MX370102A/MX269902A TDMA IQproducer™ 取扱説明書

第 12 版

・製品を適切・安全にご使用いただくために, 製品をご使 用になる前に, 本書を必ずお読みください。
・本書に記載以外の各種注意事項は, MG3700A ベクト
ル信号発生器取扱説明書(本体編), MG3710A ベクト
ル信号発生器 MG3740A アナログ変調信号発生器
取 扱 説 明 書(本 体 編),MS2690A/MS2691A/
MS2692A シグナルアナライザ取扱説明書(本体 操作
編), MS2830A シグナルアナライザ(本体 操作編) ま
たは MS2840A シグナルアナライザ(本体 操作編)に
記載の事項に準じますので,そちらをお読みください。
・本書は製品とともに保管してください。

アンリツ株式会社

管理番号: M-W2916AW-12.0

安全情報の表示について ――

当社では人身事故や財産の損害を避けるために、危険の程度に応じて下記のようなシグナルワードを用いて安全に関す る情報を提供しています。記述内容を十分理解した上で機器を操作してください。 下記の表示およびシンボルは、そのすべてが本器に使用されているとは限りません。また、外観図などが本書に含まれる とき、製品に貼り付けたラベルなどがその図に記入されていない場合があります。

本書中の表示について

◇ 警告 回避しなければ、死亡または重傷に至るおそれがある潜在的な危険があることを示します。

 注意 回避しなければ,軽度または中程度の人体の傷害に至るおそれれがある潜在的危険,または, 物的損害の発生のみが予測されるような危険があることを示します。

機器に表示または本書に使用されるシンボルについて

機器の内部や操作箇所の近くに,または本書に,安全上または操作上の注意を喚起するための表示があります。 これらの表示に使用しているシンボルの意味についても十分理解して,注意に従ってください。

MX370102A/MX269902A TDMA IQproducer™ 取扱説明書

2007年(平成19年) 4月19日(初版) 2017年(平成29年)7月19日(第12版)

・予告なしに本書の内容を変更することがあります。
 ・許可なしに本書の一部または全部を転載・複製することを禁じます。
 Copyright © 2007-2017, ANRITSU CORPORATION
 Printed in Japan

品質証明

アンリツ株式会社は、本製品が出荷時の検査により公表機能を満足することを証明します。

保証

- アンリツ株式会社は、本ソフトウェアが付属のマニュアルに従った使用方法にも かかわらず、実質的に動作しなかった場合に、無償で補修または交換します。
- ・ その保証期間は、購入から6か月間とします。
- 補修または交換後の本ソフトウェアの保証期間は、購入時から6か月以内の残余の期間、または補修もしくは交換後から30日のいずれか長い方の期間とします。
- ・ 本ソフトウェアの不具合の原因が、天災地変などの不可抗力による場合、お客様の誤使用の場合、またはお客様の不十分な管理による場合は、保証の対象 外とさせていただきます。

また,この保証は,原契約者のみ有効で,再販売されたものについては保証しか ねます。

なお,本製品の使用,あるいは使用不能によって生じた損害およびお客様の取引 上の損失については,責任を負いかねます。

当社へのお問い合わせ

本製品の故障については、本書(紙版説明書では巻末、電子版説明書では別ファ イル)に記載の「本製品についてのお問い合わせ窓口」へすみやかにご連絡ください。

国外持出しに関する注意

1. 本製品は日本国内仕様であり、外国の安全規格などに準拠していない場 合もありますので、国外へ持ち出して使用された場合、当社は一切の責 任を負いかねます。

 本製品および添付マニュアル類は、輸出および国外持ち出しの際には、 「外国為替及び外国貿易法」により、日本国政府の輸出許可や役務取引 許可を必要とする場合があります。また、米国の「輸出管理規則」により、 日本からの再輸出には米国政府の再輸出許可を必要とする場合があり ます。

本製品や添付マニュアル類を輸出または国外持ち出しする場合は,事前 に必ず弊社の営業担当までご連絡ください。

輸出規制を受ける製品やマニュアル類を廃棄処分する場合は, 軍事用途 等に不正使用されないように, 破砕または裁断処理していただきますよう お願い致します。

ソフトウェア使用許諾

お客様は、ご購入いただいたソフトウェア(プログラム、データベース、電子機器の動作・設定などを定めるシナリオ等、 以下「本ソフトウェア」と総称します)を使用(実行、複製、記録等、以下「使用」と総称します)する前に、本ソフトウェア 使用許諾(以下「本使用許諾」といいます)をお読みください。お客様が、本使用許諾にご同意いただいた場合のみ、 お客様は、本使用許諾に定められた範囲において本ソフトウェアをアンリツが推奨・指定する装置(以下、「本装置」と いいます)に使用することができます。

第1条 (許諾,禁止内容)

- お客様は、本ソフトウェアを有償・無償にかかわら ず第三者へ販売、開示、移転、譲渡、賃貸、頒布、 または再使用する目的で複製、開示、使用許諾す ることはできません。
- お客様は、本ソフトウェアをバックアップの目的で、 1部のみ複製を作成できます。
- 本ソフトウェアのリバースエンジニアリングは禁止させていただきます。
- 4. お客様は、本ソフトウェアを本装置1台で使用でき ます。

第2条 (免責)

アンリツは、お客様による本ソフトウェアの使用また は使用不能から生ずる損害、第三者からお客様に なされた損害を含め、一切の損害について責任を 負わないものとします。

第3条 (修補)

- お客様が、取扱説明書に書かれた内容に基づき 本ソフトウェアを使用していたにもかかわらず、本ソ フトウェアが取扱説明書もしくは仕様書に書かれた 内容どおりに動作しない場合(以下「不具合」と言 います)には、アンリツは、アンリツの判断に基づい て、本ソフトウェアを無償で修補、交換、または回 避方法のご案内をするものとします。ただし、以下 の事項に係る不具合を除きます。
 - a) 取扱説明書・仕様書に記載されていない使用目的 での使用
 - b) アンリツが指定した以外のソフトウェアとの相互干渉
 - c) 消失したもしくは,破壊されたデータの復旧
 - d) アンリツの合意無く,本装置の修理,改造がされた場合
 - e) 他の装置による影響,ウイルスによる影響,災害,そ の他の外部要因などアンリツの責とみなされない要 因があった場合
- 前項に規定する不具合において、アンリツが、お客様ご指定の場所で作業する場合の移動費、宿泊費および日当に関る現地作業費については有償とさせていただきます。

3. 本条第1項に規定する不具合に係る保証責任期間は本ソフトウェア購入後6か月もしくは修補後30日いずれか長い方の期間とさせていただきます。

第4条 (法令の遵守)

お客様は、本ソフトウェアを、直接、間接を問わず、 核、化学・生物兵器およびミサイルなど大量破壊兵 器および通常兵器およびこれらの製造設備等関連 資機材等の拡散防止の観点から、日本国の「外国 為替および外国貿易法」およびアメリカ合衆国「輸 出管理法」その他国内外の関係する法律、規則、 規格等に違反して、いかなる仕向け地、自然人もし くは法人に対しても輸出しないものとし、また輸出さ せないものとします。

第5条 (解除)

アンリツは、お客様が本使用許諾のいずれかの条 項に違反したとき、アンリツの著作権およびその他 の権利を侵害したとき、または、その他、お客様の 法令違反等、本使用許諾を継続できないと認めら れる相当の事由があるときは、本使用許諾を解除 することができます。

第6条 (損害賠償)

お客様が,使用許諾の規定に違反した事に起因し てアンリツが損害を被った場合,アンリツはお客様 に対して当該の損害を請求することができるものと します。

第7条 (解除後の義務)

お客様は、第5条により、本使用許諾が解除され たときはただちに本ソフトウェアの使用を中止し、ア ンリツの求めに応じ、本ソフトウェアおよびそれらに 関する複製物を含めアンリツに返却または廃棄す るものとします。

第8条 (協議)

本使用許諾の条項における個々の解釈について 疑義が生じた場合,または本使用許諾に定めのな い事項についてはお客様およびアンリツは誠意を もって協議のうえ解決するものとします。

第9条 (準拠法)

本使用許諾は,日本法に準拠し,日本法に従って 解釈されるものとします。

計測器のウイルス感染を防ぐための注意

 ファイルやデータのコピー 当社より提供する、もしくは計測器内部で生成されるもの以外、計測器には ファイルやデータをコピーしないでください。 前記のファイルやデータのコピーが必要な場合は、メディア(USB メモリ、 CFメモリカードなど)も含めて事前にウイルスチェックを実施してください。
 ソフトウェアの追加 当社が推奨または許諾するソフトウェア以外をダウンロードしたりインストールしないでください。
 ネットワークへの接続 接続するネットワークは、ウイルス感染への対策を施したネットワークを使 用してください。

ウイルス感染を防ぐための注意

インストール時

本ソフトウェア, または当社が推奨, 許諾するソフトウェアをインストールす る前に, PC(パーソナルコンピュータ)および PC に接続するメディア(USB メモリ, CF メモリカードなど)のウイルスチェックを実施してください。

本ソフトウェア使用時および計測器と接続時

- ファイルやデータのコピー 次のファイルやデータ以外を PC にコピーしないでください。
 当社より提供するファイルやデータ
 本ソフトウェアが生成するファイル
 本書で指定するファイル
 市記のファイルやデータのコピーが必要な場合は、メディア(USB メモ リ、CF メモリカードなど)も含めて事前にウイルスチェックを実施してくだ さい。
 ネットワークへの接続
 - PC を接続するネットワークは、ウイルス感染への対策を施したネット ワークを使用してください。

ソフトウェアを安定してお使いいただくための注意

本ソフトウェアの動作中に, PC 上にて以下の操作や機能を実行すると, ソフトウェアが正常に動作しないことがあります。

- ・ 当社が推奨または許諾するソフトウェア以外のソフトウェアを同時に実行
- ・ ふたを閉じる(ノート PC の場合)
- ・ スクリーンセーバ
- バッテリ節約機能(ノート PC の場合)

各機能の解除方法は、使用している PC の取扱説明書を参照してください。

はじめに

■取扱説明書の構成

MX370102A/MX269902A TDMA IQproducer™の取扱説明書は,以下のよう に構成されています。

■MG3700A, MG3710A または MG3740A をお使いの場合

• MG3700A ベクトル信号発生器取扱説明書(本体編)

MG3700A の基本的な操作方法,保守手順,リモート制御などについて記述しています。

 MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(本体編)

MG3710A, MG3740Aの基本的な操作方法,保守手順,リモート制御などについて記述しています。

 MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer[™]編)

ベクトル信号発生器,アナログ信号発生器用の Windows アプリケーションソフトウ

ェアである IQproducer の機能, 操作方法などについて記述しています。

● TDMA IQproducer[™] 取扱説明書<本書>

TDMA IQproducerTMの基本的な操作方法,機能などについて記述しています。

■MS2690A/MS2691A/MS2692A, MS2830A または MS2840A をお使いの場合

• シグナルアナライザ 取扱説明書(本体 操作編)

基本的な操作方法,保守手順,共通的な機能などについて記述しています。

• シグナルアナライザ 取扱説明書(本体 リモート制御編) 共通的なリモート制御について記述しています。

 MS2690A/MS2691A/MS2692A シグナルアナライザ オプション 020 ベクトル信号発生器 取扱説明書(操作編)

MS2690A/MS2691A/MS2692A のベクトル信号発生器オプションの機能, 操作 方法などについて記述しています。

 MS2830A/MS2840A シグナルアナライザ ベクトル信号発生器 取扱説明書 (操作編)

MS2830A/MS2840A のベクトル信号発生器オプションの機能,操作方法などに ついて記述しています。

- ------• MS2690A/MS2691A/MS2692A シグナルアナライザ
- オプション 020 ベクトル信号発生器 取扱説明書(リモート制御編) MS2690A/MS2691A/MS2692A のベクトル信号発生器オプションのリモート制御

について記述しています。

 MS2830A/MS2840A シグナルアナライザ ベクトル信号発生器取扱説明書(リモート制御編)

MS2830A/MS2840A のベクトル信号発生器オプションのリモート制御について記述しています。

MS2690A/MS2691A/MS2692A および MS2830A/MS2840A
 ベクトル信号発生器 取扱説明書(IQproducer[™]編)

ベクトル信号発生器オプション用の Windows アプリケーションソフトウェアである IQproducer の機能,操作方法などについて記述しています。

TDMA IQproducer[™] 取扱説明書 <本書>
 TDMA IQproducer[™]の基本的な操作方法,機能などについて記述しています。

目次

はじめ)IC	I
第1章	章 概要	1-1
1.1	製品概要	1-2
1.2	製品構成	1-3
第2重	章 準備	2-1
2.1	動作環境	2-2
2.2	インストールとアンインストール	2-3
2.3	起動·終了	2-4
第3章	章 機能詳細	3-1
3.1	面面構成	3-2
3.2		3-55
第4章	章 波形パターンの使用方法	4-1
4.1	MG3700A, MG3710A または MG3740A を 使用する場合	4_2
4 2	MS2690A/MS2691A/MS2692A_MS2830A	− -∠
4.2	または MS2840A を使用する場合	4-5

付録 A	エラーメッセージ	A-1
付録 B	各変調方式におけるシンボル点	B-1
付録 C	ユーザファイルフォーマット	C-1
索引		专门-1

第1章 概要

1

概要

この章では, MX370102A/MX269902A TDMA IQproducer™の概要について 説明します。

1.1 製品概要

MX370102A/MX269902A TDMA IQproducer™(以下,本ソフトウェア)は, TDMA 仕様に準拠した波形パターンを生成するためのソフトウェアです。

本ソフトウェアは以下のいずれかの環境で動作します。

- ・ MG3710A ベクトル信号発生器
- ・ MG3740A アナログ信号発生器
- ベクトル信号発生器オプションを搭載した MS2690A/MS2691A/MS2692A, MS2830A および MS2840A シグナルアナライザ
- ・ パーソナルコンピュータ(以下,パソコン)

本ソフトウェアを使用し、用途に応じてパラメータを編集することで、さまざまな特徴をもつ TDMA 仕様に従った波形パターンを作成することができます。

また、本ソフトウェアで作成した波形パターンは、MG3700A ベクトル信号発生器, MG3710A ベクトル信号発生器, MG3740A アナログ信号発生器, またはベクトル 信号発生器オプションを搭載した MS2690A/MS2691A/MS2692A, MS2830A および MS2840A シグナルアナライザ(以下,総称して本器)にダウンロードするこ とにより RF 信号で出力することもできます。

1.2 製品構成

本器との組み合わせにより異なってくる本ソフトウェアの形名,制限事項は,以下のとおりです。

本器 制限事項など	MG3700A	MG3710A MG3740A	MS2690A MS2691A MS2692A	MS2830A	MS2840A
ソフトウェア形名	MX37	0102A	MX269902A		
波形パターンの 最大サイズ	256 M sample 512 M sample ^{*1}	64 M sample 128 M sample ^{*5} 256 M sample ^{*6} 512 M sample ^{*7}	256 M sample	64 M sample 256 M sample ^{*4}	64 M sample 256 M sample ^{*4}
波形パターンの 転送手段	LAN, コンパクトフラッ シュカード	LAN, USB メモリなど外 部デバイス*2	USB メモリなど外 部デバイス*2	USB メモリなど外 部デバイス*2	USB メモリなど外 部デバイス*2
本ソフトウェアの 本器への インストール	不可	可能	可能*3	可能*3	可能*3

表1.2-1 制限事項

*1: 256 M sample を超える波形パターンを使用するには MG3700A に ARBメ モリ拡張 512M sample(オプション)が装備されている必要があります。

- *2: 本ソフトウェアを本器へインストールし,本器上で波形パターンを生成した場合は波形パターンの転送は必要ありません。
- *3:本ソフトウェアは MS2690A/MS2691A/MS2692A, MS2830A および MS2840A シグナルアナライザにインストールして使用できますが、本ソフト ウェアを MS2690A/MS2691A/MS2692A, MS2830A および MS2840A シ グナルアナライザ上で実行している間は、MS2690A/MS2691A/MS2692A, MS2830A および MS2840A シグナルアナライザ上の各種測定機能の動作 は保証されません。
- *4: 64 M sample を超える波形パターンを使用するにはベクトル信号発生器オ プションに ARB メモリ拡張 256 M sample(オプション)が装備されている必 要があります。
- *5: 最大 128 M sample の波形パターンを使用するには, MG3710A, MG3740A にベースバンド信号加算(オプション)が装備されている必要があります。
- *6: 最大 256 M sample の波形パターンを使用するには、MG3710A、 MG3740AにARBメモリ拡張 256 M sample(オプション)が装備されている 必要があります。

