波数許容値 定義:OFDM変調信号の平均周波数
	データ出力形式:Hz、ppm
	確度: ±(設定周波数 × 基準発振器確度 + 1 kHz)(16 data OFDMシンボル長以上の20パケットの平均値)
その他のOFDM測定	分解能 : Hz、ppm (小数点第1位) シンボルクロック周波数許容値
	定義: Guard Intervalに依存するシンボルクロックに対する周波数エラー
	GI 0.8 μ s : Symbol Clock (1 / (12.8 μ s + 0.8 μ s)) = 73.529 kHz approx.
	GI 1.6 μ s : Symbol Clock (1 / (12.8 μ s + 1.6 μ s)) = 69.444 kHz approx. GI 3.2 μ s : Symbol Clock (1 / (12.8 μ s + 3.2 μ s)) = 62.500 kHz approx.
	16シンボルのペイロード長が必要
	データ出力形式: Hz、ppm 簡用: +40 ppm
	範囲: ±40 ppm分解能: ppm (小数点第1位)
	ユーザ指定測定範囲:16 - (定義数)
	送信中心周波数漏洩 定義:センター周波数のリーケージを測定
	定義:センター同波数のワーケーシを測定 データ出力形式:dB
	分解能:dB(小数点第2位)
	送信スペクトラムフラットネス 定義: RFサブキャリアのパワーレベルを測定
	定義:KFリノキャッテのパラーレバルを測定 単位:dB

WLAN 802.11be 送信測定 MX887034A

	測定対象
	WLAN signal packet
	周波数範囲
	MU887002A
	6 GHz Band: (MU887002A-007が必要、テストボート5~12)
	320 MHz BW: 5900 MHz~7055 MHz
	160 MHz BW: 5900 MHz~7135 MHz
	80 MHz BW: 5900 MHz~7175 MHz
	40 MHz BW : 5900 MHz∼7195 MHz
共通	
	20 MHz BW: 5900 MHz~7205 MHz
	5 GHz Band :
	160 MHz BW : 4920 MHz∼5815 MHz
	80 MHz BW: 4920 MHz~5855 MHz
	40 MHz BW : 4920 MHz∼5885 MHz
	20 MHz BW : 4920 MHz∼5885 MHz
	2.4 GHz Band :
	40 MHz BW: 2412 MHz~2472 MHz
	20 MHz BW: 2412 MHz~2484 MHz
	入力レベル範囲
	MU887002A
	テストポート1~12 (MU887002A-007未搭載)、周波数 ≦ 6000 MHz
	-55~+35 dBm
	テストボート1~12 (MU887002A-097/197/297未搭載)、周波数 ≦ 6000 MHz
	-55∼+34 dBm
	テストポート1~4 (MU887002A-007搭載時)、周波数 ≦ 6000 MHz
	−55∼+35 dBm
	テストポート5~12 (MU887002A-007搭載時)、周波数 < 5900 MHz
	7,11,11,11,11,11,11,11,11,11,11,11,11,11
	-55~+35 dBm
	テストポート5~12 (MU887002A-007搭載時)、5900 MHz ≦ 周波数 ≦ 7300 MHz
	The state of the s
	-55∼+30 dBm
	確度
	CAL実行後、20℃~30℃
	MU887002A (TRX1/2) テストボート1~12、MU887002A-097/197/297未搭載、2.4/5 GHz Band設定時
	≦ BW 80 MHz : ±0.7 dB (−20 dBm ≦ レベル ≦ +34 dBm)
	±1.0 dB (−40 dBm ≦ レベル < −20 dBm)
	BW 160 MHz: ±1.0 dB (−20 dBm ≤ レベル ≤ +34 dBm)
	±1.3 dB (−40 dBm ≦ レベル < −20 dBm)
	MU887002A (TRX1/2) テストボート1~12、MU887002A-097/197/297搭載、2.4/5 GHz Band設定時
DE16D_	≦ BW 80 MHz: ±0.7 dB (-20 dBm ≤ レベル ≤ +35 dBm)
RFパワー	±1.0 dB (−40 dBm ≦ レベル < −20 dBm)
	BW 160 MHz: ±1.0 dB (-20 dBm ≦ レベルレ ≦ +35 dBm)
	±1.3 dB (-40 dBm ≦ レベル < -20 dBm)
	MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、6 GHz Band設定時
	≤ BW 160 MHz: ±1.0 dB (-20 dBm ≤ レベル ≤ +30 dBm)
	±1.3 dB (-40 dBm ≦ レベル < -20 dBm)
	BW 320 MHz: ±2.0 dB Nom. (−20 dBm ≦ レベル ≦ +30 dBm)
	±2.6 dB Nom. (-40 dBm ≦ レベル < -20 dBm)
	帯域幅
	320, 160, 80, 40, 20 MHz
	キャプチャー時間
	0.67 s
	プリトリガ
	0.665 s
	分解能(タイムドメイン測定)
T. Control of the Con	F (+1× → 1)
	5 ns/サンプル
	5 ns/サンプル CCDF
	CCDF
	CCDF ゲート内の平均パワーに対するdB値とサンプルの発生する確率として定義
	CCDF
	CCDF ゲート内の平均パワーに対するdB値とサンプルの発生する確率として定義 パワー分布値
	CCDF ゲート内の平均パワーに対するdB値とサンプルの発生する確率として定義 パワー分布値 CCDF測定において平均パワーに対するピークパワーの dB値を指定した際に得られるそのピークパワーを超えるサンプルの発生
	CCDF ゲート内の平均パワーに対するdB値とサンプルの発生する確率として定義 パワー分布値

