MX268102A/302A/702A/ MX860802A/902A GSM 測定ソフトウェア (MS2681A/MS2683A/MS2687A/ MS2687B/MS8608A/MS8609A 用) 取扱説明書

第3版

・製品を適切・安全にご使用いただくために、製品をご使用になる前に、取扱説明書を必ずお読みください。
 ・安全にお使いいただくための重要事項は、MS2681A/MS2683A/MS2687A/MS2687B スペクトラムアナライザ、MS8608A/MS8609A ディジタル移動無線送信機テスタ取扱説明書に記載してありますのでそちらをお読みください。
 ・本書は製品とともに保管してください。

アンリツ株式会社

管理番号: M-W1795AW-3.0

安全情報の表示について

当社では人身事故や財産の損害を避けるために、危険の程度に応じて下記のようなシグナルワードを用いて安全に関す る情報を提供しています。記述内容を十分理解して機器を操作するようにしてください。 下記の表示およびシンボルは、そのすべてが本器に使用されているとは限りません。また、外観図などが本書に含まれる とき、製品に張り付けたラベルなどがその図に記入されていない場合があります。

説明書中の表示について

警告

注意

↑ 危険 回避しなければ, 死亡または重傷に至る切迫した危険状況があることを警告しています。

回避しなければ、死亡または重傷に至る可能性がある潜在的危険について警告しています。

回避しなければ, 軽度または中程度の人体の傷害に至る可能性がある潜在的危険, または, 物的損害の発生のみが予測されるような危険状況について警告しています。

機器に表示または説明書に使用されるシンボルについて

機器の内部や操作箇所の近くに,または説明書に,安全上あるいは操作上の注意を喚起するための表示があります。 これらの表示に使用しているシンボルの意味についても十分理解して,注意に従ってください。

MX268102A/302A/702A/MX860802A/902A GSM 測定ソフトウェア(MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A 用) 取扱説明書

2000年(平成12年) 8月18日(初版) 2006年(平成18年) 2月 6日(第3版)

・予告なしに本書の内容を変更することがあります。
 ・許可なしに本書の一部または全部を転載・複製することを禁じます。
 Copyright © 2000-2006, ANRITSU CORPORATION
 Printed in Japan

-安全にお使いいただくためにー

⚠ 注意

外部記憶媒体について 本器

本器は, データやプログラムの外部記憶媒体として, メモリカードを使用して います。 メモリカードは, その使用方法に誤りがあった場合や故障などにより, 大切な 記憶内容を喪失してしまうことがあります。

万一のことを考えて、バックアップをしておくことをお勧めします。

当社は、記憶内容の喪失について補償は致しません。

下記の点に十分注意してご使用ください。

- ・ アクセス中にはメモリカードを装置から抜き取らないでください。
- ・ 静電気が加わると破損することがあります。

品質証明

アンリツ株式会社は、本製品が出荷時の検査により公表機能を満足することを証明します。

品質保証

- アンリツは、本ソフトウェアが付属のマニュアルに従った使用方法にもかかわらず、実質的に動作しなかった場合に、無償で補修または交換します。
- ・ その保証期間は,購入から1年間とします。
- ・ 補修または交換後の本ソフトウェアの保証期間は,購入時から一年内の残余の 期間,または補修もしくは交換後から30日のいずれか長い方の期間とします。
- 本ソフトウェアの不具合の原因が、天災地変などの不可抗力による場合、お客様の誤使用の場合、またはお客様の不十分な管理による場合は、保証の対象 外とさせていただきます。

また、この保証は、原契約者のみ有効で、再販売されたものについては保証しか ねます。

アンリツ株式会社は、本製品の欠陥に起因する損害のうち、予見できない特別の 事情に基づき生じた損害およびお客様の取引上の損失については、責任を負い かねます。

当社へのお問い合わせ

本製品の故障については、本説明書(紙版説明書では巻末、CD版説明書では別 ファイル)に記載の「本製品についてのお問い合わせ窓口」へすみやかにご連絡く ださい。

国外持出しに関する注意

- 1.本製品は日本国内仕様であり,外国の安全規格などに準拠していない場 合もありますので,国外へ持ち出して使用された場合,当社は一切の責任 を負いかねます。
- 2.本製品および添付マニュアル類は、輸出および国外持ち出しの際には、「外国為替及び外国貿易法」により、日本国政府の輸出許可や役務取引許可を必要とする場合があります。また、米国の「輸出管理規則」により、日本からの再輸出には米国政府の再輸出許可を必要とする場合があります。

本製品や添付マニュアル類を輸出または国外持ち出しする場合は,事前 に必ず弊社の営業担当までご連絡ください。

輸出規制を受ける製品やマニュアル類を廃棄処分する場合は、軍事用途 等に不正使用されないように、破砕または裁断処理していただきますよう お願い致します。

正面の電源スイッチについて

本器の正面の電源スイッチは誤った操作による誤動作を防止するため, スタンバイ状態から約1秒押すと電源が On になり, また電源 On から約1秒押すとスタンバイ状態になります。

電源 On の状態で, 電源プラグをコンセントから抜いて, 再度差し込んだ場合また, 瞬 断または停電等によりラインが断になり, 再度ラインが復帰しても, (スタンバイ状態 で)電源は On になりません。

これは,不測の事態によりラインが断になり,再度ラインが復帰した場合(本器はスタンバイ状態になり),誤ったデータを取得する事を防ぐための配慮です。

たとえば, 掃引時間が 1000 秒でデータ取得に時間を要する場合など, 測定の途中で 瞬断(停電)が起き, 電源が On で自動復帰すると, 瞬断に気付かず, 誤ったデータを 正しいデータと誤認してしまうことがあります。

瞬断または停電等により本器がスタンバイ状態になった場合,測定系の状態を確認 のうえ,正面の電源スイッチを押し,本器の電源を再投入してください。

システムに本器が組み込まれており、不測の事態によりシステムの電源が断になり、 再投入された場合も同様に、本器の電源を再投入する必要があります。 そのため、MODEM を使った遠隔モニタリングシステムなどに組み込む場合は、別途 MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A の本体、オプショ ン 46「停電後の電源復帰」を装着してください。

ソフトウェア使用許諾書

本契約書とともに提供するソフトウェア・プログラム(以下,「本ソフトウェア」という。) を使用する前に,本契約書をお読みください。

お客様が本契約書の各条件に同意いただいた場合のみ,本ソフトウェアを使用す ることができます。

お客様が、本ソフトウェアの使用を開始した時点または、本ソフトウェアの梱包を開 封した時点で、お客様が本契約書の各条件に同意したものとします。お客様が本 契約に同意できない場合は、ご購入時の原状のままでアンリツ株式会社(以下、ア ンリツという。)へ返却してください。

1. 使用許諾

- お客様は、1台のMS2681A/MS2683A/MS2687A/MS2687B スペクトラム アナライザまたは、MS8608A/MS8609A ディジタル移動無線送信機テス タ(以下、コンピュータシステムという。)で本ソフトウェアを使用できます。
- (2) コンピュータシステムでの使用には、本ソフトウェアがコンピュータシステ ムの記憶装置に記録されていることも含みます。
- (3) お客様が、複数台のコンピュータシステムに本ソフトウェアを使用する場合には、同時に使用されない場合でも、使用するコンピュータシステムの数と同じ数の使用許諾を受けてください。

2. 著作権

- (1) 本ソフトウェアの著作権はアンリツが所有しています。
- (2) お客様が本ソフトウェアを購入されたことは、本契約に規定された以外の 権利をお客様に移転することを意味するものではありません。
- (3) お客様は、本ソフトウェアの全部または一部をアンリツの事前の同意を 得ることなく印刷、複製、改変、修正、その他のプログラムとの結合、逆ア センブルまたは逆コンパイルを行うことはできません。

3. 複製

お客様は、上記2(3)の規定にかかわらず、購入した本ソフトウェアを保存する目的で一部のみ複製することができます。この場合、本ソフトウェアのオリジナルまたは複製のいずれか一方のみを使用することができます。

4. 契約の終了

- (1) お客様が、本契約に違反したとき、またはアンリツの著作権を侵害したとき、アンリツは本契約を解除し、以後お客様の本ソフトウェアのご使用を 終了させることができます。
- (2) お客様またはアンリツは,事前の一ヵ月前までに相手方へ書面で通知 することにより,本契約を終了させることができます。
- (3) 本契約が終了した場合,お客様は、本ソフトウェアおよび付属のマニュアルをすみやかに廃棄またはアンリツへ返却するものとします。

はじめに

 本取扱説明書の記載内容は、MS2681A/MS2683A/MS2687A/MS2687B ス ペクトラムアナライザまたは、MS8608A/MS8609A ディジタル移動無線送信 機テスタに、MX268102A/MX268302A/MX268702A/MX860802A/ MX860902A GSM 測定ソフトウェア(以下、GSM 測定ソフトウェア)をインスト ールした状態で説明しています。

本取扱説明書中, MX268*02A は MX268102A, MX268302A, および MX 268702A を表します。また, MX860*02A は MX860802A, および MX860902A を表します。同様に MS268*は MS2681A, MS2683A, および MS2687A/MS2687B を表し, MS860*A は MS8608A, および MS8609A を表 します。

MX268102A は MS2681A 用, MX268302A は MS2683A 用, MX268702A は MS2687A/MS2687B 用, MX860802A は MS8608A 用, および MX860902A は MS8609A 用の GSM 測定ソフトウェアです。

2. 取扱説明書の構成

MX268*02A, および MX860*02A GSM 測定ソフトウェアの取扱説明書は, 下記の2編で構成されています。

パネル操作編

MX268102A/MX268302A/MX268702A/MX860802A/MX860902A の概要・パネル説明・操作・性能試験を説明しています。

リモート制御編

MX268102A/MX268302A/MX268702A/MX860802A/MX860902A をRS-232Cリモート制御・GPIBリモート制御するために必要なことに ついて説明しています。 MX268102A/302A/702A/ MX860802A/902A GSM 測定ソフトウェア (MS2681A/MS2683A/MS2687A/ MS2687B/MS8608A/MS8609A 用) 取扱説明書 (パネル操作編)

目次

安全に	お使い頂くために	iii
はじめ	IC	I
第1章	重 概要	1-1
1.1 1.2 1.3	製品概要 製品構成 製品規格	1-3 1-4 1-5
第2章	5 パネルの配置と操作概要	2-1
2.1	正面・背面パネル図説明一覧表	2-3
2.2	基本的な操作方法	2-11
2.3	測定ソフトウェアをインストールする	2-13
2.4	測定システムを変更する	2-14
2.5	画面表示色を設定する	2-15
第3章	昏 測定	3-1
3.1	測定パラメータを設定する	3-5
3.2	変調精度を解析する	3-20
3.3	送信電力を測定する	3-28
3.4	Output RF Spectrum を測定する	3-39
3.5	スプリアスを測定する	3-44
3.6	パワーメータ	3-80
3.7	IQ レベルを測定する	3-82
3.8	設定パラメータの保存と読み出し	3-84
第 4 章	む 性能試験	4-1
4.1	性能試験が必要な場合	4-3
4.2	性能試験に必要な測定器	4-4

この章では、本ソフトウェアの概要および製品構成について説明しています。

11	製品概要	1-3
1.1	衣吅悯女	1-0

- 1.2 製品構成 1-4
- 1.3 製品規格 1-5

1.1 製品概要

MS2681A/MS2683A/MS2687A/MS2687B スペクトラムアナライザ,および MS8608A/MS8609A ディジタル移動無線送信機テスタ(以下,総称して本測定 器)は、各種移動体通信用の基地局/移動機の送信機特性を高速・高確度にか つ容易に測定する装置です。RF/IF 信号での評価の他, IQ(ベースバンド)信号 にも対応しておりデバイスなどの評価にも使用できます。本測定器は、測定ソフト ウェアをインストールすることにより各種のディジタル変調方式に対応した変調解 析機能を持つことができます。また、測定に際しては高速ディジタル信号処理技 術を用いて高速・高確度の測定を可能としています。

GSM 測定ソフトウェアをインストールすることにより、本測定器は GSM(EDGE*1 を含む)システムのディジタル携帯電話無線機器の機能・性能を簡易に測定する総合測定器になります。

GSM 測定ソフトウェアを搭載した本測定器の持つ測定機能は、以下のとおりです。

- ・ 変調精度解析/キャリア周波数測定
- ・ 送信電力測定, キャリア OFF 時電力測定, ON/OFF 比測定
- ・ パワー vs. Time テンプレート判定
- Output RF Spectrum 測定
- ・ スプリアス測定 他
- *1: EDGEシステムはGSMシステムの拡張システムであり、変調方式がGMSK から8PSK に変更されています。

1.2 製品構成

本測定器とGSM 測定ソフトウェアの組み合わせおよび製品構成を以下に示します。

・ 本測定器が MS2681A の場合

	品名	数量	形名・オーダリング番号	備考
本体	GSM 測定ソフトウェア	1	MX268102A	メモリカードにて提供
附属品	取扱説明書	1	MW1795AW	

・ 本測定器が MS2683A の場合

	品名	数量	形名・オーダリング番号	備考
本体	GSM 測定ソフトウェア	1	MX268302A	メモリカードにて提供
附属品	取扱説明書	1	MW1795AW	

・本測定器が MS2687A/MS2687B の場合

	品名	数量	形名・オーダリング番号	備考
本体	GSM 測定ソフトウェア	1	MX268702A	メモリカードにて提供
附属品	取扱説明書	1	MW1795AW	

・ 本測定器が MS8608A の場合

	品名	数量	形名・オーダリング番号	備考
本体	GSM 測定ソフトウェア	1	MX860802A	メモリカードにて提供
附属品	取扱説明書	1	MW1795AW	

・ 本測定器が MS8609A の場合

	品名	数量	形名・オーダリング番号	備考
本体	GSM 測定ソフトウェア	1	MX860902A	メモリカードにて提供
附属品	取扱説明書	1	MW1795AW	

1.3 製品規格

MX860802A GSM 測定ソフトウェア規格(MS8608A 用)

項目	規格	備考
型名·機器名	MX860802A GSM 測定ソフトウェア (MS8608A)	
用途	GSM 方式の移動無線機の送信特性測定	
電気的性能(RF入力)	以下の規格は MS8608A 内部のレベル最適化を実行(キーを押すことにより自動 的に実行される)後に保証します。 *1:プリアンプ Onは本体オプション MS8608A-08 搭載時に設定可能となります。	
変調/周波数 測定		
測定周波数範囲	50 MHz~2.7 GHz	
測定レベル範囲	-20~+40 dBm(バースト内平均電力):High Power 入力時 -40~+20 dBm(バースト内平均電力):Low Power 入力時 -60~+10 dBm(バースト内平均電力):Low Power 入力, プリアンプ On 時*1	
キャリア周波数確度	入力レベル(バースト内平均電力): ≧-10 dBm(High Power 入力時), ≧-30 dBm(入力時), ≧-40 dBm(Low Power 入力, プリアンプ On 時*1) ±(基準水晶発振器の確度+10 Hz)	
変調精度	入力レベル(バースト内平均電力): ≧ - 10 dBm(High Power 入力時), ≧ - 30 dBm(入力時), ≧ - 40 dBm(Low Power 入力, プリアンプ On 時*1)	
残留位相誤差	< 0.5 degree(rms)	
(GMSK 変調) 電研 FWA	< 2.0 degree(peak)	
送留 EVM (8PSK 変調)	< 1.0 % (rms)	
波形表示	トレリス表示(GMSK 変調時)	
	アイパターン表示 EVM vg シンズル釆号表示(SDSK 変調時)	
	位相誤差 vs. シンボル番号表示	
	振幅誤差 vs. シンボル番号表示	
振幅測定	IQ ダイヤクラム衣小	
周波数範囲	50 MHz \sim 2 7 GHz	
測定レベル範囲	-20~+40 dBm(バースb内亚均需力)·High Power 入力時	
	-40~+20 dBm(バースト内平均電力):Low Power 入力時	
	-60~+10 dBm(バースト内平均電力): Low Power 入力, プリアンプ On 時*1	
送信電力測定	内臓のパワーメータを用いたレベル校正実行後(キーを押すことにより自動的に 実行)	
測定範囲	+10~+40 dBm(バースト内平均電力): High Power 入力時	
	-10~+20 dBm(ハースト内平均電力):Low Power 入力時 -10~+10 dBm(バースト内平均電力):Low Power 入力,プリアンプ On 時*1	
確度	±0.4 dB	
電力測定リニアリティ	入力レベル(バースト内平均電力): ≧+10 dBm(High Power 入力時), ≧-10 dBm(入力時), ≧-20 dBm(Low Power 入力, プリアンプ On 時*1), レンジ最適化後, 基準のレベルの設定を変更しない状態で ±0.2 dB (0~-30 dB)	

項目	規格	備考
キャリア OFF 時の電力	入力レベル(バースト内平均電力): ≥+10 dBm(High Power 入力時),	
測定	≥ -10 dBm(Low Power 人力時), ≥ -20 dBm(Low Power 人力, ブリアンフ On 時*1)	
ノーマルモード	≥60 dBm(バースト内平均電力に比べて)	
測定範囲		
広ダイナミックレンジ	バースト内平均電力:1 W(High Power 入力時), 10 mW(Low Power 入力時)に	
モート側ル範囲	$\geq 80 \text{ dBm}$	
	ただし,測定限界は平均雑音レベル: ≤ -50 dBm(High Power 入力,	
	50 MHz~2.7 GHz)にて決まる	
立上り/立下り特性	被測定信号のデータに同期して波形を表示 規格線表示可能(帯域1MHzにて測定), Pass/Fail 判定機能有り	
Output RF		
Spectrum 測正 国油粉範囲	$100 \text{ MH}_{7} \sim 2.7 \text{ GH}_{7}$	
月夜级範囲	100 WHZ 2.7 GHZ	
八月レッヘル車団田	-10~+40 dBm(八一入下闪平均電力): High Power 入力時	
	-10~+10 dBm(バースト内平均電力):Low Power 入力, プリアンプ On 時*1	
変調部分測定範囲	CW 信号入力時	
(Spectrum due	≧60 dB(≧200 kHz 離調)	
to modulation)	≥68 dB(≥250 kHz 雕調) (<1.8 MHz 離調は PBW・30 kHz ≥1.8 MHz 離調は PBW・100 kHz)	
過渡部測定範囲	CW 信号入力時	
	≧63 dB(≧400 kHz 離調)	
スプリアス測定		
測定周波数範囲	100 kHz~7.8 GHz, ただし搬送波周波数±50 MHz以内を除く	
入力レベル範囲	+20~+40 dBm(バースト内平均電力): High Power 入力	
(送信電力)	0~+20 dBm(バースト内平均電力): Low Power 入力	
測定方法		
掃引法	指定の周波数範囲をスペクトラムアナライザで掃引後,ピーク値を検出し表示する。電力比は Tx Power 値との比を計算し表示する。	
スポット法	指定の周波数をスペクトラムアナライザのタイムドメインで測定後,平均値を表示 する。電力比は Tx Power 値との比を計算し表示する。	
サーチ法	指定の周波数範囲内をスペクトラムアナライザで掃引しピーク値を検出後,その	
	周波数をタイムドメインで測定,平均値を表示する。電力比はTx Power値との比 を計算し表示する。	
測定範囲	搬送波周波数 800 MHz~1 GHzおよび 1.8~2 GHz, 検波モード: Average にて	
	\ge 72 dB(RBW:10 kHz) (100 kHz~50 MHz, バンド 0)	
	≤ /2 uB(KBW:100 KHZ) (50~500 MHZ, ハント 0) ノーマルモードにて	
	≧66-f[GHz] dB(RBW:3 MHz) (500~3150 MHz, バンド 0	
	ただし,高調波周波数は除く)	
大休ナプション	≤00 dB(KBW: 5 MHZ) (3150~/800 MHZ, ハント 1) スプリアスエードレイ	
MS8608A-03 搭載時	≧66 dB(RBW:3 MHz) (1600~7800 MHz, バンド 1)	

項目	規格	備考
電気的性能(IQ 入力)		
入力方式	Balance, Unbalance の選択可能	
入力インピーダンス	1 MΩ (並列容量<100 pF), 50 Ωの選択可能	
入力レベル		
Balance 入力	差動電圧範囲:0.1~1.0 Vp-p(入力コネクタにて) 同相電圧範囲:±2.5 V(入力コネクタにて)	
Unbalance 入力	0.1~1.0 Vp-p(入力コネクタにて) DC 結合/AC 結合の切換可能	
測定項目	変調精度測定,振幅測定, IQ レベル測定	
変調精度測定	入力レベル:≧0.1 V(rms), 温度範囲:18~28 ℃にて	
残留位相誤差 残留 EVM IQ レベル測定	<0.5 degree(rms), DC 結合 <1.0 %(rms), DC 結合	
レベル測定	I, Q それぞれの入力電圧(rms 値および peak to peak 値)を測定し表示	
IQ 位相差測定	I, Q 入力コネクタに CW 信号を入力した場合, I 相信号とQ 相信号間の位相値 を測定し表示	

項目	規格	備考
型名·機器名	MX860902A GSM 測定ソフトウェア (MS8609A)	
用途	GSM 方式の移動無線機の送信特性測定	
電気的性能(RF 入力)	以下の規格は MS8609A 内部のレベル最適化を実行(キーを押すことにより自動 的に実行される)後に保証します。 *1:プリアンプ Onは本体オプション MS8609A-08 搭載時に設定可能となります。	
変調/周波数 測定		
測定周波数範囲	50 MHz~2.7 GHz	
測定レベル範囲	-40~+20 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1	
キャリア周波数確度	入力レベル(バースト内平均電力): ≧-30 dBm(プリアンプ Off 時), ≧-40 dBm(プリアンプ On 時*1) ±(基準水晶発振器の確度+10 Hz)	
変調精度	入力レベル(バースト内平均電力): ≧-30 dBm(プリアンプ Off 時), ≧-40 dBm(プリアンプ On 時*1)	
残留位相誤差 (GMSK 変調)	<0.5 degree(rms) <2.0 degree(peak)	
残留 EVM		
(8PSK 変調) 波形表示	<1.0 %(rms) トレリス表示(GMSK 変調時)	
	アイパターン表示	
	EVM vs. シンボル番号表示(8PSK 変調時) 位相訳美 vs シンボル番号表示	
	振幅誤差 vs. シンボル番号表示 IQ ダイヤグラム表示	
振幅測定		
周波数範囲	50 MHz~2.7 GHz	
測定レベル範囲	-40~+20 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1	
送信電力測定	内臓のパワーメータを用いたレベル校正実行後(キーを押すことにより自動的に 実行)	
測定範囲	-10~+20 dBm(バースト内平均電力):プリアンプ Off 時 -10~+10 dBm(バースト内平均電力):プリアンプ On 時*1	
確度	$\pm 0.4 \text{ dB}$	
電力測定リニアリティ	入力レベル(バースト内平均電力): ≧ -10 dBm(プリアンプ Off 時), ≧ -20 dBm(プリアンプ On 時*1), レンジ最適化後, 基準のレベルの設定を変更 しない状態で±0.2 dB (0~-30 dB)	
キャリア OFF 時の電力	入力レベル(バースト内平均電力): ≧-10 dBm(プリアンプ Off 時),	
測定	$\geq -20 \text{ dBm}(\mathcal{J} \mathcal{J} \mathcal{T} \mathcal{T} \mathcal{T} \text{ On 時*1})$	
ノーマルモード 測定範囲	≧60 dBm (パースト内平均電力に比べて)	
広ダイナミックレン ジ	ハースト内半均電力:10 mW に比べて ≥80 dBm	
モード測定範囲	=00 dbm ただし, 測定限界は平均雑音レベル:≦-70 dBm(50 MHz~2.7 GHz)にて決ま る	
立上り/立下り特性	被測定信号のデータに同期して波形を表示 規格線表示可能(帯域 1MHzにて測定), Pass/Fail 判定機能有り	

MX860902A GSM 測定ソフトウェア規格(MS8609A 用)

項目	規格	備考
Output RF Spectrum 測定 周波数範囲	100 MHz∼2.7 GHz	
入力レベル範囲 変調部分測定範囲	ー10~+20 dBm(バースト内平均電力):プリアンプ Off 時 ー20~+10 dBm(バースト内平均電力):プリアンプ On 時*1 CW 信号入力時	
(Spectrum due to modulation) 過渡部測定範囲	≧60 dB (≧200 kHz 離調) ≧68 dB (≧250 kHz 離調) (<1.8 MHz 離調は RBW:30 kHz, ≧1.8 MHz離調は RBW:100 kHz) CW 信号入力時	
	≧63 dB(≧400 kHz 離調)	
スプリアス測定		
測定周波数範囲	100 kHz~12.75 GHz, ただし搬送波周波数±50 MHz以内を除く	
入力レベル範囲 (送信電力) 測定方法	0~+20 dBm(バースト内平均電力):プリアンプ Off 時	
掃引法	指定の周波数範囲をスペクトラムアナライザで掃引後,ピーク値を検出し表示す る。電力比は Tx Power 値との比を計算し表示する。	
スポット法	指定の周波数をスペクトラムアナライザのタイムドメインで測定後,平均値を表示する。電力比は Tx Power 値との比を計算し表示する。	
サーチ法	指定の周波数範囲内をスペクトラムアナライザで掃引しピーク値を検出後,その 周波数をタイムドメインで測定,平均値を表示する。電力比はTx Power値との比 を計算し表示する。	
測定範囲	搬送波周波数 800 MHz~1 GHzおよび 1.8~2 GHz,検波モード: Average にて ≧72 dB(RBW:10 kHz) (100 kHz~50 MHz, バンド 0) ≧72 dB(RBW:100 kHz) (50~500 MHz, バンド 0) ≧66-f[GHz] dB(RBW:3 MHz) (500~3150 MHz, バンド 0 ただし,高調波周波数は除く) ≧66 dB(RBW:3 MHz) (3150~7800 MHz, バンド 1)	

項目	規格	備考
電気的性能(IQ 入力)		
入力方式	Balance, Unbalance の選択可能	
入力インピーダンス	1 MΩ(並列容量<100pF),50 Ωの選択可能	
入力レベル		
Balance 入力	差動電圧範囲:0.1~1.0 Vp-p(入力コネクタにて) 同相電圧範囲:±2.5 V(入力コネクタにて)	
Unbalance 入力	0.1~1.0 Vp-p(入力コネクタにて) DC 結合/AC 結合の切換可能	
測定項目	変調精度測定,振幅測定, IQ レベル測定	
変調精度測定	入力レベル:≧0.1 V(rms), 温度範囲:18~28 ℃にて	
残留位相誤差 残留 EVM IQ レベル測定	<0.5 degree(rms), DC 結合 <1.0 %(rms), DC 結合	
レベル測定	I, Q それぞれの入力電圧(rms 値および peak to peak 値)を測定し表示	
IQ 位相差測定	I, Q 入力コネクタに CW 信号を入力した場合, I 相信号とQ 相信号間の位相 値を測定し表示	

項目	規格			
型名·機器名	MX268102A GSM 測定ソフトウェア (MS2681A)			
用途	GSM 方式の移動無線機の送信特性測定			
電気的性能(RF 入力)	以下の規格は MS2681A 内部のレベル最適化を実行(キーを押すことにより自動 的に実行される)後に保証します。 *1:プリアンプ Onは本体オプション MS2681A-08 搭載時に設定可能となります。			
変調/周波数 測定				
測定周波数範囲	50 MHz~2.7 GHz			
測定レベル範囲	-40~+30 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1			
キャリア周波数確度	入力レベル(バースト内平均電力): ≧-30 dBm(プリアンプ Off 時), ≧-40 dBm(プリアンプ On 時*1) ±(基準水晶発振器の確度+10 Hz)			
変調精度	入力レベル(バースト内平均電力): ≧-30 dBm(プリアンプ Off 時), ≧-40 dBm(プリアンプ On 時*1)			
残留位相誤差 (GMSK 変調) 残留 EVM	<0.5 degree(rms) <2.0 degree(peak)			
(8PSK 変調) 油形主二	<1.0%(rms)			
波形衣小	アレリヘ衣小(GMSK 変調時) アイパターン表示			
	EVM vs. シンボル番号表示(8PSK 変調時) 位相誤差 vs. シンボル番号表示 振幅誤差 vs. シンボル番号表示 IO ダイヤグラム表示			
振幅測定				
周波数範囲	50 MHz~2.7 GHz			
測定レベル範囲	-40~+30 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1			
送信電力測定	SPA モードにてレベル校正後			
測定範囲	-10~+30 dBm(バースト内平均電力):プリアンプ Off 時 -10~+10 dBm(バースト内平均電力):プリアンプ On 時*1			
確度	±2.0 dB 代表値			
電力測定リニアリティ	入力レベル(バースト内平均電力): ≧-10 dBm(プリアンプ Off 時), ≧-20 dBm(プリアンプ On 時*1), レンジ最適化後, 基準のレベルの設定を変更 しない状態で+0.2 dB (0~-30 dB)			
キャリア OFF 時の電力	入力レベル(バースト内平均電力): ≧ -10 dBm(プリアンプ Off 時),			
測定	≧-20 dBm(プリアンプ On 時*1)			
ノーマルモード 測定範囲	≧60 dBm (バースト内平均電力に比べて)			
広ダイナミックレン	バースト内平均電力:10 mW に比べて			
ン モード測定範囲	≤ 80 dBm ただし, 測定限界は平均雑音レベル: ≦ − 70 dBm(50 MHz~2.7 GHz)にて決ま る			
立上り/立下り特性	被測定信号のデータに同期して波形を表示 規格線表示可能(帯域1MHzにて測定), Pass/Fail 判定機能有り			

MX268102A GSM 測定ソフトウェア規格(MS2681A 用)

項目	規格	備考
Output RF Spectrum 測定		
周波数範囲	100 MHz~2.7 GHz	
入力レベル範囲	-10~+30 dBm(バースト内平均電力):プリアンプ Off 時 -20~+10 dBm(バースト内平均電力):プリアンプ On 時*1	
変調部分測定範囲	CW 信号入力時	
(Spectrum due to modulation)	≧60 dB(≧200 kHz 離調) ≧68 dB(≧250 kHz 離調) (<1.8 MHz 離調は RBW:30 kHz, ≧1.8 MHz離調は RBW:100 kHz)	
過渡部測定範囲	CW 信号入力時	
	≧63 dB(≧400 kHz 離調)	
スプリアス測定		
測定周波数範囲	100 kHz~3 GHz, ただし搬送波周波数±50 MHz以内を除く	
入力レベル範囲 (送信電力) 測定方法	0~+30 dBm(バースト内平均電力):プリアンプ Off 時	
掃引法	指定の周波数範囲をスペクトラムアナライザで掃引後,ピーク値を検出し表示する。電力比は Tx Power 値との比を計算し表示する。	
スポット法	指定の周波数をスペクトラムアナライザのタイムドメインで測定後,平均値を表示する。電力比は Tx Power 値との比を計算し表示する。	
サーチ法	指定の周波数範囲内をスペクトラムアナライザで掃引しピーク値を検出後,その 周波数をタイムドメインで測定,平均値を表示する。電力比はTx Power値との比 を計算し表示する。	
測定範囲	 搬送波周波数 800 MHz~1 GHzおよび 1.8~2 GHz, 検波モード: Average にて ≧ 72 dB 代表値(RBW:10 kHz) (100 kHz~50MHz, バンド 0) ≧ 72 dB 代表値(RBW:100 kHz) (50~500 MHz, バンド 0) ≧ 66-f[GHz] dB 代表値(RBW:3 MHz) (500~3000 MHz, バンド 0 ただし,高調波周波数は除く) 	

項目	規格	備考
電気的性能(IQ 入力)	MS2681A-17 または MS2681A-18 搭載時	
入力方式	Balance 入力(MS2683A-17 搭載時),Unbalance 入力(MS2683A-18 搭載時)	
入力インピーダンス	1 MΩ(並列容量<100 pF), 50 Ωの選択可能	
入力レベル		
Balance 入力	MS2681A-17を搭載時	
	差動電圧範囲:0.1~1.0 Vp-p(入力コネクタにて) 同相電圧範囲:±2.5 V(入力コネクタにて)	
Unbalance 入力	MS2681A-17,MS2681A-18 を搭載時	
	0.1~1.0 Vp-p(入力コネクタにて) DC 結合 / AC 結合の切換可能	
測定項目	変調精度測定,振幅測定, IQ レベル測定	
変調精度測定	入力レベル:≧0.1 V(rms), 温度範囲:18~28 ℃にて	
残留位相誤差 残留 EVM IQ レベル測定	<0.5 degree(rms), DC 結合 <1.0 %(rms), DC 結合	
レベル測定	I, Q それぞれの入力電圧(rms 値および peak to peak 値)を測定し表示	
IQ 位相差測定	I, Q 入力コネクタに CW 信号を入力した場合, I 相信号とQ 相信号間の位相 値を測定し表示	

項目	規格		
型名·機器名	MX268302A GSM 測定ソフトウェア(MS2683A)		
用途	GSM 方式の移動無線機の送信特性測定		
電気的性能(RF 入力)	以下の規格は MS2683A 内部のレベル最適化を実行(キーを押すことにより自動 的に実行される)後に保証します。 *1:プリアンプ Onは本体オプション MS2683A-08 搭載時に設定可能となります。		
変調/周波数 測定			
測定周波数範囲	50 MHz~2.7 GHz		
測定レベル範囲	-40~+30 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1		
キャリア周波数確度	入力レベル(バースト内平均電力): ≧-30 dBm(プリアンプ Off 時),		
	≧-40 dBm(プリアンプ On 時*1) ±(基準水晶発振器の確度+10 Hz)		
変調精度	入力レベル(バースト内平均電力): ≧ −30 dBm(プリアンプ Off 時), ≧ −40 dBm(プリアンプ On 時*1)		
残留位相誤差 (GMSK 変調)	<0.5 degree(rms) <2.0 degree(peak)		
残留 EVM (SPSK 変調)	< 1.0.9 (rms)		
波形表示	トレリス表示(GMSK 変調時)		
	アイパターン表示		
	EVM vs. シンボル番号表示(8PSK 変調時)		
	位相誤差 vs. シンホル番号表示 振幅誤差 vs. シンボル番号表示		
	IQダイヤグラム表示		
振幅測定			
周波数範囲	50 MHz~2.7 GHz		
測定レベル範囲	-40~+30 dBm(バースト内平均電力):プリアンプ Off 時 -60~+10 dBm(バースト内平均電力):プリアンプ On 時*1		
送信電力測定	SPA モードにてレベル校正後		
測定範囲	-10~+30 dBm(バースト内平均電力):プリアンプ Off 時 -10~+10 dBm(バースト内平均電力):プリアンプ On 時*1		
確度	±2.0 dB 代表值		
電力測定リニアリティ	入力レベル(バースト内平均電力): ≧-10 dBm(プリアンプ Off 時),		
	≧-20 dBm(プリアンプ On 時*1), レンジ最適化後, 基準のレベルの設定を変更しない状態で±0.2 dB(0~-30 dB)		
キャリア OFF 時の電力	入力レベル(バースト内平均電力): ≧-10 dBm(プリアンプ Off 時),		
測定	$\ge -20 \text{ dBm}(\mathcal{T} \mathcal{Y} \mathcal{T} \mathcal{T} \mathcal{T} \text{ On 時*1})$		
ノーマルモード 測定範囲	≧60 dBm(パースト内平均電力に比べて)		
」 広ダイナミックレン	バースト内平均電力:10mW に比べて >80 dPm		
モード測定範囲	= 50 dBm ただし, 測定限界は平均雑音レベル: ≦ − 70 dBm(50 MHz~2.7 GHz)にて決ま ろ		
立上り/立下り特性	ー 被測定信号のデータに同期して波形を表示 規格線表示可能(帯域 1MHzにて測定), Pass/Fail 判定機能有り		

MX268302A GSM 測定ソフトウェア規格(MS2683A 用)

項目	規格	備考		
Output RF Spectrum 測定				
周波数範囲	100 MHz~2.7 GHz			
入力レベル範囲 変調部分測定範囲	-10~+30 dBm(バースト内平均電力):プリアンプ Off 時 -20~+10 dBm(バースト内平均電力):プリアンプ On 時*1 CW 信号入力時			
(Spectrum due to modulation)	≧60dB(≧200 kHz 離調) ≧68dB(≧250 kHz 離調) (<1.8 MHz 離調は RBW:30 kHz, ≧1.8 MHz離調は RBW:100 kHz)			
過渡部測定範囲	CW 信号人力時			
	≧63 dB(≧400 kHz 離調)			
スプリアス測定				
測定周波数範囲	100 kHz~7.8 GHz, ただし搬送波周波数±50 MHz以内を除く			
入力レベル範囲 (送信電力) 測定方法	0~+30 dBm(バースト内平均電力): プリアンプ Off 時			
掃引法	指定の周波数範囲をスペクトラムアナライザで掃引後,ピーク値を検出し表示する。電力比は Tx Power 値との比を計算し表示する。			
スポット法	指定の周波数をスペクトラムアナライザのタイムドメインで測定後,平均値を表示 する。電力比は Tx Power 値との比を計算し表示する。			
サーチ法	指定の周波数範囲内をスペクトラムアナライザで掃引しピーク値を検出後,その 周波数をタイムドメインで測定,平均値を表示する。電力比はTx Power値との比 を計算し表示する。			
測定範囲	搬送波周波数 800 MHz~1 GHzおよび 1.8~2 GHz,検波モード: Average にて ≧72 dB(RBW:10 kHz) (100 kHz~50 MHz, バンド 0) ≧72 dB(RBW: 100 kHz) (50~500 MHz, バンド 0) ≧66-f[GHz] dB(RBW:3 MHz) (500~3150 MHz, バンド 0 ただし,高調波周波数は除く) ≥66 dB(RBW:2 MHz) (2150~7800 MHz, バンド 1)			
+++-+	$\leq 60 \text{ dB}(\text{KBW}: 3 \text{ MHz})$ (3150~7800 MHz, 777 F 1)			
14-14-2 ション MS2683A-03 搭載時	▲66 dB(RBW:3 MHz) (1600~7800 MHz, バンド 1)			

項目	規格	備考
電気的性能(IQ 入力)	MS2683A-17,MS2683A-18 搭載時のみ	
入力方式	Balance 入力(MS2683A-17 搭載時),Unbalance 入力(MS2683A-18 搭載時)	
入力インピーダンス	1 MΩ(並列容量<100 pF), 50 Ωの選択可能	
入力レベル		
Balance 入力	MS2683A-17を搭載時	
	差動電圧範囲:0.1~1.0 Vp-p(入力コネクタにて) 同相電圧範囲:±2.5 V(入力コネクタにて)	
Unbalance 入力	MS2683A-18 を搭載時	
	0.1~1.0 Vp-p(入力コネクタにて) DC 結合 / AC 結合の切換可能	
測定項目	変調精度測定,振幅測定, IQ レベル測定	
変調精度測定	入力レベル:≧0.1 V(rms), 温度範囲:18~28 ℃にて	
残留位相誤差 残留 EVM IQ レベル測定	<0.5 degree(rms), DC 結合 <1.0 %(rms), DC 結合	
レベル測定	I, Q それぞれの入力電圧(rms 値および peak to peak 値)を測定し表示	
IQ 位相差測定	I, Q 入力コネクタに CW 信号を入力した場合, I 相信号とQ 相信号間の位相 値を測定し表示	

項目	規格			
型名·機器名	MX268702A GSM 測定ソフトウェア(MS2687A/B)			
用途	GSM 方式の移動無線機の送信特性測定			
電気的性能(RF 入力)	以下の規格は MS2687A/B 内部のレベル最適化を実行(キーを押すことにより自動的に実行される)後に保証します。			
変調/周波数 測定				
測定周波数範囲	50 MHz~2.7 GHz			
測定レベル範囲	-40~+30 dBm(バースト内平均電力)			
キャリア周波数確度	入力レベル(バースト内平均電力): ≧-30 dBm ±(基準水晶発振器の確度+10 Hz)			
変調精度	入力レベル(バースト内平均電力):≧-30 dBm			
残留位相誤差 (GMSK 変調)	<0.5 degree(rms) <2.0 degree(peak)			
残留 EVM (8PSK 変調) 波形表示	<1.0 %(rms) トレリス表示(GMSK 変調時)			
	アイパターン表示 EVM vs. シンボル番号表示(8PSK 変調時) 位相誤差 vs. シンボル番号表示 振幅誤差 vs. シンボル番号表示 IQ ダイヤグラム表示			
振幅測定				
周波数範囲	50 MHz~2.7 GHz			
測定レベル範囲	-40~+30 dBm(バースト内平均電力)			
送信電力測定	SPA モードにてレベル校正後			
測定範囲	-10~+30 dBm(バースト内平均電力)			
確度	±2.0 dB 代表値			
電力測定リニアリティ	入力レベル(バースト内平均電力): ≧ -10 dBm, レンジ最適化後, 基準のレベルの設定を変更しない状態で±0.2 dB(0~-30 dB)			
キャリア OFF 時の電力 測定	入力レベル(バースト内平均電力):≧-10 dBm			
ノーマルモード 測定範囲	≧60 dBm(バースト内平均電力に比べて)			
広ダイナミックレン	バースト内平均電力:10 mW に比べて			
モード測定範囲	≥ 80 dBm ただし, 測定限界は平均雑音レベル: ≦ − 70 dBm(50 MHz~2.7 GHz)にて決ま る			
立上り/立下り特性	被測定信号のデータに同期して波形を表示 規格線表示可能(帯域1MHzにて測定), Pass/Fail 判定機能有り			

MX268702A GSM 測定ソフトウェア規格(MS2687A/B 用)

項目	規格	
Output RF Spectrum 測定 周波数範囲	100 MHz~2.7 GHz	
入力レベル範囲	-10~+30 dBm(バースト内平均電力)	
変調部分測定範囲	CW 信号入力時	
(Spectrum due to modulation)	≧60 dB(≧200 kHz 離調) ≧68 dB(≧250 kHz 離調) (<1.8 MHz 離調は RBW:30 kHz, ≧1.8 MHz離調は RBW:100 kHz)	
過渡部測定範囲	CW 信号入力時	
	≧63 dB(≧400 kHz 離調)	
スプリアス測定		
測定周波数範囲	100 kHz~12.75 GHz, ただし搬送波周波数±50 MHz以内を除く	
入力レベル範囲 (送信電力)	0~+30 dBm(バースト内平均電力)	
測定方法		
掃引法	指定の周波数範囲をスペクトラムアナライザで掃引後,ピーク値を検出し表示する。 る。電力比は Tx Power 値との比を計算し表示する。	
スポット法	指定の周波数をスペクトラムアナライザのタイムドメインで測定後,平均値を表示する。電力比は Tx Power 値との比を計算し表示する。	
サーチ法	指定の周波数範囲内をスペクトラムアナライザで掃引しピーク値を検出後,その 周波数をタイムドメインで測定,平均値を表示する。電力比はTx Power値との比 を計算し表示する。	
測定範囲	搬送波周波数 800 MHz~1 GHzおよび 1.8~2 GHz, 検波モード: Average にて ≧72 dB 代表値(RBW:10 kHz) (100 kHz~50 MHz, バンド 0) ≧72 dB 代表値(RBW:100 kHz) (50~500MHz バンド 0) ≧66-f[GHz] dB 代表値(RBW:3 MHz) (500~3150 MHz, バンド 0 ただ」 真調波用波数ないらつ)	
	≧66 dB 代表値(RBW:3 MHz)代表値 (3150~7900 MHz, バンド 1)	

項目	規格	備考
電気的性能(IQ 入力)	MS2687A-18 または MS2687B-18 搭載時のみ	
入力方式	Unbalance 入力	
入力インピーダンス	1 MΩ(並列容量<100 pF), 50 Ωの選択可能	
入力レベル		
Unbalance 入力	0.1~1.0 Vp-p(入力コネクタにて) DC 結合/AC 結合の切換可能	
測定項目	変調精度測定,振幅測定, IQ レベル測定	
変調精度測定	入力レベル:≧0.1 V(rms), 温度範囲:18~28 ℃にて	
残留位相誤差 残留 EVM IQ レベル測定	<0.5 degree(rms), DC 結合 <1.0 %(rms), DC 結合	
レベル測定	I, Q それぞれの入力電圧(rms 値および peak to peak 値)を測定し表示	
IQ 位相差測定	I, Q 入力コネクタに CW 信号を入力した場合, I 相信号とQ 相信号間の位相 値を測定し表示	

第2章 パネルの配置と操作概要

この章では,正面・背面パネルの説明,基本的な操作方法,測定ソフトウェアの インストール,測定システムの変更,画面表示色の設定について説明しています。 本章で, ま示されているのは,パネルキーを表します。

2.1 正面・背面パネル図説明一覧表 2-3

2.2	基本的な操作方法 2	-11
	2.2.1 電源を投入する 2	-11
	2.2.2 項目の選択方法	-11
	2.2.3 パラメータ設定方法 2	-12
2.3	測定ソフトウェアをインストールする 2	-13
2.4	測定システムを変更する 2	-14
2.5	画面表示色を設定する2	-15

2.1 正面・背面パネル図説明一覧表

No	パネル表示	機能説明		
1	(液晶)	6.5 型の高輝度カラーTFT 液晶です。 目盛り, トレース波形, 各種パラメータ設定値, マーカ点の測定値お よびソフトキーメニューなどを表示します。		
2	Spectrum	本測定器を通常のスペクトラムアナライザとして使用するキーです。		
3	Signal Analysis Tx Tester	測定ソフトウェアが	動作する信号解析モードに切り替えるキーです。	
4	Config	GPIB, プリンタなど	のインタフェースを設定するキーです。	
5	F1~F6	パネルキーを押すと,それに関連するソフトキーメニューが表示され ます。		
		[More]	ソフトキーメニューのページをめくるキーです。	
6	Freq/Ampl	周波数とレベルに関するパラメータのデータを入力するセクションで す。		
		[Freq/Channel]	周波数を設定します。	
		[Span]	周波数スパンを設定します。	
		[Amplitude]	リファレンスレベルなどを設定します。	
		[->CF]	画面上の最大レベルの信号周波数を, 中心周 波数に設定します。	
		[->RLV]	画面上の最大レベル値を, リファレンスレベルに 設定します。	
7	Marker	マーカ機能を操作するセクションです。		
		[Marker]	マーカを設定します。	
		[Multi Mkr]	マルチマーカを設定します。 [Shift]キーに続いてこのキーを押します。	
		[Peak Search]	画面上の最大レベルの点にマーカを移動しま す。	
		[Marker->]	マーカ値によるパラメータ設定をします。 [Shift]キーに続いてこのキーを押します。	
8	System	信号解析モードでは	は、測定システムの切り替えに使用するキーです。	
9	Single	掃引モードを設定し	、ます。	
		[Single]	シングル掃引を実行するキーです。	
		[Continuous]	連続掃引を実行するキーです。 [Shift]キーに続いてこのキーを押します。 イニシャル状態では連続掃引モードになってい ます。	
10	Recall	リコール/セーブを	実行するキーです。	
		[Recall]	内蔵メモリまたはメモリカードから測定パラメー タ,波形データを読み出します。	
		[Save]	内蔵メモリまたはメモリカードへ測定パラメータ, 波形データをセーブします。	

No	パネル表示	機能説明	
11	Measure	周波数測定,ノイズ測定,隣接チャネル漏洩電力など各種アプリケー ションに応じた測定を行うキーです。	
12	Display	トレース波形を選択するセクションです。通常の周波数ドメインは2波 形までトレースを表示できます。 [Time]キーにより簡単にタイムドメイン(ゼロスパン)波形に切り替わり ます。	
		[A, B]	周波数ドメイン波形のトレースAまたはトレースB を表示します。
		[A/B, A/BG]	トレースAとトレースBの2波形同時表示または トレースAとトレースBG(トレースAを含んだ周 辺スペクトラム)の2波形同時表示を行います。
		[Time]	ゼロスパンになり,タイムドメイン波形を表示します。
		[A/Time]	トレース A とタイムドメイン波形の 2 波形同時表 示を行います。
13	Trig/Gate	トリガ/ゲート機能を実行するキーです。	
		[Trig/Gate]	掃引開始のトリガおよびゲート(波形データの書 き込みタイミングの制御をする)機能の設定キー です。
14	Coupled Function	RBW, VBW, 掃引時間, 入力減衰器を設定するキーです。	
		[BW]	RBW とVBW の設定をします。
		[SWP Time]	掃引時間の設定をします。
		[Atten]	入力減衰器の設定をします。
15	Entry	数値データ,単位および特殊機能の設定キーです。	
		[ロータリノブ]	マーカの移動,データ入力に使用します。
		$[\vee, \wedge]$	データ入力のステップアップ, ステップダウンに 使用します。
		[Shift]	パネルキーの中で青文字で表示されている機能 を実行したい場合に、このキーを押してから、青 文字表示キーを押します。
		[BS]	入力ミスを修正するバックスペースキーです。
		[0~9, ., +/-]	数値データの入力キーです。
		[GHz, MHz, kHz, Hz]]周波数,レベル,時間などの単位の設定キーです。
		[Set]	パラメータを設定するキーです。
		[Cancel]	[Set]キーで設定可能状態となったエントリーを キャンセルするキーです。
No	パネル表示	機能説明	
----	------------------------------	--	
16	Preset	測定パラメータを初期値に設定するキーです。	
17	Local	本測定器をリモート状態からローカル状態に設定するキーです。	
18	Disp On/Off	液晶表示器への表示を On/Off するキーです。	
19	Сору	プリンタおよびメモリカードへ,画面のハードコピーを出力するキーです。	
20	Stby/On	電源スイッチです。背面の電源スイッチ 58 が On の状態で使用します。	
		Stby 状態から約 1 秒押すと, 電源が On になります。 電源 On から約 1 秒押すと, Stby 状態になります。	
21	RF Input High Power Input	RF 入力コネクタです。MS8608A の場合は High Power 用入力コネク タです。	
22	I/Q Input	I/Q 入力コネクタです。Unbalance 時は I と Q, Balance 時は I, \overline{I} と Q, \overline{Q} に入力します (MS2681A-17, MS2681A-18, MS2683A-17, MS2683A-18 または MS2687A/MS2687B-18 を搭載時)。	
23	Probe Power	FET プローブ用の±12 V を供給するコネクタです。 ピンの割当ては図のとおりです。	
		GND No-connection	
		X	
		-12 V +12 V	
24	Memory Card	波形データ,測定パラメータなどをロード/セーブするメモリカード用 のスロットです。メモリカードを1枚挿入できます。	
25	Hi power	入力コネクタの設定キーです。MS8608A のみの機能です。	
		[High Power] High Power 入力コネクタを有効にします。	
		[Low Power] Low Power 入力コネクタを有効にします。	
26	Low Power Input	Low Power 入力用コネクタです。 MS8608A のみの機能です。	
50	(ファン)	機器内部の発熱を外部に排出するファンです。ファンは障害物など から少なくとも 10 cm 以上の間隔を取ってください。	
51	10 MHz STD	外部からの 10 MHz 外部基準水晶発振器の入力コネクタおよび出力 コネクタです。外部から Ref In 信号を入力すると, 自動的に内部から 外部信号に切り換わります(なお, 外部信号入力時は, 内部 OCXO のヒーターは Off となります)。	
52	IF OUT	IF 出力コネクタです。帯域制限された IF 信号を出力します。	
53	Wideband IF Out	IF 出力コネクタです。帯域制限されない IF 信号を出力します。	
54	Sweep (X)	掃引出力(X)の出力コネクタです。	
55	Video (Y)	ビデオ検波出力に比例した Y 軸信号の出力コネクタです。 この信号は RBW の設定値により帯域制限され, ログスケール時には 対数圧縮されています。	
56	SWP Status (Z)	掃引ステータス出力(Z)の出力コネクタです。	

No	パネル表示	機能説明
57	Trig/Gate In (±10 V))
		外部からのトリガ/ゲート信号の入力コネクタです。
58	Off/On	電源スイッチです。
59	(インレット)	添付電源コードを差し込むための AC 電源インレットです。タイムラグ 特性のヒューズが,1個内蔵されています。
60	(接地端子)	保護接地端子です。電撃を防止するため,この端子を大地電位に接 続します。
61	Parallel	プリンタに出力するためのコネクタです。
62	VGA Out	VGA 信号の出力コネクタです。
63	GPIB	GPIB インタフェースコネクタです。外部システムコントローラに接続します。
64	RS-232C	RS-232C コネクタです。 外部システムコントローラに接続します。
65	Ethernet	Ethernet 用 10 Base-Tコネクタです。外部システムコントローラに接続 します。
66	銘板	本測定器のシリアル番号およびオプションが記載されています。

図 2-1 MS268 * 正面パネル

2-7

図 2-2 MS268 * 背面パネル

2-9

図 2-4 MS8608A/MS8609A 背面パネル

2.2 基本的な操作方法

基本的な操作方法と代表的なパラメータ設定方法を記載しています。

2.2.1 電源を投入する

背面の電源スイッチを押し,次に正面の電源スイッチを押します。 このとき,正面の電源スイッチを1秒以上押し続けてください。

注:

ミスタッチにより簡単に電源が On/Off しないように,正面の電源スイッチを 1 秒以上押し続けないと電源が On/Off しないようになっています。

本測定器の性能を十分に出すためには,使用する 30 分以上前に背面の ON/OFF スイッチを ON にしておいてください(正面パネルの電源ランプ Stby が 点灯)。内部の基準周波数発振器が予熱され,安定します。

2.2.2 項目の選択方法

画面上にカーソルが表示されているところは、パラメータを変更することができま す。

また,ファンクションキーを押してから設定できるパラメータもあります。

画面上にカーソルが表示されている場合

Entry の \land 」 \lor またはロータリノブで, 選択したい項目にカーソルを移動 します。

カーソルを移動したら, Entry の Set を押して確定します。 確定すると、パラメータ設定ウインドウが開きます。

ファンクションラベルに表示されている場合

該当するファンクションキー(__F1__~__F6__)を押します。 ファンクションキーを押すと、パラメータ設定ウインドウが開きます。 また、ファンクションキーを押すだけで実行される場合もあります。

2.2.3 パラメータ設定方法

項目が選択された後にパラメータを設定する方法には,以下の設定方法があり ます。 ウインドウの中に表示されているパラメータから選択します。

数値を入力します。

ウインドウの中に表示されているパラメータから選択

Entry の ∧ 」 ↓ またはロータリノブで, 選択したいパラメータにカーソルを 移動します。 カーソルを移動したら, Entry の Set を押して確定します。

数値を入力

テンキーまたはロータリノブで数値を入力します。 数値を入力したら、単位キーあるいは Entry の Set を押します。 パラメータが確定され、ウインドウが閉じます。

2.3 測定ソフトウェアをインストールする

本測定器を信号解析モードで使用するときに必要な測定ソフトウェア(別売)のインストール方法を説明します。

ステップ	操作内容
1	測定ソフトウェアの入ったメモリカードをメモリカード挿入口に入れてください。
2	Config を押して, Config 画面を表示させます。
3	F4 (System Install)を押して, Install System 画面(下図)を表示させます。

MS2687A << Install System >>	System install
Product Information Product Type : Spectrum Analyzer Product Model : MS2687A Serial Number : 6100196780 Spectrum Analyzer Type : 30GHz	System Install Change Installed
System Revision System Revision	System
MX268702A GSM V 3.0 MX268701A W-CDMA V 2.7 MX268730A WLAN V 1.0	Change Memory Card
Core Module System Revision	Systen Remove
SPECTRUM ANALYZER 1.16 MAIN 1.14 IPL 1.3 DSP(CORE) 1.16	Core Module Install
Step Up key : Previous Page / Step Down key : Next Page	→ Back Screen