*7: 最大 512 M sample の波形パターンを使用するには、次のオプションが装備されている必要があります。

MG3710A の場合

・ ARB メモリ拡張 1024 M sample(オプション)

または

・ ARB メモリ拡張 256M sample(オプション)およびベースバンド信号加 算(オプション)

MG3740A の場合

・ ARB メモリ拡張 256M sample(オプション)およびベースバンド信号加 算(オプション)

■波形パターンの変換方法について

本ソフトウェアで作成した波形パターンは使用する本器の種類によってフォーマットが異なります。そのため、作成した波形パターンを異なる種類の本器で使用するには、波形パターンを変換する必要があります。

波形パターンの変換方法については,以下のいずれかを参照してください。

- ・『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer™編)』 「4.5 Convert でのファイル変換」
- ・『MS2690A/MS2691A/MS2692A, MS2830A/MS2840A ベクトル信号発生
 器 取扱説明書(IQproducer™編)』
 「4.5 Convert でのファイル変換」

この章では、本ソフトウェアのインストールとアンインストールの方法、起動と終了の 方法について説明します。

動作環	境2-2
インスト	ールとアンインストール2-3
起動・約	终了2-4
2.3.1	本ソフトウェアの起動
	(MG3710A 以外で使用する場合)2-4
2.3.2	MG3710A に本ソフトウェアを
	インストールした場合の起動2-6
2.3.3	本ソフトウェアの終了2-7
	動作環 インス 起動・ 2.3.1 2.3.2 2.3.3

準備

2.1 動作環境

本ソフトウェアを動作させるには,以下の環境が必要です。

(1) 以下の条件を満たしたパソコン

05	Windows XP/		
5	Windows Vista/Windows 7		
CPU	Pentium III 1 GHz 相当以上		
メモリ	512 MB 以上		
ハードディスク	本ソフトウェアをインストールするドライブに 5 GB 以上の 空き容量があること ただし,波形パターンの作成に必要なハードディスクの空 き容量は作成する波形パターンのサイズによって異なりま す。最大(512 M sample)の波形パターンを 4 個作成す る場合には,27 GB 以上の空き容量が必要です。		

(2) パソコンで使用するときは解像度 1024×768 ピクセル以上が表示可能な ディスプレイ,フォントは"小さいフォント"を推奨

2.2 インストールとアンインストール

本ソフトウェアは、IQproducer™のインストーラに含まれます。本器または本ソフト ウェアに標準添付される IQproducer™をインストールすることで、本ソフトウェアは 自動的にインストールされます。また、本ソフトウェアで作成した波形パターンを本 器で使用するにはライセンスファイルのインストールが必要です。

■IQproducer™のインストールとアンインストール

IQproducer™のインストール方法とアンインストール方法については、以下のいずれかを参照してください。

- ・『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer™編)』
 「第2章 インストール方法」
- ・『MS2690A/MS2691A/MS2692A および MS2830A/MS2840A ベクトル信号 発生器取扱説明書(IQproducer™編)』
 「第2章 インストール方法」

■ライセンスファイルのインストールとアンインストール

MG3700A/MG3710A/MG3740A へのライセンスファイルのインストール方法に ついては、以下を参照してください。

 ・『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer™編)』「5.1 ライセンスファイルのインストール」

MG3700A/MG3710A/MG3740A へのライセンスファイルのアンインストール方法 については、以下のいずれかを参照してください。

- 『MG3700A ベクトル信号発生器 取扱説明書(本体編)』 「3.10.10 インストール」
- 『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明 書(本体編)』「9.4.4 インストール:Install」

ベクトル信号発生器オプションを搭載した MS2690A/MS2691A/MS2692A, MS2830A および MS2840A へのライセンスファイルのインストール方法およびア ンインストール方法については,以下を参照してください。

 ・『MS2690A/MS2691A/MS2692A および MS2830A/MS2840A ベクトル信 号発生器 取扱説明書(IQproducerTM 編)』
 「2.2 インストールとアンインストール手順」 潍

一備

2.3 起動·終了

本ソフトウェアの起動と終了について説明します。

注:

以降の説明では Windows XP の場合を例に説明を行います。Windows XP 以外をお使いの場合は、表示される内容が異なる場合があります。

2.3.1 本ソフトウェアの起動 (MG3710A以外で使用する場合)

以下の手順に従って,本ソフトウェアを起動してください。

- 1. タスクバーの [スタート] をクリックし, [すべてのプログラム] をポイントします。 次 に, プログラムグループの中から [Anritsu Corporation] \rightarrow [IQproducer] をポイントし, [IQproducer] をクリックします。
- 2. IQproducer™を起動すると対応機種選択画面が表示されます。

この対応機種選択画面では、IQproducer™で作成した波形パターンを使用する本器の種類を選択します。

- 注:
- ・ MG3740A は本ソフトウェアに対応していません。
- [Don't show this window next time] にチェックを入れると、次回起 動時から、対応機種選択画面が表示されずにチェックを入れたときに選 択した対応機種で起動するようになります。

3. 対応機種選択画面で [OK] ボタンをクリックすると, 共通プラットフォーム画 面が表示されます。

共通プラットフォーム画面は IQproducer™の各機能を選択する画面です。

IOproducer for MG3700		l.		
System(Cellular)	System(Non-Cellular)	General Purpose Simu	lation & Utility	
LTE (FDD)	LTE (TDD)	HSDPA /HSUPA Down	HSDPA /HSUPA upling	TD- SCDMA
LTE FDD	LTE TDD	HSDPA/HSUPA Downlink	HSDPA/HSUPA Uplink	TD-SCDMA
W-CDMA Downlink «Y»	W-COMA Uplink	1xEVD0		XG-PHS
W-CDMA Downli (Standard)	nk W-CDMA Uplin (Standard)	k 1xEVD0 FWD	1xEVD0 RVS	XG-PHS
		Change Instrument	HELP	EXIT
		onsingle instrument		C/41

図2.3.1-1 共通プラットフォーム画面

4. 共通プラットフォーム画面の [General Purpose] タブをクリックすると, 各通 信システムに対応した General Purpose 選択画面が表示されます。

ñ	IOproducer for MG3700)			
	System(Cellular)	System(Non-Cellular)	General Purpose Simula	ation & Utility	
	TDMA	Multi-Carrier	Fading	Convert	Clipping
	AWGN				
			Change Instrument	HELP	EXIT

図2.3.1-2 General Purpose 選択画面

- 5. [TDMA] をクリックすると、メイン画面が表示されます。メイン画面について は、「第3章 機能詳細」を参照してください。
- 注:
- [Change Instrument] をクリックすると、次回起動時から対応機種選択画 面が表示されるようになります。

2

2.3.2 MG3710Aに本ソフトウェアをインストールした場合の起動

以下の手順に従って,本ソフトウェアを起動してください。

1. MG3710A/MG3740A 本体正面パネルの [10pro] を押すと, 共通プラット フォーム画面が表示されます。

共通プラットフォーム画面は IQproducer™の各機能を選択する画面です。

N IOproducer for MG3710				X
System(Cellular)	System(Non-Cellular)	General Purpose Simula	ation & Utility	
LTE (FDD)		HSDPA HSUPA Domester	HSDPA /HSUPA Upinns	TD- SCDMA
L TE FDD	LTE TDD	HSDPA/HSUPA Downlink	HSDPA/HSUPA Uplink	TD-SCDMA
W-CDMA Downlink (T)				XG-PHS
W-CDMA Downii (Standard)	INK W-CDMA Opini (Standard)	K 1XEVDO FWD	1XEVDO RVS	XG-PHS
			1	
		Interface Settings	HELP	EXIT

図2.3.2-1 共通プラットフォーム画面

2. 共通プラットフォーム画面の [General Purpose] タブをクリックすると, 各通 信システムに対応した General Purpose 選択画面が表示されます。

A IOproducer for MG3710						
System(Cellular)	System(Non-Cellular)	General Purpose	Simulation & Utility	Convert	Clipping	_ ×
AWGN						
	(Interface Set	tings	HELP	EXIT	

図2.3.2-2 General Purpose 選択画面

3. [TDMA] をクリックすると、メイン画面が表示されます。メイン画面については、「第3章 機能詳細」を参照してください。

注:

MG3710A/MG3740A に本ソフトウェアをインストールした場合, [Change Instrument] ボタンの代わりに [Interface Settings] ボタンが表示され ます。[Interface Setting] ボタンをクリックすると, Interface Settings 画 面が表示されます。

Interface Settings			×
Row Socket Port Number	49152		
Wait Time	10		ms
Default	ОК	Canc	el

図2.3.2-3 Interface Settings 画面

この画面では IQproducer と MG3710A/MG3740A とのインタフェースに 関する設定を行います。[Default] ボタンをクリックすることにより, 初期設 定に戻すことができます。

Row Socket Port Number

Row Socket のポート番号を設定します。MG3710A/MG3740Aに設定 されている値と同じ値を設定してください。

• Wait Time

コマンド間の周期を設定します。

2.3.3 本ソフトウェアの終了

本ソフトウェアは以下の方法で終了します。

■ 本ソフトウェアのみを終了する場合

共通プラットフォーム画面,またはほかの IQproducer™のツールを終了せずに, 本ソフトウェアのみを終了する場合は,本ソフトウェアのツールバーにある Exit ボタ ン()をクリックする, [File] メニューの [Exit] をクリックする,または画面 右上の ≥ をクリックします。

図2.3.3-1 本ソフトウェアの終了

準

2

終了確認ウィンドウが表示されます。ここでの動作は以下のとおりです。

図2.3.3-2 終了確認ウィンドウ

- [Yes] 現在の各パラメータをファイルに保存し、本ソフトウェアを 終了します。
- ・ [No] 現在の各パラメータをファイルに保存せずに終了します。
- ・ [Cancel]または× 本ソフトウェアの終了を取り消し、メイン画面に戻ります。

[Yes] ボタンをクリックして終了した場合, 次回起動時に保存したパラメータが読み 込まれ, 各項目が設定されます。

■ IQproducer™の全アプリケーションを終了する場合

起動している IQproducer™の各ツールをすべて終了するには, 共通プラット フォーム画面の [Exit] ボタンをクリックします。この場合, プラットフォームから起 動している各ツールの終了を確認するためのウィンドウが表示されます。

図2.3.3-3 IQproducer™の終了

この章では、本ソフトウェアの機能詳細について説明します。

注:

- この章で使用する画面は、IQproducer™を MG3700A 用で起動した場合を例にしています。
- MG3710A, MG3740A, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 固有の機能については, 各項目に注意 書きとして記載しています。

3.1	画面構成				
	3.1.1	メイン画面	3-2		
	3.1.2	パラメータ設定シート	3-11		
	3.1.3	Calculation	3-39		
	3.1.4	Calculation & Load	3-42		
	3.1.5	Calculation & Play	3-43		
	3.1.6	パラメータの保存・読み出し	3-44		
	3.1.7	グラフ表示	3-48		
	3.1.8	補助信号出力	3-54		
3.2	波形パ	ターン作成手順	3-55		

3.1 画面構成

3.1.1 メイン画面

共通プラットフォーム画面の [General Purpose] タブの[TDMA] をクリックすると, メイン画面が表示されます。

メニューバーー	TDMA IQproducer for MG3 _ <u>F</u> ile <u>E</u> dit <u>T</u> ransfer & Setting	10 Simulation			<u>- I X</u>
ツールボタン ―	🖹 🖻 🔊	🍳 🌬 🚵			
	Burst	Continuous	No Format	Parameter File	
		Modulation		- Waveform Information	
	Г	Frame		1st Modulation Type : PV4DQPSK 2nd Modulation Type : -	
		ŧ	1	Symbol Rate : 1000000sps	
	_	Slot		The Number of Frames : 1	
パラメータ設定シート――	-	Field		The Number of Slots per Frame : 1 The Number of Bits per Slot : 486	
		₽	1	Data : PN9	
	_	Filter		Filter Type : RootNyquist	
		Pattern Name		Roll Off / BT : 1 RMS : 1157	
		¥			
	Calculation &	Load Calcula	tion & Play	Default (Burst)	

図3.1.1-1 TDMA IQproducer メイン画面(MG3710, MG3740 上で動作時)

3.1 画面構成

3

機能詳

細

6 🖧 🐠			
Burst	Continuous	No Format	Parameter File
	Modulation		-Wayoform Information
		- I	wavelow million autom
	Frame		1st Modulation Type : PI/4DQPSK 2nd Modulation Type : -
	ł		Symbol Rate : 1000000sps
	Slot		
_	¥		The Number of Frames : 1
Field			The Number of Slots per Frame : 1
_	₽		Data : PN9
	Filter		
_	÷		Filter Type : RootNyquist
Pattern Name			Roll Off / BT : 1
_			
	Calculation		

図3.1.1-2 TDMA IQproducer メイン画面 (PC 上で動作時)

■ [File] メニューには以下の項目が含まれます。

図3.1.1-3 File 選択画面

- Select Option
 - 注:
 - この機能は、起動時に表示される対応機種選択画面で [MG3700], [MG3710], [MG3740], [MS2830] または [MS2840] を選択した ときのみ有効です。
 - MS269xA の場合, ARB メモリ拡張(オプション)はありません。
 Memory 256M samples, 1 GB です。

■ MG3700A, MS2830A または MS2840A のとき

ARB メモリ拡張(オプション)装備の有無を選択します。[With Option21 (Memory 512M samples)] または [With Option27 (Memory 256M samples)] に設定することにより、より大きな波形パターンが生成可能になります。ARB メモリ拡張を装備していない場合は作成した波形パターンが使用できないことがあります。[Without Option21 (Memory 512M samples)] または [Without Option27 (Memory 256M samples)] を設定した場合は生成される波形パターンのサイズが 256M samples または 64M samples 以上となるパラメータの設定ができません。ARBメモリ拡張装備の有無に合わせて設定してください。

形名	項目	ARB メモリ拡張装備
MG3700A	With Option21 (Memory 512M samples)	1 GB×2 メモリ
	Without Option21 (Memory 512M samples)	512 MB×2 メモリ
MCooper	With Option27 (Memory 256M samples)	1 GB
M82830A	Without Option27 (Memory 256M samples)	256 MB
MS2840A	With Option27 (Memory 256M samples)	1 GB
	Without Option27 (Memory 256M samples)	$256 \mathrm{MB}$

表3.1.1-1 MG3700A, MS2830A または MS2840A のときの Select Option

■ MG3710A, MG3740A のとき

ARB メモリ拡張(オプション)およびベースバンド信号加算(オプション)装備 の有無を選択します。ARB メモリ拡張(オプション)およびベースバンド信号 加算(オプション)装備を選択することにより、より大きな波形パターンの生成 や本器のベースバンド信号加算を使用した波形パターンの生成が可能にな ります。本器に装備されていないオプションを選択した場合には作成した波 形パターンが使用できないことがあります。

以下の設定項目から本器に装備されているオプションの組み合わせに合わせて設定してください。

項目	オプションの組み合わせ
Memory 64M samples	なし
Memory 64M samples x2	Option 48 および Option 78
Memory 256M samples	Option 45 または Option 75
Memory 256M samples x2	Option 45 および Option 48 または Option 75 および Option 78
Memory 1024M samples*	Option 46 または Option 76
Memory 1024M samples x2*	Option 46 および Option 48 または Option 76 および Option 78

表3.1.1-2 MG3710A または MG3740A のときの Select Option

*: MG3740A では Option 46 および Option 76 が無いため表示されません。

それぞれの設定項目を設定したときに生成される波形パターンの最大サイズは以下のようになります。

表3.1.1-3 波形パターンの最大サイズ

項目	最大サイズ
Memory 64M samples	64M サンプル
Memory 64M samples x2 (With Option48,78)	128M サンプル
Memory 256M samples	256M サンプル
Memory 256M samples x2 (With Option48,78)	512M サンプル
Memory 1024M samples*	512M サンプル
Memory 1024M samples x2* (With Option48,78)	512M サンプル