スパン ±80 MHz キャプチャー時間 50 μs 測定範囲 (RBW: 100 kHz) MU887002A (TRX1/2) テストポート1~12、MU887002A-097/197/297未搭載 -17~+34 dBm	
キャプチャー時間 50 μs 測定範囲 (RBW: 100 kHz) MU887002A (TRX1/2) テストポート1~12、MU887002A-097/197/297未搭載	
50 μs 測定範囲 (RBW: 100 kHz) MU887002A (TRX1/2) テストポート1~12、MU887002A-097/197/297未搭載	
測定範囲 (RBW: 100 kHz) MU887002A (TRX1/2) テストポート1~12、MU887002A-097/197/297未搭載	
MU887002A (TRX1/2) テストポート1~12、MU887002A-097/197/297未搭載	
テストポート1~12、MU887002A-097/197/297未搭載	
$-17\sim+34 \text{ dBm}$	
スペクトラル測定 テストボート1~12、MU887002A-007未搭載、MU887002A-097/197/297搭載 -17~+35 dBm	
-1/~+35 dBM テストポート1~12、MU887002A-007搭載、2.4/5 GHz Band設定時	
-17~+35 dBm	
デストポート5~12、MU887002A-007搭載、6 GHz Band設定時	
-17~+30 dBm	
分解能	
0.1 dB	
帯域幅	
100 kHz	
測定範囲	
MU887002A	
テストボート1~12、MU887002A-097/197/297未搭載	
-10~+34 dBm	
テストボート1~12、MU887002A-007未搭載、MU887002A-097/197/297搭載	
-10~+35 dBm =7 b + b 1 a 12 MU9970024 007校計 2 4/5 CHz Band孙宝	
テストボート1~12、MU887002A-007搭載、2.4/5 GHz Band設定 -10~+35 dBm	
テストポート5~12、MU887002A-007搭載、6 GHz Band設定	
-10~+30 dBm	
残留EVM	
20℃~30℃	
EVM (変調精度) 信号レベル: >-10 dBm、	
16 data OFDMシンボル長以上の20パケットの平均値	
チャネル推定:FULLPACKET	
MU887002A (TRX1/2) テストポート1~12、MU887002A-007未搭載、2.4/5 GHz Band設定	
<-43 dB (BW 160 MHz, Nom.)	
MU887002A (TRX1/2) テストポート5~12、MU887002A-007搭載時、6 GHz Band設定	
<-43 dB (≦BW 160 MHz, Nom.)	
<-41 dB (BW 320 MHz, Nom.)	
EVMデータ形式 dp.0/	
dB、% 分解能	
0.1%または0.1 dB(リミット設定は分解能0.1 dBにて実施)	
チャネル推定	
Long training sequenceもしくはFull packetを選択可能	
ユーザ指定測定範囲	
16シンボル(最小)、1000シンボル(最大)	
OFDM FV(M) □ OFDMパイロットトラッキング	
OFDM EVM測定 位相トラッキングのみ、もしくは位相および振幅トラッキングを選択可能	
データ出力形式	
全サブキャリアに対する PeakおよびAverage EVM:dBもしくは%	
個々のサブキャリアに対するPeakおよびAverage EVM (周波数ドメイン): サブキャリア 対 %	
シンボルに対するEVM (タイムドメイン): シンボル 対 % (1~最大値)	
送信中心周波数許容値	
定義:OFDM変調信号の平均周波数 データ出力形式:Hz、ppm	
アーテログルス・Ppm	< BW 160 MHz)
確度: ± (設定周波数 × 基準発振器確度 + 1 kHz) Nom. (16 data OFDMシンボル長以上の20パケットの平	
分解能: Hz、ppm (小数点第1位)	- JIEC DVV 320 T II 12)
シンボルクロック周波数許容値	
定義: Guard Intervalに依存するシンボルクロックに対する周波数エラー	
GI 0.8 μ s : Symbol Clock (1 / (12.8 μ s + 0.8 μ s)) = 73.529 kHz approx.	
GI 1.6 μ s : Symbol Clock (1 / (12.8 μ s + 1.6 μ s)) = 69.444 kHz approx.	
GI 3.2 μ s : Symbol Clock (1 / (12.8 μ s + 3.2 μ s)) = 62.500 kHz approx.	
その他のOFDM測定 16シンボルのペイロード長が必要	
データ出力形式: Hz、ppm	
範囲: ±40 ppm	
分解能:ppm (小数点第1位)	
ユーザ指定測定範囲:16 - (定義数) 送信中心周波数漏洩	
定義:センター周波数のリーケージを測定	
データ出力形式:dB	
分	
送信スペクトラムフラットネス	
定義: RFサブキャリアのパワーレベルを測定	
単位: dB	

Bluetooth 送信測定 MX887040A

DidCtootii A lank	17.007 0 107.
	測定対象
	Bluetooth signal packet (DH-1, 3, 5 2-DH-1, 3, 5 3-DH-1, 3, 5 LE)
共通	周波数範囲
) VALE	2402 MHz~2480 MHz
	測定モード
	SIG Standardモードは、Bluetooth SIG RFテスト規格を元に選択されているパケットタイプに対してRF測定を実行
	入力レベル範囲
	-65~+25 dBm (MU887000A テストポート3、4)
DE 18 E	-55~+35 dBm (MU887001A、MU887002A (TRX1/2) すべてのテストポート)
RFパワー	確度 CAL実行後、20℃~30℃
	±0.7 dB (-30 dBm ≤ レベル ≤ +25 dBm)、±1.0 dB (-50 dBm ≤ レベル < -30 dBm) (MU887000A)
	±0.7 dB (-30 dBin = レベル = +25 dBin)、±1.0 dB (-40 dBm = レベル < -20 dBin) (MU887001A、MU887002A)
	スカレベル範囲
	-35~+25 dBm (MU887000A)
	-25~+35 dBm (MU887001A, MU887002A)
	測定値
	相対パワーの最小値、最大値、平均値
EDR相対送信パワー	相対パワー測定範囲
	パケット内のGFSK変調部の平均パワーレベルに対して、π/4-DQPSK、8-DPSKの変調部の平均パワーレベルの相対値を測定
	帯域幅
	1.3 MHz (IFフィルタ応答 fc ±550 kHz)
	分解能(タイムドメイン表示)
	0.01 dB
	GFSK, π/4-DQPSK, 8-DPSK
	測定範囲
	-20~+25 dBm (MU887000A)
	−10∼+35 dBm (MU887001A、MU887002A)
	残留DEVM
	信号レベル : >-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、10パケットの平均において
	<5%
	分解能
	0.1%
	GFSK 偏差測定範囲:0~350 kHz
	神元利に戦団 : 0. ~ 5.50 KHZ
Bluetooth変調	変調インデックス: 0.32、信号レベル: >-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、
Braccock (Sept.)	10パケットの平均において
	1% (±0.01 × 偏差 [Hz]) (Nom.)
	初期キャリア周波数許容値
	測定範囲:-35~+25 dBm (MU887000A)
	−25~+35 dBm (MU887001A、MU887002A)
	初期周波数測定範囲:0~±150 kHz
	分解能:1 kHz
	キャリア周波数ドリフト
	入力レベル範囲: -35~+25 dBm (MU887000A)
	-25~+35 dBm (MU887001A、MU887002A)
	周波数ドリフト範囲: 0~±200 kHz
	時間設定: 50 μs、>2000 μs
	測定範囲
	±100 kHz
	分解能
 EDD土も117国連数安定度	1 kHz 確度
EDRキャリア周波数安定度	唯良 信号レベル:>-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、10パケットの平均において
	16号D/ () D: 2-20 dBit (MO86/000A)、2-10 dBit (MO86/001A、MO88/002A)、10パクットの平均において ± (設定周波数 × 基準発振器確度 + 500 Hz)
	王(政) (成) X 基準光振奋唯反 + 500 F(Z) 表示結果
	初期周波数エラー ω i、周波数エラー ω o、周波数エラー ω i + ω o
	RMS DEVM範囲
	$0 \sim 30\% (\pi/4-DQPSK), 0 \sim 20\% (8-DPSK)$
EDR変調確度	Peak DEVM範囲
	$0 \sim 50\% (\pi/4-DQPSK), 0 \sim 30\% (8-DPSK)$
	The second of th