- 4 [F2] (Change Installed System)を押して Install System ボックスをアクティブ にします。
- 5 ロータリノブを使用して新しい測定システムのインストール先を選択します。
- 6 F3 (Change Memory Card)を押して Memory Card ボックスをアクティブに します。
- 7 ロータリノブを使用して新しい測定システムを選択します。
- 8 [F1](System Install)を押して新しいシステムをインストールします。
- 9 確認用ウインドウが開きます。ロータリノブを使用して Yes にカーソルを移動します。
- 10 Entryの[Set]を押してインストールが開始されます。
- 11 インストールが完了すると、新しいシステムの画面になります。

2.4 測定システムを変更する

本測定器を信号解析モードで使用するときに必要な測定ソフトウェア(別売)が 複数登録されている場合に,使用したい測定システムに変更する方法を説明し ます。

測定ソフトウェアが1つしか登録されていない場合は、測定システムの変更はできません。

ステップ	操作内容
1	Signal Analysis を押して, 測定システム画面を表示させます。
2	System を押して, System Change のファンクションラベル(下図)を表示させます。

MS2687A << Setup Common Parameter (WLAN)	»>	System Change
Input Terminal Reference Level Offset Level Frequency Carrier Frequency Signal Target System Measuring Object Data Rate Modulation Trigger	: [RF]] : [10.00dBm] : [0.00dB] : [5170.000000MHz] : [IEEE802.11a] : [Burst] : [24Mbps] : [0FDM-16QAM] : [Free Run]	MX268702A GSM V 3.0 MX268701A W-CDMA V 2.7 MX268730A WLAN V 1.0
System : IEEE802.11a Freq : Rate : 24Mbps Level : Mod : OFDM-16QAM Offset :	5170.000000MHz 10.00dBm Calibration : Off 0.00dB Correction : Off	return 1
3 インストールされている? ます。	則定システムの一覧がファンクションラベル	レに表示され

- 4 設定したい測定システムのファンクションを押します。
- 5 測定システムの変更を開始します。
- 6 変更が完了すると新しいシステムの画面になります。

ファンクションラベルに表示されていない測定システムに変更することはできません。新しい測定システムをインストールする場合は、「2.3 測定ソフトウェアのインストールをする」を参照してください。

2.5 画面表示色を設定する

画面表示色を設定する方法について説明します。

画面の色は、あらかじめ定義されている4つのカラーパターンおよびユーザが定 義できるカラーパターンからの選択ができます。

- ・ Shift + 3 (Color)を押すと、以下のファンクションラベルが表示される ので、カラーパターンを選択します。
- F1 (Color Pattern 1):カラーパターン 1 に設定します(出荷時の標準カ ラーパターン)。
- [F2](Color Pattern 2):カラーパターン2に設定します。
- **F3** (Color Pattern 3):カラーパターン3 に設定します。
- ・ <u>F4</u> (Color Pattern 4):カラーパターン 4 に設定します。
- ・ F5 (Define User Color):ユーザが定義カラーパターンに設定します。

ユーザカラーパターンの設定方法

- F5 (Define User Color)を押すと、画面表示色がユーザ定義カラーパターンに変更されると共に以下のファンクションラベルが表示されます。
- ・ F1 (Copy Color Ptn from):ユーザ定義カラーパターンを設定するための 元の色として、カラーパターン 1~4 を選択するためのファンクションラベルを 表示します。
- ・ F2 (Select Item):表示色を設定する対象を選択します。
- ・ F3 (Red): Select Item で選択した対象の赤色の表示強度を設定します。
- F4 (Green): Select Item で選択した対象の緑色の表示強度を設定します。
- ・ F5 (Blue): Select Item で選択した対象の青色の表示強度を設定します。

この章では、各画面で設定できるパラメータの内容と設定方法について記載しています。本章で、 表示されているのは、パネルキーを表します。

3.1	測定パー	ラメータを設定する	3-5
	3.1.1	信号入力コネクタを設定する(Terminal)	3-6
	3.1.2	RF 入力レベルを設定する(Reference Level)	3-7
	3.1.3	レベル補正係数を設定する(Level Offset)	3-7
	3.1.4	周波数バンドを設定する(Band)	3-8
	3.1.5	測定する DUT を設定する(Band)	3-9
	3.1.6	チャネル番号を詳細に設定する(ARFCN)	3-10
	3.1.7	チャネルを設定する(Channel)	3-11
	3.1.8	周波数を設定する(Frequency)	3-11
	3.1.9	チャネル間隔を設定する(Channel Spacing)	3-12
	3.1.10	変調方式を設定する(Modulation)	3-12
	3.1.11	バーストのフォーマットを設定する	
		(Measuring Object)	3-13
	3.1.12	シンボルオフセットを設定する	
		(Symbol Offset)	3-14
	3.1.13	バーストオフ区間のデータを設定する	
		(Burst Off Data)	3-14
	3.1.14	Training Sequence を設定する	
		(Training Sequence)	3-15
	3.1.15	トリガを設定する(Trigger)	3-16
	3.1.16	周特補正係数のテーブルを設定する	
		(Correction)	3-17
	3.1.17	プリアンプを設定する(Pre Ampl.)	3-18
	3.1.18	マルチスロットのパラメータを設定する	
		(Multislot Parameter Setup)	3-18
3.2	変調精腸	度を解析する	3-20
	3.2.1	測定結果の説明	3-20
	3.2.2	波形表示フォーマットを設定する	
		(Trace Format)	3-22
	3.2.3	ストレージモードを設定する(Storage Mode)	3-22
	3.2.4	コンスタレーション波形表示の補間方法を考える	5
		(Interpolation)	3-23
	3.2.5	EVM, 位相誤差, 振幅誤差のスケールを設定す	ける
		(Vertical Scale)	3-23
	3.2.6	フィルタを設定する(Filter)	3-24
	3.2.7	マーカを表示させる(Marker)	3-24
	3.2.8	変調解析の範囲を選択する(Analysis Range)	3-25
	3.2.9	測定レンジの最適化(Adjust Ragne)	3-25
	3.2.10	パワー校正機能(Power Calibration)	3-26
	3.2.11	パワー校正機能	
		(Multi Carr. Power Calibration)	3-26

	之后电,	リと測止9 つ	3-28
	3.3.1	波形の表示範囲を設定する(Window)	3-31
	3.3.2	ストレージモードを設定する(Storage Mode).	3-31
	3.3.3	測定ダイナミックレンジを拡大する	
		(Wide Dynamic Range)	3-31
	3.3.4	波形の相対表示/絶対表示を設定する	
		(Level Rel./Abs.)	3-32
	3.3.5	測定結果の表示を切り替える	
		(Waveform Display)	3-32
	3.3.6	スロットの測定結果を選択する(Slot No.)	3-32
	3.3.7	マーカを設定する (Marker)	3-33
	3.3.8	テンプレートを設定する(Setup Template)	3-33
3.4	Output	RF Spectrum を測定する	3-39
	3.4.1	波形表示フォーマットを設定する	
		(Trace Format)	3-40
	3.4.2	ストレージモードを設定する(Storage Mode).	3-40
	3.4.3	Limit 値の表示を切り替える(View Select)	3-41
	3.4.4	測定の範囲を選択する(Analysis Range)	3-41
	3.4.5	Switching Transient の単位を設定する	
		(Unit)	3-41
	3.4.6	マーカ操作対象トレースを変更する	
		(Operation Trace)	3-41
	3.4.7	規格値の設定を行う	
		(Setup Output RF Spectrum Table)	3-42
3.5	スプリア	(Setup Output RF Spectrum Table) スを測定する	3-42 3-44
3.5	スプリア 3.5.1	(Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode)	3-42 3-44 3-44
3.5	スプリア 3.5.1 3.5.2	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する 	3-42 3-44 3-44
3.5	スプリア 3.5.1 3.5.2	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) 	3-42 3-44 3-44 3-46
3.5	スプリア 3.5.1 3.5.2 3.5.3	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する 	3-42 3-44 3-44 3-46
3.5	スプリア 3.5.1 3.5.2 3.5.3	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) 	3-42 3-44 3-44 3-46 3-50
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する 	3-42 3-44 3-44 3-46 3-50
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) 	3-42 3-44 3-46 3-50 3-55
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) Sweep 法の測定パラメータを設定する 	3-42 3-44 3-46 3-50 3-55
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) Sweep 法の測定パラメータを設定する (Setup Sweep Table) 	3-42 3-44 3-46 3-50 3-55 3-62
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) Sweep 法の測定パラメータを設定する (Setup Sweep Table) プリセレクタのモードを設定する(Preselector) 	3-42 3-44 3-46 3-50 3-55 3-62 3-67
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) Sweep 法の測定パラメータを設定する (Setup Sweep Table) プリセレクタのモードを設定する(Preselector) 判定単位を選択する(Judgement) Spectrum Analyzer を設定する 	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8	 (Setup Output RF Spectrum Table) スを測定する 測定方法を設定する(Spurious Mode) 搬送波の振幅測定パラメータを設定する (Setup Reference Power) Spot 法の測定パラメータを設定する (Setup Spot Table) Search 法の測定パラメータを設定する (Setup Search Table) Sweep 法の測定パラメータを設定する (Setup Sweep Table) プリセレクタのモードを設定する(Preselector) 判定単位を選択する(Judgement) Spectrum Analyzer を設定する (Setup Spectrum Analyzer) 	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-68
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-68 3-70
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-67 3-68 3-70 3-80
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.11	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-68 3-70 3-80
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.11	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-67 3-68 3-70 3-80 3-81
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.10 3.5.11	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-68 3-70 3-80 3-81 3-81 3-82
3.5	スプリア 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.5.10 3.5.10 3.5.11 パワース 3.6.1	 (Setup Output RF Spectrum Table)	3-42 3-44 3-46 3-50 3-55 3-62 3-67 3-67 3-67 3-67 3-68 3-70 3-80 3-81 3-82 3-83

	3.6.3	測定レンジを設定する	
		(Range Up/Range Down)	3-83
3.7	IQ レベノ	レを測定する	3-84
	3.7.1	ストレージモードを設定する(Storage Mode).	3-85
	3.7.2	レベルの単位を設定する(Unit)	3-85
3.8	設定パラ	ラメータの保存と読み出し	3-86
	3.8.1	パラメータを保存する(Save)	3-87
	3.8.2	名前を付けて保存する(File Name.)	3-88
	3.8.3	ファイルの書き込み保護をする	
		(Write Protect)	3-89
	3.8.4	パラメータを読み込む(Recall)	3-90

第3章 測定

3.1 測定パラメータを設定する

入力コネクタや周波数など,測定するために必要な測定パラメータの設定について説明します。

測定パラメータは Setup Common Parameter 画面にて行います。

この画面を表示させるには、 Tx Tester (MS860x)/ Signal Analysis (MS268x) を押します。

以下に, Setup Common Parameter 画面を示します。

MS8609A << Setup Common Parameter	· (GSM) >>	Setup Parameter
Input Terminal Reference Level & Off	: [<mark>RF]]</mark>] Eset : [10.00dBm] [0.00dB]	
Frequency Band	: [Free]	→
Channel & Frequency Channel Spacing	: [1CH] = [890.200000MHz] : [0.200000MHz]	Modulation Analysis
		→
Signal Modulation	: [GMSK]	RF Power
Measuring Object Symbol Offset Burst Off Data Training Sequence	: [Normal Burst] : [1/2symbol] : [All1]	
Pattern	: [TSC0](= 0970897)	
Trigger		→ Output RF Spectrum
Trigger	: [Free Run]	÷
Сь 104	Levrel · 10 00dBm Power Cal · Off	Spurious Emission
Freq : 890.200000MHz	Offset : 0.00dB Correction : Off	1 2

3.1.1 信号入力コネクタを設定する(Terminal)

測定するDUT (Device Under Test)からの信号を入力するコネクタを選択します。

ステップ	操作内容
1	Entry の 🔨 🗸 またはロータリノブで, Terminal の項目にカーソルを移動します。
2	Entryの Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで,選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると、Terminal の項目の[]内に設定した Terminal が表示されます。

以下の設定が選択できます。

• RF:RF 入力コネクタが選択されます。

MS8608A の場合, High Power 入力または Low Power 入力が選択されま す。High Power 入力, Low Power 入力の切り替えは以下のように行いま す。

High Power 入力に設定:

Low Power 入力に設定:

Hi Power)を押す。 Shift を押しHi Power)を押す。

画面下部の表示領域に、どちらの入力に設定されているかが表示されます。 ・ IQ-DC:IQ入力コネクタが選択されます。

- IQ 入力コネクタのうち Unbalance の表記でグループ分けされているコネクタ を使用します。
- この場合, 内部回路との結合は DC 結合になります。
- IQ-AC:IQ入力コネクタが選択されます。
 IQ入力コネクタのうち Unbalance の表記でグループ分けされているコネクタ を使用します。

この場合,内部回路との結合はAC 結合になります。

IQ-Balance: IQ 入力コネクタが選択されます。
 IとI,QとQを使用して差動信号を入力します。

IQ 入力が選択された場合は、右側に Impedance の項目が表示され入力イン ピーダンスとして 50 Ωまたは1 MΩが選択できます。DUT の出力インピーダンス に応じて選択してください。

本体が MS268x の場合, IQ-DC, IQ-AC, IQ-Balance 入力は, 本体オプション 17, 18 搭載時のみ有効です。

3.1.2 RF入力レベルを設定する(Reference Level)

測定する DUT からの RF 信号の入力レベルを設定します。

ステップ	操作内容
1	Entry の アントン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ
2	Set を押すか,または入力したい数値をテンキーで押します。
3	設定用ウインドウが開きます。
4	Entry の 🔨 🗸 , ロータリノブ, またはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると、Reference Level の項目の[]内に設定したレベルが表示されます。

IQ入力コネクタが選択されている場合は、この項目は表示されません。

この設定は、測定画面にある Adjust Range 機能を使用することにより最適値に変更されます。

3.1.3 レベル補正係数を設定する(Level Offset)

ユーザ設定のレベル補正係数を設定します。

ステップ	操作内容
1	Entry の 🔨 🗸 またはロータリノブで, Offset の項目にカーソルを移動します。
2	Set を押すか,または入力したい数値をテンキーで押します。
3	設定用ウインドウが開きます。
4	Entry の 🔿 💛, ロータリノブ, またはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると、Offsetの項目の[]内に設定したレベルが表示されます。

例:

20 dBの増幅器の補正係数は-20 dB

10 dBの減衰器の補正係数は+10 dB

RFレベルの測定結果は、以下の式で算出された値を表示します。 測定結果の表示値 = 測定値 + Offset

3.1.4 周波数バンドを設定する(Band)

測定する DUT からの信号の周波数バンドを設定します。

ステップ	操作内容
1	Entryの 人 します。
2	Entryの Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで, 選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 以下の設定が選択できます。

•	Free	:周波数,チャネル,チャネル間隔を自由に設定できます。
		使米からの設定力法と同様です。
•	P-GSM900	:3GPP 規格で定められた P-GSM900 バンドのチャネル番号
		で周波数を指定します。
•	E-GSM900	:3GPP 規格で定められた E-GSM900 バンドのチャネル番号
		で周波数を指定します。
•	R-GSM900	:3GPP規格で定められたR-GSM900バンドのチャネル番号
		で周波数を指定します。
•	T-GSM380	:3GPP 規格で定められた T-GSM380 バンドのチャネル番号
		で周波数を指定します。
•	T-GSM410	:3GPP 規格で定められた T-GSM410 バンドのチャネル番号
		で周波数を指定します。
•	T-GSM900	:3GPP 規格で定められた T-GSM900 バンドのチャネル番号
		で周波数を指定します。
•	DCS1800	:3GPP 規格で定められた DCS1800 バンドのチャネル番号で
		周波数を指定します。
•	PCS1900	:3GPP 規格で定められた PCS1900 バンドのチャネル番号で
		周波数を指定します。
•	GSM450	:3GPP 規格で定められた GSM450 バンドのチャネル番号で
		周波数を指定します。
•	GSM480	:3GPP 規格で定められた GSM480 バンドのチャネル番号で
		周波数を指定します。
•	GSM750	:3GPP 規格で定められた GSM750 バンドのチャネル番号で
		周波数を指定します。
	GSM850	:3GPP 規格で定められた GSM850 バンドのチャネル番号で
		周波数を指定します。

Free 以外の Band が選択された場合は、右側に測定する DUT を選択する項目 が表示されます。詳しくは「3.1.5 測定する DUT を設定する(Band)」を参照してく ださい。Free 以外の Band が選択された場合、3GPP 規格で定められた各バンド のチャネル番号で周波数を指定します。周波数間隔は 0.2MHz 固定となり、設定されたチャネル番号に対応した周波数が自動的に設定されます。したがって 周波数およびチャネル間隔については表示のみになります。

また,上記周波数 Band のうち, T-GSM380, T-GSM410, T-GSM900, DCS1800, PCS1900, GSM750 が設定された場合, チャネル番号についてさらに詳細な設定が可能になります。詳しくは「3.1.6 チャネル番号を詳細に設定する(ARFCN)」を参照してください。

IQ入力コネクタが選択されている場合は、この項目は表示されません。

3.1.5 測定するDUTを設定する(Band)

測定する DUT を設定します。

ステップ	操作内容
1	Entryの
2	Entryの Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで, 選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 以下の設定が選択できます。

- ・ MS : Mobile Station を測定します。
- BTS :Base Tranceiver Station を測定します。
- Micro BTS : Micro Base Tranceiver Station を測定します。
- Pico BTS : Pico Base Tranceiver Station を測定します。

Band で Free が選択されている場合は、この項目は表示されません。

3.1.6 チャネル番号を詳細に設定する(ARFCN)

選択した周波数バンドのチャネル番号を詳細に設定します。

ステップ	
	Entry の \land \lor またはロータリノブで、ARFCN_FIRST(x)、
1	BAND_OFFSET(y)または ARFCN_RANGE(z)の項目にカーソルを移動し
	ます。
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	Entry の 🔿 🗸 , ロータリノブまたはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 本項目は,Band で T-GSM380,T-GSM410,T-GSM900,DCS1800,PCS1900, GSM750 が選択された場合のみ,設定可能となります。以下の項目が設定できま す。

- ARFCN FIRST(x):チャネル番号の先頭の値を設定します。
- BAND_OFFSET(y):チャネル番号のオフセット値を設定します。指定され たチャネル番号(n)に対し、式(n-x+y)で計算された チャネル番号に対応する周波数が実際に設定され ます。
- ARFCN_RANGE(z):チャネル番号の範囲を設定します。

各バンド選択時における各項目と周波数の関係は以下の表になります。 nはチャネル番号,Fu(n), Fl(n)はチャネル番号 nの時の周波数になります。

Band	MS	Channl	BTS,Micro BTS
T-GSM 380	Fl(n) = 380.2 + 0.2*(n-x+y)	$x \le n \le x + z$	Fu(n)=F(n)+10
T-GSM 410	Fl(n) = 410.2 + 0.2*(n-x+y)	$x \le n \le x + z$	Fu(n)=F(n)+10
T-GSM 900	Fl(n) = 870.4 + 0.2*(n-x+y)	$x \le n \le x + z$	Fu(n)=F(n)+45
GSM 750	Fu(n) = Fl(n) + 30	$x \le n \le x + z$	Fl(n) = 747.2 + 0.2*(n-x+y)
DCS 1800	Fl(n) = 1710.2 + 0.2*(n-x+y)	$x \le n \le x + z$	Fu(n) = F(n) + 95
PCS 1900	Fl(n) = 1850.2 + 0.2*(n-x+y)	$x \le n \le x + z$	Fu(n) = F(n) + 80

ARFCNと channel 範囲, 周波数値の関係

Band で T-GSM380, T-GSM410, T-GSM900, DCS1800, PCS1900, GSM750 以 外が選択された場合は, この項目は表示されません。

3.1.7 チャネルを設定する(Channel)

測定する DUT からの信号の周波数チャネルを設定します。

ステップ	操作内容
1	Entry の と しまたはロータリノブで、 Channel の項目にカーソルを 移動します。
2	Set を押すか,または入力したい数値をテンキーで押します。
3	設定用ウインドウが開きます。
4	Entry の 🔿 💛, ロータリノブまたはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 チャネルを変化させると,周波数間隔に応じて周波数も変化します。しかし周波 数を変化させてもチャネルは変化しません。したがって,チャネルと周波数の関 連付けを行う場合は,チャネルを設定してから周波数を設定してください。

IQ入力コネクタが選択されている場合は、この項目は表示されません。

3.1.8 周波数を設定する(Frequency)

測定する DUT からの信号の周波数を設定します。

ステップ	操作内容
1	Entry の
2	Set を押すか,または入力したい数値をテンキーで押します。
3	設定用ウインドウが開きます。
4	Entry の 🔨 🗸 , ロータリノブまたはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 「3.1.7 チャネルを設定する(Channel)」でも記載したように,チャネルを変化させると,周波数間隔に応じて周波数も変化しますが,周波数を変化させてもチャネルは変化しません。したがって,チャネルと周波数の関連付けを行う場合は, チャネルを設定してから周波数を設定してください。

IQ入力コネクタが選択されている場合は、この項目は表示されません。

3.1.9 チャネル間隔を設定する(Channel Spacing)

測定する DUT からの信号の周波数間隔を設定します。

ステップ	操作内容
1	Entry の へ V またはロータリノブで, Channel Spacing の項目に カーソルを移動します。
2	Set を押すか,または入力したい数値をテンキーで押します。
3	設定用ウインドウが開きます。
4	Entry の 🔨 🗸 , ロータリノブまたはテンキーで数値を入力します。
5	Set を押します。

設定が終了すると,指定した項目の[]内に設定した値が表示されます。 IQ入力コネクタが選択されている場合は,この項目は表示されません。

3.1.10 変調方式を設定する(Modulation)

測定する DUT からの信号の変調方式を設定します。

ステップ	操作内容
1	Entryの Image: State
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで, 選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると、Modulation の項目の[]内に設定した GMSK または 8-PSK が表示されます。

GMSK に設定すると GMSK 変調された GSM の信号を解析するモードになります。

8-PSK に設定すると8-PSK に変調された EDGE の信号を解析するモードになります。

3.1.11 バーストのフォーマットを設定する (Measuring Object)

バーストのフォーマットを設定します。

ステップ	操作内容
1	Entry の \land \lor またはロータリノブで, Measuring Object の項目 にカーソルを移動します。
2	Entryの Set を押します。
3	選択用ウインドウが開きます。
4	またはロータリノブで選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると、Measuring Object の項目の[]内に設定したバーストのフォーマットが表示されます。

以下の設定が選択できます。Normal Burst(Multislot)以外の場合,解析対象 は基本的に1スロット/フレームの信号になります。

- Normal Burst
- Normal Burst(Multislot)
- Access Burst
- Syncronization Burst
- Continuous

Normal Burst は GMSK または 8-PSK 変調された Normal Burst を解析する モードです。

Normal Burst(Multislot)は GMSK または 8-PSK 変調された複数のバースト を解析するモードです。

Normal Burst(Multislot)を選択した場合は必ず Multislot Parameter Setup 画面でフレーム内の各 Time Slot の設定を行ってください。

詳しくは「3.1.18 マルチスロットのパラメータを設定する(Multislot Parameter Setup)」を参照してください。

Access Burst は GMSK 変調された Access Burst を解析するモードです。 Modulation で 8-PSK が設定された場合, この項目は表示されません。

Syncronization Burst は GMSK 変調された Syncronization Burst を解析 するモードです。Modulation で 8-PSK が設定された場合, この項目は表示さ れません。

Continuous は、GMSK または 8-PSK 変調された連続波を解析するモードです。

3.1.12 シンボルオフセットを設定する (Symbol Offset)

シンボルオフセットを設定します。

ステップ	操作内容
1	Entry の 🔨 🗸 またはロータリノブで, Synbol Offset の項目にカー ソルを移動します。
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると、Symbol Offset の項目の[]内に設定した項目が表示されます。

以下の設定が選択できます。

- ・ OSymbol: シンボルの基準点を OSymbol に合わせます。
- ・ 1/2Symbol: シンボルの基準点を 0.5Symbol ずらします。

3.1.13 バーストオフ区間のデータを設定する (Burst Off Data)

測定する信号のバーストオフ区間のデータを設定します。

ステップ	操作内容
1	Entry の 🔨 🗸 またはロータリノブで, Burst Off Data の項目に カーソルを移動します。
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで選択したい項目にカーソルを移動します。
5	Set を押します。

設定が終了すると、Burst Off Data の項目の[]内に設定した項目が表示されます。

以下の設定が選択できます。

- ・ All1: バーストオフ区間のデータを ALL1 に設定します。
- ・ All0: バーストオフ区間のデータを ALL0 に設定します。
- ・ Auto: バーストオフ区間のデータを自動で判別します。

3.1.14 Training Sequenceを設定する(Training Sequence)

測定する DUT からの信号の検出/位置合わせを Training Sequence Code で行うか,振幅の変化で行うか,またはユーザ独自の任意パターンで行うかを選択します。

	設定方法
ステップ	操作内容
1	Entryの Image: A State Stat
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで選択したい項目にカーソルを移動します。
5	テンキーまたはロータリノブを使って値を選択します。
6	Set を押します。

設定が終了すると、Patternの項目の[]内に設定した Pattern が表示されます。 以下の設定が選択できます。

\cdot TSC0 \sim 7	:Normal Burst 選択時のみ選択できます。被測定信号の検出/
	位置合わせ設定パターンで行います。
• ETSC	:Access Burst 選択時のみ選択できます。 被測定信号の検出/位
	置合わせを設定パターンで行います。
•SYNC	:Synchronization Burst 選択時のみ選択できます。被測定信号
	の検出/位置合わせを設定パターンで行います。
•No	:被測定信号の検出/位置合わせを振幅の変化で行います。
•User	:被測定信号の検出/位置合わせをユーザ独自の任意パターン
	で行います。

ユーザパターンの設定方法

(1)ユーザ定義パターンデータの長さを設定します。

- User Pattern Length の項目で、ユーザ定義パターンデータの長さを設 定します。
- ・ パターンデータ長は、Symbol 単位で行います。
- GMSK 時は1から64symbol, 8-PSK 時は1から26symbolの範囲で設 定できます。
- (2)ユーザ定義パターンデータを設定します。
 - ・ User Bit Patter の項目で, ユーザ定義パターンデータを設定します。
 - ・ GMSK 時は 16 進数入力, 8-PSK 時は 8 進数入力になります。
- (3)ユーザ定義パターンの開始位置を設定します。
 - ・ Start Pattern の項目で、ユーザ定義パターンの開始位置を設定します。

- 例: TSCOをユーザパターンで設定した場合
 - User Pattern Length : 26 symbol
- User Bit Pattern : 0970897
- Start Point : 61 symbol

注意:

•

Measuring Object で Normal Burst(Multislot)を選択した場合は, Multislot Parameter Setup 画面で各 Training Sequence を設定しま す。

3.1.15 トリガを設定する(Trigger)

トリガを設定します。

ステップ	操作内容
1	Entryの 人 します。
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで, Free Rum または External にカーソルを 移動します。
5	Set を押します。

設定が終了すると、Trigger の項目の[]内に設定した Free Rum または External が表示されます。

- ・ Free Run: 内部のタイミングでバースト検出し測定します。
- ・ External:背面パネルのTrig/Gate Inからのトリガ信号を受けた時点から,最初に検出したバーストを測定します。

Externalを選択した場合はトリガ信号のエッジとディレイの設定が必要です。

	トリガエッジの設定方法
ステップ	操作内容
1	Entry の ✓ またはロータリノブで, Trigger Edge の項目にカーソル を移動します。
2	Entry の Set を押します。
3	選択用ウインドウが開きます。
4	∧ ∨ またはロータリノブで, Rise または Fail にカーソルを移動します。

5 <u>Set</u> を押します。

設定が終了すると、Trigger Edge の項目の[]内に Rise または Fail が表示されます。

- ・ Rise: 立ち上がりに同期します。
- Fall: 立ち下がりに同期します。

トリガディレイの設定方法

ステップ	操作内容
1	Entry の / V またはロータリノブで, Trigger Delay の項目にカーソルを移動します。
2	テンキーでディレイタイムを設定します。

設定が終了すると、Trigger Delay の項目の[]内に設定したディレイタイムが表示されます。

3.1.16 周特補正係数のテーブルを設定する(Correction)

被測定物と本測定器をつなぐケーブルの周波数特性や損失などを補正したい 場合,測定系の持つ補正係数を本測定器の内部メモリに記憶しておき,測定値 にこの補正係数を加えて表示することができます。

この機能を使用することにより、必要とする測定値を本測定器から直接読み取る ことができるようになります。

周波数特性補正係数を本測定器の内部メモリに記憶する方法については,別 冊の「MS8608A/MS8609A ディジタル移動無線機送信テスタ取扱説明書 Vol.2 (スペクトラムアナライザ機能編)」または、「MS268x スペクトラムアナライザ取扱 説明書 Vol.2 (パネル操作詳細編)」を参照してください。

この補正係数のテーブルは、内部メモリに5種類記憶させることができます。 ここでは、本ソフトウェアを使用する時に、内部に記憶された5種類の補正係数 テーブルを選択する方法を説明します。

補正係数テーブルの選択方法

ステップ	操作内容
1	Amplitude を押して, Amplitude のファンクションラベルを表示させます。
2	F4 (Correction)を押すと、補正係数のテーブル選択用のウインドウが開きます。
3	Entry の 区 したはロータリノブで, 選択したい補正係数テーブルにカーソルを移動します。
4	Set を押します。

設定が終了すると、画面右下の Correction の表示部に選択した補正係数テーブルが表示されます。

3.1.17 プリアンプを設定する(Pre Ampl.)

本機能は本体オプション MS8608A-08, MS8609A-08, MS2681A-08 および MS2683A-08 を搭載している場合に使用可能です。

	設定方法
ステップ	操作内容
1	Amplitude を押して, Amplitude のファンクションラベルを表示させます。
2	F5 (Pre Ampl.)を押すと、On とOffを交互に切り替えます。

設定が終了すると、画面右下の Pre Amplの表示部に On または Off が表示されます。

3.1.18 マルチスロットのパラメータを設定する(Multislot Parameter Setup)

この画面では Measuring Object で Normal Burst(Multislot)を選択した場合の み, 測定信号の各 Time Slot でのバーストの On/Off や Traning Seqence の設定を 行います。 F4 (Multislot Parameter Setup)を押すと,本画面に移行します。

MS8609A			Multislot Parameter Setun
<< Multislot Parameter :	Setup (GSM) >>		
Burst SlotO : (On)	Training Sequence [TSCO](=	0970897)	Burst All On
Slot1 : [On]	[TSC0](=	0970897)	Burst
Slot2 : [On]	[TSC1](=	OB778B7)	All Off
Slot3 : [On]	[TSC0](=	0970897)	
Slot4 : [On]	[TSC0](=	0970897)	
Slot5 : [On]	[TSC0](=	0970897)	
Slot6 : [On]	[<u>TSC0</u>](=	0970897)	
Slot7 : [On]	[TSC0](=	0970897)	→ De elz
Ch : 1CH Freq : 890.200000MHz	Level : -10.000 Offset : 0.000	Pre Ampl : Off dBm Power Cal : Off dB Correction : Off	Back Screen

- ・Slot0~7 :指定したスロットの設定を行います。
- ・Burst :指定した Slot 区間での Burst の On/Off を設定します。
- Traning Seqence :測定する DUT からの信号の検出/位置合わせを Training Sequence Code で行うか,振幅の変化で行うか,またはユー ザ独自の任意パターンで行うかを選択します。詳しくは 「3.1.14 Training Sequence を設定する(Training Sequence)」 を参照してください。
- ・Burst All On/Off Slot0を除いたすべての Slotを On または Off に設定します。
- 注意:

Normal Burst(Multislot)を選択した場合, Frameの先頭をSlot0で設定した Pattern を使って検出します。Slot0のPattern が Noのときや, Slot0で設定 した Pattern の Burst が測定する信号の Frame に複数あるときは Frame の 先頭の検出ができない場合があります。

3.2 変調精度を解析する

Modulation Analysis 画面(変調解析)で表示される測定結果, あるいは設定する パラメータについて説明します。

3.2.1 測定結果の説明

画面の説明

Setup Common Parameter の Modulation を GMSK に設定している場合

MS8609A		Modu Lation
<< Modulation Analysis (GSM) >>	Measure : Single	Hnalysis
	Storage : Normal	#
Frequereu	Irace : Non	Traca
Cappion Frequency	. 900 100 069 0	MHz Format
Carrier Frequency Frror	-0.037.1	
	-0.04	DDm *
	0.01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		Storage
Modulation		mode
RMS Phase Error	: 0.22 deg. (r	ms) *
Peak Phase Error	: 0.63 deg.	
Magnitude Error	: 0.36 % (rms)	Scale
		mode
		Adjust
		Kange
		→
	Pre Ampl :	Off Back
Ch : 1CH Level :	10.00dBm Power Cal :	Off Screen
Freq : 890.200000MHz Offset :	0.00dB Correction :	0ff 12

Frequency

- Carrier Frequency 位相軌跡法により求めた,被測定信号の周波数をMHz単位で表示します。
- Carrier Frequency Error 設定周波数に対する、上記 Carrier Frequencyの誤差をkHz および ppm で 表示します。

Modulation

- RMS Phase Error(RMS) 被測定信号の被測定信号の位相誤差の実効値をdeg.単位で表示します。
- Phase Error 被測定信号の位相誤差のピーク値を deg.単位で表示します。
- (3) Magnitude Error (RMS) 被測定信号の振幅誤差の実効値を%単位で表示します。

MS8609A KK Modulation Analysis (GSM) >>	Measure	: Single	Nodu Lation Ana Lysis
	Storage	: Normal : Non	#
Frequency Carrier Frequency Carrier Frequency Error	:	890.199 965 4 MHz -0.034 6 kHz	Trace Format
		-0.04 ppm	* Storage
Modulation			Mode
RMS EVM Book FUM	:	0.67 % (rms)	*
Magnitude Error		0.48 % (rms)	Scale
Phase Error Origin Offset	:	0.30 deg. (rms) 49 49 dB	Mode
95:th Percentile		1.3 %	*
			Filter
			Adjust Range
			→
Ch : 1CH Level :	-10.00dBm	Pre Ampl : Off Power Cal : Off	Back Screen

Setup Common Parameter の Modulation を 8-PSK に設定している場合

Frequency

- Carrier Frequency 位相軌跡法により求めた,被測定信号の周波数をMHz単位で表示します。
- Carrier Frequency Error 設定周波数に対する、上記 Carrier Frequencyの誤差をkHz およびppm で 表示します。

Modulation

- RMS EVM(RMS) 被測定信号のベクトル誤差の実効値を%単位で表示します。
- (2) Peak EVM 被測定信号の位相誤差のピーク値を%単位で表示します。
- (3) Magnitude Error(RMS) 被測定信号の振幅誤差の実効値を%単位で表示します。
- (4) Phase Error (RMS) 被測定信号の位相誤差のピーク値を deg.単位で表示します。
- (5) Origin Offset 被測定信号の原点オフセット(キャリアリーク成分)をdB 単位で表示しま す。
- (6) 95:th Percentile
 被測定信号の EVM の相対確率分布が 95%となる EVM 値を%単位で表示します。

3.2.2 波形表示フォーマットを設定する(Trace Format)

ディスプレイに表示されている波形表示のフォーマットを設定します。 下記の中から選択できます。

•	Non	: 数値結果のみを表示します。
•	Constellation	: コンスタレーションを表示します。
•	Eye Diagram	: アイダイヤグラムを表示します。
•	EVM	: EVM vs. シンボルを表示します。(Setup Common
		Parameter の Modulation を 8-PSK に設定している
		場合)
•	Phase Error	: 位相誤差 vs.シンボルを表示します。
•	Magnitude Error	: 振幅誤差 vs.シンボルを表示します。
•	Trellis	: 位相 vs.シンボルを表示します。(Setup Common
		Parameter の Modulation を GMSK に設定してい

る場合)

3.2.3 ストレージモードを設定する(Storage Mode)

測定結果のストレージモードを設定します。

Storage Mode	: ストレージモードは下記の中から選択できます。
• Normal	: 測定ごとに結果を更新し,表示します。
• Average	: 測定ごとに結果を平均化し,表示します。
• Overwrite	: 測定値は、Normal の場合と同じ処理をしますが、
	波形表示の上書きをします。
Average Count	: 平均化の回数を設定します。
Refresh Interval	: 平均値表示の更新時期を設定します。
• Every	: 測定ごとに更新します。
• Once	: 平均化回数まで測定後に更新します。

3.2.4 コンスタレーション波形表示の補間方法を考える(Interpolation)

コンスタレーション波形表示の補間方法を設定します。

- (1) F5 (Scale Mode)を押すと、以下のファンクションラベルが表示されます。
 - F1 (Interpolation)
 - F4 (Vertical Scale)
- (2) F1 (Interpolation)を押すと、以下のファンクションラベルが表示される ので、補間方法を選択します。
 - ・ F1 (Non) : シンボル点のみ表示します。
 - ・ F2 (Linear) : シンボル点を直線で補間して表示します。
 - **F3** (10points) :シンボル点の間を 10 点で補間し表示します。
 - ・ <u>F4</u> (Linear & Symbol Position) : NonとLinearを合わせて表示し ます。
 - ・ <u>F5</u> (10 points & Symbol Position) : Nonと10pointsを合わせて表示します。
 - [F6] (return) :

3.2.5 EVM, 位相誤差, 振幅誤差のスケールを設定する(Vertical Scale)

EVM, 位相誤差, 振幅誤差の波形表示の縦軸スケールを設定します。

- (1) F3 (Scale Mode)を押すと、以下のファンクションラベルが表示されます。
 - F1 (Interpolation)
 - F4 (Vertical Scale)
- (2) F4 (Vertical Scale)を押すと、以下のファンクションラベルが表示される ので、縦軸スケールを選択します。
 - EVM,振幅誤差の場合
 - F1 (5%): 縦軸フルスケールを 5%にします。
 - F2 (10%): 縦軸フルスケールを10%にします。
 - F3 (20%): 縦軸フルスケールを 20%にします。
 - 「F4」(50%): 縦軸フルスケールを 50%にします。
 - F5 (100%): 縦軸フルスケールを100%にします。

位相誤差の場合

- ・ [F1](5 deg.): 縦軸フルスケールを 5°にします。
- ・ [F2](10 deg.):縦軸フルスケールを 10°にします。
- ・ F3 (20 deg.): 縦軸フルスケールを 20°にします。
- ・ [F4](50 deg.): 縦軸フルスケールを 50°にします。
- ・ F5 (100 deg.): 縦軸フルスケールを 100°にします。

3.2.6 フィルタを設定する(Filter)

測定する送信機から入力された信号に対して,解析する前に下記のフィルタを 入れることができます。(8-PSK 変調時)

- F1 (Non):フィルタ処理をせずに信号を解析します。
 GSM 8-PSK modulation 規格の信号に Pulse Shaping Filter の逆特性を掛け, ナイキスト状態にした信号を入力する場合はこの設定を選択します。
- F2 (Nyquist):本測定器に入力された信号を、ナイキストフィルタ(α = 0.25)を通過させた後に解析します。

GSM 8-PSK modulation 規格の信号に Pulse Shaping Filter の逆特性を掛けた信号(3/8π rotation 8-PSK の状態)を入力する場合は、この設定を選択します。

 F3 (Nyquist & Inverse):本測定器に入力された信号を、ナイキストフィル タ(α = 0.25) と GSM の 05.04 の 3.5 Pulse Shaping に記載の Filter の逆特性 のフィルタを通過させた後に解析します。

このフィルタを通過させることにより Pulse Shaping フィルタ処理前の状態(3/8π rotation 8-PSK の状態)に戻して解析していることになります。言い換えると、 復調する条件で解析していることになります。

F4 (Spec):本測定器に入力された信号を, GSM 05.05 の 4.6.2 8-PSK modulation に記載の measurement filter を通過させた後に解析します。
 GSM の規格に基づいて測定する場合は,この設定を選択します。

3.2.7 マーカを表示させる(Marker)

Trace Format が Non 以外に設定されている場合は, 波形上にマーカを表示させることができます。

	表示方法
ステップ	操作内容
1	Marker を押して, Marker のファンクションラベルを表示させます。
2	F1 (Marker)を押すと、NormalとOffを交互に切り替えます。

Normal に設定すると波形上にひし形(◆)のマーカが表示されます。
3.2.8 変調解析の範囲を選択する(Analysis Range)

変調解析の範囲を 1Slot か Frame 内の Burst の平均を測定するかを選択できま す。Measuring Object で Normal Burst(Multislot)を選択した場合のみ有効で す。

ステップ	操作内容
1	(More)を押して, Modulation Analysis のファンクションラベルの 2 ページ目を表示させます。
2	F4 (Analysis Range)を押すと、Slotと Frame に交互に切り替わり測定 を行います。

- ・Slot: 1Slotの変調解析を行います。
- Frame: Multislot Parameter Setup 画面で Burst On に設定した Slot の変調 解析を行い,その平均を出します。

3.2.9 測定レンジの最適化(Adjust Ragne)

測定を実行する前には、Adjust Range(測定レンジの最適化)を実施することを お勧めします。ただし、同程度のレベルを入力している間は、この最適化を何度 も実施する必要はありません。

測定レンジの最適化を実行すると、内部の解析用 AD 変換器を最良の状態で使用できるように、自動的に内部のレベルダイヤを変更します。つまり、AD 変換器 でのダイナミックレンジ(S/N) が最大になるように内部回路を調整します。また、同時にパワーメータのレンジも調整します。

被測定信号のレベルに合わせて内部のレベルダイヤを変更するため、測定レンジ最適化の実行の際は被測定信号を入力している必要があります。また、大きく変動している信号の場合は、Adjust Range機能が正常に動作しないことも考えられます。

なお, IQ 入力時はこの測定レンジの最適化は実行できません。

3.2.10 パワー校正機能(Power Calibration)

本体が MS860x の場合, レベル測定を高精度で行えるよう内蔵のパワーメータを 用いた Power Calibration (パワー校正)機能を備えています。レベル測定時はこ のパワー校正を実施することをお勧めします。温度的に安定している環境の場 合は, このパワー校正機能を頻繁に実施する必要はありません。ただし, 使用し ている周波数が大きく変わった場合は, 再度実施した方が良いでしょう。

パワー校正機能とは、被測定信号のテスタモードでの測定値と内蔵パワーメータ での測定値とを比較し、テスタモードでの測定値をパワーメータでの測定値で校 正するというものです。したがって、このパワー校正機能は被測定信号が入力さ れた状態で実施されなければなりません。また、パワー校正に先立って、パワー メータのゼロ点校正を実施しておく必要があります。

本測定器のパワーメータの測定範囲は 30 MHz~3 GHz です。範囲外の周波数 では、このパワー校正機能は正常に動作しません。注意してください。また、IQ 入力時はこの機能は実行できません。

内蔵パワーメータを用いたレベル校正の方法

- 1. 各測定画面に移行します。
- 2. <a>Fx (Calibration)を押して, Calibration のファンクションラベルを表示します。
- 3. [F1] (Power Calibration)を押すと、内蔵パワーメータを用いたレベル校正 機能が実行されます。

レベル校正後に校正値をリセットしたい場合は、ファンクションメニューの"Power Calibration Cancel"を押してください。

本体が MS268x の場合,レベル測定時はスペクトラムアナライザモードでレベル 校正を実施してください。詳細は,別冊「MS268x スペクトラムアナライザ 取扱説 明書 Vol.2(パネル操作詳細編)」を参照してください。

3.2.11 パワー校正機能(Multi Carr. Power Calibration)

測定器内蔵の校正信号をもとに内部信号経路の校正を行います。レベルに関する測定を行われる場合は実施してください。

本機能は、入力信号がマルチキャリアである場合に使用してください。テスタ モードの測定帯域とパワーメータの測定帯域に違いがあるため、入力信号がマ ルチキャリアのときにパワーメータを使用したレベル校正を行った場合、校正が 正しく行えません。シングルキャリアでは、確度の高い校正を行うために、パワー メータを使用したパワー校正を行ってください。内部校正用信号を用いたレベル 校正機能は、本測定器内蔵の校正信号を用いているため、外部より校正用の信 号を入力する必要はありません。

なお, IQ 入力時には, このレベル校正は実行できません。

内部校正用信号を用いたレベル校正の方法

- 1. 各測定画面に移行します。
- 2. Fx (Calibration)を押して, Calibration のファンクションラベルを表示しま す。
- 3. F3 (Multi Carr. Power Calibration)を押すと、レベル校正機能が実行されます。

3.3 送信電力を測定する

RF Power 画面で表示される測定結果,あるいは設定するパラメータついて説明します。

画面の説明

波形表示

横軸を Symbol, 縦軸をレベルとした, 振幅測定波形を表示します。また振幅 測定波形が相対レベル表示のときは, テンプレート(振幅規格線)を表示しま す。

TX Power

被測定信号のバースト内平均電力を表示します。

Carrier OFF Power

送信 OFF 時の平均電力表示します。

On/Off Ratio

Tx Power と Carrier Off Power の電力比を表示します。

Power Flatness

On 区間内の最大電力と,最小電力を表示します。

波形表示

横軸を Symbol, 縦軸をレベルとした, 振幅測定波形を表示します。また振幅 測定波形が相対レベル表示のときは, テンプレート(振幅規格線)を表示しま す。相対レベル表示のときの 0dB は Frame 内の最大 TX Power を基準として います。 Slot No.

表示されたスロットの結果を表示します。

TX Power(slot0 \sim 7)

各スロットのバースト内平均電力を表示します。

TX Power が最大の Slot を示します。

Carrier OFF Power

送信 OFF 時の平均電力表示します。

Multislot Parameter Setup 画面ですべてのバーストを On にした場合は表示されません。

On/Off Ratio

指定した Slot の Tx Power と Carrier Off Power の電力比を表示します。 Multislot Parameter Setup 画面ですべてのバーストを On にした場合は表示さ れません。

Power Flatness

指定した Slot の On 区間内の最大電力と, 最小電力を表示します。

On

Off

指定した Slot でのテンプレートによる振幅測定波形の Pass/Fail 判定を表示しています。Window で Frame 表示を選択した場合は Frame 全体の Pass/Fail 判定を表示しています。Fail 判定された Slot は TxPower の左の Slot No.が赤 く反転表示されます。

3.3.1 波形の表示範囲を設定する(Window)

波形ウインドウの表示範囲を設定します。

- F1 (Window) を押すと、以下のファンクションラベルが表示されるので、 波形ウインドウの表示範囲を選択します。
 - F1 (Slot): 1 スロット分の波形を表示します。
 - ・ F2 (On Portion) : On 区間の波形を拡大します。
 - **F3** (Frame) : 1 フレーム分の波形を表示します。
 - ・ [F4] (Leading): バースト立ち上がり部分の波形を表示します。
 - F5 (Trailing): バースト立ち下がり部分の波形を表示します。

3.3.2 ストレージモードを設定する(Storage Mode)

測定結果のストレージモードを設定します。

Storage Mode: ストレージモードは下記の中から選択できます。

- ・ Normal: 測定ごとに結果を更新し、表示します。
- ・ Average: 測定ごとに結果を平均化し,表示します。

Average Count: 平均化の回数を設定します。

Refresh Interval: 平均値表示の更新時期を設定します。

- ・ Every: 測定ごと更新します。
- · Once: 平均化回数まで測定後に更新します。

3.3.3 測定ダイナミックレンジを拡大する(Wide Dynamic Range)

[F4] (Wide Dynamic Range) を押すと, Wide Dynamic Range の On/Offを切り替えることができます。

Wide Dynamic Range を On にすると、バーストオン部分とオフ部分で、RF アッテ ネータの設定を変えて測定することにより、測定ダイナミックレンジを拡大します。 また、測定は Single 測定となります。

Wide Dynamic Range を On にすると、バーストオン部分とオフ 部分で、RF アッテネータの設定を切り替えて測定しますので、RF アッテネータの切換回数が通常の回数より多くなります。RF アッ テネータのリレーの切り替え寿命は 500 万回です。また、8-PSK の場合、入力レベルが高いと Training Sequence Code の同期 がとれず、Code Not Found が表示されることがあります。

3.3.4 波形の相対表示/絶対表示を設定する(Level Rel./Abs.)

波形の相対表示/絶対表示を設定します。

ステップ	操作内容
1	(More)を押して, RF Power のファンクションラベルの 2 ページ目を
2	表示させます。 F4 (Level Rel/Abs.)を押すと、相対値表示と絶対値表示に交互に切り
-	替わります。

3.3.5 測定結果の表示を切り替える(Waveform Display)

Measuring Object で Normal Burst(Multislot)を選択した場合,ファンクションラベル2ページ目の F1 (Waveform Display)を押すことで、数値画面と波形画面の表示を切り替えることができます。波形を非表示にすることですべてのスロットの結果を表示できます。

3.3.6 スロットの測定結果を選択する(Slot No.)

指定したスロットの測定結果を表示します。

ステップ	操作内容
1	(More)を押して, RF Power のファンクションラベルの 2 ページ目を 表示させます。
2	F2 (Slot No.)を押すと、ウインドウが開きます。
3	Slot0~7を選択してください。指定したスロットの測定結果を表示します。

3.3.7 マーカを設定する (Marker)

RF Power 画面では波形上にマーカを表示することができます。

	設定方法
ステップ	操作内容
1	[Marker] を押して, Marker のファンクションラベルを表示させます。
2	F1 (Marker)を押すと、NormalとOffに交互に切り替わります。

Normal に設定すると、波形上にひし形(◆)のマーカが表示されます。

3.3.8 テンプレートを設定する(Setup Template)

バースト信号を測定する場合で,相対レベル表示のときに,テンプレートを表示 することができます。以下に,テンプレートの設定方法について説明します。

	Setup Template 画面の表示方法	Ī			
ステップ	操	ļ	作	内	容
1	BF Power 画面が表示されてい	ろ	比能で	≈ RF	Powerのファングションラベル

ページ目の F3 (Setup Template)を押します。

2 Setup Template 画面が表示されます。

Template Format が BTS の時

Template Format が MS の時

	テンフレートの設定
ステップ	操作内容
1	Entry の / V またはロータリノブで,設定したい規格線を選択します。
2	テンキーで,規格線のレベルを設定します。または,EntryのSetを押します。
	以下は, Set を押した場合
3	規格線変更ラインが表示されます。
4	Entry の / / またはロータリノブで,規格線変更ラインを所望のレベルに設定します。
5	Set を押します。

設定が終了すると、規格線のレベルが設定したレベルになります。

テンプレートの形式の設定方法

-- .