- *: MG3740A では対応していません。
 - Recall Parameter File
 [Save Parameter File] で保存したパラメータファイルを読み込みます。パ ラメータファイルを読み込むとパラメータファイルを保存したときの設定が復 元されます。
 - Save Parameter File
 現在の設定をパラメータファイルに保存します。
 - ・ Exit 本ソフトウェアを終了します。

■ [Edit] メニューには以下の項目が含まれます。

図3.1.1-4 Edit 選択画面

Calculation Waveform Pattern

パラメータ設定後,波形パターンの作成を開始します。パラメータ設定シートの Calculation ボタンと同じ動作となります。

Calculation & Load

注:

この機能は本ソフトウェアを MG3710A または MG3740A 上で使用 しているときのみ有効です。

波形生成の完了後に生成した波形パターンを MG3710A, MG3740A の 波形メモリへ展開します。

Calculation & Play

注:

この機能は本ソフトウェアを MG3710A または MG3740A 上で使用 しているときのみ有効です。

波形生成の完了後に生成した波形パターンを MG3710A, MG3740A の 波形メモリへ展開, 選択を行います。

• Clipping

Clipping 画面が表示されます。この画面では作成した波形パターンに対し てクリッピングとフィルタリングを行うことができます。

3

機能詳

細

■ [Transfer & Setting] メニューには以下の項目が含まれます。

図3.1.1-5 Transfer & Setting 選択画面

Transfer & Setting Wizard

注:

この機能は,起動時に表示される対応機種選択画面で [MG3700], [MG3710],または [MG3740] を選択したときのみ有効です。

Transfer Setting Wizard 画面が表示されます。この画面ではパソコンと MG3700A/MG3710A/MG3740Aとの接続, MG3700A/MG3710A/MG3740A への波形パターンの転送, MG3700A/MG3710A/MG3740A の任意波形メモリ へ波形パターンを展開するまでの操作を行います。

■ [Simulation] メニューには以下の項目が含まれます。

Simulation	
<u>C</u> CDF	
<u>F</u> FT	
<u>T</u> ime Domain	

図3.1.1-6 Simulation 選択画面

• CCDF

CCDF グラフ表示画面が表示されます。この画面では作成した波形パターンの CCDF をグラフ表示します。

• FFT

FFT グラフ表示画面が表示されます。この画面では作成した波形パターンの FFT 処理を行った、スペクトラムをグラフ表示します。

• Time Domain

Time Domain グラフ表示画面が表示されます。この画面では作成した波形 パターンの時間領域の波形をグラフ表示します。

3-7

```
■ ツールボタンには以下の種類があります。
```

注:

- Transfer&Setting Wizard は、起動時に表示される対応機種選択画 面で [MG3700], [MG3710], または [MG3740] を選択したときのみ 有効です。
- Calculation & Load, Calculation & Play は、本ソフトウェアを MG3710A, MG3740A 上で使用しているときのみ有効です。
- **Recall Parameter File** Save Parameter File NV Calculation Calculation & Load Calculation & Play Transfer & Setting Wizard CCDF CCDF FFT Time Domain 1 Clipping ズ Exit

これらのボタンをクリックすると、メニューにある同名のメニューアイテムをクリック したときと同じ動作をします。 ■ パラメータ設定シート

図3.1.1-7 パラメータ設定シート

メイン画面左側には"Burst", "Continuous", および"No Format"の 3 枚の 独立したパラメータ設定シートがあります。パラメータ設定シート上には設定項 目ボタンがあり, このボタンをクリックすることで設定画面が開きます。設定項目 ボタンは矢印で上から下に順番を示してありますが, 矢印のとおりにパラメータ 設定を行う必要はありません。ただし, パラメータによっては, それ以降のパラ メータに影響を与えるものもあります。

■ Parameter File 表示

Parameter File PHS.prm

図3.1.1-8 Parameter File 表示

パラメータファイルの読み込み時または保存時に,当該ファイルの名前が表示 されます。 ■ Waveform Information 表示

Waveform Information —

1 st Modulation Type : PI/4DQPSK 2nd Modulation Type : 16QAM Symbol Rate : 192000sps The Number of Frames : 511 The Number of Slots per Frame : 8 The Number of Bits per Slot : 434 Data : PN9 Filter Type : RootNyquist Roll Off / BT : 0.5 RMS : 1634

図3.1.1-9 Waveform Information 表示

パラメータ設定シートごとに,現在のパラメータ設定が表示されます。

■ 初期化ボタン

図3.1.1-10 初期化ボタン

このボタンをクリックすると、選択されているパラメータ設定シートのパラメータが 初期化されます。
3.1.2 パラメータ設定シート

パラメータ設定シートは 3 枚あり("Burst", "Continuous", "No Format"), 各 シートのタブをクリックすることで切り替わります。パラメータ設定シート上には, 5 個 または 7 個の設定項目ボタンがあり, ボタンをクリックすることでそれぞれに対応し たパラメータ設定画面が開きます。設定項目ボタンは, 矢印で上から下に順番を示 してありますが, 矢印のとおりにパラメータ設定を行う必要はありません。ただし, パ ラメータによっては, それ以降のパラメータに影響を与えるものもあります(3.1.2.8 参照)。

設定項目ボタンには, 次のものがあります。

[Modulation], [Frame], [Slot], [Field], [Data], [Filter], [Pattern Name], [Calculation]

また,パラメータ設定シートにより,設定項目ボタンが異なります。設定項目ボタンと パラメータ設定シートの関係は以下のとおりです。

いつ 古 ロ ギ ク 、	15	ミットタ設定シー	-ト
設定項目小グノ	Burst	Continuous	No Format
Modulation	0	0	0
Frame	0	0	—
Slot	0	0	—
Field	0	0	—
Data	—	—	0
Filter	0	0	0
Pattern Name	0	0	0
Calculation	0	0	0

表3.1.2-1 設定項目ボタンとパラメータ設定シートの関係

・ Burst: スロットフォーマットを持つバースト波形の作成に使用します。

・ Continuous: スロットフォーマットを持つ連続波の作成に使用します。

・ No Format: スロットフォーマットを持たない連続波の作成に使用します。

MG3710A, MG3740A で実行しているときは[Calculation] ボタンの代わりに [Calculation & Load], [Calculation & Play] ボタンが表示されます。

以下では,各設定項目に対応する設定画面について説明します。

機能詳細

3.1.2.1 Modulation

"Modulation"は、変調方式、シンボルレート、およびオーバーサンプル比を設定 する項目です。パラメータ設定シート"Burst"に限って、第2変調方式の設定が可 能であり、1 スロット内で変調方式を切り替えることができます。パラメータ設定シー ト上の [Modulation] ボタンをクリックすると、以下に示す Modulation 設定画面 が開きます。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画 面を閉じます。[Cancel] ボタンまたは画面右上の ×をクリックすると,設定内容を 破棄して画面を閉じます。

図3.1.2.1-1 Modulation 設定画面(PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A で実行しているとき)

図3.1.2.1-2 Modulation 設定画面(MG3710A, MG3740A 上で実行しているとき)

この設定画面で設定できるパラメータは以下のとおりです。

Modulation Typ	e(1st Modulation Type)
[概要]	変調方式を設定します。
[初期值]	PI/4DQPSK
[設定範囲]	BPSK, DBPSK, PI/2DBPSK,
	QPSK, O-QPSK, DQPSK, PI/4DQPSK,
	8PSK, D8PSK,
	16QAM, 32QAM, 64QAM, 256QAM
	2ASK, 4ASK, 2FSK, 4FSK, User defined
[備考]	各変調方式の IQ 平面上のシンボル点は, Modulation Typeリ
	ストボックス下に表示され,さらにその下の表には各シンボル点に
	対応する2進数が示されます(付録Bにも同様の図と表が示され
	ています)。
	ただし, 8PSK, D8PSK, 16QAM, 32QAM, 64QAM,
	256QAM, 4FSK においては, IQ 半面図 トのリファレンシャルボ
	タン をクリックし, IQ マッピング用のユーザファイルを選
	択することで各シンボル点に対応する2進数の変更ができます。
	このユーサファイルについては付飯しを参照してくたさい。また、 PDCK たたび ODCK にたいてけ、Madulation Trans 川ストボック
	BFSK やよい QFSK にわいては、Modulation Type シストホック
	ストのデェックホックス 45-Degree Rotation でシンホル点か
	40 度回転しより。 PECK AFCK において Continuous 連形式たけ No Formet 連
	ZFSK, 4FSK にわいて Continuous 仮形または No Format 彼 形式佐古子Z担合 波形デーカの生面デーカと後尾デーカでは
	形を作成りる場合、仮形フークの元頭フークと仮毛フークでは
	121日かれ) 建成になる場口が300より。
	User defined は、ハノノーク設定シートが No Format のとさ、設 完新可能したります
	<i>にい</i> つ REC(な)より。 Hear defined を設定した提合 Modulation Mannar がまこう
	n 変調方式を定義」たユーザファイルを指定できます

Modulation Mapper

Modulation Type に User defined を設定すると, Modulation Type リストボック ス下に Modulation Mapper が表示されます。

Modulation	×
Modulation Type	
User defined	
Modulation Mapper UM_2048QAM.bt	

3

[概要]

現在選択されている User defined 変調用のユーザファイルを表示します。また, 変調方式を定義したユーザファイルを指定できます。

この機能を利用することで、16APSK などの APSK 変調、 512QAM 以上の多値 QAM 変調の波形が作成可能となります。 User defined 変調用のユーザファイルについては付録 C を参照 してください。

Modulation Mapper の右のリファレンシャルボタン … をク リックした場合, ユーザファイル選択ダイアログボックスから新しい User defined 変調用のユーザファイルを選択できます。 User defined 変調用のユーザファイルが選択されていない状態 で User defined を設定した場合, 自動でユーザファイル選択ダ イアログボックスが表示されます。

Modulation Type (2nd Modulation Type)

[概要]	第2変調方式を設定します。
[初期値]	PI/4DQPSK
[設定範囲]	BPSK, DBPSK, PI/2DBPSK,
	QPSK, DQPSK, PI/4DQPSK,
	8PSK, D8PSK,
	16QAM, 32QAM, 64QAM, 256QAM
[備考]	🔽 2nd Modulation Type をチェックすると, 第 2 変調方式の設
	定が可能となります。Modulation Type に 2ASK, 4ASK,
	2FSK, 4FSKを設定した場合は第2変調方式を設定することは
	できません。各変調方式のシンボル点に対応する 2 進数は第 1
	変調方式と同様です。

Symbol Rate, I Modulation ty 下記以外の: 2ASK, 4AS 4FSK の場合	Modulation Index, M pe の設定により, 表症 場合: SK, 2FSK の場合: 合:	Maximum Frequency deviation 長示が変化します。 Symbol Rate Modulation Index Maximum Frequency deviation					
Symbol Rate	ח= ∠ الديني در	رجاح					
	シンホルレートを設	定し	ます。				
[初朔旭]	1 Msps		(MC27404 志)				
[改化軋四]	$1 \text{ ksps}^{-} \approx 80 \text{ msps}^{-}$		(MG3740A 2际气) (MC2740A)				
[分解能]	1 sps						
Over Sampling							
[概要]	オーバーサンプルと	北を	設定します。				
[初期值]	2						
[設定範囲]	2, 3, 4, 8, 16, 32						
[備考]	Modulation Type	に	2FSK を設定した場合,変調指数の値に				
	よって設定範囲が変	をわ	ります。				
Sampling Rate							
[概要]	サンプリングレートを	設	定します。				
[初期値]	$2 \mathrm{~MHz}$						
[設定範囲]	$20 \mathrm{kHz}{\sim}160 \mathrm{MH}$	\mathbf{Z}	(MG3740A を除く)				
	$20 \mathrm{kHz}{\sim}8 \mathrm{MHz}$		(MG3740A)				
[備考]	シンボルレート×オ		バーサンプル比の値が自動設定されます。				
	ただし、マンチェス	9符	号の設定をした場合は,シンボルレート×				
	オーバーサンプルと	北×	2の値が自動設定されます。				

GSM

[概要] GSM の設定をします。

Modulation Type に 8PSK および 2FSK を設定すると、
Modulation Type リストボックス下にチェックボックス □ GSM が現れます。これをチェックすることで GSM に対応した自動設定 が行われます。具体的な設定値は以下のとおりです。なお、 チェックした場合は、第 2 変調方式は設定できません。
シンボルデータ: 8PSKのシンボルデータ(付録 B参照)
シンボルレート: 270.833 ksps
オーバーサンプル比: 12
スロット数(3.1.2.2 参照): 8 スロット
Ramp 長(3.1.2.3 参照): 2 シンボル×2
Guard 長(3.1.2.3 参照): 4.25 シンボル
フィルタ(3.1.2.6 参照): Specified Filter

Modulation Index

[概要] 変調指数を設定します。

[初期値]	1
[設定範囲]	0.00~1.00(2ASK, 4ASK 時) 0.20~10.00(2FSK 時)
[備考]	Modulation Type に 2ASK, 4ASK および 2FSK を設定した場
	合のみ, Modulation Type リストボックス下に現れるテキストボッ
	クスに設定することができます。2FSK の場合,変調指数の設定
	値によってオーバーサンプル比の設定範囲が変わります。

Manchester Code

[概要]

マンチェスタ符号の設定をします。

Modulation Type に 2ASK を設定すると、Modulation Type リ ストボックス下にチェックボックス Manchester Code が現れます。 チェックした場合はマンチェスタ符号、チェックを外した場合は NRZ となります。2ASK 以外の変調方式では常に NRZ となりま す。

Maximum frequency deviation

[概要]	最大周波数偏移を設定します。
[初期値]	945
[設定範囲]	$120 \sim 100000$
[備考]	Modulation Type に 4FSK を設定した場合のみ, Modulation
	Typeリストボックス下に現れるテキストボックスに設定することがで
	きます。

Mapping Edit

Mapping Edit の右のリファレンシャルボタン _... をクリックすると, ユーザファ イルを選択できます。 詳細は, 「C.1 IQ マッピング ユーザファイル フォーマット」を参照してください。

Keep Phase continuity

波形パターンの先頭と末尾の位相が連続になるようにします。
パラメータ設定シートが Continuous, No Format の場合, かつ
Modulation Type が 2FSK, 4FSK の場合に設定可能です。

注:

The Number of Frames=AUTO にした場合, Keep phase continuity のチェック有り, 無しで生成するフレーム数が変わります。

チェック有りの場合,従来のように波形パターンの先頭と後尾の位相が一致 するまで繰り返す必要がなくなるため, Data Field に設定されているデータ の周期でフレーム数が決まります。

Keep phase continuity を設定した場合,波形パターンの周波数にオフセットが付きます。オフセットの値は波形生成画面に「Frequency Offset」として表示されます。

Complete	
End Continuous Generation	-
Start Filtering End Filtering	
Start Information File End Information File	
Frequency offset = -1.969Hz	
Calculation Completed	_
	×
	OK

図3.1.2.1-4 波形生成画面

機能詳

細

3.1.2.2 Frame

"Frame"は、フレーム数、1 フレーム中のスロット数、およびスロットの送信状態 (ON または OFF)を設定する項目です。パラメータ設定シート"No Format"には、 この設定項目ボタンはありません。パラメータ設定シート上の [Frame] ボタンをク リックすると、図 3.1.2.2-1 に示す Frame 設定画面が開きます。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画面を閉じます。[Cancel] ボタンまたは画面右上の をクリックすると,設定内容を破棄して画面を閉じます。

					١T	ne Nur	nber o	of Fran	nes		Auto] [1							
				The	Numb	er of S	Slots p	per Fra	ame	20	•								
Fran	ne For	mat					·									,			
l st Slot	2nd Slot	3rd Slot	4th Slot	5th Slot	6th Slot	7th Slot	8th Slot	9th Slot	10th Slot	11th Slot	12th Slot	13th Slot	14th Slot	15th Slot	16th Slot	17th Slot	18th Slot	19th Slot	20th Slot
On	Off																		
														-	01	,		0	

