MG3710A ベクトル信号発生器 取扱説明書 (標準波形パターン編)

第5版

・製品を適切・安全にご使用いただくために, 製品をご使
用になる前に,本書を必ずお読みください。
・本書に記載以外の各種注意事項は, MG3710A ベクトル
信号発生器取扱説明書(本体編)に記載の事項に準じ
ますので,そちらをお読みください。
・本書は製品とともに保管してください。

アンリツ株式会社

管理番号: M-W3581AW-5.0

安全情報の表示について ――

当社では人身事故や財産の損害を避けるために、危険の程度に応じて下記のようなシグナルワードを用いて安全に関す る情報を提供しています。記述内容を十分理解した上で機器を操作してください。 下記の表示およびシンボルは、そのすべてが本器に使用されているとは限りません。また、外観図などが本書に含まれる とき、製品に貼り付けたラベルなどがその図に記入されていない場合があります。

本書中の表示について

機器に表示または本書に使用されるシンボルについて

機器の内部や操作箇所の近くに,または本書に,安全上および操作上の注意を喚起するための表示があります。 これらの表示に使用しているシンボルの意味についても十分理解して,注意に従ってください。

MG3710A ベクトル信号発生器 取扱説明書(標準波形パターン編)

2012年(平成24年) 1月20日(初版) 2014年(平成26年)7月31日(第5版)

・予告なしに本書の内容を変更することがあります。
 ・許可なしに本書の一部または全部を転載・複製することを禁じます。
 Copyright © 2012-2014, ANRITSU CORPORATION
 Printed in Japan

品質証明

アンリツ株式会社は、本製品が出荷時の検査により公表機能を満足することを証明します。

保証

- アンリツ株式会社は、本ソフトウェアが付属のマニュアルに従った使用方法にも かかわらず、実質的に動作しなかった場合に、無償で補修または交換します。
- ・ その保証期間は、購入から6か月間とします。
- ・ 補修または交換後の本ソフトウェアの保証期間は、購入時から6か月以内の残余の期間、または補修もしくは交換後から30日のいずれか長い方の期間とします。
- 本ソフトウェアの不具合の原因が、天災地変などの不可抗力による場合、お客様の誤使用の場合、またはお客様の不十分な管理による場合は、保証の対象 外とさせていただきます。

また,この保証は,原契約者のみ有効で,再販売されたものについては保証しか ねます。

なお、本製品の使用、あるいは使用不能によって生じた損害およびお客様の取引 上の損失については、責任を負いかねます。

当社へのお問い合わせ

本製品の故障については、本書(紙版説明書では巻末、CD 版説明書では別ファ イル)に記載の「本製品についてのお問い合わせ窓口」へすみやかにご連絡ください。

国外持出しに関する注意

- 本製品は日本国内仕様であり、外国の安全規格などに準拠していない場合もありますので、国外へ持ち出して使用された場合、当社は一切の責任を負いかねます。
- 本製品および添付マニュアル類は、輸出および国外持ち出しの際には、 「外国為替及び外国貿易法」により、日本国政府の輸出許可や役務取引 許可を必要とする場合があります。また、米国の「輸出管理規則」により、 日本からの再輸出には米国政府の再輸出許可を必要とする場合があり ます。

本製品や添付マニュアル類を輸出または国外持ち出しする場合は,事前 に必ず弊社の営業担当までご連絡ください。

輸出規制を受ける製品やマニュアル類を廃棄処分する場合は,軍事用途 等に不正使用されないように,破砕または裁断処理していただきますよう お願い致します。

商標·登録商標

IQproducer™はアンリツ株式会社の登録商標です。

ソフトウェア使用許諾

お客様は、ご購入いただいたソフトウェア(プログラム、データベース、電子機器の動作・設定などを定めるシナリオ等、 以下「本ソフトウェア」と総称します)を使用(実行、複製、記録等、以下「使用」と総称します)する前に、本ソフトウェア 使用許諾(以下「本使用許諾」といいます)をお読みください。お客様が、本使用許諾にご同意いただいた場合のみ、 お客様は、本使用許諾に定められた範囲において本ソフトウェアをアンリツが推奨・指定する装置(以下、「本装置」と いいます)に使用することができます。

第1条 (許諾,禁止内容)

- 1. お客様は、本ソフトウェアを有償・無償にかかわら ず第三者へ販売,開示,移転,譲渡,賃貸,頒布, または再使用する目的で複製,開示,使用許諾す ることはできません。
- お客様は、本ソフトウェアをバックアップの目的で、 1部のみ複製を作成できます。
- 本ソフトウェアのリバースエンジニアリングは禁止させていただきます。
- 4. お客様は、本ソフトウェアを本装置1台で使用でき ます。

第2条 (免責)

アンリツは、お客様による本ソフトウェアの使用また は使用不能から生ずる損害、第三者からお客様に なされた損害を含め、一切の損害について責任を 負わないものとします。

第3条 (修補)

- お客様が、取扱説明書に書かれた内容に基づき 本ソフトウェアを使用していたにもかかわらず、本ソ フトウェアが取扱説明書もしくは仕様書に書かれた 内容どおりに動作しない場合(以下「不具合」と言 います)には、アンリツは、アンリツの判断に基づい て、本ソフトウェアを無償で修補、交換、または回 避方法のご案内をするものとします。ただし、以下 の事項に係る不具合を除きます。
 - a) 取扱説明書・仕様書に記載されていない使用目的 での使用
 - b) アンリツが指定した以外のソフトウェアとの相互干渉
 - c) 消失したもしくは,破壊されたデータの復旧
 - d) アンリツの合意無く,本装置の修理,改造がされた場合
 - e) 他の装置による影響,ウイルスによる影響,災害,そ の他の外部要因などアンリツの責とみなされない要 因があった場合
- 前項に規定する不具合において、アンリツが、お客様ご指定の場所で作業する場合の移動費、宿泊費および日当に関る現地作業費については有償とさせていただきます。
- 3. 本条第1項に規定する不具合に係る保証責任期

間は本ソフトウェア購入後6か月もしくは修補後30 日いずれか長い方の期間とさせていただきます。

第4条 (法令の遵守)

お客様は、本ソフトウェアを、直接、間接を問わず、 核、化学・生物兵器およびミサイルなど大量破壊兵 器および通常兵器およびこれらの製造設備等関連 資機材等の拡散防止の観点から、日本国の「外国 為替および外国貿易法」およびアメリカ合衆国「輸 出管理法」その他国内外の関係する法律、規則、 規格等に違反して、いかなる仕向け地、自然人もし くは法人に対しても輸出しないものとし、また輸出さ せないものとします。

第5条 (解除)

アンリツは、お客様が本使用許諾のいずれかの条 項に違反したとき、アンリツの著作権およびその他 の権利を侵害したとき、または、その他、お客様の 法令違反等、本使用許諾を継続できないと認めら れる相当の事由があるときは、本使用許諾を解除 することができます。

第6条 (損害賠償)

お客様が、使用許諾の規定に違反した事に起因し てアンリツが損害を被った場合、アンリツはお客様 に対して当該の損害を請求することができるものと します。

第7条 (解除後の義務)

お客様は、第5条により、本使用許諾が解除され たときはただちに本ソフトウェアの使用を中止し、ア ンリツの求めに応じ、本ソフトウェアおよびそれらに 関する複製物を含めアンリツに返却または廃棄す るものとします。

第8条 (協議)

本使用許諾の条項における個々の解釈について 疑義が生じた場合,または本使用許諾に定めのな い事項についてはお客様およびアンリツは誠意を もって協議のうえ解決するものとします。

第9条 (準拠法)

本使用許諾は、日本法に準拠し、日本法に従って 解釈されるものとします。

はじめに

■取扱説明書の構成

MG3710A ベクトル信号発生器の取扱説明書は、以下のように構成されています。 本体編、ソフトウェアアプリケーション IQproducer™ 編の取扱説明書は、別冊で 用意されています。本書とあわせてご使用ください。

■本書について

この取扱説明書は、MG3710A ベクトル信号発生器の内蔵任意波形生成器で使 用可能な、標準波形パターンの使用方法および各パターンの詳細な仕様につい て記述したものです。標準波形パターンの詳細は「第3章 標準波形パターンの詳 細」に記載しています。また、MG3710A ベクトル信号発生器での標準波形パター ンの詳細な使用方法については、MG3710A 取扱説明書(本体編)に記載されて います。本書とあわせてお読みください。

目次

はじめ	IC	I
第1章	章 概要	1-1
1.1	製品概説	1-2
第2章	重 標準波形パターンの使用方法	2-1
2.1 2.2	標準波形パターンの使用方法 標準波形パターンのパッケージ構成	2-2 2-3
第3章	電 標準波形パターンの詳細	3-1
3.1	W-CDMA 波形パターン	3-3
3.2	LTE 波形パターン	3-62
3.3	LTE TDD 波形パターン	3-64
3.4	PDC 波形パターン	3-66
3.5	PDC PACKET 波形パターン	3-70
3.6	PHS 波形パターン	3-73
3.7	GSM 波形パターン	3-77
3.8	CDMA2000 1X 波形パターン	3-82
3.9	CDMA2000 1xEV-DO 波形パターン	3-98
3.10	WLAN 波形パターン	3-109
3.11	デジタル放送用波形パターン	3-116
3.12	Bluetooth [®] 波形パターン	3-121
3.13	GPS 波形パターン	3-131
3.14	Mobile WiMAX 波形パターン	3-135
3.15	トーン信号波形パターン	3-138
3.16	位相調整用波形パターン	3-139
3.17	GLONASS 波形パターン	3-140
3.18	QZSS 波形パターン	3-142
3.19	妨害波波形パターン	3-145
索引		索引-1

この章では, MG3710A ベクトル信号発生器用標準波形パターンの概要について 説明します。

1.1 製品概説......1-2

1.1 製品概説

MG3710Aベクトル信号発生器用標準波形パターン(以下,標準波形パターン)は, ディジタル移動体通信のシステム・デバイス・機器の研究・開発から製造まで幅広 い用途で使用する波形パターン*で構成されます。

標準波形パターンは,任意波形発生器を内蔵した MG3710A ベクトル信号発生器(以下, MG3710A)で使用することができます。

*: ここでの波形パターンとは、MG3710A の内蔵任意波形生成器で使用可能 な各種無線通信システムに対応するための任意波形データを指します。波 形パターンはバイナリ形式の任意波形ファイル(拡張子:wvd)と、任意波形 データを管理したり波形データ出力時に各種ハードウェアの設定を行うため のテキスト形式の波形情報ファイル(拡張子:wvi)で構成されます。

また,あらかじめ定義されたメモリ A, B の波形パターンの組み合わせやレベル設 定を再現するためのファイル(コンビネーションファイル)により,以下のような2つの メモリを使用するパターンの操作が容易に行えます。

- ・ W-CDMA の Downlink 希望波信号のように 1 つの信号を出力するために 2 つのメモリを使用する波形パターン
- ・ 受信機評価時に使用する希望波+妨害波またはAWGNのように、2つの信号 をベースバンドで合成した波形パターン

ただし,メモリ A, B の波形パターンを組み合わせて使用するにはベースバンド信号加算オプション (MG3710A-048/148/078/178) を装備している必要があります。

標準波形パターンの使用方法 第2章

この章では、標準波形パターンの使用方法について説明します。

- 2.1 標準波形パターンの使用方法2-2

2.1 標準波形パターンの使用方法

標準波形パターンは、お持ちの MG3710A に内蔵のハードディスクに格納された 状態で出荷されます。

ハードディスクに格納された波形パターンを MG3710A 内蔵の任意波形発生器で 再生し、それを用いてベクトル変調を行うことができます。

それぞれの波形パターンを通信システムなどの種類ごとに分類したフォルダのこと をパッケージといい,標準波形パターンはそれぞれの通信システム名称のパッ ケージに格納されます。波形パターンを再生するためには,まず内蔵ハードディス クに収められているパッケージ・パターンを波形メモリに展開する必要があります。 MG3710A にベースバンド信号加算オプションを装備することにより I/Q 2 チャネ ル構成の波形メモリを 2 つ搭載することができ,そのどちらか,または両方に展開し ます。

次に, 波形メモリに展開したパターンのうち, 出力したいものを選択します。メモリ A, B それぞれ 1 つずつ選択できます。メモリ A, B どちらか一方のパターン, またはメ モリ A, B 両方のパターンを合成して出力します。

波形パターンの選択方法の詳細については、『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.3 Baseband Mode」を参照してください。

2.2 標準波形パターンのパッケージ構成

標準波形パターンは, MG3710A内蔵のハードディスク内に, 各種通信システム名のパッケージに分類されて格納されています。

表2.2-1 パッケージー覧

パッケージ名	内容
W-CDMA (BS Rx test)	3GPP W-CDMA, BS Rx テスト用の波形パターン
W-CDMA (BS Tx test)	3GPP W-CDMA, BS Tx テスト用の波形パターン
W-CDMA_A (UE Rx test)	3GPP W-CDMA, UE Rx テスト用の波形メモリA で使 用する波形パターン
W-CDMA_B (UE Rx test)	3GPP W-CDMA, UE Rx テスト用の波形メモリ B で使 用する波形パターン
W-CDMA (UE Rx test)	W-CDMA_A (UE Rx test), W-CDMA_B(UE Rx test)の 2 つのパターンの組み合わせを定義したコンビ ネーションファイル
W-CDMA (UE Tx test)	3GPP W-CDMA, UE Tx テスト用の波形パターン
W-CDMA_CMB	W-CDMA の希望波+妨害波または AWGN の組み合わせを定義したコンビネーションファイル
LTE_FDD (BS Tx test)	3GPP LTE (FDD), BS Tx テスト用の波形パターン
LTE_TDD (BS Tx test)	3GPP LTE (TDD), BS Tx テスト用の波形パターン
PDC	PDC の各種波形パターン
PDC_CMB	PDCの希望波+妨害波の組み合わせを定義したコンビ ネーションファイル
PHS	PHS の各種波形パターン
PHS_CMB	PHSの希望波+妨害波の組み合わせを定義したコンビネーションファイル
GSM	GSMの各種波形パターン
CDMA2000	CDMA2000 1X の各種波形パターン
CDMA2000_1xEV-DO	CDMA2000 1xEV-DO の各種波形パターン
WLAN	IEEE802.11a/b/g の各種波形パターン
Digital_Broadcast	デジタル放送用の各種波形パターン
Bluetooth	Bluetooth の各種波形パターン
GPS	GPS の各種波形パターン
MobileWiMAX	Mobile WiMAX, BS TX デバイステスト用波形パター ン
Tone	トーン信号波形パターン
PhaseCoherence	MG3710Aの位相調整用波形パターン

第3章 標準波形パターンの詳細

この章では,標準波形パターン各形式の詳細について説明します。

注:

標準波形パターンに AWGN を加算するためには、ご使用の MG3710A に AWGN (オプション)が搭載されている必要があります。AWGN の加算方法 の詳細は、『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.5 AWGN」を参照してください。

3.1	W-CD	MA 波形パターン3-3
	3.1.1	UL_RMCxxxkbps3-10
	3.1.2	UL_AMR_TFCSx/UL_ISDN/UL_64kbps
		_Packet3-21
	3.1.3	UL_Interferer
	3.1.4	DL_RMCxxxkbps3-30
	3.1.5	DL_AMR_TFCSx/DL_ISDN/DL_384kbps
		_Packet
	3.1.6	DL_Interferer
	3.1.7	TestModel_x_xxDPCH 3-50
	3.1.8	TestModel_5_xDPCH3-56
	3.1.9	TestModel_5_xHSPDSCH 3-56
	3.1.10	TestModel_6_xHSPDSCH 3-59
3.2	LTE 波	そ形パターン3-62
3.3	LTE T	DD 波形パターン3-64
3.4	PDC 浙	支形パターン3-66
	3.4.1	フレーム構成3-68
	3.4.2	スロット構成3-69
3.5	PDC F	PACKET 波形パターン3-70
	3.5.1	フレーム構成3-71
	3.5.2	スロット構成3-72
3.6	PHS 派	皮形パターン3-73
	3.6.1	フレーム構成 3-75
	3.6.2	スロット構成 3-76
3.7	GSM 🤅	皮形パターン3-77
	3.7.1	各パターンの詳細3-79
	3.7.2	フレーム構成3-80
	3.7.3	スロット構成 3-80
3.8	CDMA	2000 1X 波形パターン3-82
	3.8.1	1xRTT Reverse RC1 (RVS_RC1_FCH) 3-83
	3.8.2	1xRTT Reverse RC2 (RVS_RC2_FCH) 3-85
	3.8.3	1xRTT Reverse RC3 (1) (RVS_RC3_FCH) 3-87
	3.8.4	1xRTT Reverse RC3 (2)
		(RVS_RC3_FCH_SCH)
	3.8.5	1xRTT Reverse RC3 (3)
		(RVS_RC3_DCCH) 3-91
	3.8.6	1xRTT Reverse RC4

		(RVS_RC4_FCH)	
	3.8.7	1xRTT Forward RC1, 2	
		(FWD_RC1-2 9channel)	3-95
	3.8.8	1xRTT Forward RC 3, 4, 5	
		(FWD_RC3-5 9channel)	3-96
3.9	CDMA	2000 1xEV-DO 波形パターン	
	3.9.1	1xEV-DO フォワード (FWD_ldle を除く)
	3.9.2	1xEV-DO リバース	3-105
	3.9.3	1xEV-DO フォワードアイドルスロット	
3.10	WLAN	波形パターン	3-109
	3.10.1	IEEE802.11a	
	3.10.2	IEEE802.11b	3-114
	3.10.3	IEEE802.11g	3-115
3.11	デジタノ	レ放送用波形パターン	3-116
	3.11.1	フレーム構成	
3.12	Blueto	oth [®] 波形パターン	3-121
	3.12.1	Basic Rate のパケット構成	3-125
	3.12.2	Enhanced Data Rate のパケット構成	
	3.12.3	BLE のパケット構成	3-129
	3.12.4	Dirty Transmitter Signal	3-130
3.13	GPS 波	皮形パターン	3-131
	3.13.1	波形フォーマット	3-133
3.14	Mobile	WiMAX 波形パターン	3-135
	3.14.1	波形フォーマット	3-136
3.15	トーン信	言号波形パターン	
3.16	位相調	整用波形パターン	3-139
3.17	GLON	ASS 波形パターン	3-140
	3.17.1	波形フォーマット	3-141
3.18	QZSS	波形パターン	
	3.18.1	波形フォーマット	3-143
3.19	妨害波	波形パターン	3-145

3.1 W-CDMA 波形パターン

W-CDMA 波形パターンとして,表 3.1-1 のようなパターンが用意されています。

	<u>天</u> 5.1-1	W-CDIMA 波形パターノー見	(1/4)	
波形パターン名	UL/DL	チャネル構成	3GPP 参照規格	主な用途
パッケージ名: W-CDMA (BS R	x test)			
$UL_RMC_{12}_{2kbps}^{*_1}$	UL	DPCCH, DPDCH	TS25.141 A.2	BS RX テスト
$UL_RMC_{12}_{2kbps}ACS^{*_2}$	UL	DPCCH, DPDCH	TS25.141 A.2	BS RX テスト
$\mathrm{UL}_\mathrm{RMC}_\mathrm{64kbps}^{*_2}$	UL	DPCCH, DPDCH	TS25.141 A.3	BS RX テスト
$\mathrm{UL}_\mathrm{RMC}_\mathrm{144kbps}^{*_2}$	UL	DPCCH, DPDCH	TS25.141 A.4	BS RX テスト
$\mathrm{UL}_{\mathrm{RMC}_{384kbps}^{*_2}}$	UL	DPCCH, DPDCH	TS25.141 A.5	BS RX テスト
UL_AMR_TFCS1 ^{*1}	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX テスト
UL_AMR_TFCS2 *1	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX テスト
UL_AMR_TFCS3 ^{*1}	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX テスト
UL_ISDN [*] 2	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX テスト
UL_64kbps_Packet ^{*1}	UL	DPCCH, DPDCH	TS25.944 4.1.2	BS RX テスト
UL_Interferer	UL	DPCCH, DPDCH	TS25.141 I	BS RX テスト
UL_Interferer_ov3*3	UL	DPCCH, DPDCH	TS25.141 I	BS RX テスト
パッケージ名 : W-CDMA (BS Tx test)				
TestModel_1_4DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 4 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_1_8DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 8 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_1_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_1_32DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_1_64DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_2	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 3 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト

表3.1-1 W-CDMA 波形パターン一覧 (1/4)

表3.1-1 W-CDMA 波形パターン一覧 (2/4)

波形パターン名	UL/DL	チャネル構成	3GPP 参照規格	主な用途
TestModel_3_4DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 4 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_3_8DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 8 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_3_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_3_32DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_4	DL	P-CCPCH, SCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_4_CPICH	DL	P-CPICH, P-CCPCH, SCH	TS25.141 V11.4.0	BS TX デバイス テスト
${ m TestModel}_{1_{ m 64DPCHx2}*_{5}}$	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_ 1_64x2_10M *5 , *6	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
${f TestModel}_{1_{64x2_{15}}}$	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
${f TestModel}_{1_{64}} {f DPCHx3^{*_{6}}}$	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
$\begin{array}{c} {\rm TestModel}_{1_64{\rm DPCHx4}^{*5}} \end{array}$	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_5_4DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 4 DPCH, HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_5_2HSPDSCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 6 DPCH, HS-SCCH, 2 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト

			、 ,	
波形パターン名	UL/DL	チャネル構成	3GPP 参照規格	主な用途
TestModel_5_4HSPDSCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 14 DPCH, HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_5_8HSPDSCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30 DPCH, HS-SCCH, 8 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_6_4HSPDSCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 4 DPCH, HS-SCCH, 4 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト
TestModel_6_8HSPDSCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30 DPCH, HS-SCCH, 8 HS-PDSCH	TS25.141 V11.4.0	BS TX デバイス テスト
パッケージ名 : W-CDMA_A (UE	Rx test)			
DL_CPICH	DL	P-CPICH	_	UE RX テスト
P-CCPCH ^{*3}	DL	P-CCPCH	TS25.944 $4.1.1^{*_4}$	UE RX テスト
$\rm DL_RMC_12_2kbps_ACS^{*_2}$	DL	P-CPICH, P-CCPCH, SCH, PICH, DPCH	TS25.101 A.3.1 TS25.101 C.3.1	UE RX テスト
DL_Interferer	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX テスト
DL_Interferer_ov3 ^{*7}	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX テスト

波形パターン名	UL/DL	チャネル構成	3GPP 参照規格	主な用途
パッケージ名: W-CDMA_B (UE	Rx test)			
DL_RMC_12_2kbps_RX*3	DL	P-CPICH, SCH, PICH, DPCH	TS25.101 A.3.1 TS25.101 C.3.1	UE RX テスト
$ m DL_RMC_12_2kbps^{*_3}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1 TS25.101 C.3.2	UE RX テスト
$DL_RMC_{12}_{2kbps}MIL^{*_3}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1 TS25.101 C.3.1	UE RX テスト
${ m DL_RMC_64kbps}^{*_3}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.2 TS25.101 C.3.2	UE RX テスト
$\mathrm{DL}_\mathrm{RMC}_\mathrm{144 kbps}^{*_3}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.3 TS25.101 C.3.2	UE RX テスト
$DL_RMC_{384kbps}^{*_3}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.4 TS25.101 C.3.2	UE RX テスト
DL_AMR_TFCS1*3	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX テスト
DL_AMR_TFCS2 ^{*3}	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX テスト
DL_AMR_TFCS3 ^{*3}	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX テスト
$DL_{ISDN^{*_1*_3}}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX テスト
${ m DL}_{384}{ m kbps}_{ m Packet}{ m ^{*_3}}$	DL	P-CPICH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	UE RX テスト
DL_Interferer	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX テスト
DL_Interferer_ov3*7	DL	P-CPICH, P-CCPCH, SCH, PICH, OCNS	TS25.101 C.4	UE RX テスト
パッケージ名 : W-CDMA (UE Tx test)				
UL_RMC_12_2kbps_TX ^{*2}	UL	DPCCH, DPDCH	TS25.101 A.2.1	UE TX デバイス テスト

表3.1-1 W-CDMA 波形パターン一覧 (4/4)

- *1: この波形パターンを使用するには、ベースバンド信号加算(オプション), ARB メモリ拡張 256M サンプル(オプション),または ARB メモリ拡張 1024M サンプル(オプション)が必要です。
- *2: この波形パターンを使用するには、ARBメモリ拡張256Mサンプル(オプション)またはARBメモリ拡張1024Mサンプル(オプション)が必要です。
- *3: UE RX テスト用の RMC などの各波形パターン (DL_RMC_12_2kbps_ACSを除く)には P-CCPCH が含まれないため, 必 ず P-CCPCH 波形パターンと組み合わせて使用する必要があります。これら の組み合わせを定義しているコンビネーションファイルについては表 3.1-2を 参照してください。
- *4: BCH の Transport block の先頭には 11 bit の SFN が付加されます。
- *5: x2, x3, x4 はそれぞれマルチキャリア数 2, 3, 4 を示します。
- *6: 10M, 15M はそれぞれマルチキャリアの周波数間隔を示します。
- *7: MG3710A にベースバンド信号合成機能(オプション)が装備されているとき は、IQproducerのW-CDMA 波形パターン生成機能、または MX370101A HSDPA IQproducer で作成した波形パターン(一つのメモリのみで構成可 能な波形パターンに限定されます。)をMG3710AのメモリAに、本パターン をメモリ B に選択すれば希望波と妨害波をベースバンドで加算して出力する ことができます。

2 つのメモリを使用して構成される DL W-CDMA 希望波用信号は, MG3710A の Defined モードの状態で表 3.1-2 のようなコンビネーションファイルを選択すること でパターンの転送, 選択が容易に行えます。

表3.1-2	W-CDMA 希望波用コンビネーションファイルー覧
--------	---------------------------

コンビネーションファイル名	コメント				
パッケージ名 :W-CDMA (UE Rx test)					
DL_CMB_RMC_12_2k_RX	Downlink Reference Measurement Channel (12.2 kbps) for RX test except "Maximum Input Level" Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_RMC_12_2k	Downlink Reference Measurement Channel (12.2 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_RMC_12_2k_MIL	Downlink Reference Measurement Channel (12.2 kbps) for "Maximum Input Level" Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_RMC_64k	Downlink Reference Measurement Channel (64 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_RMC_144k	Downlink Reference Measurement Channel (144 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_RMC_384k	Downlink Reference Measurement Channel (384 kbps) for Performance test Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_AMR_TFCS1	Downlink AMR for TFCS1 Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_AMR_TFCS2	Downlink AMR for TFCS2 Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_AMR_TFCS3	Downlink AMR for TFCS3 Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_ISDN	Downlink ISDN Scrambling Code = 80h DTCH information data = PN9				
DL_CMB_384k_Packet	Downlink 384 kbps Packet Scrambling Code = 80h DTCH information data = PN9				

注:

このコンビネーションファイルを使用するには、ベースバンド信号加算(オプション)が必要です。

希望波+妨害波,希望波+AWGNのように2つのメモリを使用した2信号の合成 パターンは、MG3710AのDefinedモードの状態で表3.1-3のようなコンビネー ションファイルを選択することで、パターンの転送、選択が容易に行えます。 標準パターンとしては、BS受信評価用のUplinkの信号の組み合わせを参考とし て用意していますが、W-CDMA IQproducerおよび IQproducerの Combination File Edit機能でDownlinkの組み合わせを作成することも可能で す。このときスクランブリングコードやチャネライゼーションコードの設定を使用条件 に合わせて設定してください。

コンビネーションファイル名	コメント
パッケージ名 : W-CDMA_CMB	
WCDMA_BS_ACS *1	For TS25.141 Adjacent Channel Selectivity test UL_RMC12_2kbps + UL_Interferer (5 MHz offset)
$WCDMA_BS_DRange^{*2}$	For TS25.141 Dynamic Range test UL_RMC12_2kbps + AWGN

表3.1-3 W-CDMA 基地局受信試験用コンビネーションファイルー覧

- *1: このコンビネーションファイルを使用するには、ベースバンド信号加算(オプ ション)、ARBメモリ拡張 256M サンプル(オプション)、または ARBメモリ拡 張 1024M サンプル(オプション)が必要です。
- *2: このコンビネーションファイルを使用するには、AWGN(オプション), ARB メ モリ拡張 256M サンプル(オプション), または ARB メモリ拡張 1024M サン プル(オプション)が必要です。

3.1.1 UL_RMCxxxkbps

これらの波形パターンは 3GPP TS 25.141 Annex A 記載の UL Reference Measurement Channel に従ったチャネルコーディングを行い,物理チャネルへの分割,拡散,パワー設定を行います。

各波形パターンで共通のパラメータを表 3.1.1-1 に示します。各波形パターンを出 力時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネク タから表3.1.1-1 のマーカ信号 (Marker1, Marker2) が出力されます。出力コネ クタの設定については『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の 「7.4.2 出力コネクタの設定」を参照してください。

マーカ信号	出力 SG	波形メモリ	信号名
	SG1	メモリ A	SG1 Marker1 A
N/L		メモリ B	SG1 Marker1 B
Markerl	CCA	メモリ A	SG2 Marker1 A
	562	メモリ B	SG2 Marker1 B
Marker2	SG1	メモリ A	SG1 Marker2 A
		メモリ B	SG1 Marker2 B
	SG2	メモリ A	SG2 Marker2 A
		メモリ B	SG2 Marker2 B
	SG1	メモリ A	SG1 Marker3 A
Marker3		メモリ B	SG1 Marker3 B
	SG2	メモリ A	SG2 Marker3 A
		メモリ B	SG2 Marker3 B

表3.1.1-1 共通パラメータ

◆ UL_RMC_12_2kbpsとUL_RMC_12_2kbps_ACS のチャネルコーディングパ ラメータ

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-2.69
TFCI	_	On
Repetition	%	23

表3.1.1-2 UL reference measurement channel 12.2 kbps 物理チャネルパラメータ

表3.1.1-3 UL reference measurement channel 12.2 kbps トランスポートチャネルパラメータ

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

図3.1.1-1 UL reference measurement channel(12.2 kbps)のチャネルコーディング

◆UL_RMC_12_2kbps_TX のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46
TFCI	—	On
Repetition	%	23

表3.1.1-4	UL reference measurement channel 12.2 kbps for Tx test
	物理チャネルパラメータ

表3.1.1-5 UL reference measurement channel 12.2 kbps for Tx test トランスポートチャネルパラメータ

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

DTCH

DCCH

図3.1.1-2 UL reference measurement channel (12.2 kbps)のチャネルコーディング

◆UL_RMC_64kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-5.46
TFCI	_	On
Repetition	%	18

表3.1.1-6 UL reference measurement channel 64 kbps 物理チャネルパラメータ

表3.1.1-7	UL reference measurement channel 64 kbps
	トランスポートチャネルパラメータ

		1
Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2560	100
Transport Block Set Size	2560	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

図3.1.1-3 UL reference measurement channel (64 kbps) のチャネルコーディング

◆UL_RMC_144kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	144
DPDCH	kbps	480
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-9.54
TFCI	_	On
Repetition	%	8

表3.1.1-8 UL reference measurement channel 144 kbps 物理チャネルパラメータ

表3.1.1-9	UL reference measurement channel 144 kbps
	トランスポートチャネルパラメータ

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2880	100
Transport Block Set Size	5760	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

図3.1.1-4 UL reference measurement channel (144 kbps) のチャネルコーディング

◆UL_RMC_384kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	384
DPDCH	kbps	960
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-9.54
TFCI	—	On
Puncturing	%	18

表3.1.1-10 UL reference measurement channel 384 kbps 物理チャネルパラメータ

表3.1.1-11 UL reference measurement channel 384 kbps トランスポートチャネルパラメータ

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	3840	100
Transport Block Set Size	15360	100
Transmission Time Interval	40 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

図3.1.1-5 UL reference measurement channel (384 kbps) のチャネルコーディング

3.1.2 UL_AMR_TFCSx/UL_ISDN/UL_64kbps_Packet

これらの波形パターンは, 3GPP TS 25.944 4.1.2 記載の Channel coding and multiplexing example (Uplink) に従い, チャネルコーディング, 物理チャネル への分割, 拡散, パワー設定を行っています。

各波形パターンで共通のパラメータを表 3.1.2-1 に示します。各波形パターンを出 力時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネク タから表3.1.2-1 のマーカ信号(Marker1, Marker2)が出力されます。出力コネク タの設定については『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の 「7.4.2 出力コネクタの設定」を参照してください。

パラメータ	設定値	
Scrambling Code	0 _H	
DTCH Information Data	PN9	
DCCH information Data	All 0	
オーバーサンプリング比	3	
Marker 1	Frame Clock	
Marker 2	Slot Clock	
Marker 3	_	
AWGN 加算	可能	

表3.1.2-1 共通パラメータ

◆UL_AMR_TFCSx のチャネルコーディングパラメータ

Parameter	Unit	Level
DPDCH	kbps	60
DPCCH	kbps	15
DPCCH Slot Format #i	_	0
DPCCH/DPDCH power ratio	dB	-2.69

表3.1.2-2 UL_AMR_TFCSx の物理チャネルパラメータ

表3.1.2-3 3.4 kbps データ(DCCH) パラメータ

Transport Block size	148 bits	
Transport Block set size	148 bits	
Rate Matching attribute	160	
CRC	16 bits	
Coding	CC, coding rate=1/3	
TTI	40 ms	

図3.1.2-1 UL AMR TFCSx のチャネルコーディングと多重(パート 1/2)

表3.1.2-4 12.2 kbps データ(DTCH) パラメータ

The number of TrChs		3
_	TrCH#a	39 or 81 bits
Transport Block size	TrCH#b	103 bits
	TrCH#c	60 bits
	#1	N_{TrCHa} =1*81, N_{TrCHb} =1*103, N_{TrCHc} =1*60 bits
TFCS	#2	N_{TrCHa} =1*39, N_{TrCHb} =0*103, N_{TrCHc} =0*60 bits
	#3	N_{TrCHa} =0*81, N_{TrCHb} =0*103, N_{TrCHc} =0*60 bits
Rate Matching attribute		RM _a =200, RM _b =190, RM _c =235
CRC		12 bits (attached only to TrCh#a)
Coding		CC, coding rate=1/3 for TrCh#a, b coding rate=1/2 for TrCh#c
TTI		20 ms

* CRC and tail bits for TrCH#a is attached even if N_{TrCha}=0 bits since CRC parity bit attachment for 0 bit transport block is applied.

◆UL_ISDN のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46

表3.1.2-5 UL_ISDN 物理チャネルパラメータ

表3.1.2-6 64 kbps データパラメータ

The number of TrChs	1
Transport Block size	640 bits
Transport Block set size	4*640 bits
Rate Matching attribute	170
CRC	16 bits
Coding	Turbo coding, coding rate=1/3
TTI	40 ms

図3.1.2-3 UL ISDN のチャネルコーディング

図3.1.2-4 UL ISDN の多重

◆UL_64kbps_Packet のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	64
DPDCH	kbps	240
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46

表3.1.2-7 UL_64kbps_Packet 物理チャネルパラメータ

表3.1.2-8 64 kbps データパラメータ

The number of TrChs		1
Transport Block size		336 bits
Transport Block Set size 64 kbps		336*B bits (B=4)
Rate Matching attribute		150
CRC		16 bits
Coding		Turbo coding, coding rate=1/3
TTI		20 ms

図3.1.2-6 UL 64 kbps Packet の多重

3.1.3 UL_Interferer

この波形パターンは, 3GPP TS 25.141 Annex I 記載の Characteristics of the W-CDMA interference signal に従い, 物理チャネルへの分割, 拡散, パワー設 定を行っています。

表3.1.3-1 UL_Int	terferer パラメータ
-----------------	----------------

パラメータ	設定値
Scrambling Code	1н
DTCH Information Data	PN9
DCCH Information Data	All 0
オーバーサンプリング比	4, 3(UL_Interferer_ov3)
Marker 1	Frame Clock
Marker 2	Slot Clock
Marker 3	—

表3.1.3-2 UL_Interferer 物理チャネルパラメータ

Parameter	Unit	Level
Channel Bit Rate	kbps	64
DPDCH	kbps	240
DDCCU	11	1 5
DPCCH	kbps	15
DPCCH Slot Format #i	—	0
DPCCH/DPDCH power ratio	dB	-5.46

3.1.4 DL_RMCxxxkbps

これらの波形パターンは、3GPP TS 25.101 Annex A 記載の DL Reference Measurement Channel に従ったチャネルコーディングを行い、物理チャネルへ の分割、拡散処理により DPCH を生成しています。また、3GPP TS 25.101 Annex C に従って各制御チャネルのパワー設定を行っています。

各波形パターンで共通のパラメータを表 3.1.4-1 に示します。各波形パターンを出 カ時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネク タから表3.1.4-1 のマーカ信号 (Marker1, Marker2) が出力されます。出力コネ クタの設定については『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の 「7.4.2 出力コネクタの設定」を参照してください。

パラメータ	設定値
Scrambling Code	$80_{ m H}$
DTCH Information Data	PN9
DCCH Information Data	All 0
SFN カウント	4096
オーバーサンプリング比	4
Ch Code (P-CPICH)	0
Ch Code (P-CCPCH)	1
Ch Code (PICH)	16
Ch Code (DPCH for DL_RMC_12.2kbps)	96
Ch Code (DPCH for DL_RMC_12.2kbps_RX)	96
Ch Code (DPCH for DL_RMC_12.2kbps_MIL)	96
Ch Code(DPCH for DL_RMC_64kbps)	24
Ch Code (DPCH for RMC_144kbps)	12
Ch Code (DPCH for RMC_384kbps)	6
Ch Code (DPCH for DL_AMR_TFCSx)	96
Ch Code (DPCH for DL_ISDN)	24
Ch Code (DPCH for DL_384kbps_Packet)	6
OCNS	表 3.1.4-2 を参照
Marker 1	TTI Pulse
Marker 2	
Marker 3	_
AWGN 加算	可能

表3.1.4-1 共通パラメータ

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data for
11	-3	each channelization code shall be
17	-3	uncorrelated with
23	-5	each other and with any wanted signal
31	-2	over the period of any
38	-4	measurement.
47	-8	
55	-7	
62	-4	
69	-6	
78	-5	
85	-9	
94	-10	
125	-8	
113	-6	
119	0	

表3.1.4-2 OCNS の各パラメータ

表3.1.4-3 DL_RMC12_2kbps_RX, DL_RMC12_2kbps_ACS の 各物理チャネルパワー

Physical Channel	Power ratio
P-CPICH	P-CPICH_Ec/DPCH_Ec=7 dB
Р-ССРСН	P-CCPCH_Ec/DPCH_Ec=5 dB
SCH	SCH_Ec/DPCH_Ec=5 dB
PICH	PICH_Ec/DPCH_Ec=2 dB
DPCH	DPCH_Ec/Ior=-10.3 dB

表3.1.4-4 DL_RMC12_2kbps_MIL の各物理チャネルパワー

Physical Channel	Power ratio
P-CPICH	P-CPICH_Ec/Ior=-10 dB
P-CCPCH	P-CCPCH_Ec/Ior=-12 dB
SCH	SCH_Ec/Ior=-12 dB
PICH	PICH_Ec/Ior=-15 dB
DPCH	DPCH_Ec/Ior=-19 dB
OCNS	OCNSを含めた全チャネルの合計が0dBと なるパワー

表3.1.4-5 DL_RMCxxxkbps の各物理チャネルパワー
(DL_RMC12_2kbps_RX, DL_RMC12_2kbps_ACS &
DL_RMC12_2kbps_MIL を除く)

Physical Channel		Power ratio	
P-CI	PICH	P-CPICH_Ec/Ior=-10 dB	
P-CC	CPCH	P-CCPCH_Ec/Ior=-12 dB	
SC	СН	SCH_Ec/Ior=-12 dB	
PICH		PICH_Ec/Ior=-15 dB	
	$12.2 \mathrm{~kbps}$	DPCH_Ec/Ior=-16.6 dB	
DDCH	64 kbps	DPCH_Ec/Ior=-12.8 dB	
DPCH 144 kbps		DPCH_Ec/Ior=-9.8 dB	
384 kbps		DPCH_Ec/Ior=-5.5 dB	
OCNS		OCNS を含めた全チャネルの合計が 0 dB となるパワー	

◆ DL_RMC_12_2kbps, DL_RMC_12_2kbps_RX, DL_RMC_12_2kbps_ACS と DL_RMC_12_2kbps_MIL のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	12.2
DPCH	ksps	30
Slot Format #i		11
TFCI	_	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	14.7

表3.1.4-6	DL reference measurement channel 12.2 kbps
	物理チャネルパラメータ

表3.1.4-7 DL reference measurement channel 12.2 kbps トランスポートチャネルパラメータ

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

図3.1.4-1 DL reference measurement channel(12.2 kbps)のチャネルコーディング

◆DL_RMC_64kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	64
DPCH	ksps	120
Slot Format #i	—	13
TFCI	—	On
Power offsets PO1, PO2 and PO3	dB	0
Repetition	%	2.9

表3.1.4-8 DL reference measurement channel 64 kbps 物理チャネルパラメータ

表3.1.4-9	DL reference measurement channel 64 kbps
	トランスポートチャネルパラメータ

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	1280	100
Transport Block Set Size	1280	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

図3.1.4-2 DL reference measurement channel(64 kbps)のチャネルコーディング

◆DL_RMC_144kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	144
DPCH	ksps	240
Slot Format #i	_	14
TFCI	—	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	2.7

表3.1.4-10 DL reference measurement channel 144 kbps 物理チャネルパラメータ

表3.1.4-11 DL reference measurement channel 144 kbps トランスポートチャネルパラメータ

Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	2880	100
Transport Block Set Size	2880	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

図3.1.4-3 DL reference measurement channel(144 kbps)のチャネルコーディング

◆DL_RMC_384kbps のチャネルコーディングパラメータ

Parameter	Unit	Level
Information bit rate	kbps	384
DPCH	ksps	480
Slot Format # i	—	15
TFCI	—	On
Power offsets PO1, PO2 and PO3	dB	0
Puncturing	%	22

表3.1.4-12 DL reference measurement channel 384 kbps 物理チャネルパラメータ

表3.1.4-13 DL reference measurement channel 384 kbps トランスポートチャネルパラメータ

Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	3840	100
Transport Block Set Size	3840	100
Transmission Time Interval	10 ms	40 ms
Type of Error Protection	Turbo Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	Fixed

DTCH

DCCH

図3.1.4-4 DL reference measurement channel (384 kbps)のチャネルコーディング

3.1.5 DL_AMR_TFCSx/DL_ISDN/DL_384kbps_Packet

これらの波形パターンは、3GPP TS 25.944 4.1.1 記載の Channel coding and multiplexing example (FDD, Downlink) に従い、チャネルコーディング、物理 チャネルへの分割、拡散、パワー設定を行っています。

各波形パターンで共通のパラメータを表 3.1.5-1 に示します。各波形パターンを出 力時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネク タから表3.1.5-1 のマーカ信号 (Marker1, Marker2) が出力されます。出力コネ クタの設定については『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の 「7.4.2 出力コネクタの設定」を参照してください。

パラメータ	設定値		
Scrambling Code	80 _H		
DTCH Information Data	PN9		
DCCH information Data	All 0		
オーバーサンプリング比	4		
Marker 1	TTI Clock		
Marker 2	—		
Marker 3			
AWGN 加算	可能		

表3.1.5-1 共通パラメータ

◆DL_AMR_TFCSx のチャネルコーディングパラメータ

The number of T	rChs	3	
	TrCH#a	0, 39 or 81bits	
Transport Block size	TrCH#b	103 bits	
	TrCH#c	60 bits	
	#1	N_{TrCHa} =1*81, N_{TrCHb} =1*103, N_{TrCHc} =1*60 bits	
TFCS	#2	N_{TrCHa} =1*39, N_{TrCHb} =0*103, N_{TrCHc} =0*60 bits	
	#3	N_{TrCHa} =1*0, N_{TrCHb} =0*103, N_{TrCHc} =0*60 bits	
Rate Matching att	ribute	RM _a =200, RM _b =190, RM _c =235	
CRC		12 bits (attached only to TrCh#a)	
CRC parity bit attachment for 0 bit transport block		Applied only to TrCh#a	
		CC,	
Coding		coding rate=1/3 for TrCh#a, b	
		coding rate=1/2 for TrCh#c	
TTI		20 ms	

表3.1.5-2 12.2 kbps データパラメータ

* CRC and tail bits for TrCH#a is attached even if N_{TrCha}=0 bits since CRC parity bit attachment for 0 bit transport block is applied.