・ <u>F1</u> (Template Format)を押すと, BTS と MS が交互に切り替わります。 規格線のレベルや単位は BTS と MS で別々に保存されます。

オフレベル(Upper-1)の単位設定

・ F3 (Off Level)を押すと、dBとdBm が交互に切り替わります。Template Format が BTS の時のみ選択します。

テンプレートの種類設定

F4 (Select Template)を押すと、テンプレートの形状を下記の4種類の中から選択できます。

- NB at GMSK :GMSK 変調された Normal Burst
 AB :Access Burst
 NB at 8-PSK :8PSK 変調にされた Normal Burst
 PTS 1000 at CMSK 変調にされた PCS 1000 またけ MYMIC
- BTS1900 at GMSK :GMSK 変調にされた PCS1900 または MXM1900 バンドのバースト信号

テンプレート線のレベルの自動決定

Trace Format が MS に選択されている時,規格線 Upper-1, Upper-2, および Upper-6(NB at 8-PSK 時は Upper-7)は dB と dBm 両方の値を設定します。測定 時には dB と dBm のうち高いほうのレベルが自動的に選択されます。

テンプレートによる Pass/Fail 判定を行うときは、A~J におけるパワー値を隣り合う 1/10 symbol 点におけるパワー値から直線補完して求めています。

テンプレートを初期設定に戻す

F5 (Standard)を押すと、初期設定に戻ります。

それぞれ、下記のようなテンプレートになっています。

3-36

Template Format: MS	
NB at GMSK	
Upper -1 :-36dB or $-59dBm$ Upper -2 :-30dB or $-17dBm$ Upper -3 : $-6dB$ Upper -4 : 4dB Upper -5 : 1dB Upper -6 :-54dB or $-59dBm$	$\begin{array}{c} UP4 \\ UP3 \\ UP3 \\ UP2 \\ UP1 \\ UP1 \\ \bullet \\ $
Lower -1 : -1 dB	$ \begin{vmatrix} I & I & I \\ A & B & C \end{vmatrix} \qquad \begin{vmatrix} I & I & I \\ D & E & F \\ 0 \\ Symbol \qquad 147 \\ Symbol \end{vmatrix} $
A : 0 symbol -28μ s B : 0 symbol -18μ s C : 0 symbol -10μ s D : 147 symbol $+10 \mu$ s E : 147 symbol $+18 \mu$ s F : 147 symbol $+28 \mu$ s	
Template Format: MS	
NB at GMSK	
NB at GMSK Upper -1 : $-36dB$ or $-59dBm$ Upper -2 : $-30dB$ or $-17dBm$ Upper -3 : $-6dB$ Upper -4 : $4dB$ Upper -5 : $1dB$ Upper -6 : $-54dB$ or $-59dBm$	UP3 UP3 UP2 UP1 UP4 UP5 UP3 UP3 UP3 UP3 UP3 UP3 UP3 UP3 UP3 UP3
NB at GMSK Upper -1 : -36dB or -59dBm Upper -2 : -30dB or -17dBm Upper -3 : -6dB Upper -4 : 4dB Upper -5 : 1dB Upper -6 : -54dB or -59dBm Lower -1 : -1dB	$UP3 \qquad UP3 \qquad UP3 \qquad UP3 \qquad UP3 \qquad UP3 \qquad UP2 \qquad UP2 \qquad UP2 \qquad UP2 \qquad UP2 \qquad UP2 \qquad UP4 \qquad UP3 \qquad UP2 \qquad UP2 \qquad UP4 \qquad UP2 \qquad UP4 \qquad UP3 \qquad UP3 \qquad UP4 \qquad UP3 \qquad UP3 \qquad UP4 \qquad UP3 \qquad UP3 \qquad UP4 \qquad UP3 \qquad UP4 \qquad UP3 \qquad UP4 $

3.4 Output RF Spectrum を測定する

Output RF Spectrum 画面で表示される測定結果,あるいは設定するパラメータについて説明します。

M	S8608A	2004/11/ RF_Spectr	23 18:27 IIm (GSM)	7:44	Measure ·	Single	Output RF Spectrum
ſ	V Vucpuc	ш эрссы		//	Storage ·	Normal	#
	Standard				Method ·	High Sneed	π
	GCMAND/9	00/850/700	>=39dBm	39dB#	Trace ·	Non	Трасе
	0.001100/0	00/ 000/ 100			muce .	AOH	Format
	Offset F	rea Modu	lation		Switchin	g Transients	101 m0.0
		13	74dBm		18 90	ldBm	ж
	····	Lower	Unner	Limit	Lower	Unner Limit	
		(dR)	(dB)	DIMIO	(dBm)	(dBm)	Storage
	0 10MHz	-11 23	-7 38	+0 5dB	12 80	11 48dBm	Mode
	0.20MHz	-31.75	-33,17	-30.0dB	-10.90	-11.58dBm	ж
	0.25MHz	-42.83	-40.27	-33.0dB	-19.63	-19.43dBm	
	0.40MHz	-57.34	-56.53	-36.0dBm	-30.62	-33.39 -21.0dBm	llnit.
	0.60MHz	-70.57	-65.31	-51.0dBm	-43.83	-41.30 -26.0dBm	
	0.80MHz	-75.33	-76.91	-51.0dBm	-50.10	-49.53 -26.0dBm	
	1.00MHz	-76.77	-76.86	-51.0dBm	-54.44	-52.47 -26.0dBm	ж
	1.20MHz	-77.05	-75.63	-51.0dBm	-49.96	-51.14 -32.0dBm	6-14144
	1.40MHz	-76.48	-78.21	-51.0dBm	-45.61	-45.89 -32.0dBm	Calibration
	1.60MHz	-74.68	-74.21	-51.0dBm	-53.86	-54.48 -32.0dBm	
	1.80MHz	-70.28	-70.02	-46.0dBm	-50.40	-50.39 -36.0dBm	
			_				Adjust
			To	tal Judge	ement		Kange
		Modulat	lon : Pas	SS SW11	tching Trans	ients : Pass	→
							Dealt
			Ing	out : Los	v Pr	e Ampl : Off	Back
	Ch :		1CH Lev	zel:	8.00dBm Po	wer Cal : Off	Screen
	Freg :	890.20000	OMHz Off	fset :	0.00dB Co	rrection : Off	12

Modulation

キャリア周波数から、各オフセット分離れた周波数での、Training Sequence Code を除いた 50~90%の区間における平均電力を表示します。

Switching Transients

キャリア周波数から,各オフセット分離れた周波数での,ピーク電力を表示します。

Offset Frequency が 100kHz から 1.6MHz までは RBW 30kHz, 1.8MHz は RBW 100kHz で測定しています。

Standard

現在選択されている Standard を表示します。

Limit

合否判定の基準に使用した規格値を表示します。Limit 値には相対値と絶対 値がありますが、Setup Output RF Spectrum Table 画面の設定にしたがってど ちらの値を使用するかを決定しています。

Judgement

Limit 値による Pass/Fail 判定を表示します。

3.4.1 波形表示フォーマットを設定する(Trace Format)

ディスプレイに表示されている波形表示のフォーマットを設定します。 下記の中から選択できます。

- Non
- Modulation
- Switching Transients
- : 数値結果のみを表示します。
- : Modulation を表示します。
- : Switching Transients を表示します。

Trace Format が Modulation のとき

Trace Format が Switching Transients のとき

波形表示

上側のグラフは横軸を Offset Frequency, 縦軸を各 Modulation, Switching Transients の値としたグラフを表示します。また下側の波形はマー カで示された Offset Frequency での横軸を Symbol, 縦軸をレベルとした, 振 幅測定波形を表示します。Limit 値を越えた部分は赤く表示されます。

3.4.2 ストレージモードを設定する(Storage Mode)

測定結果のストレージモードを設定します。

Storage Mode: ストレージモードは下記の中から選択できます。

- ・ Normal: 測定ごとに結果を更新し,表示します。
- ・ Average: 測定ごとに結果を平均化し、表示します。

Average Count: 平均化の回数を設定します。

Refresh Interval: 平均値表示の更新期間を設定します。

- ・ Every: 測定ごとに更新します。
- ・ Once: 平均化回数まで測定後に更新します。

3.4.3 Limit値の表示を切り替える(View Select)

• F3 (View Select)を押すと、表示している Limit 値を Lower と Upper の値 に切り替えることができます。

3.4.4 測定の範囲を選択する(Analysis Range)

Switching Transient の範囲を1Slotか1Frame に選択できます。Measuring Object で Normal Burst(Multislot)を選択した場合のみ有効です。

- 1 (More)を押し、ファンクションラベルの2ページ目を表示させます。
- 2. F1 (Analysis Range)を押し, Slot と Frame を交互に切り替え測定範囲 を選択します。

3.4.5 Switching Transientの単位を設定する(Unit)

- 1. (More)を押し、ファンクションラベルの2ページ目を表示させます。
- 2. **F2** (Unit)を押すと,以下のファンクションラベルが表示されるので, 単位を選択します。
 - <u>F1</u> (dBm): 単位をdBm にします。
 - **F2** (dB): 単位をdB にします。

3.4.6 マーカ操作対象トレースを変更する(Operation Trace)

- 1. (More)を押し、ファンクションラベルの2ページ目を表示させます。
- 2. F4 (Operation Trace)を押し, Spectrum(上側グラフ)と Spot(下側波形)を 交互に切り替え操作対象トレースを選択します。

3.4.7 規格値の設定を行う(Setup Output RF Spectrum Table)

Output RF Spectrum 測定では、合否判定の基準に使用する規格値を設定することができます。

Output RF Spectrum 画面のファンクションラベル2ページ目のF5 (Setup ORS Table)を押すことで、Spot 法の測定パラメータを設定する画面に移行します。

MS8608A 2005/05/16 1	3:16:07 rum Table (GSM) >>		Setup Table Spot		
Standard:GSM400/900/850)/700 >=39dBm, 39dBm(S	itandard)	\$ View Select		
View Select : Modulation Switching Transients					
Cffset Frequency (MHz) f 1 : (0.10000MHz) f 2 : (0.200000MHz) f 3 : (0.250000MHz) f 4 : (0.40000MHz) f 5 : (0.60000MHz) f 6 : (0.800000MHz) f 6 : (1.00000MHz) f 8 : (1.20000MHz) f 9 : (1.40000MHz) f 10 : (1.60000MHz) f 11 : (1.80000MHz)	$\begin{array}{c} \text{Lower} \\ \text{Abs Limit Rel Limit} \\ (dBm) & (dB) \\ \hline (-36.00) & [-30.00] \\ \hline (-36.00) & [-30.00] \\ \hline [-36.00) & [-33.00] \\ \hline [-36.00) & [-60.00] \\ \hline [-51.00) & [-66.00] \\ \hline [-51.00] & [-66.00] \\ \hline [-51.00] & [-66.00] \\ \hline [-51.00] & [-66.00] \\ \hline \end{bmatrix}$	Upper Abs Limit Rel Limit (dBm) (dB) [-36.00] [0.50] [-36.00] [-30.00] [-36.00] [-30.00] [-36.00] [-30.00] [-51.00] [-66.00] [-51.00] [-66.00]	\$ Judgement dB & dBm		
			Standard →		
Сћ : 1СН Бред 890 200000МИ2	Input : Low Level : -20.00dBm Offset : 0.00dB	Pre Ampl : Off Power Cal : Off Correction : Off	Back Screen		

決められた周波数点での各 Lower,Upper の Limit 値を設定します。反転表示が 入力可能な部分です。Entry の へ ↓ 、またはロータリノブで移動させること ができます。

一つの周波数テーブルにつき以下の4個の規格値をLower,Upper共に設定します。

- ・ Modulation の絶対規格値, dBm単位(Abs Limit)
- ・ Modulation の相対規格値, dB 単位(Rel Limit)
- ・ Switching Transients の絶対規格値, dBm単位(Abs Limit)
- Switching Transients の相対規格値, dB 単位(Rel Limit)

ModulationとSwitching Transientsの項目は、ファンクションラベルのF1 (View Select)を押すことで切り替えて表示されます。

ファンクションラベルの F3 (Judgement)を押すことで,設定した判定方法を選 択することができます。

dBm:	Limit(dB)の Abs Limit に設定された値で合否判定を行いま
	す。

- dB: Limit(dB)の Rel Limit に設定された値で合否判定を行います。
- dB & dBm: Limit(dB)の Abs Limit および Rel Limit に設定された値のうち, 高い方の値で合否判定を行います。

ファンクションラベルの F5 (Standard)を押すことで、3GPPで規定された測定方法および規格を設定します。

Band で測定している周波数バンドを選択します。詳しくは「3.1.4 周波数バンドを 設定する(Band)」を参照してください。

DUT Select で測定する DUT を選択します。詳しくは「3.1.5 測定する DUT を設定する(Band)」を参照してください。また, Band Select で In Band と Out Band の 選択を行います。なお, Setup Common Parameter 画面の Band で Free が選択さ れている場合のみ, Band と DUT Select が設定可能となります

3.5 スプリアスを測定する

Setup Common Parameter 画面で, F6 (Spurious Emission)を押すとスプリアスの測定画面に移行します。

ここでは、Spurious Emission 画面(スプリアス測定)で表示される測定結果、設定パラメータおよび使用上の注意点について説明します

スプリアス測定をする際には、測定器内のレベル設定を最適化するために、RF 入力レベルを調整してください。RF 入力レベルの調整方法は、「3.2.9 測定レン ジの最適化(Adjust Range)」を参照してください。

3.5.1 測定方法を設定する(Spurious Mode)

スプリアスの測定方法には Spot, Sweep および Search の3種類があります。それ ぞれの方法に一長一短がありますので、状況に応じて使い分けてください。

•Spot: 指定された周波数に対し, 掃引周波数 0Hz(ゼロスパン)でスプ リアスを測定します。あらかじめスプリアスの発生する周波数が 予測できる場合にこの方法で測定します。掃引をせず決められ た周波数を測定するため, 他の方法と比較して測定時間が短く なります。

•Sweep: 指定された周波数範囲を掃引し,そのなかで最大レベルのス プリアスを検出します。スプリアスの発生する周波数が特定でき ない場合にこの方法で測定します。

•Search:

上述の Sweep と同じように指定された周波数範囲を掃引し, 最 大レベルの信号を探します。さらに, その信号の周波数を中心 に掃引周波数 OHz(ゼロスパン)により正確な信号レベルを測 定します。周波数の特定できないスプリアスのレベルを正確に 測定することができます。他の方法と比較して測定時間が長く なります。

測定方法の切り替えは、Spurious Emission 画面で(F1) (Spurious Mode)を押す とファンクションラベルの内容が測定方法に変わりますので、この中から選択しま す。

MS8608A 2004/08/13 13:10:10	Storage · Normal	Spurious Emission	-	Spur ious Hode
	Spurious : Spot	ж	N	
	perect : Average	Spurious		Spot
Abs Ref Power (Tx Power) : -0.86	i dBm	Mode	, ,	
Rel Ref Power (SPA) : -3.63) CLBI	*		
Frequency Level	Limit Unit Margin			Coanab
f 1 = 445.100 000 MHz: -85.30	-36.0 dBm∕100kHz -49.30 dB	Mode		JCOICH
→f 2 = 1 780.400 000 MHz: -61.81	-36.0 dBm/3MHz -25.81 dB	mout		
f 3 = 2.670.600 000 MHz; -62.07	-36.0 dBm/3MHz -26.07 dB	\$ \$		
f = 4 - 3500.800000 mHz; -67.20 f = 4.451000000 MHz; -67.07	-36.0 dBm/3mHz -31.20 dB	Select		Sween
f 6 = 5.341.200 000 MHz: -66.80	-36.0 dBm/3MHz -30.80 dB	Judgement		Diroop
f 7 = 6 231.400 000 MHz: -67.00	-36.0 dBm/3MHz -31.00 dB			
f 8 = 7 121.600 000 MHz: -66.71	-36.0 dBm/3MHz −30.71 dB			
f 9 = MHz:	dBm dB			
£10 = MHZ:	dBm dB			
f19 = MH2:	dBa dB			
f13 = MHz:	dBm dB			
f14 = MHz:	dBm dB	Adjust		
f15 = MHz:	dBm dB	Range		
T- t- 1 T- 1	- DIGG	→		
lotal Judgeme	nt: PASS			
Input · H	gh Pre Ampl · Off	Back		return
Ch : 1CH Level :	-6.00dBm Power Cal : Off	Screen		
Freq : 890.200000MHz Offset :	0.00dB Correction : Off	123	_	1

3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)

搬送波の振幅を測定するときのパラメータ設定方法を以下に示します。

- Spurious Emmision 画面で 」(more)を押し、ファンクションラベルの2 1. ページ目を表示します。
- F5 (Setup Reference Power)を押すと, Setup Reference Power 画面が表 2. 示されます。

Setup Reference Power 画面

3.必要に応じて各測定パラメータを設定します。

Absolute Power Reference と Relative Power Reference の設定によるスプリ アス振幅の絶対値は下記の関係になります。

スプリアス振幅の測定結果を x(dBm)とします。

		Absolute	e Power Refer	ence (dBm)
		None	Tx Power (a)	Set (b)
Relative	SPA (c)	х	a + x - c	b + x - c
Power Reference	Tx Power(a)	х	х	b + x - a
(dBm)	Set (d)	х	a + x - d	b + x - d

また,スプリアスの相対値は下記の関係になります。

Relative Power	SPA (c)	x – c
Reference (dBm)	Tx Power(a)	x – a
	Set(d)	x – d

以下,各パラメータについて説明します。

(1) Absolute Power Reference

スプリアス振幅を絶対値表示する場合の基準となる, 搬送波振幅の 測定方法を設定します。設定内容は None, Tx Power および Set の 3種類あります。

- None: 搬送波振幅の測定方法を指定しません。この場合スプリアス振幅の測定結果には、Spectrum Analyzer で 測定した値をそのまま表示します。
- Tx Power: RF Power 画面(送信電力測定)のTx Powerと同じ方法で搬送波振幅の値を測定します。この値とRelative Power Reference で設定された方法で測定した搬送波振幅の値との差分を求め, Spectrum Analyzer で測定したスプリアス振幅の測定結果に、その差分を補正します。 MS860xAにおいてPower Calibrationを行った場合、

Power Meter の測定値がスプリアス振幅を絶対値表示する場合の基準となります。通常はこの Tx Power を設定します。MS268x では選択できません。

- ・Set: 搬送波振幅の値を任意に設定します。設定した値と Relative Power Reference で設定された方法で測定した搬送波振幅の値との差分を求め, Spectrum Analyzer で測定したスプリアス振幅の測定結果に, その差分を補正します。被測定信号の電力があらか じめわかっている場合に使用します。
- (2) Relative Power Reference

スプリアス振幅を相対値表示する場合の基準となる, 搬送波振幅の測定方法を設定します。設定内容は SPA, Tx Power および Set の3種類あります。

- Spectrum Analyzer で搬送波振幅の値を測定します。
 この値と Absolute Power Reference で設定された方法で測定した搬送波振幅との差分を求め、Spectrum Analyzer で測定したスプリアス振幅の測定結果に、その差分を補正します。通常はこの SPA を設定します。
- Tx Power: RF Power 画面(送信電力測定)のTx Powerと同じ方法で搬送波振幅の値を測定します。この値とAbsolute Power Reference で設定された方法で測定した搬送波振幅との差分を求め、Spectrum Analyzerで測定したスプリアス振幅の測定結果に、その差分を補正します。 MS860xAにおいてPower Calibrationを行った場合、

Power Meter の測定値が絶対レベルの基準となります。

- ・Set: 搬送波振幅の値を任意に設定します。設定した値と Absolute Power Reference で設定された方法で測定 した搬送波振幅との差分を求め、Spectrum Analyzer で測定したスプリアス振幅に対し、その差分を補正し ます。被測定信号の電力があらかじめわかっている 場合に使用します。
- (3) Frequency

Setup Common Parameter で設定された周波数を表示します。

(4) Reference Level

Spectrum Analyzer の Reference Level を設定します。測定レンジの最適 化(Adjust Range)を行った場合,その結果が自動的に設定されます。

(5) Attenuator

Spectrum Analyzer の Attenuator を設定します。測定レンジの最適化 (Adjust Range)を行った場合,その結果が自動的に設定されます。

- 次に,ファンクションラベルについて説明します。
- (1) SPA ATT, Ref

	Manual:	Spectrum Analyzer の Reference Level の設定を Manual にします。また, Attenuator の設定を Manual にすると,本設定も自動的に Manual になります。な お,本設定を Manual にすると,測定レンジの最適化 (Adjust Range)を行っても,その結果が反映されま せん。
	Auto:	Spectrum Analyzer の Reference Level の設定を Auto にします。本設定を Auto にすると、Attenuator の設定 も自動的に Auto になります。なお、本設定を Auto に すると、測定レンジの最適化 (Adjust Range)を行った 結果が、自動的に反映されます。
(2)	Standard	
	Abs & Rel : Tx Power	

Absolute および Relative Power Reference の設定を 両方とも Tx Power にします。

Abs & Rel : Set

Absolute および Relative Power Reference の設定を 両方とも Set にします。

(3) Attenuator

Manual:	Spectrum Analyzer の Attenuator の設定を Manual に
	します。本設定を Manual にすると、SPA ATT, Refの

設定も自動的に Manual になります。

Auto:Spectrum Analyzer の Attenuator の設定を Auto にし
ます。SPA ATT, Ref の設定を Auto にすると,本設定
も自動的に Auto になります。(4) Data Points1001:1001:Spectrum Analyzer のデータ点数を 1001 ポイントに設
定します。501:Spectrum Analyzer のデータ点数を 501 ポイントに設
定します。

3.5.3 Spot法の測定パラメータを設定する(Setup Spot Table)

Spot 測定では、スプリアスを測定する周波数を指定する必要があります。

Spurious Emission 画面のファンクションラベル 2 ページ目の F1 (Setup Spot Table)を押すことで、Spot 法の測定パラメータを設定する画面に移行します。

1つの周波数テーブルの定義には以下の項目を設定します。

- 測定周波数(Frequency)
- ・ スペクトラムアナライザの分解能帯域幅(RBW)
- ・ スペクトラムアナライザのビデオ帯域幅(VBW)
- ・ スペクトラムアナライザの基準レベル(Ref Level)
- ・ スペクトラムアナライザのアッテネータ(ATT)
- ・ スペクトラムアナライザの掃引時間(SWT)
- ・ 合否判定の絶対規格値, dBm 単位(Abs Limit)
- ・ 合否判定の相対規格値, dB 単位(Rel Limit)
- ・ 合否判定の絶対規格値,W単位(Abs Limit)
- ・ 合否判定の絶対規格値, W 単位の補助単位(Unit)

周波数(Frequency)以外の項目は、ファンクションラベルの F1 (View Select)を 押すことで切り替えて表示されます。View Select と設定項目の関係は以下のと おりです。

- View Select-BW のとき スペクトラムアナライザの分解能帯域幅(RBW)とビデオ帯域幅(VBW)が 設定できます。
- View Select-Rer, ATT, SWT のとき スペクトラムアナライザの基準レベル(Ref Level), アッテネータ(ATT)およ び掃引時間(SWT)が設定できます。
- View Select-Limit(dB)のとき 合否判定のレベルを log 単位(dBm(Abs Limit)および dB(Rel Limit))で 設定できます。
- ・ View Select-Limit(W)のとき

合否判定のレベルを Watt 単位で設定できます。F4 (All Abs Limit Unit)を押すことにより、f1~f15 までの単位をすべて mW, μ W, および nW のいずれかに設定することができます。Entry の へ ∨, または ロータリノブを使用して、個々に単位を設定することも可能です。

Detection

検波モードを設定します。

•	Positive Peak	検波モードを Positive Peak にします。1サンプリング
		期間中の最大値をそのポイントのデータとします。
•	Negaitive Peak	検波モードを Negative Peak にします。 1サンプリング
		期間中の最小値をそのポイントのデータとします。
•	Sample	検波モードを Sample にします。 ハードウェアがサン
		プリング動作を実行するその時点での瞬時データを
		そのポイントのデータとします。
•	Average	検波モードを Average にします。 サンプルポイント間
		の平均値をそのポイントのデータとします。
•	RMS	検波モードを RMS にします。 サンプルポイント間
		の RMS 値をそのポイントのデータとします。

Spot Result

測定した Spurious Level の算出方法を設定します。

- ・ Average 測定した Spurious Level を平均で算出します。
- ・ Macximum 測定した Spurious Level の最大値を算出します。

ファンクションラベルの F3 (Judgement)を押すことで,設定した判定方法を選択することができます。

設定方法は「3.5.7 判定単位を選択する(Judgement)」を参照してください。

ファンクションラベルの F5 (Setup Spectrum Analyzer)を押すことで、Spectrum Analyzer の測定パラメータを任意に設定することができます。

設定方法は「3.5.8 Spectrum Analyzer を設定する(Setup Spectrum Analyzer)」を 参照してください。 すでにある周波数テーブルへの追加や削除をするにはファンクションラベル 2 ページ目のメニューキーで行います。

MS8609A 2006/02/01	13:11:02 M) >>	Setup Table Spot
View Select : BW	Ref,ATT,SWT Limit(dB) Limit(W)	\$ View Select BW
Frequency f 1 :[445.100000MHz] f 2 :[1780.400000MHz] f 3 :[2670.600000MHz]	BBW# VBW# [100kHz][100kHz] [3MHz][3MHz] [3MHz][3MHz]	Clear
f 4 :[3560.800000MHz] f 5 :[4451.000000MHz] f 6 :[5341.200000MHz] f 7 :[6231.400000MHz] f 8 :[7121.6000000MHz]	[3MHz][3MHz] [3MHz][3MHz] [3MHz][3MHz] [3MHz][3MHz] [3MHz][3MHz]	Delete
f 9 :[Mz] f10 :[Mz] f11 :[Mz] f12 :[Mz]	[Hz][Hz] [Hz][Hz] [Hz][Hz] [Hz][Hz]	Insert
f13 : L MHZ] f14 : L MHZ] f15 : L MHZ] Detection : [A Spot Result : [A	Hz] Hz] Hz] Hz] Hz] Hz] verage] verage]	Harmonics
Ch : 1CH Freq : 7000.000000MHz	Input : High Pre Ampl : Off Level : 22.00dBm Power Cal : Off Offset : 0.00dB Correction : Off	Back Screen
F2 (Clear) :	すべての周波数テーブルを削除しま	き。
F3 (Delete) :	反転表示している行を削除します。 上詰めされます。	削除された行は
F4 (Insert) :	反転表示している行の上に新しい行	を追加します。
F5 (Harmonics) :	fl~f15 まで,設定周波数の逓倍に 定します。	なる周波数を討
F6 (Back Screen) :	現在表示している画面の上位画面~	~切り替えます。

3.5.4 Search法の測定パラメータを設定する(Setup Search Table)

Spurious Emission 画面のファンクションラベル 2 ページ目の F2 (Setup Search Table)を押すことで, Search 法の測定パラメータを設定する画面に移行します。 Search 法の測定パラメータのうちスプリアス探索で使用する値は Sweep 法の測定 パラメータの値と共用になっています。

MS8609A 2006/02/01 13:02:31	Setup Table
K< Setup Search Table (GSM) >>	search/sweep
	\$
	Vie₩
View Select : Ref,ATT,SWT Limit(dB) Limit(W)	Select
Level Meas. Mode Level Meas. Set	BW
Search of Spurious Freq	
Start Frequency Stop Frequency IntgrtBW RBW# VBW#	
f 1 : [0 100000MHz][50.000000MHz][1.000kHz][10kHz][10kHz]	
f 2 : [50.000000MHz][500.000000MHz][1.000kHz][100kHz][100kHz]	
f 3 : [500.000000MHz1[860.000000MHz1[1.000kHz1[3MHz1[3MHz1]	
f 4 : [860.000000MHz1[870.000000MHz1[1.000kHz1[1MHz1[3MHz1	\$
f 5 : [870.000000MHz1[880.000000MHz1[1.000kHz1[300kHz1[3MHz1	•
f 6 · [880 0000000000000000000000000000000	Judgement
$f_7 \cdot [$ 885 000000MHz1[888 000000MHz1[1 000kHz1[30kHz1[3MHz1	dR & Watt
$f \otimes 1$ 0000000000000000000000000000000000	
$f 9 \cdot [920,00000000000000000000000000000000000$	#
$f_{10} \cdot [925, 000000 \text{ mm} 210, 935, 000000 \text{ mm} 210, 0000 \text{ mm} 210, 00000 \text{ mm} 210, 000000 \text{ mm} 210, 0000000000000000000000000000000000$	
$f_{11} \cdot [0.235,000000 \text{ mm}_2][0.035,000000 \text{ mm}_2][1,0000 \text{ mm}_2][0.00000 \text{ mm}_2][0.00000 \text{ mm}_2][0.00000000000000000000000000000000000$	All Abs
$111 \cdot 1 = 303.00000 \text{ mm2}11 = 343.000000 \text{ mm2}11.00000 \text{ mm2}11 = 1000000000000000000000000000000000$	Limit Unit
	¥
$f_{10} = 1000.00000000000000000000000000000000$	Cotum
	Crootpur
Detection (Auguage 1 (for Court of Courtiers From)	Apalumon
Detection : LAverage I (for Search of Spurious Freq.)	Ana Tyzer
Spot Result : LAVerage1	→
	Back
Input : High Pre Ampl : Off	Screen
Un : IUH LEVEI : 22.00dBm Power Cal : Off	1 9
rreq : 7000.00000mHz Offset : 0.00dB Correction : Off	1 4
Setup Search Table 画面	

周波数テーブルは最大 15 個まで定義できます。反転表示が入力可能な部分で す。Entryの へ ↓ またはロータリノブで移動させることができます。

1つの周波数テーブルの定義には以下の項目を設定します。

- · 掃引開始周波数(Start Frequency)
- · 掃引終了周波数(Stop Frequency)
- スプリアス計算時の帯域幅(IntgrtBW)
- ・ スプリアス探索時のスペクトラムアナライザの分解能帯域幅(RBW)
- スプリアス探索時のスペクトラムアナライザのビデオ帯域幅(VBW)
- スプリアス探索時およびスプリアス測定時(ゼロスパン)のスペクトラムアナ ライザの基準レベル(Ref Level)
- スプリアス探索時スプリアス測定時(ゼロスパン)のスペクトラムアナライザのアッテネータ(ATT)
- ・ スプリアス探索時のスペクトラムアナライザの掃引時間(SWT)
- ・ 合否判定の絶対規格値, dBm 単位(Abs Limit)
- ・ 合否判定の相対規格値, dB 単位(Rel Limit)
- ・ 合否判定の絶対規格値,W単位(Abs Limit)
- ・ 合否判定の絶対規格値, W 単位の補助単位(Unit)
- ・ ゼロスパンでスプリアス測定を行うか否か(Meas Mode)
 - スプリアス測定時(ゼロスパン)のスペクトラムアナライザの分解能帯域幅 (RBW)

- スプリアス測定時(ゼロスパン)のスペクトラムアナライザのビデオ帯域幅 (VBW)
- スプリアス測定時(ゼロスパン)のスペクトラムアナライザの掃引時間 (SWT)

補足:

スプリアス計算時の帯域幅(IntgrtBW)について説明します。これは設定された RBW, Span および Data Points に対し、スプリアスの測定結果から以下のようにレ ベルを換算したものです。

積算範囲の計算手順

(1)1ポイント当りの周波数間隔を計算します。

```
1 ポイント当りの周波数間隔=Span ÷ Data Point
(Span=Stop Freq – Start Freq)
```

(2) IntgrtBW=(RBW×1 ポイント当りの周波数間隔)となるように積算ポイント数 を求めます。

RBW≧IntBW の場合:

1 ポイント当りの周波数間隔によらず, 掃引波形=積算波形 と なります。すなわち測定結果がそのまま表示されます。

RBW<IntBW の場合:

以下の計算方法になります。

積算ポイント数= <u>1ポイント当りの周波数間隔</u>+1

以下に計算例を示します。

RBW:100 kHz, IntBW:200 kHz, Span:50 kHz の場合

積算ポイント数=(200 kHz-100 kHz)÷50kHz +1=3

したがって積算ポイント数は3ポイントとなり,測定結果に対し3ポイント分積算した値が最終的なスプリアスレベルとなります。

すべての設定項目を1 画面に表示することができないので, 掃引開始周波数 (Start Frequency)および掃引終了周波数(Stop Frequency)以外の項目は, 順次 切り替えて表示します。____

ファンクションラベルの [F1] (View Select)を押すことで表示を切り替えられます。 View Select と設定項目の関係は以下のとおりです。

・ View Select-BW のとき

スプリアス計算時の帯域幅(IntgrtBW),スプリアス探索時のスペクトラムア ナライザの分解能帯域幅(RBW)およびビデオ帯域幅(VBW)が設定でき ます。

・ View Select-Rer, ATT, SWT のとき

スプリアス探索時およびスプリアス測定時のスペクトラムアナライザの基準 レベル(Ref Level), アッテネータ(ATT)およびスプリアス探索時の掃引時 間(SWT)が設定できます。

- View Select-Limit(dB)のとき 合否判定のレベルを log 単位(dBm(Abs Limit)および dB(Rel Limit))で 設定できます。
- ・ View Select-Limit(W)のとき

合否判定のレベルを Watt 単位で設定できます。 F4 (All Abs Limit Unit)を押すことにより、f1~f15 までの単位をすべて mW、 μ W、および nW のいずれかに設定することができます。Entry の へ マ,または ロータリノブを使用して、個々に単位を設定することも可能です。

・ View Select-Level Meas. Mode のとき

ゼロスパンでスプリアス測定を行うか否かが設定できます。Spot が設定された場合は、ゼロスパンでスプリアス測定を行います。Sweep Only が設定された場合はゼロスパンでスプリアス測定を行いません(この場合の測定結果は Spurious Mode で Sweep が選択された場合と同じになります)。

・ View Select-Level Meas. Set のとき

スプリアス測定時(ゼロスパン)のスペクトラムアナライザの分解能帯域幅 (RBW),ビデオ帯域幅(VBW)および掃引時間(SWT)が設定できます。 Level Meas. Modeで Sweep Only が設定された周波数範囲では,これらの 値は設定できません(またはあらかじめ設定されている値は無視されま す)。

Detection

検波モードを設定します。

•	Positive Peak	検波モードを Positive Peak にします。1サンプリング
		期間中の最大値をそのポイントのデータとします。
•	Negaitive Peak	検波モードを Negative Peak にします。1サンプリング
		期間中の最小値をそのポイントのデータとします。
•	Sample	検波モードを Sample にします。 ハードウェアがサン
		プリング動作を実行するその時点での瞬時データを
		そのポイントのデータとします。
•	Average	検波モードを Average にします。 サンプルポイント間
		の平均値をそのポイントのデータとします。
•	RMS	検波モードを RMS にします。 サンプルポイント間
		の RMS 値をそのポイントのデータとします。

Spot Result

測定した Spurious Level の算出方法を設定します。

- Average 測定した Spurious Level を平均で算出します。
- ・ Macximum 測定した Spurious Level の最大値を算出します。

設定時の注意点

- 掃引周波数幅(掃引終了周波数-掃引開始周波数)は10 GHz以下にしてください。
- Spectrum Analyzer の掃引周波数には周波数の不確かさが存在します。
 MS860x/MS268x シリーズの Spectrum Analyzer はスタートロック方式の掃引方法を採用しています。この方法は,掃引開始時に周波数ロックをかけて,あとは、ランプ電圧により電圧制御発振器の周波数を可変し,掃引します。したがって,掃引開始周波数は正確ですが,掃引終了周波数には不確かさが発生します。通常この不確かさはスパン確度で定義されています。

掃引終了周波数はこのスパン確度を考慮にいれて決定してください。 たとえば、100 MHzから1000 MHzの範囲でスプリアス測定をしたい場合、 スパン確度が±1%のときは、 $\pm 0.01 \times (1 \text{ GHz} - 100 \text{ MHz}) = \pm 9 \text{ MHz} の$ 不確かさが掃引終了周波数に発生しますので、実際の掃引周波数の設 定を1000 MHz+9 MHz=1009 MHz にします。

Spectrum Analyzerの周波数0Hzには、ゼロビートと呼ばれる内部ローカル信号の漏れが存在します。Sweep 測定と Search 測定の掃引開始周波数fsとRBWの関係が

fs<RBW (だいたいの目安)

になると、このゼロビートを誤ってスプリアスと認識してしまいます。このよう なときは RBW の値を小さくしてください。

- ファンクションラベルの F3 (Judgement)を押すことで,設定した判定方法を選 択することができます。 設定方法は「3.5.7 判定単位を選択する(Judgement)」を参照してくださ い。
- ファンクションラベルの F5 (Setup Spectrum Analyzer)を押すことで、Spectrum Analyzer の測定パラメータを任意に設定することができます。 設定方法は「3.5.8 Spectrum Analyzer を設定する(Setup Spectrum Analyzer)」を参照してください。
- すでにある周波数テーブルへの追加や削除をするにはファンクションラベル 2 ページ目のメニューキーで行います。

MS8609A 2006/02/01 1 KK Setum Search Table (6	13:11:12 SCMD >>	Setup Table Search∕Sweep
View Select : BW Level Me	Ref,ATT,SWT Limit(dB) Limit(W) aas. Mode Level Meas. Set	\$ View Select BW
Start Frequency f 1 :[0.100000000000000000000000000000000000	Search of Spurious Freq Stop Frequency IntgrtBW RBW# VBW# 500.000000MHz][1.000KHz][1.00KHz][1.10KHz] 500.000000MHz][1.000KHz][1.00KHz][1.00KHz][860.000000MHz][1.000KHz][.3MHz][860.000000MHz][1.3MHz][.3MHz][860.000000MHz][1.00KHz][.3MHz][Clear
f 4 :[860.00000MHz1] f 5 :[870.00000MHz1] f 6 :[880.000000MHz1] f 7 :[885.000000MHz1]	870.000000MHz1[1.000kHz1[1MHz1[3MHz1 880.000000MHz1[1.000kHz1[3MHz1] 3MHz1 885.000000MHz1[1.000kHz1[300kHz1] 3MHz1 885.000000MHz1[1.000kHz1[100kHz1] 3MHz1 888.000000MHz1[1.000kHz1] 30Hz1 888.000000MHz1[1.000kHz1] 3MHz1	Delete
f 8 :1 917.000000MHz11 f 9 :[920.000000MHz11 f10 :[925.000000MHz11 f11 :[935.000000MHz11 f12 :[945.000000MHz11	920.000000MHz1[1.000kHz1[30kHz1[31Hz] 925.000000MHz1[1.000kHz1[100kHz1[31Hz] 935.000000MHz1[1.000kHz1[300kHz1[31Hz1 945.000000MHz1[1.000kHz1[11Hz1[31Hz1 1000.00000MHz1[1.000kHz1[31Hz1[31Hz1]	Insert
f13 :: [1000.00000MHz][3200.000000MHz][30Hz][3MHz][3MHz][f14 :: [3200.000000MHz][3200.000000MHz][[30Hz]] 3MHz] 3MHz] f15 :: [7800.000000MHz][300.000000MHz][[30Hz] 3MHz] 3MHz] f15 :: [7800.000000MHz][[7900.000000MHz][[30Hz] 3MHz] 3MHz] petection :: [Average] [(for Search of Spurious Freq.) 3MHz]		* Standard
Ch : 10H Freq : 7000.000000MHz	Input : High Pre Ampl : Off Level : 22.00dBm Power Cal : Off Offset : 0.00dB Correction : Off	→ Back Screen
F2 (Clear):	すべての周波数テーブルを削除しま	す。
F3 (Delete) :	反転表示している行を削除します。 上詰めされます。	削除された行は
F4 (Insert) :	反転表示している行の上に新しい行為	を追加します。
F5 (Standard) :	3GPP で規定された測定方法規定され します。 Band で測定している周波数	れた規格を設定 バンドを選択し

3GPP で規定された測定方法規定された規格を設定 します。Band で測定している周波数バンドを選択し ます。詳しくは「3.1.4 周波数バンドを設定する (Band)」を参照してください。DUT Select で測定する DUT を選択します。詳しくは「3.1.5 測定する DUT を 設定する(Band)」を参照してください。また,Band Select で In Band と Out Band の選択を行います。な
お, Setup Common Parameter の Band で Free が選択 されている場合のみ, Band と DUT Select が設定可 能となります。

注意:

Detection が RMS に設定されている時に Standard を選択すると RBW が 3MHz 以上の値は設定されません。 RBW が 3MHz 以上の欄は未設定と なっていますので任意の値に再設定してください。

・ F6 (Back Screen): 現在表示している画面の上位画面へ切り替えます。

3.5.5 Sweep法の測定パラメータを設定する(Setup Sweep Table)

Spurious Emission 画面のファンクションラベル 2 ページ目のF3 (Setup Sweep Table)を押すことで、Sweep 法の測定パラメータを設定する画面に移行します。 Sweep 法の測定パラメータと Search 法の測定パラメータのうちスプリアス探索で 使用する値は共用になっています。

Setup Sweep Table 画面	
(\$8608A 2004/02/10 09:55:28	Setup Table Search∕Sweep
View Select : Ref, ATT, SWT Limit(dB) Limit(W)	\$ Vie w Select BW
Start Frequency Stop Frequency IntgrtBW RBW# VBW# f 1 : 10.0000000MHz][30.0000000MHz][100.0kHz][100kHz][30.000000MHz][100.0kHz][100kHz][30.00000000000000000000000000000000000	
f 2 : [30.000000MHz][50.000000MHz][100.0kHz][100kHz][3kHz] f 3 : [50.000000MHz][59.000000MHz][100.0kHz][100kHz][3kHz]	
f 4 :[59.000000MHz][59.962500MHz][3.000kHz][3kHz][3kHz]	\$
f5:(160.037500MHz)[61.000000MHz][3.000kHz][3kHz][3kHz]] f6:[61.000000MHz][70.00000MHz][100.0kHz][100kHz][3kHz][Judgement
f 7 : [70.000000MHz][100.000000MHz][100.0kHz][100kHz][3kHz]	dB & Watt
f 8 :[100.00000MHz][200.000000MHz][100.0kHz][100kHz][3kHz]	
f 9 : [200.000000MHz][300.000000MHz][100.0kHz][100kHz][3kHz] f10 : [Wz][Wz][Vz][Vz][Vz][Vz][Vz][Vz][Vz][Vz][Vz][
f11 :[Hz][HHz][Hz][Hz][Hz][Hz][Hz][Hz][Hz][Hz][All Abs
f12 :[MHz][MHz][Hz][Hz][Hz]	Limit Unit
f13 :[Hz][Hz][Hz][Hz][Hz][Hz]	ж
f14 :[MHz][Hz][Hz][Hz][Hz]	Setup
115 :L MHZJL MHZJL HZJL HZJL HZJ	Apalwzer
Detection : [Positive Peak]	
Input : Low Pre Ampl : Off Ch : 1CH Level : -10.00dBm Power Cal : Off	Back Screen
Freq : 60.000000MHz Offset : 0.00dB Correction Off	12

周波数テーブルは最大 15 個まで定義できます。反転表示が入力可能な部分で す。Entryの へ ↓ またはロータリノブで移動させることができます。

1つの周波数テーブルの定義には以下の項目を設定します。

- 掃引開始周波数(Start Frequency)
- 掃引終了周波数(Stop Frequency)
- スプリアス計算時の帯域幅(IntgrtBW)
- ・ スプリアス探索時のスペクトラムアナライザの分解能帯域幅(RBW)
- ・ スプリアス探索時のスペクトラムアナライザのビデオ帯域幅(VBW)
- スプリアス探索時およびスプリアス測定時(ゼロスパン)のスペクトラムアナ ライザの基準レベル(Ref Level)
- ・ スプリアス探索時のスペクトラムアナライザのアッテネータ(ATT)
- ・ スプリアス探索時のスペクトラムアナライザの掃引時間(SWT)
- ・ 合否判定の絶対規格値, dBm 単位(Abs Limit)
- ・ 合否判定の相対規格値, dB 単位(Rel Limit)
- ・ 合否判定の絶対規格値,W単位(Abs Limit)
- ・ 合否判定の絶対規格値, W 単位の補助単位(Unit)

すべての設定項目を1 画面に表示することができないので, 掃引開始周波数 (Start Frequency)および掃引終了周波数(Stop Frequency)以外の項目は, 順次 切り替えて表示します。____

ファンクションラベルの [F1] (View Select)を押すことで表示を切り替えられます。 View Select と設定項目の関係は以下のとおりです。

・ View Select-BW のとき

スプリアス計算時の帯域幅(IntgrtBW),スプリアス探索時のスペクトラムア ナライザの分解能帯域幅(RBW)およびビデオ帯域幅(VBW)が設定でき ます。

・ View Select-Rer, ATT, SWT のとき

スプリアス探索時およびスプリアス測定時のスペクトラムアナライザの基準 レベル(Ref Level), アッテネータ(ATT)およびスプリアス探索時の掃引時 間(SWT)が設定できます。

 View Select-Limit(dB)のとき 合否判定のレベルを log 単位(dBm(Abs Limit)および dB(Rel Limit))で 設定できます。

・ View Select-Limit(W)のとき

合否判定のレベルを Watt 単位で設定できます。 F4 (All Abs Limit Unit)を押すことにより、 $f1 \sim f15$ までの単位をすべて mW, μ W, および nW のいずれかに設定することができます。Entry の へ v, または ロータリノブを使用して、個々に単位を設定することも可能です。

Detection

検波モードを設定します。

•	Positive Peak	検波モードを Positive Peak にします。1サンプリング
		期間中の最大値をそのポイントのデータとします。
•	Negaitive Peak	検波モードを Negative Peak にします。1サンプリング
		期間中の最小値をそのポイントのデータとします。
•	Sample	検波モードを Sample にします。 ハードウェアがサン
		プリング動作を実行するその時点での瞬時データを
		そのポイントのデータとします。
•	Average	検波モードを Average にします。 サンプルポイント間
		の平均値をそのポイントのデータとします。
•	RMS	検波モードを RMS にします。 サンプルポイント間
		の RMS 値をそのポイントのデータとします。

設定時の注意点

- ・ 掃引周波数幅(掃引終了周波数-掃引開始周波数)は10 GHz 以下にしてください。
- Spectrum Analyzer の掃引周波数には周波数の不確かさが存在します。 MS860xA/MS268xAシリーズのSpectrum Analyzerはスタートロック方式の 掃引方法を採用しています。この方法は,掃引開始時に周波数ロックをか けて,あとは、ランプ電圧により電圧制御発振器の周波数を可変し,掃引 します。したがって,掃引開始周波数は正確ですが,掃引終了周波数に は不確かさが発生します。通常この不確かさはスパン確度で定義されてい ます。 掃引終了周波数はこのスパン確度を考慮にいれて決定してください。 たとさば、100 MILEの範囲でスプリアス測定をしたい思ク

たとえば、100 MHzから1000 MHzの範囲でスプリアス測定をしたい場合、 スパン確度が±1%のときは、 $\pm 0.01 \times (1 \text{ GHz} - 100 \text{ MHz}) = \pm 9 \text{ MHz} の$ 不確かさが掃引終了周波数に発生しますので、実際の掃引周波数の設 定を1000 MHz+9 MHz=1009 MHz にします。

Spectrum Analyzer の周波数 0 Hz には、ゼロビートと呼ばれる内部 LO 信号の漏れが存在します。Sweep 測定と Search 測定の掃引開始周波数 fs と RBW の関係が fs < RBW (だいたいの目安)
 になると、このゼロビートを誤ってスプリアスと認識してしまいます。このようなときは RBW の値を小さくしてください。

ファンクションラベルの F3 (Judgement)を押すことで,設定した判定方法を選 択することができます。

設定方法は「3.5.7 判定単位を選択する(Judgement)」を参照してください。

ファンクションラベルの F5 (Setup Spectrum Analyzer)を押すことで、Spectrum Analyzer の測定パラメータを任意に設定することができます。

設定方法は「3.5.8 Spectrum Analyzer を設定する(Setup Spectrum Analyzer)」を 参照してください。 すでにある周波数テーブルへの追加や削除をするにはファンクションラベル 2 ページ目のメニューキーで行います。

MS8608A 2004/11/23 13:47:48	Setup Table Search∕Sweep
View Select : BW Ref,ATT,SWT Limit(dB) Limit(W)	\$ View Select BN
Start Frequency Stop Frequency IntgrtBW RBW# VBW# f 1 :[0.1000001Hz 16 0.0000001Hz 11 000kHz 100kHz 11 10kHz f 2 :1 50.0000001Hz 16 00.00001Hz 11 100kHz 11 100kHz 11 100kHz f 3 :1 500.0000001Hz 11 860.0000001Hz 11 100kHz 11 100kHz 11 100kHz	Clear
f 4: [860.000000MHz][870.000000MHz][1.000kHz][1MHz][3MHz] f 5: [870.000000MHz][880.000000MHz][1.000kHz][300kHz][3MHz] f 6: [880.000000MHz][885.000000MHz][1.000kHz][1.000kHz][3MHz] f 7: [885.000000MHz][885.000000MHz][1.000kHz][1.000kHz][3MHz] f 7: [885.000000MHz][888.000000MHz][1.000kHz][1.000kHz][3MHz]	Delete
f 8:1 917.0000000Hz11 920.0000000Hz11 30Hz1 30Hz1 f 9:1 920.000000Hz11 925.000000Hz11 30Hz1 31Hz1 f10:1 925.000000Hz11 935.000000Hz11 30000Hz11 31Hz1 f11:1 935.000000Hz11 935.000000Hz11 30Hz1 31Hz1 f11:1 935.000000Hz11 945.000000Hz11 30Hz1 31Hz1 f12:1 945.000000Hz11 30Hz11 31Hz1 31Hz1	Insert
f13 :[1000.00000MHz][3200.00000MHz][1.000kHz][3MHz][3MHz][f14 :[3200.00000MHz][7800.00000MHz][1.000kHz][3MHz][3MHz][f15 :[7800.00000MHz][7900.00000MHz][1.000kHz][3MHz][3MHz]]	* Standard
Detection : [Average] Input : High Pre Ampl : Off Ch : 1CH Level : 30 00dBe Pomer Cal : Written	→ Back Screen
Freq : 890.200000MHz Offset : 0.00dB Correction : Off	1 2

- ・ F2 (Clear): すべての周波数テーブルを削除します。
- F3 (Delete) :

反転表示している行を削除します。削除された行は 上詰めされます。

- F4 (Insert): 反転表示している行の上に新しい行を追加します。
- F5 (Standard): 3GPP で規定された測定方法規定された規格を設定します。Band で測定している周波数バンドを選択します。詳しくは「3.1.4 周波数バンドを設定する(Band)」を参照してください。DUT Select で測定する DUT を選択します。詳しくは「3.1.5 測定する DUT を 設定する(Band)」を参照してください。また,Band Select で In Band と Out Band の選択を行います。なお、Setup Common Parameter の Band で Free が選択されている場合のみ、Band と DUT Select が設定可能となります。

注意:

Detection が RMS に設定されている時に Standard を選択すると RBW が 3MHz 以上の値は設定されません。RBW が 3MHz 以上の欄は未設定と なっていますので任意の値に再設定してください。

F6 (Back Screen): 現在表示している画面の上位画面へ切り替えます。

3.5.6 プリセレクタのモードを設定する(Preselector)

本機能は本体オプション MS8608A-03/MS2683A-03 を搭載している場合に使用 可能です(本オプションは MS8608A/MS2683A にのみ搭載可能です)。 本機能は 1.6 GHz から 3 GHz までの測定において, バンド 0 (Normal)を使用す

るか, バンド1(Spurious)を使用するか設定します。 Spurious モードで測定すると, 1.6 GHz から3 GHz においてバンド1 で掃引する ので, スペクトラムアナライザ自体の高調波の影響を受けないようになります。

設定方法

- 1. Setup Spot Table/Setup Search Table/Setup Sweep Table 画面に移行しま す。
- 2. カーソルを移動し Preselector の項目に移動し, Set]を押します。
- 3. Normal と Spurious が表示されるので, Preselector を有効にする場合は, Spurious を選択します。

本機能は設定された Spurious Mode に関わらず共通の設定となります。

3.5.7 判定単位を選択する(Judgement)

合否判定の基準として絶対規格値と相対規格値があります。また,絶対規格値 には dBm での設定とW(mW, μ W または nW)での設定があります。これらの規 格値の中からどの規格値を使用するかを、Setup Spot Table、Setup Search Table および Setup Sweep Table のファンクションラベル F3 (Judgement)で選択しま す。なお、Setup Search Table と Setup Sweep Table では設定を共用しています。

- dBm: Limit(dB)の Abs Limit に設定された値で合否判定を 行います。
- dB: Limit(dB)の Rel Limit に設定された値で合否判定を 行います。
- dB & dBm:Limit(dB)の Abs Limit および Rel Limit に設定され た値のうち、測定結果に対してよりマージンの少ない 方の値で合否判定を行います。
- Watt: Limit(W)の Abs Limit に設定された値で合否判定を 行います。
- dB & Watt:Limit(dB)の Rel Limit および Limit(W)の Abs Limit に設定された値のうち,測定結果に対してよりマージ ンの少ない方の値で合否判定を行います。

3.5.8 Spectrum Analyzerを設定する(Setup Spectrum Analyzer)

Spurious Emission の測定は Spectrum Analyzer の機能を使用して測定します。したがって, Spectrum Analyzer に設定するパラメータの値により, Spurious Emission の測定値は異なった結果になります。

Spectrum Analyzer の設定方法

- 1. Spurious Emission 画面で (more)を押して、ファンクションラベルの2 ページ目を表示させます。
- 2. [F1] (Setup Spot Table), [F2] (Setup Search Table), または[F3] (Setup Sweep Table)を押し, [F5] (Setup Spectrum Analyzer)を押しま す。

測定パラメータの設定はファンクションラベルに2ページに渡って表示されます。 詳細はスペクトラムアナライザの取扱説明書を参照してください。

設定可能な測定パラメータを以下に示します。

ファンクションラベル1ページ目

[F2] (RBW Manual/Auto)
RBW の設定を VBW と連動させずに任意で設定するか,周波数と連動して自動で設定するか選択します。
Manual: RBW を周波数と連動させずに,任意で設定します。
Auto: RBW を周波数と連動させます。RBW を直接設定すると自動で Manual に切り替わります。設定される RBW は以下のとおりで す。
周波数 9kHz 以上~100kHz 未満 : 1kHz 100kHz 以上~50MHz 未満 : 10kHz 50MHz 以上~500MHz 未満 : 100kHz
500MHz 以上~ : 3MHz

F3 (VBW Manual/Auto)

VBW の設定を RBW と連動させずに任意で設定するか, RBW と連動して自動で設定するか選択します。

- Manual: VBW の値を RBW と連動させずに,任意で設定します。
- Auto: VBW の値を RBW と連動させます。 RBW を変えると, それに対応して VBW も自動で変わります。 VBW を直接設定すると自動で Manual に切り替わります。
- 「F4」(VBW/RBW Ratio) VBWの設定をAutoにしたときのVBWを決定するための割合を設定します。

[F5] (Sweep Time Manual/Auto) 掃引時間の設定をData Pointに連動させずに任意で設定するか,連動 して自動で設定するか選択します。

- Manual: 掃引時間の値を Data Point に連動させずに,任意で設定します。
- Auto: 掃引時間の値を Data Point に連動させます。掃引時間を直接 設定すると、自動で Manual に切り替わります。Search/Sweep 法 の場合, Data Point が 501 の場合は 2.5sec に、1001 の場合は 5sec に設定されます。Spot 法の場合, Data Point が 501 の場合 は 10msec に、1001 の場合は 20msec に設定されます。
- **F6** (return):上位画面へ戻ります。

ファンクションラベル2ページ目

- F1 (SPA ATT Ref Manual/Auto)
 - Manual: スペクトラムアナライザのリファレンスレベルとアッテネータを信 号解析で設定されている値と独立に設定します。
 - Auto: スペクトラムアナライザのリファレンスレベルとアッテネータを信 号解析で設定されている値と同じにします。

• F4 (Attenuator Manual/Auto)

- Manual: スペクトラムアナライザのアッテネータを設定されたリファレンス レベルと独立に設定します。
- Auto: スペクトラムアナライザのアッテネータを設定されたリファレンス レベルから自動で設定します。
- F5 (Data Points)
 - 1001: スペクトラムアナライザのデータ点数を1001に設定します。
 - 501: スペクトラムアナライザのデータ点数を 501 に設定します。
- **F6** (return):上位画面へ戻ります。

3.5.9 測定結果の説明

測定結果は2通りの表示方法があります。

- ・ 数値画面:測定されたスプリアスの周波数とレベルを一覧で表示します。
- 波形画面:掃引範囲の波形画面とスプリアスの測定結果を表示します。
 すべての測定方法に有効です。

両方の画面とも測定結果が設定レベルを超えてしまった場合は,赤く反転表示 されます。

数値画面と波形画面の切り替え方法は、「3.5.11 測定結果の表示を切り替える (Waveform Display)」を参照してください。

1. 数值画面

Spurious : Spot	*
Detect : Average	
	Spurious
Abs Ket Power (1x Power): -U.86 dBm	node
Kel ker rower (SPA) : -0.00 abm	ж
Frequency Level Limit Unit Margin	C1
f 1 = 445.100 000 MHz: -85.30 -36.0 dBm/100kHz -49.30 dB	Storage
→f 2 = 1 780.400 000 MHz: -61.81 -36.0 dBm/3MHz -25.81 dB	liode
f 3 = 2 670.600 000 MHz: -62.07 -36.0 dBm/3MHz -26.07 dB	\$
f 4 = 3 560.800 000 MHz: -67.20 -36.0 dBm/3MHz -31.20 dB	View
f 5 = 4 451.000 000 MHz: -67.07 -36.0 dBm/3MHz -31.07 dB	Select
f 6 = 5.341.200 000 MHz: -66.80 -36.0 dBm/3MHz -30.80 dB	Judgement
f 7 = 6 231.400 000 MHz: -67.00 -36.0 dBm/3MHz -31.00 dB	
f 8 = 7 I2I.600 000 mHz: -66.71 - 36.0 dBm/ 3mHz - 30.71 dB	
[f 9 mHZ; mHZ; dB]	
110 = 102	
$f_{13} = M_{7}$	
$f_{14} = MH_{z} dR_{m}$	Adjust
$f_{15} = MH_z; dB$	Range
Total Judgement : PASS	→
	Back
Ch if Lowel - 6 00 Be Berron Cal , Off	Screen
Free Son 2000000002 Offset 0 000dB Correction Off	123

(1) Abs Ref Power

Setup Reference Power 画面の Absolute Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を絶対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

(2) Rel Ref Power

Setup Reference Power 画面の Relative Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を相対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

- (3) Freqency 測定周波数です。
- (4) Level(3)の周波数のスプリアス振幅の測定結果です。
- (5) F3 (View Select):
 スプリアス測定結果と測定条件が一画面に収まらないため、このキーを押 すことで順番に、測定結果と測定条件を表示します。

Judgement: 測定結果,規格値,マージンを表示します。 BW: RBW, VBW を表示します。 Ref,ATT,SWT: 基準レベル,アッテネータ,掃引時間を表示します。 Level Meas.: レベル測定時の RBW, VBW,掃引時間を表示します。

・ Spot 法の測定結果画面 測定結果,規格値, 基準レベル, アッテネータ, RBW, VBW 掃引時間 マージン 9:25 86) >> Spurious Emission Spurious Emission Spurious Emission Storage : Normal Spurious : Spot Detect : Average e : Normal us : Spot : Average mal t rage Spurious Mode Spurious Mode Spurious -9.74 dBm -9.53 dBm Mode
 Ref Level
 ATT

 (30.00dBn 50dB
 50dB

 (30.00dBn 50dB
 50dB

 (30.00dBn 50dB
 50dB

 (30.00dBn 50dB
 -dBn -dB

 (-----dBn -dB - -dB
 -dB

 (------dBn -dB - -dB
 -dB

 (------dBn -dB - -dB
 -dB
 Limit Unit -26.02 dBm/100kHz -26.02 dBm/100kHz -26.02 dBm/100kHz -26.02 dBm/100kHz -26.02 dBm/100kHz ----- dBm----------- dBm----------- dBm------Level -49.64 -49.26 -49.20 -49.03 Margin -23.62 dB -23.24 dB -23.18 dB -23.01 dB ----- dB ------ dB ------- dB ------- dB ------- dB ------- dB S₩T Storage Mode Storage Storage Mode lode View Select udsement View View Г 100kHz) ---- Hz) Select Ref.ATT.SWT dB dBn -ms alibration alibration Calibration -abn ---ab -dBn ---dB -dBn ---dB -dBn ---dB -dBn ---dB dBm -11S -11S -11S -11S -11S dBn dBn dBn Adjust Range Adjust Range Adjust Range dBn dBn ---- Hz ---- Hz) ---- Hz ---- Hz) dBn --dB dBn --dB l Judgement : PASS PASS : Low : -10.00dBm _0.00dB Pre Ampl : Off Power Cal : Off Correction : Off mpl : Off Cal : Off ction : Off Pre Ampl : Off Power Cal : Off Correction : Off put vel <u>fse</u> creen сгее cree m 123 123 123