BLE変調特性	GFSK 入力レベル範囲 -35~+25 dBm (MU887000A) -25~+35 dBm (MU887001A、MU887002A) 周波数偏差測定範囲 0~±500 kHz peak 分解能 1 kHz 確度 変調インデックス: 0.5、信号レベル: >-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、 10パケットの平均において 1% (±0.01 × 偏差 [Hz]) (Nom.)
BLEキャリア 周波数オフセット/ドリフト	入力レベル範囲 -35~+25 dBm (MU887000A) -25~+35 dBm (MU887001A、MU887002A) 周波数範囲 0~±500 kHz 確度 信号レベル:>-20 dBm (MU887000A)、>-10 dBm (MU887001A、MU887002A)、10パケットの平均において BLE/2LE/BLR測定時:±(設定周波数 × 基準発振器確度 + 500 Hz) BLEC/2LEC測定時:±(設定周波数 × 基準発振器確度 + 1000 Hz) 表示結果 キャリア周波数エラー、周波数ドリフト、ドリフトレート

近距離無線パワー/周波数測定機能 MX887050A

近距離無線パソー/ 周波致測定機能 MX88/050A	
RFパワー (CW/変調連続波)	周波数範囲 2.4 GHz帯: 2402 MHz~2484 MHz 5 GHz帯: 4920 MHz~5825 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要) 入力レベル範囲 -65~+25 dBm (MU887000A テストボート3、4) -55~+35 dBm (MU887001A、MU887002A) 確度 CAL実行後 400 MHz ≤ 周波数 ≤ 3.8 GHz、10℃~40℃ ±0.7 dB (-30 ≤ レベル ≤ +25 dBm) ±0.9 dB (-55 ≤ レベル < -30 dBm) ±1.1 dB (-65 ≤ レベル < -55 dBm) 3.8 GHz ≤ 周波数 ≤ 6 GHz、20℃~30℃ ±0.7 dB (-30 ≤ レベル ≤ +25 dBm) ±0.9 dB (-55 ≤ レベル < -30 dBm) ±1.1 dB (-65 ≤ レベル < -55 dBm) 意線性 CW、RBW: 100 kHz ±0.2 dB (≥-55 dBm, 0~-40 dB)
周波数 (CW)	入力レベル範囲 -35~+25 dBm (MU887000A) -25~+35 dBm (MU887001A、MU887002A) 周波数範囲 0~±500 kHz 確度 ±(設定周波数 × 基準発振器確度 + 500 Hz)

IEEE 802.15.4 送信測定 MX887060A

共通	周波数範囲
	440 MHz~2500 MHz
	入力レベル範囲
	-65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-65~+25 dBm (MU887000A テストポート3、4)
	確度
	CAL実行後、10℃~40℃
	MU887000A テストポート1、2、MU887001Aすべてのテストポート
	±0.3 dB (Typ.)、±0.5 dB (-25~+35 dBm)
	±0.7 dB (-55~-25 dBm)
振幅測定	±0.9 dB (-65~-55 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-25~+25 dBm)
	±0.9 dB (-55~-25 dBm)
	±1.1 dB (-65~-55 dBm)
	MU887002A (TRX1/2) すべてのポート(20℃~30℃)
	±0.3 dB (Typ.)、±0.5 dB (-25~+35 dBm)
	±0.7 dB (-55~-25 dBm)
	±0.9 dB (-65~-55 dBm)
	入力レベル範囲
	解析長: 1000chip以上
	−30∼+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-30∼+25 dBm (MU887000A テストポート3、4)
変調解析	変調精度
	残留EVM
	≦1.5%
	キャリア周波数確度
	±(設定周波数 × 基準発振器確度 + 20 Hz)

Z-Wave 送信測定 MX887061A

共通	周波数範囲
共 週	440 MHz~1000 MHz
	入力レベル範囲
	-65∼+35 dBm (MU887000A テストボート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-65∼+25 dBm (MU887000A テストボート3、4)
	確度
	CAL実行後、10℃~40℃
	MU887000A テストポート1、2、MU887001Aすべてのテストポート
	$\pm 0.3 \text{ dB (Typ.)}, \pm 0.5 \text{ dB (-25} \sim +35 \text{ dBm)}$
	±0.7 dB (-55~-25 dBm)
振幅測定	±0.9 dB (-65~-55 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-25~+25 dBm)
	±0.9 dB (-55~-25 dBm)
	±1.1 dB (-65~-55 dBm)
	MU887002A (TRX1/2) すべてのポート(20℃~30℃)
	$\pm 0.3 \text{ dB (Typ.)} \cdot \pm 0.5 \text{ dB (-25} \sim +35 \text{ dBm)}$
	±0.7 dB (-55~-25 dBm)
	±0.9 dB (-65~-55 dBm)
	入力レベル範囲
	解析長:200bits以上
7/15⊞477+C	−30~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
変調解析	−30~+25 dBm (MU887000A テストポート3、4)
	キャリア周波数確度
	± (設定周波数 × 基準発振器確度 + 20 Hz)

Category M FDD Uplink 送信測定 MX887065A

Category M FDD Opinik 医信赖定 MX667003A		
共通項目	測定対象 PUSCH、PUCCH 周波数範囲 600 MHz~2.7 GHz、3.4 GHz~4.2 GHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)	
	入力レベル範囲	
振幅測定	-65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 600 MHz~2.7 GHz、3.4 GHz~3.8 GHz、CAL実行後、10℃~40℃(MU887000A/01A)、20℃~30℃(MU887002A) MU887000A テストポート1、2、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート ±0.3 dB (Typ.) (-20~+35 dBm、20℃~30℃) ±0.5 dB (-20~+35 dBm) ±0.7 dB (-50~-20 dBm) ±0.9 dB (-60~-50 dBm) MU887000A テストポート3、4 ±0.7 dB (-20~+25 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~-50 dBm) 3.8 GHz~4.2 GHz、CAL実行後、20℃~30℃ MU887000A、MU887001Aすべてのテストポート、MU887002A (TRX1/2) すべてのテストポート ±0.7 dB (-20~+35 dBm) ±0.9 dB (-50~-20 dBm) ±1.1 dB (-60~-50 dBm) ±1.1 dB (-60~-50 dBm)	
周波数/変調解析	入力レベル範囲 -40~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -40~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 ± (設定周波数×基準発信器確度) +15 Hz 変調精度 残留EVM (測定回数20回平均時) ≤2.5% 帯域内エミッション 入力レベル≥-10 dBmにて ≤-40 dBc	
占有帯域幅	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4)	
隣接チャネル漏洩電力	入力レベル範囲 MU887000A -10~+35 dBm (テストポート1、2) -10~+25 dBm (テストポート3、4) MU887001A -10~+35 dBm MU887002A (TRX1/2) -10~+35 dBm (600MHz~2.7GHz) -14~+35 dBm (3.4GHz~4.2GHz) 測定範囲 ≥45 dB (E-UTRA ACLR1) ≥50 dB (UTRA ACLR1)	
スペクトラムエミッションマスク	入力レベル範囲 -10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4)	