図3.1.2.2-1 Frame 設定画面

この設定画面で設定できるパラメータは以下のとおりです。

The Number of Frames

[概要] フレーム数を設定します。

1

[初期値]

[設定範囲] 1~32767

[備考] チェックボックス Auto をチェックするとフレーム数は自動設定 されます。パラメータ設定シート"Burst"の場合,"Data Field" (3.1.2.4 参照)に設定された連続パターンの連続性を保つフレー ム数に自動設定されます。たとえば,連続パターンが PN9 の場 合,フレーム数は 511 に自動設定され, PN9 の連続性が保たれ ます。パラメータ設定シート"Continuous"の場合,連続パターン の連続性とともに位相の連続性を保つフレーム数が設定されます。 ただし, Auto 設定時でも連続パターンを"UserFile"に設定した 場合は,フレーム数の自動設定は1,または位相の連続性のみを 保つ値となります。また、チェックボックスのチェックを外した場合 は,設定範囲内で自由に設定することができますが,連続パター ンや位相の連続性は保証されません。

The Number of Slots per Frame

[概要]	1フレーム中のスロット数を設定します。
[初期値]	1
[設定範囲]	$1 \sim 20$

[備考] 使用されるスロットでは送信状態(ON または OFF)の設定も行い ますが、すべてのスロットを送信 OFF にすることはできません。 "Continuous"では、送信状態 OFF のスロットは ALL1 の信号が 出力されます。なお、送信状態 OFF 時の信号出力レベルは送信 状態 ON 時と同一となります。

3.1.2.3 Slot

"Slot"は、スロットフォーマットを設定する項目です。パラメータ設定シート"No Format"には、この設定項目ボタンはありません。パラメータ設定シート"Burst"に おける"Slot"と、パラメータ設定シート"Continuous"における"Slot"は異なり、パ ラメータ設定シート上の [Slot] ボタンをクリックすると、図 3.1.2.3-1~3.1.2.3-4 に 示す Slot 設定画面が開きます。

設定したスロットフォーマットは、すべての送信 ON スロットにおいて共通のものとな ります。1 スロットを最大 24 フィールドまで分割でき、各フィールドのビット数とフィー ルドタイプ("Guard", "Ramp", "Fixed", "Data", "CRC")を設定します。0ビッ トに設定されたフィールドは存在しないフィールドとみなされます。

パラメータ設定シート"Burst"において第2変調方式を設定した場合,第1~12 フィールドまでが第1変調方式の,第13~24フィールドまでが第2変調方式の設 定範囲となります。

パラメータ設定後,画面下の [Apply] ボタンをクリックすると画面上段の"Slot Format"図が設定通りに表示されます。[OK] ボタンをクリックすると,設定内容を 反映して画面を閉じます。[Cancel] ボタンまたは画面右上の こをクリックすると, 設定内容を破棄して画面を閉じます。

3

機能詳細

"Burst"における設定項目

Slot S	lot Format						ļ
R 2			D 240			D R 240 3	G 3
2n Pha	d Modulatio	n ce 1st Field	1st Guard	0	Borde Modul	r Line of ation 2nd 13th Field Data Y 240 bit	
	0	2nd Field	Ramp Data •	2	bit	14th Field Fixed V 0 bit	
	•	4th Field 5th Field	Fixed •	0	bit	16th Field Fixed	
		6th Field 7th Field	Fixed •	0	bit bit	18th Field Fixed Dit	
	• •	8th Field 9th Field	Fixed •	0	bit bit	20th Field Fixed 0 bit 21st Field Fixed 0 bit	
	0	10th Field 11th Field	Fixed •	0	bit bit	22nd Field Fixed 0 bit 23rd Field Ramp 3 bit	
	•	12th Field	Fixed -	0	bit	24th Field Guard 3 bit	1

図3.1.2.3-1 Slot 設定画面(Burst)(PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 上で実行しているとき)

Slot	t										×
S	lot For	mat									
R 2			D 240				D 240			R 3	G 3
					Borde Modu	r Line of lation					
2n Pha	d Modi ise Ref	ulation erence	1st			2	nd				
	0	1st Field	Guard	0	bit	13th Field	Data	240	bit		
	0	2nd Field	Ramp	2	bit	14th Field	Fixed	0	bit		
	0	3rd Field	Data	240	bit	15th Field	Fixed	0	bit		
	0	4th Field	Fixed	0	bit	16th Field	Fixed	0	bit		
	0	5th Field	Fixed	0	bit	17th Field	Fixed	0	bit		
	0	6th Field	Fixed	0	bit	18th Field	Fixed	0	bit		
	0	7th Field	Fixed	0	bit	19th Field	Fixed	0	bit		
	0	8th Field	Fixed	0	bit	20th Field	Fixed	0	bit		
	0	9th Field	Fixed	0	bit	21st Field	Fixed	0	bit		
	0	10th Field	Fixed	0	bit	22nd Field	Fixed	0	bit		
	0	11th Field	Fixed	0	bit	23rd Field	Ramp	3	bit		
	•	12th Field	Fixed	0	bit	24th Field	Guard	3	bit		
						Apply		ОК		Cancel	

図3.1.2.3-2 Slot 設定画面(Burst)(MG3710A, MG3740A 上で実行しているとき)

この設定画面で設定できるパラメータは以下のとおりです。

Guard	
[概要]	Guard フィールドのビット数を設定します。
	第1,24フィールドに固定されています。
[設定範囲]	設定した変調方式によって,ビット数に以下の設定範囲が設けら
	れます。

(1st/2nd)Modulation Type	第1フィールドのビット数	第 24 フィールドのビット数
BPSK, DBPSK, PI/2DBPSK 2ASK, 2FSK	0~9960 までの整数	0~9960 までの整数
QPSK, O-QPSK, DQPSK, PI/4DQPSK, 4ASK, 4FSK	0~9960 までの 2 の倍数	0~9960 までの 2 の倍数
8PSK, D8PSK	0~9960までの3の倍数	0~9960までの3の倍数
16QAM	0~9960までの4の倍数	0~9960までの4の倍数
32QAM	0~9960 までの 5 の倍数	0~9960 までの 5 の倍数
64QAM	0~9960 までの 6 の倍数	0~9960 までの 6 の倍数
256QAM	0~9960 までの 8 の倍数	0~9960までの8の倍数

表 3.1.2.3-1 Guard の設定範囲

[概要]	Ramp フィールドのビット数を設定します。
	第 2,23 フィールドに固定されています。第 23 フィールドには,
	第2フィールドで設定されたシンボル長に相当するビット数が自
	動で設定されます。
[設定範囲]	設定した変調方式によって,ビット数に以下の設定範囲が設けら
	れます。

表3.1.2.3-2 Rampの設定範囲

(1st/2nd)Modulation Type	ビット数
BPSK, DBPSK, PI/2DBPSK 2ASK, 2FSK	1~16までの整数
QPSK, O-QPSK, DQPSK, PI/4DQPSK, 4ASK, 4FSK	2~32 までの 2 の倍数
8PSK, D8PSK	3~48 までの 3 の倍数
16QAM	4~64 までの 4 の倍数
32QAM	5~80までの5の倍数
64QAM	6~96までの6の倍数
256QAM	8~128 までの 8 の倍数

Slot

以下の項目から選択できます。

Fixed

[概要]	固定データのフィールドのビット数を設定します。
	第 3~22 フィールドで設定できます。
[設定範囲]	0~128 までの整数

Data

[概要]	擬似ランダムパターン(PN9, PN15)などの連続パターンデータ
	のフィールドのビット数を設定します。
	第 3~22 フィールドで設定できます。

[設定範囲] 0~1024までの整数

CRC

[概要]	巡回冗長検査のフィールドのビット数を設定します。
	第 4~22 フィールドで設定できます。
[設定範囲]	0, 8, 12, 16, 24, 32
[備考]	設定ビット数により以下の生成多項式が用いられます。
	8ビット: $x^8+x^7+x^4+x^3+x+1$
	12ビット: $x^{12}+x^{11}+x^3+x^2+x+1$
[備考]	0, 8, 12, 10, 24, 32 設定ビット数により以下の生成多項式が用いられま ⁻ 8ビット: x ⁸ +x ⁷ +x ⁴ +x ³ +x+1 12ビット: x ¹² +x ¹¹ +x ³ +x ² +x+1

- 16ビット: $x^{16}+x^{12}+x^5+1$
- 24 ビット: $x^{24}+x^{23}+x^6+x^5+x+1$

 $32 \vdash yh: x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$

"CRC"フィールドより前のフィールドの合計ビット数("Guard"と "Ramp"は除く)が 1 ビット以上でなければなりません。"CRC" フィールドを複数設定する場合は、"CRC"フィールドとその 1 つ 手前の"CRC"フィールドの間の合計ビット数が 1 ビット以上でな ければなりません。"CRC"の演算領域は、"Field"設定画面で設 定します(3.1.2.4 を参照してください)。 機能詳

細

3

Fixed, Data, CRC の合計ビット数は,設定した変調方式により,以下の制約があります。ただし,第2変調方式を設定した場合は第3~12フィールドまでを第1変調方式の合計ビット数とし,第13~22フィールドまでを第2変調方式の合計ビット数とします。また,合計ビット数を0とすることはできません。

(1st/2nd)Modulation Type	合計ビット数
BPSK, DBPSK, PI/2DBPSK 2ASK, 2FSK	_
QPSK, O·QPSK, DQPSK, PI/4DQPSK, 4ASK, 4FSK	2の倍数
8PSK, D8PSK	3の倍数
16QAM	4の倍数
32QAM	5の倍数
64QAM	6の倍数
256QAM	8の倍数

2nd Modulation Phase Reference

[概要]

0位相基準シンボルを設定します。 第2変調方式を設定した場合は、第3~12フィールドにオプショ ンボタンが表示されます。第1変調方式が差動変調方式の場合、 オプションボタンがマークされたフィールドの最終シンボルの位相 を0として第2変調が行われます。 "Continuous"における設定項目

		D 240			
1st Field	Data 💌 240	bit	13th Field	Fixed • 0	bit
2nd Field	Fixed • 0	bit	14th Field	Fixed - 0	bit
3rd Field	Fixed • 0	bit	15th Field	Fixed - 0	bit
4th Field	Fixed • 0	bit	16th Field	Fixed • 0	bit
5th Field	Fixed • 0	bit	17th Field	Fixed - 0	bit
6th Field	Fixed • 0	bit	18th Field	Fixed - 0	bit
7th Field	Fixed • 0	bit	19th Field	Fixed - 0	bit
8th Field	Fixed • 0	bit	20th Field	Fixed • 0	bit
9th Field	Fixed • 0	bit	21st Field	Fixed - 0	bit
10th Field	Fixed • 0	bit	22nd Field	Fixed - 0	bit
11th Field	Fixed • 0	bit	23rd Field	Fixed • 0	bit
12th Field	Fixed • 0	- bit	24th Field	Fixed - 0	bit

図3.1.2.3-3 Slot 設定画面(Continuous)(PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 上で実行しているとき)

				D			
			4	240			
1st Field	Data	240	bit	13th Field	Fixed	0	bit
2nd Field	Fixed	0	bit	14th Field	Fixed	0	bit
3rd Field	Fixed	0	bit	15th Field	Fixed	0	bit
4th Field	Fixed	0	bit	16th Field	Fixed	0	bit
5th Field	Fixed	0	bit	17th Field	Fixed	0	bit
6th Field	Fixed	0	bit	18th Field	Fixed	0	bit
7th Field	Fixed	0	bit	19th Field	Fixed	0	bit
8th Field	Fixed	0	bit	20th Field	Fixed	0	bit
9th Field	Fixed	0	bit	21st Field	Fixed	0	bit
10th Field	Fixed	0	bit	22nd Field	Fixed	0	bit
11th Field	Fixed	0	bit	23rd Field	Fixed	0	bit
12th Field	Fixed	0	— bit	24th Field	Fixed	0	bit

図3.1.2.3-4 Slot 設定画面(Continuous)(MG3710A, MG3740A 上で実行しているとき)

この設定画面で設定できるパラメータは以下のとおりです。

Fixed [概要]	固定データのフィールドのビット数を設定します。 第1~24フィールドで設定できます。 0~128までの整数
	0 120 よくの正気
Data	
[概要]	擬似ランダムパターン(PN9, PN15)などの連続パターンデータのフィールドのビット数を設定します。
	第 1~24 フィールドで設定できます。
[設定範囲]	0~1024 までの整数
CRC	
[概要]	巡回宣長検査のフィールドのビット数を設定] ます
	第2~24 フィールドで設定できます。
[設定範囲]	0. 8. 12. 16. 24. 32
[備考]	設定ビット数により以下の生成多項式が用いられます。
	8ビット: $x^8+x^7+x^4+x^3+x+1$
	12 ビット: $x^{12}+x^{11}+x^3+x^2+x+1$
	16ビット: $x^{16}+x^{12}+x^5+1$
	24 ビット: $x^{24}+x^{23}+x^6+x^5+x+1$
	32 ビット: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5$
	$+x^4+x^2+x+1$
	"CRC"フィールドより前のフィールドの合計ビット数が 1 ビット以
	「云小けんばれんナル」 "ODO" フィールドたお料理ウナフロ人

CRC フィールトより前のフィールトの合計ビット数か 1 ビット以 上でなければなりません。"CRC"フィールドを複数設定する場合 は、"CRC"フィールドとその 1 つ手前の"CRC"フィールドの間の 合計ビット数が 1 ビット以上でなければなりません。"CRC"の演 算領域は"Field"設定画面で設定します(3.1.2.4 を参照してくだ さい)。

合計ビット数は,設定した変調方式により以下の制約があります。 また,合計ビット数を0とすることはできません。

表3.1.2.3-4 変調方式による合計ビット数の制約

Modulation Type	合計ビット数
BPSK, DBPSK, PI/2DBPSK 2ASK, 2FSK	_
QPSK,O-QPSK, DQPSK, PI/4DQPSK, 4ASK, 4FSK	2の倍数
8PSK, D8PSK	3の倍数
16QAM	4の倍数
32QAM	5の倍数
64QAM	6 の倍数
256QAM	8の倍数

3.1.2.4 Field

"Field"は,送信 ON スロットの各フィールドの内容を設定する項目です。パラメー タ設定シート"No Format"には、この設定項目ボタンはありません。パラメータ設 定シート上の [Field] ボタンをクリックすると、以下に示す Field 設定画面が開きま す。

画面上部には、Slot 設定画面と同じスロットフォーマット図が表示され、その左上 のリストボックスで、設定を行うスロットを選択します。画面中央には、フィールド番 号、フィールドタイプ、および各フィールドのビット数が表示され、"Fixed"フィール ドと"CRC"フィールドには、その隣にテキストボックスが表示されます。"Data" フィールドの内容は、スロットフォーマット図の下の"Data Field"枠内で設定します。 画面左上のリストボックスで、設定スロットとして"ALL"を選択した場合、フィールド の設定はすべての送信スロットで共通となります。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画 面を閉じます。[Cancel] ボタンまたは画面右上の ×をクリックすると,設定内容を 破棄して画面を閉じます。

🎇 Field		×
Slot Format	ALL	
R D F 2 240 1	F F F F F F D F	G 2
Data Field		
PN9	Data Field has a continuity between the fields in the adjacent slots.	
	Data Field has a continuity between the fields in the same number slots.	
CRC Field	nplement	
1st Field Ramp 2 bit	13th Field Fixed 1 bit	(Hex)
2nd Field Data 240 bi	bit 14th Field Fixed 1 bit 1	(Hex)
3rd Field Fixed 1 bit	1 (Hex) 15th Field Fixed 1 bit	(Hex)
4th Field Fixed 1 bit	1 (Hex) 16th Field Fixed 1 bit 1	(Hex)
5th Field Fixed 1 bit	1 (Hex) 17th Field Fixed 1 bit 1	(Hex)
6th Field Fixed 1 bit	1 (Hex) 18th Field Fixed 1 bit 1	(Hex)
7th Field Fixed 1 bit	1 (Hex) 19th Field Fixed 1 bit 1	(Hex)
8th Field Fixed 1 bit	1 (Hex) 20th Field Fixed 1 bit 1	(Hex)
9th Field Fixed 1 bit	1 (Hex) 21st Field Fixed 1 bit 1	(Hex)
10th Field Fixed 1 bit	1 (Hex) 22nd Field Ramp 2 bit	
11th Field Fixed 1 bit	1 (Hex) 23rd Field Guard 2 bit	
12th Field Data 240 bi	bit	
	ОК	Cancel