Search 法の測定結果画面

・ Sweep 法の測定結果画面

(6) Total Judgement

すべての周波数(範囲)での判定結果です。設定されたすべての周波数 (範囲)において、判定レベルをクリアしていれば PASS を、ひとつでもクリ アできなければ FAIL を表示します。 2. 波形画面

波形画面では、Spot 法、Search 法、または Sweep 法での測定結果の表示が 微妙に異なります。それぞれの測定方法について説明します。

・Spot 法

Spot 法の測定結果

(1) MKR

波形画面中に表示されるマーカ点(赤いひし形)周波数とレベルです。 マーカは Entry の へ マ, またはロータリノブで移動できます。

- (2) RBW, VBW, ATT, DET スプリアス測定時のスペクトラムアナライザの設定値です。
 •RBW:分解能帯域幅
 •VBW:ビデオ帯域幅
 •ATT:入力部のアッテネータ
 •DET:検波モード
- Ref Level 波形グラフ最上部のレベルです。波形グラフの縦軸は 10 dB/div です。
- (4) TS 掃引時間です。
- (5) F 測定周波数です。
- (6) Abs Ref Power

Setup Reference Power 画面の Absolute Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を絶対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

(7) Rel Ref Power

Setup Reference Power 画面の Relative Power Reference で設定された方 法で測定された電力値です。この値がスプリアス電力を相対値表示する場 合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照 してください。

(8) Frequency

Setup Spot Tabel 画面で設定された周波数です。詳細は「3.5.3 Spot 法の 測定パラメータを設定する(Setup Spot Table)」を参照してください。

- (9) Level(8)の周波数のスプリアス振幅の測定結果です。
- (10) Limit

Setup Spot Tabel 画面で設定された Limit 値です。詳細は「3.5.3 Spot 法の 測定パラメータを設定する(Setup Spot Table)」を参照してください。

(11) Unit

Setup Spot Tabel 画面で設定された Limit 値に対する単位です。詳細は 「3.5.3 Spot 法の測定パラメータを設定する(Setup Spot Table)」を参照して ください。

- (12) Margin
 実際の測定結果(Level)と Setup Spot Tabel 画面で設定された Limit 値 (Limit)との差です。
- $(13) \rightarrow$

現在表示している波形の周波数テーブル番号を示しています。

(14) Total Judgement

すべての周波数(範囲)での判定結果です。設定されたすべての周波数 (範囲)において、判定レベルをクリアしていれば PASS を、ひとつでもクリ アできなければ FAIL を表示します。

(15) F2 (Waveform Frq Tbl No): このキーで周波数テーブルを指定します。キーを押すと周波数テーブル 番号の一覧が表示されますので、Entry の へ v,またはロータリノブ で番号を選択し、Set を押します。 F1 (W f D: L) が OS の担合はこの原見は訊完できません)

[F1] (Waveform Display)が Off の場合はこの項目は設定できません。

- (16) F3 (Previous Page):
 このキーを押すことで、波形を表示する周波数テーブルの番号が1つ小さくなります。
 F1 (Waveform Display)がOffの場合はこの項目は設定できません。
- (17) F4 (Next Page):
 このキーを押すことで、波形を表示する周波数テーブルの番号が1つ大きくなります。
 F1 (Waveform Display)がOffの場合はこの項目は設定できません。
- (18) F6 (Back Screen):
 現在表示している画面の上位画面へ切り替えます。

・Search 法(スプリアス探索時:周波数掃引)とSweep 法

MS <<	8609A Spurio	2004/02/21 ous Emission	L 22:13 (GSM)	3:31 >>	Sto	rage	: Norma	al			Spurious Emission
М	KR	47.600 MHz -81.69 dB			Ѕри Рге	trious select RBW VBW	: Searc or : No 100kHz 3kHz	ch ormal ATI SWI	Г 20dB Г 2001	ıs	Waveform Display On Off
R	ef Leve	el: 0.00dl	Bm					DET :	Pos Pe	ak	
											" Waveform Frq Tbl No
											Previous Page
	antan ara-tang			den ber ingen i	<u></u>	n in an tripic de la c	******		<u>*</u>		Next Page
st.	art.	30.000 MHz					Stop	50	.000 MF	Iz	
A R	bs Ref el Ref	Power (Tx Po Power (SPA) Frequence	ower): : :y	1. 1. Level	25 dBn 62 dBn Li	ı 1. .mit	Unit	201	Margin	1	
f	1 =	22.816 00	0 MHz:	-92.0	5-6	0.00 d	IB	-8	32.05 d	B	÷
₽ŧ	2 =	44.272 00	U MHZ: Tota	-81.5 Judgo	b -b	iU.U0 ძ ნ	B TT.	-2	1.55 c	в	
	_		1068		шень .	1.7	Pre Amj	pl :	0ff		Back Screen
C	h:	10	H Lev	vel :	0.0	10dBm 10JB	Power (al :	off		1 2 3
г	геч :	00.000001	unz VI	1561 :	0.0		COFFEC	: 101	VIT		121

Search 法(スプリアス探索時)の測定結果

(1) MKR

波形画面中に表示されるマーカ点(赤いひし形)周波数とレベルです。 マーカは Entry の へ 、 , またはロータリノブで移動できます。

(2) RBW, VBW, ATT, DET

スプリアス測定時のスペクトラムアナライザの設定値です。

- ·RBW:分解能带域幅
- VBW:ビデオ帯域幅
- ・ATT:入力部のアッテネータ
- ・SWT:周波数掃引時間
- ・DET:検波モード

- Ref Level 波形グラフ最上部のレベルです。波形グラフの縦軸は 10 dB/div です。
- (4) Start 掃引開始周波数です。
- (5) Stop 掃引終了周波数です。
- (6) Abs Ref Power

Setup Reference Power 画面の Absolute Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を絶対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

(7) Rel Ref Power

Setup Reference Power 画面の Relative Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を相対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

- (8) Frequency掃引周波数内で最大スプリアス振幅をとる周波数です。
- (9) Level(8)の周波数のスプリアス振幅の測定結果です。
- (10) Limit

Setup Search Tabel 画面で設定された Limit 値です。詳細は「3.5.4 Search 法の測定パラメータを設定する(Setup Search Table)」を参照してください。

(11) Unit

Setup Search Tabel 画面で設定された Limit 値にたいする単位です。詳細 は「3.5.4 Search 法の測定パラメータを設定する(Setup Search Table)」を参 照してください。

(12) Margin

実際の測定結果(Level)と Setup Search Tabel 画面で設定された Limit 値 (Limit)との差です。

(13) →現在表示している波形の周波数テーブル番号を示しています。

(14) Total Judgement

すべての周波数(範囲)での判定結果です。設定されたすべての周波数 (範囲)において、判定レベルをクリアしていれば PASS を、ひとつでもクリ アできなければ FAIL を表示します。

(15) F2 (Waveform Frq Tbl No) : このキーで周波数テーブルを指定します。<u>キーを押</u>すと周波数テーブル 番号の一覧が表示されますので, Entry の へ V, またはロータリノブ で番号を選択し, Set を押します。 [F1] (Waveform Display)が Off の場合はこの項目は設定できません。

(16) F3 (Previous Page) : このキーを押すことで、波形を表示する周波数テーブルの番号が1つ小さ くなります。Search 法ではスプリアス探索時(周波数軸掃引)の測定結果表 示と、スプリアス測定時(時間軸掃引)の測定結果表示とが交互に表示さ <u>れま</u>す。

F1 (Waveform Display)が Off の場合はこの項目は設定できません。

(17) **F4** (Next Page) :

このキーを押すことで、波形を表示する周波数テーブルの番号が1つ大き くなります。Search 法ではスプリアス探索時(周波数軸掃引)の測定結果表 示と、スプリアス測定時(時間軸掃引)の測定結果表示とが交互に表示さ <u>れま</u>す。

F1 (Waveform Display)がOffの場合はこの項目は設定できません。

(18) (F6) (Back Screen) : 現在表示している画面の上位画面へ切り替えます。

・Search 法(スプリアス計算時:時間軸掃引)

Search 法(スプリアス計算時)の測定結果

MS8609A 2004/02/21 22:18:41	Spur ious
<pre>K Spurious Emission (GSM) >> Storage : Normal</pre>	Emission
Spurious : Search	
Preselector : Normal	Waveform
MKR 70.400 msec RBW 100kHz ATT 20dB	Display
Ref Level · 0.00dBm VBW 100kBZ	
	ין ד
	Harrafone
	Fra Thl No
	-
	Previous
	Page
and the second second way way we have a second s	- I
	Next
	Page
TS: 80ms F: 44.272 M	Hz
Abs Ref Power (Tx Power) : 1.25 dBm	
Rel Ref Power (SPA) : 1.62 dBm	
Frequency Level Limit Unit Margi	n, L
11 - 22.810 UUU mHz; -92.05 -50.00 dB -52.05 + 60.00 dB -52.05 + 60.00 dB -91.55 + 60.00 dB + 60.00 dB -91.55 + 60.00 dB + 60.00	dB →
Total Judgement : FAIL	^w
Pre Ampl : Off	Back
Ch : ICH Level : 0.00dBm Power Cal : Off	Screen
Freq : 60.000000MHz Offset : 0.00dB Correction : Off	123

- MKR 波形画面中に表示されるマーカ点(赤いひし形)周波数とレベルです。 マーカは Entryのへ マ,またはロータリノブで動かします。
- (2) RBW, VBW, ATT, DET
 スプリアス測定時のスペクトラムアナライザの設定値です。
 •RBW:分解能帯域幅
 •VBW:ビデオ帯域幅
 •ATT:入力部のアッテネータ
 •DET:検波モード
- Ref Level 波形グラフ最上部のレベルです。波形グラフの縦軸は 10 dB/div です。
- (4) TS 掃引時間です。
- (5) F 測定周波数です。
- (6) Abs Ref Power

Setup Reference Power 画面の Absolute Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を絶対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

(7) Rel Ref Power

Setup Reference Power 画面の Relative Power Reference で設定された方法で測定された電力値です。この値がスプリアス電力を相対値表示する場合の基準となります。()内に測定方法が表示されます。詳細は、「3.5.2 搬送波の振幅測定パラメータを設定する(Setup Reference Power)」を参照してください。

- (8) Frequency掃引周波数内で最大スプリアス振幅をとる周波数です。
- (9) Level(8)の周波数のスプリアス振幅の測定結果です。
- (10) Limit

Setup Sweep Tabel 画面で設定された Limit 値です。詳細は「3.5.5 Sweep 法の測定パラメータを設定する(Setup Sweep Table)」を参照してください。

(11) Unit

Setup Sweep Tabel 画面で設定された Limit 値にたいする単位です。詳細 は「3.5.5 Sweep 法の測定パラメータを設定する(Setup Sweep Table)」を参 照してください。

(12) Margin

実際の測定結果(Level)と Setup Sweep Tabel 画面で設定された Limit 値 (Limit)との差です。

 $(13) \rightarrow$

現在表示している波形の周波数テーブル番号を示しています。

(14) Total Judgement

すべての周波数(範囲)での判定結果です。設定されたすべての周波数 (範囲)において、判定レベルをクリアしていれば PASS を、ひとつでもクリ アできなければ FAIL を表示します。

 (15) F2 (Waveform Frq Tbl No):
 このキーで周波数テーブルを指定します。キーを押すと周波数テーブル 番号の一覧が表示されますので、Entry の へ ♥,またはロータリノブ で番号を選択し、Set を押します。

F1 (Waveform Display)がOffの場合はこの項目は設定できません。

(16) F3 (Previous Page):
 このキーを押すことで、波形を表示する周波数テーブルの番号が1つ小さくなります。Search 法ではスプリアス探索時(周波数軸掃引)の測定結果表示と、スプリアス測定時(時間軸掃引)の測定結果表示とが交互に表示されます。

F1 (Waveform Display)が Off の場合はこの項目は設定できません。

(17) (F4) (Next Page) :

このキーを押すことで,波形を表示する周波数テーブルの番号が1つ大き くなります。Search 法ではスプリアス探索時(周波数軸掃引)の測定結果表 示と,スプリアス測定時(時間軸掃引)の測定結果表示とが交互に表示さ れます。

F1 (Waveform Display)が Off の場合はこの項目は設定できません。

(18) F6 (Back Screen):
 現在表示している画面の上位画面へ切り替えます。

3.5.10 測定結果の単位を変更する(Unit)

スプリアス測定結果の単位を変更することができます。

- 1. Spurious Emission 画面で (more)を押して, ファンクションラベルの 2 ページ目を表示させます。2 ページ目の F4 (Unit)を押します。 サブメニューが表示されますのでこの中から選択します。
- ・ F1 (Auto): 各 Setup Table の Judgement で設定された単位で表示します。
- F2 (dBm): dBm 単位で表示します。
- F3 (W): W単位(mW, µWまたはnW)で表示します。
- F4 (dB): dB 単位で表示します。
- ・ F6 (return): 1 つ前のファンクションラベル表示に戻ります。

3.5.11 測定結果の表示を切り替える(Waveform Display)

すべての測定方法で掃引波形を表示することができます。これにより,測定され たスプリアス以外の状態を確認することができます。

Spurious Emission 画面のファンクションラベル 3 ページ目の F1 (Waveform Display)を押すことで,数値画面と波形画面の表示を切り替えられます。 Waveform Display が On の場合,自動的にマーカが表示されます。

Waveform Display Off 画面

Waveform Display On 画面

3.6 パワーメータ

Power Meter 画面で表示される測定結果, あるいは設定するパラメータについて 説明します。

IQ 入力時には、本測定は実施できません。本体が MS268xA の場合は、本機能 は使用できません。

画面の説明

(1)POWER

内蔵のパワーセンサで測定した電力を dBm, 相対レベル, W 単位で表示します。

相対レベルは[F1] (Set Relative)を押したときの測定値を基準とします。

(2)Range

現在の測定レンジを表示します。

3.6.1 ゼロ点校正を実施する(Zero Set)

高確度の測定を行うには、ゼロ点校正を実施してください。 ゼロ点校正は、RF input コネクタを無入力状態とした後に F5 (Zero Set)を押 すと実施されます。

3.6.2 相対値表示を使用する(Set Relative)

相対値表示の基準を設定します。

. [F1] (Set Relative)を押すと、押したときのパワー値を基準に設定します。

3.6.3 測定レンジを設定する(Range Up/Range Down)

パワーメータの測定レンジを設定します。

- . F2 (Range Up)を押すと, 測定レンジを上げます。
- . F3 (Range Down)を押すと、測定レンジを下げます。
- F4 (Adjust Range)を押すと、測定レンジを入力信号に合わせて最適化 します。このとき、Setup Common Parameter の Reference Level も最適値に設 定します。

3.7 IQ レベルを測定する

IQ Level 画面で表示される測定結果,あるいは設定するパラメータについて説明します。

本体が MS268xA の場合,本機能は MS2681A-17, MS2681A-18, MS2683A-17, MS2683A-18 または MS2687A/B-18 を搭載時にのみ有効です。

MS8609A		Manager a Cinala	IQ Level
KK IN LE	vel (GSM) >>	Measure : Single Storage · Normal	
Level	-		
	1	: 13.11 dBmV (rms) . 5.04 dBmV (rms)	
	Q.		*
	_		Storage
	I p-p	: 6.59 dBmVp-p	Mode
	6 h_h	: 0.10 dbmvp-p	*
Phase	L/O difference		Unit
	1/4 gittel.euce	: -91.50 deg.	
			Back
			Screen
			1

画面の説明

(1)Level(IとQ)I相信号およびQ相信号の実効値レベルを表示します。

(2)Level (I p-p \geq Q p-p)

I相信号およびQ相信号のPeak to Peak レベルを表示します。

(3)Phase (I/Q difference)

I, Q コネクタに CW 信号を入力した場合, I相信号と Q 相信号の位相差を表示します。

3.7.1 ストレージモードを設定する(Storage Mode)

測定結果のストレージモードを設定します。

Storage Mode: ストレージモードでは下記の中から選択できます。

- ・ Normal:測定ごとに結果を更新し、表示します。
- ・ Average:測定ごとに結果を平均化し,表示します。

Average Count: 平均化の回数を設定します。

Refresh Interval: 平均値表示の更新時期を設定します。

- ・ Every:測定ごとに更新します。
- ・ Once: 平均化回数まで測定後に更新します。

3.7.2 レベルの単位を設定する(Unit)

- F3 (Unit)を押すと,以下のファンクションラベルが表示されるので,単位 を選択します。
 - <u>F1</u> (mV): 単位を mV にします。
 - **F2** (dBmV): 単位を dBmV にします。

3.8 設定パラメータの保存と読み出し

パラメータの設定値をメモリカード内に保存/読み出しする方法について説明します。

保存/読み出しを行う前に、メモリカードをメモリカード挿入口に挿入してください。メモリカードの抜き差しは電源が入った状態で可能です。ただし、保存/読み出し実行中はメモリカードの抜き差しは行わないようにしてください。

1枚のメモリカードには、100通りの設定状態(ファイル)を保存することができます。 ファイルは、0~99 までのファイル番号の中に保存します。また必要によりアル ファベットと数字によるファイル名を付けたり、書き込み保護の設定をすることが できます。

ファイル名は MS-DOS 形式となっていますので,最大文字数 8 文字,アルファ ベットの大文字小文字の区別はできません。

3.8.1 パラメータを保存する(Save)

パラメータを保存するには、以下の手順で Save Parameter 画面を表示させます。

ステップ		操作内	容	
1	メモリカードをメモリカード挿	挿入口に挿入しま	す。	
2	Shift を押してから Reca	ll を押します。		
3	F2 (Display Dir.)を打	押します。		
MS8608F << Save) Parameter >>			Save Parameter
Direc	tory : \MS8608A\G5M\PAR	1165		Previous
Save Save	File M Data : GSM Tester	1emory Card Info Volume Label : f	rmation ANRITSU	Page
File	Name : PARAM00	Uhused Area : Total Area :	6 778 880 Bytes 31 950 848 Bytes	Display Dir.
	No. Name Dat	te Time	Protect	/Next Page
	26 PHRANKS P88 2888-9 01 PARAN81 P81 1995-0 02 PARAN82 P82 1995-0 03	18-15 19:23:24 15-01 04:22:52 15-01 04:23:08	Off Off Off	≠ File No.
	04 05 PARAM05 .P05 2000-0	08-15 21:06:52	Off	+
	07 PARAM87 .P07 2000-0	08-15 21:09:08	Off	File Name
	09 ABCDEFGH.P09 2000-0	08-16 11:20:10	Off	
	11			Write Protect
	13			-
	16 17			Back Soreen

1 枚のメモリカードには 100 通りの設定状態(ファイル)を保存することができます。ファイルは、0~99 までのファイル番号の中に保存します。

- 4 Entry の \land \lor またはロータリノブでカーソルを移動し、ファイル番号を選択します。または、F3 (File No.)で、設定ウインドウを開き、テンキーでファイル番号を入力します。
- 5 Entry の Set を押します。
- 6 確認ウインドウが開くので、Yesを選択し【Set】を押します。

以上の操作で、各パラメータの設定値はメモリカードに保存されます。 新規の番号に保存した場合は、"PARAM**.P**"(**はファイル番号)というファ イル名が自動で付けられます。また、すでにファイルのあるファイル番号に保存さ れたときは、保存内容は上書きされファイル名はそのままとなります。

3.8.2 名前を付けて保存する(File Name.)

パラメータを保存するの手順4のところで、 F4 (File Name)を押すと、ファイルに名前を付けて保存することができます。

ここでは、F4 (File Name)を押して、ファイル名入力用のウインドウを表示させたときのファイル名の入力方法について説明します。

11586688R <<< Save	Para	meter >>					Save Parameter
Direct Save P Save	ory Tile Data	: \MS8606 : GSM Tes	ANGSMNPARAM Memor ter Volu	y Card Info me Label :	ermation ANRITSU	000 D.J	Previous Page
File	No.	: Name	Tota Date	eu Area : l Area : Time	31 950 Protec	920 Bytes 848 Bytes t	Display Dir. /Next Page
	00 01 02 03	PARAM00 .P0 PARAM01 .P0 PARAM02 .P0	8 2880-08-15 1 1995-05-01 2 1995-05-01	19:33:24 04:22:52 04:23:08	Off Off Off		リア [‡] File No.
	04 05 06 07	PARAM05 .P0 PARAM07 .P0	5 2000-08-19 7 2000-08-19	File name BCDEFGH1.	(I) JKLMNOPO) RSTUNIXYZ	‡ File Name
	08 09 10 11	ABCDEFGH.P0	9 2000-08-人	/ !#\$~80123	40678961){}~~	Urite Protest
	13 14 15 16						Back
	17						1

ステップ

操作内容

- 1 ロータリノブで、文字一覧のカーソルを移動し、入力したい文字を選択します。
- 2 Enter を押します。選択した文字が、エントリエリアに入力されます。
- 3 1,2を繰り返して、ファイル名を入力します。A~F、0~9 についてはテンキーで直接入力することもできます。ファイル名に使用できる文字数は8 文字までです。また、文字一覧に表示される文字だけ使用可能です。その他の文字は使用できません。
- 4 ファイル名の入力が終了したら、 Set) を押します。
- 5 確認ウインドウが開くので、Yesを選択し、 Set)を押します。

以上の操作で,名前を付けて保存されます。

Λ

BS

Enter

.

•

	ロータリノブ	:文字一覧の中にあるカーソルの移動を行います。
--	--------	-------------------------

- /_____:エントリエリアのカーソルの移動を行います。
 - :エントリエリア内のカーソルの手前の文字を消去します。
 - :文字一覧の中にあるカーソル上の文字が,エントリエリア のカーソル上に上書きされます。

• Set

:エントリエリアの文字列をファイル名に確定します。

3.8.3 ファイルの書き込み保護をする(Write Protect)

ファイルの書き込み保護の設定方法について説明します。

ステップ	操作内容
1	Entry の Image: State of the state
2	F5 (Write Protect)を押します。

<u>F5</u> (Write Protect)を押すごとに、書き込み保護の On/Off が交互に切り替わります。

3.8.4 パラメータを読み込む(Recall)

-

保存したパラメータを読み込むには、以下の手順で Recall Parameter 画面を表示させます。

ステップ 操作内容	
1 メモリカードをメモリカード挿入口に挿入します。	
2 Recall を押します。	
3 F2 (Display Dir.)を押します。	
MS8608R << Recall Parameter >>	Recal I Parameter
Directory : \MS8608R\GSM\PPRPTM Recall file Memory Card Information Recall Data : GSM Tester Volume Label : ANRITSU File Name : PARAM00 Unused Area : 6 699 008 Bytes Total Area : 31 950 848 Bytes No. Name Date Time Protect 01 PARAM01 .P01 1995-05-01 04:22:52 Off 01 PARAM02 .P02 1995-05-01 04:22:52 Off 02 PARAM05 .P05 2000-08-15 21:06:52 Off 07 PARAM05 .P07 2000-08-15 21:09:08 Off 09 ABCDEFGH.P09 2000-08-16 11:20:10 Off	Previous Page Display Dir. /Next Page File No. File No.

- 4 Entry の \land \lor またはロータリノブでカーソルを移動し、ファイル番号を選択します。または、 F3 (File No.)で、設定ウインドウを開き、テンキーでファイル番号を入力します。
- 5 Entry の Set を押します。
- 6 確認ウインドウが開くので、Yesを選択し、Set を押します。

パラメータの読み込みが終ると、Setup Common Parameter 画面になります。

ここでは, MS860*A/MS268*に MX860*02A/MX268*02A をインストールして GSM 測定を行うときの性能試験を実施する場合の測定機器, 接続方法, 操作内 容について説明しています。

本章で、

表示されているのは、パネルキーを表します。

4.1	性能試	生能試験が必要な場合		
4.2	性能試験用機器の一覧			
4.3	性能試験			
	4.3.1	変調/周波数確度 <ms860xa></ms860xa>	4-6	
	4.3.2	変調/周波数確度 <ms268xa></ms268xa>	4-9	
	4.3.3	送信電力測定確度 <ms860xa></ms860xa>	4-11	
	4.3.4	キャリア OFF 時の電力測定 <ms860xa></ms860xa>	4-13	
	4.3.5	キャリア OFF 時の電力測定 <ms268xa></ms268xa>	4-16	
	4.3.6	リニアリティ <ms860xa></ms860xa>	4-19	
	4.3.7	リニアリティ <ms268xa></ms268xa>	4-22	
	4.3.8	出カスペクトラム測定 <ms860xa></ms860xa>	4-25	
	4.3.9	出カスペクトラム測定 <ms268xa></ms268xa>	4-27	
	4.3.10	スプリアス測定 <ms860xa></ms860xa>	4-29	
	4.3.11	スプリアス測定 <ms268xa></ms268xa>	4-33	
	4.3.12	IQ 入力変調精度 <ms860xa ms268xa=""></ms860xa>	4-37	
	4.3.13	パワーメータ確度 <ms860xa></ms860xa>	4-39	
4.4	性能試験結果記入用紙例			
	4.4.1	変調/周波数測定	4-41	
	4.4.2	送信電力測定確度	4-43	
	4.4.3	キャリア OFF 時の電力測定確度	4-44	
	4.4.4	リニアリティ	4-45	
	4.4.5	出カスペクトラム測定	4-47	
	4.4.6	スプリアス測定	4-48	
	4.4.7	IQ 入力変調精度	4-49	
	4.4.8	パワーメータ確度	4-50	

4.1 性能試験が必要な場合

ここでの性能試験は, MS860*A/MS268*A に MX860*02A/MX268*02A をイン ストールして GSM 測定に使用する場合の性能劣化を未然に防止するため, 予 防保守の一環として行います。

性能試験は、本測定器の受入検査、定期検査、修理後の性能確認などで性能 試験が必要な場合に利用してください。

重要と判断される項目は、予防保守として定期的(年に 1~2 回程度が望まれま す)に行ってください。

本測定器をGSM 測定に使用される場合の受入検査, 定期検査, 修理後の性能 確認に対しては下記の性能試験を実施してください。

- · 変調/周波数測定
- ・ 送信電力確度
- ・ キャリア OFF 時の電力測定確度
- ・ リニアリティ
- 出力スペクトラム測定
- ・ スプリアス測定
- IQ 入力変調精度
- ・ パワーメータ確度*

*MS268*A では行いません。

性能試験で規格を満足しない項目が発見されましたら,当社または当社代理店 にご連絡ください。

4.2 性能試験用機器の一覧

推奨機器名(型名)	要求される性能	試験項目
	・周波数範囲:100 kHz~2700 MHz	変調/周波数解析
	分解能ⅠHZ 可能 ・ 出力レベル範囲・	送信電力測定確度
シンセサイズド	分解能 0.1 dB 可能	リニアリティ
信号発生器 (MG3633A)	・ SSB 位相雑音:-130 dBc/Hz 以下 (10 kHz オフセット時)	出力スペクトラム確定
	・ 2 次高調波: - 30 dBc 以下	スプリアス測定
	• 外部基準入力: (10 MHz)可能	パワーメータ確度
	・周波数範囲:50~2700 MHz	キャリア Off時の電力測定範囲
ディジタル	分解能 1Hz 可能	IQ 入力変調精度(GMSK 変調
変調信方充生奋 (MG3672A+	・ 出力レベル範囲 無変調時:-10~+10 dBm	時)
MG0302A+	変調時:-20~+4 dBm	
MG0303B)	分解能 0.1 dB 可能	
	 外部基準入力: (10 MHz) 可能 	
	・ IQ 出刀可能 - FDCE 信号出力可能	IQ入力変調精度(8PSK 変調時)
ディジタル	・ EDGE 信写出力可能 ・ 出力レベル:01~10V(rms)	
変調信号発生器	・ S/N:50 dB 以上	
	・ 外部基準入力: (10 MHz) 可能	
	 ・周波数範囲:100 kHz~3 GHz 	リニアリティ
校正田受信機	分解能 1Hz 可能	パワーメータ確度
(ML2530A)	 測定電力範囲:-140~20 dBm 測定確応:+0.04 JD 	
	• 測疋催度:±0.04 dB • 从郭其淮入力:(10 MHz)可能	
	• 測定確度:+0.02 dB	亦調/国連粉般長
パワーメータ	・ 周波数範囲:100 kHz~8.5 GHz	发酮/ 问 (汉) 州 (7)
(ML4803A)	(使用パワーセンサによる)	送信電刀測定確度
		リニアリティ
パワーセンサ	・周波数範囲:10 MHz~3 GHz	キャリア Off時の電力測定範囲
(MA4601A)	 測定電力範囲: -30~+20 dBm ユニュュュュロン 新聞 	パワーメータ確度
口卢泽学品	 ・ 入力コネクタ:N 空 ・ 減存量・2 dP 	
回 正 佩 衰 奋 (MP721A)	• VSWR:12以下	ハリーメータ唯度
	 ・ 周波数範囲: DC~18 GHz 	
プログラマブル	 減衰量確度:0.9 dB 	送信電力测字 碎 库
アッテネータ	・ VSWR:1.2 以下	心信电刀側足帷皮
(MN72A)		リニアリティ
		パワーメータ確度

以下に性能試験用機器の一覧を示します。

推奨機器名(型名)	要求される性能	試験項目
LPF 切換ユニット	・ 850 MHz の 2 次高調波をカット可能なもの, かつ Filter をスルー可能なもの	スプリアス測定
2GLPF	・信号発生器が発生する2 GHz 以降の高 調波をカット可能なもの	スプリアス測定

要求される性能は、試験項目の測定範囲をカバーできる性能の一部を抜粋しています。

4.3 性能試験

被試験装置と測定器類は、特に指示する場合を除き少なくとも 30 分以上ウォー ムアップを行い、十分に安定してから性能試験を行ってください。最高の測定確 度を発揮するには、上記の他に室温下(25±5℃)での実施、AC 電源電圧の変 動が少ないこと、騒音・振動・ほこり・湿度などについても問題が無いことが必要 です。

4.3.1 変調/周波数確度<MS860xA>

ここでは,以下の規格について試験します。

- · 周波数測定確度
- · 残留位相誤差
- ・ 残留 EVM

(1) 試験対象規格

- ・ 周波数測定確度: ±(基準水晶発振器の確度+10Hz)
 - 入力レベル(バースト内平均電力)
 - ≥ -10 dBm (High Power 入力時)
 - ≧-30 dBm(Low Power 入力時)
 - ≧-30 dBm (Low Power 入力時, プリアンプ On 時*1)
- ・ 残留位相誤差(GSMK 変調時) : <0.5 degree(rms)
 - < 2.0 degree (peak)
- 残留 EVM(8PSK 変調): < <1.0%(rms)
- *1: プリアンプ On は本体オプション 08 搭載時に設定可能となります。

(2) 試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- ・ プログラマブルアッテネータ:MN72A
(3) セットアップ

(4) 試験手順

ステップ				操	作	内	容		
1	SG1	を無変調とし、	測定周辺	波数の)設定	を行い	ます	プログラマブルアッ	テネー

SG1 を無変調とし, 測定周波数の設定を行います。 プログラマブルアッテネー タ(MN72A)を 0 dB に設定します。 測定する周波数および測定レベルは下表 とします。

	レベル (MS860xA への入力レベル)				
周波数	MS860xA	MS8609A および	MS8608A		
	Pre-Ampl On 時	MS8608A Low 入力	High 入力		
50 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB	-10 dBm±0.1 dB		
850 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB	-10 dBm±0.1 dB		
1800 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB	-10 dBm±0.1 dB		
2700 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB	-10 dBm±0.1 dB		

- 2 本測定器を以下のように設定します。
 - Input Terminal: RF (High/Low Power Input)
 - Reference Level: -10 dBm
 - ・ Frequency: (上記の周波数)
 - Modulation:GMSK
 - Measuring Object: Continuous
 - Trigger: Free Run

3

- (More)を押し, ファンクションラベルの2ページ目を表示します。
- 4 **F6** (Power Meter)を押し, Power Meter 画面に移行します。
- 5 SG1の出力を OFF にして, F5 (Zero Set)を実行します。

ステップ	操作内容
6	SG1 の出力を-10 dBm に設定し、 F4 (Adjust Range)を実行します。
	Power Meter の指示値が-10 dB±0.1 dB になるように SG1 のレベルを合わせ
	ます(SG1 のレベル可変後は必ず Adjust Range を実行します)。レベル校正
	後, F6 (Back Screen)を押します。
7	プログラマブルアッテネータ(MN72A)の設定を行います。
	• Pre-Ampl On 時:30 dB
	・ MS8609A および MS8608A Low 入力時:20 dB
	・ MS8608A High 入力時:0 dB
8	SG1の設定周波数を上表の値に 67.70833 kHz(Bit Rateの 1/4)加算した値を 設定します。
9	本測定器の F2 (Modulation Analysis)を押し, Modulation Analysis 画面 に移行します。 F5 (Adjust Range)を実行します。
10	周波数誤差値,残留位相誤差値が規格を満足していることを確認します。
11	SG1の周波数を前ページの表の値に 50.78125 kHz 加算した値を設定します。
12	本測定器の Modulation の設定を8PSK に設定します(プログラマブルアッテ ネータの設定は7項と同じにします)。
13	同様に9項を実行し,残留 EVM が規格を満足していることを確認します。
14	周波数を変更し、1~13項を繰り返します。

4.3.2 変調/周波数確度<MS268xA>

ここでは、以下の規格について試験します。

- · 周波数測定確度
- 残留位相誤差
- ・ 残留 EVM

(1) 試験対象規格

・ 周波数測定確度: ±(基準水晶発振器の確度+10 Hz)

入力レベル(バースト内平均電力)

≧-30 dBm(Low Power 入力時, プリアンプ Off 時)

- ≧-30 dBm (Low Power 入力時, プリアンプ On 時*1)
- 残留位相誤差(GSMK 変調時) : <0.5 degree(rms)
 <2.0 degree(peak)
- 残留 EVM(8PSK 変調): <1.0%(rms)
- *1: プリアンプ On は本体オプション 08 搭載時に設定可能となります。

(2) 試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- ・ プログラマブルアッテネータ:MN72A
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A
- (3) セットアップ

(4) 試験手順

ステップ	操	作	内	容		

1 SG1 を無変調とし、測定周波数の設定を行います。プログラマブルアッテネータ(MN72A)を0 dB に設定します。測定する周波数および測定レベルは下表とします。

	レベル (MS268xA への入力レベル)			
周波数	MS268xA	MS268xA		
	Pre-Ampl On 時	Pre-Ampl Off 時		
50 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB		
850 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB		
1800 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB		
2700 MHz	-40 dBm±0.1 dB	-30 dBm±0.1 dB		

- 2 本測定器を以下のように設定します。
 - Input Terminal: RF
 - Reference Level: -10 dBm
 - ・ Frequency: (上記の周波数)
 - Modulation:GMSK
 - Measuring Object: Continuous
 - Trigger: Free Run
- 3 SG1の出力をパワーセンサ(MA4601A)に接続します。
- 4 パワーメータ(ML4803A)の指示値が-10 dBm±0.1 dB になるように,SG1 のレ ベルを合わせます。
- 5 SG1 の出力を本機の RF コネクタに接続します。
- 6 プログラマブルアッテネータ(MN72)の設定を行います。
 - Pre-Ampl On 時:30 dB
 - Pre-Ampl Off 時:20 dB
- 7 SG1の設定周波数を上表の値に 67.70833 kHz (Bit Rate の 1/4) 加算した値を設 定します。
- 8 本測定器の F2 (Modulation Analysis)を押し, Modulation Analysis 画面に 移行します。 F5 (Adjust Range)を実行します。
- 9 周波数誤差値,残留位相誤差値が規格を満足していることを確認します。
- 10 SG1の周波数を前ページの表の値に 50.78125 kHz 加算した値を設定します。
- 11 本測定器の Modulation の設定を8PSK に設定します(プログラマブルアッテ ネータの設定は6項と同じにします)。
- 12 同様に 8 項を実行し, 残留 EVM が規格を満足していることを確認します。
- 13 周波数を変更し、1~12項を繰り返します。

4.3.3 送信電力測定確度<MS860xA>

(1) 試験対象規格

±0.4 dB(内蔵のパワーメータを用いて校正後)

(2) 試験用測定器

- ・ シンセサイズド信号発生器(SG1): MG3633A
- ・ パワーメータ: ML4803A
- ・ パワーセンサ: MA4601A
- ・ プログラマブルアッテネータ: MN72A
- (3) セットアップ

(4) 試験手順

ステップ	操作内容
1	パワーセンサ (MA4601A) をパワーメータ (ML4803A)の Cal Output に接続 し, Zero Adjust を実行します。
2	Sensor Input を On にして, ADJ を実行します (Cal Adjust)。
3	SG1 (MN72A の出力)をパワーセンサ (MA4601A) に接続します。

4

ステップ 操	作	内	容	
--------	---	---	---	--

SG1 の周波数・出力レベルを設定します。 パワーメータ(ML4803A)で+10 dBm±0.1 dB になるように SG1 のレベルを合 わせ, 測定結果を記録します。この後, プログラマアッテネータ(MN72A)を 20 dB に設定したときにおける, 各測定周波数ごとのアッテネータ減衰量を測定し 記録します。測定する周波数およびレベルの組み合わせは下表とします。

	レベル (MS860xA への入力レベル)				
周波数	MS860xA	MS8609 および	MS8608A		
	Pre-Ampl On 時	MS8608A Low 入力	High 入力		
50 MHz	-10 dBm±0.1 dB	-10 dBm±0.1 dB	$+10 \text{ dBm} \pm 0.1 \text{ dB}$		
850 MHz	-10 dBm±0.1 dB	-10 dBm±0.1 dB	$+10 \text{ dBm} \pm 0.1 \text{ dB}$		
1800 MHz	-10 dBm±0.1 dB	-10 dBm±0.1 dB	+10 dBm±0.1 dB		
2700 MHz	-10 dBm±0.1 dB	-10 dBm±0.1 dB	+10 dBm±0.1 dB		

- 5 SG1 (MN72A の出力)を本測定器へ接続します。
- 6 本測定器を以下のように設定します。
 - Input Terminal: RF (High/Low Power Input)
 - ・ Reference Level: -10 dBm(上記表のレベル)
 - ・ Frequency: (上記表の周波数)
 - Modulation:GMSK
 - Measuring Object: Continuous
 - Trigger: Free Run
- 7 プログラマアッテネータ(MN72A)の設定を行います。
 - Pre-Ampl On 時:20 dB
 - ・ MS8609A および MS8608A Low 入力時:20 dB
 - ・ MS8608A High 入力時:0 dB
- 8 F3 (RF Power)を押し, RF Power 画面に移行します。
- 9 [F5] (Adjust Range)を押します。
- 10 (More)を押し、ファンクションラベルの2ページ目を表示します。
- 11 [F5] (Calibration)を押し, [F1] (Power Calibration)を実行します。
- 12 Tx Power 値(dBm)を記録します。
 - MS8608A High 入力時 測定確度[dB]=Tx Power 値ーパワーメータにより得られた値
 - Pre-Ampl On 時および MS860xA Low 入力時 測定確度[dB]=Tx Power 値-(パワーメータにより得られた値 -MN72A ATT:20 dB 設定時の真の減衰量)
- 13 周波数を変更し、3~12を繰り返します。

4.3.4 キャリアOFF時の電力測定<MS860xA> (1) 試験対象規格

- ・ 入力レベル(バースト内平均電力)
 - $\geq +10$ dBm (High Power 入力時)
 - ≧-10 dBm(Low Power 入力時)
 - ≧-20 dBm(Low Power 入力時, プリアンプ On 時*1)
- ・ ノーマルモード測定範囲:60 dB(バースト内平均電力に比べて)
- ・ 広ダイナミックレンジモード測定範囲:

バースト内平均電力:1W(ハイパワー入力時)

10mW(Low Power 入力時)に比べて

≥80 dB(測定限界は平均雑音レベル:≤-50 dBm

(High Power 入力, 50 MHz to 2.7 GHz) にて決まる)

*1: プリアンプ On は本体オプション 08 搭載時に設定可能となります。

(2) 試験用測定器

*ディジタル信号発生器(SG2): MG3672A with MG0302A & MG0303B

(4) 試験手順

ステップ 1

- SG2を以下のように設定します。
 - System: GSM
 - Differential Encode: On
 - Phase Polarity: Normal
 - Burst:On
 - Pattern:TCH
 - Trigger: Free Run
- 2 SG2の周波数を設定します。SG2の出力レベルは-10dBmに設定します。 本測定器への入力レベルは RF Power 画面の Tx Power 値にて測定を行いま す(Wide Dynamic Range は Off)。測定する周波数およびレベルの組み合わ せは下表とします。

	レベル(MS860xA への入力レベル)			
周波数	MS860xA	MS8609A および		
	Pre-Ampl On 時	MS8608A Low 入力		
50 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
850 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
1800 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
2700 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		

- 3 本測定器を以下のように設定します。
 - Input Terminal: RF(MS8608A は Low 入力のみ)
 - ・ Reference Level: (上記表のレベル)
 - ・ Frequency: (上記表の周波数)
 - Modulation: GMSK
 - Measuring Object: Normal Burst
 - Trigger: Free Run

5

- 4 F3 (RF Power)を押し, RF Power 画面に移行します。
 - <u>F5</u> (Adjust Range)を押します。
- 6 (More)を押し、ファンクションラベルの2ページ目を表示します。
- 7 F5 (Calibration)を押し, F1 (Power Calibration)を実行します。
- 8 Single を押し, Tx Power 値が-10 dBm±0.1 dB 以内になるように, SG2 のレベルを合わせます(レベル可変後は Adjust Range を実行しないでください)。

※Pre-Ampl On 時は, Tx Power 値が-20 dBm±0.1 dB になるように校正してく ださい(このときは Adjust Range を実行します)。

ステップ	操作内容
9	On/Off Ratio が規格を満足していることを確認します。
10	ファンクションラベルを 1 ページ目に戻し, F4 (Wide Dynamic Range)を 押し, On に設定します(Low 入力時および Pre-Ampl On 時共に)。
11	本測定器への入力レベルを RF Power 画面の Tx Power 値にて、0 dBm になるように SG2 のレベルを合わせ、 (Adjust Range)を実行します。
12	(More)を押し, ファンクションラベルの 2 ページ目を実行します。
13	F5 (Calibration)を押し、F1 (Power Calibration)を実行します。
14	Carrier OFF Powerを測定し, OFF Powerの絶対値が規格の平均雑音レベル (Low Power 入力では≦-71 dBm)を超えないことを確認します。
15	周波数を変更して、2~14を繰り返します。

4.3.5 キャリアOFF時の電力測定<MS268xA>

(1) 試験対象規格

- ・ 入力レベル(バースト内平均電力)
 - $\geq -10 \, dBm$ (プリアンプ Off 時)
 - ≧-20 dBm(プリアンプ On 時*1)
- ・ ノーマルモード測定範囲:60 dB(バースト内平均電力に比べて)
- ・ 広ダイナミックレンジモード測定範囲:

バースト内平均電力:10 mW(プリアンプ Off 時)に比べて
 ≧80 dB(測定限界は平均雑音レベル:≦-70 dBm
 (50 MHz to 2.7 GHz)にて決まる)

*1: プリアンプ On は本体オプション 08 搭載時に設定可能となります。

(2) 試験用測定器

- ・ *ディジタル信号発生器(SG2): MG3672A with MG0302A & MG0303B
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A
- (3) セットアップ

(4) 試験手順

ステップ 1

操作内容

- SG2を以下のように設定します。
 - System: GSM
 - Differential Encode: On
 - Phase Polarity: Normal
 - Burst:On
 - Pattern:TCH
 - Trigger: Free Run
- 2 SG2の周波数を設定します。SG2の出力レベルは-10dBmに設定します。 本測定器への入力レベルは RF Power 画面の Tx Power 値にて測定を行います(Wide Dynamic Range は Off)。測定する周波数およびレベルの組み合わせは下表とします。

	レベル(MS268xA への入力レベル)			
同波剱	Pre-Ampl On 時	Pre-Ampl Off 時		
50 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
850 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
1800 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
2700 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		

- 3 本測定器を以下のように設定します。
 - Input Terminal: RF
 - ・ Reference Level: (上記表のレベル)
 - ・ Frequency: (上記表の周波数)
 - Modulation:GMSK
 - Measuring Object: Normal Burst
 - Trigger: Free Run
- 4 [F3] (RF Power)を押し, RF Power 画面に移行します。
- 5 [F5] (Adjust Range)を押します。
- 6 SG1の出力をパワーセンサ(MA4601A)に接続します。
- 7 パワーメータ(ML4803A)の指示値が-10 dBm±0.1 dB になるように,SG1 のレ ベルを合わせます。
- 8 SG1 の出力を本機の RF コネクタに接続します。

※Pre-Ampl On時は, Tx Power 値が-20 dBm±0.1 dB になるように校正してく ださい(このときは Adjust Range を実行します)。

ステップ	操作内容
9	On/Off Ratio が規格を満足していることを確認します。
10	F4 (Wide Dynamic Range)を押し, On に設定します(Pre-Ampl Off 時お よび Pre-Ampl On 時共に)。
11	本測定器への入力レベルを RF Power 画面の Tx Power 値にて, 0 dBm になる ように SG2 のレベルを合わせ, F5 (Adjust Range)を実行します。
12	Carrier OFF Powerを測定し, OFF Powerの絶対値が規格の平均雑音レベル (Low Power 入力では≦-71 dBm)を超えないことを確認します。
13	周波数を変更して、2~12を繰り返します。

4.3.6 リニアリティ<MS860xA>

- (1) 試験対象規格
- $\pm 0.2 \text{ dB}(0 \sim -30 \text{ dB})$

レンジ最適化後,基準レベルの設定を変更しない状態で

(2) 試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- ・ 校正用受信機:ML2530A
- ・ プログラマブルアッテネータ:MN72A
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A

(4) 試験手順

ステップ 操作内容 1 パワーセンサ(MA4601A)をパワーメータ(ML4803A)の Cal Output に接続し, Zero Adjust を実行します。

- 2 Sensor Input を On にして, ADJ を実行します(Cal Adjust)。
- 3 SG1(MN72Aの出力)をパワーセンサ(MA4601A)に接続します。
- 4 SG1の周波数を設定し、プログラマブルアッテネータ(MN72A)を0dBに設定 します。パワーメータ(ML4803A)の指示値が+10dBm±0.1dBになるように SG1のレベルを合わせ、設定値を記録します(Set_Ref)。測定する周波数およ びレベルの組み合わせは下表とします。

	レベル (MS860xA への入力レベル)				
周波数	MS860xA MS8609 および		MS8608A		
	Pre-Ampl On 時	MS8608A Low 入力	High 入力		
50 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB	+10 dBm±0.1 dB		
850 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB	$+10 \text{ dBm}\pm 0.1 \text{ dB}$		
1800 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB	+10 dBm±0.1 dB		
2700 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB	+10 dBm±0.1 dB		

- 5 SG1 (MN72 の出力)を校正用受信機 (ML2530A) に接続し, BW を 100 Hz, Rilative モードに設定します (レンジは 1 固定)。
- 6 SG1 出力レベルを(Set_Ref に対して)-30 dBc まで 10 dB ずつ下げていき, 都度,校正用受信機(ML2530)での測定値を記録します(ML2530A の指示 値)。
- 7 本測定器を以下のように設定します。
 - Input Terminal: RF (High/Low Power Input)
 - ・ Reference Level: (上記表のレベル)
 - ・ Frequency: (上記表の周波数)
 - Modulation: GMSK
 - Measuring Object: Continuous
 - Trigger: Free Run
- 8 プログラマブルアッテネータ(MN72A)の設定を行います。
 - Pre-Ampl On 時:30 dB
 - ・ MS8609A および MS8608A Low 入力時:20 dB
 - MS8608A High 入力時:0 dB
- 9 SG1 (MN72A の出力)を本測定器へ接続し,信号発生器のレベルを Set_Ref に設定します。

ステップ	操作内容			
10	F3 (RF Power)を押し, RF Power 画面に移行します。			
11	F5 (Adjust Range)を押します。			
12	(More)を押し、ファンクションラベルの2ページ目を表示します。			
13	F5 (Calibration)を押し、F1 (Power Calibration)を実行します。			
14	Tx Power 値(dBm)を記録します(Measure_Ref)。			
15	SG1の出力レベルを(Set_Refに対して)-30 dBcまで10 dB ずつ下げていき, 都度, Tx Power 値を記録します。			
	※SG1 のレベルを 10 dB ずつ可変するのであって, プログラマブルアッテネー タ(MN72A)の設定は可変しないでください。			
16	リニアリティ誤差(下記)が,規格を満足していることを確認してください。			
	リニアリティ誤差[dB]=Tx Power 値-(Measure_Ref-ML2530A の指示値)			
17	周波数を変更して、3~16を繰り返してください。			

4.3.7 リニアリティ<MS268xA>

(1) 試験対象規格

```
\pm 0.2 \text{ dB}(0 \sim -30 \text{ dB})
```

レンジ最適化後,基準レベルの設定を変更しない状態で

(2) 試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- ・ 校正用受信機:ML2530A
- ・ プログラマブルアッテネータ:MN72A
- ・ パワーメータ: ML4803A
- ・ パワーセンサ:MA4601A

(4) 試験手順

ステップ

作内容

1 パワーセンサ(MA4601A)をパワーメータ(ML4803A)の Cal Output に接続し, Zero Adjust を実行します。

操

- 2 Sensor Input を On にして, ADJ を実行します(Cal Adjust)。
- 3 SG1(MN72A)をパワーセンサ(MA4601A)に接続します。
- 4 SG1の周波数を設定し、プログラマブルアッテネータ(MN72A)を0dBに設定 します。パワーメータ(ML4803A)の指示値が+10dBm±0.1dBになるように SG1のレベルを合わせ、設定値を記録します(Set_Ref)。測定する周波数およ びレベルの組み合わせは下表とします。

	レベル(MS268xA への入力レベル)			
同波剱	Pre-Ampl On 時	Pre-Ampl Off 時		
50 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
850 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
1800 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		
2700 MHz	-20 dBm±0.1 dB	-10 dBm±0.1 dB		

- 5 SG1 (MN72A の出力)を校正用受信機 (ML2530A) に接続し, BW を 100 Hz, Rilative モードに設定します (レンジは 1 固定)。
- 6 SG1 出力レベルを(Set_Ref に対して)-30 dBc まで 10 dB ずつ下げていき, 都度,校正用受信機(ML2530)での測定値を記録します(ML2530A の指示 値)。
- 7 本測定器を以下のように設定します。
 - Input Terminal: RF (High/Low Power Input)
 - Reference Level: (上記表のレベル)
 - ・ Frequency:(上記表の周波数)
 - Modulation:GMSK
 - Measuring Object: Continuous
 - Trigger: Free Run
- 8 プログラマブルアッテネータ(MN72A)の設定を行います。
 - Pre-Ampl On 時:30 dB
 - Pre-Ampl Off 時:20 dB
- 9 SG1 (MN72A の出力)を本測定器へ接続し, 信号発生器のレベルを Set_Ref に設定します。

ステップ	操作内容			
10	F3 (RF Power)を押し, RF Power 画面に移行します。			
11	F5 (Adjust Range)を押します。			
12	Tx Power 値(dBm)を記録します(Measure_Ref)。			
13	SG1の出力レベルを(Set_Refに対して)-30 dBcまで10 dB ずつ下げていき, 都度, Tx Power 値を記録します。			
	※SG1 のレベルを 10 dB ずつ可変するのであって, プログラマブルアッテネー タ(MN72A)の設定は可変しないでください。			
14	リニアリティ誤差(下記)が,規格を満足していることを確認してください。			
	リニアリティ誤差[dB]=Tx Power 値-(Measure_Ref-ML2530A の指示値)			
15	周波数を変更して、3~14を繰り返してください。			

4.3.8 出力スペクトラム測定<MS860xA>

(1)試験対象規格

・ CW 信号入力時

変調部測定範囲

≧60 dB(200 kHz 離調)

≧68 dB(250 kHz 離調)

(<1.8 MHz 離調は RBW:30 kHz)

(≧1.8 MHz 離調は RBW:100 kHz)

過渡部測定範囲

≧63 dB(≧400 kHz 離調)

(2)試験用測定器

・ シンセサイズド信号発生器(SG1):MG3633A

(4)試験手順

 ステップ		操	作	内	容	
1	SGI を無変調とし、周波数・出力レベルの設定を行います。入力レベルは本測 定器の内蔵パワーメータにて測定を行います。測定を行う周波数およびレベ ルの組み合わせは下表とします。					
	レベル(パワーメータ昨日の指示値) 周波数 MS860xA MS8609A および Pre-Ampl On 時 MS8608A Low 入力					
	50 MHz	-20) dBm	±0.1 c	łΒ	-10 dBm±0.1 dB
	850 MHz	-20) dBm	±0.1 c	lΒ	-10 dBm±0.1 dB
	1800 MHz	-20) dBm	±0.1 c	lΒ	-10 dBm±0.1 dB
	2700 MHz	-20) dBm	±0.1 c	lΒ	-10 dBm±0.1 dB
2	本測定器を以下のように設定します。 • Input Terminal:RF(MS8608A は Low 入力のみ) • Reference Level:(上記表のレベル) • Frequency:(上記表の周波数) • Modulation:GMSK • Measuring Object:Continuous					
3	(More)を押し、ファンクションラベルの 2 ページ目を表示します					
4	F6 (Power Meter)を押し, Power Meter 画面に移行します。					
5	 SG1 の出力を OFF にして, F5 (Zero Set)を実行します。					
6	SG1 の出力を上表のレベルに設定し、 F4 (Adjust Range)を実行します。 Power Meter の指示値が上表のレベルになるように SG1 のレベルを合わせま					
	9(SGI のレベル 可変後)	に出っ F	Adjust	Rang	e を夫	行しより)。
7	レベル校正後, F6 (Back Screen)を押します。					
8	ファンクションラベルを1ページ目に戻し, F5 (Output RF Spectrum)を押し, Output RF Spectrum 画面に移行します。					
9	F3 (Unit)を押した後, F2 (dB)を押し, 単位を dB 表示に変更しま す。					
10	、 F6 (Return)を押した後, F5 (Adjust Range)を実行します。					
11	F4 (Calibration)を押	₽L, F	1 (Powe	r Calil	bration)を実行します。
12	変調部および過渡部の測	定範囲:	が規格	を満	足して	いることを確認します。
13	周波数を変更して、1~12	2 を繰り込	反して	くださ	い。	

4.3.9 出力スペクトラム測定<MS268xA>

(1)試験対象規格

- · CW 信号入力時
 - 変調部測定範囲

≧60 dB(200 kHz 離調)

≧68 dB(250 kHz 離調)

- (<1.8 MHz 離調は RBW:30 kHz)
- (≧1.8 MHz 離調は RBW:100 kHz)

過渡部測定範囲

≧63 dB(≧400 kHz 離調)