図3.1.5-1 DL AMR TFCSx のチャネルコーディングと多重(パート 1/2)

表3.1.5-3 3.4	kbps デー	-タパラメータ
--------------	---------	---------

Transport Block size	148 bits
Transport Block set size	148 bits
Rate Matching attribute	160
CRC	16 bits
Coding	CC, coding rate=1/3
TTI	40 ms

* Insertion of DTX indication is used only if the position of the TrCHs in the radio frame is fixed.

表3.1.5-4 12.2 kbps と 3.4 kbps データの物理チャネルパラメータ

Symbol rate(ksps)	N _{pilot} (bits)	N _{TFCI} (bits)	$N_{\text{TPC}}(\text{bits})$	$N_{data1}(bits)$	$N_{\text{data2}}(\text{bits})$
30	4	0	2	6	28

◆DL_ISDN のチャネルコーディングパラメータ

The number of TrChs	1	
Transport Block size	$640 ext{ bits}$	
Transport Block set size	4*640 bits	
Rate Matching attribute	170	
CRC	16 bits	
Coding	Turbo coding, coding rate=1/3	
ТТІ	40 ms	

表3.1.5-5 64 kbps データパラメータ

・タ
•

Symbol rate(ksps)	No. of physical channel	N _{pilot} (bits)	N _{TFCI} (bits)	N _{TPC} (bits)	N _{data1} (bits)	N _{data2} (bits)
120	1	8	8	4	28	112

◆DL_384kbps_Packet のチャネルコーディングパラメータ

The number of TrChs	1	
Transport Block size	336 bits	
Transport Block Set size	336*B bits(B=12)	
Rate Matching attribute	145	
CRC	16 bits	
Coding	Turbo coding, coding rate=1/3	
ТТІ	10 ms	

図3.1.5-4 DL 384 kbps Packet のチャネルコーディング

図3.1.5-5 DL 384 kbps Packet の多重

表3.1.5-8 384 kbps パケットデータと3.4 kbps データの物理チャネルパラメータ

Data rate	Symbol rate	No.of physical channel:P	N _{pilot}	N _{TFCI}	N _{TPC}	N _{data1}	N _{data2}
(kbps)	(ksps)		(bits)	(bits)	(bits)	(bits)	(bits)
384	480	1	16	8	8	120	488

3.1.6 DL_Interferer

DL_Interferer は、3GPP TS25.104 C.4 W-CDMA Modulated Interferer に 記載された各パラメータに従ってコード多重された変調波です。

表3.1.6-1 DL_Interferer のパラメータ

パラメータ	設定値
Scrambling Code	0н
オーバーサンプリング比	4, 3(DL_Interferer_ov3)

Channel Type	Spreading Factor	Channeliza- tion Code	Timing offset (x256T _{chip})	Power	NOTE
P-CCPCH	256	1	0	P-CCPCH_Ec/Ior =-10 dB	
SCH	256	_	0	SCH_Ec/Ior =-10 dB	SCH パワーは P-SCH, S-SCH の 2 チャネルに 等分されます。
P-CPICH	256	0	0	P-CPICH_Ec/Ior =-10 dB	
PICH	256	16	16	PICH_Ec/Ior =-15 dB	
OCNS		表 3	3.1.6-3を参照		OCNS チャネルの合計 パワーと上記の全チャネ ルの合計パワーが 0 dB となります。

表3.1.6-2 DL	_Interferer	の物理チャオ	ヽルパラゝ	イータ
-------------	-------------	--------	-------	-----

Channelization Code at SF=128	Relative Level setting (dB)	DPCH Data
2	-1	The DPCH data for
11	-3	each channelization code shall be
17	-3	uncorrelated with
23	-5	each other and with any wanted signal
31	-2	over the period of any
38	-4	measurement.
47	-8	
55	-7	
62	-4	
69	-6	
78	-5	
85	-9	
94	-10	
125	-8	
113	-6	
119	0	

表3.1.6-3 OCNS の各パラメータ

3.1.7 TestModel_x_xxDPCH

TestModel_x_xxDPCHは、3GPP TS25.141 11.4.0 Test Models に記載された 各パラメータに従ってコード多重された下り多重波です。

表3.1.7-1 共通パラメータ

パラメータ	設定値	
Scrambling Code*	Он	
オーバーサンプリング比	4	

*: マルチキャリアの場合は最低周波数のキャリア = 0 でこのキャリアからのオフ セット周波数(5*N [MHz])とした場合,各キャリアのScrambling CodeはN となります。また, N=0 のキャリアを基準として,各キャリアのフレームは N/5, 2*N/5, 3*N/5,...の時間オフセットを持ちます。

Test Model 1

Туре	Number of Channels	Fraction of Power(%)	Level setting(dB)	Channelization Code	Timing offset (x256T _{chip})
P-CCPCH+SCH	1	10	-10	1	0
Primary CPICH	1	10	-10	0	0
PICH	1	1.6	-18	16	120
S-CCPCH containing PCH (SF=256)	1	1.6	-18	3	0
DPCH(SF=128)	4/8/16/32/6 4	76.8 in total	表 3.1.7-3 を参照		

表3.1.7-2 Test Model 1 のチャネル構成

Test Model 1 のマルチキャリア (Test_Model_1_64DPCHx2, 3, 4) はそれぞれ 以下のオフセット周波数に配置されます。

Test_Model_1_64DPCHx2(2キャリア): -2.5 MHz, +2.5 MHz Test_Model_1_64x2_10M(2キャリア): -5 MHz, +5 MHz Test_Model_1_64x2_15M(2キャリア): -7.5 MHz, +7.5 MHz Test_Model_1_64DPCHx3(3キャリア): 0 MHz, +10 MHz, +15 MHz (+5 MHz のキャリアはブランクとなりま す。) Test_Model_1_64DPCHx4(4キャリア): -7.5 MHz, -2.5 MHz, +2.5 MHz,

 $+7.5~\mathrm{MHz}$

Code	Timing offset (x256Tchip)	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level settings (dB) (16 codes)	Level settings (dB) (32 codes)	Level settings (dB) (64 codes)
2	86	-5	-7 -10		-13	-16
11	134	_	-16	-12	-13	-16
17	52	_		-12	-14	-16
23	45	—	_	-14	-15	-17
31	143	—	_	-11	-17	-18
38	112	-7	-11	-13	-14	-20
47	59	_	_	-17	-16	-16
55	23	_	-11	-16	-18	-17
62	1	—	_	-13	-16	-16
69	88	_	_	-15	-19	-19
78	30	-9	-10	-14	-17	-22
85	18	—	-12	-18	-15	-20
94	30	—	_	-19	-17	-16
102	61	—	_	-17	-22	-17
113	128	—	-8	-15	-20	-19
119	143	-9	-12	-9	-24	-21
7	83	_	_		-20	-19
13	25	_	_	_	-18	-21
20	103	_	_	_	-14	-18
27	97	—	_	_	-14	-20
35	56	_	_	_	-16	-24
41	104	—	_	_	-19	-24
51	51	—	_	_	-18	-22
58	26	_	_	_	-17	-21
64	137	—	_	_	-22	-18
74	65	_			-19	-20
82	37	_			-19	-17
88	125	_			-16	-18
97	149	—	_	_	-18	-19
108	123	_	_	_	-15	-23
117	83	_	_		-17	-22
125	5	_	_	_	-12	-21
4	91	_			_	-17
9	7	_	_	_		-18

表3.1.7-3 DPCH の各パラメータ

Code	Timing offset (x256Tchip)	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level settings (dB) (16 codes)	Level settings (dB) (32 codes)	Level settings (dB) (64 codes)
12	32	—	—	_	_	-20
14	21	_	_	_		-17
19	29	_	_	_		-19
22	59	—	_	—	_	-21
26	22	_	_	_		-19
28	138	_	_	_	_	-23
34	31	—	_	—	_	-22
36	17	_	_	_	_	-19
40	9	—	—	—	_	-24
44	69	—	_	—	_	-23
49	49	_	_	_	_	-22
53	20	_	_	_	_	-19
56	57	—	—	_	_	-22
61	121	_	_	_	_	-21
63	127	_	_	_	_	-18
66	114	—	—	—	_	-19
71	100	—	—	—	_	-22
76	76	_	_	_	_	-21
80	141	—	—	—	_	-19
84	82	—	—	—	_	-21
87	64	_	_	_	_	-19
91	149	—	—	—	_	-21
95	87	—	—	—	_	-20
99	98	—	—	_	_	-25
105	46	—	—	—	_	-25
110	37	—	—	—	_	-25
116	87	_	_	_	_	-24
118	149	_	_	_	_	-22
122	85	_	_	_	_	-20
126	69	_	_	_	_	-15

表3.1.7-3 DPCH の各パラメータ(続き)

◆Test Model 2

Туре	Number of Channels	Fraction of Power(%)	Level setting (dB)	Channelization Code	Timing offset (x256T _{chip})
P-CCPCH+ SCH	1	10	-10	1	0
Primary CPICH	1	10	-10	0	0
PICH	1	5	-13	16	120
S-CCPCH containing PCH (SF=256)	1	5	-13	3	0
DPCH (SF=128)	3	2 x 10, 1 x 50	2 x -10, 1 x -3	24, 72, 120	1, 7, 2

表3.1.7-4 Test Model 2 の各パラメータ

◆Test Model 3

Туре	Number of Channels	Fraction of Power(%) 4/8/16/32	Level settings (dB) 4/8/16/32	Channelization Code	Timing offset (x256T _{chip})
P-CCPCH+ SCH	1	15,8/15,8/12 ,6/7,9 -9/-11		1	0
Primary CPICH	1	15,8/15,8/12 ,6/7,9	-8/-8/ -9/-11	0	0
PICH	1	2.5/2.5/5/1.6	-16/-16/ -13/-18	16	120
S-CCPCH containing PCH (SF=256)	1	2.5/2.5/5/1.6	-16/-16/ -13/-18	3	0
DPCH (SF=256)	4/8/16/32	63, 4/63, 4/63, 7/80, 4 in total	表 3.1.7-6 を参照		

表3.1.7-5 Test Model 3 の各パラメータ

Code	T _{offset}	Level settings (dB) (4 codes)	Level settings (dB) (8 codes)	Level settings (dB) (16 codes)	Level settings (dB) (32 codes)
64	86	-8	-11	-14	-16
69	134	_	_	-14	-16
74	52	_	-11	-14	-16
78	45			-14	-16
83	143	_	_	-14	-16
89	112	-8	-11	-14	-16
93	59			-14	-16
96	23	_	-11	-14	-16
100	1	_	—	-14	-16
105	88	—	—	-14	-16
109	30	-8	-11	-14	-16
111	18	_	-11	-14	-16
115	30	_	_	-14	-16
118	61	_	—	-14	-16
122	128	—	-11	-14	-16
125	143	-8	-11	-14	-16
67	83	_	—	—	-16
71	25	_	_	_	-16
76	103	_	_	—	-16
81	97	_	_	_	-16
86	56	_	_	_	-16
90	104	_	_	_	-16
95	51	_	_	_	-16
98	26	_	—	—	-16
103	137	—	—	—	-16
108	65	_	_	_	-16
110	37	_	_	—	-16
112	125	_	—	—	-16
117	149		_	_	-16
119	123	—	—	_	-16
123	83	_	_	_	-16
126	5	_	_	—	-16

表3.1.7-6 Test Model 3 の各パラメータ

◆Test Model 4

Туре	Number of Channels	Fraction of Power(%)	Level setting (dB)	Channelization Code	Timing offset
P-CCPCH+SCH when Primary CPICH is disabled	1	100	0	1	0
P-CCPCH+SCH when Primary CPICH is enabled	1	50	-3	1	0
Primary CPICH1	1	50	-3	0	0

表3.1.7-7 Test Model 4 の各パラメータ

3.1.8 TestModel_5_xDPCH

これらの波形パターンは、3GPP TS 25.141 6.1 章記載の Test Model 5 に相当 する HS-SCCH や HS-PDSCH を含んだ下り多重波です。

設定内容は, 3.1.9 項と同じです。「3.1.9 TestModel_5_xHSPDSCH」を参照し てください。

3.1.9 TestModel_5_xHSPDSCH

これらの波形パターンは、3GPP TS 25.141 6.1 章記載の Test Model 5 に相当 する HS-SCCH や HS-PDSCH を含んだ下り多重波です。

表3.1.9-1 共通パラメータ

パラメータ	設定値		
Scrambling Code	0 _H		
オーバーサンプリング比	4		

表3.1.9-2 各物理チャネルパワー

Туре	チャネル数	Level setting (dB)	Channelization Code	Timing offset (x256T _{chip})
P-CCPCH+SCH	1	-11	1	0
Primary CPICH	1	-11	0	0
PICH	1	-19	16	120
S-CCPCH containing PCH (SF=256)	1	-19	3	0
DPCH(SF=128)	30/14/6/4*	表 3.1.9-3	表 3.1.9-3	表 3.1.9-3
HS-SCCH	2	表 3.1.9-4	表 3.1.9-4	表 3.1.9-4
HS-PDSCH (16QAM)	8/4/2*	表 3.1.9-5	表 3.1.9-5	表 3.1.9-5

*: HS-PDSCH が 2 チャネル時は DPCH は 6 チャネル,
 HS-PDSCH が 4 チャネル時は DPCH は 14 チャネルか 4 チャネル,
 HS-PDSCH が 8 チャネル時は DPCH は 30 チャネルとなります。

Code (SF=128)	Timing offset (x256Tchip)	Level settings (dB) (30 codes)	Level settings (dB) (14 codes)	Level settings (dB) (6 codes)	Level settings (dB) (4 codes)
15	86	-20	-17	-17	-15
23	134	-20	-19	-15	-15
68	52	-21	-19	-15	-18
76	45	-22	-20	-18	-12
82	143	-24	-18	-16	—
90	112	-21	-20	-17	_
5	59	-23	-25	—	—
11	23	-25	-23	_	—
17	1	-23	-20	_	—
27	88	-26	-22	_	—
64	30	-24	-21	_	—
72	18	-22	-22	_	—
86	30	-24	-19	—	—
94	61	-28	-20	_	—
3	128	-27	_	_	_
7	143	-26	—	—	—
13	83	-27	—	_	—
19	25	-25	_	_	_
21	103	-21	—	—	—
25	97	-21	—	_	—
31	56	-23	_	_	_
66	104	-26	—	—	—
70	51	-25	—	_	—
74	26	-24	—	—	—
78	137	-27	—	_	—
80	65	-26	—	_	—
84	37	-23	—	_	—
88	125	-25	_	_	_
89	149	-22	_	_	_
92	123	-24	—	—	—

表3.1.9-3 DPCHの設定

表3.1.9-4	HS-SCCH	の設定
----------	----------------	-----

Code(SF=128)	Timing offset(x256Tchip)	Level settings(dB)	
9	0	-15	
29	0	-21	

表3.1.9-5 HS-PDSCHの設定

Code (SF=16)	Timing offset (x256Tchip)	Level settings (dB) (8 codes)	Level settings (dB) (4 codes)	Level settings (dB) (2 codes)
4	0	-11	-8	-5
5	0	-11	-8	—
6	0	-11	—	—
7	0	-11	—	—
12	0	-11	-8	-5
13	0	-11	-8	—
14	0	-11	—	—
15	0	-11	_	_
3.1.10 TestModel_6_xHSPDSCH

この波形パターンは、3GPP TS 25.141 6.1 章記載の Test Model 6 に相当する HS-SCCH や HS-PDSCH を含んだ下り多重波です。

表3.1.10-1 共通パラメータ

パラメータ	設定値
Scrambling Code	Он
オーバーサンプリング比	4

表3.1.10-2 各物理チャネルパワー

Туре	チャネル数	Level setting (dB)	Channelization Code	Timing offset (x256T _{chip})
P-CCPCH+SCH	1	-11	1	0
Primary CPICH	1	-11	0	0
PICH	1	-19	16	120
S-CCPCH containing PCH (SF=256)	1	-19	3	0
DPCH(SF=128)	30/4*	表 3.1.10-3	表 3.1.10-3	表 3.1.10-3
HS-SCCH	2	表 3.1.10-4	表 3.1.10-4	表 3.1.10-4
HS-PDSCH (64QAM)	8/4*	表 3.1.10-5	表 3.1.10-5	表 3.1.10-5

*: HS-PDSCH が 4 チャネル時, DPCH は 4 チャネル, HS-PDSCH が 8 チャネル時, DPCH は 30 チャネルとなります。

Code (SF=128)	Timing offset (x256Tchip)	Level settings(dB) (30 codes)	Level settings(dB) (4 codes)
15	86	-17	-13
23	134	-17	-15
68	52	-18	-9
76	45	-19	-12
82	143	-21	_
90	112	-18	_
5	59	-20	_
11	23	-22	_
17	1	-20	_
27	88	-23	_
64	30	-21	_
72	18	-19	_
86	30	-21	_
94	61	-25	_
3	128	-24	_
7	143	-23	_
13	83	-24	_
19	25	-22	_
21	103	-18	_
25	97	-18	_
31	56	-20	_
66	104	-23	_
70	51	-22	_
74	26	-21	_
78	137	-24	_
80	65	-23	_
84	37	-22	_
88	125	-22	
89	149	-22	_
92	123	-21	_

表3.1.10-3 DPCH の設定

Code(SF=128)	Timing offset(x256Tchip)	Level settings(dB)
9	0	-15
29	0	-21

表3.1.10-4 HS-SCCHの設定

表3.1.10-5 HS-PDSCHの設定

Code (SF=16)	Timing offset (x256Tchip)	Level settings(dB) (8 codes)	Level settings(dB) (4 codes)
4	0	-12	-9
5	0	-12	-9
6	0	-12	_
7	0	-12	—
12	0	-12	-9
13	0	-12	-9
14	0	-12	_
15	0	-12	_

3.2 LTE 波形パターン

LTE 波形パターンとして,表 3.2-1 のようなパターンが用意されています。

3GPP TS36.141 6 章に記載された E-UTRA Test Models のパラメータが設定さ れています。E-TM1.1, E-TM1.2, E-TM2, E-TM3.1, E-TM3.2, E-TM3.3 の 各テストモデルにおいて, Channel Bandwidth=1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHzを用意しています。E-UTRA Test Models のパラメータ については 3GPP TS36.141 6 章を参照してください。

主な用途	Test Model	Band Width	ファイル名
パッケージ名 : LTE_FDD (BS Tx te		st)	
		$1.4 \mathrm{~MHz}$	E-TM_1-1_01M4_FDD
		$3\mathrm{MHz}$	E-TM_1-1_03M_FDD
		$5\mathrm{MHz}$	E-TM_1-1_05M_FDD
	E-1M1.1	$10 \mathrm{MHz}$	E-TM_1-1_10M_FDD
		$15\mathrm{MHz}$	E-TM_1-1_15M_FDD
		$20\mathrm{MHz}$	E-TM_1-1_20M_FDD
		$1.4 \mathrm{~MHz}$	E-TM_1-2_01M4_FDD
		$3\mathrm{MHz}$	E-TM_1-2_03M_FDD
	F-T M1 9	$5\mathrm{MHz}$	E-TM_1-2_05M_FDD
	\mathbf{E}^{-1} W11.2	$10\mathrm{MHz}$	E-TM_1-2_10M_FDD
		$15\mathrm{MHz}$	$E-TM_1-2_15M_FDD$
DC T To at		$20\mathrm{MHz}$	E-TM_1-2_20M_FDD
DS IX lest		$1.4 \mathrm{~MHz}$	E-TM_2_01M4_FDD
	E-TM2	$3\mathrm{MHz}$	E-TM_2_03M_FDD
		$5\mathrm{MHz}$	E-TM_2_05M_FDD
		$10 \mathrm{MHz}$	E-TM_2_10M_FDD
		$15\mathrm{MHz}$	$E-TM_2_{15M}FDD$
		$20 \mathrm{~MHz}$	E-TM_2_20M_FDD
		$1.4 \mathrm{~MHz}$	E-TM_3-1_01M4_FDD
		$3\mathrm{MHz}$	E-TM_3-1_03M_FDD
	E-TM9 1	$5\mathrm{MHz}$	E-TM_3-1_05M_FDD
	E 11013.1	$10 \mathrm{MHz}$	E-TM_3-1_10M_FDD
		$15\mathrm{MHz}$	E-TM_3-1_15M_FDD
		20 MHz	E-TM_3-1_20M_FDD