NB-IoT Uplink 送信測定 MX887067A

IND TO I OPINIK 及旧总	211/00/00/1
	測定対象
	NPUSCH
共通	周波数範囲
	600 MHz~2.7 GHz、3.4 GHz~4.2 GHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
	入力レベル範囲
	-65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-65~+25 dBm (MU887000A テストポート3、4)
	確度
	600 MHz~2.7 GHz、CAL実行後、20℃~30℃
	MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート
	±0.3 dB (Typ.) (-20~+35 dBm)
	±0.5 dB (-20~+35 dBm)
	±0.7 dB (-50~-20 dBm)
	±0.9 dB (-60~-50 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-20~+25 dBm)
	±0.9 dB (-50~-20 dBm)
 振幅測字	±1.1 dB (-60~-50 dBm)
振幅測定	3.4 GHz~3.8 GHz、CAL実行後、20℃~30℃
	MU887000A テストポート1、2、MU887001Aすべてのテストポート
	±0.5 dB (-20~+35 dBm)
	±0.7 dB (−50~−20 dBm)
	±0.9 dB (-60~-50 dBm)
	MU887002A (TRX1/2) すべてのテストポート
	±0.5 dB (Typ.) (-20~+35 dBm)
	±0.7 dB (-50~+35 dBm)
	±0.9 dB (-60~-50 dBm)
	3.8 GHz~4.2 GHz CAL実行後、20℃~30℃
	MU887000A/01A/MU887002A (TRX1/2) すべてのテストポート
	±0.7 dB (-20~+35 dBm)
	±0.9 dB (-50~-20 dBm)
	±1.1 dB (-60~-50 dBm)
	入力レベル範囲 40- 1.25 dpm (MI 1997000A = 7 b ポート 12 MI 1997001A /MI 1997002A /TDV1 /2) オペアのモストポート)
	-40~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-40~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度
	+ (設定周波数 × 基準発信器確度) + 15 Hz
国次发力不到607七	で 1 で 1 で 1 で 1 で 1 で 1 で 1 で 1 で 1 で 1
周波数/変調解析	残留EVM (測定回数20回平均時)
	帯域内エミッション
	入力レベル≥-10 dBmにて
	≤-40 dBc
	入力レベル範囲 10-125 dP=-(MU007000A = 7 b + 1 2 MU007001A (MU007002A (TDV1/2) まで アのニフ b + 1 b)
占有帯域幅	-10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-10~+25 dBm (MU887000A テストポート3、4)
	入力レベル範囲
隣接チャネル漏洩電力	MU887000A
	-10~+35 dBm (テストポート1、2)
	-10~+25 dBm (テストポート3、4)
	MU887001A
	-10~+35 dBm
	MU887002A (TRX1/2)
	-10~+35 dBm (600 MHz~2.7 GHz)
	-14~+35 dBm (3.4 GHz~4.2 GHz)
	測定範囲
	≥47 dB (GSM ACLR)
	≥50 dB (UTRA ACLR)
	入力レベル範囲
スペクトラムエミッションマスク	-10∼+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	-10~+25 dBm (MU887000A テストポート3、4)
	·

LTE-V2X 送信測定 MX887068A

	測定対象
 共通	PSSCH
	周波数範囲
	5855 MHz~5925 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
	入力レベル範囲 -65~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -65~+25 dBm (MU887000A テストポート3、4) 確度 CAL実行後、20℃~30℃ MU887000A テストポート1、2、MU887001Aすべてのテストポート
	±0.7 dB (-20~+35 dBm)
振幅測定	±1.1 dB (-50~-20 dBm)
	MU887000A テストポート3、4
	±0.7 dB (-30~+25 dBm)
	±1.1 dB (-50~-30 dBm)
	MU887002A (TRX1/2) すべてのテストポート (097オプション搭載時)
	±0.7 dB (Typ.) (-20~+35 dBm)
	±0.9 dB (-20~+35 dBm)
	±1.1 dB (-50~-20 dBm)
	入力レベル範囲 -30~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -30~+25 dBm (MU887000A テストポート3、4)
	キャリア周波数確度 20℃~30℃
国内华/亦-网络北	変調精度
周波数/変調解析	残留EVM (測定回数20回平均時)
	20℃~30℃
	≤2.5%
	帯域内エミッション
	入力レベル ≥-10 dBm、Allocated RB ≦18
	20℃~30℃
	≤-40 dBc
	入力レベル範囲
占有帯域幅	-10~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -10~+25 dBm (MU887000A テストポート3、4)
	入力レベル範囲
隣接チャネル漏洩電力	MU887000A
	-10~+35 dBm (テストポート1、2)
	-10~+25 dBm (テストポート3、4)
	MU887001A -10~+35 dBm
	-10~+35 dBm MU887002A (TRX1/2)
	-14~+35 dBm
	20℃~30℃
	≥42 dB (E-UTRA ACLR1)
	入力レベル範囲
スペクトラムエミッションマスク	-10∼+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート)
	−10~+25 dBm (MU887000A テストポート3、4)

LTE-V2X PSCCH送信測定 MX887068A-001

共通	測定対象 PSCCH 周波数範囲 5855 MHz~5925 MHz (MU887000A/01Aの場合、MU887000A/01A-001が必要)
周波数/変調解析	入力レベル範囲 -30~+35 dBm (MU887000A テストポート1、2、MU887001A/MU887002A (TRX1/2) すべてのテストポート) -30~+25 dBm (MU887000A テストポート3、4) キャリア周波数確度 20℃~30℃ ± (設定周波数 × 基準発振器確度 + 36 Hz) 変調精度 残留EVM (測定回数20回平均時) 20℃~30℃ ≤2.5%

WLAN 802.11b/g/a/n 波形ファイル MV887030A

	, 3, ,
	802.11b
	パケット長:1024バイト、ガウシアンフィルタ:BT 0.5
	≤-38 dB rms (2402 MHz~2484 MHz)
	802.11g
	パケット長:1000バイト、20℃~30℃
	≤-40 dB rms (2402 MHz~2484 MHz)
EVM	802.11a
EVIVI	パケット長:1000バイト、20℃~30℃
	≤-38 dB rms (4920 MHz~5825 MHz)
	802.11n
	パケット長: 4096バイト、Long guard interval、チャネル
	帯域幅:40 MHz、20℃~30℃
	≤-40 dB rms (2402 MHz~2484 MHz)
	≤-38 dB rms (4920 MHz~5825 MHz)