(2)試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A

(4)試験手順

- °		18			1	
ステッフ		採	1′ ⊧	시	谷	
1	SG1を無変調とし、周波数・出力レベルの設定を行います。入力レベルは本測 定器の内蔵パワーメータにて測定を行います。測定を行う周波数およびレベ ルの組み合わせは下表とします。					
	国计学	l	ノベル	(パワ	'ーメー	ータ昨日の指示値)
	周波数	Pre	-Amp	l On 🛙	寺	Pre-Ampl Off 時
	50 MHz	-20) dBm	±0.1 (dB	-10 dBm±0.1 dB
	850 MHz	-20) dBm	±0.1	dB	-10 dBm±0.1 dB
	1800 MHz	-20) dBm	±0.1	dB	-10 dBm±0.1 dB
	2700 MHz	-20) dBm	±0.1	dB	-10 dBm±0.1 dB
2	本測定器を以下のように設定します。 ・ Input Terminal:RF ・ Reference Level:(上記表のレベル) ・ Frequency:(上記表の周波数) ・ Modulation:GMSK ・ Measuring Object:Continuous ・ Trigger:Free Run					
3	SG1 の出力をパワーセン	サ(MA4	601A)に接	続しま	す。
4	パワーメータ(ML4803A)の指示値が-10 dBm±0.1 dB になるように,SG1 のレ ベルを合わせます。					
5	SG1 の出力を本機の RF コネクタに接続します。					
6	F5 (Output RF Spectrum)を押し, Output RF Spectrum 画面に移行します。					

- 7 F3 (Unit)を押した後, F2 (dB)を押し, 単位を dB 表示に変更しま す。
- 8 F6 (Return)を押した後, F5 (Adjust Range)を実行します。
- 9 変調部および過渡部の測定範囲が規格を満足していることを確認します。
- 10 周波数を変更して、1~9を繰り返してください。

4.3.10 スプリアス測定<MS860xA>

(1)試験対象規格

• 測定範囲

搬送周波数 800 MHz to 1 GHz および 1.8 GHz to 2 GHz にて

 \geq 72 dB (RBW: 10 kHz)

(1 MHz~50 MHz, バンド 0)

 \geq 72 dB (RBW: 100 kHz)

(50 MHz~500 MHz, バンド 0)

- \geq 67-f[GHz] dB(RBW:3 MHz)
 - (500 MHz~3.15 GHz, バンド 0, ノーマルモードにて,

ただし, 高調波周波数は除く)

 \geq 66 dB (RBW: 3 MHz)

(3.15 MHz to 7.8 GHz, バンド 1, ノーマルモードにて)

オプション 03 搭載時

 \geq 66 dB (RBW: 3 MHz)

(3.15 GHz to 7.8 GHz, バンド 1, スプリアスモードにて)

(2)試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- LPF 切換ユニット(850 MHz の 2 次高調波をカットできるもの, かつ Filter ス ルーが可能なもの)
- 2G LPF

(4)試験手順

ステップ		操作	内	容		
1	SG1 の周波数・出力レベルの設定を行います。本測定器への入力レベルは内蔵のパワーメータにて測定を行います。測定する周波数およびレベルの組み合わせは下表とします。					
	レベル(パワーメータの指示値) 周波数 MS8609 および					
			MS8	3608A Low 入力		
	850 MHz		0	dBm±0.1 dB		
	180 0 MHz		0	dBm±0.1 dB		
2	本測定器を以下のように設	定します。				
	• Input Terminal: RF (MS	8608A は Lo	w 入ナ	りのみ)		
	• Reference Level:(上記:	表のレベル) シャッキャン				
	・ Frequency: (上記表の周波数)					
	Measuring Object Cont	inuous				
	Trigger: Free Run					
3	(More)を押し、ファンクションラベルの2ページ目を表示します。					
4	F6 (Power Meter)を押し, Power Meter 画面に移行します。					
5	SG1 の出力を OFF にして	, F5 (Z	ero Se	t)を実行します。		
6	SG1 の出力を上表のレベルに設定し, F4 (Adjust Range)を実行します。					
	Power Meter の指示値が	上表のレベバ	ーになる	るように SG1 のレベルを合わせま		
	す(SG1 のレベル可変後は必ず Adjust Range を実行します)。					
7	レベル校正後, F6 (E	Back Screen)	を押し	ます。		
8	RPF 切換ユニットを以下の	ように設定し	ます。			
	a) Carrier Frequnecy: 850) MHz の場合	2			
	・LPF を 1.1 GHz に設定	É				
	b) Carrier Frequency: 180	0 MHz の場	合			
	・LPFを Filter Pass(Filt	terなし)に設	定			
9	ファンクションラベルを1・	ページ目に	灵し, 〔	F6_」 (Spurious Emission)を押		

し, Spurious Emission 画面に移行します。
 10 F1 (Spurious Mode)を押し, F3 (Sweep)に設定します。設定完了後, F6 (Return)を押します。

ステップ	操作内容					
11	F3 (Setup Search/Sweep Table)を押し,下表の周波数テーブルを設定します。					
	a) Carrier Frequency 850 MHz の場合					
	・Table 4.3.10-1 を設定します。					
	b) Carrier Frequency: 1800 MHz の場合					
	•Table 4.3.10-3 を設定します。					
	設定完了後, F6 (Back Screen)を押します。					
12	() (More)を押し, ファンクションラベルの2ページ目を表示します。					
	F4 (Preselector)を押し, Normal モードにします。					
13	ファンクションラベルを1ページ目に戻します。					
	※12 および 13 項はオプション 03 搭載時のみ可能となります。					
14	F5 (Adjust Range)を実行します。					
15	F4 (Calibration)を押し、F1 (Power Calibration)を実行します。					
16	測定範囲が規格を満足していることを確認します。					
17	オプション 03 搭載時は,以下の設定も行ってください。					
18	$\overline{F3}$ (Setun Search/Sween Table)を押した後 (More)を押し フィ					
10	ンクションラベルの2ページ目を表示します。					
19	F2 (Clear)を押し、周波数テーブルをクリアします。					
20	下表のように,周波数テーブルをセットします。					
	a) Carrier Frequency: 850 MHz の場合					
	・Table 4.3.10-2 を設定します。					
	b) Carrier Frequency: 1800 MHz の場合					
21	· Table 4.5.10-4 を成在しまり。 (More)を畑[ファングションラベルの 2 ページ日を表示] ます					
<i>L</i> 1	$[F4] (Preselector) \\ \overline{F4} \\ Surrious \\ \overline{F4} \\ F4$					
22	ファンクションラベルを1ページ目に戻します。					
23	同様に14~16を実行します。					
24	周波数を変更し、1~23を実行します。					

	Start Frequency	Stop Frequency	RBW			
f1	100 kHz	50 MHz	10 kHz			
f2	50 MHz	500 MHz	100 kHz			
f3	500 MHz	800 MHz	3 MHz			
f4	900 MHz	1650 MHz	3 MHz			
f5	1750 MHz	2500 MHz	3 MHz			
f6	2600 MHz	3200 MHz	3 MHz			
f7	3200 MHz	7800 MHz	3 MHz			

Table4.3.10-1

Table4.3.10-2

	Start Frequency	Stop Frequency	RBW
f1	1600 MHz	3150 MHz	3 MHz

Table4.3.10-3

-		-	
	Start Frequency	Stop Frequency	RBW
f1	100 kHz	50 MHz	10 kHz
f2	50 MHz	500 MHz	100 kHz
f3	500 MHz	850 MHz	3 MHz
f4	950 MHz	1750 MHz	3 MHz
f5	1850 MHz	3200 MHz	3 MHz
f6	3200 MHz	7800 MHz	3 MHz

Table 4.3.10-4

	Start Frequency	Stop Frequency	RBW
f1	1600 MHz	1750 MHz	3 MHz
f2	1850 MHz	3150 MHz	3 MHz

4.3.11 スプリアス測定<MS268xA>

(1)試験対象規格

• 測定範囲

搬送周波数 800 MHz to 1 GHz および 1.8 GHz to 2 GHz にて

≧72 dB 代表値(RBW:10 kHz)

(1 MHz~50 MHz, バンド 0)

≧72 dB 代表値(RBW:100 kHz)

(50 MHz~500 MHz, バンド 0)

≧67-f[GHz]dB代表值(RBW:3MHz)

(500 MHz~3.15 GHz, バンド 0, ノーマルモードにて,

ただし,高調波周波数は除く)

≧66 dB 代表値(RBW:3 MHz)

(3.15 MHz to 7.8 GHz, バンド 1, ノーマルモードにて)

オプション 03 搭載時

≧66 dB 代表値(RBW:3 MHz)

(3.15 GHz to 7.8 GHz, バンド 1, スプリアスモードにて)

(2)試験用測定器

- ・ シンセサイズド信号発生器(SG1):MG3633A
- LPF 切換ユニット(850 MHz の 2 次高調波をカットできるもの, かつ Filter ス ルーが可能なもの)
- 2G LPF
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A

(4)試験手順

ステップ	操作内容	
1	SG1 の周波数・出力レベルの設定を行います。本測定器への入力レ	ベルはパ

ローメータにて測定を行います。測定する周波数およびレベルの組み合わせ は下表とします。

国动物	レベル(パワーメータの指示値)		
同波剱	Pre-Ampl Off 時		
850 MHz	0 dBm±0.1 dB		
180 0 MHz	0 dBm±0.1 dB		

2 本測定器を以下のように設定します。

- Input Terminal: RF
- Reference Level: (上記表のレベル)
- Frequency:(上記表の周波数)
- Modulation: GMSK
- Measuring Object: Continuous
- Trigger: Free Run
- 3 SG1の出力をパワーセンサ(MA4601A)に接続します。
- 4 パワーメータ(ML4803A)の指示値が 0 dBm±0.1 dB になるように,SG1 のレベルを合わせます。
- 5 SG1 の出力を本機の RF コネクタに接続します。
- 6 RF 切換ユニットを以下のように設定します。
 - a) Carrier Frequnecy:850 MHz の場合 ・LPF を 1.1 GHz に設定
 - b) Carrier Frequency: 1800 MHz の場合 ・LPFを Filter Pass (Filter なし)に設定
- 7 【F6】 (Spurious Emission)を押し, Spurious Emission 画面に移行します。
- 8 <u>F1</u> (Spurious Mode)を押し, <u>F3</u> (Sweep)に設定します。設定完了後, <u>F6</u> (Return)を押します。
- 9 **F3** (Setup Search/Sweep Table)を押し,下表の周波数テーブルを設定します。
 - b) Carrier Frequency: 850 MHz の場合 • Table 4.3.11-1 を設定します。
 - b) Carrier Frequency: 1800 MHz の場合 ・Table 4.3.11-3 を設定します。

設定完了後, F6 (Back Screen)を押します。

ステップ	操作内容
10	(More)を押し, ファンクションラベルの 2 ページ目を表示します。
	F4 (Preselector)を押し、Normal モードにします。
11	ファンクションラベルを1ページ目に戻します。
	※10 および 11 項はオプション 03 搭載時のみ可能となります。
12	F5 (Adjust Range)を実行します。
13	測定範囲が規格を満足していることを確認します。
14	オプション 03 搭載時は,以下の設定も行ってください。
	オプション 03 搭載時は, 周波数を変更し, 1~13 を実行します。
15	F3 (Setup Search/Sweep Table)を押した後, (More)を押し, ファ ンクションラベルの2ページ目を表示します。
16	F2 (Clear)を押し,周波数テーブルをクリアします。
17	下表のように,周波数テーブルをセットします。
	a) Carrier Frequency: 850 MHz の場合
	・Table 4.3.11-2 を設定します。
	b) Carrier Frequency:1800 MHzの場合
	・1able 4.3.11-4 を設定しよう。
18	「」(More)を押し, ファンクションラベルの2ページ目を表示します。
	「F4」 (Preselector)を押し, Spurious モードにします。
19	ファンクションラベルを1ページ目に戻します。
20	同様に12~14を実行します。
21	周波数を変更し,1~20を実行します。

	Start Frequency	Start Frequency Stop Frequency		
f1	100 kHz	kHz 50 MHz		
f2	50 MHz	500 MHz	100 kHz	
f3	500 MHz	800 MHz	3 MHz	
f4	900 MHz	1650 MHz	3 MHz	
f5	1750 MHz	2500 MHz	3 MHz	
f6	2600 MHz	3200 MHz	3 MHz	
f7	3200 MHz	7800 MHz	3 MHz	

Table4.3.11-1

Table4.3.11-2

	Start Frequency	Stop Frequency	RBW
f1	1600 MHz	3150 MHz	3 MHz

Table4.3.11-3

	Start Frequency	Stop Frequency	RBW
f1	100 kHz 50 MHz		10 kHz
f2	50 MHz 500 MHz		100 kHz
f3	500 MHz	850 MHz	3 MHz
f4	950 MHz	1750 MHz	3 MHz
f5	1850 MHz	3200 MHz	3 MHz
f6	3200 MHz	7800 MHz	3 MHz

Table 4.3.11-4

Start Frequency		Stop Frequency	RBW
f1	1600 MHz	1750 MHz	3 MHz
f2	1850 MHz	3150 MHz	3 MHz

4.3.12 IQ入力変調精度<MS860xA/MS268xA>

本体が MS268xA のときは本体オプション MS268xA-17,18 搭載時のみ行います。

(1)試験対象規格

・ 残留位相誤差(GMSK 変調)

<0.5 degree(rms) (DC 結合)

- ・ 残留 EVM(8PSK 変調)
 - <1.0%(rms) (DC 結合)

(2)試験用測定器

・ ディジタル信号発生器: MG3672A with MG0302A & MG0303B

(4)試験手順

ステップ	操作内容
1	MG3672Aを以下のように設定します。
	• System: GSM
	Differential Encode: On
	Phase Polarity: Normal
	• Burst: On
	• Pattern:TCH
	• Trigger: Int
2	本測定器を以下のように設定します。
	Input Terminal: IQ-DC
	• Impedance: 50Ω
	Modulation: GMSK
	Measuring Object: Normal Burst
	• Pattern: ISCI
	• Irigger: Free Run
3	<u>F1</u> (Modulation Analysis)を押して, Modulation Analysis 画面に移行しま
	す。
4	残留位相誤差値(RMS Phase Error)が規格を満足していることを確認します。
5	ディジタル信号発生器の信号データを EDGE に設定します。
6	本測定器を以下のように設定変更します。
	Modulation:8PSK
	Measuring Object: Normal Burst
	 Pattern:(信号源に合わせます)
7	F1 (Modulation Analysis)を押して, Modulation Analysis 画面に移行しま
	す。
8	F4 (Filter)を押し、F3 (Nyquist & Inverse)に設定します。
9	残留 EVM 値(EVM)が規格を満足していることを確認します。

4.3.13 パワーメータ確度<MS860xA>

(1)試験対象規格

・ 測定レベル確度

±10%(ゼロ点校正後)

(2)試験用測定器

- ・ 信号用発生器(SG1):MG3633A
- ・ 校正用受信機:ML2530A
- ・ パワーメータ:ML4803A
- ・ パワーセンサ:MA4601A
- ・ プログラマブルアッテネータ:MN72A
- 3 dB ATT×2:MP721A

(4)試験手順

ステップ	操作内容
1	パワーセンサ (MA4601A)をパワーメータ (ML4803A)の Cal Output に接続し, Zero Adjust を実行します。
2	Sensor Input を On にして, ADJ を実行します (Cal Adjust)。
3	SG1(MN72A の出力)をパワーセンサ(MA4601A)に接続します(MP721A 付 きで)
4	SG1の周波数設定を行います。
	測定周波数:50 MHz, 2000 MHz, 3000 MHz
5	設定した周波数におけるパワーメータ(ML4803A)の指示値が,+10 dBm±0.1 dBとなるように,SG1のレベルを調整し,SG1の設定値(Set_Ref)お よびパワーメータの指示値(Read_Ref)を記録します。
6	SG1 (MN72A の出力)を校正用受信機 (ML2530A) に接続し (MP721A 付き で), SG1 のレベルを先ほどの (Set_Ref) の値に設定します。
7	校正用受信機(ML2530A)を Relative モードに設定し(レンジは1固定), プロ グラマブルアッテネータ(MN72A)を-30 dBまで10 dB ずつ下げていき, 各減 衰時の ML2530A の測定値を記録します(ATT_n)。記録終了後, MN72A の 設定を0 dB に戻します。
8	本測定器の (More)を押し, ファンクションラベルの 2 ページ目を表示 します。
9	F6 (Power Meter)を押し, Power Meter 画面に移行します。
10	本測定器に信号を入力しない状態で, F5 (Zero Set)を実行します。
11	SG1 (MN72A の出力)を本測定器に接続します (MP721A 付きで)。
12	本測定器の周波数を4で設定した周波数に合わせます。
13	プログラマブルアッテネータ(MN72A)を-30 dB まで 10 dB ずつ下げていき, 各減衰時の本測定器測定値(テスタ測定値)と,パワーメータの指示値 (Read_Ref)-ML2530A の測定値(ATT_n)より測定確度(下記)を算出しま す。尚プログラマブルアッテネータの可変時は,都度 F4 (Adjust Range) を実行してください。
	測定確度 [%] = $\left[\frac{10^{(\forall \forall A \neq M) \approx d_{10}}}{10^{(\operatorname{Re} ad_{\operatorname{Re} f + ATT_n})/10}} - 1\right] \times 100$
	※Att_n はマイナス値
14	周波数を変更し、4~13を繰り返します。

4.4 性能試験結果記入用紙例

MS860xA ディジタル移動無線送信機テスタの性能試験を行う際に, 試験結果を まとめるための用紙例です。

性能試験の際に、本項を複写し、利用してください。

テスト場所 	レポート No 日付 テスト担当者	
機器名 MS860xA ディジタル移動無線送信機テ MS860x02A GSM 測定ソフトウェア	スタ	
製造 No 電源周波数	周辺温度 相対湿度	°C %
特記事項		

4.4.1 変調/周波数測定

周波数/変調精度測定確度(High Power 入力)

		50 MHz	850 MHz	1800 MHz	2700 MHz
	最小値	0 deg. (rms)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(rms)	最大値	0.45 deg. (rms)			
	測定不確かさ		0.05 de	g. (rms)	
	最小値	0 deg. (peak)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(peak)	最大値	1.8 deg. (peak)			
	測定不確かさ	0.2 deg. (peak)			
	最小値	0 % (rms)			
産のもの	実測値	<u>% (rms)</u>	<u> </u>	<u> </u>	<u>% (rms)</u>
7天笛 E V M	最大値	0.8 % (rms)			
	測定不確かさ	0.2 % (rms)			
	最小値		-9.	9 Hz	
キャリア	実測値	Hz.	Hz.	Hz.	<u> </u>
周波数測定	最大値		+ 9.9	9 Hz	
	測定不確かさ		±0.1	Hz	

1					r
		50 MHz	850 MHz	1800 MHz	2700 MHz
	最小値	0 deg. (rms)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(rms)	最大値		0.45 de	g. (rms)	
	測定不確かさ	0.05 deg. (rms)			
	最小値	0 deg. (peak)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(peak)	最大値	最大値1.8 deg. (peak)定不確かさ0.2 deg. (peak)			
	測定不確かさ				()
	最小値		0 %	(rms)	
辞网 EVM	実測値	<u>% (rms)</u>	<u> (rms)</u>	<u> % (rms)</u>	<u> % (rms)</u>
7天笛 E V IVI	最大値		0.8 %	(rms)	
	測定不確かさ		0.2 %	(rms)	
	最小値		-9.	9 Hz	
キャリア	実測値	<u> </u>	Hz.	Hz.	Hz.
周波数測定	最大値		+ 9.	9 Hz	
	測定不確かさ		±0.1	Hz	

周波数/変調精度測定確度(Low Power 入力)

周波数/変調精度測定確度(Low Power 入力 Pre-Ampl On 時)

		50 MHz	850 MHz	1800 MHz	2700 MHz
	最小値	0 deg. (rms)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(rms)	最大値	0.45 deg. (rms)			
	測定不確かさ	0.05 deg. (rms)			
	最小値	0 deg. (peak)			
残留位相誤差	実測値	deg. (rms)	deg. (rms)	deg. (rms)	deg. (rms)
(peak)	最大値	1.8 deg. (peak)			
	測定不確かさ	0.2 deg. (peak)			
	最小値	0 % (rms)			
残留 EVM	実測値	<u>% (rms)</u>	<u> % (rms)</u>	<u> </u>	<u> % (rms)</u>
	最大値	0.8 % (rms)			
	測定不確かさ	0.2 % (rms)			
	最小値	-9.9 Hz			
キャリア	実測値	Hz.	Hz.	Hz.	Hz.
周波数測定	最大値		+9.9 Hz		
	測定不確かさ ±0.1 Hz				
4.4.2 送信電力測定確度

		50 MHz	850 MHz	1800 MHz	2700 MHz				
	上限值		+10.1	dBm					
ハリーメータ	指示值	dBmdBm			<u>dBm</u>				
1日小川巴	下限值		-9.9	dBm					

パワーメータの指示値

プログラマブルアッテネータの真の減衰量(+10 dBm からの減衰量)

ATT 設定值	50 MHz	850 MHz	1800 MHz	2700 MHz
20	dB	dB	dB	dB

送信電力測定確度(High Power 入力)

		50 MHz 850 MHz 1800 MHz		1800 MHz	2700 MHz	
	最大値		+0.2	+0.23 dB		
測空碑座	実測値	dB	dB	<u>dB</u> <u>dB</u>		
測定確度	最小値	-0.23 dB				
	測定不確かさ	±0.17 dB				

測定確度[dB]=Tx Power 値-パワーメータ指示値

送信電力測定確度(Low Power 入力)

		50 MHz 850 MHz 1800 MHz		1800 MHz	2700 MHz
	最大値		+0.23 dB		
测学体度	実測値	dB dB		dB	dB
測定催度	最小値	-0.23 dB			
	測定不確かさ		±0.1	7 dB	

測定確度[dB]=Tx Power 値-(パワーメータ指示値-MN72A ATT:20 dB 設定時の真の減衰量)

送信電力測定確度(Low Power 入力 Pre-Ampl On 時)

		50 MHz 850 MHz 1800 MHz 2		2700 MHz	
	最大値		+0.2	3 dB	
测学族中	実測値	dB	dB	dB	dB
測正確度	最小値	-0.23 dB			
	測定不確かさ		±0.1	7 dB	

測定確度[dB]=Tx Power 値-(パワーメータ指示値-MN72A ATT:20 dB 設定時の真の減衰量)

4.4.3 キャリアOFF時の電力測定確度

		50 MHz	850 MHz	1800 MHz	2700 MHz				
	上限值								
On/Off Ratio	実測値	<u>dB</u>	<u>dB</u>	<u>dB</u>	<u>dB</u>				
(WDR_Off)	下限值		60	dB					
	測定不確かさ		2 0	lB					
	上限值		-72	dBm					
Off Power	実測値	dB	dB	dB	dB				
(WDR On)	下限值								
	測定不確かさ		2 0	lB					

電源測定確度(Low Power 入力)

電源測定確度(Low Power 入力 Pre-Ampl On 時)

		50 MHz	50 MHz 850 MHz 1800 MHz 2700				
	上限值						
On/Off Ratio	実測値	dB	dB	dB	dB		
(WDR_Off)	下限值		60	dB			
	測定不確かさ		2 0	dB			
	上限值		-72	dBm			
Off Power	実測値	dB	dB	dB	<u> </u>		
(WDR On)	下限值						
	測定不確かさ		2 0	dB			

4.4.4 リニアリティ

各周波数測定における+10 dBm 校正時における SG1 の設定値									
50 MHz 850 MHz 1800 MHz 2700 MHz									
SG1 設定値 Set_Ref dBm dBm dBm dBm									

リニアリティ 周波数 SGレベル 校正用受信機 テスタ測定値 有効範囲 (MHz) (dBm) 指示值(dB) (dBm) 演算值(dB)*2 (dB) +10----dBm*1 0 dB dBm dB $\pm 0.16 \text{ dB}$ _____ _____ 50 -10dB dBm dB ±0.16 dB -20±0.16 dB dB dB dBm +10----dBm*1 0 dB dBm dB ±0.16 dB 850 -10dB dB ±0.16 dB dBm -20dB dBm dB ±0.16 dB +10dBm*1 -----0 dB dBm dB ±0.16 dB 1800 -10dB dBm dB $\pm 0.16 \text{ dB}$ _____ _____ -20dB dBm dB ±0.16 dB +10----dBm*1 0 dB dBm dB $\pm 0.16 \text{ dB}$ 2700 -10dB dBm dB ±0.16 dB -20dB dB ±0.16 dB dBm 測定不確かさ ±0.04 dB

リニアリティ確度(High Power 入力時)

		• • • • •	~	,	
周波数	SG レベル	校正用受信機	テスタ測定値	リニアリティ	有効範囲
(MHz)	(dBm)	指示値(dB)	(dBm)	演算値(dB)*2	(dB)
	+10		dBm*1		
50	0	dB	dBm	dB	±0.16 dB
50	-10	dB	dBm	dB	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
850	0	dB	dBm	dB	±0.16 dB
850	-10	dB	dBm	<u>dB</u>	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
1800	0	dB	dBm	<u>dB</u>	±0.16 dB
1800	-10	dB	dBm	<u>dB</u>	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
2700	0	dB	dBm	dB	±0.16 dB
2700	-10	dB	dBm	<u>dB</u>	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
測定不確かさ			±0.04	dB	

リニアリティ確度(High Power 入力時)

リニアリティ確度(High Power 入力時)

			-		
周波数	SG レベル	校正用受信機	テスタ測定値	リニアリティ	有効範囲
(MHz)	(dBm)	指示値(dB)	(dBm)	演算値(dB)*2	(dB)
	+10		dBm*1		
50	0	dB	dBm	dB	±0.16 dB
50	-10	dB	<u> </u>	dB	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
850	0	dB	dBm	<u>dB</u>	±0.16 dB
830	-10	dB	dBm	dB	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
1800	0	dB	dBm	dB	±0.16 dB
1800	-10	dB	dBm	dB	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
	+10		dBm*1		
2700	0	dB	dBm	dB	±0.16 dB
2700	-10	dB	dBm	dB	±0.16 dB
	-20	dB	dBm	dB	±0.16 dB
測定不確かさ			±0.04	dB	

*1: Measure_Ref

*2: リニアリティ演算値の計算方法

リニアリティ演算値(dB)=テスタ測定値(dBm)-{Measure_Ref(dBm)-校正用受信機測定値(dB)}

4.4.5 出力スペクトラム測定

変調部測定範囲(Low Power 入力)

	離調 周波数	100 MHz	850 MHz	1800 MHz	2700 MHz	測定 不確かさ	有効 下限値
f1	100 kHz	dB	dB	dB	dB		61 dB
f2	200 kHz	<u>dB</u>	dB	dB	<u>dB</u>		69 dB
f3	250 kHz	dB	dB	dB	dB		69 dB
f4	400 kHz	dB	dB	dB	dB		69 dB
f5	600 kHz	<u>dB</u>	dB	dB	<u>dB</u>		69 dB
f6	800 kHz	dB	dB	dB	dB	1 dB	69 dB
f7	1 MHz	dB	dB	dB	dB		69 dB
f8	1.2 MHz	<u>dB</u>	dB	dB	<u>dB</u>		69 dB
f9	1.4 MHz	dB	dB	dB	dB		69 dB
f10	1.6 MHz	dB	dB	dB	dB		69 dB
f11	1.8 MHz	dB	dB	dB	dB		69 dB

過渡部測定範囲(Low Power 入力)

	離調 周波数	100 MHz	850 MHz	1800 MHz	2700 MHz	測定 不確かさ	有効 下限値
f4	400 kHz	dB	dB	dB	dB		64 dB
f5	600 kHz	dB	dB	dB	dB		64 dB
f6	800 kHz	dB	dB	dB	dB		64 dB
f7	1 MHz	dB	dB	dB	dB	1 JD	64 dB
f8	1.2 MHz	dB	<u>dB</u>	<u>dB</u>	<u>dB</u>	I UD	64 dB
f9	1.4 MHz	dB	dB	dB	dB		64 dB
f10	1.6 MHz	dB	dB	dB	dB		64 dB
f11	1.8 MHz	dB	dB	dB	dB		64 dB

変調部測定範囲(Low Power 入力 Pre-Ampl On 時)

	離調 周波数	100 MHz	850 MHz	1800 MHz	2700 MHz	測定 不確かさ	有効 下限値
f1	100 kHz	dB	dB	dB	dB		61 dB
f2	200 kHz	dB	dB	dB	dB		69 dB
f3	250 kHz	dB	dB	dB	dB		69 dB
f4	400 kHz	dB	dB	dB	<u>dB</u>		69 dB
f5	600 kHz	dB	dB	dB	dB		69 dB
f6	800 kHz	dB	dB	dB	<u>dB</u>	1 dB	69 dB
f7	1 MHz	dB	dB	dB	<u>dB</u>		69 dB
f8	1.2 MHz	dB	dB	dB	dB		69 dB
f9	1.4 MHz	dB	dB	dB	<u>dB</u>		69 dB
f10	1.6 MHz	dB	dB	dB	dB		69 dB
f11	1.8 MHz	dB	dB	dB	dB		69 dB

	離調 周波数	100 MHz	850 MHz	1800 MHz	2700 MHz	測定 不確かさ	有効 下限値
f4	400 kHz	dB	dB	dB	dB		64 dB
f5	600 kHz	dB	dB	dB	dB		64 dB
f6	800 kHz	dB	dB	dB	dB		64 dB
f7	1 MHz	dB	dB	dB	dB		64 dB
f8	1.2 MHz	dB	dB	dB	dB	I QB	64 dB
f9	1.4 MHz	dB	dB	dB	dB	-	64 dB
f10	1.6 MHz	dB	dB	dB	dB		64 dB
f11	1.8 MHz	dB	dB	dB	dB		64 dB

過渡部測定範囲(Low Power 入力 Pre-Ampl On 時)

4.4.6 スプリアス測定

測定範囲[Carrier Frequency:850 MHz](Low Power 入力)

	測定周波数範囲	測定周波数	測定値(dB)	測定不確かさ	有効下限値
f1	100 kHz \sim 50 MHz	<u> </u>	dB	-	73 dB
f2	50~500 MHz	Hz	dB		73 dB
f3	500 ~800 MHz	<u> </u>	dB		73 dB
f4	900 MHz∼1.65 GHz	<u> </u>	dB	1 40	(67-f) dB
f5	1.75~2.5 GHz	Hz	dB	I UD	(67-f) dB
f6	2.6~3.2 GHz	Hz	dB		(67-f) dB
f7	3.2~7.8 GHz	Hz	dB		67 dB
f1*1	1.6~7.8 GHz	Hz	dB		67 dB

測定範囲[Carrier Frequency:850 MHz](Low Power 入力)

	測定周波数範囲	測定周波数	測定値(dB)	測定不確かさ	有効下限値
f1	100 kHz∼50 MHz	Hz	dB	-	73 dB
f2	50~500 MHz	Hz	dB		73 dB
f3	500~850 MHz	Hz	dB		73 dB
f4	950 MHz∼1.75 GHz	Hz	dB	1.4D	(67-f) dB
f5	1.85~3.2 GHz	Hz	dB	I QB	(67-f) dB
f6	3.2~7.8 GHz	Hz	dB		(67-f) dB
f1*1	1.6~1.75 GHz	Hz	dB		67 dB
f2*1	1.85~7.8 GHz	Hz	dB		67 dB

	測定周波数範囲	測定周波数	測定値(dB)	測定不確かさ	有効下限値		
f1	100 kHz \sim 50 MHz	<u> </u>	dB	_	73 dB		
f2	50~500 MHz	<u> </u>	dB		73 dB		
f3	500~800 MHz	<u> </u>	dB		73 dB		
f4	900 MHz~1.65 GHz	<u> </u>	dB	1 JD	(67-f) dB		
f5	1.75~2.5 GHz	<u> </u>	dB	I UD	(67-f) dB		
f6	2.6~3.2 GHz	<u> </u>	dB		(67-f) dB		
f7	3.2~7.8 GHz	Hz	dB		67 dB		
f1*1	1.6~3.15 GHz	<u> </u>	dB		67 dB		

測定範囲[Carrier Frequency: 1800 MHz](Low Power 入力 Pre-Ampl On 時)

測定範囲[Carrier Frequency: 1800 MHz] (Low Power 入力 Pre-Ampl On 時)

	測定周波数範囲	測定周波数	測定値(dB)	測定不確かさ	有効下限値
f1	$100 \text{ kHz} \sim 50 \text{ MHz}$	Hz	dB		73 dB
f2	50~500 MHz	<u> </u>	dB		73 dB
f3	500~850 MHz	<u> </u>	dB		73 dB
f4	950 MHz∼1.75 GHz	<u> </u>	dB	1 .1D	(67-f) dB
f5	1.85~3.2 GHz	<u> </u>	dB	I QB	(67-f) dB
f6	3.2~7.8 GHz	Hz	dB		(67-f) dB
f1*1	1.6~1.75 GHz	Hz	dB		67 dB
f2*1	1.85~3.15 GHz	Hz	dB		67 dB

*1: オプション 03 搭載時

4.4.7 IQ入力変調精度

変調精度測定確度(IQ 入力)

	最小値	0 deg. (rms)
残留位相誤差	実測値	deg. (rms)
(GMSK 変調時)	最大値	0.45 deg. (rms)
	測定不確かさ	0.05 deg. (rms)
	最小値	0 % (rms)
残留 EVM	実測値	<u>%</u> (rms)
(8PSK 変調時)	最大値	0.8 % (rms)
	測定不確かさ	0.2 % (rms)

4.4.8 パワーメータ確度

パワーメータ指示値							
		50 MHz	2000 MHz	3000 MHz			
SG 設定値		JDan	JDm	dDaa			
(Set_Ref)		<u></u>	<u>(Bm</u>	<u> </u>			
パワーメータ	上限值		+10.1 dBm				
指示值	指示值	dBm	dBm	dBm			
(Read_Ref)	下限值		-9.9 dBm				

プログラマブルアッテネータ可変時の ML2530A の測定値(ATT_n)*1

ATT 設定値	ATT_n	50 MHz	2000 MHz	3000 MHz
10 dBm	ATT_10	dBm	dBm	dBm
20 dBm	ATT_20	dBm	dBm	dBm
30 dBm	ATT_30	dBm	dBm	dBm

測定值確度(Low Power 人力)							
周波数 (MHz)	入力レベル (dBm)	SG&ATT 設定レベル	テスタ測定値 (dBm)	測定確度(%)*2	有効範囲(dB)		
	+10	Set_Ref	dBm	dB	± 5.8 %		
50	0	Set_Ref +ATT(10 dB)	dBm	dB	± 5.8 %		
50	-10	Set_Ref +ATT(20 dB)	dBm	dB	± 5.8 %		
	-20	Set_Ref + ATT(30 dB)	dBm	dB	± 5.8 %		
	+10	Set_Ref	dBm	<u>dB</u>	± 5.8 %		
2000	0	Set_Ref +ATT(10 dB)	dBm	dB	± 5.8 %		
2000	-10	Set_Ref +ATT(20 dB)	dBm	dB	± 5.8 %		
	-20	Set_Ref + ATT(30 dB)	dBm	dB	± 5.8 %		
	+10	Set_Ref	dBm	<u> </u>	± 5.8 %		
2000	0	Set_Ref +ATT(10 dB)	dBm	<u> </u>	± 5.8 %		
3000	-10	Set_Ref +ATT(20 dB)	dBm	dB	± 5.8 %		
	-20	Set_Ref + ATT(30 dB)	dBm	<u> </u>	± 5.8 %		
測定不確かさ				± 4.2 %			

_

*1: ATT_nの値はマイナス値

*2: 測定確度の計算方法

測定確度 [%] = $\left[\frac{10^{(\forall \neg \neg \neg \neg n)} e^{(m/n)}}{10^{(\text{Re} ad_{-}\text{Re} f + ATT_{-}n)/10}} - 1\right] \times 100$

MX268102A/302A/702A/ MX860802A/902A GSM 測定ソフトウェア (MS2681A/MS2683A/MS2687A/ MS2687B/MS8608A/MS8609A 用) 取扱説明書 (リモート制御編)

目次

第1章	概要	1-1
1.1 概	要	1-3

第2章 接続方法 2-1

- 2.1
 RS-232C ケーブルによる外部機器との接続
 2-3

 2.2
 RS-232C インタフェース信号の接続図
 2-4
- 2.3 GPIB ケーブルによる接続
 2-5

 2.4 GPIB アドレスの設定
 2-6

第3章 デバイスメッセージの形式...... 3-1

3.1	概要	3-3
0.1		

第4章 ステータスストラクチャー 4-1

4.1	IEEE488.2 標準ステータスのモデル	4-3
4.2	ステータスバイト(STB)レジスタ	4-5
4.3	サービスリクエスト(SRQ)のイネーブル動作	4-8
4.4	標準イベントステータスレジスタ	4-9
4.5	拡張イベントステータスレジスタ	4-11
4.6	本器とコントローラ間の同期のとり方	4-14

第5章 イニシャル設定......5-1

5.1	IFC ステートメントによるバスの初期化	5-4
5.2	DCL, SDC バスコマンドによるメッセージ交換の初期化	5-5
5.3	* RST コマンドによるデバイスの初期化	5-6
5.4	INI/IP コマンドによるデバイスの初期化	5-7
5.5	電源投入時のデバイスの状態	5-7

第6章 コマンドー覧表..... 6-1 デバイスメッセージー覧表の見方..... 6.1 6-3 全測定画面共通..... 6.2 6-5 Setup Common Parameter 6.3 6-7 Modulation Analysis 6.4 6-11 6.5 RF Power..... 6-15 Output RF Spectrum 6.6 6-20 Spurious Emission 6.7 6-27 Power Meter 6.8 6-43 IQ Level 6.9 6-44 Multi Slot Parameter Setup..... 6.10 6-45

第7章	☞ コマンド詳細説明	7-1
7.1	コマンド詳細の見方	7-5
7.2	アルファベット順コマンド詳細説明	7-6

この章では、リモート制御の概説、システムアップ例などを説明します。

1.1	概要		1-3
	1.1.1	リモート制御機能	1-3
	1.1.2	インタフェースポートの選択機能	1-3
	1.1.3	RS-232C/GPIB を利用したシステムアップ例	1-4
	1.1.4	RS-232C の規格	1-5
	1.1.5	GPIB の規格	1-6

1.1 概要

本測定器は、外部コントローラ(ホストコンピュータ、パソコンなど)と組み合わせて、 測定の自動化を行うことができます。このために本測定器は RS-232C インタ フェースポートおよび GPIB インタフェースバス(IEEE std 488.2-1987):を標準で 装備しています。また、オプションで Ethernet インタフェースを装備できます。

1.1.1 リモート制御機能

本測定器には、次のようなリモート制御機能があります。

- (1) 電源スイッチおよび[Local]キーなどの一部を除く, すべての機能の制御
- (2) すべての設定条件の読み出し
- (3) RS-232C インタフェース条件をパネルから設定
- (4) GPIB アドレスをパネルから設定
- (5) Ethernet 用の IP アドレスなどをパネルから設定(オプション搭載時)
- (6) インタフェースポートをパネルから選択
- (7) パーソナルコンピュータや他の測定器と組み合わせての自動計測システム の構成

1.1.2 インタフェースポートの選択機能

本測定器には、外部機器とのインタフェースポートとして、標準でRS-232Cインタフェース、GPIB インタフェースバス、およびパラレル (Centro) インタフェースを装備しています。また、オプションを追加することで Ethernet インタフェースも装備できます。これらのインタフェースポートを、パネルから選択します。

外部コントローラとの接続ポート: RS-232C/GPIB/Ethernet(オプション)のうちから 選択

プリンタとの接続ポート:パラレルインタフェース

1.1.3 RS-232C/GPIBを利用したシステムアップ例

(1) スタンドアロン方式

本測定器で測定した波形をプリンタへ出力します。

(2) ホストコンピュータ制御(その1)

コンピュータから,自動制御/リモート制御します。

(3) ホストコンピュータ制御(その2)

コンピュータから,自動制御/リモート制御し,測定した波形をプリンタへ出力します。

1.1.4 RS-232Cの規格

本測定器に標準装備の, RS-232Cの規格を以下に示します。

項目	規 格 值
機能	外部のコントローラからの制御(電源スイッチを除く)
通信方式	非同期(調歩同期方式),半2重
通信制御方式	X-ON/OFF 制御
ボーレイト	1200, 2400, 4800, 9600, 19.2 k, 38.4 k, 56 k, 115 k (bps)
データビット	7ビット,8ビット
パリティ	奇数(ODD), 偶数(EVEN), なし(NON)
スタートビット	1ビット
ストップビット	1ビット,2ビット
コネクタ	D-sub 9 ピン, オス

1.1.5 GPIBの規格

本器に標準装備の, GPIB の規格を以下に示します。

項目	規格値と捕捉説明		
機能	IEEE488.2 対応 本測定器をデバイスとして,外部のコントローラから制御 (電源スイッチを除く)。		
インタフェース ファンクション	SH1: ソース・ハンドシェイクの全機能あり。 データ送信のタイミングをとります。		
	AH1:アクセプタ・ハンドシェイクの全機能あり。 データ受信のタイミングをとります。		
	T6: 基本的トーカ機能あり。シリアルポール機能あり。 トークオンリ機能なし。MLA によるトーカ解除機能あり。		
	L4: 基本的リスナ機能あり。リスンオンリ機能なし。 MTA によるリスナ解除機能あり。		
	SR1: サービスリクエスト, ステータスバイトの全機能あり。		
	RL1: リモート/ローカル全機能あり。 ローカルロックアウトの機能あり。		
	PP0: パラレルポール機能なし。		
	DC1: デバイスクリアの全機能あり。		
	DT1: デバイストリガの機能あり。		
	C0: システムコントローラ機能なし。		
	E2: トライステート出力		

この章では,ホストコンピュータ,パーソナルコンピュータ,プリンタなどの外部機器との RS-232C および GPIB ケーブルの接続および本測定器のインタフェース設定方法について説明します。

- 2.1 RS-232C ケーブルによる外部機器との接続...... 2-3
- 2.2 RS-232C インタフェース信号の接続図 2-4
- 2.3 GPIB ケーブルによる接続...... 2-5
- 2.4 GPIB アドレスの設定 2-6

2.1 RS-232C ケーブルによる外部機器との接続

本器の背面にあるRS-232Cコネクタ(D-sub, 9ピン, オス)と外部機器のRS-232C コネクタをRS-232C ケーブルで接続します。

注:

RS-232Cコネクタのピン数は9ピンと25ピンの2種類あるので,外部機器のRS-232Cのピン数などを確認して,RS-232Cケーブルを購入してください。なお,本測定器の応用部品として,下記のRS-232Cケーブルが準備されています。

2.2 RS-232C インタフェース信号の接続図

本測定器とパーソナルコンピュータのRS-232Cインタフェース信号の接続図を下記に示します。

・ AT 互換パーソナルコンピュータとの接続図

2.3 GPIB ケーブルによる接続

本測定器の背面にある GPIB コネクタと,外部機器の GPIB コネクタを GPIB ケーブルで接続します。

注:

GPIB ケーブルの接続は、必ず本測定器の電源を投入する前に行ってください。

1 つのシステムに接続可能なデバイス台数は、コントローラを含めて最大 15 台で す。また下記に示す条件に従って接続してください。

ケーブルの長さの総和 ≦20 m デバイス間のケーブルの長さ ≦4 m

接続可能なデバイス数 ≦15

2.4 GPIB アドレスの設定

以下の操作で、本測定器の GPIB アドレスを設定してください。

この章では、RS-232C/GPIB/Ethernet をとおしてコントローラ(ホストコンピュータ) と本測定器(デバイス)の間で送受されるデバイスメッセージの形式について説 明します。

- 3.1 概要...... 3-3
 - - 3.1.2 レスポンスメッセージ形式...... 3-8

3.1 概要

デバイスメッセージはコントローラとデバイス間で送受されるデータで、プログラム メッセージ(コントローラから本測定器に出力するデータ)と、レスポンスメッセージ (コントローラが本測定器から入力するデータ)があります。プログラムメッセージ の中には本測定器のパラメータを設定したり処理を指示するためのプログラム命 令(command)とパラメータや測定結果の内容を問い合わせるプログラム問い合 わせ(query)の2つがあります。

3.1.1 プログラムメッセージ形式

コントローラのプログラムから, WRITE 文などで本測定器にプログラムメッセージ を出力する場合は以下の形式で行います。

とも呼ばれます。

CR (carriage return) はターミネータとしては処理されず無視されます。

(2) プログラムメッセージ

;で複数のコマンドを続けて出力することができます。

<例>WRITE #1,"CF 1GHZ;SP 500KHZ"

(3) プログラムメッセージ・ユニット

- ・ IEEE488.2 共通コマンドのプログラムヘッダには先頭に"*"がついています。
- ・ プログラムデータが数値プログラムデータの場合はプログラムヘッダとの問の (SP) は省略できます。
- プログラム問い合わせ(query)のプログラムヘッダは一般的にヘッダの最後の 文字が"?"になっています。
- (4) プログラムデータ

(5) キャラクタプログラムデータ

A~Z/a~z のアルファベット, 0~9 の数字および"_"(アンダーライン)からなる 決められた文字列のデータです。

<例>WRITE #1, "ST AUTO"····· Sweep Time を"AUTO"に設定します。

(6) 数値プログラムデータ

数値プログラムデータには整数形式(NR1)と固定小数点形(NR2)があります。

< 整数形式(NR1)>

< 固定小数点形式(NR2)>

(7) サフィックスデータ(単位)

本器で使用されるサフィクスを下表に示します。

分類	単位	サフィックスコード
	GHz	GHZ, GZ
	MHz	MHZ, MZ
周波数	kHz	KHZ, KZ
	Hz	HZ
	省略時解釈	HZ
	second	S
中日	m second	MS
四寸[目]	μ second	US
	省略時解釈	MS
	dB	DB
	dBm	DBM, DM
	dBµV	DBUV
レベル(dB系)	dBmV	DBMV
	dBµV (emf)	DBUVE
	$dB\mu V/m$	DBUVM
	省略時解釈	設定されているスケー ル単位に準ずる。
	V	V
しるエ(ハ조)	mV	MV
	μV	UV
	省略時解釈	UV
	W	W
	mW	MW
	μW	UW
レベル(W系)	nW	NW
	pW	PW
	fW	FW
	省略時解釈	UW

サフィックスコード一覧表

(8) 文字列プログラムデータ

3.1.2 レスポンスメッセージ形式

コントローラが本測定器から READ 文などで、レスポンスメッセージを入力する場合は以下の形式で行います。

(1) レスポンスメッセージ・ターミネータ

レスポンスメッセージ・ターミネータのどちらかを使用するかは'TRM'コマンドに より指定します。

(2) レスポンスメッセージ

レスポンスメッセージは1つの WRITE 文で問い合わせした1つまたは複数のプ ログラム問い合わせに対する1 つまたは複数のレスポンスメッセージ・ユニットか らなります。

(3) 通常のレスポンスメッセージ・ユニット

(4) レスポンスデータ

(5) キャラクタレスポンスデータ

A~Z/a~z, 0~9"_"(アンダーライン)からなる決められた文字列のデータです。

(6) 数値レスポンスデータ

< 整数形式(NR1)>

< 整数形式(NR1)>

(7) 文字列レスポンスデータ

[&]quot;……"で囲まれたアスキー文字列として出力されます。

(8) バイナリデータによる波形データ入力レスポンスメッセージ

波形バイナリデータは、下記に示すように-32768から32767までの65536個の 整数を2バイトとし、上位バイト、下位バイトの順に送り出します。

16-Bit Binary	With Sign	No Sign
1000000000000000	-32768	32768
1000000000000001	-32767	32769
1000000000000010	-32766	32770
11111111111111101	-3	65533
11111111111111110	-2	65534
11111111111111111	-1	65535
000000000000000000000000000000000000000	0	0
000000000000000000000000000000000000000	1	1
000000000000000000000000000000000000000	2	2
000000000000011	3	3
011111111111101	32765	32765
0111111111111110	32766	32766
0111111111111111	32767	32767

† 負数は、数値変数へ格納されるとき、MSB には、符号 bit 1 がおかれ、負数であることを示します。また、負の数値は、2 の補数の形式で数値変数へ格納されます。 例として、16706 という整数値を ASCII 転送した場合とバイナリ転送した場合とを比較すると、下記のように ASCII ならば 5 バイト必要ですが、バイナリならば 2 バイトで済み、かつデータ形式を変換する必要がないので高速データ転送には、よく使用されます。

波形バイナリデータは

指定されたポイント数×2バイト+終端コード

の, バイト数分出力されます。ここで終端コードは"TRM"コマンドにより指定された内容に従い LF(0D(H):1 バイト)または CR+LF(0A0D(H):2 バイト)です。
第4章 ステータスストラクチャー

この章では、GPIB インタフェースバスを使用する際の IEEE488.2 規格で定義されているデバイスのステータス報告とそのデータ構造について説明します。また、 デバイスとコントローラ間の同期の取り方について説明します。

本機能は GPIB インタフェースバスを使用して外部コントローラから制御を行う際の機能ですが、RS-232C/Ethernet インタフェースを使用して外部コントローラから制御を行う場合も、一部の機能を除いて、本機能を使用することができます。

4.1	IEEE488.2 標準ステータスのモデル 4-	3
4.2	ステータスバイト(STB)レジスタ4-	5
	4.2.1 ESB および MAV サマリメッセージ 4-	5
	4.2.2 装置固有のサマリメッセージ 4-	6
	4.2.3 STB レジスタの読み出しとクリア 4-	7
4.3	サービスリクエスト(SRQ)のイネーブル動作	8
4.4	標準イベントステータスレジスタ4-	9
	4.4.1 標準イベントステータスレジスタのビット定義 4-	9
	4.4.2 標準イベントステータスレジスタの読み取り・	
	書き込み・クリア 4-1	0
	4.4.3 標準イベントステータスイネーブルレジスタの	
	読み取り・書き込み・クリア	0
4.5	拡張イベントステータスレジスタ 4-1	1
	4.5.1 END イベントステータスレジスタのビット定義 4-1	2
	4.5.2 拡張イベントステータスレジスタの読み取り・	
	書き込み・クリア 4-1	3
	4.5.3 拡張イベントステータスイネーブルレジスタの	
	読み取り・書き込み・クリア	3
4.6	本器とコントローラ間の同期のとり方4-1	4
	4.6.1 * OPC?問い合わせによるレスポンス待ち 4-1	4
	4.6.2 * OPC によるサービスリクエスト待ち	
	(GPIB インタフェースバス使用時のみ)	5

コントローラに送るステータスバイト(STB-Status Byte)は、IEEE488.1 規格に基づ いていますが、その構成ビットはステータスサマリメッセージと呼ばれ、レジスタや キュー(待ち行列)に蓄えられたデータの現在の内容を要約して表したもので す。

4.1 IEEE488.2 標準ステータスのモデル

下図に IEEE488.2 で定められているステータスストラクチャー構造の標準モデル 図を示します。

ステータスモデルでは,最下位のステータスとして IEEE488.1 ステータスバイトが 使用されます。そのステータスバイトは,上位のステータスストラクチャーから供給 される7個のサマリメッセージビットで構成されます。これらのサマリメッセージビッ トを生成するため,ステータスデータ構造は,レジスタモデルとキューモデルの2 種類から構成されます。

レジスタモデル	キューモデル
デバイスの遭遇した事象 (event) および状態 (condition) を記録 するための一組のレジスタ,これをレジスタモデル (register- model) といいます。その構造はイベントステータス・レジスタ (Event Status Register) とイベントステータス・イネーブルレジスタ (Event Status Enable Register) とから構成され,両者の AND が 0 でないとき、ステータスビットの対応ビットが 1 となります。それ以 外の場合は 0 となります。そして、それらの論理 OR の結果が 0 であれば、サマリメッセージビットは、0 となります。	順序を待つ状態値または情報を シーケンシャルに記録するための 待ち行列で,これをキューモデル (queue-model)といいます。キュー 構造では,キューにデータがあると きだけ対応ビットが1となり,キュー が空であれば0となります。

以上, 説明したレジスタモデルとニューモデルをもとに, IEEE488.2 のステータス データ構造の標準モデルは, 2 種類のレジスタモデルと1 個のキューモデルから 構成されています。:

標準イベントステータスレジスタと標準イベントステータス・イネーブルレジスタ
 ステータスバイト・レジスタとサービスリクエスト・イネーブルレジスタ

標準イベントステータス・レジスタ	ステータスバイト・レジスタ	出力キュー
(Standard Event Status Register)	(Status Byte Resister)	(Output Queue)
これは前記のレジスタモデルの構造を持ち,この内容はデバイスが遭遇する事象の中で,8種類の事象(①電源投入,②ユー ザ要求,③コマンドエラー,④実行時エ ラー,⑤デバイス固有エラー,⑥問い合わ セエラー,⑦バス制御権要求,⑧オペレー ション終了)の各ビットを標準事象として, 標準イベントステータス・レジスタに立てま す。論理 OR ビットは, Event Status Bit (ESB)サマリメッセージとして,ステータス バイト・レジスタの bit5(DI06)に要約表示さ れます。	ステータスバイト・レジスタは, RQS ビットおよびステータスデー タの構造からの 7 個のサマリメッ セージビットがセット可能なレジス タで,サービスリクエスト・イネーブ ルレジスタと組で使用され,両者 の OR が 0 でないとき SRQ を ON にします。このときのステータスバ イト・レジスタの bit6 (DI07)は, RQS ビットとしてシステム予約され ており,このビットにより外部コント ローラにサービス要求の有ること を報告します。この SRQ の仕組み は,IEEE488.1 の規格に従ってい ます。	これは前記キューモ デルの構造を持ち, この内容は出力バッ ファにデータの有る ことを知らせる Message Available (MAV)サマリメッ セージとしてステー タスバイト・レジスタ のbit4(DI05)に要 約表示されます。

③出力キュー

4.2 ステータスバイト(STB)レジスタ

STB レジスタは、デバイスの STB と RQS(または MSS)メッセージから構成されます。

4.2.1 ESBおよびMAVサマリメッセージ

ESB サマリメッセージおよび MAV サマリメッセージについて説明します。

(1) ESB サマリメッセージ

ESB (Event Summary Bit) サマリメッセージは, IEEE488.2 で定義されたメッセージで, STB レジスタの bit5 を使用します。ESB サマリメッセージビットは, イベント 発生が有効となるように設定された状態で,標準イベントステータスレジスタに登録されたイベントが一つでも1 になると1 になります。逆に ESB サマリビットは, イベント発生が有効となるように設定された状態でも,登録されたイベントの発生が一つもないときに0 になります。

本ビットは*ESR?問い合わせで ESR レジスタを読み込んだ場合,および*CLS コマンドで ESR レジスタをクリアした場合に 0 となります。

(2) MAV サマリメッセージ

MAV (Message Available) サマリメッセージは, IEEE488.2 で定義されたメッセージで, STB レジスタの bit4 を使用します。この bit の状態は, 出力キューが'空'であるかどうかを示します。デバイスがコントローラからレスポンスメッセージの送出要求を受け付ける用意ができているときに, MAV サマリメッセージビットは 1 となり, 出力キュー'空'のときに0となります。このメッセージはコントローラとの情報交換に同期を取るために利用されます。たとえば, コントローラがデバイスに問い合わせコマンドを送り, MAV が 1 になるのを待つというように使うことができます。 そして, デバイスが応答をするのを待つ間, 他の処理をすることができます。もし, 初めに MAV をチェックすることなしに出力キューを読み取り始めた場合は, すべてのシステムバス動作はデバイスが応答するまで待たされます。

4.2.2 装置固有のサマリメッセージ

本測定器では下記に示すように, bit0, bit1, bit3, および bit7 を未使用とし, bit2 をイベントレジスタのサマリビットとして使っています。