表3.2-1 LTE 波形パターン一覧

主な用途	Test Model	Band Width	ファイル名
		$1.4 \mathrm{~MHz}$	E-TM_3-2_01M4_FDD
		$3\mathrm{MHz}$	E-TM_3-2_03M_FDD
	E-TM2 9	$5\mathrm{MHz}$	E-TM_3-2_05M_FDD
	E-11013.2	$10 \mathrm{MHz}$	E-TM_3-2_10M_FDD
		$15\mathrm{MHz}$	$E-TM_3-2_15M_FDD$
DC Tr Toot		$20\mathrm{MHz}$	E-TM_3-2_20M_FDD
DS 1x lest	E-TM3.3	$1.4 \mathrm{~MHz}$	E-TM_3-3_01M4_FDD
		$3\mathrm{MHz}$	E-TM_3-3_03M_FDD
		$5\mathrm{MHz}$	E-TM_3-3_05M_FDD
		$10 \mathrm{MHz}$	E-TM_3-3_10M_FDD
		$15\mathrm{MHz}$	E-TM_3-3_15M_FDD
		20 MHz	E-TM_3-3_20M_FDD

表3.2-1 LTE 波形パターン一覧(続き)

3.3 LTE TDD 波形パターン

LTE TDD 波形パターンとして,表 3.3-1 のようなパターンが用意されています。

3GPP TS36.141 6 章に記載された E-UTRA Test Models のパラメータが設定さ れています。E-TM1.1, E-TM1.2, E-TM2, E-TM3.1, E-TM3.2, E-TM3.3 の 各テストモデルにおいて, Channel Bandwidth=1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHzを用意しています。E-UTRA Test Models のパラメータ については 3GPP TS36.141 6 章を参照してください。

主な用途	Test Model	Band Width	ファイル名
パッケージ名 :LTE	_TDD (BS Tx te	st)	
		$1.4 \mathrm{~MHz}$	E-TM_1-1_01M4_TDD
		$3 \mathrm{MHz}$	E-TM_1-1_03M_TDD
	₽- ₩ 1 1	$5~\mathrm{MHz}$	E-TM_1-1_05M_TDD
	E-1111.1	$10~\mathrm{MHz}$	E-TM_1-1_10M_TDD
		$15~\mathrm{MHz}$	E-TM_1-1_15M_TDD
		$20~\mathrm{MHz}$	E-TM_1-1_20M_TDD
		$1.4 \mathrm{~MHz}$	E-TM_1-2_01M4_TDD
		$3 \mathrm{MHz}$	E-TM_1-2_03M_TDD
	E-TM1 9	$5~\mathrm{MHz}$	E-TM_1-2_05M_TDD
	E-1M1.2	$10 \mathrm{~MHz}$	E-TM_1-2_10M_TDD
		$15~\mathrm{MHz}$	E-TM_1-2_15M_TDD
DC T Treat		$20~\mathrm{MHz}$	E-TM_1-2_20M_TDD
DS IX lest	E-TM2	$1.4 \mathrm{~MHz}$	E-TM_2_01M4_TDD
		$3 \mathrm{~MHz}$	E-TM_2_03M_TDD
		$5~\mathrm{MHz}$	E-TM_2_05M_TDD
		$10 \mathrm{MHz}$	E-TM_2_10M_TDD
		$15 \mathrm{MHz}$	E-TM_2_15M_TDD
		$20~\mathrm{MHz}$	E-TM_2_20M_TDD
		$1.4 \mathrm{~MHz}$	E-TM_3-1_01M4_TDD
		$3 \mathrm{MHz}$	E-TM_3-1_03M_TDD
	E-TM9 1	$5~\mathrm{MHz}$	E-TM_3-1_05M_TDD
	E-11419.1	10 MHz	E-TM_3-1_10M_TDD
		$15 \mathrm{MHz}$	E-TM_3-1_15M_TDD
		20 MHz	E-TM_3-1_20M_TDD

表3.3-1 LTE TDD 波形パターン一覧

主な用途	Test Model	Band Width	ファイル名
		$1.4 \mathrm{~MHz}$	E-TM_3-2_01M4_TDD
		$3 \mathrm{~MHz}$	E-TM_3-2_03M_TDD
	E-TM2 9	$5~\mathrm{MHz}$	E-TM_3-2_05M_TDD
	E-11013.2	$10 \mathrm{~MHz}$	E-TM_3-2_10M_TDD
		$15~\mathrm{MHz}$	E-TM_3-2_15M_TDD
DC Tr Toot		$20~\mathrm{MHz}$	E-TM_3-2_20M_TDD
DS IX lest	E-TM3.3	$1.4 \mathrm{~MHz}$	E-TM_3-3_01M4_TDD
		$3 \mathrm{~MHz}$	E-TM_3-3_03M_TDD
		$5~\mathrm{MHz}$	E-TM_3-3_05M_TDD
		$10 \mathrm{~MHz}$	E-TM_3-3_10M_TDD
		$15 \mathrm{MHz}$	E-TM_3-3_15M_TDD
		20 MHz	E-TM_3-3_20M_TDD

表3.3-1 LTE TDD 波形パターン一覧(続き)

3.4 PDC 波形パターン

PDC 波形パターンとして,表 3.4-1 のようなフルレートおよびハーフレートのそれぞれで上り,下りのスロット 0 のみを出力するパターン,および妨害波用のフレームなしのパターンが用意されています。

表3.4-1 PDC 波形パターン一覧

波形パターン名	上り/下り	ハーフ/フルレート	出力スロット
パッケージ名:PDC			
PI_4_DQPSK_PN9		—	フレームなし
PI_4_DQPSK_PN15		_	フレームなし
DL_Full_Rate_Slot0	下り	フルレート	Slot0 のみ
DL_Half_Rate_Slot0	下り	ハーフレート	Slot0 のみ
UL_Full_Rate_Slot0	上り	フルレート	Slot0 のみ
UL_Half_Rate_Slot0	上り	ハーフレート	Slot0 のみ
CW			_

各 PDC 波形パターンを出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表 3.4-2 のマーカ信号(Marker1, Marker2, Marker3)が出力されます。出力コネクタの設定については『MG3710A ベクトル 信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの設定」を参照してくだ さい。

表3.4-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	Symbol Clock

希望波+妨害波のような 2 つのメモリを使用した 2 信号の合成パターンは, MG3710Aの Defined モードの状態で表 3.4・3 のようなコンビネーションファイル を選択することで, パターンの転送, 選択が容易に行えます。

表3.4-3	PDC 受信系評価用コンビネーションファイルー覧	Ī
		_

コンビネーションファイル名	コメント
パッケージ名:PDC_CMB	
PDC_BS_FULL_RATE_ACS	基地局 隣接チャネル選択度試験用
	$\label{eq:ul_rate_slot0} UL_Full_Rate_Slot0+PI_4_DQPSK_PN15~(50~kHz~offset)$
PDC_BS_FULL_RATE_IMD	基地局 相互変調特性試験用
	UL_Full_Rate_Slot0+CW (200 kHz offset) *
PDC_BS_FULL_RATE_SR	基地局 スプリアス感度試験用
	UL_Full_Rate_Slot0+CW (100 kHz offset)
PDC_BS_HALF_RATE_ACS	基地局 隣接チャネル選択度試験用
	$UL_Half_Rate_Slot0+PI_4_DQPSK_PN15~(50~kHz~offset)$
PDC_BS_HALF_RATE_IMD	基地局 相互変調特性試験用
	UL_Half_Rate_Slot0+CW (200 kHz offset) $*$
PDC_BS_HALF_RATE_SR	基地局 スプリアス感度試験用
	UL_Half_Rate_Slot0+CW (100 kHz offset)
PDC_UE_FULL_RATE_ACS	移動局 隣接チャネル選択度試験用
	$DL_Full_Rate_Slot0+PI_4_DQPSK_PN15 \ (50 \ \rm kHz \ offset)$
PDC_UE_FULL_RATE_IMD	移動局 相互変調特性試験用
	DL_Full_Rate_Slot0+CW (200 kHz offset) $*$
PDC_UE_FULL_RATE_SR	移動局 スプリアス感度試験用
	DL_Full_Rate_Slot0+CW (100 kHz offset)
PDC_UE_HALF_RATE_ACS	移動局 隣接チャネル選択度試験用
	$DL_Half_Rate_Slot0+PI_4_DQPSK_PN15~(50~kHz~offset)$
PDC_UE_HALF_RATE_IMD	移動局 相互変調特性試験用
	DL_Half_Rate_Slot0+CW (200 kHz offset) *
PDC_UE_HALF_RATE_SR	移動局 スプリアス感度試験用
	DL_Half_Rate_Slot0+CW (100 kHz offset)

*: 高周波信号発生器 1(変調希望波)+高周波信号発生器 3(CW 妨害波)の 状態となります。相互変調特性試験を行うためには、ほかの CW 信号発生器 からの 100 kHz offset の CW 信号(高周波信号発生器 2)と外部加算する 必要があります。

注:

このコンビネーションファイルを使用するには、ベースバンド信号加算(オプション)が必要です。

3.4.1 フレーム構成

フルレートの場合

PDC システムは、TDMA フレームの 3 スロットから構成され、このフレームを周期としてデータを発生します。ただし、各スロットの PN9 段擬似ランダムパターンは、各スロットで独立し、継続性を持っています。下りの場合はスロット 1,2 のビット列としては、すべて1 が出力されます。上りの場合は、スロット1,2 はバーストオフとなります。

図3.4.1-1 フルレートのフレーム構造

ハーフレートの場合

PDCシステムは、TDMAフレームの6スロットから構成され、このフレームを周期としてデータを発生します。ただし、各スロットの PN9 段擬似ランダムパターンは、各スロットで独立し、継続性を持っています。下りの場合は、スロット 1~5 のビット列としては、すべて1が出力されます。上りの場合は、スロット 1~5 はバーストオフとなります。

図3.4.1-2 ハーフレートのフレーム構造

フレームなしの場合

妨害波用などの場合はフレームフォーマットなしの疑似ランダムパターンにπ/4 DQPSK 変調を行って出力します。このとき、任意波形パターンの先頭と末尾のシ ンボル点の位置が、疑似ランダムパターンの連続性を失わないようにデータ長が 調整されています。

図3.4.1-3 ハーフレートのフレーム構造

3.4.2 スロット構成

スロット構成の種類は通信チャネル(上り・下り)の2種類があります。

上り通信チャネル(UP TCH)

Г		1								1
	R	Ρ	тсн	SW	СС	SF	SACCH	тсн	G	
	4	2	112	20	8	1	15	112	6	
-										•
R		:バ	ニースト過渡応	答用ガー	·ド時間	đ	$0_{\rm H}(4 \text{ bit}$	s)		
Р		:プリアンブル 2 _H (2 bits)								
TCH		:ユ	ーザ情報転送	を用 ス	ロットこ	ごとに	こ独立した	PN9 段擬化	ランダ	۲. الم
				タ	ーン(同一	・スロットの'	TCHにおいて	「PNパ	ペタ-
				ン	は継続	売性る	あり)			
SW		: 同	期ワード	ス	ロット	0=7	$85B4_{H}(20)$	bits)		
				ス	ロット	1=6	$2DC9_{H}(20)$) bits)		
				ス	ロット	2=7	$E28A_{H}(20$) bits)		
$\mathbf{C}\mathbf{C}$:カ	ラーコード	0	0 _H (8 ł	oits)				
\mathbf{SF}		:ス	チールフラグ	01	H(1 bi	t)				
SACC	Н	:低速付随制御チャネル				$0000_{\rm H}(1$	5 bits)			
G		:バースト過渡応答用ガード時間			1	$0_{ m H}$ (6 bit	$\mathbf{s})$			
スクラン	スクランブル機能(TCH, SF, SACCH):Off									

下り通信チャネル(DOWN TCH)

R	Ρ	тсн	SW	сс	SF	SACCH	тсн
4	2	112	20	8	1	15	112

R	:バースト過渡応答用カ	「ード時	間 0 _H (4 bits	s)		
Р	:プリアンブル		$2_{ m H}(2~{ m bits})$	\mathbf{s})		
TCH	:ユーザ情報転送用	スロット	ごとに独立した	PN9	段擬似ラン	/ダムパ
		ターン	(同一スロットの)	ICH <i>k</i>	ニおいてPN	パター
		ンは継	続性あり)			
SW	:同期ワード	スロット	$0=87A4B_{\rm H}(20)$	bits)		
		スロット	$1=9D236_{H}(20)$	bits)		
		スロット	$2=81D75_{\rm H}(20$	bits)		
$\mathbf{C}\mathbf{C}$:カラーコード		$00_{ m H}(8~{ m bits})$			
\mathbf{SF}	:スチールフラグ		$0_{ m H}(1~{ m bit})$			
SACCH	:低速付随制御チャネル	レ	$000000_{ m H}(21~{ m bi}$	ts)		
スクランブ	ル機能(TCH, SF, SA	CCH):	Off			

3.5 PDC PACKET 波形パターン

PDC PACKET 波形パターンとして,表 3.5-1 のような下り,上りのパターンが用意 されています。

波形パターン名	上り/下り	出カスロット
パッケージ名:PDC		
DL_Packet_Slot_0	下り	Slot 0 のみ
DL_Packet_Slot_01	下り	Slot 0 & 1
DL_Packet_Slot_all	下り	Slot 0 & 1 & 2
UL_Packet_Slot_0	上り	Slot 0 のみ

表3.5-1 PDC PACKET 波形パターン一覧

各 PDC PACKET 波形パターンを出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表 3.5・2 のマーカ信号 (Marker1, Marker2, Marker3) が出力されます。出力コネクタの設定については 『MG3710A ベクトル信号発生器 取扱説明書 (本体編)』の「7.4.2 出力コネクタの 設定」を参照してください。

表3.5-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	Symbol Clock

3.5.1 フレーム構成

PDC PACKET 用波形パターンのフレーム構成は、下り1、2、3 スロット送信、上り1 スロット送信の4 種類があります。これらの TDMA フレームは3 スロットから構成され、このフレームを周期としてデータを発生します。

各スロットの CAC 部の PN9 は連続性があります。たとえば、下り UPCH 2 スロット 送信時では、スロット0の CAC 部末尾とスロット1の CAC 部先頭は連続性があり、 またスロット1の CAC 部末尾と次フレームのスロット0の CAC 部先頭は連続性が あります。

下り UPCH 1 スロット送信 (DL_Packet_Slot_0)

下り UPCH 2 スロット送信 (DL_Packet_Slot_01)

4	20 ms	
スロット 0	スロット 1	スロット 2
UPCH	UPCH	IDLE (All"1")

下り UPCH 3 スロット送信 (DL_Packet_Slot_all)

4	20 ms	→
スロット 0	スロット 1	スロット 2
UPCH	UPCH	UPCH

上り UPCH 1 スロット送信 (UL_Packet_Slot_0)

•	20 ms	
スロット 0	スロット 1	スロット 2
UPCH	送信 Off	送信 Off

3.5.2 スロット構成

R 4 スロット構成は下りユーザパケットチャネル,上りユーザパケットチャネルの2 種類 があります。スクランブル機能は常に Off となります。

P 2	CAC 112	SW 20	CC 8	CAC 112	E 22
	R	:バースト過渡応 ・プリアンブル	答用ガード間	f間 $0_{\rm H}(4 \text{ bit})$ $2_{\rm H}(2 \text{ bit})$	
	CAC	:制御信号(UPC	CH) PN9 すべ	段疑似ランダムパターン() てのスロット間で連続性あり)	送信されている
	SW	:同期ワード	スロッスロッスロッ	$h = 87A4B_{H}(20 \text{ bit})$ $h = 9D236_{H}(20 \text{ bit})$ $h = 81D75_{H}(20 \text{ bit})$	
	$\begin{array}{c} \mathrm{CC} \\ \mathrm{E} \end{array}$:カラーコード :衝突制御ビット	$00_{ m H}($ 3FF]	8 bit) FFF _H (22 bit)	

下りユーザパケットチャネル(DOWN UPCH)

上りユーザパケットチャネル(UP UPCH)

R 4	P 2	CAC 112		SW 20	CC 8	CAC 116	G 18	
		R P CAC SW	:バ :プ :制	ースト過渡応谷 リアンブル 御信号(UPC 期ワード	答用ガー H) P す ス	-ド時間 0 _H (4 bit) 2 _H (2 bit) N9 段疑似ランダムパターン - べてのスロット間で連続性あ - ロット 0=785B4 _H (20 bit)	(送信されてい り)	る
		CC G	:カ :ガ	ラーコード ード時間	0 0	$0_{ m H}(8~{ m bit}) \\ 0000_{ m H}(18~{ m bit})$		

3.6 PHS 波形パターン

PHS 波形パターンとして,表 3.6-1 のような上り,下りの TCH や妨害波用の連続 波パターンが用意されています。

表3.6-1 PHS 波形パターン一覧

波形パターン名	上り/下り	スクランブル	出力スロット
パッケージ名:PHS			
PI_4_DQPSK_PN9		OFF	フレームなし
PI_4_DQPSK_PN15		OFF	フレームなし
PI_4_DQPSK_ALL0		OFF	フレームなし
DL_TCH_Slot_1	下り	OFF	Slot1 のみ
UL_TCH_Slot_1	上り	OFF	Slot1 のみ
CW	_	_	_

各 PHS 波形パターンを出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表 3.6-2 のマーカ信号(Marker1, Marker2, Marker3)が出力されます。出力コネクタの設定については『MG3710A ベクトル 信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの設定」を参照してくだ さい。

表3.6-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	Symbol Clock

希望波+妨害波のような 2 つのメモリを使用した 2 信号の合成パターンは, MG3710Aの Defined モードの状態で表 3.6-3 のようなコンビネーションファイル を選択することで, パターンの転送, 選択が容易に行えます。

表3.6-3	PHS 受信系評価用コンビネーションファイルー	訇
--------	-------------------------	---

コンビネーションファイル名	コメント
パッケージ名:PHS_CMB	
PHS_BS_ACS_0_6MHz	基地局 隣接チャネル選択度試験用
	$\label{eq:ul_TCH_Slot_1+PI_4_DQPSK_PN15} (600 \ \rm kHz \ \rm offset)$
PHS_BS_ACS_0_9MHz	基地局 隣接チャネル選択度試験用
	$\label{eq:ul_TCH_Slot_1+PI_4_DQPSK_PN15} (900 \ \rm kHz \ \rm offset)$
PHS_BS_IMD	基地局 相互変調特性試験用
	UL_TCH_Slot_1+CW (1.2 MHz offset) $*$
$PHS_UE_ACS_0_6MHz$	移動局 隣接チャネル選択度試験用
	$DL_TCH_Slot_1+PI_4_DQPSK_PN15 \ (600 \ \mathrm{kHz} \ \mathrm{offset})$
PHS_UE_ACS_0_9MHz	移動局 隣接チャネル選択度試験用
	DL_TCH_Slot_1+PI_4_DQPSK_PN15 (900 kHz offset)
PHS_UE_IMD	移動局 相互変調特性試験用
	DL_TCH_Slot_1+CW (1.2 MHz offset) $*$

- *: 高周波信号発生器 1(変調希望波)+高周波信号発生器 3(CW 妨害波)の 状態となります。相互変調特性試験を行うためには、ほかの CW 信号発生器 からの 600 kHz offset の CW 信号(高周波信号発生器 2)と外部加算する 必要があります。
- 注:

このコンビネーションファイルを使用するには、ベースバンド信号加算(オプション)が必要です。

3.6.1 フレーム構成

PHS のフレームは上り 4 スロット,下り 4 スロットの合計 8 スロットから構成され,こ のフレームを周期としてデータを発生します。また,送信されるスロットはスロット 1 のみで,後に続く2~4 スロットは送信オフとなります。スロット内の TCH の PN9 段 疑似ランダムパターンは,各スロットで独立し,各フレーム間では継続性を有してい ます。

	ーー 下り (Dow	回線 —— n link)	5 n	ns	上り (Up	回線 —— link)	► ►
スロット	スロット	スロット	スロット	スロット	スロット	スロット	スロット
1	2	3	4	1	2	3	4

図3.6.1-1 PHS のフレーム構造

PI_4_DQPSK_PN9, PI_4_DQPSK_PN15, および PI_4_DQPSK_ALL0 以外の各波形パターンは、上りまたは下りのスロット1 に通信チャネルを配置し、これ以外のスロットはすべてバーストオフとして出力します。

3.6.2 スロット構成

スロット構成は下りトラヒックチャネル,上りトラヒックチャネルの2種類があります。ス クランブル機能は常にOffとなります。

R	SS	PR	UW	CI	SA	ТСН	CRC	G				
4	2	6	16	4	16	160	16	16				
		R	:過渡	5応答用	ランプタイ	$0_{\rm H}(4 \text{ bit})$	$0_{ m H}(4~{ m bit})$					
		\mathbf{SS}	:スタ	ートシン	ボル	$2_{ m H}(2~{ m bit})$	$2_{ m H}(2~{ m bit})$					
		\mathbf{PR}	:プリ	アンブル	/	$19_{ m H}(6~{ m bits})$	$19_{ m H}(6~{ m bits})$					
		UW	:同期	リワード		上り回線=E149 _H	上り回線=E149 _H (16 bit)					
						下り回線=3D4C _H	下り回線=3D4C _H (16 bit)					
		CI	:チャ	ネル識	列	$0_{\rm H}(4 {\rm \ bit})$	$0_{\rm H}(4~{ m bit})$					
		SA	:SAC	CCH		$8000_{\rm H}(16 \text{ bit})$	$8000_{ m H}(16~{ m bit})$					
		TCH	:情報	チャネ	ル	スロットごとに独立	スロットごとに独立した PN9 段疑似ランダ					
						ムパターン(同一スロットの TCH)						
						て PN パターンは継続性あり)						
		CRC	:巡回]符号		CI, SA, TCH \mathcal{O}	CRC ビット					
		G	:過渡	5応答用	ガードタイ.	$0000_{\rm H}(16~{\rm bit})$						