WLAN 802.11ax 波形ファイル MV887033A

EVM	パケット長 : 4096バイト、Guard Interval 0.8 μs、 チャネル帯域幅 : 80 MHz、20℃~30℃ MU887002A
	≦-43 dB Nom. (MU887002A-007搭載時、 5900 MHz~7175 MHz)

WLAN 802.11be 波形ファイル MV887034A

E		パケット長 : 4096バイト、Guard Interval 0.8 μs、 20℃~30℃
	EVM	MU887002A
		≦-38 dB Nom. (MCS13時)

Bluetooth 波形ファイル MV887040A

誤差	周波数: 2402 MHz~2480 MHz、GFSK変調信号 1% (±0.01 × 偏差 [Hz]) (Nom.)	
DEVM	周波数: 2402 MHz~2480 MHz、π/4-DQPSK、8-DPSK変調信号において <5% rms	

IEEE 802.15.4 波形ファイル MV887060A

EVM	440 MHz ≤ 周波数 ≤ 2500 MHz
	≦3.0%

Z-Wave 波形ファイル MV887061A

E) /M	FVM	440 MHz ≦ 周波数 ≦ 2500 MHz	
		≦3.0%	

Category M FDD Downlink 波形ファイル MV887065A

	MU887000A テストポート1、2、MU887001Aすべてのテストポート
	-12 dBm (周波数 ≦ 3.8 GHz)、-20 dBm (周波数 > 3.8 GHz)
最大出力レベル	MU887000A テストポート3、4
	-2 dBm(周波数 ≤ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート
	-7 dBm(周波数 ≤ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)

NB-IoT Downlink 波形ファイル MV887067A

	MU887000A テストポート1、2、MU887001Aすべてのテストポート
	-12 dBm (周波数 ≦ 3.8 GHz)、-20 dBm (周波数 > 3.8 GHz)
最大出力レベル	MU887000A テストポート3、4
	-2 dBm(周波数 ≦ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート
	-7 dBm(周波数 ≤ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)

LTE-V2X 波形ファイル MV887068A

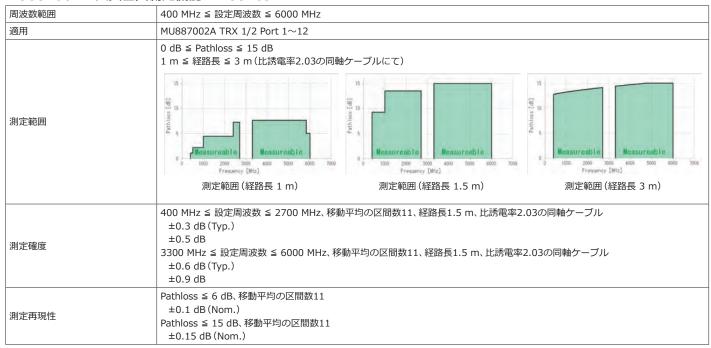
	MU887000A テストポート1、2、MU887001Aすべてのテス
	トポート
	-12 dBm (周波数 ≦ 3.8 GHz)、-20 dBm (周波数 > 3.8 GHz)
最大出力レベル	MU887000A テストポート3、4
	-2 dBm(周波数 ≤ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)
	MU887002A (TRX1/2) すべてのテストポート
	-7 dBm(周波数 ≤ 3.8 GHz)、-10 dBm(周波数 > 3.8 GHz)

ISDB-Tmm 波形ファイル MV887112A

	MED	周波数:214.714285 MHz
	MEK	≥37 dB (total)

FM/Audio 送受信測定 MX887070A

FM信号測定


	測定対象
11/2	FM/FM stereo/RDS (Radio Data System) signal
共通	周波数範囲
	65 MHz~110 MHz
	測定機能
	振幅測定
	キャリア周波数測定
	周波数偏移測定
	占有帯域幅
	Pilot周波数偏移測定
	Audio周波数偏移測定
	Audio周波数測定
	Pilot周波数測定
	THD
	THD+N/SINAD
	SNR
	オーディオフィルタ
	Low-pass: Off, 3 kHz, 15 kHz, 20 kHz, 30 kHz
	High-pass: Off, 20 Hz, 100 Hz, 400 Hz
	De-emphasis: Off, 50 µs, 75 µs
送信測定	Bandpass (Weightingフィルタ): Off、A-Weighting (IEC 61672: 2003)、C-Message、CCITT (ITU-T 0.41) 入力レベル範囲
	-30~+15 dBm
	確度 10℃ 40℃ 測字型域幅・1.2 MUコー20 dDm < L & U < L1E dDm
	10℃~40℃、測定帯域幅: 1.2 MHz、-30 dBm ≦ レベル ≦ +15 dBm
	±0.7 dB
	キャリア周波数確度
	FMモノラル変調、1 kHz Tone、75 kHz偏移
	± (設定周波数 × 基準発振器確度 + 1 Hz)
	FM偏移範囲
	1 kHz~100 kHz
	残留FM
	モノラル、1 kHz Tone、75 kHz偏移、復調帯域: 20 Hz~15 kHz、De-emphasisフィルタ (50 μs) 使用時
	>55 dB
	復調信号解析
	FFTポイント数: 65536
	サンプリングレート: 152 kHz
	FFT窓関数:Hanning窓
	測定機能
	FM変調波形出力
	変調方式
	FMモノラル、FMステレオ
	周波数偏移
	設定範囲: 20 kHz~100 kHz
	歪み: >50 dB (SINAD) [65 MHz~110 MHz (SINAD、20 Hz~15 kHz、エンファシス: On、モノラル)
受信測定	75 kHz偏移、1 kHz Tone]
	分解能: 0.1 Hz
	内部変調信号
	AF Tone
	L Channel (Mono) : 1∼8 tones
	R Channel : 1∼8 tones
	周波数範囲
	20 Hz~20 kHz、分解能: 0.1 Hz

Audio信号測定

オーディオ測定ハードウェア MU887000A/01A-002を実装することにより、AF input/outputコネクタからのアナログ音声信号もしくはAF digitalコネクタからのディジタル音声信号での音声信号の送受信測定ができます。