ステータスバイトレジスタ

4.2.3 STBレジスタの読み出しとクリア

STB レジスタの内容は、シリアルポール、または*STB?共通問い合わせを使って 読み取ります。どちらの方法でもIEEE488.1のSTBメッセージを読み取りますが、 bit6(位置)に送られる値はその方法によって異なります。STBレジスタの内容は、 *CLSコマンドによってクリアすることができます。

(1) シリアルポールを使って読む(GPIB インタフェースバス使用時のみ)

IEEE488.1 によるシリアルポールが行われた場合,7 ビットのステータスバイトと, IEEE488.1 による RQS メッセージビットを返送します。ステータスバイトの値は、シ リアルポールを行っても変化しません。デバイスは、ポーリングされた直後 RQS メッセージビットを0にセットします。

(2) *STB 共通問い合わせを使って読む

*STB?共通問い合わせにより、デバイスに STB レジスタの内容と MSS (Master Summary Status) サマリメッセージからなる整数形式のレスポンスメッセージを送出させます。これにより、RQS メッセージの替わりに MSS サマリメッセージが bit6 位置に現れることを除いては、*STB?に対する応答は、シリアルポールに対する対応と一致します。

(3) MSS(Master Summary Status)の定義

デバイスに少なくとも一つのサービスを要求する原因があることを示します。MSS メッセージは*STB?間い合わせに対するデバイスの応答の中で bit6 に現れます が,シリアルポールに対する応答としては現れません。また, IEEE488.1 のステー タスバイトの一部とみなしてはなりません。MSS は STB レジスタと SRQ イネーブ ル(SRE)レジスタのビットの組み合わせによる総合的 OR により構成されます。

(4) *CLS 共通コマンドによる STB レジスタのクリア

*CLS 共通コマンドは, すべてのステータスデータストラクチャーをクリアし, これ に応じてそれらに対応するサマリメッセージもクリアします。なお, 各イネーブル・ レジスタの設定値については, *CLS によって影響されません。

4.3 サービスリクエスト(SRQ)のイネーブル動作

サービスリクエスト・イネーブル(SRE)レジスタの bit0~7 の状態により STB の対応ビットが SRQ を発生するかどうかを制御することができます。

サービスリクエスト・イネーブルレジスタ上のビットは、ステータスバイト・レジスタ上 のビットと対応しています。サービスリクエスト・イネーブルレジスタのビットのうち1 となっているビットに対応するステータスバイト中のビットに1 が立つと、デバイス は、RQSビットを1とし、サービスリクエストをコントローラに対して行います。

(1) SRE レジスタの読み出し

SRE レジスタの内容は、*SRE?共通問い合わせを使って読み出します。この問い合わせに対するレスポンスメッセージは、0~255の整数で、サービスリクエスト・イネーブルレジスタの各ビット桁値の総和となります。

SRE レジスタの更新

SRE レジスタは、*SRE 共通命令を使って書き込みます。パラメータとして 0~255 の整数をつけ、SRE レジスタのビットを 0/1 に設定します。bit6 の値は無視されます。

4.4 標準イベントステータスレジスタ 4.4.1 標準イベントステータスレジスタのビット定義

下図に、標準イベント・ステータスレジスタモデルの動作を示します。

左側の標準イベントステータス・イネーブル(ESE)レジスタは、対応するイベント レジスタのどのビットが立ったとき、サマリメッセージを真にするかどうかを選択し ます。

ビット	イベント名	説明
7	電源投入(PON-Power on)	電源投入が OFF から ON へと変化した。
6	(未使用)	
5	コマンドエラー (CME-Command Error)	文法に従わないプログラムメッセージ, ミスス ペルのコマンドを受信した。
4	実行時エラー (EXE-Execution Error)	文法に問題はないが,実行できないプログラ ムメッセージを受信した。
3	デバイス固有エラー (DDE-Device-dependent Error)	CME, EXE, QYE 以外の原因によるエラーが 発生した。(パラメータなど)
2	問い合わせエラー (QYE-Query Error)	出力キューにデータがないのに,出力キュー からデータを読もうとした。または出力キュー のデータが読まれる前に失われた。
1	(未使用)	
0	オペレーション終了 (OPC-Operation Complete)	このビットは本測定器が*OPC コマンドを処理 した時点で1になります。

4.4.2 標準イベントステータスレジスタの読み取り・書き込み・クリア

読み取り	*ESR? 共通問い合わせにより読み取られます。 レスポンスメッセージは、2 進数の重みを付けて総和した値を 10 進数に変 換した整数形式のデータです。
書き込み	クリアすることを除き,外部から書き込みは行えません。
	次の場合にクリアされます。
	①*CLS コマンドを受信
クリア	②電源 ON のとき。 bit 7 が ON となりその他のビットは 0 にクリアされます。
	③*ESR? 問い合わせコマンドに対して, イベントが読み込まれた。

4.4.3 標準イベントステータスイネーブルレジスタの読み取り・書き込み・クリア

読み取り	*ESE? 共通問い合わせにより読み取られます。 レスポンスメッセージは、2 進数の重みを付けて総和した値を 10 進数に変 換した整数形式のデータです。
書き込み	*ESE 共通コマンドによって書き込まれます。
	次の場合にクリアされます。
	①データ値0の*ESE コマンドを受信
	②電源 ON 時
クリア	標準イベントステータス・イネーブルレジスタは, 下記事項に影響されません。
	①IEEE488.1 のデバイスクリア・ファンクションの状態変化
	②*RST 共通コマンドの受信
	③*CLS 共通コマンドの受信

4.5 拡張イベントステータスレジスタ

本測定器では、下記に示すように、bit7, bit3, bit1, bit0 を未使用とし, bit2 を拡張 レジスタモデルから供給されるステータスサマリビット用として、END サマリビット に割当てています。

ステータスバイトレジスタ

4.5.1 ENDイベントステータスレジスタのビット定義

下記に, END イベントスータスレジスタモデルの動作, イベントビット名およびその意味について説明します。

左側の END イベントステータスレジスタは対応するイベントレジスタのどのビット が立ったとき,サマリメッセージを真にするかどうか選択します。

ビット	イベント名	説明
7	(未使用)	(未使用)
6	Max Hold/Min Hold	Hold 指定回数の掃引終了
5	Measure 終了	Measure 機能(Freq count, Noise など)の計算処理終了
4	AVERAGE 終了	AVERAGE 指定回数の掃引終了
3	プリセレクタピーキング終了	プリセレクタピーキング終了
2	AUTO TUNE 終了	AUTO TURN 終了
1	CAL 終了	ALL CAL, LEVEL CAL, FREQ CAL のいずれかの CAL 終了
0	掃引終了	1回掃引が終了または掃引スタンバイ状態

4.5.2 拡張イベントステータスレジスタの読み取り・書き込み・クリア

読み取り	*ESR2?問い合わせにより読み取られます。読み取られた後、クリアされます。 レスポンスメッセージは、2進数の重みを付けて総和した値を10進数に変換し た整数形式のデータです。		
書き込み	き込み クリアすることを除き、外部から書き込みは行えません。		
	次の場合にクリアされます。		
クリマ	①*CLS コマンド受信		
297	②電源 ON のとき。		
	③ESR2? 問い合わせコマンドに対して, イベントが読み込まれた。		

4.5.3 拡張イベントステータスイネーブルレジスタの読み取り・書き込み・クリア

読み取り	*ESE2? 問い合わせにより読み取られます。 レスポンスメッセージは、2進数の重みを付けて総和した値を10進数に変換し た整数形式のデータです。
書き込み	*ESE2 プログラムコマンドによって書き込まれます。 レジスタの bit 0~7 は, それぞれ 1, 2, 4, 8, 16, 32, 64, 128 に重み付けされ ていますので, 書き込みデータは, その中から希望のビット桁値を総和した整 数形式のデータで送ります。
	次の場合にクリアされます。
	①データ値0のESE2 プログラムコマンドを受信
	②電源 ON 時
クリア	拡張イベントステータス・イネーブルレジスタは, 下記事項に影響されません。
	①IEEE488.1 のデバイスクリア・ファンクションの状態変化
	②*RST 共通コマンドの受信
	③*CLS 共通コマンドの受信

4.6 本器とコントローラ間の同期のとり方

本測定器は指定されるプログラムメッセージをシーケンシャルコマンド(1 つのコ マンドの処理を完了してから次のコマンドの処理を行う)として扱うので本測定器 とコントローラ間の1対1での同期は特別に考慮する必要はありません。

コントローラが複数のデバイスを制御し,かつ複数の機器の同期をとりながら制御を行う場合には、本測定器に指定したコマンドの処理がすべて完了してから別の機器にコマンドを送るなどの処理が必要となります。

本測定器とコントローラ間での同期のとり方には以下の 2 種類の方法があります。

① *OPC?問い合わせによるレスポンス待ち

② *OPC による SRQ 待ち

4.6.1 * OPC?問い合わせによるレスポンス待ち

本測定器は*OPC?問い合わせを実行すると、レスポンスメッセージとして"1"を 出力します。コントローラはこのレスポンスメッセージを入力するまで待つことによ り同期をとります。

<コントロールプログラム>

4.6.2 * OPCによるサービスリクエスト待ち(GPIBインタフェースバス使用時のみ)

本測定器は、*OPC コマンドを実行すると標準イベントステータスレジスタの"オペレーション終了"ビット(bit0)を1にセットします。このビットを SQR に反映させるように設定しておき SRQ を持つことにより同期をとります。

本測定器はIEEE488.2規格に従って3段階のレベルで初期化処理を行います。 この章では、この3段階の初期化処理の内容およびコントローラからの初期化指 示方法について説明します。

- 5.1 IFC ステートメントによるバスの初期化..... 5-4
- 5.2 DCL, SDC バスコマンドによるメッセージ交換の初期化.. 5-5
- 5.3 * RST コマンドによるデバイスの初期化...... 5-6
- 5.4 INI/IP コマンドによるデバイスの初期化 5-7
- 5.5 電源投入時のデバイスの状態...... 5-7

IEEE488.2 では、GPIB システムの初期化について3つのレベルに分けられています。第1レベルを『バスの初期化』、第2レベルを『メッセージ交換の初期化』、第3レベルを『デバイスの初期化』として規定されています。また、電源投入時のデバイスの状態についても、既知の状態へ設定することが定められています。

レベル	初期化の種類	概 要	レベルの組み合わせと順序
1	バスの初期化	コントローラからのIFCメッセージによって, バス に接続されたすべてのインタフェース機能を初期 化します。	他のレベルと組み合わせて使 用できますが、レベル1はレベ ル2の前に実行しなければなり ません。
2	メッセージ 交換の初期化	GPIBバスコマンド DCL によってGPIB上の全デ バイス、またはGPIBバスコマンド SDC によって、 指定したデバイスのメッセージ交換の初期化 やオペレーションが終了したことをコントローラ へ報告する機能を無効にします。	他のレベルと組み合わせて使 用できますが,レベル2はレベ ル3の前に実行しなければなり ません。
3	デバイスの 初期化	*RSTまたはINI/IPコマンドによって指定した デバイスを,過去の使用状態に関係なく,そ のデバイス固有の,既知の状態に戻します。	他のレベルと組み合わせて使 用できますが、レベル3はレベ ル1、レベル2の後で実行しなけ ればなりません。

本測定器では RS-232C(標準装備)/Ethernet(オプション)インタフェースポート を使用してコントローラから制御する場合には、レベル 3『デバイスの初期化』機 能が使用可能です。レベル 1,2の初期化機能は使用できません。

GPIB(標準装備)インタフェースバスを使用してコントローラから制御する場合には、レベル1,2,3 すべての初期化機能が使用可能です。

以下,レベル1,2,3については,これらを実行する命令およびその結果である初 期化対象項目を中心に説明します。また,電源投入時に設定される既知の状態 について説明します。

5.1 IFC ステートメントによるバスの初期化

■ 使用例 board%=0 CALL SendIFC (board%)

■ 解 説

本機能は GPIB インタフェースバスを使用してコントローラから制御する場合に使用可能です。

IFC ステートメントにより GPIB バスラインに接続されているすべてのデバイスのイ ンタフェース機能が初期化されます。

インタフェース機能の初期化とは、コントローラによって設定されているデバイス のインタフェース機能の状態(トーカ、リスナ、その他)を解除して初期状態に戻 すもので、下表の中で○印の各ファンクションを初期化します。△印は、その一 部を初期化します。

No	ファンクション	記号	IFCでの初期化
1	ソースハンドシェイク	SH	0
2	アクセプタハンドシェイク	AH	0
3	トーカまたは拡張トーカ	T または TE	0
4	リスナまたは拡張リスナ	L または LT	0
5	サービス要求	SR	\bigtriangleup
6	リモートローカル	RL	
7	パラレルポール	PP	
8	デバイスクリア	DC	
9	デバイストリガ	DT	
10	コントローラ	С	0

IFC ステートメントによるバスの初期化では、デバイスの動作状態(周波数の設定 値、ランプの ON/OFF など)には影響を与えません。

5.2 DCL, SDC バスコマンドによるメッセージ交換の初期化

■ 使用例

バス下の全デバイスのメッセージ交換の初期化(DCL 送出) board% = 0 address list% = NOADDR CALL DevClearList(board%, addresslist%) アドレス3番のデバイスのみのメッセージ交換の初期化(SDC 送出) board% = 0

address% = 3
CALL DevClear(board%, address%)

■ 解 説

本機能は GPIB インタフェースバスを使用してコントローラから制御する場合に使用可能です。

指定したセレクトコードのGPIB上の全デバイス、または指定したデバイスだけの、 メッセージ交換に関する初期化を行うステートメントです。

■ メッセージ交換の初期化対象項目

本測定器は DCL, SDC バスコマンドを受け取ると以下の処理を行います。

 入力バッファと出力キュー・・・・・・クリアされます。同時に MAV ビットもクリア されます。 ② 構文解析部・実行制御部・応答作成部 ・・リセットされます。 ③ *RST を含むデバイスコマンド ・・・・これらのコマンドの実行を妨げるすべての コマンドをクリアします。 ④ *OPC コマンドの処理・・・・・・・ デバイスを OCIS ステート(Operation Complete Command Idle State)にします。 この結果、オペレーション終了ビットを標準 イベントステータスレジスタに立てることは できません。 ⑤ *OPC?間合せの処理 ······· デバィスを OOIS ステート(Operation Complete Query Idle State)にします。この 結果,オペレーション終了データ"1"を出 力キューにセットすることができません。 ⑥ デバイスファンクション ・・・・・メッセージ交換に関する部分は、すべてア イドル状態におかれます。 デバイスは, コ ントローラからのメッセージを待ち続けま す。

<u> /</u>注意

- DCL, SDC バスコマンドによる処理を行っても以下の項目には影響を与えません。
- ① 数字数字現在のデバイスの設定データやストアされているデータ。
- ② 数字数字フロントパネルの状態。
- ③数字 MAV ビット以外の他のステータスバイトの状態。
- ④現在進行中のデバイスの動作。

5.3 * RST コマンドによるデバイスの初期化

■書式------

*RST

■ 使用例

RS-232C/Ethernet の場合

WRITE #1, "*RST"・・・・・ アドレス1番のデバイス(本器)をレベル3で初 期化

GPIB の場合

SPA%=1

CALL Send(Ø,SPA,"*RST",NL end)

■ 解 説

*RST(Reset)コマンドは IEEE488.2 共通コマンドの一つで, デバイスをレベル 3 で初期化します。

*RST(Reset)コマンドはデバイス(本測定器)を特定の初期状態にするために使用します。

注:

*RST コマンドは、下記事項には影響を与えません。

- ① IEEE488.1 インタフェースの状態
- ② デバイスアドレス
- ③ 出力キュー
- ④ Service Request Enable レジスタ
- ⑤ Standard Event Status Enable レジスタ
- ⑥ Power-on-status-clear フラグ設定
- ⑦ デバイスの規格に影響する校正データ
- ⑧ 外部機器制御などに関する設定パラメータなど

5.4 INI/IP コマンドによるデバイスの初期化

■ 書 式 --

INI

IP

■ 使用例(プログラムメッセージ)

RS-232C/Ethernet の場合

WRITE #1,"INI" ・・・・・ アドレス1番のデバイス(本器)をレベル3で初 期化

GPIB の場合

CALL Send(Ø,SPA%,"INI",NLend)

SPA%=1

■ 解 説

INI コマンド/IP コマンドは本測定器固有のデバイスメッセージの一つで, デバイ スをレベル 3 で初期化します。

スペクトラムアナライザ機能のときに、本コマンドを送出するとスペクトラムアナライ ザ機能における初期化対象測定制御パラメータが初期化されます。

5.5 電源投入時のデバイスの状態

電源が投入されると:

- ① 最後に電源を OFF したときの状態に設定されます。
- ② 入力バッファと出力キューは、クリアされます。
- ③構文解析部・実行制御部・応答作成部は、初期化されます。
- ④ デバイスを OCIS ステート(Operation Complete Command Idle State)にしま す。
- ⑤ デバイスを OQIS ステート(OPeration Complete Query Idle State)にします。
- ⑥ 標準イベントステータスレジスタおよび標準イベントステータスイネーブルレジ スタは、クリアされます。イベントはクリア後に記録されます。

この章では、本ソフトウェアで使用できるデバイスメッセージを下記の目次に従って、機能別に一覧表で示しています。各コマンドの詳細な説明は、第7章「コマンド詳細説明」を参照してください。

6.1	デバイスメッセージー覧表の見方	6-3
6.2	全画面共通	6-5
6.3	Setup Common Parameter	6-7
6.4	Modulation Analysis	6-11
6.5	RF Power	6-15
6.6	Output RF Spectrum	6-20
6.7	Spurious Emission	6-27
6.8	Power Meter	6-43
6.9	IQ Level	6-44
6.10	Multi Slot Parameter Setup	6-45

6.1デバイスメッセージー覧表の見方

• Program Message & Query Message

(a)大文字: 予約語

(b)数値:予約語(数値コード)

(c)引数部の小文字

引数	意味	型	単位/サフィックスコード
f	Frequency	小数点つきの実数または整数	GHZ, MHZ, KHZ, HZ, GZ, MZ, KZ, なし (HZ)
t	Time	小数点つきの実数または整数	S, SC, MS, US, なし(MS)
1	Level	小数点つきの実数または整数	DB, DBM, DM, DBMV, DBUV, DBUVE, V, MV, UV, W, MW ,UW, NW, なし(既定 単位)
n	無単位整数また は単位指定整数	10 進整数	なし,または指定
0	無単位整数	8 進整数	なし
h	無単位整数	16 進整数	なし
r	無単位実数また は単位指定実数	実数	なし,または指定

• Response Message

(a)大文字:予約語

(b)数値:予約語(数値コード)

引数	意味	型	単位/サフィックスコード
f	Frequency	小数点つきの実数または整数	Hz
t	Time	小数点つきの実数または整数	ms
1	Level	小数点つきの実数または整数	規定または指定
n	無単位整数また は単位指定整数	10進整数,桁数可変(有効桁数分を出 力)	なし,または指定
0	無単位整数	8 進整数	なし
h	無単位整数	16 進整数	なし
r	無単位実数また は単位指定実数	小数点つきの実数,桁数可変 (有効桁数分を出力)	なし,または指定
j	数值判定	PASS(合格) or FAIL(規定外)	なし
u	単位指定	DB, DBM, DM, DBMV, DBUV, DBUVE, V, MV, UV, W, MW, UW, NW	なし

6.2 全画面共通

Function	Item			Program Message	Query Message	Response Message	Remarks
Initializatio	n						
				PRE			
Preset			INI				
				IP			
画面段階切]り替え						
	Setup Com	mon Pa	arameter	DSPL SETCOM		SETCOM	
	Modulation	n Analy	sis	DSPL MODANAL		MODANAL	
		RF Po	ower	DSPL RFPWR		RFPWR	
	RF Power	Setup	Template	DSPL SETTEMP_RFPWR		SETTEMP_RFPWR	
				DSPL SETTEMP		SETTEMP_RFPWR	
	Output	High	Speed	DSPL ADJ,HIGH		ADJ,HIGH	
	RF Spectrum	Setup RF SI	Output bectrum	DSPL SETTBL_ACP		SETTBL_ACP	
	Multi Slot	Parame	ter Setup	DSPL MSPS		MSPS	
Switch		Spot		DSPL SPURIOUS,SPOT	DSPL?	SPURIOUS,SPOT	
Screen	Spurious Emission	Search		DSPL SPURIOUS,SEARCH		SPURIOUS,SEARCH	
		Sweep		DSPL SPURIOUS,SWEEP		SPURIOUS,SWEEP	
		Setup Freque ncy Table	Spot	DSPL SETTBL_SPU,SPOT		SETTBL_SPU,SPOT	
			Search & Sweep	DSPL SETTBL_SPU,SWEEP		SETTBL_SPU,SWEEP	
		Setup Reference Power		DSPL RELPWRREF		RELPWRREF	
	Power Met	er		DSPL PWRMTR		PWRMTR	
	IQ Level			DSPL IQLVL		IQLVL	
Back Screen	1			BS			
測定開始							
			No Supe	SNGLS			
	Single		NO Sylic	82			
Sweep/	Single		Suno	SWP			
Measure			Sync	TS			
	Continuous	-		CONTS			
	Continuous	3		S1			
Sweep/	Measure/S	weep E	nd			SWP 0	
Measure Status	During Me	asure/S	weep		SWP?	SWP 1	

全画面共通(続き)

Function	Item		Program Message	Query Message	Response Message	Remarks	
	Setup Com	mon Par	ameter	MEAS SETCOM		SETCOM	
	Modulation	Analysi	is	MEAS MODANAL		MODANAL	
	RF Power		ver	MEAS RFPWR		RFPWR	
	RF Power	Setup	4-	MEAS SETTEMP_RFPWR		SETTEMP_RFPWR	
		Template		MEAS SETTEMP		SETTEMP_RFPWR	
	Output DE	High S	peed	MEAS ADJ,HIGH		ADJ,HIGH	
	Spectrum	Setup RF Spe	Output ectrum	MEAS SETTBL_ACP		SETTBL_ACP	
	Multi Slot I	Paramete	er Setup	MEAS MSPS		MSPS	
Switch Screen		Spot		MEAS SPURIOUS,SPOT		SPURIOUS,SPOT	
and Measure Start		Search		MEAS SPURIOUS,SEARCH	MEAS?	SPURIOUS,SEARCH	
	G .	Sweep		MEAS SPRIOUS,SWEEP		SPURIOUS,SWEEP	
	Spurious Emission	Setup Frequ ency Table	Spot	MEAS SETTBL_SPU,SPOT		SETTBL_SPU,SPOT	
			Search & Sweep	MEAS SETTBL_SPU, SWEEP		SETTBL_SPU,SWEEP	
		Setup Reference Power		MEAS RELPWRREF		RELPWRREF	
	Power Mete	Power Meter		MEAS PWRMTR		PWRMTR	
	IQ Level			MEAS IQLVL		IQLVL	
RF 信号入力コ	ネクタ切り替	え					
Switch RF	High		RFINPUT HIGH		HIGH	MS8608A だけ有効	
Connector	Low			RFINPUT LOW	KFIINF 01?	LOW	MS8608A だけ有効
プリアンプ							
Dro Amnl	On			PREAMP ON		ON	Option 搭載時 だけ有効
Fie Allipi	Off			PREAMP OFF	FREAMF !	OFF	Option 搭載時 だけ有効
Correcting Leve	el						
	Off			CORR 0		0	
	Table 1			CORR 1		1	
Correction	Table 2			CORR 2	CORR?	2	
Concetton	Table 3			CORR 3	CORK!	3	
	Table 4			CORR 4		4	
	Table 5			CORR 5		5	

6.3 Setup Common Parameter

Function	Item	Program Message	Query Message	Response Message	Remarks
Input			-	_	-
Terminal	RF	TERM RF		RF	
	IQ-DC	TERM IQDC	TERM?	IQDC	
	IQ-AC	TERM IQAC		IQAC	
	IQ-Balance	TERM IQBAL		IQBAL	
Impedance	50 Ω	IQINZ 50		50	
	1 MΩ	IQINZ 1M	IQINZ?	1M	
Reference Level		RFLVL I	RFLVL?	1	l: <high>(-10.00+offset)dBm ~ (42.00+offset)dBm <low>(-30.00dBm+offset) ~ (22.00dBm+offset) 上記はプリアンプ Offの場 合の設定範囲 MS8608A 以外では,Low Power 入力相当のみで す。</low></high>
Reference Level O	offset	RFLVLOFS 1	RFLVLOFS?	1	1: -99.99~99.99 dB
Frequency					
	Free	FREQBAND FREE		FREE	
	P-GSM900	FREQBAND PGSM900		PGSM900	
	E-GSM900	FREQBAND EGSM900		EGSM900	
	R-GSM900	FREQBAND RGSM900		RGSM900	
	T-GSM380	FREQBAND TGSM380		TGSM380	
Band	T-GSM410	FREQBAND TGSM410	FREQBAND?	TGSM410	
	T-GSM900	FREQBAND TGSM900		TGSM900	
	DCS1800	FREQBAND DCS1800		DCS1800	
	PCS1900	FREQBAND PCS1900		PCS1900	
	GSM450	FREQBAND GSM450		GSM450	
	GSM480	FREQBAND GSM480		GSM480	
	GSM750	FREQBAND GSM750		GSM750	
	GSM850	FREQBAND GSM850		GSM850	

Setup Common Parameter(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Select Station	MS	BANDTRGT MS		MS	
	BTS	BANDTRGT BTS		BTS	
	Micro BTS	BANDTRGT MCRBTS	BANDTRGT?	MCRBTS	
	Pico BTS	BANDTRGT PCBTS		PCBTS	
Channel	·	CHAN n	CHAN?	n	n: 0 \sim 20000
Frequency		FREQ f	FREQ?	f	f:100 Hz~3 GHz (MS2681A の場合) f:100 Hz~7.8 GHz (MS2683A/MS8608A の場合) f:100 Hz~ 13.2 GHz (MS8609A の場合) f:100 Hz ~ 30.0 GHz (MS2687A/B の場合)
Channel & Frequency		CHFREQ n,f	FREQ n,f		n: 0 ~ 20000 f:100 Hz ~ 3 GHz (MS2681A の場合) f:100 Hz ~ 7.8 GHz (MS2683A/MS8608A の場合) f:100 Hz ~ 13.2 GHz (MS8609A の場合) f:100 Hz ~ 30.0 GHz (MS2687A/B の場合)
Channel Spring		CHSPC f	CHSPC?	f	f: 0 Hz \sim 7.8 GHz
ARFCN_FIRST(x)	ARFCNFIRST n	ARFCNFIRST?	n	n:0 \sim 1023
BAND_OFFSET(y)		BANDOFFSET n	BANDOFFSET?	n	n:0 ~ (Max) Max:バンド幅/200kHz T-GSM380:Max=48 T-GSM410: Max=48 T-GSM900: Max=28 DCS1800: Max=373 PCS1900: Max=298 GSM750: Max=73
ARFCN_RANGE(z)		ARFCNRANGE n	ARFCNRANGE?	n	n:0 ~ (Max- BAND_OFFSET) Max:バンド幅/200kHz T-GSM380:Max=48 T-GSM410: Max=48 T-GSM900: Max=28 DCS1800: Max=373 PCS1900: Max=298 GSM750: Max=73

Function	Item	Program Message	Query Message	Response Message	Remarks
Signal					
Modulation	GMSK	MODTYPE GMSK	MODTVDE?	GMSK	
Туре	8PSK	MODTYPE 8PSK	MODITIE!	8PSK	
Measuring Object	Normal Burst	MEASOBJ NB		NB	
	Normal Burst (Multi Slot)	MEASOBJ NBMS		NBMS	
	Access Burst	MEASOBJ AB	MEASOBJ?	AB	
	Synchronization Burst	MEASOBJ SB		SB	
	Continuous	MEASOBJ CONT		CONT	
Symbol align	Normal	SYMOFS NRM	SYMOFS?	NRM	
offset	Half	SYMOFS HALF	SYMOPS?	HALF	
	All 0	BRSTOFFDAT ALL0		ALL0	
Burst Off Data	All 1	BRSTOFFDAT ALL1	BRSTOFFDAT?	ALL1	
	Auto	BRSTOFFDAT AUTO		AUTO	
Training Sequence					
	TSC 0	PATT TSC0		TSC0	
	TSC 1	PATT TSC1		TSC1	
	TSC 2	PATT TSC2	-	TSC2	
	TSC 3	PATT TSC3		TSC3	
	TSC 4	PATT TSC4		TSC4	
Dattarn	TSC 5	PATT TSC5	DATT9	TSC5	
1 attern	TSC 6	PATT TSC6		TSC6	
	TSC 7	PATT TSC7		TSC7	
	ETSC	PATT ETSC		ETSC	
	SYNCH	PATT SYNCH		SYNCH	
	NO	PATT NO		NO	
	USER	PATT USER		USER	
User Pattern Length		PATT_ULEN	PATT_ULEN?	n	n: (GMSK) 1~64symbol (8-PSK) 1~26symbol
User Bit	GMSK	PATT_UBIT h		h	h: 0 \sim FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Pattern	8-PSK	PATT_UBIT o	PATT_UBIT?	0	o: 0 ~ 77777777777777777777777777777777777

Setup Common Parameter(続き)

第6章 コマンドー覧表

Function	Item	Program Message	Query Message	Response Message	Remarks
Start Point		PATT_USTART n	RTPATT_USTART?	n	n: < <gmsk>> <nb,sb> $0 \sim (147 - User Pattern Length) symbol$ <ab> $0 \sim (87 - User Pattern Length) symbol$ <<8-PSK>> $0 \sim (147 - User Pattern Length) symbol$</ab></nb,sb></gmsk>
Trigger					
Trigger	Free Run	TRG FREE	TDC2	FREE	
Inggei	External	TRG EXT	TKO?	EXT	
Trianan Edaa	Rise	TRGEDGE RISE	TRCEDCE	RISE	
Trigger Edge	Fall	TRGEDGE FALL	TRGEDGE?	FALL	
Trigger Delay		TRGDLY t	TRGDLY?	t	t: $-120.000 \sim 120.000 \text{ ms}$
Trigger Timeout (I	Remote Only)	TRGWAIT n	TRGWAIT?	n	n: 0 \sim 2147483647 s

6.4 Modulation Analysis

Function	Item	Program Message	Query Message	Response Message	Remarks
Trace Format					
	None	TRFORM NON		NON	
	Trellis	TRFORM TRLIS		TRLIS	
	Constellation	TRFORM CONSTEL		CONSTEL	
Trace Format	EVM	TRFORM VECT	TRFORM?	VECT	
	Eye Diagram	TRFORM EYE		EYE	
	Phase Error TRFORM PHASE			PHASE	
	Magnitude Error	TRFORM MAGTD		MAGTD	
Storage Mode			•		·
	Normal	STRG_MOD NRM		NRM	
Storage Mode	Average	STRG_MOD AVG	STRG_MOD?	AVG	
	Overwrite	STRG_MOD OVER		OVER	
Average Count		AVR_MOD n	AVR_MOD?	n	n: 2 \sim 9999
Defrech Internel	Every	INTVAL_MOD EVERY	INTVAL MOD?	EVERY	
Kellesh Interval	Once	INTVAL_MOD ONCE	VAL_MOD ONCE		
Filter					
	Non	FILTER NON		NON	
Filter	Nyquist	FILTER NYQST	EII TED9	NYQST	
riitei	Nyquist & Inverse	FILTER NYQSTINVS	FILIEK?	NYQSTINVS	
	Specification	FILTER SPEC		SPEC	
Scale Mode					
	Non	INTPOL NON		NON	
	Linear	INTPOL LIN		LIN	
Interpolation	10points	INTPOL POINT10		POINT10	
(Constellation)	Linear & Symbol Position	INTPOL LINSYM	INTPOL?	LINSYM	
	10points & Symbol Position	INTPOL P10SYM		P10SYM	
	5% or 5deg	VSCALE 5		5	
Vertical Scale	10% or 10deg	VSCALE 10		10	
(EVM, Phase Error,	20% or 20deg	VSCALE 20	VSCALE?	20	
Magnitude Error)	50% or 50deg	VSCALE 50		50	
	100% or 100deg	VSCALE 100		100	

第6章 コマンドー覧表

Modulation Analysis(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Analysis Range				•	
Analysis Range	Slot	MODSWTCH_MOD SLOT	MODOWITCH MODA	SLOT	
	Frame	MODSWTCH_MOD FRAME	MODSWICH_MOD?	FRAME	
Marker Mode					
	Normal	MKR_MOD NRM		NRM	
Marker Mode	Off	MKR_MOD OFF	MKK_MOD?	OFF	
Marker Position	Trellis, Constellation, EVM, Eye Diagram, Phase Error, Magnitude Error	MKP_MOD r	MKP_MOD?	r	r: 0.0 ∼ 147.0 symbol (GMSK) 3.0 ∼144.0 symbol (8PSK)
	Trellis, Eye Diagram, Phase Error, Magnitude Error		MKL_MOD?	r	
Marker Level	I (Constellation Eye Diagram)		MKL_MOD? I	r	
	Q (Constellation Eye Diagram)		MKL_MOD? Q	r	
Calibration					
Adjust Range		ADJRNG			
Power Calibration		PWRCAL	PWRCAL?	1	l: −10.00 ~10.00 dB
Calibration Cance	l	CALCANCEL			
Multi Carrier Ca	alibration	MLTCARRCAL			
Calibration Value		CALVAL I	CALVAL?	n,l	n: mode (0: 未校正, 1: 内部校正, 2:外部書き込 み, 3:マルチキャリア校 正) l: -10.00 ~ 10.00 dB
Measure Result			L		
Carrier Frequency			CARRF?	f	
Carrier			CARRFERR?	f	
Frequency	Hz		CARRFERR? HZ	f	
Error	ppm		CARRFERR? PPM	r	unit: ppm
RMS Phase Error			PHASEERR?	r	unit: deg
			PPHASEERR?	r	unit: deg
Peak Phase Error	+		PPHASEERR? +	r	unit: deg
	-		PPHASEERR? -	r	unit: deg
Function	Item	Program Message	Query Message	Response Message	Remarks
----------------------------	---	--------------------	---------------	-------------------------	---
Deal Dhara			PPHASESYM?	r	unit: symbol
Feak Phase	+		PPHASESYM? +	r	unit: symbol
Error Symbol	-		PPHASESYM? -	r	unit: symbol
RMS Magnitude H	Error		MAGTDERR?	r	unit: %
Peak	+		PMAGTDERR? +	r	unit: %
Magnitude Error	_		PMAGTDERR? -	r	unit: %
Peak Magnitude	+		PMAGTDSYM? +	r	unit: symbol
Error Symbol	-		PMAGTDSYM? -	r	unit: symbol
RMS EVM	·		VECTERR?	r	unit: %
Peak EVM			PVECTERR?	r	unit: %
Origin Offset			ORGNOFS?	1	
95:th percerntile E	EVM		EVM95PCT?	r	
Wave Data /	I Data (Constellation, Eye Diagram)	XMC 0,na,nb	XMC? 0,nc,nd	ne(1),ne(2),, ne(nd)	na: 0 ~ 1470 <gmsk-nb,ab,sb>, 0 ~ 1550 <gmsk-cont>, 0 ~ 1410 <8-PSK> (データ書き込みアドレス) nb: -32786 ~ 32767(書き込み データ) nc: 0~1470<gmsk-nb,ab,sb>, 0~1550 <gmsk-cont>, 0~1410 <8-PSK> (データ読み出しアドレス) nd: 1~1471<gmsk-nb,ab,sb>, 1~1551 <gmsk-cont>, 1~1441 <8-PSK> (読み出しポイント数) ne: -32768~32767 (読み出し データ理想信号"1"=10000)</gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb>
Wave Data / Data Modify	Q Data (Constellation, Eye Diagram)	XMC 1,na,nb	XMC? 1,nc,nd	ne(1),ne(2),, ne(nd)	 na: 0~1470 <gmsk-nb,ab,sb>,</gmsk-nb,ab,sb> 0~1550 <gmsk-cont>,</gmsk-cont> 0~1410 <8-PSK> (データ書き込みアドレス) nb: -32786~32767(書き込み データ) nc: 0~1470<gmsk-nb,ab,sb>,</gmsk-nb,ab,sb> 0~1550 <gmsk-cont>,</gmsk-cont> 0~1410 <8-PSK> (データ読み出しアドレス) nd: 1~1471<gmsk-nb,ab,sb>,</gmsk-nb,ab,sb> 1~551 <gmsk-cont>,</gmsk-cont> 1~1441 <8-PSK> (読み出しポイント数) ne: -32768~32767 (読み出し データ理想信号"1"=10000)

Modulation Analysis(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Wave Data / Data Modify	EVM	XMV na,nb	XMV? nc,nd	ne(1),ne(2),,ne (nd)	na: 0 ~141 (データ書き込みアドレス) nb: -32768~32767 (書き込み データ) nc: 0~141 (データ読み出しア ドレス) nd: 1~142 (読み出しポイント 数) ne: -32768~32767 (読み出し データ1%=100)
	Phase Error	XMP na,nb	XMP? nc,nd	ne(1),ne(2),,ne (nd)	na: 0 ~1470 <gmsk-nb,ab,sb>, 0 ~1550 <gmsk-cont>, 0 ~141 <8-PSK> (データ書き込みアドレス) nb: -32786 ~ 32767(書き込み データ) nc: 0~1470<gmsk-nb,ab,sb>, 0~1550 <gmsk-cont>, 0~141 <8-PSK> (データ読み出しアドレス) nd: 1~1471<gmsk-nb,ab,sb>, 1~1551 <gmsk-cont>, 1~142 <8-PSK> (読み出しポイント数) ne: -32768~32767 (読み出し データ 1 deg = 100)</gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb>
	Magnitude Error	XMN na,nb	XMN? nc,nd	ne(1),ne(2),,ne (nd)	na: 0~1470 <gmsk-nb,ab,sb>, 0~1550 <gmsk-cont>, 0~141 <&-PSK> (データ書き込みアドレス) nb: -32786~32767(書き込み データ) nc: 0~1470<gmsk-nb,ab,sb>, 0~1550 <gmsk-cont>, 0~141 <&-PSK> (データ読み出しアドレス) nd: 1~1471<gmsk-nb,ab,sb>, 1~1551 <gmsk-cont>, 1~142 <&-PSK> (読み出しポイント数) ne: -32768~32767 (読み出し データ1% = 100)</gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb></gmsk-cont></gmsk-nb,ab,sb>

6.5 RF Power

Function	Item	Program Message	Query Message	Response Message	Remarks
Window					
	Slot	WINDOW SLOT		SLOT	
	On Portion	WINDOW ONPORT		ONPORT	
Window	Frame	WINDOW FRAME	WINDOW?	FRAME	
	Leading	WINDOW LEAD		LEAD	
	Trailing	WINDOW TRAIL		TRAIL	
Storage Mode					
	Normal	STRG_RFPWR NRM	CTDC DEDWDQ	NRM	
Storage Mode	Average	STRG_RFPWR AVG	SIRG_RFPWR?	AVG	
Average Count		AVR_RFPWR n	AVR_RFPWR?	n	n: 2 \sim 99999
Defeeth Internal	Every	INTVAL_RFPWR EVERY		EVERY	
Kerresh Interval	Once	INTVAL_RFPWR ONCE	INT VAL_KFPWK?	ONCE	
Marker					
Markar Mada	Normal	MKR_RFPWR NRM	MKR_RFPWR?	NRM	
Warker Wode	Off	MKR_RFPWR OFF		OFF	
Marker Position		MKP_RFPWR r	MKP_RFPWR?	Г	r: (Slot, On Portion) -27.01 ~174.0 symbol, (Frame)-20.00~ 127.4symbol, (Leading)-13.0~ 8.0symbol. (Trailing)139.0~ 161.0symbol
Marker Level			MKL_RFPWR?	1	
Calibration		·	•		
Adjust Range		ADJRNG			
Power Calibration		PWRCAL	PWRCAL?	1	l: -10.00 \sim 10.00 dB
Calibration Cance	1	CALCANCEL			
Multi Carrier Ca	libration	MLTCARRCAL			
Calibration Value		CALVAL 1	CALVAL?	n,l	n: mode (0: 未校正, 1: 内部校正, 2:外部書き 込み, 3:マルチキャリア 校正)
Laval					110.00 ° 10.00 UD
	Absolute Level	IVIRELOFE	IVIREL?	OFF	
Level	Relative Level	LVLREL ON	LVLREL?	ON	

RF Power(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Wide Dynamic	On	WIDE_RFPWR ON		ON	
Range	Off	WIDE_RFPWR OFF	WIDE_KFPWK?	OFF	
Slot Number					
	Slot 0	SLTNO_RFPWR SLOT0		SLOT0	
	Slot 1	SLTNO_RFPWR SLOT1		SLOT1	
	Slot 2	SLTNO_RFPWR SLOT2		SLOT2	
Slot Number	Slot 3	SLTNO_RFPWR SLOT3	SITNO DEDWD9	SLOT3	
Slot Number	Slot 4	SLTNO_RFPWR SLOT4	SLINO_KFPWK?	SLOT4	
	Slot 5	SLTNO_RFPWR SLOT5		SLOT5	
	Slot 6	SLTNO_RFPWR SLOT6		SLOT6	
	Slot 7	SLTNO_RFPWR SLOT7		SLOT7	
Waveform Displa	у				
Waveform	On	WAVEFORM_RFPWR ON	WAVEFORM_RFP	ON	
Display	Off	WAVEFORM_RFPWR OFF	WR?	OFF	
Setup Template					
Sotun Tomplato		DSPL SETTEMP_RFPWR		SETTEMP_ RFPWR	
Setup Template		DSPL SETTEMP	DSPL?	SETTEMP_ RFPWR	
Format Trupa	BTS	TEMPFORM BTS	TEMDEODM9	BTS	
Format Type	MS	TEMPFORM MS	TEMPFORM?	MS	
	Standard	SLCTTEMP_RFPWR STD	SLCTTEMP_RFPW R?	STD	
Docall Tomplate		SLCTEMP STD	SLCTTEMP?	STD	
Recan remplate	Not Standard		SLCTTEMP_RFPW R?	NOT	
			SLCTTEMP?	NOT	

RF Power(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Template Type	NB at GMSK	TEMPTYPE_RFPWR NBGMSK		NBGMSK	
	AB	TEMPTYPE_RFPWR AB	TEMPTYPE_RFPWR	AB	
	NB at 8-PSK	TEMPTYPE_RFPWR NB8PSK	?	NB8PSK	
	BTS1900 at GMSK	TEMPTYPE_RFPWR B19GMSK		B19GMSK	
	dBm	TEMPOFFLVL DBM	TEMPOFELLU	DBM	
Off Level	dB	TEMPOFFLVL DB	TEMPOFFLVL?	DB	
Level Modify	Upper	TEMPLVL_RFPWR UP.n,l	TEMPLVL_RFPWR? UP,n	1	n: 1 ~ 6
(for BTS)	Lower	TEMPLVL_RFPWR LOW,n,l	TEMPLVL_RFPWR? LOW,n	1	n: 1 ~ 3
Level Modify (for MS)	Upper	TEMPLVLMS_RFPWR UP.n,l	TEMPLVLMS_RFPW R? UP,n	1	n: 1 ~ 7
	Lower	TEMPLVLMS_RFPWR LOW,n,l	TEMPLVLMS_RFPW R? LOW,n	1	n: 1 ~ 3
Measure Result					
	dBm (Normal Burst)		TXPWR? DBM	1	
Ty Dowor	W (Normal Burst)		TXPWR? WATT	1	
TXTOwer	dBm (Multi Burst)		TXPWR? DBM,n	1	n: 0 ~7
	W (Multi Burst)		TXPWR? WATT,n	1	n: 0 ~7
	dBm (Normal Burst)		OFFPWR? DBM	1	
Carrier Off	W (Normal Burst)		OFFPWR? WATT	1	
Power	dBm (Multi Burst)		OFFPWR? DBM,n	1	n: 0 ~7
	W (Multi Burst)		OFFPWR? WATT,n	1	n: 0 ~7
On/Off Datia	Normal Burst		RATIO?	1	
Un/Uli Katio	Multi Burst		RATIO? n	1	n: 0 ~7

RF Power(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
	Maximum Power (Normal Burst)		MAXPWR?	1	
	Minimum Power (Normal Burst)		MINPWR?	1	
Fower Flattiess	Maximum Power(Multi Burst)		MAXPWR? n	1	n: 0 \sim 7
	Minimum Power(Multi Burst)		MINPWR? n	1	n: 0 ~7
	Template On		TEMPPASS_RFPWR? ON	j	
	(Normal Burst)		TEMPPASS? ON	j	
	Template Off		TEMPPASS_RFPWR? OFF	j	
	(Normal Burst)		TEMPPASS? OFF	j	
	Template On		TEMPPASS_RFPWR? ON,n	j	n: 0 ~7
Template	(Multi Burst)		TEMPPASS? ON,n	j	n: 0 ~7
Judgment	Template Off		TEMPPASS_RFPWR? OFF,n	j	n: 0 ~7
	(Multi Burst)		TEMPPASS? OFF,n	j	n: 0 ~7
	Template On-All		TEMPPASS_RFPWR? ON,ALL	j(0),j(1)j(7)	
	(Multi Burst)		TEMPPASS? ON,ALL	j(0),j(1)j(7)	
	Template Off-All		TEMPPASS_RFPWR? OFF,ALL	j(0),j(1)j(7)	
	(Multi Burst)		TEMPPASS? OFF, ALL	j(0),j(1)j(7)	

Function	Item	Program Message	Query Message	Response Message	Remarks
Wave Data / Modify	Normal Burst	XMD na,nb	XMD? nc,nd	ne(1),ne(2), ne(nd)	na: 0~ 13010 (データ書き込みア ドレス) nb: -32768 ~ 32767 (書き込みデータ 1dBm = 100) nc: 0 ~ 13010 (データ読み出し 開始アドレス) nd: 1 ~ 13011 (データ読み出し 個数) ne: -32768 ~ 32767 (読み出しデータ 1dBm = 100)
	Multi Burst	XMD na,nb	XMD? nc,nd	ne(1),ne(2), ne(nd)	na: 0 ~ 26020 (データ書き込みア ドレス) nb: -32768~ 32767 (書き込みデータ 1dBm = 100) nc: 0~ 26020 (データ読み出し 開始アドレス) nd: 1~26021 (データ読み出し (データ読み出し 個数) ne: -32768~ 32767 (読み出しデータ 1dBm = 100)
Slot Power (Remo	te Only)		SLOTPWR? n	1	n: 0 \sim 7 (slot number)
Reference Power f (Remote Only)	for Template		TEMPRPWR?	1	

RF Power(続き)

6.6 Output RF Spectrum

Function	Item	Program Message	Query Message	Response Message	Remarks
Measuring Method					
Measuring Method	High Speed	DSPL ADJ,HIGH	DSPL?	ADJ,HIGH	
Measuring Method & Measuring Start	High Speed	MEAS ADJ,HIGH	MEAS?	ADJ,HIGH	
Storage Mode					
Standard Mada	Normal	STRG_ADJ		NRM	
Storage Mode	Average	STRG_ADJ	SIRG_ADJ?	AVG	
Average Count		AVR_ADJ n	AVG_ADJ?	n	n: 2 \sim 9999
	Every	INTVAL_ADJ EVERY		EVERY	
Refresh Interval	Once	INTVAL_ADJ ONCE	INTVAL_ADJ?	ONCE	
Unit				•	
	dBm	UNIT_ADJ DBM		DBM	
Unit	dB	UNIT_ADJ DB	UNIT_ADJ?	DB	
Calibration	•		•		
Adjust Range		ADJRNG			
					1:−10.00~
Power Calibration		PWRCAL	PWRCAL?	1	10.00 dB
Calibration Cancel		CALCANCEL			
Multi Carrier Calibration		MLTCARRCAL			
Calibration Value		CALVAL I	CALVAL?	n,l	n: mode (0: 未校 正, 1:内部校正, 2:外部書き込み, 3:マルチキャリア 校正) 1: -10.00~ 10.00 dB
Trace Format					
	Non	TRFORM ACP NON		NON	
	Modulation	TRFORM ACP MOD		MOD	
Trace Format	Switching Tran.	TRFORM_ACP SWTCH	TRFORM_ACP?	SWTCH	
	Low	VIEW_ACP LOW		LOW	
View Select	Up	VIEW_ACP UP	VIEW_ACP?	UP	
Analysis Range			l		
Analysis Dange	Slot	MODSWTCH_ADJ SLOT	MODSWTCH AD12	SLOT	
Analysis Kange	Frame	MODSWTCH_ADJ FRAME	MODSWICH_ADJ?	FRAME	
Operation Trace					
On and in T	Spectrum	OPRTT_ACP SPECT	ODDTT ACDO	SPECT	
Operation Trace	Spot	OPRTT_ACP SPOT	UPKII_ACP?	SPOT	

Function	lt	em	Program Message	Query Message	Response Message	Remarks
Setup Template						
Setup Template			DSPL SETTBL_ACP	DSPL?	SETTEMP_ RFPWR	
	Low	dB	TBLLMT_ACP MOD,LOW,REL,Fna, nb	TBLLMT_ACP? MOD,LOW,REL,Fn a		
Due to Modulation	Low	dBm	TBLLMT_ACP MOD,LOW,ABS,Fna, nb	TBLLMT_ACP ?M OD,LOW,ABS,Fna		na: 1 ~ 11 nb: -100.00 ~ 100.00
	Unner	dB	TBLLMT_ACP MOD,UP,REL,Fna,nb	TBLLMT_ACP? MOD,UP,REL,Fna		
	Opper	dBm	TBLLMT_ACP MOD,UP,ABS,Fna,nb	TBLLMT_ACP? MOD,UP,ABS,Fna		
	Low	dB	TBLLMT_ACP SWTCH,LOW,REL,F na,nb	TBLLMT_ACP? SWTCH,LOW,REL, Fna	nb	
Switching		dBm	TBLLMT_ACP SWTCH,LOW,ABS,F na,nb	TBLLMT_ACP? SWTCH,LOW,ABS ,Fna		
Transients	Upper	dB	TBLLMT_ACP SWTCH,UP,REL,Fna, nb	TBLLMT_ACP? SWTCH,UP,REL,F na		
		dBm	TBLLMT_ACP SWTCH,UP,ABS,Fna, nb	TBLLMT_ACP? SWTCH,UP,ABS,F na		
			JUDGUNIT_ACP ON			
	dBm		JUDGUNIT_ACP ABS		ABS	
Judge Unit	dD		JUDGUNIT_ACP OFF	JUDGUNIT_ACP?	REL	
	UD		JUDGUNIT_ACP REL			
	dB & dBm		JUDGUNIT_ACP RELABS		RELABS	

第6章 コマンドー覧表

Function	Item	Program Message	Query Message	Response Message	Remarks
Standard					
	P-GSM900	FREQBAND_ACP PGSM900		PGSM900	
	E-GSM900	FREQBAND_ACP EGSM900		EGSM900	
	R-GSM900	FREQBAND_ACP RGSM900		RGSM900	
	T-GSM380	FREQBAND_ACP TGSM380		TGSM380	
	T-GSM410	FREQBAND_ACP TGSM410		TGSM410	
Band	T-GSM900	FREQBAND_ACP TGSM900		TGSM900	
	DCS1800	FREQBAND_ACP DCS1800	FREQUAND_ACP?	DCS1800	
	PCS1900	FREQBAND_ACP PCS1900		PCS1900	
	GSM450	FREQBAND_ACP GSM450		GSM450	
	GSM480	FREQBAND_ACP GSM480		GSM480	
	GSM750	FREQBAND_ACP GSM750		GSM750	
	GSM850	FREQBAND_ACP GSM850		GSM850	
	MS	BANDTRGT_ACP MS		MS	
	BTS	BANDTRGT_ACP BTS		BTS	
DUT Select	Micro BTS	BANDTRGT_ACP MCRBTS	BANDTRGT_ACP?	MCRBTS	
	Pico BTS	BANDTRGT_ACP PCBTS		PCBTS	

Function	Item	Program Message	Query Message	Response Message	Remarks
	GSM400/900/850/700 >=39 (MS)	STANDARD_ACP GSM900MS39		GSM900MS39	
	GSM400/900/850/700 37 (MS)	STANDARD_ACP GSM900MS37		GSM900MS37	
	GSM400/900/850/700 35 (MS)	STANDARD_ACP GSM900MS35		GSM900MS35	
	GSM400/900/850/700 <=33 (MS)	STANDARD_ACP GSM900MS33	– STANDARD_ACP?	GSM900MS33	
	GSM400/900/850/700 >=43 (BTS)	STANDARD_ACP GSM900BTS43		GSM900BTS43	
Select Template	GSM400/900/850/700 41 (BTS)	STANDARD_ACP GSM900BTS41		GSM900BTS41	
	GSM400/900/850/700 39 (BTS)	M400/900/850/700 STANDARD_ACP (BTS) GSM900BTS39	GSM900BTS39		
	GSM400/900/850/700 37 (BTS)	STANDARD_ACP GSM900BTS37		GSM900BTS37	
	GSM400/900/850/700 35 (BTS)	STANDARD_ACP GSM900BTS35		GSM900BTS35	
	GSM400/900/850/700 <=33 (BTS)	STANDARD_ACP GSM900BTS33		GSM900BTS33	

Output RF Spectrum(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
	GSM400/900/850/700 <=33 (Micro BTS)	STANDARD_ACP GSM900MBTS33		GSM900MBTS33	
	DCS1800 >=36 (MS)	STANDARD_ACP DCS1800MS36		DCS1800MS36	
	DCS1800 34 (MS)	STANDARD_ACP DCS1800MS34		DCS1800MS34	
	DCS1800 32 (MS)	STANDARD_ACP DCS1800MS32		DCS1800MS32	
	DCS1800 30 (MS)	STANDARD_ACP DCS1800MS30		DCS1800MS30	
	DCS1800 28 (MS)	STANDARD_ACP DCS1800MS28		DCS1800MS28	
	DCS1800 26 (MS)	STANDARD_ACP DCS1800MS26		DCS1800MS26	
	DCS1800 <=24 (MS)	STANDARD_ACP DCS1800MS24		DCS1800MS24	
	DCS1800 >=43 (BTS)	STANDARD_ACP DCS1800BTS43		DCS1800BTS43	
	DCS1800 41 (BTS)	STANDARD_ACP DCS1800BTS41	STANDARD_ACP?	DCS1800BTS41	
	DCS1800 39 (BTS)	STANDARD_ACP DCS1800BTS39		DCS1800BTS39	
Select Template	DCS1800 37 (BTS)	STANDARD_ACP DCS1800BTS37		DCS1800BTS37	
	DCS1800 35 (BTS)	STANDARD_ACP DCS1800BTS35		DCS1800BTS35	
	DCS1800 <=33 (BTS)	STANDARD_ACP DCS1800BTS33		DCS1800BTS33	
	DCS1800 35 (Micro BTS)	STANDARD_ACP DCS1800MBTS35		DCS1800MBTS35	
	DCS1800 <=33 (Micro BTS)	STANDARD_ACP DCS1800MBTS33		DCS1800MBTS33	
	PCS1900 >=33 (MS)	STANDARD_ACP PCS1900MS33		PCS1900MS33	
	PCS1900 32 (MS)	STANDARD_ACP PCS1900MS32		PCS1900MS32	
	PCS1900 30 (MS)	STANDARD_ACP PCS1900MS30	-	PCS1900MS30	
	PCS1900 28 (MS)	STANDARD_ACP PCS1900MS28		PCS1900MS28	
	PCS1900 26 (MS)	STANDARD_ACP PCS1900MS26		PCS1900MS26	
	PCS1900 <=24 (MS)	STANDARD_ACP PCS1900MS24	1	PCS1900MS24	