図3.1.2.4-1 Field 設定画面(PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 上で実行しているとき) 機能

詳

細

Field		×
Slot Format	ALL	
R D F F 2 240 1	F F F F F F F F F F F F F F F F F F F	
Data Field		
PN9	C Data Field has a continuity between the fields in the adjacent slots.	
	C Data Field has a continuity between the fields in the same number slots.	
CRC Field	latial Cardana af the Daniata	
L'Olles Comple		
1st Field Ramp 2 bit	13th Field Fixed 1 bit 1	(Hex)
2nd Field Data 240 bit	14th Field Fixed 1 bit 1	(Hex)
3rd Field Fixed 1 bit	1 (Hex) 15th Field Fixed 1 bit 1	(Hex)
4th Field Fixed 1 bit	1 (Hex) 16th Field Fixed 1 bit 1	(Hex)
5th Field Fixed 1 bit	1 (Hex) 17th Field Fixed 1 bit 1	(Hex)
6th Field Fixed 1 bit	1 (Hex) 18th Field Fixed 1 bit 1	(Hex)
7th Field Fixed 1 bit	1 (Hex) 19th Field Fixed 1 bit 1	(Hex)
8th Field Fixed 1 bit	1 (Hex) 20th Field Fixed 1 bit 1	(Hex)
9th Field Fixed 1 bit	1 (Hex) 21st Field Fixed 1 bit 1	(Hex)
10th Field Fixed 1 bit	1 (Hex) 22nd Field Ramp 2 bit	
11th Field Fixed 1 bit	1 (Hex) 23rd Field Guard 2 bit	
12th Field Data 240 bit		
	OK Cancel	

図3.1.2.4-2 Field 設定画面(MG3710A, MG3740A 上で実行しているとき)

この設定画面で設定できるパラメータは以下のとおりです。

Slot Format

[設定範囲]

「3.1.2.2 Frame」で送信 ON に設定されている Slot が選択できます。

[概要] [初期値] [設定範囲] [備考]	フィールドの内容を設定するスロットをリストボックスから選択しま す。 ALL "Frame"で送信 ON に設定されているスロット "ALL"を選択している場合, フィールドの内容は, すべての送信 ON スロットで共通となります。
Fixed [概要] [初期値] [設定範囲]	固定データを 16 進数でテキストボックスに設定します。 1 0~設定されたビット数における最大値 (たとえば、5 ビットの場合は 0~1F)
CRC [概要] [初期値] [設定範囲]	CRC 演算領域を整数でテキストボックスに設定します。 1 1~CRC より左のフィールドの合計ビット数(Guard, Ramp 部を 除く。) ただし, "CRC"フィールドが複数ある場合, 2 番目以降の CRC フィールドに関しては, CRC フィールド間の合計ビット数が最大 値となります。
[備考]	"CRC Field"枠内の"Initial Content of the Register"では CRC レジスタの初期値を設定します。オプションボタンの "ALLO"にマークすると初期値はすべて 0 に、"ALL1"にマーク すると初期値はすべて 1 になります。また"Ones Complement" をチェックすると、CRC 演算後のレジスタの値の 1 の補数を CRC フィールドに利用します。チェックしなければ、CRC 演算後のレジ スタの値をそのまま利用します。
Data [概要]	連続パターンを"Data Field"枠内のリストボックスから選択しま す。"16-bit Pattern"を選択したときのみ、"Data Field"枠内にテ キストボックスが現れ、任意の"16-bit Pattern"を16進数で入力し ます。また、UserFileを読み込むことも可能です。
[初期値]	PN9

PN9, PN15, 16-bit Pattern, ALL0, ALL1, UserFile

3

[備考]

1 スロット内に、複数の"Data"フィールドが存在する場合には、ス ロット内の"Data"フィールドの連続性は常に保たれます。一方、 異なるスロットにおける"Data"フィールドの連続性は、リストボック スの隣のオプションボタンで選択します。"Data Field has a continuity between the fields in the adjacent slots."を選択 すると、すべての送信 ON スロット間で"Data"フィールドの連続 性は保たれます。このとき、"16-bit Pattern"を設定していた場 合、テキストボックスに入力する値はすべての送信 ON スロットで 共通です。一方、"Data Field has a continuity between the fields in the same number slots."を選択すると、各フレームの 同じ番号の送信 ON スロット間で"Data"フィールドの連続性は保 たれます。このとき、"16-bit Pattern"を設定していた場合、テキ ストボックスに入力する値は、送信 ON スロットごとに異なる設定を することができます(図 3.1.2.4·3 参照)。

UserFile を設定すると,連続パターン用 UserFile 選択画面が 現れ,選択項目以外のビット列を読み込むことが可能です。この User File については,付録 C を参照してください。

"Data Field has a continuity between the fields in the adjacent slots."を選択した場合

"Data Field has a continuity between the fields in the same number slots."を選択した場合

図3.1.2.4-3 1フレーム中3スロット送信 ON の場合の Data フィールドの連続性

3.1.2.5 Data

"Data"は、"No Format"波形パターンにおける、擬似ランダムパターン(PN9, PN15)などの連続パターンを設定する項目です。パラメータ設定シート"Burst"および"Continuous"には、この設定項目ボタンはありません。パラメータ設定シート上の [Data] ボタンをクリックすると、Data 設定画面が開きます。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画面を閉じます。[Cancel] ボタンまたは画面右上の 🗙 をクリックすると,設定内容を破棄して画面を閉じます。

🎬 Data			×
	Data	16-bitPattern	3
	16-bit Pattern	0000	
		ОК	Cancel

図3.1.2.5-1 Data 設定画面(PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 上で実行しているとき)

🚰 Data		×
Data	16-bitPattern	
16-bit Patter	n 0000	
	ОК	Cancel

図3.1.2.5-2 Data 設定画面(MG3710A, MG3740A 上で実行しているとき)

この設定画面で設定できるパラメータは以下のとおりです。

Data	
[概要]	連続パターンをリストボックスから選択します。
	"16-bit Pattern"を選択したときのみ,リストボックスの下にテキ
	ストボックスが表示され,任意の"16-bit Pattern"を 16 進数で入
	力します。また,UserFileを読み込むことも可能です。
[初期值]	PN9
[設定範囲]	PN9, PN15, 16-bit Pattern, ALL0, ALL1, UserFile
[備考]	UserFile を設定すると連続パターン用 UserFile 選択画面が現
	れ, 選択項目以外のビット列を読み込むことが可能です。この
	User File に関しては,付録 C を参照してください。

3

3.1.2.6 Filter

"Filter"は、フィルタの設定をする項目です。パラメータ設定シート上の [Filter] ボタンをクリックすると、Filter 設定画面が開きます。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画面を閉じます。[Cancel] ボタンまたは画面右上の ×をクリックすると,設定内容を破棄して画面を閉じます。

F	ilter	×	Filter	×
	Filter	RootNyquist	Filter IdealLowpass	
	Roll Off	1		
			Passband Fs/2	
			Fs(Sampling Rate):2000000Hz	
	RMS	1634	RMS 1634	
		OK Cancel	ОК	Cancel
		RootNyquist 選択時	IdealLowpass 選択問	i

図3.1.2.6-1 Filter 設定画面 (PC, MS2690A/MS2691A/MS2692A, MS2830A および MS2840A 上で実行しているとき)

/	Filter	×	🖺 Filter 💌
	Filter	RootNyquist	Filter
	Roll Off	1	
			Passband Fs/2
			Fs(Sampling Rate):2000000Hz
	RMS	1157	RMS 1157
		OK Cancel	OK Cancel
		RootNyquist選択時	IdealLowpass 選択時

この設定画面で設定できるパラメータは以下のとおりです。

an2,

図3.1.2.6-2 Filter 設定画面(MG3710A, MG3740A 上で実行しているとき)

IdealLowpass, None, ARIB STD-T98, Half-sine, ARIB STD-T102Part1, User Defined Filter

[備考] IdealLowpass は矩形のフィルタですが、フィルタ係数の数が有限なため、完全な理想フィルタではありません。

Modulation 設定画面において, GSM 設定をした場合は, Specified Filter が表示され, GSMの規格に準じたフィルタが自 動で設定されます。

Modulation 設定画面で Modulation Type に 2FSK または 4FSK を設定した場合, シンボルがフィルタリングされます。

ARIB STD-T98 および ARIB STD-T102Part1 は Modulation 設定画面で Modulation Type に 4FSK を設定した場合にのみ 選択できます。

ARIB STD-T98/T102 は ARIB STD-T98/T102 規格の四値周 波数偏移変調に規定されたフィルタで,構成は下図のとおりで す。

図3.1.2.6-3 ARIB STD-T98/102 フィルタ構成

ここで, H(f)は RootNyquist, P(f)は sinc 関数(T98 時)もしくは Gaussian 関数(T102 時)です。

Half-sine は Modulation 設定画面で Modulation Type に O-QPSK を設定した場合にのみ選択できます。

Filter= Gaussian を選択したときのインパルス応答は次式 で表されます。

$$h(t) = \frac{\exp\left(\frac{-t^2}{2\delta^2 T^2}\right)}{\sqrt{(2\pi)} \cdot \delta T} * rect\left(\frac{t}{T}\right)$$

ただし

$$\operatorname{rect}\left(\frac{t}{T}\right) = \frac{1}{T} \quad \operatorname{for}|t| < \frac{T}{2}, \qquad \operatorname{rect}\left(\frac{t}{T}\right) = 0 \quad otherwise$$

です (T はシンボル周期)。

これに対し, Filter= Gaussian2 を設定したときインパルス応 答は次式で表されます。

$$h(t) = \frac{\exp\left(\frac{-t^2}{2\delta^2 T^2}\right)}{\sqrt{(2\pi)} \cdot \delta T}$$
ここでもは次式であらわされる定数です。
$$\delta = \frac{\sqrt{\ln(2)}}{\sqrt{2\pi}}$$

$$b = \frac{1}{2\pi BT}$$

3-33

詳

細

3

GaussianとGaussian2の振幅特性の比較を下図に示します。

下図は横軸をシンボルレートで正規化した周波数として,

BT = 0.5, Over Sampling = 8 のときの

GaussianとGaussian2のフィルタの振幅特性を示します。

GaussianはGaussian2と比較するとrect(t/T)の影響により,通 過域が狭くなるとともに、シンボルレートの整数倍の周波数で振 幅が0になります。

図3.1.2.6-4 Gaussian と Gaussian 2 フィルタの振幅特性

Filter=User Defined Filter を選択したときのユーザファイ ルのフォーマットは次のとおりです。

-ASCII 形式で各フィルタ係数はリターンで区切られている こと(コンマ,スペース,タブはエラーと判定)。

-時間応答(ただし実数値)で表現される FIR フィルタ係数 列であること。

-フィルタ係数のタップ数範囲は 1~1023 でかつ奇数である こと。

Roll Off/BT

[概要]	フィルタのロールオフ率(Nyquist/RootNyquist	時)または,	BT
	積(Gaussian 時)を設定します。		

[初期値]	1
[設定範囲]	$0.10 \sim 1.00$
[備考]	Nyquist, RootNyquist, Gaussian, Gaussian2 のときのみ設
	定可能です。

Passband	
[概要]	フィルタの通過域を設定します。
[初期値]	Fs/オーバーサンプル比(Fs はサンプリングレート)
[設定範囲]	Fs/2, Fs/3, Fs/4, Fs/8, Fs/16, Fs/32
[備考]	オーバーサンプル比によって,設定範囲が変化します。
	IdealLowpass のときのみ設定可能です。
RMS	
[概要]	波形パターンの RMS 値を設定します。
[初期値]	1634
[設定範囲]	$651 \sim 4104$
[備考]	本器の RF 出力レベル確度は RMS 値 1157~1634 の場合に規
	定されます。

注:

MG3710, MG3740, MS2830 モードで起動時には初期値は 1157 になります。MS269x モードでは RMS の値は 1157 固定となります

3

機能詳細

3.1.2.7 Pattern Name

"Pattern Name"は、波形パターンのファイル名を設定する項目です。パラメータ 設定シート上の [Pattern Name] ボタンをクリックすると、Pattern Name 設定画 面が開きます。

パラメータ設定後,画面下の [OK] ボタンをクリックすると,設定内容を反映して画面を閉じます。[Cancel] ボタンまたは画面右上の ×をクリックすると,設定内容を破棄して画面を閉じます。

Pattern Name		×
Package	TDMA_IQproducer	
Pattern Name	Initial_Burst	
	Initial_Burst.wvd	
	Initial_Burst.wvi	
Comment	PI/4DQPSK]
	RootNyquist]
	Initial_State	-
	OK	Cancel

図3.1.2.7-1 Pattern Name 設定画面

この設定画面で設定できるパラメータは以下のとおりです。

Package	
[概要]	作成される波形パターンが,本器の中で格納されるパッケージ名
	を入力します。
[初期值]	TDMA_IQproducer
[設定範囲]	31 文字以内
	ファイル名として使用できる文字は、半角英数字および下記に示
	す記号です。
	! % & () + = ` { } - ^ @ []

Pattern Name	
[概要]	波形パターンのファイル名を入力します。
	拡張子が wviとwvdの2つのファイルで1つの波形パターンと
	なり,2つのファイルは同じ名前が付きます。
[初期値]	Initial_Burst/Initial_Continuous/Initial_NoFormat
[設定範囲]	20 文字以内
	ファイル名として使用できる文字は、半角英数字および下記に示
	す記号です。
	! % & () + = ` { } ^ @ []
Comment	
[概要]	本器の画面上に表示されるコメントを入力します。
	1 行目は"Modulation Type"と"Over Sampling", 2 行目は
	"Filter Type"が設定通りに表示されます。
	ただし, Modulation Type が User defined の場合,
	1 行目は"Modulation Mapper で選択されているユーザファイ
	ル名"と"Over Sampling"が表示されます。
	3 行目のみ入力可能ですが, 空白としても問題ありません。
[初期値]	Initial_State
[設定範囲]	38 文字以内

3

機能詳細

3.1.2.8 パラメータ変更による再設定

パラメータ設定シートの設定項目は、矢印の順序に従って設定する必要はありませんが(図 3.1.1-7 参照)、パラメータによっては、設定後、以降の設定項目に影響を与えるものもあります。

Modulation Type 設定による自動設定

Modulation 設定画面の"Modulation Type"の設定を変更すると、Slot 設定画 面のパラメータが自動的に設定変更されます。そのため、一度 Slot 設定画面のパ ラメータを設定したあと、"Modulation Type"の設定を変更すると、Slot 設定画面 のパラメータが変更されますので注意してください。自動設定値は表 3.1.2.8-1、 3.1.2.8-2 のとおりです。

Field	ビット数	Field Type
1st	0	Guard
2nd	設定した変調方式の 1シンボル分のビット数	Ramp
3rd	240	Data
13th	240	Data
23rd	設定した変調方式の 1 シンボル分のビット数	Ramp
24th	設定した変調方式の 1シンボル分のビット数	Guard
上記以外	0	Fixed

表3.1.2.8-1 自動設定値(Burst)

表3.1.2.8-2 自動設定値(Continuous)

Field	ビット数	Field Type
1st	240	Data
上記以外	0	Fixed

Frame または Slot 設定による自動設定

"Frame"設定項目において,送信 ON スロット数が増加した場合や送信 OFF ス ロットが送信 ON に変更された場合には、"Field"設定項目の送信 ON に変更さ れたスロットにおいて、"Fixed"フィールドと"CRC"フィールドの値がすべて 1 に自 動設定されます。また、"Slot"設定項目におけるスロットフォーマットを変更した場 合にも、同じ自動設定が行われます。そのため、一度 Field 設定画面のパラメータ を設定したあと、Frame や Slot 設定画面のパラメータを変更する際は注意してく ださい。

3.1.3 Calculation

Calculation は、パラメータ設定後、波形パターンの作成を開始するためのボタンで す。[Calculation] ボタンをクリックし、図 3.1.3-1 に示す波形パターン出力先設定画 面で出力先を決定します。