上り、下りトラヒックチャネル

3.7 GSM 波形パターン

GSM 波形パターンとして,表 3.7-1 のような上り/下りのパターンが用意されています。

波形パターン名	上り/下り	データ	出力スロット					
パッケージ名:GSM	パッケージ名:GSM							
GMSK_PN9	上り/下り		—					
8PSK_PN9	上り/下り	PN9 1	_					
GMSK_TN0	上り/下り	DN (0*2	TN0					
8PSK_TN0	上り/下り	1113 -	TN0					
NB_GMSK	上り/下り		TN0					
NB_ALL_GMSK	上り/下り	DN O*3	全スロット					
NB_8PSK	上り/下り	rng °	TN0					
NB_ALL_8PSK	上り/下り		全スロット					
TCH_FS	上り/下り		TN0					
CS-1_1SLOT	上り/下り		TN0					
CS-4_1SLOT	上り/下り		TN0					
DL_MCS-1_1SLOT	下り		TN0					
UL_MCS-1_1SLOT	上り		TN0					
DL_MCS-5_1SLOT	下り	$PN9^{*4}$	TN0					
UL_MCS-5_1SLOT	上り		TN0					
DL_MCS-9_1SLOT	下り		TN0					
UL_MCS-9_1SLOT	上り		TNO					
DL_MCS-9_4SLOT*5	下り		TN0, 1, 2, 3					
UL_MCS-9_4SLOT*5	上り		TN0, 1, 2, 3					

表3.7-1 GSM 波形パターン一覧

*1: スロットフォーマットを持たない全域に PN9 データを挿入

*2: ガードを除いたスロットの全域に PN9 データを挿入

- *3: ノーマルバーストのエンクリプテッドビット部分に PN9 を挿入
- *4: PN9 データにチャネルコーディングが行われたビット列をノーマルバーストの エンクリプテッドビット部分に挿入
- *5: この波形パターンを使用するには、ARBメモリ拡張256Mサンプル(オプション)またはARBメモリ拡張1024Mサンプル(オプション)が必要です。

各 GSM 波形パターンを出力時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表3.7-2 のマーカ信号(Marker1, Marker2, Marker3)が出力されます。が出力されます。出力コネクタの設定については 『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの 設定」を参照してください。

表3.7-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ			
Marker1	Frame Clock			
Marker2	RF Gate			
Marker3	Multi-Frame Clock			

3.7.1 各パターンの詳細

♦GMSK_PN9, 8PSK_PN9

スロットフォーマットを持たない PN9 データが挿入されます。

♦GMSK_TN0, 8PSK_TN0

ガードを除いたスロットの全域に PN9 データが挿入されます。各スロットの PN9 データは連続性を持ちます。

♦NB_GMSK, NB_ALL_GMSK, NB_8PSK, NB_ALL_8PSK

ノーマルバーストのエンクリプテッドビット部分に PN9 データが挿入されます。 各ス ロットの PN9 データは連続性を持ちます。

♦TCH_FS

3GPP TS05.03 3.1 章で規定される Speech channel at full rate(TCH/FS)に 対応します。

各チャネルコーディングパラメータは以下のとおりです。

Type of channel	bits/block data+ parity+tail1	convolutional code rate	coded bits per block	interleaving depth
TCH/FS			456	8
class I	182 + 3 + 4	1/2	378	
class II	78 + 0 + 0	—	78	

♦CS-1(4)_1SLOT

3GPP TS05.03 5.1 章で規定される GPRS PDTCH の Packet data block type 1(CS-4), 4(CS-1)に対応します。

Scheme	Code rate	USF	Pre-coded USF	Radio Block excl. USF and BCS	BCS	Tail	Coded bits	Punctured bits
CS-1	1/2	3	3	181	40	4	456	0
CS-4	1	3	12	428	16	—	456	_

各チャネルコーディングパラメータは以下のとおりです。

◆DL(UL)_MCS-1(5, 9)_1SLOT(_4SLOT)

3GPP TS05.03 5.1 章で規定される EGPRS PDTCH の Packet data block type 5(MCS-1), 9(MCS-5), 13(MCS-9)に対応します。

各チャネルコーディングパラメータは以下のとおりです。

Scheme	Code rate	Header Code rate*	Modulation	RLC blocks per Radio Block (20 ms)	Raw Data within one Radio Block	Family	BCS	Tail payload	HCS	Data rate kb/s
MCS-9	1.0	0.36	ODCIZ	2	2x592	А	2x12	2x6		59.2
MCS-5	0.37	1/3	orsk	1	448	В	10	0	8	22.4
MCS-1	0.53	0.53	GMSK	1	176	С	12	ю		8.8

*: Header 情報はすべて"0"となります。

3.7.2 フレーム構成

各フレームは、8 スロットで構成され、TCH/FS のみマルチフレーム=26、そのほかのチャネルはマルチフレーム=52 で構成されます。

3.7.3 スロット構成

◆GMSK_TN0, 8PSK_TN0 は以下のようにガード以外の構成を持ちません。

	PN 148		G 8.25
			単位:bit
PN	:データ	PN9 段疑似ランダムパタ	ーン
		(送信されているすべての)スロット間で連
		続性あり)	
G	:ガードビット	\mathbf{FF}_{H}	
	PN		G
	444		24.75
			単位:bit
PN	:データ	PN9 段疑似ランダムパタ	ーン
		(送信されているすべての)スロット間で連
		続性あり)	
G	:ガードビット	\mathbf{FF}_{H}	

◆GMSK_PN9, 8PSK_PN9, GMSK_TN0, 8PSK_TN0 以外のスロット構成は 以下のノーマルバーストとなります。

	Т 3	E 57		S 1	TSC 26	S 1	E 57	Т 3	G 8.25		
					•		I		単位:bit		
		Т	:`	テイルビ	<i>゙</i> ット	0	$_{\rm H}(4 \ {\rm bit})$				
		Ε	:	エンクリ	プテッドビット	ヲ	チャネルコーディングされ	た(*1)	PN9段		
							秘似ランダムパターン(送	信され	ているす		
					~	<てのスロット間で連続性	あり)				
		\mathbf{S}	:	スティー	フ	マチールフラグ					
		TS	C :	シレーニ	ングシーケンスビ	ット 0	$97\ 0897_{\rm H}$				
	T : デイルビット				0	$_{\rm H}(4 \text{ bit})$					
		G	::	ガードビ	ット	F	${}^{ m F_{H}}$				
						•••					
	r)	マルバースト(8P	SK)		r			
T1		E			TSC		E	T2	G		
9		174			78		174	9	24.75		
									単位:bit		
		T1	:`	テイルビ	ット	1	$FF_{H}(9 bit)$				
		Ε	:	エンクリ	プテッドビット	ヲ	チャネルコーディングされ	た(*1))PN9段		
						另	秘収ランダムパターン(送	信され	ているす		
							べてのスロット間で連続性あり)				
		TS	C :	レーニ	ングシーケンスビ	ット 3	F3F 9E29 FFF3 FF3F	F 9E49	$_{ m H}$		
		T2	:	テイルビ	<i>゙</i> ット	1	$1 \mathrm{FF_{H}}(9 \mathrm{\ bit})$				
		G	:)	ガードビ	ット	F	ΈH				
		*1	: パター	ン=NB	の場合はチャネ	ルコー	·ディングされない PN9 ざ	データア	が直接挿		
	入されます。										

3.8 CDMA2000 1X 波形パターン

CDMA2000 1X 波形パターンとして,表 3.8-1 のようなパターンが用意されています。

波形パターン名	対応システム	フレーム コーディング	シンボルデータ
パッケージ名:CDMA200	0		
RVS_RC1_FCH	cdma2000 1xRTT RC1 Reverse	あり	FCH 9.6 kbps
RVS_RC2_FCH	cdma2000 1xRTT RC2 Reverse	あり	FCH 14.4 kbps
RVS_RC3_FCH	cdma2000 1xRTT RC3 Reverse	あり	PICH FCH 9.6 kbps
RVS_RC3_FCH_SCH	cdma2000 1xRTT RC3 Reverse	あり	PICH FCH 9.6 kbps SCH 9.6 kbps
RVS_RC3_DCCH	cdma2000 1xRTT RC3 Reverse	あり	PICH DCCH 9.6 kbps
RVS_RC4_FCH	cdma2000 1xRTT RC4 Reverse	あり	PICH FCH 14.4 kbps
FWD_RC1-2_9channel	cdma2000 1xRTT RC1, RC2 Forward	拡散のみ	PICH, SyncCH, PagingCH, FCH 19.2 ksps x 6
FWD_RC3-5_9channel	cdma2000 1xRTT RC3, RC4, RC5 Forward	拡散のみ	PICH, SyncCH, PagingCH, FCH 38.4 ksps x 6

表3.8-1 CDMA2000 1X 波形パターン一覧

各 CDMA2000 1X 波形パターンを出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表3.8・2 のマーカ信号 (Marker1, Marker2, Marker3)が出力されます。出力コネクタの設定について は『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタ の設定」を参照してください。

表3.8-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	Symbol Clock
AWGN 加算	可能

3.8.1 1xRTT Reverse RC1 (RVS_RC1_FCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC1 の R-FCH の信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に準拠しています。出力信号のパラメータを表 3.8.1-1 に示します。

表3.8.1-1 R-FCH(Reverse Fundamental Channel)

	Data Rate	Data
R-FCH	9.6 kbps	$PN9 fix^*$

この波形パターンを選択して出力される信号には、図 3.8.1-2 の機能ブロック図に 示されるフレームコーディングが行われています。フレームコーディングは 4 フレー ム連続で行い(1 フレーム出力するのに要する時間は 20 ms), そのフレームコー ディングにより得られた 4 フレーム長の信号パターンを繰り返し出力します。ショート コード拡散に用いる I Channel PN Sequence と Q Channel PN Sequence の 3 周期の長さはちょうど 80 ms となり、4 フレームの長さに等しいため、ショートコード は信号を出力している間連続性を保っています。そのためこの波形パターンを選 んで出力される出力信号を、変調精度測定、CRC を用いた FER(Frame Error Rate)測定に使用することができます。なお、ロングコードによる拡散は行われませ ん。

畳み込み符号化前のビット列の配置を図 3.8.1-1 に示します。

PN9fix [*] (172 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------------	--	--------------------------------------

図3.8.1-1 波形パターン RVS_RC1_FCH のフレーム構造

*: 図 3.8.1-3 のように 4 フレームごとに PN9 生成器を初期化して生成した, 4 フレーム長のデータを繰り返し出力しています。そのため, この 4 フレーム内 で PN9fix は連続性を保っていますが, ほかの 4 フレームとの連続性は失わ れます。

3.8.2 1xRTT Reverse RC2 (RVS_RC2_FCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC2 の R-FCH の信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に準拠しています。出力信号のパラメータを表 3.8.2-1 に示します。

表3.8.2-1 R-FCH(Reverse Fundamental Channel)

	Data Rate	Data
R-FCH	14.4 kbps	$PN9 fix^*$

この波形パターンを選択して出力される信号には、図 3.8.2・2 の機能ブロック図に 示されるフレームコーディングが行われています。フレームコーディングは 4 フレー ム連続で行い(1 フレーム出力するのに要する時間は 20 ms), そのフレームコー ディングにより得られた 4 フレーム長の信号パターンを繰り返し出力します。ショート コード拡散に用いる I Channel PN Sequence と Q Channel PN Sequence の 3 周期の長さはちょうど 80 ms となり、4 フレームの長さに等しいため、ショートコード は信号を出力している間連続性を保っています。そのためこの波形パターンを選 んで出力される出力信号を、変調精度測定、CRC を用いた FER(Frame Error Rate)測定に使用することができます。なお、ロングコードによる拡散は行われませ ん。

畳み込み符号化前のビット列の配置を図 3.8.2-1 に示します。

Erasure Indicator Bit ("0")	PN9fix * (267 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
(0)			

図3.8.2-1 波形パターン RVS_RC2_FCH のフレーム構造

図3.8.2-2 波形パターン RVS_RC2_FCH のブロックダイヤグラム

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。よって、この4フレーム内では PN9の連続性を 保っていますが、ほかの 4 フレームとの連続性は失われます。図 3.8.1-3 PN9fix データとショートコード」を参照してください。

3.8.3 1xRTT Reverse RC3 (1) (RVS_RC3_FCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC3 の多重信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に従って行われます。多重されているチャネルは R-PICH, R-FCH です。多重されているチャネルのパラメータを示します。

表3.8.3-1 R-PICH(Reverse Pilot Channel), R-FCH(Reverse Fundamental Channel)

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-FCH	4	-1.528 dB	9.6 kbps	$PN9fix^*$

この波形パターンを選択して出力される信号には、図 3.8.3・2,図 3.8.3・3 の機能 ブロック図に示されるフレームコーディングが行われています。フレームコーディン グは4フレーム連続で行い(1フレーム出力するのに要する時間は20ms),その フレームコーディングにより得られた4フレーム長さの波形パターンを繰り返し出力 します。ショートコード拡散に用いるI Channel PN SequenceとQ Channel PN Sequenceの3周期は4フレームの長さに等しいため、ショートコードは信号を出力 している間連続性を保っています。そのためこの出力信号を、変調精度測定, CRCを用いた FER(Frame Error Rate)測定に使用することができます。なお、 ロングコードによる拡散は行われません。

畳み込み符号化前のビット列の配置を図 3.8.3-1 に示します。

PN9fix [°] (172 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------------	--	--------------------------------------

図3.8.3-1 波形パターン RVS_RC3_FCH のトラヒックチャネルのフレーム構造

172 bits/20 ms

図3.8.3-2 波形パターン RVS_RC3_FCH の信号生成ブロックダイヤグラム(パート 1/2)

注:

2進数の"0"は1に、"1"は-1に置換されています。

図3.8.3-3 波形パターン RVS_RC3_FCH のブロックダイヤグラム(パート 2/2)

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。そのため、この 4 フレーム内では PN9 の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3 「PN9fix データとショートコード」を参照してください。

3.8.4 1xRTT Reverse RC3 (2) (RVS_RC3_FCH_SCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC3 の多重信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に従って行われます。多重されているチャネルは R-PICH, R-FCH, R-SCH です。多重されているチャネルのパラメータを示します。

表3.8.4-1 R-PICH(Reverse Pilot Channel), R-FCH(Reverse Fundamental Channel), R-SCH(Reverse Supplemental Channel)

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-7.5912~\mathrm{dB}$	N/A	All "0"
R-FCH	4	-3.8412 dB	9.6 kbps	$PN9fix^*$
R-SCH	2	-3.8412 dB	9.6 kbps	PN9fix*

この波形パターンを選択して出力される信号には、図 3.8.4-2,図 3.8.4-3 の機能 ブロック図に示されるフレームコーディングが行われています。フレームコーディン グは4フレーム連続で行い(1フレーム出力するのに要する時間は20ms),その フレームコーディングにより得られた4フレーム長さの波形パターンを繰り返し出力 します。ショートコード拡散に用いるI Channel PN SequenceとQ Channel PN Sequenceの3周期は4フレームの長さに等しいため、ショートコードは信号を出力 している間連続性を保っています。そのため、この出力信号を変調精度測定、 CRCを用いた FER(Frame Error Rate)測定に使用することができます。なお、 ロングコードによる拡散は行われません。

畳み込み符号化前のビット列の配置を図 3.8.4-1 に示します。

	Frame Quality	Encoder Tail Bits
PN9fix ⁺ (1/2 bits)	Indicator	("0000000")
	(12 bits)	

図3.8.4-1 波形パターン RVS_RC3_FCH_SCH のトラヒックチャネルのフレーム構造

172 bits/20 ms

図3.8.4-2 波形パターン RVS_RC3_FCH_SCH の信号生成ブロックダイヤグラム(パート 1/2)

注:

2進数の"0"は1に、"1"は-1に置換されています。

図3.8.4-3 波形パターン RVS_RC3_FCH_SCH の信号生成ブロックダイヤグラム(パート 2/2)

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。したがって、この4フレーム内では PN9の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3 「PN9fix データとショートコード」を参照してください。

3.8.5 1xRTT Reverse RC3 (3) (RVS_RC3_DCCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC3 の多重信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に従って行われます。多重されているチャネルは R-PICH, R-DCCH です。多重されているチャネルのパラメータを示します。

表3.8.5-1 R-PICH(Reverse Pilot Channel), R-DCCH(Reverse Dedicated Control Channel)

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-DCCH	8	$-1.528~\mathrm{dB}$	9.6 kbps	$PN9fix^*$

この波形パターンを選択して出力される信号には、図 3.8.5-2, 図 3.8.5-3 の機能 ブロック図に示されるフレームコーディングが行われています。フレームコーディン グは 4 フレーム連続で行い(1 フレーム出力するのに要する時間は 20 ms), その フレームコーディングにより得られた 4 フレーム長さの波形パターンを繰り返し出力 します。ショートコード拡散に用いる I Channel PN Sequence と Q Channel PN Sequence の 3 周期は 4 フレームの長さに等しいため, ショートコードは信号を出力 している間連続性を保っています。そのため、この出力信号を変調精度測定, CRC を用いた FER (Frame Error Rate)測定に使用することができます。なお、 ロングコードによる拡散は行われません。

畳み込み符号化前のビット列の配置を図 3.8.5-1 に示します。

PN9fix (172 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
-------------------	--	--------------------------------------

図3.8.5-1 波形パターン RVS_RC3_DCCH のトラヒックチャネルのフレーム構造

172 bits/20 ms

注:

2進数の"0"は1に、"1"は-1に置換されています。

図3.8.5-3 波形パターン RVS_RC3_DCCH の信号生成ブロックダイヤグラム(パート 2/2)

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。したがって、この4フレーム内では PN9の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3 「PN9fix データとショートコード」を参照してください。

3.8.6 1xRTT Reverse RC4 (RVS_RC4_FCH)

この波形パターンを選択すると、フレームコーディングされた 1xRTT Reverse RC4 の多重信号を出力します。フレームコーディングと IQ 変調は 3GPP2 C.S0002-C-1 に従って行われます。多重されているチャネルは R-PICH, R-FCH です。多重されているチャネルのパラメータを示します。

表3.8.6-1 R-PICH(Reverse Pilot Channel), R-FCH(Reverse Fundamental Channel)

	Walsh Code	Code Power	Data Rate	Data
R-PICH	0	$-5.278~\mathrm{dB}$	N/A	All "0"
R-FCH	4	$-1.528~\mathrm{dB}$	14.4 kbps	$PN9fix^*$

この波形パターンを選択して出力される信号には、図 3.8.6-2, 図 3.8.6-3 の機能 ブロック図に示されるフレームコーディングが行われています。フレームコーディン グは 4 フレーム連続で行い(1 フレーム出力するのに要する時間は 20 ms), その フレームコーディングにより得られた 4 フレーム長さの波形パターンを繰り返し出力 します。ショートコード拡散に用いる I Channel PN Sequence と Q Channel PN Sequence の 3 周期は 4 フレームの長さに等しいため, ショートコードは信号を出力 している間連続性を保っています。そのため、この出力信号を変調精度測定, CRC を用いた FER (Frame Error Rate)測定に使用することができます。なお、 ロングコードによる拡散は行われません。

畳み込み符号化前のビット列の配置を図 3.8.6-1 に示します。

Reserved Bit ("0")	PN9fix* (267 bits)	Frame Quality Indicator (12 bits)	Encoder Tail Bits ("00000000")
--------------------------	--------------------	--	--------------------------------------

図3.8.6-1 波形パターン RVS_RC4_FCH のトラヒックチャネルのフレーム構造

267 bits/20 ms

注:

2進数の"0"は1に、"1"は-1に置換されています。

図3.8.6-3 波形パターン RVS_RC4_FCH の信号生成ブロックダイヤグラム(パート 2/2)

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。したがって、この4フレーム内では PN9の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3 「PN9fix データとショートコード」を参照してください。
3.8.7 1xRTT Forward RC1, 2 (FWD_RC1-2 9channel)

この波形パターンを選択すると、3GPP2 C.S0002-C-1に従った1xRTT Forward RC1、RC2 に対応した多重信号を出力します。多重されているチャネルは F-PICH、F-SyncCH、PagingCH、F-FCH x 6(6 つの Symbol Data 列を Walsh Code 8、9、…、13の拡散符号によってそれぞれ拡散したデータ列)です。 多重されているチャネルのパラメータを示します。

表3.8.7-1 F-PICH(Forward Pilot Channel),

F-SyncCH(Forward Sync Channel), PagingCH(Paging Cha	nnel),
F-FCH(Forward Fundamental Channel)	

	Walsh Code	Code Power	Symbol Rate	Symbol Data
F-PICH	0	-7.0 dB	N/A	All "0"
F-SyncCH	32	-13.3 dB	$4.8~\mathrm{ksps}$	$PN9fix^*$
PagingCH	1	$-7.3~\mathrm{dB}$	19.2 ksps	$PN9fix^*$
F-FCH x 6	8-13	-10.3 dB	19.2 kbps	$PN9fix^*$

この波形パターンを選択して出力される信号には、図 3.8.7-1 の機能ブロック図に 示される処理が行われており、畳み込み符号化、インタリーブなどはされていませ ん。この機能ブロック図はチャネルごとの機能ブロック図であり、各チャネルの Symbol Data はこの機能ブロック図どおりに処理されたあとに加算されます。この 処理は4フレーム連続で行い(1フレーム出力するのに要する時間は20 ms)、そ の結果得られた4フレーム長の波形パターンを繰り返し出力します。ショートコード 拡散に用いるI Channel PN Sequence とQ Channel PN Sequence の3周期 は4フレームの長さに等しいため、ショートコードは信号を出力している間連続性を 保っています。そのため、この出力信号を変調精度測定に使用することができます。 なお、ロングコードによるスクランブルと、PCB Mux は行われません。