Function		Item	Program Message	Query Message	Response Message	Remarks
	PCS19	00>=43 (BTS)	STANDARD_ACP PCS1900BTS43		PCS1900BT S43	
	PCS19	00 41 (BTS)	STANDARD_ACP PCS1900BTS41		PCS1900BT S41	
	PCS19	00 39 (BTS)	STANDARD_ACP PCS1900BTS39		PCS1900BT S39	
	PCS19	00 37 (BTS)	STANDARD_ACP PCS1900BTS37		PCS1900BT S37	
	PCS19	00 35 (BTS)	STANDARD_ACP PCS1900BTS35	STANDARD_ACP?	PCS1900BT S35	
	PCS19	00 <=33 (BTS)	STANDARD_ACP PCS1900BTS33		PCS1900BT S33	
	PCS19 (Micro	00 35 BTS)	STANDARD_ACP PCS1900MBTS35		PCS1900MB TS35	
	PCS1900 <=33 (Micro BTS)		STANDARD_ACP PCS1900MBTS33		PCS1900MB TS33	
Marker			l	l	1	I
Marker Position	Spectrum		MKP_ACP f	MKP_ACP?	f	f: -1.8~ +1.8MHz
	Spot		MKP_ACP n	MKP_ACP?	n	n: 0.0 ~167.0
Marker Level				MKL_ACP?	1	
Measuring Result						
	Carrier Frequency			MODPWR?	1	
		current unit		MODPWR? Fn,LOW	1	n: 1 ~ 11
Due to Modulation	Lower	designate unit		MODPWR? Fn,LOW ,u	1	n: 1 ~11 u: dB またはdBm
		current unit		MODPWR? Fn,UP	1	n: 1 ~ 11
	Upper	designate unit		MODPWR? Fn,UP,u	1	n: 1 ~11 u: dB または dBm
	Carrier	Frequency		SWPWR?	1	
		current unit		SWPWR? Fn,LOW	1	n: 1 ~ 11
Switching	Lower	designate unit		SWPWR? Fn,LOW,u	1	n: 1 ~ 11 u: dB または dBm
Transients		current unit		SWPWR? Fn,UP	1	$n: 1 \sim 11$
	Upper	designate unit		SWPWR? Fn,UP,u	1	n: 1 ~ 11 u: dB または dBm

Output RF Spectrum(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Judgment	Modulation		TEMPPASS_ACP? MOD	j(1),j(2)j(n)	n: 1 ~ 11
	Switching Trans.		TEMPPASS_ACP? SWTCH	j(1),j(2)j(n)	n: 1 ~11
	All		TEMPPASS_ACP? ALL	j(a),j(b)	j(a):Modulation Total Judgment j(b):Switching Trans. Total Judgment
.	Modulation		ACPLMT? MOD	l(1),u(1),l(2),u(2)l (n),u(n)	n: 1 ∼11 u:DB、DBC、DBM
Limit	Switching Trans.		ACPLMT? SWTCH	l(1),u(1),l(2),u(2)l (n),u(n)	n: 1 ~ 11 u:DB、DBC、DBM
Wave Data / Data Modify		XMB na,nb,nc,nd	XMB? na,nb,nc,ne	nf(1),nf(2),,nf(ne)	na: $0 \sim 2$ nb: $0 \sim 12$ nc: $0 \sim 374$ nd: $-32786 \sim 32767$ ne: $1 \sim 375$ nf: $-32786 \sim 32767$

6.7 Spurious Emission

Function	Item	Program Message	Query Message	Response Message	Remarks
Parameters					
	Spot	DODI COLIDIOLIS SDOT		SPURIOUS,	
	Spot	DSPL SPUKIOUS, SPO1		SPOT	
Spurious	Search	DSPL	1 IDSDI 9	SPURIOUS,	
Mode	Search	SPURIOUS,SEARCH		SEARCH	
	Sween	DSPL		SPURIOUS,	
	Зжеер	SPURIOUS,SWEEP		SWEEP	
Storage	Normal	STRG_SPU NRM	STRG SPU?	NRM	4
Mode	Average	STRG_SPU AVG	5110_51-5.	AVG	
Average Count	1	AVR_SPU n	AVR_SPU?	n	n: 2 \sim 9999
Refresh	Every	INTVAL_SPU EVERY	INTVAL SPU?	EVERY	
Interval	Once	INTVAL_SPU ONCE	INT VAL_51 0:	ONCE	
Preselector	Normal	BAND 0	5 () (5 ()	0	オプション MS2683A-03/
	Spurious	BAND 1	BAND?	1	MS8608A-03 搭載時のみ有効
	Auto	UNIT_SPU AUTO	- UNIT_SPU?	AUTO	
T T:4	dBm	UNIT_SPU DBM		DBM	
Unit	dB	UNIT_SPU DB		DB	
	W	UNIT_SPU WATT		WATT	
	Judgement	VIEW_SPU JDG		JDG	
	BW	VIEW_SPU BW		BW	a: JDG, BW,
View	Ref,ATT,SWT	VIEW_SPU REFATTSWT	VIEW SPU?	REFATTSWT	LVLMEAS
	Level Meas.	VIEW_SPU LVLMEAS (*)	_	LVLMEAS	*:Spurious Mode: Search 時のみ
	Change	VIEW_SPU		a	
Waveform	Off	WAVEFORM_SPU OFF	WAVEEODM SDU9	OFF	
Display	On	WAVEFORM_SPU ON		ON	
		WAVETBLNO_SPU Fn			
Display Wavefo	orm Table	WAVETBLNO_SPU Fn,FREQ	WAVETBLNO_SPU?	Fn	$n:1 \sim 15$
		WAVETBLNO_SPU Fn,TIME			
Data Daint	501	DPTS_SPU 501	DETS SELLS	501	
Data Point	1001	DPTS_SPU 1001	DF15_5F0?	1001	

Function	Item	Program Message	Query Message	Response Message	Remarks				
Setup Spot Tal	Setup Spot Table								
Setup Freque	ncy Table	DSPL SETTBL_SPU,SPOT	DSPL?	SETTBL_SPU, SPOT					
Harmonics		TBLFREQ_SPU SPOT,HRM							
Frequency		TBLFREQ_SPU SPOT,Fn,f	TBLFREQ_SPU? SPOT,Fn	f	n: 1 ~ 15 f:(MS8608A) 100Hz ~7.9GHz (MS8609A) 100H~13.2GHz (MS2687A/B) 100H~30.0GHz				
Frequency Cancel		TBLFREQ_SPU SPOT,Fn,0	TBLFREQ_SPU? SPOT,Fn	0	n: 1 ~15				
Attenuator	Auto	TBLATTRLMD_SPU SPOT,AUTO	TBLATTRLMD SPU?	AUTO					
Mode	Manual	TBLATTRLMD_SPU SPOT,MAN	SPOT	MAN					
Attenuator	Auto	TBLATTMD_SPU SPOT,AUTO	TBLATTMD_SPU?	AUTO					
Mode	Manual	TBLATTMD_SPU SPOT,MAN	SPOT	MAN					
Ref Level		TBLRL_SPU SPOT,Fn,1	TBLRL_SPU? SPOT,Fn	1	n: 1 ~ 15				
Attenuator		TBLATT_SPU SPOT,Fn,1	TBLATT_SPU? SPOT,Fn	1	n: 1 ~ 15				
Limit		TBLLMT_SPU SPOT,Fn,l,u	TBLLMT_SPU? SPOT,Fn,u	1	n: 1 ~15 u: DBM, MW, UW, NW , DB				

Function	Item	Program Message	Query Message	Response Message	Remarks
					n: 1~ 15
					Detection:
					Positive,Negativ e,Sample,Avera ge 時
					f: 300Hz,
					1kHz,3kHz,
					10kHz,
					30kHz,
RBW		TBLRBW_SPU SPOT,Fn,f	TBLRBW_SPU? SPOT,Fn	f	100kHz, 300kHz, 1MHz,3MHz,5 MHz, 10MHz, 20MHz
					Detection:
					RMS 時
					f:10Hz,30Hz,
					100Hz,300Hz,
					1kHz,3kHz,
					10kHz,30kHz
					100kHz,
	1				300kHz,1MHz
PRW Mode	Auto	TBLRBWMD_SPU SPOT,AUTO	TBLRBWMD_SPU?	AUTO	
KD W Wode	Manual	TBLRBWMD_SPU SPOT,MAN	SPOT	MAN	
					n: 1 \sim 15
VBW		TBLVBW SPU SPOT,Fn,f	TBLVBW_SPU?	f	f: 1Hz~ 3MHz
			SPO1,Fn		(1-3 sequence), Off
VBW	Auto	TBLVBWMD_SPU SPOT,AUTO	TBLVBWMD_SPU?	AUTO	
Mode	Manual	TBLVBWMD_SPU SPOT,MAN	SPOT	MAN	
RBW/VBW I	Ratio	TBLVBWRT_SPU SPOT,r	TBLVBWRT_SPU? SPOT	r	r:0.001~ 100

Spurious Emission(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
SWT		TBLSWT_SPU SPOT,Fn,ta	TBLSWT_SPU? SPOT,Fn	tb	unit:msec(ta) unit: μ sec(tb)
OWT M. I.	Auto	TBLSWTMD_SPU SPOT,AUTO	TBLSWTMD_SPU?	AUTO	
SW1 Mode	Manual	TBLSWTMD_SPU SPOT,MAN	SPOT	MAN	
	Positive Peak	DET_SPU SPOT,POS		POS	
	Sample	DET_SPU SPOT,SMP		SMP	
Detection	Negative Peak	DET_SPU SPOT,NEG	DET_SPU? SPOT	NEG	
	Average	DET_SPU SPOT,AVG		AVG	
	RMS	DET_SPU SPOT,RMS		RMS	
Court Days 14	Average	SPOTRSLT_SPU SPOT,AVG	SPOTRSLT_SPU?	AVG	
Spot Result	Max	SPOTRSLT_SPU SPOT,MAX	SPOT	MAX	
	DB	SPULMT SPOT,Fn,l,DB	SPULMT? SPOT,Fn,DB		
	DBM	SPULMT SPOT,Fn,l,DBM	SPULMT? SPOT,Fn,DBM	1	$n:1 \sim 15$ $1:-100 \sim 100$
Limit	MW	SPULMT SPOT,Fn,l,MW	SPULMT? SPOT,Fn,MW		(dB,dBm) : 0.001 ∼ 999.999 (MW,UW,NW)
	UM	SPULMT SPOT,Fn,l,UW	SPULMT? SPOT,Fn,UW		
	NM	SPULMT SPOT,Fn,l,NW	SPULMT? SPOT,Fn,NW		
	10	JUDGUNIT_SPTBL ON		1.00	
	dBm	JUDGUNIT_SPTBL ABS		ABS	
	10	JUDGUNIT_SPTBL OFF		DEL	
Judge Unit	dB	JUDGUNIT_SPTBL REL		KEL	
	dB & dBm	JUDGUNIT_SPTBL RELABS	JUDGUNIT_SPTBL?	RELABS	
	Watt	JUDGUNIT_SPTBL WATT]	WATT	
	dB & Watt	JUDGUNIT_SPTBL RELWATT		RELWATT	

Function	Item	Program Message	Query Message	Response Message	Remarks
	mW	ALL_LMTUNIT_SPU SPOT,MW			
All Abs Limit Unit	μ W	ALL_LMTUNIT_SPU SPOT,UW			
	nW	ALL_LMTUNIT_SPU SPOT,NW			
	BW	TBLVIEW_SPU SPOT,BW		BW	
	Ref,ATT,SWT	TBLVIEW_SPU SPOT,REFATTSWT		REFATTSWT	a'BW REFATTS
View	Limit(dB)	TBLVIEW_SPU SPOT,LMTDB	TBLVIEW_SPU? SPOT	LMTDB	WT,LMTDB,L MTW
	Limit(W)	TBLVIEW_SPU SPOT,LMTW		LMTW	
	Change	TBLVIEW_SPU SPOT		a	
Setup Sweep/S	Search Table (com	mon setup)			
Setup Sweep	Table	DSPL SETTBL_SPU,SWEEP	DSPL?	SETTBL_SPU,S WEEP	
Setup Search	Table	DSPL SETTBL_SPU,SEARCH	DSPL?	SETTBL_SPU, SEARCH	
Start Frequency		TBLFREQ_SPU START,Fn,f	TBLFREQ_SPU? START,Fn	f	n: $1 \sim 15$ f: (MS2681A) 1kHz ~ 2999.999MHz f: (MS8608A/MS 2683A) 1kHz ~ 7899.999MHz (MS8609A) 1kHz ~ 13199.999MHz (MS2687A/B) 1kHz ~ 29999.999MHz

Function	Item	Program Message	Query Message	Response Message	Remarks
Start Frequenc	y Cancel	TBLFREQ_SPU START,Fn,0	TBLFREQ_SPU? START,Fn	0	n: 1 \sim 15
Stop Frequency					n: 1 ~ 15 f: (MS2681A) 2kHz ~ 3000.000MHz
		TBLFREQ_SPU STOP,Fn,f	TBLFREQ_SPU? STOP,Fn	f	f: (MS8608A/MS 2683A) 2kHz ~ 7900.000MHz
					(MS8609A) 2MHz ~ 13200.000MHz
					(MS2687A/B) 2MHz ~ 30000.000MHz
Stop Frequency	y Cancel	TBLFREQ_SPU STOP,Fn,0	TBLFREQ_SPU? STOP,Fn	0	n: 1 \sim 15
Attenuator Ref	Auto	TBLATTRLMD_SPU SWEEP,AUTO	TBLATTRLMD_SPU?	AUTO	
Level Mode	Manual	TBLATTRLMD_SPU SWEEP,MAN	SWEEP	MAN	
Attenuator	Auto	TBLATTMD_SPU SWEEP,AUTO	TBLATTMD_SPU?	AUTO	
Mode	Manual	TBLATTMD_SPU SWEEP,MAN	SWEEP	MAN	
Ref Level		TBLRL_SPU SWEEP,Fn,1	TBLRL_SPU? SWEEP,Fn	1	n: 1 ~ 15
Attenuator		TBLATT_SPU SWEEP,Fn,l	TBLATT_SPU? SWEEP,Fn	1	n: 1 \sim 15
Integrated RB	W	TBLINTRBW_SPU Fn,f	TBLINTRBW_SPU? Fn	f	$n:1 \sim 15$

Function	Item	Program Message	Query Message	Response Message	Remarks
RBW		TBLRBW_SPU SWEEP,Fn,f	TBLRBW_SPU? SWEEP,Fn	f	n: 1 ~ 15 Detection: Positive, Negative, Sample, Average \mathcal{O} 時 f: 300Hz, 1kHz,3kHz, 10kHz, 30kHz, 100kHz, 300kHz, 1MHz,3MHz, 5MHz, 10MHz, 20MHz Detection: RMS \mathcal{O} 時 f:10Hz,30Hz, 100Hz,300Hz, 1kHz,30kHz 100kHz,300kHz ,1MHz

Spurious Emission(続き)

Function	ltem	Program Message	Query Message	Response Message	Remarks
RBW (for Level Measurement)		TBLRBWLM_SPU Fn,f	TBLRBWLM_SPU? Fn	f	n: 1~ 15 Detection: Positive, Negative, Sample, Average の時 f: 300Hz, 1kHz,3kHz, 10kHz,30kHz, 10kHz,30kHz, 100kHz, 300kHz, 10MHz, 20MHz Detection: RMS の時 f: 10Hz,30Hz, 100Hz,300Hz, 1kHz,3kHz, 10kHz,30kHz 100kHz, 300kHz,1MHz
RBW Mode	Auto	TBLRBWMD_SPU SWEEP,AUTO	TBLRBWMD_SPU?	AUTO	
	Manual	TBLRBWMD_SPU SWEEP,MAN	SWEEP	MAN	
VBW		TBLVBW_SPU SWEEP,Fn,f	TBLVBW_SPU? SWEEP,Fn	f	n: 1~ 15 f: 1Hz~ 3MHz (1-3 sequence), Off
VBW(for Level Measurement)		TBLVBWLM_SPU Fn,la	TBLVBWLM_SPU? Fn	la	n:1 \sim 15
VPW Mode	Auto	TBLVBWMD_SPU SWEEP,AUTO	TBLVBWMD_SPU?	AUTO	
VBW Mode	Manual	TBLVBWMD_SPU SWEEP,MAN	SWEEP	MAN	

Function	Item	Program Message	Query Message	Response Message	Remarks
RBW/VBW Rat	io	TBLVBWRT_SPU SWEEP,r	TBLVBWRT_SP U? SWEEP	r	$0.0001 \sim 100$
SWT		TBLSWT_SPU SWEEP,Fn,ta	TBLSWT_SPU? SWEEP,Fn	tb	unit:m sec(ta) unit: μ sec(tb)
SWT(for Level Measurement)		TBLSWTLM_SPU Fn,ta	TBLSWTLM_SP U? Fn	tb	$n:1 \sim 15$ ta:10 ~ 1000000 (msec) unit: μ sec(tb)
SWT Mode	Auto	TBLSWTMD_SPU SWEEP,AUTO	TBLSWTMD_SP	AUTO	
S W I WIOUC	Manual	TBLSWTMD_SPU SWEEP,MAN	U? SWEEP	MAN	
Meas. Mode Sweep Only (for Level		TBLLMMD_SPU Fn,OFF	TBLLMMD_SPU ? Fn	OFF	n:1 ~ 15
Measurement)	Spot	TBLLMMD_SPU Fn,SPOT		SPOT	
	Positive Peak	DET_SPU SWEEP,POS		POS	
	Sample	DET_SPU SWEEP,SMP		SMP	
Detection/Swe ep	Negative Peak	DET_SPU SWEEP,NEG	DET_SPU? SWEEP	NEG	
1	Average	DET_SPU SWEEP,AVG		AVG	
	RMS	DET_SPU SWEEP,RMS		RMS	
	Positive Peak	DET_SPU SEARCH,POS		POS	
	Sample	DET_SPU SEARCH,SMP		SMP	
Detection/Sear ch	Negative Peak	DET_SPU SEARCH,NEG	DET_SPU? SEARCH	NEG	
	Average	DET_SPU SEARCH,AVG	~	AVG	
	RMS	DET_SPU SEARCH,RMS		RMS	
Spot	Average	SPOTRSLT_SPU SEARCH,AVG	SPOTRSLT_SPU	AVG	
Result/Search	Max	SPOTRSLT_SPU SEARCH,MAX	? SEARCH	MAX	

Spurious Emission(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks	
	dB	SPULMT SWEEP,Fn,l,DB SPULMT? SWEEP,Fn,DB				
	dBm	SPULMT SWEEP,Fn,I,DBM	SPULMT? SWEEP,Fn,DBM		$n:1 \sim 15$ 1:-100 ~ 100	
Limit	mW	SPULMT SWEEP,Fn,I,MW	SPULMT? SWEEP,Fn,MW	1	(dB,dBm) $\cdot 0.001 \sim$	
	μ W	SPULMT SWEEP,Fn,I,UW	SPULMT? SWEEP,Fn,UW		999.999 (MW,UW,NW)	
	nW	SPULMT SWEEP,Fn,I,NW	SPULMT? SWEEP,Fn,NW			
	dD	JUDGUNIT_SWTBL ON		ADC		
	aвт	JUDGUNIT_SWTBL ABS		ABS		
	4D	JUDGUNIT_SWTBL OFF		DEL		
Judge Unit	dB	JUDGUNIT_SWTBL REL	JUDGUNIT_SWTB	KEL		
	dB & dBm	JUDGUNIT_SWTBL RELABS		RELABS		
	Watt	JUDGUNIT_SWTBL WATT		WATT		
	dB & Watt	JUDGUNIT_SWTBL RELWATT		RELWATT		
	BW	TBLVIEW_SPU SWEEP,BW		BW	a:BW, REFATTSWT, LMTDB, LMTW	
View /	Ref, ATT, SWT	TBLVIEW_SPU SWEEP,REFATTSWT	TBLVIEW_SPU?	REFATTSWT		
Sweep	Limit(dB)	TBLVIEW_SPU SWEEP,LMTDB	SWEEP	LMTDB		
	Limit(W)	TBLVIEW_SPU SWEEP,LMTW		LMTW		
	Change	TBLVIEW_SPU SWEEP		a		
	Positive Peak	DETLM_SPU POS		POS		
Detection	Sample	DETLM_SPU SMP		SMP		
(for Level Measurem	Negative Peak	DETLM_SPU NEG	DETLM_SPU?	NEG		
ent)	Average	DETLM_SPU AVG		AVG		
	RMS	DETLM_SPU RMS]	RMS		
			TDUINT CDUD		n: 1 \sim 15	
Limit		TBLLMT_SPU SWEEP,Fn,l,u	SWEEP,Fn,u	1	u: DBM, MW, UW, NW, DB	

Function	Item	Program Message	Query Message	Response Message	Remarks
	RB	TBLVIEW_SPU SEARCH,BW		BW	
	Ref, ATT, SWT	TBLVIEW_SPU SEARCH,REFATTSWT		REFATTSWT	
	Limit(dB)	TBLVIEW_SPU SEARCH,LMTDB		LMTDB	a:BW, REFATTSWT,
View / Search	Limit(W)	TBLVIEW_SPU SEARCH,LMTW	TBLVIEW_SPU? SEARCH	LMTW	LMTDB, LMTW, LVLMEASMD.
	Level Meas.Mode	TBLVIEW_SPU SEARCH,LVLMEASMD		LVLMEASMD	LVLMEASSET
	Level Meas. Set	TBLVIEW_SPU SEARCH,LVLMEASSET		LVLMEASSET	
	Change	TBLVIEW_SPU SEARCH]	a	
Standard					
	P-GSM900	FREQBAND_SPU PGSM900		PGSM900	
	E-GSM900	FREQBAND_ SPU EGSM900		EGSM900	
	R-GSM900	FREQBAND_SPU RGSM900		RGSM900	
	T-GSM380	FREQBAND_SPU TGSM380		TGSM380	
	T-GSM410	FREQBAND_SPU TGSM410		TGSM410	
Band	T-GSM900	FREQBAND_SPU TGSM900	EDEORAND SPU?	TGSM900	
Danu	DCS1800	FREQBAND_SPU DCS1800	FREQUAND_ 51 0 :	DCS1800	
	PCS1900	FREQBAND_SPU PCS1900		PCS1900	
	GSM450	FREQBAND_SPU GSM450		GSM450	
	GSM480	FREQBAND_SPU GSM480		GSM480	
	GSM750	FREQBAND_SPU GSM750		GSM750	
-	GSM850	FREQBAND_SPU GSM850		GSM850	

Function	Item	Program Message	Query Message	Response Message	Remarks
	MS	BANDTRGT_SPU MS		MS	
Salaat DUT	BTS	BANDTRGT_SPU BTS	DANDTROT CDU9	BTS	
Select DUI	Micro BTS	BANDTRGT_SPU MCRBTS	DANDIKUI_SPU?	MCRBTS	
	Pico BTS	BANDTRGT_SPU PCBTS		PCBTS	
Select Band	In Band	BNDSTD_SPU IN	RNDSTD SDU?	IN	
Select Daliu	Out Band	BNDSTD_SPU OUT		OUT	
Absolute	None	PWRREFABS_SPU NONE		NONE	
Power	Tx Power	PWRREFABS_SPU TXPWR	PWRREFABS_SPU?	TXPWR	
Reference	Set	PWRREFABS_SPU SET		SET	
Absolute Power Set Value		PWRVALABS_SPU1	PWRVALABS_SPU?	1	1:-99.99 ∼ 99.99(dBm)
Relative	SPA	PWRREFREL_SPU SPA		SPA	
Power Reference	Tx Power	PWRREFREL_SPU TXPWR	PWRREFREL_SPU?	TXPWR	
	Set	PWRREFREL_SPU SET		SET	
Relative Power Set Value		PWRVALREL_SPU 1	PWRVALREL_SPU?	1	1:-99.99 ∼ 99.99(dBm)
Select Setup	Abs & Rel : Tx Power	TBLREFSTD_SPU 0		0	
Power Table	Abs & Rel : Set	TBLREFSTD_SPU 1	IBLREFSID_SPU?	1	
Span		FSPAN_SETREF_SPU f	FSPAN_SETREF_SPU?	f	(MS2681A) 0 ~ 2999999000Hz (MS2687B) 0 ~ 3000000000Hz (MS8608A/MS26 83A) 0 ~ 7899999000Hz (MS8609A) 0 ~ 13199999000Hz

Function Item		Program Message Query Message		Response Message	Remarks
RBW		RBW_SETREF_SPU f	RBW_SETREF_SPU?	f	Detection: Positive, Negative, Sample, Average の時 f:300Hz,1kHz, 30kHz,10kHz, 30kHz,100kHz, 300kHz, 1MHz,3MHz, 5MHz,10MHz, 20MHz Detection: RMS の時 f:10Hz,30Hz, 100Hz,300Hz, 1kHz,3kHz, 100kHz,300Hz
VBW		VBW_SETREF_SPU f	VBW_SETREF_SPU?	f	f: 1Hz~ 3MHz (1-3 sequence), Off
Reference Level		RL_SETREF_SPU 1	RL_SETREF_SPU?	1	unit: dBm
Attenuator		ATT_SETREF_SPU1	ATT_SETREF_SPU ?	1	1:0~62 (2 step)
Attenuator	Auto	ATTMD_SETREF_SPU AUTO	ATTMD_SETREF	AUTO	
Niode	Manual	ATTMD_SETREF_SPU MAN		MAN	
Attenuator & Reference	Auto	ATTRLMD_SETREF_SPU AUTO	ATTRLMD_SETREF_S	AUTO	
Reference Level Mode	Manual	ATTRLMD_SETREF_SPU MAN	PU?	MAN	

Spurious Emission(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks	
Sweep Time		SWT_SETREF_SPU ta	SWT_SETREF_SPU?	tb	unit:msec(ta) , µ sec(tb)	
	Positive Peak	DET_SETREF_SPU POS		POS		
	Negative Peak	DET_SETREF_SPU NEG		NEG		
Detection	Sample	DET_SETREF_SPU SMP	DET_SETREF_SPU?	SMP		
	Average	DET_SETREF_SPU AVG		AVG		
	RMS	DET_SETREF_SPU RMS		RMS		
	501	DPTS_SETREF_SPU 501	DRTG GETREE GRUD	501		
Data Point 1001		DPTS_SETREF_SPU 1001	DP15_SETREF_SPU?	1001		
Calibration						
Adjust Range	2	ADJRNG				
Power Calibr	ation	PWRCAL	PWRCAL?	1	l: -10.00 ∼10.00dB	
Calibration C	ancel	CALCANCEL				
Multi Carri	er Calibration	MLTCARRCAL				
Calibration Value		CALVAL I	CALVAL?	n,l	n: mode (0: 未校 正, 1:内部校正, 2:外部書き込み, 3:マルチキャリア 校正) 1: -10.00~ 10.00 dB	
Results						
Marker Posit	ion	MKP_SPU n	MKP_SPU?	n	n: $0 \sim 500$ (DataPoint:501) $0 \sim 1000$ (DataPoint:1001)	
Marker Leve	1		MKL_SPU? u	1	u: DB,DBM,WATT	
Absolute Reference Power			SPUPWRABS? u	1	u:DBM,WATT	

Function	Item	Program Message	Query Message	Response Message	Remarks	
Relative Refere	ence Power		SPUPWRREL? u	1	u:DBM,WATT	
Tx Power			TXPWR? u		u:DBM ,WATT	
Frequency			SPUFREQ? Fna,nb	f1,f2,,fnb	$\begin{array}{l} \text{na: } 1 \ \sim \ 15 \\ \text{nb: } 1 \ \sim \ 15 \end{array}$	
			SPULVL? Fna,nb	11,12,,lnb	na: 1 ~ 15	
Level			SPULVL? Fna,nb,u	11,12,,lnb	nb: 1 ~ 15 u: DBM, DB, WATT	
Frequency and Level			SPUFREQLVL? Fna,nb	f1,11,f2,12,,fnb,1 nb	na: 1 \sim 15 nb: 1 \sim 15	
			SPUFREQLVL? Fna,nb,u	f1,11,f2,12,,fnb,1 nb	u: DBM, DB, WATT	
All			SPUALL? Fna,nb,u	fa(1),la(1),j(1), lb(1),lc(1),ld(1), le(1),fb(1),fc(1), t(1), ,fa(nb),la(nb), j(nb),lb(nb), lc(nb),ld(nb), le(nb),fb(nb), fc(nb),t(nb)	na: $1 \sim 15$ nb: $1 \sim 15$ u:DBM,DB, WATT	
Limit Value for	Judgement		SPULMTJDG? Fna,nb	11,12,,lnb	na: 1 \sim 15 nb: 1 \sim 15	
Level Margin			SPUMARGIN? Fna,nb	11,12,,Inb	na: 1 \sim 15 nb: 1 \sim 15	
Judgomant	Each		SPUPASS? Fn	jn	n:1 o. 15	
Judgement	All		SPUPASS? ALL	j1,j2,j3,,j15	$n:1 \sim 15$	
Total Judgemen	nt		SPUJDG?	j	j:PASS,FAIL, OFF	

Spurious Emission(続き)

Function	Item	Program Message	Query Message	Response Message	Remarks
Wave Data	Time Domain		SPECT_SPUT? Fna,nb,nc	nd(1),nd(2),, nd(nc)	na: $1 \sim 15$ nb: (Data Point:501) $0 \sim 500$,
	Frequency Domain		SPECT_SPUF? Fna,nb,ne	nd(1),nd(2),, nd(nc)	(Data Points:1001) $0 \sim 1000$ nc: (Data Point:501) $1 \sim 501$, (Data Points:1001) $1 \sim 1001$ nd: -2147483648 ~
	Integral		SPECT_SPUI? Fna,nb,ne	nd(1),nd(2),, nd(nc)	2147483647

6.8 Power Meter

下表のコマンドは MS860x のみ	4有効です。
--------------------	--------

Function	Item	Program Message	Query Message	Response Message	Remarks
Calibration	•				
Zana Sat		ZEROSET			
Zero Set		ZAJ			
Range					
Range Up		RNG UP			
Range Down		RNG DN			
Adjust Range		ADJRNG			
Range1		RNG1			
Range2		RNG2			
Range3		RNG3			
Range4		RNG4			
Range5		RNG5			
Set Relative		SETREL			
Measure result	t				
	dBm		POWER? DBM	1	
Power	W		POWER? WATT	1	
	DB		POWER? DB	1	

6.9 IQ Level

本体が MS268x の場合,オプション MS268xA/B-17,18 I/Q 入力が搭載されて いる時のみ,下表のコマンドは有効です。

Function	Item		Program Message	Query Message	Response Message	Remarks
Storage Mode					-	
~	Norma	1	STRG_IQL NOR		NRM	
Storage Mode	Averag	je	STRG_IQL AVG	STRG_IQL?	AVG	
Average Count			AVR_IQL Na	AVG_IQL?	n	n: 2 \sim 99999
Refresh	Every		INTVAL_IQL EVERY		EVERY	
Interval	Once		INTVAL_IQL ONCE	INTVAL_IQL?	ONCE	
Unit	<u> </u>					
T T 1/	mV		UNIT_IQL MV		MV	
Unit	dBmV		UNIT_IQL DBMV	UNIT_IQL?	DBMV	
Result						
		current unit		IQLVL?	la,lb,lc,lb	la: I level lb: Q level lc: Ip-p ld: Qp-p
	All	mV		IQLVL? MV	la,lb,lc,lb	la: I level lb: Q level lc: Ip-p ld: Qp-p
		dBmV		IQLVL? DBMV	la,lb,lc,lb	la: I level lb: Q level lc: Ip-p ld: Qp-p
r1		current unit		ILVL?	1	
Level	Ι	mV		ILVL? MV	1	
		dBm		ILVL? DBMV	1	
		current unit		QLVL?	1	
	Q	mV		QLVL? MV	1	
		dBm		QLVL? DBMV	1	
		current unit		IPPLVL?	1	
	I p-p	mV		IPPLVL? MV	1	
		dBmV		IPPLVL? DBMV	1	
		current unit		QPPLVL?	1	
	Q p-p	mV		QPPLVL? MV	1	
		dBmV		QPPLVL? DBMV	1	
Phase	I/Q diff	ference		IQPHASE?	r	unit: deg

6.10 Multi Slot Parameter Setup

Function	Item	Program Message	Query Message	Response Message	Remarks
Burst					
	On	BRST_MSPS ON,n	DDCT MCDC2 "	ON	$n:0 \sim 7$
	Off	BRST_MSPS OFF,n	DK51_W5P5? II	OFF	n:0 \sim 7
Burst	All		BRST_MSPS? ALL	Sw(1),Sw(2). Sw(7)	Sw: ON または OFF
	All On	BRSTALLON_MSPS			
	All Off	BRSTALLOFF_MSPS			
Training Sequence	;				
	TSC 0	PATT_MSPS TSC0,n		TSC0	
	TSC 1	PATT_MSPS TSC1,n	PATT_MSPS? n	TSC1	
	TSC 2	PATT_MSPS TSC2,n		TSC2	
	TSC 3	PATT_MSPS TSC3,n		TSC3	
	TSC 4	PATT_MSPS TSC4,n		TSC4	
Pattern	TSC 5	PATT_MSPS TSC5,n		TSC5	n:0 ~~ /
	TSC 6	PATT_MSPS TSC6,n		TSC6	
	TSC 7	PATT_MSPS TSC7,n		TSC7	
	NO	PATT_MSPS NO,n		NO	
	USER	PATT_MSPS USER,n		USER	
	ALL		PATT_MSPS? ALL	Pt(1), Pt (2) Pt (7)	Pt: Pattern
User Pattern	Normal	ULEN_MSPS Sy,n	ULEN_MSPS? n	Sy	Sy: (GMSK) 1 \sim 64symbol (8-PSK) 1 \sim 26symbol n:0 \sim 7
Length	All		ULEN_MSPS? ALL	Sy1,Sy2Sy 7	Sy: Symbol (GMSK) 1~64symbol (8-PSK) 1 ~26symbol

第6章 コマンドー覧表

Function	Item	Program Message	Query Message	Response Message	Remarks
User Bit Pattern	GMSK	UBIT_MSPS h,n	UBIT_MSPS? n	h	h: 0 \sim FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	8-PSK	UBIT_MSPS o,n		o	o: 0 \sim 777777777777777777777777777777777777
	ALL GMSK		UBIT_MSPS? ALL	h1,h2h7	h: 0 \sim FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	ALL 8-PSK		UBIT_MSPS? ALL	01,0207	o: 0 ~ <i>777777777777777777777777777777777777</i>
Start Point	Normal	USTART_MSPS St,n	USTART_MSPS? n	St	St: <<GMSK>> $<$ NB,SB>0 \sim (147 –User Pattern Length) symbol $<$ AB>0 \sim (87 – User Pattern Length) symbol $<<$ 8-PSK>> 0 \sim (147–User Pattern Length) symbol n:0 \sim 7
	ALL		USTART_MSPS? ALL	St1,St2St7	St: < <gmsk>> <nb,sb>0 ~ (147 –User Pattern Length) symbol <ab>0 ~ (87 – User Pattern Length) symbol <<8-PSK>> 0 ~(147–User Pattern Length) symbol</ab></nb,sb></gmsk>

Multi Slot Parameter Setup(続き)

この章では、本ソフトウェアで使用できるデバイスメッセージとレスポンスメッセージのの詳細説明をアルファベット順に示します。これらのメッセージの一覧は第6章「コマンドー覧表」を参照してください。

7.1 コマンド詳細の見方	7-5
ACPLMT	7-6
ADJRNG	7-8
ALL_LMTUNIT_SPU	7-9
ARFCNFIRST	7-10
ARFCNRANGE	7-11
ATT_SETREF_SPU	7-12
ATTMD_SETREF_SPU	7-13
ATTRLMD_SETREF_SPU	7-14
AVR_ADJ	7-15
AVR_IQL	7-16
AVR_MOD	7-17
AVR_RFPWR	7-18
AVR_SPU	7-19
BAND	7-20
BANDOFFSET	7-21
BANDTRGT	7-22
BANDTRGT_ACP	7-23
BANDTRGT_SPU	7-24
BRSTALLOFF_MSPS	7-25
BRSTALLON_MSPS	7-26
BRST_MSPS	7-27
BRSTOFFDAT	7-28
BS	7-29
CALCANCEL	7-30
CALVAL	7-31
CARRF	7-32
CARRFERR	7-33
CHAN	7-34
CHFREQ	7-35
CHSPC	7-37
CONTS	7-38
CORR	7-39
DET SPU	7-40
DETLM SPU	7-42
DET SETREF SPU	7-43
DPTS SETREF SPU	7-44
 DPTS_SPU	7-45
_ DSPL	7-46
EVM95PCT	7-48
FILTER	7-49

FREQ	7-50
FREQBAND	7-51
FREQBAND_ACP	7-53
FREQBAND_SPU	7-55
FSPAN_SETREF_SPU	7-57
ILVL	7-58
INI	7-59
INTPOL	7-60
INTVAL_ADJ	7-61
INTVAL_IQL	7-62
INTVAL_MOD	7-63
INTVAL_RFPWR	7-64
INTVAL_SPU	7-65
IP	7-66
IPPLVL	7-67
IQINZ	7-68
IQLVL	7-69
IQPHASE	7-70
JUDGUNIT_ACP	7-71
JUDGUNIT_SPTBL	7-72
JUDGUNIT_SWTBL	7-73
LVLREL	7-74
MAGTDERR	7-75
MAXPWR	7-76
MEAS	7-77
MEASOBJ	7-79
MINPWR	7-80
MKL_ACP	7-81
MKL_MOD	7-82
MKL_RFPWR	7-84
MKL_SPU	7-85
MKP_ACP	7-86
MKP_MOD	7-88
MKP_RFPWR	7-89
MKP_SPU	7-90
MKR_MOD	7-91
MKR_RFPWR	7-92
MLTCARRCAL	7-93
MODPWR	7-94
MODSWTCH_ADJ	7-96
MODSWTCH MOD	7-97

MODTYPE	7-98
OFFPWR	7-99
ORGNOFS	7-100
OPRTT_ACP	7-101
PATT	7-102
PATT_MSPS	7-104
PATT_UBIT	7-106
PATT_ULEN	7-107
PATT_USTART	7-108
PHASEERR	7-109
PMAGTDERR	7-110
PMAGTDSYM	7-111
POWER	7-112
PPHASEERR	7-113
PPHASESYM	7-114
PRE	7-115
PREAMP	7-116
PVECTERR	7-117
PWRCAL	7-118
PWRREFABS_SPU	7-119
PWRVALABS SPU	7-120
PWRREFREL SPU	7-121
PWRVALREL_SPU	7-122
 QLVL	7-123
QPPLVL	7-124
RATIO	7-125
RBW_SETREF_SPU	7-126
RFINPUT	7-127
RFLVL	7-128
RFLVLOFS	7-129
RL SETREF SPU	7-130
 RNG	7-132
RNG1	7-133
RNG2	7-134
RNG3	7-135
RNG4	7-136
RNG5	7-137
SETREL	7-138
SLCTTEMP	7-139
SLCTTEMP_RFPWR	7-140
SLOTPWR	7-141
SNGLS	7-142
SLTNO_RFPWR	7-143
SPECT_SPUF	7-144
SPECT_SPUI	7-146
SPECT_SPUT	7-148

SPOTRSLT_SPU	7-150
SPUALL	7-151
SPUFREQ	7-153
SPUFREQLVL	7-154
SPUJDG	7-156
SPULMTJDG	7-157
SPUMARGIN	7-158
SPULVL	7-159
SPUPASS	7-161
SPUPWRABS	7-162
SPUPWRREL	7-163
STANDARD_ACP	7-164
STRG_ADJ	7-167
STRG_IQL	7-168
STRG_MOD	7-169
STRG_RFPWR	7-170
STRG_SPU	7-171
SWP	7-172
SWPWR	7-173
SWT_SETREF_SPU	7-175
SYMOFS	7-176
TBLATT_SPU	7-177
TBLATTMD_SPU	7-179
TBLATTRLMD_SPU	7-180
TBLFREQ_SPU	7-181
TBLINTRBW_SPU	7-184
TBLLMMD_SPU	7-185
TBLLMT_ACP	7-186
TBLLMT_SPU	7-188
TBLRBW_SPU	7-190
TBLRBWLM_SPU	7-192
TBLRBWMD_SPU	7-194
TBLREFSTD_SPU	7-196
TBLRL_SPU	7-197
TBLSWT_SPU	7-199
TBLSWTLM_SPU	7-201
TBLSWTMD_SPU	7-203
TBLVBW_SPU	7-204
TBLVBWLM_SPU	7-206
TBLVBWMD_SPU	7-207
TBLVBWRT_SPU	7-208
TBLVIEW_ACP	7-209
TBLVIEW_SPU	7-210
TEMPFORM	7-212
TEMPLVLMS_RFPWR	7-213
TEMPLVL_RFPWR	7-218
TEMPOFFLVL	7-220
----------------	-------
TEMPPASS	7-221
TEMPPASS_ACP	7-223
TEMPPASS_RFPWR	7-224
TEMPRPWR	7-226
TEMPTYPE_RFPWR	7-227
TERM	7-228
TRFORM	7-229
TRFORM_ACP	7-230
TRG	7-231
TRGDLY	7-232
TRGEDGE	7-233
TXPWR	7-234
UBIT_MSPS	7-235
ULEN_MSPS	7-237
UNIT_ADJ	7-238
UNIT_IQL	7-239
UNIT_SPU	7-240
USTART_MSPS	7-241
VBW_SETREF_SPU	7-243
VECTERR	7-244
VIEW_ACP	7-245
VIEW_SPU	7-246
VSCALE	7-247
WAVEFORM_RFPWR	7-248
WAVEFORM_SPU	7-249
WAVETBLNO_SPU	7-250
WIDE_RFPWR	7-251
WINDOW	7-252
XMB	7-253
XMC	7-256
XMD	7-259
XMN	7-261
XMP	7-263
XMV	7-265
ZAJ	7-267
ZEROSET	7-268

7.1 コマンド詳細の見方

例)インピーダンスの設定

IQINZ 1

IQ Impedance 2

3

Program Message	Query Message	Response Message
IQINZ a	IQINZ	a

■機能 ④

Setup Common Parameter 画面において, IQ 信号の入力インピーダンスを設定します。

■aの値 ⑤

а	インピーダンス	初期値
50	50 Ω	*
1M	1MΩ	

■制約条件 ⑥

・ Terminal がIQ-AC, IQ-DC, IQ-Balance 以外の場合は設定できません。

■設定の初期化⑦ *RST

■使用例 ⑧

「インピーダンスの設定を 50Ωに設定する」

<Program> TERM IQAC IQINZ 50 IQINZ?

<Response> 50

① Program Message, Query Message のメッセージヘッダーです。

- ②設定/読み出しする項目の名前です。(注: 測定器画面上の名前とは必ずしも一致しません)
- ③ Program Message, Query Message, Response Message の文法です。大文字は予約語,小文字は⑤で説明される デバイスメッセージの引数,またはレスポンスデータです。
- ④ Program Message, Query Message で設定/読み出しされる機能の概要です。
- ⑤③の表で表示される小文字に関する説明です。設定値の場合,各引数に設定項目の意味,初期値,範囲,分解能,制約条件などが示されています。Response Messageの場合,出力データの意味,分解能,単位などが示されています。
- ⑥このコマンドを使用するときの制約条件や,使用上の注意が示されています。この制約条件を満たさないと,コマンドは正しく設定/読み出しができません。
- ⑦このコマンドで設定される項目を初期化する Program Message です。
- ⑧コマンドの使用例です。<Program>例は送信する Program Message および Query Message とその順番だけを示したもので、実際のプログラムコードではありません(プログラムコードは環境により異なります)。<Response>の値は実際の測定値とは異なります。

ACPLMT

Limit Level for Output RF Spectrum

Program Message	Query Message	Response Message
	ACPLMT? a	b(1),c(1),b(2)c(2),,b(n),c(n)

■機能

Output RF Spectrum 画面において, Limit 値とその単位を一括取得します。

■a の値

取得種別

а	種別	
MOD	Modulation の Limit 値を一括して取得します。	
SWTCH	Switching Trans. の Limit 値を一括して取得します。	

■*b(n)*の値

分解能	単位	
0.01	dB,dBc, または dBm	

■c*(n)*の値

С	単位
DB	dB
DBC	dBc
DBM	dBm

■制約条件

・Output RF Spectrum 画面内の Measure Range の変更により出力されるデータ数が変化します。 ・Limit が存在しない周波数帯のデータは"-----"で出力されます。

■使用例

「PCS1900-BTS, 1.8MHz 測定の場合の Switching Trans.の Limit 値を読み出す」

<Program> TERM RF FREQBAND PCS1900 BANDTRGT BTS DSPL ADJ,HIGH STANDARD_ACP PCS1900BTS43 ACPLMT? SWTCH <Response>

-----,DB,-----,DB,-21.00,DBM,-26.00,DBM,-26.00,DBM,-26.00,DBM,-32.00,DBM,-32.00,DBM,-32.00,DBM,-32.00,DBM,-36.00,DBM,-36.00,DBM

ADJRNG

Adjust Range

Program Message	Query Message	Response Message
ADJRNG		

■機能

内部のATTやA/Dレベルなどの最適化を行います。

■使用例 「測定レンジを最適化する」

<Program> ADJRNG

ALL_LMTUNIT_SPU

Unit of all Limit(W) for Spurious Emission

Program Message	Query Message	Response Message
ALL_LMTUNIT_SPU a,b	ALL_LMTUNIT_SPU? a	b

■機能

Spurious Emission 測定における全測定ポイントの Limit(W)の単位を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する全測定ポイントの Limit(W)の単位を対象とします
SWEEP	Search 法または Sweep 法測定で使用する全測定ポイントの Limit(W)の単位を対象とします

■b の値

Limit(W)の単位

b	単位	初期値
MW	mW	*
UW	μW	
NW	nW	

■設定の初期化

PRE,INI,IP,*RST

■使用例

「Spot 法測定の全測定ポイントの Limit(W)の単位をµW に設定する」

<Program> DSPL SPURIOUS,SPOT ALL_LMTUNIT_SPU SPOT,UW

ARFCNFIRST

ARFCN_FIRST

Program Message	Query Message	Response Message
ARFCNFIRST a	ARFCNFIRST?	a

■機能

ARFCN_FIRST(x)を設定します。

■a の値

ARFCN_FIRST(x)

範囲	分解能	初期値
0~1023	1	0

■設定の初期化

PRE,INI,IP,*RST

■制約条件

・Terminal が RF 以外の場合は設定できません。 ・Band が T-GSM380, T-GSM410, T-GSM900, DCS1800, PCS1900, GSM750 の場合のみ設定できます。

■使用例

「ARFCN_FIRST(x)を1に設定する」

<Program> DSPL SETCOM TERM RF FREQBAND TGSM380 ARFCNFIRST 1 ARFCNFIRST?

<Response>

1

ARFCNRANGE

ARFCN_RANGE

Program Message	Query Message	Response Message
ARFCNRANGE a	ARFCNRANGE?	a

■機能

ARFCN_RANGE(z)を設定します。

■a の値

Band	範囲	分解能	初期値
T-GSM380	$0 \sim (48\text{-BAND_OFFSET})$		48
T-GSM410	0~(48-BAND_OFFSET)		48
T-GSM900	0~(28-BAND_OFFSET)	1	28
DCS1800	0~(373-BAND_OFFSET)	1	373
PCS1900	0~(298-BAND_OFFSET)		298
GSM750	0~(73-BAND_OFFSET)		73

BAND_OFFSET:BANDOFFSET を参照

■設定の初期化

PRE,INI,IP,*RST

■制約条件

- ・Terminal が RF 以外の場合は設定できません。
- ・Band が T-GSM380, T-GSM410, T-GSM900, DCS1800, PCS1900, GSM750 の場合のみ設定できます。

■使用例

「ARFCN_RANGE(z)を1に設定する」

```
<Program>
DSPL SETCOM
TERM RF
FREQBAND TGSM380
BANDOFFSET 0
ARFCNRANGE 1
ARFCNRANGE?
```

```
<Response>
1
```

ATT_SETREF_SPU

Attenuator for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
ATT_SETREF_SPU a	ATT_SETREF_SPU?	a

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の Attenuator を設定します。

■a の値

Attenuator

範囲	分解能	単位
0~62(注1)	2	dB

注 1: Attenuator の設定範囲は, Reference Level (RL_SETREF_SPU 参照)により変わります。

□サフィックスコード なし:dB DB:dB

■設定の初期化

PRE,INI,IP,*RST

■制約条件

・Relative Power Reference が SPA のみ設定できます(PWRREFREL_SPU 参照)。

■使用例

「Attenuator を 20 dB に設定する」

<Program> PWRREFREL_SPU SPA ATTMD_SETREF_SPU AUTO RL_SETREF_SPU -30DBM ATT_SETREF_SPU 20DB ATT_SETREF_SPU?

ATTMD_SETREF_SPU

Attenuator Mode: Manual/Auto for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
ATTMD_SETREF_SPU a	ATTMD_SETREF_SPU?	a

■機能

Setup Reference Power 画面において, Spectrum AnalyzerのAttenuatorの設定を, 手動または自動のどちらで行うか設定します。Autoの場合は, Attenuatorの値が自動的に設定されます。

■a の値

Attenuator 設定モード

а	モード	初期値
MAN	Attenuator を手動設定モードにします	
AUTO	Attenuator を自動設定モードにします	*

■設定の初期化

PRE,INI,IP,*RST

■制約条件

・Auto時にAttenuatorが変更された場合、強制的にManualになります。

■使用例

「Attenuator を自動設定モードにする」

<Program> ATTMD_SETREF_SPU AUTO ATTMD_SETREF_SPU?

<Response> AUTO

ATTRLMD_SETREF_SPU

Attenuator, Ref Level Mode: Manual/Auto for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
ATTRLMD_SETREF_SPU a	ATTRLMD_SETREF_SPU?	a

■機能

Setup Reference Power 画面において, Spectrum Analyzer の Attenuator, Ref Level の設定を, 手動または 自動のどちらで行うか設定します。Autoの場合は, Ref Level および Attenuator の値を自動的に設定します。

■a の値

Attenuator, Ref Level 設定モード

а	モード	初期値
MAN	Attenuator, Ref Level を手動設定モードにします	
AUTO	Attenuator, Ref Level を自動設定モードにします	*

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Auto 時に Attenuator または Ref Level が変更された場合, 強制的に Manual になります。

■使用例

「Attenuator, Ref Level を自動設定モードにする」

<Program> ATTRLMD_SETREF_SPU AUTO ATTRLMD_SETREF_SPU?

<Response> AUTO

AVR_ADJ

Average Count for Output RF Spectrum

Program Message	Query Message	Response Message
AVR_ADJ a	AVR_ADJ?	a

■機能

Output RF Spectrum 画面において, Storage Mode が Average のときの平均(測定)回数を設定します。

■a の値

平均測定回数

範囲	分解能	初期値
2~99999	1	10

■設定の初期化

PRE, INI, IP, *RST

■使用例 「Average Count を 500 に設定する」

<Program> MEAS ADJ,HIGH AVR_ADJ 500 AVR_ADJ?

AVR_IQL

Average Count for IQ Level

Program Message	Query Message	Response Message
AVR_IQL a	AVR_IQL?	a

■機能

IQ Level 画面において, Storage Mode が Average のときの平均(測定)回数を設定します。

■a の値

測定(平均)回数

範囲	分解能	初期値
2~99999	1	10

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Average Count を 50 に設定する」

<Program> TERM IQAC DSPL IQLVL STRG_IQL AVG AVR_IQL 500 AVR_IQL? SNGLS

AVR_MOD

Average Count for Modulation Analysis

Program Message	Query Message	Response Message
AVR_MOD a	AVR_MOD?	a

■機能

Modulation Analysis 画面において, Storage Mode が Average のときの平均(測定)回数を設定します。

■*a* の値

平均(測定)回数

範囲	分解能	初期値
2~99999	1	10

■設定の初期化

PRE, INI, IP, *RST

■使用例 「Average Count を 500 に設定する」

<Program> MEAS MODANAL AVR_MOD 500 AVR_MOD?

AVR_RFPWR

Average Count for RF Power

Program Message	Query Message	Response Message
AVR_RFPWR <i>a</i>	AVR_RFPWR?	a

■機能

RF Power 画面において, Storage Mode が Average のときの平均(測定)回数を設定します。

■a の値

平均(測定)回数

範囲	分解能	初期値
2~99999	1	10

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Average Count を 500 に設定する」

<Program> MEAS RFPWR AVR_RFPWR 500 AVR_RFPWR?

AVR_SPU

Average Count for Spurious Emission

Program Message	Query Message	Response Message
AVR_SPU a	AVR_SPU?	a

■機能

Spurious Emission 画面において, Storage Mode が Average のときの平均(測定)回数を設定します。

■a の値

平均(測定)回数

範囲	分解能	初期値
$2 \sim 9999$	1	10

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Average Count を 500 に設定する」

<Program> DSPL SPURIOUS,SPOT STRG_SPU AVG AVR_SPU 500 AVR_SPU?

BAND

Preselector for Spurious Emission

Program Message	Query Message	Response Message
BAND a	BAND?	a

■機能

Spurious Emission 測定において、Preselectorの経路を使用するかどうかを設定します。

■aの値

経路選択

а	経路選択	初期値
0	Preselector の経路を使用しません(Normal)	*
1	Preselector の経路を使用します(Spurious)	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Preselector の経路を使用する」

<Program> BAND 1 BAND?

<Response>

1

■注意

この機能はオプションです。 MS2683A-03/MS8608A-03 プリセレクタ下限拡張オプションが有効でない場合は使用できません。

BANDOFFSET

BAND_OFFSET

Program Message	Query Message	Response Message
BANDOFFSET a	BANDOFFSET?	a

■機能

BAND_OFFSET(y)を設定します。

■a の値

Band	範囲	分解能	初期値
T-GSM380	0~48		
T-GSM410	0~48		
T-GSM900	0~28	1	0
DCS1800	0~373		0
PCS1900	0~298		
GSM750	0~73		

Max:バンド幅÷200kHz

■設定の初期化

PRE,INI,IP,*RST

■制約条件

・Terminal が RF 以外の場合は設定できません。

・Band が T-GSM380, T-GSM410, T-GSM900, DCS1800, PCS1900, GSM750 の場合のみ設定できます。

■使用例

「BAND_OFFSET(y)を1に設定する」

<Program> DSPL SETCOM TERM RF FREQBAND TGSM380 BANDOFFSET 1 BANDOFFSET?

<Response>

1

BANDTRGT

Select DUT

Program Message	Query Message	Response Message
BANDTRGT a	BANDTRGT?	a

■機能

Setup Common Parameter 画面において,対象となる DUT を設定します。

■a の値

Station の種類

а	Station の種類	初期値
MS	MSを設定します。	*
BTS	BTSを設定します。	
MCRBTS	Micro BTS を設定します。	
PCBTS	Pico BTS を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

- ・Terminal が RF 以外の場合は設定できません。
- ・Band が Free の場合は設定できません。

■使用例

「対象 DUT を BTS に設定する」

<Program> TERM RF FREQBAND RGSM900 BANDTRGT BTS BANDTRGT?