ᆹᆂᄮᆿᆂᆘᄻᆞᄙᄱᅷᅀᆞ	🗱 Export Path		
出力先ノオルタ選択ホタン -	Export Path:	C:\Anritsu\IQproducer\TDMA\Data	
			OK Cancel
		図3.1.3-1 波形パターン出力先	

出力先フォルダ選択ボタンをクリックすると図 3.1.3・2 に示すフォルダ選択画面が 表示されるので、出力先フォルダを選択してください。

図3.1.3-2 フォルダ選択画面

Instrumentごとの波形パターンの出力先フォルダの初期値は以下となります。

Instrument	動作環境	出力先フォルダ	
MG3700A		X:¥IQproducer¥TD-SCDMA¥Data (X:¥IQproducer は IQproducer をインストールしたフォルダ)	
		変更できます。	
MG3710A	MG3710A	C:¥Anritsu¥MG3710A¥User Data ¥Waveform¥"Package 名"	
		変更できません。	
	PC	MG3700A と同じ	
		搭載されているOSがWindows Embedded Standard 7の場合	
		C:¥Anitsu¥Signal Analyzer¥System¥Waveform	
MS269xA, MS2830A, MS2840A	MS269xA MS2830A	上記以外の場合	
	MS2840A	C:¥Program Files¥Anritsu Corporation ¥Signal Analyzer¥System¥Waveform¥" Package 名"	
		変更できません。	
	PC	MG3700A と同じ	

表3.1.3-1 出力先フォルダ初期値

出力先フォルダ決定後,図 3.1.3・3 に示す波形生成画面が現れますが,波形パター ンのサンプル数がメモリの上限を超える場合は,エラー表示ウィンドウが現れ,波形は 生成されません。ただし, Frame パラメータ設定画面でフレーム数を Auto にしてい た場合に,波形パターンのサンプル数が上記の制限範囲を超えていたときは,フ レーム数を減らして波形パターンを作成する指示が表示されます。Burst 波形の場 合,フレーム数を 1 として波形を生成します。Continuous 波形の場合,位相のみ連 続になる波形を生成しますが,それでもサンプル数が制限範囲を超える場合は,フ レーム数を1 として生成します。また,1000samples に満たない波形パターンの場合 には,1000samples 以上の波形パターンになるように,フレーム数を増やして波形を 生成させます。波形パターンのサンプル数の計算方法は表 3.1.3・1 のとおりです。

図3.1.3-3 波形生成画面(生成中)

Burstの場合	$Symbol \times Slot_ON \times Frame \times OSR \ [samples]$
Continuousの場	合 Symbol × Slot × Frame × OSR [samples]
Symbol:	1 スロット中のシンボル数
Slot_ON:	1 フレーム中の最終送信ONスロットのスロット番号
Slot:	1 フレーム中のスロット数
Frame:	フレーム数
OSR:	オーバーサンプル比

表3.1.3-2 波形パターンデータサンプル数計算方法

波形生成が完了すると、図 3.1.2-4 のように、"Calculation Completed"が表示され、画面下の [Cancel] ボタンが [OK] ボタンに変化します。また、波形パターンの振幅値が-8192~8191 の範囲を超えた場合は、クリッピングの処理が施され、 "Clipping was done."と表示されます。クリッピングとは、振幅値の制限範囲を超えた部分を切り取ることで、これによって波形のひずみが生じ、その結果、隣接チャネル漏洩電力比や波形品質が劣化することがあります。

C	nplete
	tart Burst Generation nd Burst Generation
	tart Gap Cut nd Gap Cut
	tart Information File nd Information File
	alculation Completed
	OK

図3.1.3-4 波形生成画面(完了)

波形生成中に画面下の [Cancel] ボタンをクリックすると,波形生成が中断され, TDMA メイン画面に戻ります。また,波形生成中に作成される中間ファイルが 4 GB以上になると, "Can not read file"が表示され,波形生成が中止されます。波 形を生成させるためには,フレーム数などを減らす必要があります。

波形生成終了後, [OK] ボタンをクリックすることで波形生成画面が閉じ, TDMA メイン画面に戻ります。

詳

細

3

3.1.4 Calculation & Load

注:

この機能は本ソフトウェアを MG3710A, MG3740A 上で使用しているとき のみ有効です。

[Calculation & Load] を選択すると、波形生成完了後に Load Setting 画面が 表示されます。

Load Setting		×
Wave Pattern		
Package IQproducer		
Pattern Name WaveformPattern		SG1 / MemoryA
	ОК	Cancel
	-ド先選択ボタン	

図3.1.4-1 Load Setting 画面

Load Setting 画面でロード先選択ボタンをクリックすると、Select Memory 画面が 表示されます。

Select Me	mory		×
SG1 -	MemoryA	MemoryB	
SG2-	MemoryA	MemoryB	
	ОК	Cancel	

図3.1.4-2 Select Memory 画面

Select Memory 画面で、生成した波形パターンのロード先を選択後, [OK] ボタンをクリックすると、再度、Load Setting 画面が表示されます。Load Setting 画面 で[OK] ボタンをクリックすると、波形パターンのロードが開始されます。

注:

Load Setting 画面で[Cancel] ボタンをクリックすると, 波形パターンのロードを行わずこの画面が終了します。

3.1.5 Calculation & Play

この機能は本ソフトウェアを MG3710A, MG3740A 上で使用しているとき のみ有効です。

[Calculation & Play] を選択すると,波形生成完了後に生成した波形パターン をメモリにロード,選択し,出力します。

2nd ベクトル信号発生器(オプション)を搭載しているときは,波形生成開始前に Select SG 画面が表示されます。この画面で,生成した波形パターンを出力する 信号発生器を選択します。

	×
SG2	
	SG2

図3.1.5-1 Select SG 画面

注:

3.1.6 パラメータの保存・読み出し

本ソフトウェアは,各項目の数値や設定を,パラメータファイルとして保存することが できます。

パラメータファイルの保存

PC, MS2690A/MS2691A/MS2692A, および MS2830A 上で実行しているとき

す。)

1. [File] メニューの [Save Parameter File] をクリックするか, すると, 以下のパラメータファイル保存画面が表示されます。

名前を付けて保存					<u>? ×</u>
保存する場所①:	🔁 TDMA		•	+ 🗈 📸 🎫	
で 履歴 デスクトップ マイドキュメント	Data modulationimage sample_paramete mrnp TMA.prm	r_file			
マイ ネットワーク	, ファイル名(<u>N</u>): ファイルの種類(<u>T</u>):	Data Files(*.prm)		•	保存(S) キャンセル

図3.1.6-1 パラメータファイル保存画面

 [ファイル名(N)] ボックスに任意の名前を入力し, [保存(S)] ボタンをクリッ クすると, パラメータファイルが保存されます。
 [保存する場所(I)] ボックスを変更しなかった場合, パラメータファイルの保 存先およびファイル名は,
 X:¥IQproducer¥TDMA¥(入力したファイル名).prm となります。
 (X:¥IQproducer は IQproducer™ をインストールしたフォルダを示しま

3-44

MG3710A, MG3740A 上で実行しているとき

1. [File] メニューの [Save Parameter File] をクリックするか, クすると,以下のパラメータファイル保存画面が表示されます。

Drives Local Disk (C.)	File Name	
Directories	File List	
Convert	A	
DVB-T_H		
Fading		
FFT		
HSDPA		
■ LTE_TDD		
- mesa	Save to	
MultiCarrier	C:\Anritsu/IQproducer\TDMA\	
MWIMAX		
TD-SCDMA		
TDMA		1
TimeDomain	Default Root OK Cancel	

図3.1.6-2 パラメータファイル保存画面(MG3710A, MG3740A 上)

 [Directories] で保存先を指定し、[File Name] ボックスに任意の名前を入 力し、[OK] ボタンをクリックすると、パラメータファイルが保存されます。
 [Default Root] ボタンをクリックすると [Directories] の設定が初期値に戻 ります。

パラメータファイルの読み出し

PC, MS2690A/MS2691A/MS2692A, および MS2830A 上で実行しているとき

1. [File] メニューの [Recall Parameter File] をクリックするか, リックすると, 以下のパラメータファイル読み出し画面が表示されます。

ファイルを開く		? X
ファイルの場所①:	🔁 TDMA 💽 🔶 🖆 🏢 -	
<mark>③</mark> 履歴	Data modulationimage sample_parameter_file	
び デスクトップ	Tmp TDMA.prm	
<u>ک</u> ۲۲ الالد		
پ جر تکرت –ه		
マイ ネットワーク	ファイル名(い): 「「」」」 開く ファイルの種類(①: Data Files(*prm)) チャン	<u>©</u> セル

図3.1.6-3 パラメータファイル読み出し画面

- 2. ファイル一覧の中から読み出したいパラメータファイルをクリックし, [開く(O)] ボタンをクリックすると、パラメータファイルが読み出されます。
- 3. 下記のディレクトリ

X:¥IQproducer¥TDMA¥sample_parameter_file¥PDC, X:¥IQproducer¥TDMA¥sample_parameter_file¥PHS, X:¥IQproducer¥TDMA¥sample_parameter_file¥UserDefined (X:¥IQproducerはIQproducer™をインストールしたフォルダを示します。) には、PDC、PHS、とAPSKと多値QAMを定義したUser Definedの波形 パターン作成用のパラメータファイルが格納されています。パラメータファイ ルを読み出し、波形生成させることで、標準波形パターンと同様の波形パ ターンを作成することができます。
MG3710A, MG3740A 上で実行しているとき

1. [File] メニューの [Recall Parameter File] をクリックするか, リックすると, 以下のパラメータファイル読み出し画面が表示されます。

図3.1.6-4 パラメータファイル読み出し画面(MG3710A, MG3740A 上)

2. [Directories] で読み出したいパラメータファイルが保存されている場所を選 択し, [File List] から読み出したいパラメータファイルをクリックし, [OK] ボ タンをクリックすると, パラメータファイルが読み出されます。[Default Root] ボタンをクリックすると [Directories] の設定が初期値に戻ります。

3.1.7 グラフ表示

本ソフトウェアでは、生成した波形パターンの CCDF グラフと FFT グラフを表示させることができます。詳細は、以下のいずれかを参照してください。

- ・『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生 器取扱説明書 (IQproducer™編)』
 「4.3 CCDF グラフ表示」,「4.4 FFT グラフ表示」,「4.13 Time Domain グラフ 表示」
- ・『MS2690A/MS2691A/MS2692A および MS2830A シグナルアナライザ ベクトル信号発生器 取扱説明書 IQ IQproducer™編』
 「4.3 CCDF グラフ表示」,「4.4 FFT グラフ表示」,「4.9 Time Domain グラフ 表示」

CCDF グラフを表示

- 1. Calculation を実行し、TDMA の波形パターンを生成します。
- 2. [Simulation] メニューの [CCDF] をクリックするか, 🚆 をクリックすると, CCDF グラフ画面が表示され, 生成した波形パターンのトレースが表示され ます。

図3.1.7-1 CCDF グラフ画面

CCDF グラフ表示後,パラメータを変更および"Calculation"を実行し,生成された波形パターンのトレースを表示する場合,表示方法を次の2種類から選択することができます。

- ・ 前のトレースと同じ画面に表示する
- ・ 前のトレースを消去し、新しいトレースを表示する

注:

CCDF グラフと FFT グラフを同時に生成することはできません。 両方のグラフを表示する場合は,一方のグラフ生成が完了した後で,も う一方のグラフ生成を実行してください。

■ 前のトレースと同じ画面に表示する場合

- 1. CCDF グラフ画面の左下にある [Quick Add mode] を [Add] に設定しま す。
- [Simulation] メニューの [CCDF] をクリックするか, 愛をクリックすると, CCDF グラフ画面に,新しく生成した波形パターンのトレースが追加されます。 この手順を繰り返し,最大8本のトレースを表示させることができます。

■ 前のトレースを消去し、新しいトレースを表示する場合

- 1. CCDF グラフ画面の左下にある [Quick Add mode] を [Clear] に設定します。
- 2. [Simulation] メニューの [CCDF] をクリックするか, 🔄 をクリックすると, 以下に示すメッセージが表示されます。

The request for drawing a trace.	X
There is a request from the other IQpr Delete the displayed trace and draw a	oducer application for drawing a trace. new trace?
Yes	No
図3.1.7-2	確認表示

ここで [Yes] ボタンをクリックすると、それまで表示されていたトレースは消去 され、新しく生成した波形パターンのトレースが表示されます。 詳細

FFT グラフを表示

- 1. Calculation を実行し、TDMA の波形パターンを生成します。
- 2. [Simulation] メニューの [FFT] をクリックするか, A をクリックすると, FFT グラフ画面が表示され, 生成した波形パターンのトレースが表示されます。

図3.1.7-3 FFT グラフ画面

FFT グラフ表示後、パラメータを変更および"Calculation"を実行し、生成された波形パターンのトレースを表示する場合、表示方法を次の2種類から選択することができます。

- ・ 前のトレースと同じ画面に表示する
- ・ 前のトレースを消去し、新しいトレースを表示する

注:

.....

Ì

CCDF グラフと FFT グラフを同時に生成することはできません。 両方のグラフを表示する場合は、一方のグラフ生成が完了した後で、も う一方のグラフ生成を実行してください。

.....

.....

- 前のトレースと同じ画面に表示する場合
- 1. FFT グラフ画面の左下にある [Quick Add mode] を [Add] に設定しま す。
- 2. [Simulation] メニューの [FFT] をクリックするか, 🥂 をクリックすると, FFT グラフ画面に,新しく生成した波形パターンのトレースが追加されます。 この手順を繰り返し,最大4本のトレースを表示させることができます。

■ 前のトレースを消去し、新しいトレースを表示する場合

- 1. FFT グラフ画面の左下にある [Quick Add mode] を [Clear] に設定しま す。
- 2. [Simulation] メニューの [FFT] をクリックするか, 🗾 をクリックすると, 図 以下に示すメッセージが表示されます。

The request for drawing	ng a trace.	X
There is a request Delete the displaye	from the other IQpn ed trace and draw a	roducer application for drawing a trace. a new trace?
	Yes	No
	図3.1.7-4	確認表示

ここで [Yes] ボタンをクリックすると, それまで表示されていたトレースは消去 され, 新しく生成した波形パターンのトレースが表示されます。 3

Time Domain グラフを表示

- 1. Calculation を実行し波形パターンを生成します。
- 2. [Simulation] メニューの [Time Domain] をクリックするか, Mar をクリッ クすると, 図 3.1.7-5 に示す Time Domain グラフ画面が表示され, 生成した 波形パターンのトレースが表示されます。

図3.1.7-5 Time Domain グラフ画面

Time Domain グラフ表示後, パラメータを変更および"Calculation"を実行し, 生成された波形パターンのトレースを表示する場合, 表示方法を次の2 種類から選択することができます。

- ・ 前のトレースと同じ画面に表示する
- ・ 前のトレースを消去し、新しいトレースを表示する

注: CCDFグラフ, FFTグラフ, および Time Domain グラフを同時に生成 することはできません。 すべてのグラフを表示する場合は, 各グラフ生

成が完了したあとで、別のグラフ生成を実行してください。

■ 前のトレースと同じ画面に表示する場合

- 1. Time Domain グラフ画面の左下にある [Quick Add Mode] を [Add] に設定します。
- [Simulation] メニューの [Time Domain] をクリックするか、 「「」 をクリックすると、 Time Domain グラフ画面に、 新しく生成した波形パターン のトレースが追加されます。
 この手順を繰り返し、最大4本のトレースを表示させることができます。

- 前のトレースを消去し、新しいトレースを表示する場合
- 1. Time Domain グラフ画面の左下にある [Quick Add Mode] を [Clear] に設定します。
- 2. [Simulation] メニューの [Time Domain] をクリックするか, Markov をクリックすると, 以下に示すメッセージが表示されます。

ここで [Yes] ボタンをクリックすると、それまで表示されていたトレースは 消去され、新しく生成した波形パターンのトレースが表示されます。 機能詳細

3.1.8 補助信号出力

本器で TDMA IQproducerTMにより作成した波形パターンを選択すると、補助信号として RF 信号に同期したマーカが本器背面パネルの AUX Input/Output から出力されます。Frame Trigger (Connector 1), RF Gate (Connector 2), および Symbol Clock (Connector 3) が出力されます。