注:

2進数信号の"0"は1に、"1"は-1に置換されています。

図3.8.7-1 波形パターン FWD_RC1-2 9channel のブロックダイヤグラム

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。したがって、この4フレーム内では PN9の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3「PN9fix データとショートコード」を参照してください。

3.8.8 1xRTT Forward RC 3, 4, 5 (FWD_RC3-5 9channel)

この波形パターンを選択すると、3GPP2 C.S0002-C-1に従った1xRTT Forward RC3、RC4、RC5 に対応した多重信号を出力します。多重されているチャネルは F-PICH、F-SyncCH、PagingCH、F-FCH x 6(6 つの Symbol Data 列を Walsh Code 8、9、…、13 の拡散符号によってそれぞれ拡散したデータ列)です。 多重されているチャネルのパラメータを示します。

表3.8.8-1 F-PICH(Forward Pilot Channel),

F-SyncCH(Forward Sync Channel), PagingCH(Paging	g Channel),
F-FCH(Forward Fundamental Channel)	

	Walsh Code	Code Power	Symbol Rate	Symbol Data
F-PICH	0	-7.0 dB	N/A	All "0"
F-SyncCH	32	−13.3 dB	4.8 ksps	$PN9fix^*$
PagingCH	1	$-7.3~\mathrm{dB}$	$19.2 \ \mathrm{ksps}$	$PN9fix^*$
F-FCH x 6	8-13	−10.3 dB	$38.4 \mathrm{~ksps}$	$PN9fix^*$

この波形パターンを選択して出力される信号には、図 3.8.8-1 の機能ブロック図に 示される処理が行われており、畳み込み符号化、インタリーブなどはされていませ ん。この機能ブロック図はチャネルごとの機能ブロック図であり、各チャネルの Symbol Data はこの機能ブロック図どおりに処理されたあとに加算されます。この 処理は4フレーム連続で行い(1フレーム出力するのに要する時間は20 ms)、そ の結果得られた4フレーム長の波形パターンを繰り返し出力します。ショートコード 拡散に用いるI Channel PN Sequence とQ Channel PN Sequence の3周期 は4フレームの長さに等しいため、ショートコードは信号を出力している間連続性を 保っています。そのため、この出力信号を変調精度測定に使用することができます。 なお、ロングコードによるスクランブルと、PCB Mux は行われません。

注:

2進数信号の"0"は1に、"1"は-1に置換されています。

図3.8.8-2 波形パターン FWD_RC3-5 9channel のブロックダイヤグラム (パート 2/2)

*: 4 フレームごとに PN9 生成器を初期化しているため、4 フレーム長の同じ データを繰り返し出力します。したがって、この4フレーム内では PN9の連続 性を保っていますが、ほかの 4 フレームとの連続性は失われます。詳しくは、 図 3.8.1-3 「PN9fix データとショートコード」を参照してください。

3.9 CDMA2000 1xEV-DO 波形パターン

CDMA2000 1xEV-DO 波形パターンとして,以下のようなパターンが用意されています。

FWD_38_4_16slot/.../FWD_2457_6_1slot

これらの波形パターンを選択すると、3GPP2 C.S0024 に従ってチャネルコーディング、TDM、IQマッピングを行った CDMA2000 1xEV-DOフォワードの変調信号を出力します。

FWD_Idle

これらの波形パターンを選択すると、3GPP2 C.S0024 に従って TDM, IQ マッピ ングを行った CDMA2000 1xEV-DO フォワードアイドルスロットの変調信号を出力 します。

RVS_9_6 kbps_RX/.../RVS_153_6 kbps_RX

これらの波形パターンを選択すると、3GPP2 C.S0024 に従ってチャネルコーディ ングとIQマッピングを行った CDMA2000 1xEV-DOリバースの変調信号を出力し ます。

CDMA2000 1xEV-DO 波形パターンの一覧を表 3.9-1 に示します。

1xEV-DO 波形パターン	対応システム	ベースバンドフィルタ	データ
パッケージ名:CDMA2000_	_1xEV-DO		
FWD_38_4kbps_16slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_76_8kbps_8slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_153_6kbps_4slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_307_2kbps_2slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_614_4kbps_1slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_307_2kbps_4slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_614_4kbps_2slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_1228_8kbps_1slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_921_6kbps_2slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_1843_2kbps_1slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$

表3.9-1 CDMA2000 1xEV-DO 波形パターン一覧

1xEV-DO 波形パターン	対応システム	ベースバンドフィルタ	データ
FWD_1228_8kbps_2slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	PN15fix*
FWD_2457_6kbps_1slot	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	$PN15 fix^*$
FWD_Idle	CDMA2000 1xEV-DO フォワード	IS-95SPEC+EQ	_
RVS_9_6kbps_RX	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
RVS_19_2kbps_RX	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
$RVS_{38_4kbps_RX}$	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
$RVS_76_8kbps_RX$	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
RVS_153_6kbps_RX	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
RVS_9_6kbps_TX	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
RVS_19_2kbps_TX	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
$RVS_{38_4kbps_TX}$	CDMA2000 1xEV-DO リバース	IS-95SPEC	$PN9fix^*$
RVS_76_8kbps_TX	CDMA2000 1xEV-DO リバース	IS-95SPEC	PN9fix*
RVS_153_6kbps_TX	CDMA2000 1xEV-DO リバース	IS-95SPEC	PN9fix*

表3.9-1 CDMA2000 1xEV-DO 波形パターン一覧(続き)

*: パケットごとに切り取られた PN シーケンスを示します。このため,各パケット 間の最終データと先頭データ間では PN シーケンスが不連続です。

各 CDMA2000 1xEV-DO 波形パターンを出力時は、MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表3.9-2 のマーカ信号 (Marker1, Marker2, Marker3)が出力されます。出力コネクタの設定について は『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタ の設定」を参照してください。

表3.9-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	Symbol Clock
AWGN 加算	可能

3.9.1 1xEV-DOフォワード (FWD_Idleを除く)

FWD_38_4kbps_16slotからFWD_2457_6kbps_1slotまでの波形パターンは, 3GPP2 C.S0024 に従ってチャネルコーディングと IQ マッピングを行った CDMA2000 1xEV-DOフォワードの変調信号を出力します。この出力信号にはパ イロットチャネル,フォワード MAC チャネル,フォワードトラヒックチャネルが多重さ れています。フォワードトラヒックチャネルには FCS(Frame check sequence)付 加前のデータに PN15fix*を用いています。

PN15fixビット列にFCSビット列とTAILビット列を付加したあとのビット列のフォーマットを図 3.9.1-1 に示します。

以後, PN15fix ビット列に FCS ビット列と TAIL ビット列を付加したビット列を, パケットと呼びます。

図3.9.1-1 1xEV-DO フォワードのパケットのフォーマット

パケットは, 図 3.9.1-2 に従ってターボコーディング, スクランブル, チャネルインタ リーブ, 変調 (QPSK, 8-PSK, 16QAM)などのチャネルコーディングを受けたあと, 他チャネルと時分割多重 (TDM)されます。スクランブルで用いる MAC インデック スは, 同じスロットのプリアンブルが用いる MAC インデックスと同じ値を使用しま す。

*: パケットごとに切り取られた PN シーケンスを示します。このため、各パケット 間の最終データと先頭データ間では PN シーケンスが不連続です。

図3.9.1-2 1xEV-DO フォワードブロックダイヤグラム

チャネルコーディングされたパケットは、時分割多重で同じ MAC インデックスを持 つプリアンブルと共にスロットのデータ領域に割り当てられます。図 3.9.1-3 にスロッ トのフォーマット、図 3.9.1-4 にプリアンブル、チャネルコーディングされたパケット、 MAC チャネル、パイロットチャネルの時分割多重の様子を示します。

Data	MAC	Pilot	MAC	Data	MAC	Pilot	MAC	Data
400 chip	64 chip	96 chip	64 chip	800 chip	64 chip	96 chip	64 chip	400 chip
•				1 slot=1.67 ms				

図3.9.1-3 1xEV-DO フォワード(アイドルスロットを除く)のスロットのフォーマット

Data Rates of 153.6, 307.2, 614.4, 921.6, 1228.8, 1843.2 and 2457.6 kbps

図3.9.1-4 タイミングダイヤグラム

フォワードトラヒックチャネルにのせるデータとして、PN15 符号生成器の初期値の 違う PN15fix を 4 つ生成し、それぞれからパケットを生成します。これらのパケット はそれぞれチャネルコーディングされます。その際、スクランブラで用いる MAC イ ンデックスにはパケットごとに違う値が使われます。ただし、あるパケットと同じスロッ トに割り当てられるプリアンブルには、パケットと同じ MAC インデックスが使われま す。MAC インデックスの値については図 3.9.1-5 を参照してください。あるチャネ ルコーディングされたパケットは、3 スロットおきのスロットに割り当てられ、間の 3 ス ロットにはほかのチャネルコーディングされたパケットが割り当てられます。フォワー ドトラヒックチャネルが 3 スロットおきに割り当てられている様子を図 3.9.1-5、フォ ワードトラヒックチャネルのパラメータを表 3.9.1-1 に示します。

1xEV-DO 波形パターン	データレート (kbps)	スロット	パケット (Bit)	プリアンブル (Chip)	変調タイプ
FWD_38_4kbps_16slot	38.4	16	1024	1024	QPSK
FWD_76_8kbps_8slot	76.8	8	1024	512	QPSK
FWD_153_6kbps_4slot	153.6	4	1024	256	QPSK
FWD_307_2kbps_2slot	307.2	2	1024	128	QPSK
FWD_614_4kbps_1slot	614.4	1	1024	64	QPSK
FWD_307_2kbps_4slot	307.2	4	2048	128	QPSK
FWD_614_4kbps_2slot	614.4	2	2048	64	QPSK
FWD_1228_8kbps_1slot	1228.8	1	2048	64	QPSK
FWD_921_6kbps_2slot	921.6	2	3072	64	8-PSK
FWD_1843_2kbps_1slot	1843.2	1	3072	64	8-PSK
FWD_1228_8kbps_2slot	1228.8	2	4096	64	16QAM
FWD_2457_6kbps_1slot	2457.6	1	4096	64	16QAM

表3.9.1-1 トラヒックチャネルのパラメータ

MAC チャネルのパラメータを表 3.9.1-2 に示します。

表3.9.1-2 MAC チャネルのパラメータ

MACIndex	RABit	RPCBit
4(RA Channel), 5-17(RPC Channel)	Random	Random

MAC チャネルの RPC チャネルにのせられる RPCBit, および RA チャネルにの せられる RABit はランダムです。RPC チャネルは 13 チャネル, RA チャネルは 1 チャネルあり, これら MAC チャネルは MAC インデックスで決まるウォルシュカバー によって拡散されたあと、多重されます。MAC チャネルは、図 3.9.1-3 に示される ようにスロットの MAC 領域に割り当てられます。MAC チャネルとトラヒックチャネル によって送られるデータとスロットの関係を図 3.9.1-5 に示します。

3.9.2 1xEV-DOリバース

RVS_9_6kbps_RXからRVS_153_6kbps_TXまでのどれかの1xEV-DO波形パ ターンを選択すると、3GPP2 C.S0024に従ってチャネルコーディングとIQマッピ ングを行った CDMA2000 1xEV-DOリバースの変調信号を出力します。この出力 信号にはパイロットチャネル、RRI チャネル、DRC チャネル、ACK チャネル、デー タチャネルが多重されています。データチャネルにはFCS(Frame check sequence)付加前のデータに PN9fix*を用いています。PN9fix ビット列にFCS ビット列とTAILビット列を付加したあとのビット列のフォーマットを図 3.9.2-1 に示し ます。

図3.9.2-1 1xEV-DO リバースのパケットのフォーマット

PN9fix ビット列に FCS ビット列と TAIL ビット列を付加したビット列は, チャネル コーディングされたのち, パイロットチャネル, RRI チャネル, DRC チャネル, ACK チャネルと多重されます。1xEV-DO のブロック図を図 3.9.2-2, 変調のパラメータを 表 3.9.2-1, 各チャネルのゲインを表 3.9.2-2 に示します。

*: データ長がPNシーケンス長(511ビット)の整数倍ではなく、データの最後で PNシーケンスが不連続です。

1xEV-DO 波形パターン	データレート (kbps)	RRI Symbol	DRC Value	DRC Cover	ACK ChannelBit	Long Code Mask
RVS_9_6kbps_RX	9.6	001	0x01	W_{0^8}	0	
RVS_19_2kbps_RX	19.2	010	0x01	W_0^8	0	
RVS_38_4kbps_RX	38.4	011	0x01	W_0^8	0	
RVS_76_8kbps_RX	76.8	100	0x01	W_0^8	0	MI=0x3FF00000
RVS_153_6kbps_RX	153.6	101	0x01	$\mathbf{W}_{0^{8}}$	0	000
RVS_9_6kbps_TX	9.6	001	0x01	W_{0^8}	0	MQ=0x3FE0000
RVS_19_2kbps_TX	19.2	010	0x01	W_0^8	0	0001
RVS_38_4kbps_TX	38.4	011	0x01	W_0^8	0	
RVS_76_8kbps_TX	76.8	100	0x01	W_{0^8}	0	
RVS_153_6kbps_TX	153.6	101	0x01	W_{0^8}	0	

表3.9.2-1 1xEV-DOリバースの変調パラメータ

1xEV-DO 波形パターン	データレート (kbps)	Data/Pilot	RRI/Pilot	DRC/Pilot	ACK/Pilot
RVS_9_6kbps_RX	9.6	$3.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_19_2kbps_RX	19.2	$6.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_38_4kbps_RX	38.4	$9.75~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_76_8kbps_RX	76.8	$13.25~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_153_6kbps_RX	153.6	$18.50~\mathrm{dB}$	0 dB	3.0 dB	0.0 dB
RVS_9.6 kbps_TX	9.6	$3.75~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_19.2 kbps_TX	19.2	$6.75~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_38.4 kbps_TX	38.4	$9.75~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_76.8 kbps_TX	76.8	$13.25~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB
RVS_153.6 kbps_TX	153.6	$18.50~\mathrm{dB}$	0 dB	3.0 dB	3.0 dB

表3.9.2-2 1xEV-DO リバースのチャネルゲイン

3.9.3 1xEV-DOフォワードアイドルスロット

Pattern に FWD_Idle を選択すると、3GPP2 C.S0024 に従って IQ マッピングを 行った CDMA2000 1xEV-DO フォワードアイドルスロットの変調信号を出力します。 この出力信号にはパイロットチャネル、フォワード MAC チャネルが多重されていま す。1xEV-DO フォワードアイドルスロットのブロック図を図 3.9.3-1 に示します。

図3.9.3-1 1xEV-DO フォワードアイドルスロットのブロック図

1xEV-DO フォワードアイドルスロットのフォーマットを図 3.9.3・2 に, 1xEV-DO フォ ワードアイドルスロットの MAC チャネルのパラメータを表 3.9.3・1 に示します。

図3.9.3-2 1xEV-DO フォワードアイドルスロットのフォーマット

表3.9.3-1 1xEV-DO フォワードアイドルスロットの MAC チャネル

MAC Index	RA Bit	RPC Bit	RA Channel Gain	RPC Channel Gain
4 (RA Channel), 5-17 (RPC Channel)	Random	Random	-12.04 dB	-11.42 dB^*

*: パイロットチャネルからの相対値です。

3.10 WLAN 波形パターン

WLAN 波形パターンとして,表 3.10-1,表 3.10-2 と表 3.10-3 に示す IEEE802.11a/b/gのパターンが用意されています。

波形パターン名	Data rate (Mbits/s)	Modulation	Coding rate	Coding bits per subcarrier	Coding bits per OFDM symbol	Data bits per OFDM symbol
パッケージ名:WLAN						
11a_OFDM_6Mbps	6	BPSK	1/2	1	48	24
11a_OFDM_9Mbps	9	BPSK	3/4	1	48	36
11a_OFDM_9Mbps_PN9 ^{*1}	9	BPSK	3/4	1	48	36
11a_OFDM_12Mbps	12	QPSK	1/2	2	96	48
11a_OFDM_18Mbps	18	QPSK	3/4	2	96	72
11a_OFDM_18Mbps_PN9 *_1	18	QPSK	3/4	2	96	72
11a_OFDM_24Mbps	24	16-QAM	1/2	4	192	96
11a_OFDM_36Mbps	36	16-QAM	3/4	4	192	144
11a_OFDM_36Mbps_PN9 *_1	36	16-QAM	3/4	4	192	144
11a_OFDM_48Mbps	48	64-QAM	2/3	6	288	192
11a_OFDM_54Mbps	54	64-QAM	3/4	6	288	216
11a_OFDM_54Mbps_PN9*1	54	64-QAM	3/4	6	288	216
11a_OFDM_54Mbps_ACP $*_2$	54	64-QAM	3/4	6	288	216

表3.10-1 IEE802.11a 波形パターン一覧

 *1: 連続した PN9 を持つ波形パターンです。*1 以外は、PN9 の連続性はあり ません。4 sample のギャップ期間を波形パターンの先頭に設け、その後、 PLCP Preamble が開始されます。外部トリガを使用する際には、Trigger Delay を-4 sample に設定すると、外部トリガの立ち上がりと PLCP Preamble の開始位置が一致します。

^{*2:} スペクトラムのサイドローブを落とし, 隣接チャネル漏洩電力比を改善した波形パターンです。

波形パターン名	Spreading, Coding	Modulation
パッケージ名 :WLAN		
11b_DSSS_1Mbps	DSSS, 11 chip Barker Code	DBPSK
11b_DSSS_2Mbps	DSSS, 11 chip Barker Code	DQPSK
11b_DSSS_2Mbps_PN9 *1*2	DSSS, 11 chip Barker Code	DQPSK
11b_CCK_5_5Mbps	ССК	DQPSK
11b_CCK_11Mbps	ССК	DQPSK
$11b_CCK_11Mbps_PN9^{*1}$	ССК	DQPSK
11b_CCK_11Mbps_ACP*3	ССК	DQPSK

表3.10-2 IEE802.11b 波形パターン一覧

上記のパターンでは、ランプの立ち上がりが、波形パターンの先頭になっています。 また、Frame Clock もランプと同じタイミングで立ち上がります。外部トリガを使用 する際には、Trigger Delay を-88 sample に設定すると、外部トリガと PLCP Preamble の開始位置が一致します。

- *1: 連続した PN9 を持つ波形パターンです。*1 以外は, PN9 の連続性はあり ません。
- *2: この波形パターンを使用するには、ベースバンド信号加算(オプション), ARB メモリ拡張 256M サンプル(オプション),または ARB メモリ拡張 1024M サンプル(オプション)が必要です。
- *3: スペクトラムのサイドローブを落とし, 隣接チャネル漏洩電力比を改善した波 形パターンです。

波形パターン名	Data rate (Mbits/s)	Modulation	Coding rate	Coding bits per subcarrier	Coding bits per OFDM symbol	Data bits per OFDM symbol
パッケージ名:WLAN						
11g_DSSS_OFDM_6Mbps	6	BPSK	1/2	1	48	24
11g_DSSS_OFDM_9Mbps	9	BPSK	3/4	1	48	36
11g_DSSS_OFDM_12Mbps	12	QPSK	1/2	2	96	48
$11g_{DSSS_{OFDM_{18Mbps}}}$	18	QPSK	3/4	2	96	72
11g_DSSS_OFDM_24Mbps	24	16-QAM	1/2	4	192	96
11g_DSSS_OFDM_36Mbps	36	16-QAM	3/4	4	192	144
11g_DSSS_OFDM_48Mbps	48	64-QAM	2/3	6	288	192
11g_DSSS_OFDM_54Mbps	54	64-QAM	3/4	6	288	216

表3.10-3 IEE802.11g 波形パターン一覧

上記のパターンでは、ランプの立ち上がりが、波形パターンの先頭になっています。 また、Frame Clock もランプと同じタイミングで立ち上がります。外部トリガを使用 する際には、Trigger Delay を-60 sample に設定すると、外部トリガと PLCP Preamble の開始位置が一致します。 各 WLAN 波形パターンを出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表3.10-4 のマーカ信号 (Marker1, Marker2) が 出力されます。出力コネクタの設定については『MG3710A ベクトル信号発生器 取扱説明書 (本体編) 』の「7.4.2 出力コネクタの設定」を参照してください。

表3.10-4 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	RF Gate
Marker3	_

3.10.1 IEEE802.11a

これらの波形パターンは IEEE802.11, IEEE802.11a に記載された MAC および 物理層仕様に従っています。

各波形パターンで共通のパラメータを表 3.10.1・1 に示します。

表3.10.1-1 共通パラメータ

パラメータ	設定値
PSDU Length	1000 bytes
PSDU Data	PN9fix または PN9(注)
Sampling Rate	$40 \mathrm{~MHz}$

注:	
	PN9fix とは、PSDU ごとにリセットされた、PN9 データです。このため、各
	PSDU間のPNデータの連続性はありません。ただし、パターン名の最後が
	_PN9の波形パターンは 511 フレーム周期となっているため, PN データの
	連続性が保たれます。

PPDU フレームフォーマットを図 3.10.1・1 に示します。

図3.10.1-1 IEEE802.11a PPDU フレームフォーマット

PPDUフレームフォーマットの PSDU 部には図 3.10.1-2の MAC フレームが使用 されます。Frame Body で示される送信データ以外に, MAC ヘッダー部と FCS 部で構成されます。