測定機能 振幅測定 周波数測定 歪み率測定 クロストーク THD THD+N/SINAD SNR アナログ測定 全ての規格値は、シングルトーン測定において規定 インピーダンス:100kΩ(AC結合) 周波数測定 周波数範囲: 20 Hz~20 kHz レベル測定 測定範囲:1 mVpeak~5 Vpeak (30 V rms、max.) 入力レンジ設定: 50 mVpeak、500 mVpeak、5 Vpeak レベル確度:±0.4 dB(20℃~30℃) 送信測定 THD+N (全高調波歪み + 雑音) <-60 dB(1 kHz、2 Vpeak、20 Hz~20 kHz帯域、5 Vpeakレンジ、20℃~30℃) クロストーク L/R: >60 dB AF信号解析 サンプリングレート: 192 kHz FFTポイント数:65536 FFT窓関数: Hanning窓 ディジタル測定 全ての規格値は、シングルトーン測定において規定 ビット分解能: 16 bits/24 bits サンプリングレート 周波数:16、32、44.1、48 kHz AF信号解析 FFTポイント数: 16384 (サンプリングレート: 48 kHz、44.1 kHz) 8192 (サンプリングレート: 32 kHz) 4096 (サンプリングレート: 16 kHz) FFT窓関数: Hanning窓 アナログ測定 全ての規格値は、シングルトーン測定において規定 インピーダンス: 1Ω (Nom.、AC結合) 出力波形:シングルトーン、マルチトーン 周波数 周波数範囲: 20 Hz~20 kHz 分解能: 0.01 Hz 出力レベル レベル範囲: 0 (off)、1 mV~5 Vpeak (100kΩ終端) レベル分解能:1 mV(≦5 Vpeak) 100 μV (≦500 mVpeak) 10 uV (≤50 mVpeak) レベル確度:±0.3 dB(1 kHz、100kΩ終端、20℃~30℃) 最大出力電流 100 mA (Nom.) (短絡無きこと) 受信測定 THD+N (全高調波歪み + 雑音) <-60 dB (1 kHz、1 Vpeak、20 Hz~20 kHz帯域、100kΩ終端、20℃~30℃) ディジタル測定 全ての規格値は、シングルトーン測定において規定 出力波形:シングルトーン、マルチトーン 周波数 周波数範囲: 20 Hz~20 kHz (サンプリングレート: 44.1 kHz、48 kHz) 20 Hz~14 kHz (サンプリングレート: 32 kHz) 20 Hz~7 kHz (サンプリングレート: 16 kHz) 分解能: 0.01 Hz 出カレベル レベル範囲: Full Scale~(Full Scale - 40 dB) 分解能: 0.1 dB ビット分解能: 16 bits/24 bits サンプリングレート 周波数:16、32、44.1、48 kHz

MU887002A パスロス測定機能 MX887092A

ユニバーサルワイヤレステストセット MT8870A オーダリング・インフォメーション

ご契約にあたっては、形名・記号、品名、数量をご指定ください。 品名は、現品の表記と異なる場合がありますので、ご了承ください。

-本体- ユニバーサルワイヤレステストセット -標準付属品- 電源コード:	
- 標準付属品 -	
	1本
ブランクパネル:	0~4枚*1
DVD-R:	1枚
	11X
	(D B)
	,
,	
	-K)
,	
MU88/000A 取扱説明書(DVD-R)	
- オプション -	
GPIBコントロール*2	
GPIBコントロール 後付*2	
- 保証サービス -	
2年保証延長サービス	
	1 2
ノロント保護カハー1MW5U (MT8870A) *3	
•	
•	
同軸コード、0.5 m (BNC-P・RG-58A/L	J·BNC-P)
同軸コード、0.5 m (SMA-P・SMA-P、Do	
同軸コード、1.0 m (SMA-P・SMA-P、DO	$C\sim$ 18 GHz $\sqrt{50}\Omega$
同軸コード、1.5 m (SMA-P・SMA-P、DO	C \sim 18 GHz $_{\circ}$ 50 Ω)
同軸コード、2.0 m (SMA-P・SMA-P、De	C \sim 18 GHz $_{\cdot}$ 50Ω $_{\cdot}$
同軸アダプタ (N-P・SMA-J)	
シールド付イーサネットケーブル	
(ストレートケーブル、長さ約1 m)	
シールド付イーサネットケーブル	
(ストレートケーブル、長さ約3 m)	
シールド付イーサネットケーブル	
(クロスケーブル、長さ約1 m)	
シールド付イーサネットケーブル	
(クロスケーブル、長さ約3 m)	
	GPIBコントロール*2 GPIBコントロール 後付*2 -保証サービス- 2年保証延長サービス 3年保証延長サービス 5年保証延長サービス 5年保証延長サービス 5年保証延長サービス -応用部品- ブランクパネル ラックマウントキット (MT8870A) キャリングケース (MT8870A) キャリングケース (MU88700xA) フロント保護カバー1MW5U (MT8870A) クロント保護カバー1MW5U (MT8870A) 同軸コード、1.0 m GPIBケーブル、2.0 m 同軸コード、2.0 m (BNC-P・RG-58A/U・同軸コード、1.0 m (N-P・5D-2W・N-F・同軸コード、1.0 m (N-P・5D-2W・N-F・同軸コード、1.0 m (SMA-P・SMA-P、DIの軸コード、1.5 m (SMA-P・SMA-P、DIの軸コード、1.5 m (SMA-P・SMA-P、DIの軸コード、2.0 m (SMA-P・SMA-P、DIの由コード、2.0 m (SMA-P・SMA-P、DIのード、2.0 m (SMA

*1:テストユニットが未搭載のスロットに装着されます

^{*2:} MU887000A/01Aのみ対応。

形名・記号	品 名
	-テストユニット-
MU887000A	送受信テストモジュール
MU887001A	送受信テストモジュール
MU887002A	送受信テストモジュール
	-標準付属品-
	DVD-R: 1枚
W3606AW	MU887000A 取扱説明書
W3720AW	MU887001A 送受信テストモジュール取扱説明書
W4048AW	MU887002A 送受信テストモジュール 取扱説明書
KUWM-32-M4-16-OR	ウィングノブ
	-オプション-
MU887000A-001	6 GHz周波数拡張
MU887000A-101/201	6 GHz周波数拡張 後付
MU887000A-002	オーディオ測定ハードウェア
MU887000A-102/202	オーディオ測定ハードウェア後付
MU887001A-001	6 GHz周波数拡張
MU887001A-101/201	6 GHz周波数拡張 後付
MU887001A-002	オーディオ測定ハードウェア
MU887001A-102/202	オーディオ測定ハードウェア後付
MU887002A-007	7 GHz拡張機能
MU887002A-107/207	7 GHz拡張機能 後付
MU887002A-UG107/UG207	7 GHz拡張機能アップグレード
MU887002A-097	7 GHz拡張ハードウェア*4
	- 保証サービス -
MU887000A-ES210	2年保証延長サービス
MU887000A-ES310	3年保証延長サービス
MU887000A-ES510	5年保証延長サービス
MU887001A-ES210	2年保証延長サービス
MU887001A-ES310	3年保証延長サービス
MU887001A-ES510	5年保証延長サービス
MU887002A-ES210	2年保証延長サービス
MU887002A-ES310	3年保証延長サービス
MU887002A-ES510	5年保証延長サービス