• Frame Trigger

Connector 1からはフレームの先頭シンボルに同期したパルスが出力されます。 Marker 1 の Polarity を変更することにより信号の極性を変えることができま す。

• RF Gate

使用している波形パターンがバースト波の場合に、本器のRF出力のバースト ON/OFF の状態を示します。各状態と出力信号の対応は以下のようになりま す。

バーストON: High レベル

バースト OFF: Low レベル

(上記は Marker2 の Polarity=Positive の場合です。

Polarity=Negativeの場合は上記と逆になります。)

• Symbol Clock

Connector 3 からはシンボルに同期したシンボルクロックが出力されます。 Marker 3 の Polarity を変更することにより信号の極性を変えることができま す。

3.2 波形パターン作成手順

ここでは, PHS の下り波形パターンを例にして, 波形パターンの作成手順を示します。

 $0_{\rm H}(4 \text{ bits})$

R	SS	PR	UW	CI	SA	ТСН	CRC	R	G
4	2	6	16	4	16	160	16	4	12

R:過渡応答用ランプタイム SS:スタートシンボル PR:プリアンブル UW:同期ワード CI:チャネル種別 SA:SACCH

TCH:情報チャネル

G:過渡応答用ガードタイム

CRC:巡回符号

2_H(2 bits) 19_H(6 bits) 上り回線 E149_H(16 bits) 下り回線 3D4C_H(16 bits) 0_H(4 bits) 8000_H(16 bits) PN9 段擬似ランダムパターン CI, SA, TCH の CRC ビット 000_H(12 bits)

図3.2-1 PHS スロットフォーマット

<手順>

- 1. "Burst"パラメータ設定シートをクリックします。
- 2. [Modulation] ボタンをクリックし, Modulation パラメータ設定画面を開きま す。
- "Modulation Type"を PI/4DQPSK に、 "Symbol Rate"を 192 ksps に設定し、[OK] ボタンをクリックして Modulation パラメータ設定画面を閉じます。
- 4. [Frame] ボタンをクリックし, Frame パラメータ設定画面を開きます。
- "The Number of Frames"を 511 に, "The Number of Slots per Frame"を8に設定します。Slot 送信状態は、1st Slot のみ ON に設定し、 [OK] ボタンをクリックして Frame パラメータ設定画面を閉じます。
- 6. [Slot] ボタンをクリックし, Slot パラメータ設定画面を開きます。
- 7. 表 3.2-1 のようなスロットフォーマットになるように設定し, [OK] ボタンをクリッ クして Slot パラメータ設定画面を閉じます。

細

Field	ビット数	Field Type
1st	0	Guard
2nd	4	Ramp
3rd	2	Fixed
4th	6	Fixed
5th	16	Fixed
6th	4	Fixed
7th	16	Fixed
8th	160	Data
9th	16	CRC
23rd	4	Ramp
24th	12	Guard
上記以外	0	Fixed

表3.2-1 Slot 設定値

- 8. [Field] ボタンをクリックし, Field パラメータ設定画面を開きます。
- 9. 各 Fieldを表 3.2-2 のように設定し, [OK] ボタンをクリックして Field パラメー タ設定画面を閉じます。

表3.2-2	Field	設定値
--------	-------	-----

Field	Field Type	設定値
Data Field	—	PN9
CRC Field	_	Ones Complement 無し Register 初期値 All1
1st	Ramp	—
2nd	Fixed	2
3rd	Fixed	19
4th	Fixed	3D4C
5th	Fixed	0
6th	Fixed	8000
7th	Data	_
8th	CRC	180
9th	Ramp	_
10th	Guard	_
上記以外	Fixed	—

- 10. [Filter] ボタンをクリックし, Filter パラメータ設定画面を開きます。
- "Filter Type"を Root Nyquist に, "Roll Off"を 0.5 に, "RMS"を 1634 に 設定し, [OK] ボタンをクリックして Filter パラメータ設定画面を閉じます。
- **12.** [Pattern Name] ボタンをクリックし, Pattern Name パラメータ設定画面を 開きます。
- 13. "Pattern Name"に出力ファイル名を入力し, [OK] ボタンをクリックして Pattern Name パラメータ設定画面を閉じます。
- 14. [Calculation] ボタンをクリックして,波形パターンを作成します。

機能詳

細

第4章 波形パターンの使用方法

本ソフトウェアで生成した波形パターンを使用し,本器から変調波を出力するため には,以下の操作を行う必要があります。

- ・ 波形パターンの本器内蔵ハードディスク/SSD への転送
- ・ ハードディスク/SSD から波形メモリへの展開
- ・ 本器から出力する波形パターンの選択

この章では、これらの操作の詳細について説明します。

4.1	MG370	00A, MG3710A または MG3740A を	
	使用す	る場合	4-2
	4.1.1	波形パターンを本器内蔵ハードディスクへ	
		転送する	4-2
	4.1.2	波形メモリへ展開する	4-3
	4.1.3	波形パターンを選択する	4-4
4.2	MS269	00A/MS2691A/MS2692A, MS2830A	
	または	MS2840Aを使用する場合	4-5
	4.2.1	波形パターンを本器内蔵ハードディスク/SS	D へ
		転送する	4-5
	4.2.2	波形メモリへ展開する	4-5
	4.2.3	波形パターンを選択する	4-6

4.1 MG3700A, MG3710A または MG3740A を使用する場合

この節では MG3700A, MG3710A または MG3740A を使用する場合に, 生成し た波形パターンを本器のハードディスクにダウンロードし, そこから出力する方法を 説明します。

4.1.1 波形パターンを本器内蔵ハードディスクへ転送する

本ソフトウェアで作成した波形パターンは,以下の方法で本器の内蔵ハードディス クに転送できます。

注:

MG3710A, MG3740A の場合, MG3710A, MG3740A 上で波形パター ンを生成したときはこの操作は必要ありません。

本器が MG3700A のとき

- LAN
- ・ コンパクトフラッシュカード

本器が MG3710A, MG3740A のとき

- LAN
- ・ USB メモリなど外部デバイス
- パソコンから LAN を経由して本器に転送する場合(MG3700A, MG3710A, MG3740A)

LANを経由して本器に波形パターンを転送する場合は、本ソフトウェアの以下の2 種類のツールを使用することができます。

• [Transfer & Setting Wizard]

この機能は、波形パターンを生成後に、本ソフトウェアの [Transfer & Setting Wizard] をクリックする、または [Simulation & Utility] タブにある [Transfer & Setting Wizard] を選択することで起動します。使用方法の詳細は、『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号 発生器 取扱説明書(IQproducer™編)』の「4.7 Transfer & Setting Wizard でのファイル転送とメモリ展開」を参照してください。

なお,この操作は,本器の内蔵ハードディスクへの転送,ハードディスクから波 形メモリへの展開,波形パターンの出力までの動作を行うことができます。

• [Transfer & Setting Panel]

この機能は、本ソフトウェアの [Simulation & Utility] タブにある [Transfer & Setting Panel] を選択することで起動します。使用方法の詳細は、 『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer™編)』の「5.2 波形パターンの転送」を参照してくだ さい。

[Transfer & Setting Panel] のパソコン側ビューには本器に転送したい波形 パターンが収められているフォルダを指定してください。

■ コンパクトフラッシュカードを経由して転送する場合(MG3700A)

本器に転送したい波形パターン(***.wvi, ***.wvd ファイル)をコンパクトフラッシュカードにコピーします。

コンパクトフラッシュカードを本器の前面パネルのカードスロットに挿入し, 先ほどコ ピーしたファイルを本器のハードディスクにコピーします。コンパクトフラッシュカー ドからの転送方法の詳細は, 『MG3700A ベクトル信号発生器 取扱説明書(本体 編)の「3.5.2(1) 波形ファイルをメモリに展開する」を参照してください。

■ USB メモリなど外部デバイスを経由して転送する場合 (MG3710A, MG3740A)

本ソフトウェアで生成した波形パターンを本器のハードディスクへ転送する方法に ついては『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取 扱説明書(本体編)』の「7.3.6 外部からの波形パターンのコピー:Copy」を参照し てください。

4.1.2 波形メモリへ展開する

波形パターンを使って変調信号を出力するためには、「4.1.1 波形パターンを本器 内蔵ハードディスクへ転送する」で本器の内蔵ハードディスクに転送された波形パ ターンを,波形メモリに展開する必要があります。以下の2種類で波形メモリへ展開 できます。

■ 本体から設定する場合

本器のパネルまたはリモートコマンドにより,波形パターンをメモリへ展開することができます。

パネルからの設定の詳細は、以下のいずれかを参照してください。

- 『MG3700A ベクトル信号発生器 取扱説明書(本体編)』 「3.5.2(1) 波形ファイルをメモリに展開する」
- 『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(本体編)』「7.3.4 リモート波形パターンの Load: Load」

リモートコマンドによる設定の詳細は、以下のいずれかを参照してください。

- ・ 『MG3700A ベクトル信号発生器 取扱説明書(本体編)』 「第4章 リモート制御」
- 『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明 書(本体編)』「7.3.4 リモート波形パターンの Load:Load」

■ IQproducer™の Transfer & Setting Panel で設定する場合

[Simulation & Utility] タブにある [Transfer & Setting Panel] を使用して, LAN に接続されたパソコンから波形パターンをメモリへ展開することができます。 操作方法の詳細は『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナ ログ信号発生器 取扱説明書(IQproducer™編)』の「4.6 Transfer & Setting Panel でのファイル転送とメモリ展開」を参照してください。 4

4.1.3 波形パターンを選択する

「4.1.2 波形メモリへ展開する」において本器の波形メモリに展開した波形パターン の中から、変調に使用するパターンを選択します。パターンの選択方法は以下の2 種類があります。

■ 本体から設定する場合

本器のパネルまたはリモートコマンドにより,変調に使用する波形パターンを選択 することができます。

パネルからの設定の詳細は、以下のいずれかを参照してください。

- ・『MG3700A ベクトル信号発生器 取扱説明書(本体編)』 「3.5.2(4) Editモードにおいて、メモリAに展開されたパターンを出力し、変調 を行う」
- 『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(本体編)』「7.3.5 出力波形パターンの選択:Select」

リモートコマンドによる設定は、以下のいずれかを参照してください。

- 『MG3700A ベクトル信号発生器 取扱説明書(本体編)』
 「第4章 リモート制御」
- ・ 『MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明 書(本体編)』「7.3.5 出力波形パターンの選択:Select」

■ IQproducer™の Transfer & Setting Panel で設定する場合

[Simulation & Utility] タブにある [Transfer & Setting Panel] を使用して, LAN に接続されたパソコンからの操作で,波形パターンをメモリへ展開することや, 変調に使用する波形パターンを選択することができます。操作方法の詳細は, 『MG3700A/MG3710A ベクトル信号発生器 MG3740A アナログ信号発生器 取扱説明書(IQproducer™編)』の「4.6 Transfer & Setting Panel でのファイル 転送とメモリ展開」を参照してください。

4.2 MS2690A/MS2691A/MS2692A, MS2830A または MS2840A を使用する場合

この節では MS2690A/MS2691A/MS2692A, MS2830A または MS2840A を使用する場合に, 生成した波形パターンを本器のハードディスク/SSD に転送し, 本器から出力する方法を説明します。

4.2.1 波形パターンを本器内蔵ハードディスク/SSDへ転送する

本ソフトウェアで生成した波形パターンを本器のハードディスク/SSD へ転送する方 法についての詳細は,以下のいずれかを参照してください。

- 『MS2690A/MS2691A/MS2692Aオプション020ベクトル信号発生器 取扱説 明書(操作編)』
 - 「2.4.4 波形ファイルをハードディスクにコピーする」
- ・『MS2830A/MS2840A ベクトル信号発生器取扱説明書(操作編)』 「2.4.4 波形ファイルをハードディスク/SSD にコピーする」
- 注:

本ソフトウェアを本器へインストールし,本器上で波形パターンを生成した場 合はこの操作は必要ありません。

4.2.2 波形メモリへ展開する

波形パターンを使って変調信号を出力するためには、本器の内蔵ハードディスク /SSD に入っている波形パターンを、波形メモリに展開する必要があります。

■ 波形メモリへの展開

本器のパネルまたはリモートコマンドにより, 波形パターンをメモリへ展開することが できます。

パネルからの設定の詳細は、以下のいずれかを参照してください。

- 『MS2690A/MS2691A/MS2692Aオプション020ベクトル信号発生器 取扱説 明書(操作編)』
 - 「2.4.1 波形パターンをメモリにロードする」
- 『MS2830A/MS2840A ベクトル信号発生器取扱説明書(操作編)』
 「2.4.1 波形パターンをメモリにロードする」

リモートコマンドによる設定の詳細は、以下のいずれかを参照してください。

- 『MS2690A/MS2691A/MS2692Aオプション020ベクトル信号発生器 取扱説 明書(リモート制御編)』
- ・『MS2830A/MS2840A ベクトル信号発生器取扱説明書(リモート制御編)』

Δ

4.2.3 波形パターンを選択する

「4.2.1 波形パターンを本器内蔵ハードディスク/SSD へ転送する」で本器の波形メ モリに展開した波形パターンの中から、変調に使用するパターンを選択します。

■ 波形パターンの選択

本器のパネルまたはリモートコマンドにより、変調に使用する波形パターンを選択 することができます。

パネルからの設定の詳細は、以下のいずれかを参照してください。

- 『MS2690A/MS2691A/MS2692Aオプション020ベクトル信号発生器 取扱説 明書(操作編)』
 「2.4.2 波形パターンを選択する」
- ・ 『MS2830A/MS2840A ベクトル信号発生器取扱説明書(操作編)』 「2.4.2 波形パターンを選択する」

リモートコマンドによる設定の詳細は,以下のいずれかを参照してください。

- 『MS2690A/MS2691A/MS2692Aオプション020ベクトル信号発生器 取扱説 明書(リモート制御編)』
- ・『MS2830A/MS2840A ベクトル信号発生器取扱説明書(リモート制御編)』

付録А エラーメッセージ

エラーメッセージー覧を以下に示します。n1, n2は数値, sは文字列を表します。

エラーメッセージ	メッセージ内容	
Can not open file	ファイルが開けません。	
Can not open file ("s")	ファイル <i>s</i> が開けません。	
Can not read file	ファイルが読み込めません。	
Can not write file	ファイルに書き込みできません。	
Directory not found ("s")	フォルダ s が見つかりません。	
Disk full("s")	ファイルs作成中にディスクがいっぱいになりました。	
Inadequacy: All Off	すべてのスロット状態が OFF です。	
Inadequacy:Blank	設定が空白状態です。	
Inadequacy: CRC	CRC の設定が不適切です。	
Inadequacy: Invalid Value	不適切な数値設定です。	
Inadequacy: No Pattern Name	Pattern Name が未入力です。	
Invalid file format	ファイルのファイル形式が不適切です。	
Invalid file format ("s")	ファイル sのファイル形式が不適切です。	
Out of range: $s (n_1 - n_2)$	パラメータ s の値が n_1 から n_2 までの設定可能範囲から 外れています。	
Out of range: The number of samples is over 256/512Msamples.	作成する波形パターンデータのサンプル数が, 256/512Msamplesを超えています。 <i>注:</i> このメッセージは,起動時に表示される対応機種選択画	
	面で [MG3700] を選択したときのみ表示されます。	
	作成する波形パターンデータのサンプル数が, 64/128/256/512Msamplesを超えています。	
Out of range: The number of samples is over 64/128/256/512Msamples.	注:	
	このメッセージは,起動時に表示される対応機種選択画 面で [MG3710/MG3740] を選択したときのみ表示さ れます。	
	作成する波形パターンデータのサンプル数が, 256Msamplesを超えています。	
Out of range: The number of samples is over 256	注:	
Msamples.	このメッセージは, 起動時に表示される対応機種選択画 面で[MS269x], [MS2830], または [MS2840] を選択 したときのみ表示されます。	