図3.10.1-2 IEEE802.11a MAC フレームフォーマット

Frame Control 部分は表 3.10.1-2 の各ビットで構成され,以下のデータが使用 されます。

Field	Bit	Data
Protocol Version	B0-B1	00
Туре	B2-B3	01
Subtype	B4-B7	0000
To DS	B8	0
From DS	B9	0
More Flag	B10	0
Retry	B11	0
Power Management	B12	00
More Data	B13	0
WEP	B14	0
Order	B15	0

表3.10.1-2 Frame Control フィールド

Frame Control 以外の MAC フレームデータは、表 3.10.1-3 となります。

表3.10.1-3	MAC Header (Frame Con	itrol 以外)
-----------	-----------------------	-----------

Field	Data
Duration/ID	$0000_{ m H}$
Address 1	FFFF FFFF FFFF $_{ m H}^*$
Address 2	$0000 \ 0000 \ 0000_{\rm H}$
Address 3	$0000\ 0000\ 0000_{\rm H}$
Sequence Control	0000н
Address 4	$0000 \ 0000 \ 0000_{\rm H}$

*: Address 1(Adhoc モードにおける Destination Address)の all"1"はブ ロードキャストアドレスを示します。

3.10.2 IEEE802.11b

これらの波形パターンは IEEE802.11, IEEE802.11b に記載された MAC および 物理層仕様に従っています。

各波形パターンで共通のパラメータを表 3.10.2-1 に示します。

表3.10.2-1 共通パラメータ

パラメータ	設定値
PSDU Length	1024 bytes
PSDU Data	PN9fix または PN9(注)
Sampling Rate	$44 \mathrm{~MHz}$

注:	
	PN9fix とは、PSDU ごとにリセットされた、PN9 データです。このため、各
	PSDU間のPNデータの連続性はありません。ただし、パターン名の最後が
	_PN9の波形パターンは511フレーム周期となっているため、PN データの
	連続性が保たれます。

Long PLCP PPDU フレームフォーマットを図 3.10.2-1 に示します。

図3.10.2-1 IEEE802.11b Long PLCP PPDU フレームフォーマット

Long PLCP PPDU フレームフォーマットの PSDU 部には「3.8.1 IEEE802.11a」 と同じ MAC フレームが使用されます。

3.10.3 IEEE802.11g

これらの波形パターンは IEEE802.11, IEEE802.11g に記載された物理層仕様 に従っています。

各波形パターンで共通のパラメータを表 3.10.3-1 に示します。

表3.10.3-1 共通パラメータ

パラメータ	設定値
PSDU Length	1000 bytes
PSDU Data	PN9fix(注)
Sampling Rate	44 MHz
Sampling Rate	44 MHz

注:	
	PN9fix とは、PSDU ごとにリセットされた、PN9 データです。このため各
	PSDU 間の PN テータの連続性はありません。

Long PLCP PPDU フレームフォーマットを図 3.10.3-1 に示します。

図3.10.3-1 IEEE802.11g Long preamble PPDU フレームフォーマット

3.11 デジタル放送用波形パターン

デジタル放送用の波形パターンとして,表 3.11-1 のようなパターンが用意されています。

孜 3.11-1 ノノノル瓜本市版ルバノ ノ 5	表3.11-1	デジタル放送用波形パターンー	·覧
--------------------------	---------	----------------	----

波形パターン名	パラメータ	用途				
パッケージ名:Digital_Broadcast						
BS_1ch	ロールオフ率:0.35 ナイキスト周波数帯域幅:28.86 MHz 変調方式:QPSK	デジタル BS 放送の物理層波 形で, デバイス評価を行いま す。				
CS_1ch	ロールオフ率:0.35 ナイキスト周波数帯域幅:21.096 MHz 変調方式:QPSK	デジタル CS 放送の物理層波 形で, デバイス評価を行いま す。				
CATV_AnnexC_1ch	ロールオフ率:0.13 ナイキスト周波数帯域幅:5.274 MHz 変調方式:64QAM	CATV(ITU-T J83 AnnexC) の物理層波形で, デバイス評 価を行います。				
ISDBT_1layer_1ch	Mode:3, GI:1/8 A 階層:13seg, 64QAM	ISDB-T の物理層波形で,デ バイス評価を行います。				
ISDBT_2layer_1ch	Mode:3, GI:1/8 A 階層:1seg, QPSK B 階層:12seg, 64QAM	ISDB-T の物理層波形で,デ バイス評価を行います。				
ISDBT_2layer_Movie ^{*1}	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=2/3, TI=2 B 階層:12seg, 64QAM, CR=7/8, TI=2	ISDB·T の部分受信用波形 で,おもに端末の画像,音声				
ISDBT_2layer_Movie2 $*_1$	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=2/3, TI=4 B 階層:12seg, 64QAM, CR=3/4, TI=2	の評価を行います。波形の長 さは40フレームです。*2				
ISDBT_2layer_Coded	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=2/3, TI=2 B 階層:12seg, 64QAM, CR=7/8, TI=2	ISDB-T の部分受信用波形 で,おもに簡易 BER の測定に 使用します。波形の長さは4フ レームです。				
ISDBT_QPSK_1_2	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=1/2, TI=0 B 階層:12seg, 64QAM, CR=7/8, TI=1					
ISDBT_QPSK_2_3	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=2/3, TI=0 B 階層:12seg, 64QAM, CR=7/8, TI=1	ISDB·T の部分受信用波形 で,おもに簡易 BER の測定に				
ISDBT_16QAM_1_2	Mode:3, GI:1/8 A 階層:1seg, 16QAM, CR=1/2, TI=0 B 階層:12seg, 64QAM, CR=7/8, TI=1	使用します。波形の長さは4フ レームです。				
ISDBT_QPSK_2_3_TI4	Mode:3, GI:1/8 A 階層:1seg, QPSK, CR=2/3, TI=4 B 階層:12seg, 64QAM, CR=3/4, TI=2					

波形パターン名	パラメータ	用途
ISDBTsb_Movie ^{*3}	Seg#1~#5:1 セグメント形式 Seg#6~#8:3 セグメント形式の8 セグメン ト連結送信 Mode:3, GI:1/8 A 階層:QPSK, CR=1/2, TI=4 B 階層:QPSK, CR=1/2, TI=4	おもに端末の画像, 音声の評 価を行います。 波形の長さは 68 フレームです。*2
ISDBTsb_QPSK_1_2	Seg#1~#5:1 セグメント形式 Seg#6~#8:3 セグメント形式の8 セグメン ト連結送信 Mode:3, GI:1/8 A 階層: QPSK, CR=1/2, TI=0 B 階層: QPSK, CR=1/2, TI=0	
ISDBTsb_QPSK_2_3	Seg#1~#5:1 セグメント形式 Seg#6~#8:3 セグメント形式の8 セグメン ト連結送信 Mode:3,GI:1/8 A 階層:QPSK,CR=2/3,TI=0 B 階層:QPSK,CR=2/3,TI=0	おもに簡易 BER の測定に使 用します。波形の長さは 4 フ レームです。
ISDBTsb_16QAM_1_2	Seg#1~#5:1 セグメント形式 Seg#6~#8:3 セグメント形式の8 セグメン ト連結送信 Mode:3, GI:1/8 A 階層:16QAM, CR=1/2, TI=0 B 階層:16QAM, CR=1/2, TI=0	

表3.11-1 デジタル放送用波形パターン一覧(続き)

- *1: この波形パターンを使用するには、ARBメモリ拡張256Mサンプル(オプション)、またはARBメモリ拡張1024Mサンプル(オプション)が必要です。
- *2: すべての受信機で受信できることを保証するものではありません。
- *3: この波形パターンを使用するには、ベースバンド信号加算(オプション), ARB メモリ拡張 256M サンプル(オプション),または ARB メモリ拡張 1024M サンプル(オプション)が必要です。

各波形パターンの共通パラメータを表 3.11-2 に示します。

表3.11-2 共通パラメータ

パラメータ	設定値
Data	PN23fix*: (デジタル BS, デジタル CS, CATV, ISDB-T)
サンプリングレート	デジタル BS:144.3 Msps デジタル CS:147.62 Msps CATV:42.192 Msps ISDB-T:16.253968 Msps ISDB-Tsb:8.12698417 Msps

*: 波形パターンのつなぎ目で PN シーケンスが不連続です。

3.11.1 フレーム構成

BS_1ch, CS_1ch, CATV_AnnexC_1ch の場合

デジタル BS, デジタル CS, CATV 波形パターンは,以下のようにフレーム構造を 持たない PN23 データの連続波です。

PN23fix

図3.11.1-1 デジタル BS, デジタル CS, CATV のデータ構造

ISDBT_1layer_1ch, ISDBT_2layer_1ch, ISDBT_QPSK_1_2, ISDBT_QPSK_2_3, ISDBT_16QAM_1_2, ISDBT_QPSK_2_3_TI4 の場合 ISDB-T の波形パターンは以下のようにして生成されています。

図3.11.1-2 ISDB-T の波形パターンの生成

ISDBT_2layer_Movie, ISDBT_2layer_Movie2, ISDBT_2layer_Coded の場合 ISDB-T の波形パターンは以下のようにして生成されています。

図3.11.1-3 ISDB-Tの波形パターンの生成

ISDBT_2layer_Movie, **ISDBT_2layer_Coded** 波形パターンの伝送路符号パラ メータは表 3.11.1-1 のようになっています。

ISDBT_2layer_Movie2波形パターンの伝送路符号パラメータは表 3.11.1-2のようになっています。

ISDBT_2layer_Movie, ISDBT_2layer_Movie2 波形パターンでは部分受信用 受信機の画像,音声の評価を行うことができます。

ISDBT_2layer_Coded 波形パターンでは部分受信用受信機の簡易 BER の測定 を行うことができます。

ISDBT_2layer_Movie, ISDBT_2layer_Movie2, ISDBT_2layer_Coded 波形 パターンの A 階層, B 階層にはそれぞれ異なるコンテンツが入っています。

パラメータ	Layer A	Layer B	
モード	Mode3		
ガードインターバル	1/8		
部分受信	0	N	
緊急放送	OFF		
セグメント数	1	12	
変調方式	QPSK	64QAM	
符号化率	2/3	7/8	
タイムインタリーブ	2	2	

表3.11.1-1 伝送パラメータ

表3.11.1-2 伝送パラメータ

パラメータ	Layer A	Layer B
モード	Mode3	
ガードインターバル	1/8	
部分受信	0	N
緊急放送	OFF	
セグメント数	1	12
変調方式	QPSK	64QAM
符号化率	2/3	3/4
タイムインタリーブ	4	2

ISDBTsb_Movie 波形パターンの各セグメントの伝送路符号パラメータを表 3.11.1-3 に示します。1 セグメント形式および 3 セグメント形式の各信号は表 3.111-3 ような配置で 8 セグメントに連結して送信されます。

パラメータ	Seg#1	Seg#2	Seg#3	Seg#4	Seg#5	Seg#	6~#8
階層	Layer A	Layer B					
モード	Mode3						
ガードインターバル				1/8			
部分受信	OFF	OFF	OFF	OFF	OFF	ON	OFF
緊急放送	OFF						
変調方式	QPSK						
符号化率	1/2	1/2	1/2	1/2	1/2	1/2	1/2
タイムインタリーブ	4	4	4	4	4	4	4
セグメントの中心の サブチャネル番号	5	8	11	14	17	20/2	3/26

表3.11.1-3 ISDBTsb_Movie 波形パターンの伝送パラメータ

ISDBTsb_Movie 波形パターンは映像・音声を多重化, 再多重化し, 符号化したものが入っています。多重化のパラメータは表 3.11.1-4 のようになっています。この 波形パターンにより受信機の画像, 音声の評価を行うことができます。RFの信号を 受信する場合は MG3710A の出力周波数を 190.21428571 MHz に設定してく ださい。

表3.11.1-4 ISDBTsb_Movie 波形パターンの PSI/SI 情報

パラメータ	Seg#1	Seg#2	Seg#3	Seg#4	Seg#5	Seg#6~#8
service_id	0x2600	0x2608	0x2610	0x2618	0x2620	0x2630
network_id	0x8090	0x8091	0x8092	0x8093	0x8094	0x8096
transport_stream_id	0x8090	0x8091	0x8092	0x8093	0x8094	0x8096
remote_control_key_id	0x5B	0x5C	0x5D	0x5E	0x5F	0x60
frequency	0x529	0x52C	0x52F	0x532	0x535	0x538
connected_transmission_ group_id	0x2401	0x2401	0x2401	0x2401	0x2401	0x2401

3.12 Bluetooth[®]波形パターン

Bluetooth 波形パターンとして,表 3.12-1 に示す Bluetooth のパターンが用意されています。

波形パターン名	Data rate (Mbits/s)	Payload 部分 の Modulation	フィルタ	パケットタイプ	Dirty, FM* ⁸
パッケージ名 :Bluetooth					
$\mathrm{DH1}^{*_1}$	1	GFSK^{*_4}	ガウシアン*5	DH1	-
$DH3^{*1}$	1	GFSK^{*_4}	ガウシアン*5	DH3	-
$\mathrm{DH5}^{*_1}$	1	GFSK^{*_4}	ガウシアン*5	$\rm DH5$	-
DH3_3SlotOff *_1	1	GFSK^{*_4}	ガウシアン*5	DH3	-
DH5_5SlotOff *_1	1	GFSK^{*_4}	ガウシアン*5	$\rm DH5$	-
POLL	1	GFSK^{*_4}	ガウシアン*5	POLL	-
2-DH1 ^{*1}	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH1	-
2-DH3 ^{*1}	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH3	-
2 -DH 5^{*1}	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH5	-
2-DH3_3SlotOff $*_1$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH3	-
2-DH5_5SlotOff *_1	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH5	-
3-DH1 ^{*1}	3	8-DPSK	ルートナイキスト*6	3-DH1	-
3-DH3 ^{*1}	3	8-DPSK	ルートナイキスト*6	3-DH3	-
$3-DH5^{*1}$	3	8-DPSK	ルートナイキスト*6	3-DH5	-
3-DH3_3SlotOff $*_1$	3	8-DPSK	ルートナイキスト*6	3-DH3	-
3-DH5_5SlotOff $*_1$	3	8-DPSK	ルートナイキスト*6	3-DH5	-
$GFSK-PN9^{*2}$	1	GFSK^{*_4}	ガウシアン*5	パケットフォー マットなし	-
GFSK-PN15 ^{*3}	1	GFSK^{*_4}	ガウシアン*5	パケットフォー マットなし	-
PI_4_DQPSK-PN9*2	2	$\pi/4$ -DQPSK	ルートナイキスト*6	パケットフォー マットなし	-
PI_4_DQPSK-PN15*3	2	$\pi/4$ -DQPSK	ルートナイキスト*6	パケットフォー マットなし	-
8DPSK-PN9 ^{*2}	3	8DPSK	ルートナイキスト*6	パケットフォー マットなし	-
8DPSK-PN15*3	3	8DPSK	ルートナイキスト*6	パケットフォー マットなし	-

表3.12-1 Bluetoc	カカ 波形バターン一覧	ĩ
-----------------	-------------	---

波形パターン名	Data rate (Mbits/s)	Payload 部分 の Modulation	フィルタ	パケットタイプ	Dirty, FM* ⁸
$DH1_dirty^{*_1}$	1	$GFSK^{*_4}$	ガウシアン*5	DH1	Dirty
DH3_dirty ^{*1}	1	GFSK^{*_4}	ガウシアン*5	DH3	Dirty
DH5_dirty *1	1	$GFSK^{*_4}$	ガウシアン*5	DH5	Dirty
2-DH1_dirty $*_1$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH1	Dirty
2-DH3_dirty *1	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH3	Dirty
2-DH5_dirty $*_1$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH5	Dirty
3-DH1_dirty *1	3	8-DPSK	ルートナイキスト*6	3-DH1	Dirty
3-DH3_dirty $*_1$	3	8-DPSK	ルートナイキスト*6	3-DH3	Dirty
3-DH5_dirty $*_1$	3	8-DPSK	ルートナイキスト*6	3-DH5	Dirty
$DH1_Dirty_withFM^{*1}$	1	GFSK^{*_4}	ガウシアン*5	DH1	Dirty, FM
DH3_Dirty_withFM ^{*1}	1	GFSK^{*_4}	ガウシアン*5	DH3	Dirty, FM
DH5_Dirty_withFM *_1	1	GFSK^{*_4}	ガウシアン*5	DH5	Dirty, FM
$\begin{array}{c} 2\text{-}DH1_Dirty_withFM\\ *_1 \end{array}$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH1	Dirty, FM
$\underset{*_{1}}{2\text{-}DH3_Dirty_withFM}$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH3	Dirty, FM
$\underset{*_{1}}{2\text{-DH5}}_{\text{Dirty}withFM}$	2	$\pi/4$ -DQPSK	ルートナイキスト*6	2-DH5	Dirty, FM
$\begin{array}{c} 3\text{-}DH1_Dirty_withFM\\ *_1 \end{array}$	3	8-DPSK	ルートナイキスト*6	3-DH1	Dirty, FM
$\begin{array}{c} 3\text{-}DH3_Dirty_withFM\\ *_1 \end{array}$	3	8-DPSK	ルートナイキスト*6	3-DH3	Dirty, FM
$\begin{array}{c} 3\text{-}DH5_Dirty_withFM\\ *_1 \end{array}$	3	8-DPSK	ルートナイキスト*6	3-DH5	Dirty, FM
BLE ^{*1}	1	GFSK^{*9}	ガウシアン*5	BLE Reference Signal	-
$BLE_Dirty^{*_1}$	1	GFSK^{*9}	ガウシアン*5	BLE Reference Signal	Dirty
BLE_Dirty_withFM ^{*1}	1	GFSK ^{*9}	ガウシアン*5	BLE Reference Signal	Dirty, FM
BLE_CRC_corrupted ^{*1} *7	1	GFSK ^{*9}	ガウシアン*5	BLE Reference Signal	-
GFSK-PN15_BLE*3	1	GFSK [*] ⁹	ガウシアン*5	パケットフォー マットなし	-

表3.12-1	Bluetooth 波形パターン一覧(続き)

*1: Payload 部分に PN9 データを挿入

*2: パケットフォーマットを持たない全域に PN9 データを挿入

*3: パケットフォーマットを持たない全域に PN15 データを挿入

*4: 変調指数は 0.32

- *5: BT (Bandwidth Time) = 0.5
- *6: ロールオフ率 β=0.4
- *7: 意図的に 1 パケットおきに CRC エラーとしている, RF-PHY.TS/4.0.0 の RCV-LE/CA/07/C(PER Report Integrity)での使用を想定している
- *8:「3.12.4 Dirty Transmitter Signal」を参照

*9: 変調指数は 0.5

パケットフォーマットを持った各波形パターンのタイミングは図 3.12-1 のようになっています。

図3.12-1 波形パターンのタイミングチャート

パケット構成を持った各 *Bluetooth* 波形パターンを出力時は, MG3710A 背面パ ネルの Marker1 Outputコネクタまたは AUX コネクタから表3.12・2 のマーカ信号 (Marker1, Marker2)が出力されます。出力コネクタの設定については 『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの 設定」を参照してください。

表3.12-2 マーカ出カデータ, IQ 出カレベル

マーカ信号	出力データ
Marker1	Packet Clock
Marker2	RF Gate
Marker3	_

3.12.1 Basic Rateのパケット構成

DH1, DH3, DH5, DH3_3SlotOff, および DH5_5SlotOff の波形パターンを選 択すると, 図 3.12.1-1 に従ってデータが出力されます。Payload Body のデータ長 は表 3.12.1-1 のとおりです。

図3.12.1-1 Basic Rate 波形のパケット構造

	, , , , , , , , , , , , , , , , , , , ,
パケットタイプ	PayloadBody(bytes)
DH1	27
DH3	183
DH5	339
POLL	なし

表3.12.1-1 BRの Payload Body 長

3.12.1.1 ACCESS CODE

ACCESS CODE の構成は以下のとおりです。Sync Word は LAP=9E8B33_Hと して BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol3] 6.3.3 章で 規定される Sync Word Definition に従って求められた値が配置されます。 Preamble および Trailer は、Sync Word の値および同規格の 6.3.2 章, 6.3.4 章で規定された値がそれぞれ配置されます。

ACCESS CODE

Р	SW		т
P	: Preamble	5 _H (4 bits)	2 _H (64 bits)
SW	/ :Sync Word	475C58CC73345E72	
T	:Trailer	A _H (4 bits)	

3.12.1.2 Packet Header

Packet Header の構成は以下のとおりです。HEC には BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol3] 7.1.1 章で規定される HEC generation に従って求められた値が配置されます。またこれら 18 bit のデータは, BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol3] 7.4 章で規定さ れる FEC CODE: RATE 1/3 に従って 54 bit のデータとされます。

Packet Header

LT_ADDR	TYPE	FLOW	ARQN	SEQN	HEC
---------	------	------	------	------	-----

$LT_ADDR: logical transport address 0_H (3 bits)$

FLOW	:flow control	$1_{\rm H}(1 {\rm \ bit})$
ARQN	:acknowledge indication	$1_{\rm H}(1 {\rm \ bit})$
SEQN	:sequence number	$1_{\rm H}$ と $0_{\rm H}$ のオルタネート(1 bit)
HEC	: header error check	(18 bits)

表3.12.1.2-1 BR の出力信号のパラメータ

パケットタイプ	Type Code
DH1	$4_{ m H}$
DH3	B_{H}
DH5	F _H

3.12.1.3 Payload

Payload の構成は以下のとおりです。CRC には UAP=00_Hとして BLUETOOTH SPECIFICATION Version 2.0 + EDR [vol3] 7.1.2 章で規定される CRC generation に従って求められた値が配置されます。