*4: MU887002A-097は標準オプションとなります。 MU887002A-097は、MU887002Aと同時に注文が必要です。

^{*3:} RoHS10非対応のため、EUに輸出できません。

ユニバーサルワイヤレステストセット MT8872A オーダリング・インフォメーション

T(A =7□		
形名・記号	品名	
-本 体- MT8872A ユニバーサルワイヤレステストセット		
M10072A		
	-標準付属品-	
	電源コード:	1本
B0666B	ブランクパネル:	0~2枚*1
	DVD-R:	1枚
MX880050A	CombiView (DVD-R)	
MX880051A	セルラアプリケーションアプレット(DVD-R)	
MX880052A	SRWアプリケーションアプレット(DVD-R)	
MX880053A	FM/Audioアプリケーションアプレット(DVD	
MX880054A	信号発生器アプリケーションアプレット(DVI	
MX880055A	スモールセルアプリケーションアプレット(D	
MX880056A	IEEE 802.15.4 アプリケーションアプレット	(DVD-R)
MX887900A	MT8870A ユーティリティツール (DVD-R)	
W3605AW	MT8872A 取扱説明書 (DVD-R)	
W3606AW	MU887000A 取扱説明書 (DVD-R)	
	ーオプション-	
MT8872A-001	GPIBコントロール*2	
MT8872A-101/201	GPIBコントロール 後付*2	
, ,	- 保証サービス -	
MT8872A-ES210	- 体証 9 - こへ -	
MT8872A-ES310	3年保証延長サービス	
MT8872A-ES510	5年保証延長サービス	
M16672A-E3310		
	一応用部品 —	
B0666B	ブランクパネル	
B0774A	キャリングケース (MT8872A)	
B0775A	キャリングケース (MT88700xA)	
J0006	GPIBケーブル、0.5 m	
J0007	GPIBケーブル、1.0 m	
J0008	GPIBケーブル、2.0 m	
J0127A	同軸コード、1 m (BNC-P・RG-58A/U・BNC	-P)
J0127B	同軸コード、2.0 m (BNC-P・RG-58A/U・BN	IC-P)
J0127C	同軸コード、0.5 m (BNC-P・RG-58A/U・BN	IC-P)
J0576B	同軸コード、1.0 m (N-P・5D-2W・N-P)	
J0576D	同軸コード、2.0 m (N-P・5D-2W・N-P)	
J0322A	同軸コード、0.5 m (SMA-P・SMA-P、DC~18	8 GHz、50Ω)
J0322B	同軸コード、1.0 m (SMA-P・SMA-P、DC~18	
J0322C	同軸コード、1.5 m (SMA-P・SMA-P、DC~18	8 GHz、50Ω)
J0322D	同軸コード、2.0 m (SMA-P・SMA-P、DC~18	8 GHz、50Ω)
J0004	同軸アダプタ (N-P・SMA-J)	
J1261A	シールド付イーサネットケーブル	
	(ストレートケーブル、長さ約1 m)	
J1261B	シールド付イーサネットケーブル	
	(ストレートケーブル、長さ約3 m)	
J1261C	シールド付イーサネットケーブル	
	(クロスケーブル、長さ約1 m)	
J1261D	シールド付イーサネットケーブル	
	(クロスケーブル、長さ約3 m)	
	(フロヘブーフ)が 安ご利3 川)	

*]	. :	テス	トユニッ	トか未搭載のスロッ	トに装着されます。

^{*2:} MU887000A/01Aのみ対応。

形名・記号	品名			
-テストユニット-				
MU887000A	・ 			
MU887001A	送受信テストモジュール			
MU887002A	送受信テストモジュール			
1100070027	-標準付属品-			
	一張李刊馬間			
W3606AW	MU887000A 取扱説明書			
W3720AW	MU887000A			
W4048AW	MU887002A 送受信アストモジュール 取扱説明書			
KUWM-32-M4-16-OR	ウィングノブ			
KUWM-32-M4-10-OK	· ·			
14110070004 004	ーオプションー			
MU887000A-001	6 GHz周波数拡張			
MU887000A-101/201	6 GHz周波数拡張 後付			
MU887000A-002	オーディオ測定ハードウェア			
MU887000A-102/202	オーディオ測定ハードウェア後付			
MU887001A-001	6 GHz周波数拡張			
MU887001A-101/201	6 GHz周波数拡張 後付 オーディオ測定ハードウェア			
MU887001A-002	オーディオ測定ハートフェア オーディオ測定ハードウェア後付			
MU887001A-102/202 MU887002A-007	オーティオ測定パート・フェア後旬 7 GHz拡張機能			
MU887002A-007 MU887002A-107/207	7 GHz拡張機能 後付			
	7 GHz拡張機能アップグレード			
MU887002A-UG107/UG207 MU887002A-097	7 GHz拡張化アップグレート 7 GHz拡張八ードウェア* ³			
MU007002A-097				
	- 保証サービス -			
MU887000A-ES210	2年保証延長サービス			
MU887000A-ES310	3年保証延長サービス			
MU887000A-ES510	5年保証延長サービス			
MU887001A-ES210	2年保証延長サービス			
MU887001A-ES310	3年保証延長サービス			
MU887001A-ES510	5年保証延長サービス			
MU887002A-ES210	2年保証延長サービス			
MU887002A-ES310	3年保証延長サービス			
MU887002A-ES510	5年保証延長サービス			

^{*3:} MU887002A-097は標準オプションとなります。 MU887002A-097は、MU887002Aと同時に注文が必要です。

ソフトウェア/波形ファイル オーダリング・インフォメーション

ソフトウェア					
MX887010A	セルラ規格用シーケンス測定				
MX887011A	W-CDMA/HSPA Uplink 送信測定				
MX887012A	GSM/EDGE Uplink 送信測定				
MX887013A	LTE FDD Uplink 送信測定				
MX887013A-001	LTE-Advanced FDD Uplink CA 送信測定*1				
MX887014A	LTE TDD Uplink 送信測定				
MX887014A-001	LTE-Advanced TDD Uplink CA 送信測定*2				
MX887015A	CDMA2000 Reverse Link 送信測定				
MX887016A	1xEV-DO Reverse Link 送信測定				
MX887017A	TD-SCDMA Uplink 送信測定				
MX887018A	NR FDD sub-6 GHz Uplink 送信測定				
MX887018A-001	NR FDD Contiguous ENDC 送信測定*3				
MX887019A	NR TDD sub-6 GHz Uplink 送信測定				
MX887019A-001	NR TDD Contiguous ENDC 送信測定*4				
MX887021A	W-CDMA/HSPA Downlink 送信測定*5				
MX887023A	LTE FDD Downlink 送信測定*5				
MX887030A	WLAN 802.11b/g/a/n 送信測定*6				
MX887031A	WLAN 802.11ac 送信測定*6				
MX887032A	WLAN 802.11p 送信測定*6				
MX887033A	WLAN 802.11ax 送信測定* ⁶				
MX887034A	WLAN 802.11be 送信測定*5				
MX887040A	Bluetooth 送信測定				
MX887040A-001	DLE 送信測定*7				
MX887040A-002	2LE 送信測定* ^{7, *8}				
MX887040A-003	BLR 送信測定* ^{7,} * ⁸				
MX887040A-004	BLE AoA/AoD 送信測定*7. *8. *9				
MX887050A	近距離無線パワー/周波数測定機能				
MX887060A	IEEE 802.15.4 送信測定				
MX887061A	Z-Wave 送信測定				
MX887065A	Category M FDD Uplink 送信測定				
MX887067A	NB-IoT Uplink 送信測定				
MX887068A	LTE-V2X 送信測定*10				
MX887068A-001	LTE-V2X PSCCH送信測定*10、*11				
MX887070A	FM/Audio 送受信測定*12、*13				
MX887090A	マルチDUTメジャメントスケジューラ				
MX887092A	MU887002A パスロス測定機能*5				