表A-1 エラーメッセージ

付 録 A

エラーメッセージ	メッセージ内容
Out of Range: Sampling Rate (kHz) (20-8000)	サンプリングレートの設定範囲 20~8000 kHz を超えて います。
Out of Range: Sampling Rate (MHz) (0.02-8)	サンプリングレートの設定範囲 0.02~8 MHz を超えて います。
The Waveform data file is not generated.	波形パターンデータが作成されていません。
There is no Fixed/Data/CRC field.	スロット内に Fixed/Data/CRC のフィールドがありません。
Total bit isn't a multiple of n_1 .	1 スロットの合計ビット数が n1の倍数ではありません。
Total bit of the first half of the slot isn't a multiple of n_I .	1スロット内の前半の合計ビット数が mmの倍数ではありません。
Total bit of the second half of the slot isn't a multiple of n_I .	1スロット内の後半の合計ビット数が n1の倍数ではありません。
Inadequacy: Maximum frequency deviation isn't a multiple of 3.	Maximum frequency deviation が3の倍数ではあり ません。
Out of range : The number of FIR taps(1 - 1023)	ファイルのフィルタ係数のタップ数が1から1023の設定 範囲を外れています。
Inadequacy : The number of FIR taps is not odd numbers	ファイルのフィルタ係数のタップ数が奇数になっていま せん。

表A-1 エラーメッセージ (続き)

警告メッセージー覧を以下に示します。

表A-2 警告メッセージ

警告メッセージ	メッセージ内容
All slots shall be the same content of fields.	すべての送信スロットでフィールドの設定が同じになります。
Change the number of frames to 1?	フレーム数を1に変更しますか?
Clipping was done.	クリッピングが行われました。
Decrease the number of frames to keep only phase continuous?	位相のみ連続にするため,フレーム数を減らしますか?
Keep phase continuous?	位相を連続にしますか?
There is a possibility that phase is not continuous.	位相が連続ではない可能性があります。

B.1 BPSK

ADIT FOR		
Allocation	Symbol Data	
0	0	
1	1	

付録 付録B

表B.1-2 BPSK(45°回転)

Allocation	Symbol Data
0	0
1	1

B.2 DBPSK

Differential	Symbol Data
PI	0
0	1

付録 付録B

B.3 PI/2DBPSK

B.4 QPSK

Allocation	Symbol Data		
0	11		
1	01		
2	00		
3	10		

表B.4-2 QPSK(45°回転)

Allocation	Symbol Data	
0	11	
1	01	
2	00	
3	10	

B.5 O-QPSK

耒 Β 5₋1	OPSK
衣D.Ე-1	QFSK

Allocation	Symbol Data
0	11
1	01
2	00
3	10

B.6 DQPSK

表B 6-1	DOPSK
衣口.0-1	DURGN

Differential	Symbol Data	
PI/2	00	
2PI/2	01	
3PI/2	10	
0	11	

B.7 PI/4DQPSK

Differential Symbol Data			
PI/4	00		
3PI/4	01		
-3PI/4	11		
-PI/4	10		

付録

付 録 B

B.8 8PSK

表B.8-1	8PSK

Allocation	Symbol Data	Allocation	Symbol Data
0	111	4	001
1	110	5	000
2	010	6	100
3	011	7	101

表B.8-2	8PSK(GSM)
	(/

Allocation	Symbol Data	Allocation	Symbol Data
0	111	4	001
1	011	5	101
2	010	6	100
3	000	7	110

B.9 D8PSK

表B.9-1	D8PSK
10.0	001 011

Differential	Symbol Data	Differential	Symbol Data
PI/4	110	-3PI/4	000
2PI/4	010	-2PI/4	100
3PI/4	011	-PI/4	101
4PI/4	001	0	111

付録

付 録 B

B.10 16QAM

Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data
0	0111	4	0110	8	0010	12	0011
1	0101	5	0100	9	0000	13	0001
2	1101	6	1100	10	1000	14	1001
3	1111	7	1110	11	1010	15	1011

B.11 32QAM

		/	Q			
	• 0	● 1	2	• 3		
● 4	• 5	• 6	• 7	• 8	• 9	
• 10	● 11	• 12	• 13	● 14	15	I
• 16	● 17	● 18	● 19	• 20	• 21	
• 22	• 23	• 24	• 25	• 26	• 27	
	• 28	29	● 30	• 31		
			I			

32QAM

Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data
0	11101	8	00100	16	00110	24	01001
1	01010	9	10111	17	10011	25	11001
2	11010	10	01110	18	00000	26	01100
3	01101	11	11011	19	10000	27	11111
4	00111	12	01000	20	00011	28	10101
5	10100	13	11000	21	10110	29	00010
6	00001	14	01011	22	01111	30	10010
7	10001	15	11110	23	11100	31	00101

付録

付 録 B

B.12 64QAM

			/	Q				
• 0	● 1	• 2	• 3	• 4	• 5	6	9 7	
8	9	• 10	• 11	• 12	• 13	• 14	● 15	
• 16	1 7	• 18	1 9	• 20	• 21	9 22	2 3	
 2 4	25	2 6	27		29	• 30	9 1	→ I
• 32	3 3	• 34	• 35	. 36	• 37	3 8	3 9	
• 40	• 41	• 42	• 43	• 44	• 45	● 46	4 7	
• 48	4 9	• 50	• 51	• 52	• 53	• 54	• 55	
• 56	5 7	• 58	• 59	6 0	6 1	6 2	6 3	

表B.12-1 64QAM

Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data
0	100010	16	100111	32	110111	48	110010
1	100000	17	100101	33	110101	49	110000
2	101000	18	101101	34	111101	50	111000
3	101010	19	101111	35	111111	51	111010
4	001000	20	001101	36	011101	52	011000
5	001010	21	001111	37	011111	53	011010
6	000010	22	000111	38	010111	54	010010
7	000000	23	000101	39	010101	55	010000
8	100011	24	100110	40	110110	56	110011
9	100001	25	100100	41	110100	57	110001
10	101001	26	101100	42	111100	58	111001
11	101011	27	101110	43	111110	59	111011
12	001001	28	001100	44	011100	60	011001
13	001011	29	001110	45	011110	61	011011
14	000011	30	000110	46	010110	62	010011
15	000001	31	000100	47	010100	63	010001

B.13 256QAM

表B.13-1	256QAM

Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data
0	10001000	28	00001001	56	00100110	84	10110110
1	10001010	29	00001011	57	00100100	85	10110100
2	10000010	30	00000011	58	00101100	86	10111100
3	1000000	31	00000001	59	00101110	87	10111110
4	10100010	32	10001101	60	00001100	88	00110110
5	10100000	33	10001111	61	00001110	89	00110100
6	10101000	34	10000111	62	00000110	90	00111100
7	10101010	35	10000101	63	00000100	91	00111110
8	00100010	36	10100111	64	10011101	92	00011100
9	00100000	37	10100101	65	10011111	93	00011110
10	00101000	38	10101101	66	10010111	94	00010110
11	00101010	39	10101111	67	10010101	95	00010100
12	00001000	40	00100111	68	10110111	96	10011000
13	00001010	41	00100101	69	10110101	97	10011010
14	00000010	42	00101101	70	10111101	98	10010010
15	00000000	43	00101111	71	10111111	99	10010000
16	10001001	44	00001101	72	00110111	100	10110010
17	10001011	45	00001111	73	00110101	101	10110000
18	10000011	46	00000111	74	00111101	102	10111000
19	10000001	47	00000101	75	00111111	103	10111010
20	10100011	48	10001100	76	00011101	104	00110010
21	10100001	49	10001110	77	00011111	105	00110000
22	10101001	50	10000110	78	00010111	106	00111000
23	10101011	51	10000100	79	00010101	107	00111010
24	00100011	52	10100110	80	10011100	108	00011000
25	00100001	53	10100100	81	10011110	109	00011010
26	00101001	54	10101100	82	10010110	110	00010010
27	00101011	55	10101110	83	10010100	111	00010000

付録

付 録 B

Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data	Allocation	Symbol Data
112	10011001	148	11110110	184	01110011	220	01001001
113	10011011	149	11110100	185	01110001	221	01001011
114	10010011	150	11111100	186	01111001	222	01000011
115	10010001	151	11111110	187	01111011	223	01000001
116	10110011	152	01110110	188	01011001	224	11001101
117	10110001	153	01110100	189	01011011	225	11001111
118	10111001	154	01111100	190	01010011	226	11000111
119	10111011	155	01111110	191	01010001	227	11000101
120	00110011	156	01011100	192	11001000	228	11100111
121	00110001	157	01011110	193	11001010	229	11100101
122	00111001	158	01010110	194	11000010	230	11101101
123	00111011	159	01010100	195	11000000	231	11101111
124	00011001	160	11011000	196	11100010	232	01100111
125	00011011	161	11011010	197	11100000	233	01100101
126	00010011	162	11010010	198	11101000	234	01101101
127	00010001	163	11010000	199	11101010	235	01101111
128	11011101	164	11110010	200	01100010	236	01001101
129	11011111	165	11110000	201	01100000	237	01001111
130	11010111	166	11111000	202	01101000	238	01000111
131	11010101	167	11111010	203	01101010	239	01000101
132	11110111	168	01110010	204	01001000	240	11001100
133	11110101	169	01110000	205	01001010	241	11001110
134	11111101	170	01111000	206	01000010	242	11000110
135	11111111	171	01111010	207	01000000	243	11000100
136	01110111	172	01011000	208	11001001	244	11100110
137	01110101	173	01011010	209	11001011	245	11100100
138	01111101	174	01010010	210	11000011	246	11101100
139	01111111	175	01010000	211	11000001	247	11101110
140	01011101	176	11011001	212	11100011	248	01100110
141	01011111	177	11011011	213	11100001	249	01100100
142	01010111	178	11010011	214	11101001	250	01101100
143	01010101	179	11010001	215	11101011	251	01101110
144	11011100	180	11110011	216	01100011	252	01001100
145	11011110	181	11110001	217	01100001	253	01001110
146	11010110	182	11111001	218	01101001	254	01000110
147	11010100	183	11111011	219	01101011	255	01000100

表B.13-1 256QAM(続き)
B.14 2ASK

Allocation	Symbol Data
0	0
1	1

付録 付録B

B.15 4ASK

表B.15-1 4ASK

Allocation	Symbol Data
0	00
1	01
2	11
3	10

B.16 2FSK

Direction	Symbol Data
+	1
-	0

付 録 B

B.17 4FSK

表B.17-1 4FSK (Maximum frequency deviation = 945 Hz の場合)

Direction	Symbol Data	Deviation
+3	01	945
+1	00	315
-1	10	-315
-3	11	-945

Deviation は下記の式で求めます。

 $Deviation = Direction \times \frac{Maximum\ frequency\ deviation}{3}$

付録C ユーザファイルフォーマット

C.1 IQ マッピング ユーザファイル フォーマット

付録 B の図において、シンボル点に対応する2 進数をシンボル点に当てられた番 号順に、1 行ごとに0 または1 のテキスト文字で記述してください。D8PSK の場合 は、位相差に対応する2 進数を PI/4、2PI/4、3PI/4、4PI/4、-3PI/4、-2PI/4、-PI/4、0 の順に1 行ごとに記述してください。

テキストファイルであれば、拡張子は特に指定しませんが、フォーマットに従っていない場合は、読み込み時にエラーとなります。また、変調方式に対する2進数の種類が足りない場合や、同一の2進数が含まれる場合なども読み込み時にエラーとなります。

図C.1-1 16QAM の場合の IQ マッピングユーザファイル例

図 C.1-1 のようなユーザファイルを読み込んだ場合, 図 C.1-2 のようなシンボル点 配置となります。 付録

付録

	Symbol Data		Symbol Data		Symbol Data		Symbol Data
0	1111	4	1011	8	0111	12	0011
1	1110	5	1010	9	0110	13	0010
2	1101	6	1001	10	0101	14	0001
3	1100	7	1000	11	0100	15	0000

図C.1-2 図 C.1-1 のユーザファイルを読み込んだ場合の 16QAM の IQ マッピングとシンボルデータ表

C.2 連続パターン用 ユーザファイル フォーマット

変調前の 2 進の数列を記述してください。0,1 および改行文字以外のコンマ,スペースなどを含む場合は読み込み時にエラーとなります。読み込み可能な最大ビット数は 9600000 ビットです。

例: PN9 の場合

> 左上から1行ずつ順番に Data Field に挿入されます。各 Slot の Data Field の 連続性は、第3章図 3.1.2.4-3 を参照してください。 Data Field の合計ビット数が ユーザファイルの2進数のビット数より多い場合は、図 C.2-1 のようにユーザファイ ルの先頭に戻って繰り返し挿入されます。また、フレーム数を"Auto"に設定し、連 続パターンを"UserFile"に設定した場合は、フレーム数は1、または位相の連続 性のみを保つ値に設定されます。

図C.2-1 Data Field への挿入方法

C.3 User defined 変調用 ユーザファイル フォーマット

User defined 変調用のユーザファイルは、1 行目には User defined 変調の 1 シンボルを構成するビット長、2 行目以降に変調に使用する IQ データをコンマ区切りで記述します。IQ データの総数は 2 を、1 シンボルを構成するビット長で累乗した値と一致させてください。

また,マッピング時の IQ データに対応するビット列はオプションで設定可能となっ ており,ビット列を挿入したい場合は IQ データの横にコンマ区切りで配置してくだ さい。ビット列が省略されている場合は,0 始まりの昇順でビット列が自動的に配置 されます。

4

0.707106781, 0.707106781, 00000.707106781. - 0.707106781.0001-0.707106781, 0.707106781, 0010-0.707106781, -0.707106781, 00110.965925826, 0.258819045, 01000.965925826, -0.258819045, 0101-0.965925826, 0.258819045, 0110-0.965925826, -0.258819045, 01110.258819045, 0.965925826, 10000.258819045, 0.965925826, 1001 -0.258819045, 0.965925826, 1010-0.258819045, -0.965925826, 10110.224478343, 0.224478343, 11000.224478343, -0.224478343, 1101-0.224478343, 0.224478343, 1110-0.224478343, -0.224478343, 1111

図C.3-1 User defined 変調用 マッピングユーザファイル (16APSK) 例

図C.3-2 図 C.3-1 のユーザファイルを読み込んだ場合の 16APSK の IQ マッピングイメージ

注:

テキストファイルであれば, 拡張子は特に指定しませんが, フォーマットに 従っていない場合は, 読み込み時にエラーとなります。

1シンボルを構成するビット長に設定できる範囲は 1~11 になり, IQ データの総数の範囲は 2~2048 となります。範囲外の場合は, 読み込み時にエラーとなります。

IQ データの総数が2を、1シンボルを構成するビット長で累乗した値になっていない場合は、読み込み時にエラーとなります。

ユーザファイル内に数値,コンマおよび改行文字以外が存在する場合は, 読み込み時にエラーとなります。

IQ データの RMS が 0 となるユーザファイルは, 読み込み時にエラーとなります。

IQデータに対応するビット列を挿入する場合は、すべてのIQデータに対し てビット列を記述してください。一部の IQ データにのみビット列が挿入され ている場合は、読み込み時にエラーとなります。また、同じユーザファイル内 でビット列の内容が重複している場合は、読み込み時にエラーとなります。

参照先はページ番号です。

■アルファベット順

С

Calculation	3-39
Calculation & Load	3-42
Calculation & Play	3-43
CCDF グラフ	3-48
D	
Data	3-31

F

FFT グラフ	3-50
Field	3-27
Filter	3-32
Frame	3-18
Μ	
Modulation	3-12
Р	
Pattern Name	3-36
S	
Slot	3-20
т	
Time Domain グラフ	3-52

■50 音順

あ
アンインストール2-3
い
インストール2-3
き
起動·終了2-4
<
グラフ表示3-48
せ
製品概要1-2
製品構成1-3
ک
動作環境2-2
は

波形パターン	4-1
作成手順	3-55
選択する	4-4, 4-6
本器内蔵ハードディスクヘ転送	する4-2
波形パターンを本器内蔵ハードデ	イスク/SSD へ
転送する	4-5
波形メモリ	
展開する	4-3, 4-5
パラメータ設定シート	3-11
パラメータファイル	
保存	3-44
パラメータ変更による再設定	3-38

め

メイン画面:	3-2	2
--------	-----	---