LLID FLOW LENGTH UNDEFINED	PAYLOAD BODY	CRC
----------------------------	--------------	-----

LLID : logical link indication $2_{\rm H}(2 \text{ bit})$

FLOW : flow indication $1_{\rm H}(1 \text{ bit})$

LENGTH : payload length indicator 表 3.12.1.3-1

表3.12.1.3-1 BR の LENGTH

パケットタイプ	データ長	値
DH1	$5 ext{ bits}$	27
DH3	9 bits	183
DH5	9 bits	339

3.12.2 Enhanced Data Rateのパケット構成

2-DH1, 2-DH3, 2-DH5, 3-DH1, 3-DH3, 3-DH5, 2-DH3_3SlotOff, 2-DH5_5SlotOff, 3-DH3_3SlotOff, および 3-DH5_5SlotOffの波形パターンを 選択すると, 図 3.12.2-1 に従ってデータが出力されます。Payload Body のビット 数は表 3.12.2-1 のとおりです。

図3.12.2-1 Enhanced Data Rate 波形のパケット構造

表3.12.2-1 EDR の Payload Body 長		
パケットタイプ	PayloadBody(bytes)	
2-DH1	54	
2-DH3	367	
2-DH5	679	
3-DH1	83	
3-DH3	552	
3-DH5	1021	

3.12.2.1 ACCESS CODE

3.12.1.1 項と同じです。

3.12.2.2 Packet Header

構成は 3.12.1.2 項と同じです。 TYPE に配置される値は表 3.12.2.2-1 のようになります。

表3.12.2.2-1 EDR の出力信号のパラメータ

パケットタイプ	Type Code
2-DH1	$4_{ m H}$
2-DH3	B _H
2-DH5	F _H
3-DH1	$4_{ m H}$
3-DH3	B _H
3-DH5	\mathbf{F}_{H}

3.12.2.3 Payload

3.12.1.3 項と同じです。LENGTH のデータ長とその設定値は表 3.12.2.3-1 のとおりです。

パケットタイプ	データ長	設定値
2-DH1	$5 ext{ bits}$	54
2-DH3	10 bits	366
2-DH5	10 bits	678
3-DH1	$5 ext{ bits}$	81
3-DH3	10 bits	549
3-DH5	10 bits	1017

表3.12.2.3-1 EDR の LENGTH

3.12.2.4 Synchronous Sequence

各種 EDR パケットでの Synchronous Sequence は以下のとおりです。 Synchronous Sequence の先頭を0とすることで位相を0rad に初期化します。

2-DH1, 2-DH3, 2-DH5 パケット	$:0777 D5_{H}(22 \text{ bits})$
3-DH1, 3-DH3, 3-DH5 パケット	$:0175D7E92_{H}(33 \text{ bits})$

3.12.2.5 Trailer

各種 EDR パケットの Trailer は以下のとおりです。

2-DH1, 2-DH3, 2-DH5 パケット :0H(4 bits) 3-DH1, 3-DH3, 3-DH5 パケット :00H(6 bits)

3.12.3 BLEのパケット構成

Bluetooth Low Energy (BLE)波形パターンである BLE, BLE_Dirty, BLE_Dirty_withFM, および BLE_CRC_corrupted の波形パターンを選択する と, 図 3.12.3-1 に従ってデータが出力されます。Payload Body のデータ長は表 3.12.3-1 のとおりです。Packet Interval は 1.25 ms となります。

図3.12.3-1 BLE 波形のパケット構造

表3.12.3-1 BLEの Payload Body 長

パケットタイプ	PayloadBody(bytes)
BLE Reference Signal	37

3.12.3.1 Preamble

Preamble は BLUETOOTH SPECIFICATION Version 4.0 [vol 6] 2.1.1 章で 規定されるとおり Access Address の LSB により 10101010 または 0101010 の いずれかの 8 ビットとなります。BLE, BLE_Dirty, BLE_Dirty_withFM, および BLE_CRC_corrupted の Access Address はいずれも 0x94826E8E H であるた め Access Address の LSB が 1 の場合の "10101010" となります(ここでは送信 順で先頭ビットを LSB と考えます)。

Access Address の LSB が 1 の場合	:10101010b (8 bits
Access Address の LSB が 0 の場合	:01010101b (8 bits

3.12.3.2 Access Address

Access Address は BLUETOOTH SPECIFICATION Version 4.0 [vol 6] 2.1.2 章で規定されるとおり 32 ビットのビット列となります。BLE, BLE_Dirty, BLE_Dirty_withFM, および BLE_CRC_corrupted の Access Address は 0x94826E8E_H となります。

3.12.3.3 PDU Header, PDU Length

PDU Header および PDU Length は BLUETOOTH SPECIFICATION Version 4.0 [vol 6] 2.4 章および RF-PHY.TS/4.0.0 7.2.4 章に規定されるとおり それぞれ 8 ビットのビット列となります。

Payload Type (4 bits) '0000'	'0000'	Payload Length in octets (6 bits) '100101'	'00'
PDU Header		PDU Length	

3.12.3.4 PDU Payload, CRC

PDU Payload は BLUETOOTH SPECIFICATION Version 4.0 [vol 6] 2.4 で 規定されるとおり 6~37 バイトのペイロードデータとなります。BLE, BLE_Dirty, BLE_Dirty_withFM, および BLE_CRC_corrupted のペイロードデータは 37 バイトになります。また, CRC は 3 バイトとなります。

3.12.4 Dirty Transmitter Signal

Bluetooth Test Specification v1.2/2.0/2.0 + EDR/2.1/2.1 + EDR/3.0/3.0 + HS 5.1.18 章および RF-PHY.TS/4.0.0 6.3.1 章では受信試験で用いる信号とし て、Dirty Transmitter Signal が規定されています。この Dirty Transmitter Signal は周波数オフセット、変調指数、シンボル・タイミング・エラーを 50 パケットご とに変更します。これらの 3 つのパラメータの組み合わせが 10 個定められており、 この Test Run 1 から 10 までの出力を繰り返します。さらに、Dirty Transmitter Signal では、出力信号の周波数ドリフトが定められています。表 3.12-1 で Dirty とされている波形パターンは周波数オフセット、変調指数の変動、およびシンボル・ タイミング・エラーが付加された波形パターンとなります。また、Dirty、FM と記載さ れている波形パターンは周波数オフセット、変調指数の変動、シンボル・タイミング・ エラー、および周波数ドリフトを付加した信号となります。

Bluetooth ワードマークとロゴは Bluetooth SIG, Inc.の所有であり, アンリツはラ イセンスに基づきこのマークを使用しています。他のトレードマークおよびトレード 名称については, 個々の所有者に帰属するものとします。
3.13 GPS 波形パターン

GPS 波形パターンとして,表 3.13-1 に示す GPS のパターンが用意されています。

波形パターン名	主な用途	データの概要
パッケージ名:GPS		
SYNC_ADJ*1	同期調整*2	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定された Subframe 構成に基づきフォーマットされた TLM, HOW, およびデフォルトナビゲーションデータ。1 サブ フレームを1周期とする。
TLM [*] ³	感度テスト	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定された Subframe 構成に基づきフォーマットされた TLM, HOW, およびデフォルトナビゲーションデータ。
PN9	BER 測定	Subframe フォーマットなしの PN9 連続データ。
PARITY	パリティ検出	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定されたWordフォーマット。1Wordは24ビットのPN9fix データと6ビットのパリティビットからなる。
TLM_PARITY ^{*4}	感度テスト	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定された Subframe 構成に基づきフォーマットされた TLM, HOW, および Nav Data。Word3~Word10 の Nav Data 部分にはランダムデータが挿入される。5 サブフレームを 1 周期とする。
Data0 , Data1 , Data10 , Data1C	同期調整用	SYNC_ADJ と組み合わせて使用します。SYNC_ADJ をメモ リ展開するとこれらの波形パターンも自動でメモリ展開されま す。また、SYNC_ADJ を波形選択するとこれらの波形パター ンも自動で波形選択されるため、お客様がこれらの波形パター ンのメモリ展開や選択操作を行う必要はありません。

表3.13-1 GPS 波形パターン一覧

*1: SYNC_ADJ を使用する場合は MG3710A の Baseband キーを押し, Pattern Combination を Defined に設定してファイルを選択してください。 詳しい設定方法は『MG3710A ベクトル信号発生器 取扱説明書(本体編)』 を参照してください。

*2:外部スタートトリガ入力に対する RF 出力の Subframe 出力タイミングの再現 性が 10 ns 以下になります。

*3: ドップラのテストを行う場合は RF 周波数とサンプリングクロックを同じ比で変 更してください。ドップラ周波数=0 Hz のときのサンプリングクロックは 4.092 MHz です。

たとえば、+4 kHzのドップラをかける場合、サンプリングクロックを CLK とすると

(1575.42 MHz+4 kHz)/1575.42 MHz=CLK/4.092 MHz

ですので

CLK=4.09201039 MHz

となります。

RF 周波数, サンプリングクロックの設定は『MG3710A ベクトル信号発生器 取扱説明書(本体編)』を参照してください。

*4: この波形パターンを使用するには、ベースバンド信号加算(オプション), ARB メモリ拡張 256M サンプル(オプション),または ARB メモリ拡張 1024M サンプル(オプション)が必要です。

TLM および PARITY の波形パターン出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表3.13・2 のマーカ信号 (Marker1, Marker2)が出力されます。出力コネクタの設定については 『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの 設定」を参照してください。

マーカ信号	出力データ
Marker1	Subframe Clock
Marker2	RF Gate
Marker3	

表3.13-2 マーカ出力データ, IQ 出力レベル

3.13.1 波形フォーマット

表 3.13-1 の各波形のフォーマットは以下のとおりです。各データは Satellite ID Number を 1 とする C/A コードにより拡散されます。C/A コード生成法を図 3.13.1-1 に示します。

図3.13.1-1 GPS 波形のフォーマット

PN9
PN9

続していません。

図3.13.1-2 GPS_PN9, PARITY 波形のフォーマット

						TLM_PA	RITY				
	TLM	Ρ	HO	W	Ρ	D	F	Р		D	Ρ
/											\rightarrow
							1Subfr	ram	ne		
		ΤI	LM :	Telem	etry	τ		24	1 bits		
		H	OW :	Hando	ver	Word		24	1 bits		
		D	:	Data				24	1 bits		
		Р	:	Parity	Bit	i		6	bits		

Data 部分にはランダムデータが配置されます。

図3.13.1-4 C/A コード生成法

3.14 Mobile WiMAX 波形パターン

Mobile WiMAX 波形パターンとして, 下表に示す **Mobile WiMAX** パターンが用 意されています。

波形パターン名	主な用途	データの概要
パッケージ名:Mobile WiMAX		
WiMAX_DL_10MHz_QPSK	DC MY デバイフテフト	Premable, FCH, DL-MAP を含み, 変調方式 が QPSK の DL-Burst マッピングした波形パ ターン。
WiMAX_DL_10MHz_64QAM	BS TX デバイステスト	Premable, FCH, DL-MAP を含み, 変調方式 が 64QAM の DL-Burst マッピングした波形パ ターン。

表3.14-1 Mobile WiMAX 波形パターン一覧

3.14.1 波形フォーマット WiMAX_DL_10MHz_QPSK

この波形パターンのパラメータは下表のとおりです。DL-Burst には PN9Fix デー タに対してチャネルコーディングを行ったデータをマッピングしています。

パラメータ	設定
Bandwidth	10MHz
Fame Duration	5ms
Preamble Index	0
Number of OFDMA Symbols	31 symbol
	(Preamble を含む)
FCH	あり
DL-MAP	あり
DL-Burst Ø FEC Type	CTC(1/2)
DL-Burst の変調方式	QPSK

表3.14.1-1 波形パターンのパラメータ (WiMAX_DL_10MHz_QPSK)

フレーム構成は以下のようになっています。

図3.14.1-1 WiMAX_DL_10MHz_QPSK のフレーム構成

WiMAX_DL_10MHz_64QAM

この波形パターンのパラメータは下表のとおりです。DL-Burst には PN9Fix デー タに対してチャネルコーディングを行ったデータをマッピングしています。

表3.14.1-2 注	波形パターンのパラメータ	(WiMAX_DL	_10MHz_64QAM)
-------------	--------------	-----------	---------------

パラメータ	設定
Bandwidth	10MHz
Fame Duration	$5\mathrm{ms}$
Preamble Index	0
Number of OFDMA Symbols	31 symbol
	(Preamble を含む)
FCH	あり
DL-MAP	あり
DL-Burst O FEC Type	CTC(1/2)
DL-Burst の変調方式	64QAM

フレーム構成は以下のようになっています。

図3.14.1-2 WiMAX_DL_10MHz_64QAM のフレーム構成

3.15 トーン信号波形パターン

トーン信号波形パターンとして、下表に示す波形パターンとコンビネーションファイ ルが用意されています。

波形パターン名	主な用途	データの概要		
パッケージ名:Tone				
+1MHz_Tone		+1MHz の周波数オフセットを持つトーン信号で す。		
-1MHz_Tone	デバイステスト	–1MHz の周波数オフセットを持つトーン信号で す。		
DC_Tone		周波数オフセットを持たないトーン信号です。		

表3.15-1	トーン信号波形パターン一覧
120.10-1	「一ノにケルルハノーノー見

表3.15-2 トーン信号コンビネーションファイルー覧

波形パターン名	主な用途	データの概要	
パッケージ名:Tone			
2Tones_+1MHz1MHz	デバイステスト	+1MHz の周波数オフセットを持つトーン信号と –1MHz の周波数オフセットを持つトーン信号を 加算した信号です。	

注:

このコンビネーションファイルを使用するには、ベースバンド信号加算(オプション)が必要です。

3.16 位相調整用波形パターン

MG3710A の位相調整用波形パターンとして,下表に示す波形パターンが用意されています。

30.10 四旧胴正川瓜ルバノノ 見	表3.16-1	位相調整用波形パターン一覧
----------------------	---------	---------------

波形パターン名	主な用途	データの概要
パッケージ名:PhaseCoherence		
Adjustment	MG3710A の位相調整	MG3710AからMIMOの信号を出力するため位相とタイミングの調整に使用します。

3.17 GLONASS 波形パターン

GLONASS 波形パターンとして,表 3.17-1 に示す GLONASS のパターンが用意 されています。

波形パターン名	主な用途	データの概要	
パッケージ名:GLONASS			
15String_PN9	感度テスト Check Bit 検出	GLOBAL NAVIGATION SATELLITE SYSTEM INTERFACE CONTROL DOCUMENT で規定される String Navigation bit 構造に従います。	
15String _Message	感度テスト Check Bit 検出	GLOBAL NAVIGATION SATELLITE SYSTEM INTERFACE CONTROL DOCUMENT で規定される String Navigation bit 構造に従います。	
GLONASS_PN9	BER 測定	String, Frame フォーマットなしの PN9 連続データ	

表3.17-1	GLONASS 波形パターン一覧
10.11	

15String _PN9 および 15String _Message の波形パターン出力時は, MG3710A 背面パネルの Marker1 Output コネクタまたは AUX コネクタから表 3.17-2 のマーカ信号(Marker1, Marker2)が出力されます。出力コネクタの設定 については『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出 力コネクタの設定」を参照してください。

表3.17-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Frame Clock
Marker2	String Clock
Marker3	

3.17.1 波形フォーマット

表 3.17-1 の各波形のフォーマットは以下のとおりです。

PN9: PN9データ

511 bits [100 bps]

図3.17.1-2 GLONASS_PN9 波形のフォーマット

3.18 QZSS 波形パターン

QZSS 波形パターンとして,表 3.18-1 に示す QZSS のパターンが用意されています。

波形パターン名	主な用途	データの概要	
パッケージ名:QZSS			
DefaultNavData	感度テスト	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定された Subframe 構成に基づきフォーマットされた TLM, HOW, およびデフォルトナビゲーションデータ。	
PARITY	パリティ検出	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定されたWordフォーマット。1Wordは24ビットのPN9fix データと6ビットのパリティビットからなる。	
ENC	パリティ検出	GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE SIGNAL SPECIFICATION で規定された Word フォーマット。1Word は 24 ビットのランダ ムデータと6 ビットのパリティビットからなる。	
QZSS_PN9	BER 測定	Subframe フォーマットなしの PN9 連続データ。	

表3.18-1 QZSS 波形パターン一覧

DefaultNavData, PARITY および ENC の波形パターン出力時は、MG3710A 背面パネルのMarker1 OutputコネクタまたはAUXコネクタから表3.18-2のマー カ信号(Marker1, Marker2)が出力されます。出力コネクタの設定については 『MG3710A ベクトル信号発生器 取扱説明書(本体編)』の「7.4.2 出力コネクタの 設定」を参照してください。

表3.18-2 マーカ出力データ, IQ 出力レベル

マーカ信号	出力データ
Marker1	Subframe Clock
Marker2	RF Gate
Marker3	

3.18.1 波形フォーマット

表 3.18-1 の各波形のフォーマットは以下のとおりです。各データは Satellite ID Number を 193 とする C/A コードにより拡散されます。C/A コード生成法を図 3.18.1-1 に示します。

図3.18.1-1 DefaultNavData 波形のフォーマット

D: Data24 bitsP: Parity Bit6 bitsData 部分には PN9fix データまたはランダムデータが配置されます。PARITY 波形では隣接する Word の PN データは連続ですが、10 番目の Word と、次周期の1番目の Word では PN データは連続していません。

3.19 妨害波波形パターン

受信試験の妨害波波形パターンとして,表 3.19-1 に示すパターンが用意されています。

システム名	コンビネーショ ンファイル名 (パッケージ名)	波形パターン名 (パッケージ名)	ファイルタイプ	データの概要
W-CDMA Downlink	W-CDMA_D L_Interferer (Interferer)*	DL_Interferer_ ov3 (W-CDMA_A(U E Rx test))	コンビネーショ ンファイル	3GPP TS34.121-1 E.4 に定義された妨 害波。本取扱説明書 3.1.6 項の DL_Interferer を参照。
LTE FDD Downlink	-	FDD_DL_xxMx _Interfer (Interferer)	波形パターン	3GPP TS36.521-1 Table A3.2-1 に定義 された波形パターン。xxMx はチャネル帯 域幅を表す。
LTE TDD Downlink	-	TDD_DL_xxMx _Interfer (Interferer)	波形パターン	3GPP TS36.521-2 Table A3.2-2 に定義 された波形パターン。xxMx はチャネル帯 域幅を表す。
GSM	GSM_Interfe rer (Interferer)*	GMSK_PN9 (GSM)	コンビネーショ ンファイル	フォーマットなしの PN9 連続データ。本取 扱説明書 3.7 節の GMSK_PN9 の説明を 参照。
TD-SCDMA	-	TD-SCDMA_In terferer (Interferer)	波形パターン	3GPP TS34.122 の第 6 章に定義された 妨害波。 チップレート=1.28M/s, 1コード, ロールオ フ率=0.22 の連続波。

表3.19-1	妨害波波形パ	ターン一覧
---------	--------	-------

*: Interferer パッケージのコンビネーションファイル (エイリアス) を呼び出す か,直接波形パターンを呼び出すことで出力可能です。この表に記載されて いるコンビネーションファイルはエイリアスに設定されています。エイリアスは ショートカットファイルのように別パッケージにある別波形パターンを呼び出す 機能です。

参照先はページ番号です。

■記号·数字順

1

1xEV-DO フォワード: FWD_Idle を除く3-100
1xEV-DO フォワードアイドルスロット3-108
1xEV-DOリバース3-105
1xRTT Forward RC 3, 4, 5
(FWD_RC3-5 9channel)
1xRTT Forward RC1, 2
(FWD_RC1-2 9channel)
1xRTT Reverse RC1 (RVS_RC1_FCH) 3-83
1xRTT Reverse RC2 (RVS_RC2_FCH) 3-85
1xRTT Reverse RC3 (1) (RVS_RC3_FCH) 3-87
1xRTT Reverse RC3 (2)
(RVS_RC3_FCH_SCH)
1xRTT Reverse RC3 (3)
(RVS_RC3_DCCH)
1xRTT Reverse RC4 (RVS_RC4_FCH) 3-93

■アルファベット順

С

CDMA2000	1xEV-DO 波形パターン	/3-98
CDMA2000	1X 波形パターン	3-82

D

G	
DL_RMCxxxkbps	3-30
DL_Interferer	3-48
t	3-41
$DL_AMR_TFCSx/DL_ISDN/DL_384kbps_$	Packe

GLONASS 波形パターン.....3-140 GPS 波形パターン.....3-131 GSM 波形パターン.....3-77

I

IEEE802.11a	3-112
IEEE802.11b	3-114
IEEE802.11g	3-115

Μ

Mobile WiMAX 波形パターン3-13	5
-------------------------	----------

Ρ

PDC PACKET 波形パターン	3-70
PDC 波形パターン	3-66
PHS 波形パターン	3-73

Q

```
QZSS 波形パターン.....3-142
```

Т

TestModel_5_xDPCH	3-	56
TestModel_5_xHSPDSCH	3-	56
TestModel_6_xHSPDSCH	3-	59
TestModel_x_xxDPCH	3-	$\cdot 50$

U

UL_AMR_TFCSx/UL_ISDN/UL_64kbps_	Packet
	.3-21
UL_Interferer	.3-29
UL_RMCxxxkbps	.3-10

W

W-CDMA 波形パターン	3-3
WLAN 波形パターン	3-109

■50 音順

い

位相調整用波形パターン3-139
す
スロット構成3-69, 3-72, 3-76, 3-80
製品概説1-2
٤
トーン信号波形パターン
は
パターンの詳細3-79
ひ
標準波形パターン
使用方法2-2
パッケージ構成2-3
ふ
フレーム構成3-68, 3-71, 3-75, 3-80, 3-118
ほ