波形ファイル				
MV887011A	W-CDMA/HSPA Downlink 波形ファイル			
MV887012A	GSM/EDGE Downlink 波形ファイル			
MV887013A	LTE FDD Downlink 波形ファイル			
MV887014A	LTE TDD Downlink 波形ファイル			
MV887015A	CDMA2000 Forward Link 波形ファイル			
MV887016A	1xEV-DO Forward Link 波形ファイル			
MV887017A	TD-SCDMA Downlink 波形ファイル			
MV887018A	NR FDD sub-6 GHz Downlink 波形ファイル			
MV887019A	NR TDD sub-6 GHz Downlink 波形ファイル			
MV887021A	W-CDMA/HSPA Uplink 波形ファイル*5			
MV887023A	LTE FDD Uplink 波形ファイル*5			
MV887030A	WLAN 802.11b/g/a/n 波形ファイル*6			
MV887031A	WLAN 802.11ac 波形ファイル* ⁶			
MV887032A	WLAN 802.11p 波形ファイル* ⁶			
MV887033A	WLAN 802.11ax 波形ファイル* ⁶			
MV887034A	WLAN 802.11be 波形ファイル*5			
MV887040A	Bluetooth 波形ファイル			
MV887040A-001	DLE 波形ファイル* ¹⁴			
MV887040A-002	2LE 波形ファイル* ^{14、*15}			
MV887040A-003	BLR 波形ファイル* ^{14、*15}			
MV887040A-004	BLE AoA/AoD 波形ファイル*14、*15、*16			
MV887060A	IEEE 802.15.4 波形ファイル			
MV887061A	Z-Wave 波形ファイル			
MV887065A	Category M FDD Downlink 波形ファイル			
MV887067A	NB-IoT Downlink 波形ファイル			
MV887068A	LTE-V2X 波形ファイル* ¹⁰			
MV887070A	FM RDS 波形ファイル* ¹³			
MV887100A	GPS 波形ファイル			
MV887100A-002	GPS L5 波形ファイル* ¹⁷			
MV887101A	Galileo 波形ファイル			
MV887102A	GLONASS 波形ファイル			
MV887103A	BeiDou 波形ファイル			
MV887104A	QZSS 波形ファイル			
MV887110A	DVB-H 波形ファイル			
MV887111A	ISDB-T 波形ファイル			
MV887112A	ISDB-Tmm 波形ファイル* ¹³			

- *1: MX887013Aが必要です。
- *2: MX887014Aが必要です。
- *3: MX887018Aが必要です。
- *4: MX887019Aが必要です。
- *5: MU887002Aのみサポートします。
- *6: MU887000A/01Aにて5 GHzバンド (11a/n/p/ac) を測定する場合には、MU887000A/01A-001が必要です。
- *7: MX887040Aが必要です。
- *8: MX887040A-001が必要です。
- *9: MX887040A-002を推奨します。
- *10: MU887000A/01Aで測定する場合には、MU887000A/01A-001が必要です。
- *11: MX887068Aが必要です。
- *12: Audio信号を測定する場合には、MU887000A/01A-002が必要です。
- *13: MU887000A/01Aのみサポートします。
- *14: MV887040Aが必要です。
- *15: MV887040A-001が必要です。
- *16: MV887040A-002を推奨します。
- *17: MV887100Aが必要です。

Windows®は、Microsoft Corporationの米国およびその他の国における登録商標です。 その他記載されている会社名、製品名、およびサービス名などは、各社の商標または登録商標です。

お見積り、ご注文、修理などは、下記までお問い合わせください。 記載事項は、おことわりなしに変更することがあります。

2104

アンリツ株式会社

https://www.anritsu.com

本社 〒243-8555 神奈川県厚木市恩名5-1-1 TEL 046-223-1111

厚木 〒243-0016 神奈川県厚木市田村町8-5

通信計測営業本部 TEL 046-296-1244 FAX 046-296-1239 通信計測営業本部 営業推進部 TEL 046-296-1208 FAX 046-296-1248

仙台 〒980-6015 宮城県仙台市青葉区中央4-6-1 SS30

通信計測営業本部 TEL 022-266-6134 FAX 022-266-1529 名古屋 〒450-0003 愛知県名古屋市中村区名駅南2-14-19 住友生命名古屋ビル 通信計測営業本部 TEL 052-582-7283 FAX 052-569-1485

大阪 〒564-0063 大阪府吹田市江坂町1-23-101 大同生命江坂ビル

通信計測営業本部 TEL 06-6338-2800 FAX 06-6338-8118

福岡 〒812-0004 福岡県福岡市博多区榎田1-8-28 ツインスクェア 通信計測営業本部 TEL 092-471-7656 FAX 092-471-7699

■カタログのご請求、価格・納期のお問い合わせは、下記または営業担当までお問い合わせください。 通信計測営業本部 営業推進部

TEL: 0120-133-099 (046-296-1208) FAX: 046-296-1248

受付時間 / 9:00~12:00、13:00~17:00、月~金曜日(当社休業日を除く)

E-mail: SJPost@zy.anritsu.co.jp

■計測器の使用方法、その他については、下記までお問い合わせください。

計測サポートセンター

で TEL: 0120-827-221 (046-296-6640) 受付時間/9:00~12:00、13:00~17:00、月~金曜日 (当社休業日を除く)

 $\hbox{E-mail: MDVPOST@anritsu.com}$

■本製品を国外に持ち出すときは、外国為替および外国貿易法の規定により、日本国政府の輸出許可または役務取引許可が必要となる場合があります。 また、米国の輸出管理規則により、日本からの再輸出には米国商務省の許可が必要となる場合がありますので、必ず弊社の営業担当までご連絡ください。

ご使用の前に取扱説明書をよくお読みのうえ、正しくお使いください。

このカタログの記載内容は 2023 年 3 月 2 日現在のものです。