<Response> BTS

BANDTRGT_ACP

Select DUT for Output RF Spectrum

Program Message	Query Message	Response Message
BANDTRGT_ACP a	BANDTRGT_ACP?	a

■機能

Setup Common Parameter 画面の Band が Free に設定されている場合に, Output RF Spectrum 固有の対象となる DUT を設定します。

■a の値

Station の種類

а	Station の種類	初期値
MS	MS を設定します。	*
BTS	BTSを設定します。	
MCRBTS	Micro BTS を設定します。	
PCBTS	Pico BTS を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・ Setup Common Parameter 画面の Band が Free 以外の場合は設定できません。

■使用例

「Output RF Spectrum 固有の対象 DUT を BTS に設定する」

<Program> TERM RF FREQBAND FREE DSPL ADJ,HIGH BANDTRGT_ACP BTS BANDTRGT_ACP?

<Response> BTS

BANDTRGT_SPU

Select DUT for Setup Search/Sweep Table

Program Message	Query Message	Response Message
BANDTRGT_SPU a	BANDTRGT_SPU?	a

■機能

Setup Common Parameter 画面の Band が Free に設定されている場合に, Setup Search/Sweep Table 固有の対象と なる DUT を設定します。

■a の値

Station の種類

а	Station の種類	初期値
MS	MSを設定します。	*
BTS	BTSを設定します。	
MCRBTS	Micro BTS を設定します。	
PCBTS	Pico BTS を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・ Setup Common Parameter 画面の Band が Free 以外の場合は設定できません。

■使用例

「Setup Search/Sweep Table 固有の対象 DUT を BTS に設定する」

<Program> TERM RF FREQBAND FREE DSPL SETTBL_SPU,SWEEP BANDTRGT_SPU BTS BANDTRGT_SPU?

<Response> BTS

BRSTALLOFF_MSPS

Burst switch all off

Program Message	Query Message	Response Message
BRSTALLOFF_MSPS		

■機能

Multi Slot Parameter Setup 画面の Slot0 以外の Burst Switch をすべて OFF にします。

■使用例

「Slot0 以外の Burst をすべて OFF にする」

<Program> MEASOBJ NBMS DSPL MSPS BRSTALLOFF_MSPS

BRSTALLON_MSPS

Burst switch all on

Program Message	Query Message	Response Message
BRSTALLON_MSPS		

■機能

Multi Slot Parameter Setup 画面の Burst Switch をすべて ON にします。

■使用例 「Burst をすべて ON にする」

<Program> MEASOBJ NBMS DSPL MSPS BRSTALLON_MSPS

BRST_MSPS

Burst Switch

Program Message	Query Message	Response Message
BRST_MSPS <i>a</i> , <i>b</i>	BRST_MSPS? b	a

■機能

Multi Slot Parameter Setup 画面において, 指定する Slot の Burst Switch の設定を行います。

■a の値

а	Burst の On/Off	初期値
ON	指定 Slot の Burst を ON に設定します。	*
OFF	指定 Slot の Burst を OFF に設定します。	

■b の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Slot2のBurstをONにする」

<Program> MEASOBJ NBMS DSPL MSPS BRST_MSPS ON,2 BRST_MSPS? 2

BRSTOFFDAT

Burst Off Data

Program Message	Query Message	Response Message
BRSTOFFDAT a	BRSTOFFDAT?	a

■機能

Setup Common Parameter 画面において、バーストオフ区間のデータを設定します。

■aの値

Burst Off Data

а	Burst Off Data	初期値
ALL0	バーストオフ区間のデータを Allo に設定します。	
ALL1	バーストオフ区間のデータを All1 に設定します。	*
AUTO	バーストオフ区間のデータを自動で判別します。	

■制約条件

Modulation Type が GMSK の場合のみ設定可能です。 Measuring Object が Continuous 以外の場合のみ設定可能です。

■設定の初期化 PRE, INI, IP, *RST

■使用例 「Burst Off Data の値を Auto にする」

<Program> TERM RF MODTYPE GMSK MEASOBJ NB BRSTOFFDAT AUTO BRSTOFFDAT?

<Response> AUTO

BS

Back Screen

Program Message	Query Message	Response Message
BS		

■機能

現在表示している画面の上位画面へ切り替えます。

■使用例 「上位画面へ移行する」

<Program>

BS

CALCANCEL

Power Calibration Cancel

Program Message	Query Message	Response Message
CALCANCEL		

■機能

Power Calibration を解除し、校正値を 0.00 にリセットします。

■使用例 「Power Calibration を解除する」

<Program> DSPL MODANAL CALVAL 10.00DB CALVAL? CALCANCEL CALVAL?

<Response> 2,10.00 0,0.00

CALVAL

Power Calibration Value

Program Message	Query Message	Response Message
CALVAL a	CALVAL?	b,a

■機能

Power Calibration による校正値を設定します。

■a の値

校正値

範囲	分解能	初期値	単位
-10.00~10.00	0.01	0.00	dB

ロサフィックスコード

なし :dB DB :dB

■b の値

校正の種類

値	校正の種類	初期值
0	未校正	*
1	内部校正	
2	外部書き込み	
3	マルチキャリア校正	

■設定の初期化

<Preset + Power On>

■使用例

「校正値を5dBに設定する」 <Program> CALVAL 5.00 CALVAL ?

<Response> 2,5.00

CARRF

Carrier Frequency

Program Message	Query Message	Response Message
	CARRF?	a

■機能

Modulation Analysis 画面において、キャリア周波数を出力します。

■a の値

キャリア周波数

分解能	単位
0.1	Hz

■使用例

「キャリア周波数を読み出す」

<Program> MEAS MODANAL CARRF?

<Response> 890199998.8

CARRFERR

Carrier Frequency Error

Program Message	Query Message	Response Message
	CARRFERR? a	b

■機能

Modulation Analysis 画面において、キャリア周波数誤差を出力します。

■a の値

出力単位

а	出力単位
なし	Hz
HZ	Hz
PPM	ppm

■b の値

周波数誤差

分解能	出力単位(aの選択肢による)
0.1	Hz
0.01	ppm

■使用例

「キャリア周波数誤差を読み出す」

<Program> MEAS MODANAL CARRFERR? HZ

<Response> -14.5

CHAN

Channel

Program Message	Query Message	Response Message
CHAN a	CHAN?	a

■機能

Setup Common Parameter 画面において、チャネルを設定します。

■a の値

チャネル

範囲	分解能	初期値
0~20000	1	1

■制約条件

・Terminal が RF 以外の場合は設定できません。

 Channel Spacing の値により Frequency が設定範囲外となる場合は、Channel の設定範囲内であっても Channel の 変更はできません。

■設定の初期化

*RST

■使用例

「チャネルを5に設定する」

<Program> TERM RF CHAN 5 CHAN?

<Response>

5

CHFREQ

Channel and Frequency

Program Message	Query Message	Response Message
CHFREQ a,b		

■機能

Setup Common Parameter 画面において、チャネルとそのチャネルの周波数を同時に設定します。

■a の値

チャネル

範囲	分解能	初期値
0~20000	1	1

■bの値

キャリア周波数

範囲	分解能	初期値	単位	備考
$100 \sim 300000000$	1	890200000	Hz	MS2681A の場合
$100 \sim 780000000$	1	890200000	Hz	MS2683A /MS8608A の場合
$100 \sim 1320000000$	1	890200000	Hz	MS8609A の場合
$100 \sim 3000000000$	1	890200000	Hz	MS2687A/B の場合

ロサフィックスコード

なし : Hz HZ : Hz KHZ, KZ : Hz MHZ, MZ : MHz GHZ,GZ : GHz

■制約条件

・Terminal が RF 以外の場合は設定できません。

• Band が Free 以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「チャネル2のキャリア周波数を1GHzに設定する」

<Program> TERM RF CHFREQ 2,1 GHZ CHAN? FREQ? <Response>

2 1000000000

CHSPC

Channel Spacing

Program Message	Query Message	Response Message
CHSPC a	CHSPC?	a

■機能

Setup Common Parameter 画面において、チャネル間の周波数幅を設定します。

■a の値

チャネル間周波数幅

範囲	分解能	初期値	単位
-1000000000 ~1000000000	1	1	Hz

ロサフィックスコード

なし : Hz HZ : Hz KHZ, KZ : kHz MHZ, MZ : MHz GHZ,GZ : GHz

■制約条件

・Terminal が RF 以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「チャネル周波数幅を300kHzに設定する」

<Program> TERM RF CHAN 1 FREQ 400MHZ CHSPC 300KHZ CHSPC? CHAN 2 FREQ?

CONTS

Continuous Sweep

Program Message	Query Message	Response Message
CONTS		

■機能

連続掃引を実行します。

■使用例 「連続掃引を行う」 <Program> CONTS
CORR

Correction

Program Message	Query Message	Response Message
CORR a	CORR?	a

■機能

レベル補正用の Correction データテーブルの選択をします。

■a の値

Correction データテーブル

値	Correction データテーブル	初期値
0	データ補正を行いません。	*
1	Table1	
2	Table2	
3	Table3	
4	Table4	
5	Table5	

■設定の初期化

*RST

■使用例

「Correction データテーブル 3 を選択する」 <Program> CORR 3 CORR?

<Response>

DET_SPU

Detection Mode

Program Message	Query Message	Response Message
DET_SPU <i>a</i> , <i>b</i>	DET_SPU? a	b

■機能

Spurious Emission 測定における検波モードを設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する検波モードを対象とします
SEARCH	Search 法測定で使用する検波モードを対象とします
SWEEP	Sweep 法測定で使用する検波モードを対象とします

■b の値

検波モード

b	検波モード	初期値
DOG	検波モードを Positive Peak にします	
P05	1サンプリング時間中の最大値をそのポイントのデータとします	
NEC	検波モードを Negative Peak にします	
NEG	1 サンプリング時間中の最小値をそのポイントのデータとします	
	検波モードを Sample にします	
SMP	ハードウェアがサンプリング動作を実行するその時点での瞬時	
	データをそのポイントのデータとします	
AVG	検波モードを Average にします	*
AVG	サンプルポイント間の平均値をそのポイントのデータとします	4.
DMC	検波モードを RMS にします	
RMS	サンプルポイント間の RMS 値をそのポイントのデータとします	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Sweep 法の検波モードを Positive Peak にする」

<Program> DET_SPU SWEEP,POS DET_SPU? SWEEP <Response> POS

■注意 RMS はオプションです。

DETLM_SPU

Detection Mode (Level Measurement)

Program Message	Query Message	Response Message
DETLM_SPU a	DETLM_SPU?	a

■機能

Spurious Emission 測定の Spurious Mode: Search 時のスプリアス振幅測定で使用する検波モードを設定します。

■a の値

検波モード

а	検波モード	初期値
DOG	検波モードを Positive Peak にします	
P05	1サンプリング時間中の最大値をそのポイントのデータとします	
NEC	検波モードを Negative Peak にします	
NEG	1 サンプリング時間中の最小値をそのポイントのデータとします	
	検波モードを Sample にします	
SMP	ハードウェアがサンプリング動作を実行するその時点での瞬時	
	データをそのボイントのデータとします	
AVC	検波モードを Average にします	*
AVG	サンプルポイント間の平均値をそのポイントのデータとします	4
DMC	検波モードを RMS にします	
nwi5	サンプルポイント間の RMS 値をそのポイントのデータとします	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Sweep 法の検波モードを Positive Peak にする」

<Program> DETLM_SPU POS DETLM_SPU?

<Response> POS

■注意

RMSはオプションです。

DET_SETREF_SPU

Detection Mode (Setup Reference Power)

Program Message	Query Message	Response Message
DET_SETREF_SPU a	DET_SETREF_SPU?	a

■機能

Spurious Emission 測定の Reference Power を Spectrum 法で測定する際の使用する検波モードを設定します。

■a の値

検波モード

а	検波モード	初期値
DOC	検波モードを Positive Peak にします	
P05	1サンプリング時間中の最大値をそのポイントのデータとします	
NEC	検波モードを Negative Peak にします	
NEG	1 サンプリング時間中の最小値をそのポイントのデータとします	
	検波モードを Sample にします	
SMP	ハードウェアがサンプリング動作を実行するその時点での瞬時 データをそのポイントのデータとします	
4370	検波モードを Average にします	
AVG	サンプルポイント間の平均値をそのポイントのデータとします	ጥ
DMC	検波モードを RMS にします	
11115	サンプルポイント間の RMS 値をそのポイントのデータとします	

■設定の初期化

PRE,INI,IP,*RST

■使用例

「Reference Power 測定の検波モードを Positive Peak にする」

<Program> DET_SETREF_SPU POS DET_SETREF_SPU?

<Response> POS

■注意 RMS はオプションです。

DPTS_SETREF_SPU

Data Points (Setup Reference Power)

Program Message	Query Message	Response Message
DPTS_SETREF_SPU a	DPTS_SETREF_SPU?	a

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の掃引データ数を設定, 読み出します。

■a の値

データ数

а	データ数	初期値
501	掃引データ数を 501 ポイントに設定します。	*
1001	掃引データ数を 1001 ポイントに設定します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Reference Power 測定の掃引データ数を読み出す」

<Program> DPTS_SETREF_SPU 501 DPTS_SETREF_SPU?

<Response> 501

DPTS_SPU

Data Points

Program Message	Query Message	Response Message
DPTS_SPU a	DPTS_SPU?	a

■機能

Spurious Emission の画面において、Spectrum Analyzer の掃引データ数を設定、読み出します。

■a の値

データ数

а	データ数	初期値
501	掃引データ数を 501 ポイントに設定します。	*
1001	掃引データ数を 1001 ポイントに設定します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Spectrum Analyzer の掃引データ数を読み出す」

<Program> DSPL SETTBL_SPU,SPOT DPTS_SPU 501 DPTS_SPU?

<Response> 501

DSPL

Switch Screen

Program Message	Query Message	Response Message
DSPL <i>a,b</i> DSPL <i>a</i>	DSPL?	a,b

■機能

測定画面および測定方法を設定します。測定は開始しません。

■a, b の値

a: 測定画面名

b: 測定方法/テンプレートの種類

а	b	測定画面名	測定方法/テンプレートの種類	初期値	Input Terminal
SETCOM		Setup Common Parameter		*	
MODANAL		Modulation Analysis			
RFPWR		RF Power			RF,
SETTEMP_RFPW R		Setup Template for			IQ-DC IQ-AC
Settemp 💥		KF FUWEI			IQ-Balance
MSPS		Multi Slot Parameter Setup			
ADJ	HIGH	Output RF Spectrum	High Speed		
SETTBL_ACP		Setup Output RF Spectrum			
	SPOT		Spot		
SPURIOUS	SEARCH	Spurious Emission	Search		RF
	SWEEP		Sweep		
	SPOT	Coture Engrander Table for	Spot		
SETTBL_SPU	SWEEP	Setup Frequency Table for Spurious Emittion	Sweep		
	SEARCH	Sparlous Emilaton	Search		
RELPWRREF		Setup Reference Power			
PWRMTR		Power Meter			
IQLVL		IQ Level			IQ-DC,IQ-AC IQ-Balance

※Program Message "DSPL SETTEMP"の Response Message は"SETTEMP_RFPWR"です。

■設定の初期化 PRE, INI, IP, * RST

■使用例

①「Modulation Analysis 画面に移行する」 <Program> DSPL MODANAL DSPL? <Response> MODANAL ②「Modulation Analysis 画面の Sweep 測定に移行する」
<Program>
DSPL SPURIOUS,SWEEP
DSPL?
<Response>
SPURIOUS,SWEEP

EVM95PCT

95:th percentile EVM

Program Message Query Message		Response Message	
EVM95PCT?		a	

■機能

Modulation Analysis 画面において、サブキャリアごとの EVM を読み出します。

■a の値

95: th Percentile

分解能	単位
1	1

■使用例

「95:th percentile EVM の測定結果を読み出す」

<Program> DSPL MODANAL SWP EVM95PCT?

<Response> -34.33

FILTER

Filter

Program Message	Query Message	Response Message
FILTER a	FILTER?	a

■機能

Modulation Analysis 画面において, Modulation Type が 8-PSK のときのフィルタ処理を設定します。

■a の値

フィルタの処理と種類

а	フィルタの種類	初期値
NON	フィルタ処理を行いません。	
NYQST	ルートナイキストフィルタ	
NYQSTNVS	ルートナイキストフィルタとインバースフィルタ	
SPEC	90kHz の測定フィルタを用いた GSM 規格フィルタ処理	*

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・ Modulation Type が 8-PSK のときだけ設定可能です。

■使用例

「ルートナイキストフィルタによるフィルタ処理を行う」

<Program> MODTYPE 8PSK MEAS MODANAL FILTER NYQST FILTER?

<Response> NYQST

FREQ

Frequency

Program Message	Query Message	Response Message
FREQ a	FREQ?	a

■機能

Setup Common Parameter 画面において, 被測定周波数のキャリア周波数を設定します。

■a の値

キャリア周波数

範囲	分解能	初期値	単位	備考
$100 \sim 300000000$	1	8902000000	Hz	MS2681A の場合
$100 \sim 780000000$	1	8902000000	Hz	MS2683A/MS8608A の場合
$100 \sim 1320000000$	1	8902000000	Hz	MS8609A の場合
$100 \sim 3000000000$	1	8902000000	Hz	MS2687A/B の場合

ロサフィックスコード

なし : Hz HZ : Hz KHZ, KZ : kHz MHZ, MZ : MHz GHz, GZ : GHz

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Terminal が RF 以外の場合は設定できません。

■使用例

「キャリア周波数を1GHzに設定する」

<Program> TERM RF FREQ 1GHZ FREQ?

<Response> 1000000000

FREQBAND

Band

Program Message	Query Message	Response Message
FREQBAND a	FREQBAND?	a

■機能

Setup Common Parameter 画面において, Band を設定します。

■a の値

Band の種類

а	Band の種類	初期値
FREE	Band Free を設定します。	*
PGSM900	P-GSM900を設定します。	
EGSM900	E-GSM900を設定します。	
RGSM900	R-GSM900 を設定します。	
TGSM380	T-GSM380を設定します。	
TGSM410	T-GSM410を設定します。	
TGSM900	T-GSM900を設定します。	
DCS1800	DCS1800を設定します。	
PCS1900	PCS1900を設定します。	
GSM450	GSM450を設定します。	
GSM480	GSM480を設定します。	
GSM750	GSM750を設定します。	
GSM850	GSM850を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Terminal が RF 以外の場合は設定できません。

■使用例

「Bandを R-GSM900 に設定する」

<Program> TERM RF FREQBAND RGSM900 FREQBAND?

<Response> RGSM900

FREQBAND_ACP

Band

Program Message	Query Message	Response Message
FREQBAND_ACP a	FREQBAND_ACP?	a

■機能

Output RF Spectrum 画面において, Band を設定します。

■a の値

Band の種類

а	Band の種類	初期値
PGSM900	P-GSM900を設定します。	*
EGSM900	E-GSM900 を設定します。	
RGSM900	R-GSM900 を設定します。	
TGSM380	T-GSM380を設定します。	
TGSM410	T-GSM410を設定します。	
TGSM900	T-GSM900を設定します。	
DCS1800	DCS1800を設定します。	
PCS1900	PCS1900を設定します。	
GSM450	GSM450を設定します。	
GSM480	GSM480を設定します。	
GSM750	GSM750を設定します。	
GSM850	GSM850を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

- ・Terminal が RF 以外の場合は設定できません。
- ・ Setup Common Parameter 画面の Band が Free 以外の場合は設定できません。

■使用例

「Output RF Spectrum 画面の Band を R-GSM900 に設定する」

<Program> TERM RF FREQBAND FREE DSPL ADJ,HIGH FREQBAND_ACP RGSM900 FREQBAND_ACP?

<Response> RGSM900

FREQBAND_SPU

Band

Program Message	Query Message	Response Message
FREQBAND_SPU a	FREQBAND_SPU?	a

■機能

Setup Search/Sweep Table 画面において, Band を設定します。

■a の値

Band の種類

а	Band の種類	初期値
PGSM900	P-GSM900を設定します。	*
EGSM900	E-GSM900 を設定します。	
RGSM900	R-GSM900 を設定します。	
TGSM380	T-GSM380を設定します。	
TGSM410	T-GSM410を設定します。	
TGSM900	T-GSM900を設定します。	
DCS1800	DCS1800を設定します。	
PCS1900	PCS1900を設定します。	
GSM450	GSM450を設定します。	
GSM480	GSM480を設定します。	
GSM750	GSM750を設定します。	
GSM850	GSM850を設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

- ・Terminal が RF 以外の場合は設定できません。
- ・ Setup Common Parameter 画面の Band が Free 以外の場合は設定できません。

■使用例

「Setup Search Table 画面の Band を R-GSM900 に設定する」

<Program> TERM RF FREQBAND FREE DSPL SETTBL_SPU,SEARCH FREQBAND_SPU RGSM900 FREQBAND_SPU?

<Response> RGSM900

FSPAN_SETREF_SPU

Frequency Span for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
FSPAN_SETREF_SPU a	FSPAN_SETREF_SPU?	a

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の測定周波数幅を設定します。

■a の値

掃引周波数幅

範囲	分解能	初期値	単位	備考
0~7899999000				MS8608A/MS2683 の場合
0~13199999000	1	0	Hz	MS8609A の場合
0~2999999000				MS2681A の場合
0~29999999000				MS2687B の場合

□サフィックスコード

なし:Hz HZ:Hz KHZ,KZ:kHz MHZ,MZ:MHz GHZ,GZ:GHz

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Spurious Emission の Reference Power における Span を 10MHz に設定する」

<Program> FSPAN_SETREF_SPU 10MHZ FSPAN_SETREF_SPU?

<Response> 10000000

ILVL

I Level (RMS)

Program Message	Query Message	Response Message
	ILVL? a	b

■機能

IQ Level 画面において, I 信号の RMS 値の測定結果を読み出します。

■a の値

読み出し単位

а	読み出し単位
なし	既存の設定単位
MV	mV
DBMV	dBmV

■b の値

I 信号の RMS 値

分解能	単位
0.01	a の値による

■使用例

「I Level(RMS)値を読み出す」

<Program> TERM IQAC MEAS IQLVL ILVL? MV

<Response> 1.42

INI

Initialize

Program Message	Query Message	Response Message
INI		

■機能

すべての初期化対象測定制御パラメータを初期化します。PRE, IP コマンドと同機能です。

■使用例

「初期化対象のパラメータを初期化する」

<Program>

INI

INTPOL

Interpolation for Constellation

Program Message	Query Message	Response Message
INTPOL a	INTPOL?	a

■機能

Modulation Analysis 画面において, Trace format が Constellation のときの補完表示を設定します。

■a の値

補完表示

а	補完モード	初期値
NON	Non : シンボル点のみを表示します。	*
LIN	Linear : シンボル点を直線で補完して表示します。	
POINT10	10point : シンボル点の間を 10 分割で補完して表示します。	
LINSYM	Linear & Symbol Position : シンボル点と,シンボル点を直線で補完したものを 表示します。	
P10SYM	10point & Symbol Position : シンボル点と,シンボル点の間を10分割で補完 したものを表示します。	

■制約条件

・ Trace Format が Constellation 以外の場合は設定できません。

■設定の初期化 PRE, INI, IP, *RST

■使用例

「シンボル点を直線で補完する」

<Program> MEAS MODANAL TRFORM CONSTEL INTPOL LIN INTPOL?

<Response> LIN

INTVAL_ADJ

Refresh Interval for Output RF Spectrum

Program Message	Query Message	Response Message
INTVAL_ADJ a	INTVAL_ADJ?	a

■機能

Output RF Spectrum 画面において, Storage Mode が Average のときの表示更新間隔を設定します。

■a の値

更新間隔

値	更新間隔	初期値
EVERY	1 掃引ごとに更新します。その回までに測定した回数で平均をとります。	*
ONCE	アベレージ終了後に1回更新します。Average Count で指定された回数で平均をとります。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「更新間隔を Once に設定する」

<Program> MEAS ADJ,HIGH INTVAL_ADJ ONCE INTVAL_ADJ?

INTVAL_IQL

Refresh Interval for Output IQ Level

Program Message	Query Message	Response Message
INTVAL_IQL a	INTVAL_IQL?	a

■機能

IQ Level 画面において, Storage Mode が Average のとき, 測定結果の更新方法を設定します。

■a の値

更新方法

値	更新間隔	初期値
EVERY	1回の測定ごとにその回までの測定結果の平均値を表示します。	*
ONCE	Average Count 分の測定が終了したあとに測定結果の平均値を表示します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Average 終了後に表示を測定する」

<Program> TERM IQAC DSPL IQLVL STRG_IQL AVG INTVAL_IQL ONCE INTVAL_IQL?

SNGLS

INTVAL_MOD

Refresh Interval for Modulation Analysis

Program Message	Query Message	Response Message
INTVAL_MOD a	INTVAL_MOD?	a

■機能

Modulation Analysis 画面において, Storage Mode が Average のときの表示更新間隔を設定します。

■a の値

更新間隔

値	更新間隔	初期値
EVERY	1 掃引ごとに更新します。その回までに測定した回数で平均をとります。	*
ONCE	アベレージ終了後に1回更新します。Average Count で指定された回数で平均をとります。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「更新間隔を Once に設定する」

<Program> MEAS MODANAL INTVAL_MOD ONCE INTVAL_MOD?

INTVAL_RFPWR

Refresh Interval for RF Power

Program Message	Query Message	Response Message
INTVAL_RFPWR a	INTVAL_RFPWR?	a

■機能

RF Power 画面において, Storage Mode が Average のときの表示更新間隔を設定します。

■a の値

更新間隔

値	更新間隔	初期値
EVERY	1掃引ごとに更新します。その回までに測定した回数で平均をとります。	*
ONCE	アベレージ終了後に1回更新します。Average Count で指定された回数で平均をとります。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「更新間隔を Once に設定する」

<Program> MEAS RFPWR INTVAL_RFPWR ONCE INTVAL_RFPWR?

<Response>

ONCE

INTVAL_SPU

Refresh Interval for Spurious Emission

Program Message	Query Message	Response Message
INTVAL_SPU a	INTVAL_SPU?	a

■機能

Spurious Emission 画面において, Storage Mode が Average のときの表示更新間隔を設定します。

■a の値

更新間隔

а	更新間隔	初期値
EVERY	1掃引ごとに更新します。その回までに測定した回数で平均をとります	*
ONCE	アベレージ終了後に1回更新します。Average Count で指定された回数で平均をとります	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「更新間隔を Once に設定する」

<Program> INTVAL_SPU ONCE INTVAL_SPU?

IP

Preset

Program Message	Query Message	Response Message
IP		

■機能

すべての初期化対象測定制御パラメータを初期化します。PRE, INI コマンドと同機能です。

■使用例

「初期化対象のパラメータを初期化する」

<Program>

IP

IPPLVL

I Level (Peak to Peak)

Program Message	Query Message	Response Message
	IPPLVL? a	b

■機能

IQ Level 画面において, I 信号の Peak to Peak 値の測定結果を読み出します。

■a の値

読み出し単位

値	読み出し単位
なし	既存の設定単位
MV	mV
DBMV	dBmV

■b の値

I 信号の Peak to Peak 値

分解能	単位
0.01	a の値による

■使用例

「I Level (Peak to Peak) 値を読み出す」

<Program>

TERM IQAC MEAS IQLVL IPPLVL? MV

<Response> 4.07

IQINZ

IQ Impedance

Program Message	Query Message	Response Message
IQINZ a	IQINZ?	a

■機能

Setup Common Parameter 画面において、IQ 信号の入力インピーダンスを設定します。

■a の値

インピーダンス

値	インピーダンス	初期値
50	50 Ω	*
1 M	1 MΩ	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Terminal が IQ-AC, IQ-DC, IQ-Balance 以外の場合は設定できません。

■使用例

「インピーダンスの値を50Ωに設定する」

<Program> TERM IQAC IQINZ 50 IQINZ?

<Response> 50

IQLVL

IQ Level

Program Message	Query Message	Response Message
	IQLVL? a	<i>b,c,d,e</i>

■機能

IQ Level 画面において, I 信号の RMS 値, Q 信号の RMS 値, I 信号の Peak to Peak 値, Q 信号の Peak to Peak 値の測定結果を読み出します。

■a の値

読み出し単位

値	読み出し単位
なし	既存の設定単位
MV	mV
DBMV	dBmV

■b, c, d, e の値

- b:I信号の RMS 値
- c: Q 信号の RMS 値
- d: I 信号の Peak to Peak 値
- e: Q 信号の Peak to Peak 値

分離値	単位
0.01	aの単位による

■使用例

「IQ Level 値を読み出す」

<Program> TERM IQAC MEAS IQLVL IQLVL? MV

<Response>

1.42, 0.53, 4.07, 3.55

IQPHASE

IQ Phase difference

Program Message	Query Message	Response Message
	IQPHASE?	a

■機能

IQ Level 画面において, IQ 信号の位相差の測定結果を読み出します。

■a の値

IQ の位相差

分解能	単位
0.01	deg

■使用例

「IQの位相差を読み出す」

<Program> TERM IQAC MEAS IQLVL IQPHASE?

<Response> 99.97

JUDGUNIT_ACP

Judgement Unit for Output RF Spectrum

Program Message Query Message		Response Message	
JUDGUNIT_ACP a	JUDGUNIT_ACP?	a	

■機能

Setup Output RF Spectrum 画面において, Output RF Spectrum 画面にて判定に用いる Limit 値の対象を設定します。

■aの値

判定に使用する対象の種類

а	表示項目	初期値
REL	dB。Relative 値での判定を行うように設定します。	
ABS	dBm。Absolute 値での判定を行うように設定します。	*
OFF	dB。Relative 値での判定を行うように設定します。	
ON	dBm。Absolute 値での判定を行うように設定します。	
RELABS	dB&dBm。Relative 値とAbsolute 値を比較し、より高い値での判定を行うように設定します。	

・ 設定されていない場合(設定が破線)は、判定を行いません。

・ dB&dBm で一方の設定がされていない場合は、設定されている値が Limit 値となります。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「判定対象を dB&dBm にする」

<Program> TERM RF DSPL SETTBL_ACP JUDGUNIT_ACP RELABS JUDGUNIT_ACP?

<Response> RELABS

JUDGUNIT_SPTBL

Judgement Unit for Spurious Spot Method

Program Message	Query Message	Response Message
JUDGUNIT_SPTBL a	JUDGUNIT_SPTBL?	a

■機能

スプリアス測定の Spot 法での判定の単位を切り替えます。

■a の値

Relative/Absolute

а	Judge Unit	初期値
ON ※1	、統計値($d\mathbf{P}_{m}$)で判定を行います	*
ABS	一把对他(dBm)で利定を行います。	
OFF ※2	相対値(JD)で判定を行います	
REL	「旧刈旧($\mathbf{u}\mathbf{D}$) く刊たて1) (より	
RELABS	絶対値(dBm),相対値のうち条件の厳しい方で判定を行います	
WATT	絶対値(W)で判定を行います。	
RELWATT	絶対値(W),相対値のうち条件の厳しい方で判定を行います	

※1 Response は ABS となります。

※2 Response は REL となります。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Unit Judge を Relative に設定する」

<Program> DSPL SETTBL_SPU,SPOT JUDGUNIT_SPTBL ON JUDGUNIT_SPTBL?

<Response> ABS

JUDGUNIT_SWTBL

Judgement Unit for Spurious Sweep/Search Method

Program Message	Query Message	Response Message
JUDGUNIT_SWTBL a	JUDGUNIT_SWTBL?	a

■機能

スプリアス測定の Sweep/Serch 法での判定の単位を切り替えます。

■a の値

Relative/Absolute

а	Judge Unit	初期値
ON ※1	絶対値(dBm)で判定を行います。	*
ABS		~
OFF ※2	相対値(dB)で判定を行います	
REL		
RELABS	絶対値(dBm),相対値のうち条件の厳しい方で判定を行います	
WATT	絶対値(W)で判定を行います。	
RELWATT	絶対値(W),相対値のうち条件の厳しい方で判定を行います	*

※1 Response は ABS となります。

※2 Response は REL となります。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Unit Judge を Relative に設定する。」

<Program> DSPL SPURIOUS,SWEEP JUDGUNIT_SWTBL ON JUDGUNIT_SWTBL?

<Response> ABS

LVLREL

Relative Level

Program Message	Query Message	Response Message
LVLREL a	LVLREL?	a

■機能

RF Power 画面において, 波形の相対表示の設定をします。相対値表示にした場合は, バースト内平均電力が基準 値となります。また, 絶対値表示にした場合はテンプレートの表示はできません。

■a の値

а	相対値表示の On/Off		初期値
ON	Relative Level	波形縦軸目盛りを相対値(dB単位)で表示します。	*
OFF	Absolute Level	波形相対目盛りを絶対値(dBm 単位)で表示します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「波形を絶対値表示にする」

<Program> MEAS RFPWR LVLREL OFF LVLREL?

<Response> OFF
MAGTDERR

RMS Magnitude Error

Program Message	Query Message	Response Message
	MAGTDERR?	a

■機能

Modulation Analysis 画面において, Magnitude Error の RMS 値の測定結果を出力します。

■a の値

Magnitude Error

分解能	単位
0.01	%

■使用例

「Magnitude Error の測定結果を読み出す」

<Program> DSPL MODANAL SWP MAGTDERR?

<Response> 12.34

MAXPWR

Maximum Power

Program Message	Query Message	Response Message
	MAXPWR? (a)	Ь

■機能

RF Power 画面において、1 フレーム間のバースト内最大電力を、バースト内平均電力の相対値で出力します。 引数が無い場合は Normal Burst の値を、Slot 番号が指定された場合は、その Slot の値を出力します。

■a の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■b の値

バースト内最大電力

分解能	出力単位
0.01	dB

■使用例

「Normal Burst の最大電力を読み出す」

<Program> DSPL RFPWR SWP MAXPWR?

<Response> 0.06

MEAS

Switch Screen and Measure Start

Program Message	Query Message	Response Message
MEAS a, b MEAS a	MEAS?	a, b

■機能

測定画面に戻り, Single モードで掃引を実行します。

■a,b の値

a: 測定画面名

b: 測定方法/テンプレートの種類

а	b	測定画面名	測定方法/テンプレートの種類	初期値	Input Terminal
SETCOM		Setup Common Parameter		*	
MODANAL		Modulation Analysis			
RFPWR		RF Power			RF,
SETTEMP_RFPW R		Setup Template for			IQ-DC IQ-AC
SETTEMP 💥		Ki i öwei			IQ-Balance
MSPS		Multi Slot Parameter Setup			
ADJ	HIGH	Output RF Spectrum	High Speed		
SETTBL_ACP		Setup Output RF Spectrum			
	SPOT		Spot		RF
SPURIOUS	SEARCH	Spurious Emission	Search		iu -
	SWEEP		Sweep		
CETTDI CDII	SPOT	Satur Table of Snurious	Spot		
SETTEL_SFU	SWEEP	Setup Table of Spurious	Sweep		
RELPWRREF		Setup Reference Power			
PWRMTR		Power Meter			
IQLVL		IQ Level			IQ-DC,IQ-AC IQ-Balance

※Program Message "MEAS SETTEMP"の Response Message は"SETTEMP_RFPWR"です。

■使用例

①「Modulation Analysis 画面で測定を実行する」 <Program> MEAS MODANAL MEAS?

<Response> MODANAL ②「Spectrum Emission 画面の Sweep 測定を実行する」 <Program> MEAS SPURIOUS,SWEEP MEAS?

<Response> SPURIOUS,SWEEP

MEASOBJ

Measuring Object

Program Message	Query Message	Response Message
MEASOBJ a	MEASOBJ?	a

■機能

Setup Common Parameter 画面において,解析対象のバースト信号の種類を設定します。

■a の値

バースト信号の種類

а	バースト信号の種類	初期値
NB	Normal Burst	*
NBMS	Normal Burst (Multi Slot)	
AB	Access Burst	
SB	Synchronization Burst	
CONT	Continuous	

■制約条件

・ Modulation Analysis が 8-PSK の場合, Access Burst, Synchronization Burst は設定できません。

■設定の初期化

*RST

■使用例

「解析対象を Access Burst に設定する」

<Program> MODTYPE GMSK MEASOBJ AB MEASOBJ?

<Response> AB

MINPWR

Minimum Power

Program Message	Query Message	Response Message
	MINPER? (a)	b

■機能

RF Power 画面において、1 フレーム間のバースト内最小電力を、バースト内平均電力の相対値で出力します。 引数が無い場合は Normal Burst の値を、Slot 番号が指定された場合は、その Slot の値を出力します。

■a の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■b の値

バースト内最小電力

分解能	単位
0.01	dB

■使用例

「バースト内最小電力を読み出す」

<Program> DSPL MODANAL SWP MINPWR?

<Response>

-0.12

MKL_ACP

Marker Level for Output RF Spectrum

Program Message	Query Message	Response Message
	MKL_ACP?	a

■機能

Output RF Spectrum 画面において, Spot Marker 位置における Power 値を読み出します。

■a の値

Power

分解能	単位	
0.01	dB or dBm	

■使用例

「+100kHz における 0.0symbol の Power レベルを読み出す」

<Program> TERM RF DSPL ADJ,HIGH SWP TRFORM_ACP MOD MKP_ACP 100KZ OPRTT_ACP SPOT MKP_ACP 0 MKL_ACP?

<Response>

-10.32

MKL_MOD

Marker Level for Modulation Analysis

Program Message	Query Message	Response Message
	MKL_MOD? a	b

■機能

Modulation Analysis 画面において、マーカ位置における各測定値を読み出しします。

■a の値

出力信号の種類

値	Trace Format(<i>cf</i> . TRFORM)
なし	Trellis, Eye Diagram, Phase Error, Magnitude Error の内, 既存設定の Trace Format について出力します。
Ι	I 信号 (Trace Format が Constellation, Eye Diagram の場合だけ設定可。)
Q	Q信号(Trace Format が Constellation, Eye Diagram の場合だけ設定可。)

■b の値

Marker Level

Trace Format	分解能	単位
Constellation	0.0001	なし
Trellis	0.1	deg
Eye Diagram	0.0001	なし
Phase Error	0.01	deg
Magnitude Error	0.01	%

■制約条件

• Trace Format が Constellation, Trellis, Eye Diagram, Phase Error, Magnitude Error 以外の場合は"***"が出力されます。

・Marker が OFF になっている場合は"***"が出力されます。

■使用例

「128.0symbol における Phase Error を読み出す」 <Program> DSPL MODANAL TRFORM PHASE MKR_MOD NRM MKP_MOD 128 MKL_MOD? <Response>

-0.289

MKL_RFPWR

Marker Level for RF Power

Program Message	Query Message	Response Message
	MKL_RFPWR?	a

■機能

RF Power 画面において、マーカ位置における Power 値を読み出します。

■a の値

Power

分解能	単位
0.01	dB

制約事項

・ Marker Mode for RF Power が Offの場合は、 "***" が出力されます。

■使用例

「Frame ウインドウの 80.0symbol のところの Power 値を読み出す」

<Program> DSPL RFPWR WINDOW FRAME MKR_RFPWR NRM MKP_RFPWR 80.0 MKL_RFPWR?

<Response>

-10.62

MKL_SPU

Marker Level for Spurious Emission

Program Message	Query Message	Response Message
—	MKL_SPU? a	b

■機能

Spurious Emission 画面における, Marker 位置の測定値を出力します。

■a の値

出力単位

а	単位	
なし	dBm	
DBM	dBm	
DB	dB	
WATT	W	

■b の値

Marker Level

分解能	単位
0.01	dB
0.01	dBm
有効数字4桁(浮動小数点型)	W

■制約条件

・波形が存在しない場合には***を出力します。

■使用例

「80ポイントの位置での電力を読み出す」

<Program> DSPL SPURIOUS,SWEEP SWP WAVEFORM_SPU ON MKP_SPU 80 MKL_SPU?

<Response>

-10.62

MKP_ACP

Marker Position for Output RF Spectrum

Program Message	Query Message	Response Message
MKP_ACP a	MKP_ACP?	a
MKP_ACP b	MKP_ACP?	b

■機能

Output RF Spectrum 画面において, Marker 位置を指定します。

■a の値

Marker 位置 (Spectrum Marker)

範囲	Measure Range	初期値	単位
-1800000 \sim +1800000	1.8MHz	0	Hz

備考

以下の設定値のみ選択できます。

 $\pm100 \rm kHz,$ $\pm200 \rm kHz,$ $\pm250 \rm kHz,$ $\pm400 \rm kHz,$ $\pm600 \rm kHz,$ $\pm800 \rm kHz,$ $\pm10 \rm Hz,$ $\pm1.2 \rm MHz,$ $\pm1.4 \rm MHz,$ $\pm1.6 \rm MHz,$ $\pm1.8 \rm MHz$

ロサフィックスコード

なし : Hz HZ : Hz KHZ, KZ : kHz MHZ, MZ : MHz GHz, GZ : GHz

■b の値

Marker 位置 (Spot Marker)

範囲	初期値	分解能	単位
$0.0 \sim 167.0$	0.0	0.1	Symbol

■制約条件

・対象となる Marker は同画面の Operation Trace により選択されている Marker となります。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Spectrum 波形の Marker において, +1MHz のところにマーカを表示する」

<Program> DSPL ADJ,HIGH TRFORM_ACP MOD MKP_ACP 1MHZ MKP_ACP?

<Response> 1000000

MKP_MOD

Marker Position for Modulation Analysis

Program Message	Query Message	Response Message
MKP_MOD a	MKP_MOD?	a

■機能

Modulation Analysis 画面において, Marker 位置を指定します。

■a の値

Marker 位置

範囲	Modulation Type	Trace Format	分解能	初期值	単位
0.0 147.0	CMSV	Constellation	1.0	73.0	
$0.0 \sim 14/.0$ GMSK		Eye Diagram, Phase Error, Magnitude Error, Trellis	0.1	73.5	armah al
2.0 144.0	9 DCV	Constellation, EVE, Phase Error, Magnitude Error	1.0	73.0	symbol
3.0~144.0 8-PSK		Eye Diagram	0.1	73.5	

■制約条件

・Trace Format が Non の場合は設定できません。

・ Marker Mode が Off の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Phase Error 表示において、128symbol のところにマーカを表示する」

<Program> MEAS MODANAL TRFORM PHASE MKR_MOD NRM MKP_MOD 128 MKP_MOD?

<Response> 128.0

MKP_RFPWR

Marker Position for RF Power

Program Message	Query Message	Response Message
MKP_RFPWR a	MKP_RFPWR?	a

■機能

RF Power 画面において, Marker 位置の指定をします。

■a の値

マーカ位置

範囲	Window	分解能	初期値	単位
$-27.0 \sim 174.0$	Slot, On Portion	0.1	73.5	
$-20.0 \sim 127.4$	Frame	0.1	73.5	Symbol
$-13.0 \sim 8.0$	Leading	0.1	-2.5	Symbol
139.0 ~ 161.0	Trailing	0.1	150.0	

■制約条件

・ Marker Mode for RF Power が Off の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Frame ウインドウの 80symbol のところにマーキングをする」 <Program> MEAS RFPWR WINDOW FRAME MKR_RFPWR NRM MKP_RFPWR 80.0 MKP_RFPWR?

<Response> 80.0

MKP_SPU

Marker Position for Spurious Emission

Program Message	Query Message	Response Message
MKP_SPU a	MKP_SPU?	a

■機能

Spurious Emission 画面における Marker 位置を指定します。

■a の値

ポイント位置

Data Points	範囲	分解能	初期値
501	$0 \sim 500$	1	
1001	0~1000	1	Marker Level か取入他のホイント

■設定の初期化

PRE,INI,IP,*RST

■使用例

「50ポイント目にマーカを設定する」

<Program> DSPL SPURIOUS,SPOT WAVEFORM_SPU ON MKP_SPU 50 MKP_SPU?

<Response>

50

MKR_MOD

Marker Mode

Program Message	Query Message	Response Message
MKR_MOD a	MKR_MOD?	a

■機能

Modulation Analysis 画面において, Marker の On/Offを設定します。

■a の値

Marker 設定

値	Marker 設定	初期値
NRM	Normal: マーカの表示を行い, マーカ位置をエントリ状態にします。	
OFF	Off: マーカの表示を消去し,マーカ位置のエントリ状態を解除します。	*

■制約条件

・Trace Format が Non の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「マーカを表示をする」

<Program> MEAS MODANAL TRFORM PHASE MKR_MOD NRM MKR_MOD?

<Response> NRM

MKR_RFPWR

Marker Mode for RF Power

Program Message	Query Message	Response Message
MKR_RFPWR a	MKR_RFPWR?	a

■機能

RF Power 測定において, Marker の On/Off を設定します。

■a の値

Marker 設定

値	Marker 設定	初期値
NRM	Normal:マーカの表示を行い、マーカ位置をエントリ状態にします。	
OFF	Off:マーカの表示を消去し、マーカ位置のエントリ状態を解除します。	*

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Marker を On にする」

<Program> MEAS RFPWR MKR_RFPWR NRM MKR_RFPWR?

<Response> NRM

MLTCARRCAL

Multi Carrier Power Calibration

■構文

Program Message	Query Message	Response Message
MLTCARRCAL		

■機能

内部Cal信号を絶対値基準にした校正を行う。

■制約条件

実行可能な画面は以下のとおりです(DSPL 参照)。

Modulation Analysis

■RF Power

■Output RF Spectrum

■ Spurious Emission

Terminal が RF 以外の場合は実行できません。

■使用例

「内部Cal信号を絶対値基準にした校正を実行する」 <Program> DSPL MODANAL MLTCARRCAL

MODPWR

Due to Modulation

Program Message	Query Message	Response Message
	MODPWR ? <i>Fa,b,c</i>	d

■機能

Output RF Spectrum 画面において, Due to Modulation の値を読み出します。

■a の値

周波数テーブル

範囲	分解能
1~11	1

■b の値

Lower/Upper

b	Lower/Upper
UP	Upper
LOW	Lower

■cの値

出力単位

С	出力単位	
DB	dB	
DBM	dBm	

■制約条件

・a, b, c ともに設定しない場合は、Carrier Frequecyのレベルを dBm 単位で読み出します。

・ cのみを設定しない場合は、Unit for Output RF Spectrum で設定されている単位で読み出します。

■使用例

①「Carrier Frequency の Due to Modulation を読み出す」 <Program> DSPL ADJ,HIGH SWP MODPWR?

<Response>

-39.56

②「周波数テーブル f6 の Upper 側の Due to Modulation を dB 単位で読み出す」 <Program> DSPL ADJ,HIGH SWP MODPWR? F6,UP,DB

<Response> -42.99

MODSWTCH_ADJ

Analysis Range for Ouput RF Spectrum

Program Message	Query Message	Response Message
MODSWTCH_ADJ a	MODSWTCH_ADJ?	а

■機能

Output RF Spectrum 画面において測定範囲の選択を行います。

■a の値

測定範囲の種類

а	測定範囲の種類	初期値
SLOT	測定範囲を Slot として扱うよう設定します。	*
FRAME	測定範囲を Frame として扱うよう設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Setup Common Parameter 画面の Measuring Object が Normal Burst (Multi Slot)以外の場合は設定できません。

■使用例

「測定範囲を FRAME にする」

<Program> MEASOBJ NBMS DSPL ADJ HIGH MODSWTCH_ADJ FRAME MODSWTCH_ADJ?

<Response> FRAME

MODSWTCH_MOD

Analysis Range for Modulation Analysis

Program Message	Query Message	Response Message
MODSWTCH_MOD a	MODSWTCH_MOD?	a

■機能

Modulation Analysis 画面において測定範囲の選択を行います。

■a の値

測定範囲の種類

а	測定範囲の種類	初期値
SLOT	測定範囲を Slot として扱うよう設定します。	
FRAME	測定範囲を Frame として扱うよう設定します。	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Setup Common Parameter 画面の Measuring Object が Normal Burst (Multi Slot)以外の場合は設定できません。

■使用例

「測定範囲を FRAME にする」

<Program> MEASOBJ NBMS DSPL MODANAL MODSWTCH_MOD FRAME MODSWTCH_MOD?

<Response> FRAME

MODTYPE

Modulation Type

Program Message	Query Message	Response Message
MODTYPE a	MODTYPE?	a

■機能

Setup Common Parameter 画面において, 測定対象の変調方式を設定します。

■a の値

変調方式

а	変調方式	初期値
GMSK	GMSK	*
8PSK	8-PSK	

■設定の初期化

*RST

■使用例

「測定対象の変調方式を 8-PSK に設定する」

<Program> DSPL SETCOM MODTYPE 8PSK MODTYPE?

<Response> 8PSK

OFFPWR

Carrier Off Power

Program Message	Query Message	Response Message
	OFFPWR? <i>a(,b)</i>	С

■機能

RF Power 画面において、1フレーム間の送信 OFF 時平均電力を表示します。

Slot の指定が無い場合は Normal Burst の値を, Slot 番号が指定された場合は, その Slot の値を出力します。 なお Measuring Object が Normal Burst(Multi Slot)以外の設定になっている際に, Slot 番号を指定して Multi Slot の測定結果を出力した場合, アスタリスクが返ります。

■a の値

出力単位

а	出力単位
DBM	dBm
WATT	W

■b の値

Slot 番号

範囲	分解能
0~7	1

■cの値

送信 OFF 時平均電力

分解能	単位
0.01	a の値による

■使用例

「送信 OFF 時平均電力を読み出す」

<Program> DSPL RFPWR SWP OFFPWR? DBM

<Response> -47.63

ORGNOFS

Origin Offset

Program Message	Query Message	Response Message
	ORGNOFS?	a

■機能

Modulation Analysis 画面において, 被測定信号の原点オフセット(キャリアリーク成分)の測定結果を出力します。

■a の値

Origin Offset 値

分解能	単位
0.01	dB

■使用例

「Origin Offset 値を読み出す」

<Program> DSPL MODANAL SWP ORGNOFS?

<Response> -34.33

OPRTT_ACP

Operation Trace

Program Message	Query Message	Response Message
OPRTT_ACP a	OPRTT_ACP?	a

■機能

Output RF Spectrum 画面において, Operation Trace の設定をします。

■a の値

Operation Trace

а	Operation Trace	初期値
SPECT	Spectrum	*
SPOT	Spot	

■制約条件

・Trace Format が Non の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Operation Trace を Spot に設定する」

<Program> TERM RF DSPL ADJ,HIGH TRFORM_ACP MOD OPRTT_ACP SPOT OPRTT_ACP?

<Response> SPOT

PATT

Training Sequence Pattern

Program Message	Query Message	Response Message
PATT a	PATT?	а

■機能

Setup Common Parameter 画面において, Training Sequence の種類を設定します。

■aの値

Training Sequence

а	Training Sequence	初期値	Measuring Object
TSC0	TSC0	*	
TSC1	TSC1		
TSC2	TSC2		
TSC3	TSC3		Normal Durat
TSC4	TSC4		Normai Burst
TSC5	TSC5		
TSC6	TSC6		
TSC7	TSC7		
ETSC	096FF335478	*	Access Burst
SYNCH	B962040F2D45761B	*	Synchronization Burst
NO	Training Sequence を行いません。		Normal Burst Access Burst Synchronization Burst
USER	Training Sequence をユーザが設定します。		Normal Burst Access Burst Synchronization Burst

■制約条件

・ Measuring Object が Continuous の場合は設定できません。

■設定の初期化

*RST

■使用例

「Training Sequence を TSC1 に設定する」

<Program> MEASOBJ NB PATT TSC1 PATT?

<Response> TSC1

PATT_MSPS

Training Sequence Pattarn

Program Message	Query Message	Response Message
PATT_MSPS <i>a</i> , <i>b</i>	PATT_MSPS? b	a

■機能

Maulti Slot Parameter Setup 画面において、Slot0~Slot7の Training Sequence の種類を設定します。

■a の値

Training Sequence

а	Training Sequence	初期値	Measuring Object
TSC0	TSC0	*	
TSC1	TSC1		
TSC2	TSC2		
TSC3	TSC3		Normal Durat (Multi Slat)
TSC4	TSC4		Normal Burst (Multi Slot)
TSC5	TSC5		
TSC6	TSC6		
TSC7	TSC7		
NO	Training Sequence を行いません。		Normal Burst (Multi Slot) Access Burst Synchronization Burst
USER	Training Sequence をユーザが設定します。		Normal Burst (Multi Slot) Access Burst Synchronization Burst

$\blacksquare b$ の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Multi Slot Parameter Setup 画面の Slot1 の Training Sequence を TSC1 に設定する」

<Program> MEASOBJ NBMS DSPL MSPS PATT_MSPS TSC1,1 PATT_MSPS? 1

<Response> TSC1

PATT_UBIT

Training Sequence Bit Pattarn by user setting

Program Message	Query Message	Response Message
PATT_UBIT a	PATT_UBIT?	a

■機能

Setup Common Parameter 画面において, Training Sequence をユーザ設定にしたときの Training Sequence Bit Pattarn を設定します。

■aの値

Training Sequence Bit Pattern

範囲※	変調方式	分解能	初期値	単位
$0 \sim$ FFFFFFFFFFFFFFFFF	GMSK	1	0000000	bit
$0 \sim 77777777777777777777777777777777777$	8-PSK	1	000000000	bit

※設定範囲は User Pattern Length の値によって決定されます。

■制約条件

- ・ Measuring Object が Continuous の場合は設定できません。
- ・ Trairing Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■ 使用例 「ユーザ定義の Training Sequence ビットパターンを FFFF に設定する」

<Program> MODTYPE GMSK MEASOBJ NB PATT USER PATT_ULEN 16 PATT_UBIT FFFF PATT_UBIT?

<Response> FFFF

PATT_ULEN

Training Sequence Length by user setting

Program Message	Query Message	Response Message
PATT_ULEN a	PATT_ULEN?	a

■機能

Setup Common Parameter 画面において, Training Sequence をユーザ設定にしたときの Training Sequence 長を設定します。

■a の値

Training Sequence Bit Pattern

範囲	変調方式	分解能	初期値	単位
$1 \sim 64$	GMSK	1	26	symbol
$1 \sim 26$	8-PSK	1	26	symbol

■制約条件

- ・ Measuring Object が Continuous の場合は設定できません。
- ・ Training Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Normal Burst の Training Sequence 長を 64symbol 設定する」

<Program> MODTYPE GMSK MEASOBJ NB PATT USER PATT_ULEN 64 PATT_ULEN?

<Response> 64

PATT_USTART

Start Point of Training Sequence by user setting

Program Message	Query Message	Response Message
PATT_USTART a	PATT_USTART?	а

■機能

Setup Common Parameter 画面において, Training Sequence をユーザ設定にしたとき, 1 バースト内のどの位置を Training Sequence の開始位置にするかを設定します。

■a の値

Training Sequence の開始位置

範囲	変調方式	Measuring Object	分解能	初期值	単位
$0 \sim (87 - \text{User Pattern Length})$	CMCR	AB			1.:4
$0 \sim (147 - \text{User Pattern Length})$	GMSK	AB 以外	1	61	bit
$0 \sim (147 - \text{User Pattern Length})$	8-PSK	NB			symbol

■制約条件

・ Measuring Object が Continuous の場合は設定できません。

・ Training Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Training Sequence 開始ビットを Obit に設定する」

<Program> MODTYPE GMSK MEASOBJ NB PATT USER PATT_USTART 0 PATT_USTART?

<Response>

0

PHASEERR

RMS Phase Error

Program Message	Query Message	Response Message
	PHASEERR?	a

■機能

Modulation Analysis 画面において、1 バースト内の位相誤差の RMS 値を設定します。

■a の値

1バースト内の位相誤差の RMS 値

分解能	単位
0.01	deg

■使用例

「位相誤差の RMS 値を読み出す」

<Program> DSPL MODANAL PHASEERR?

<Response> 2.71

PMAGTDERR

Peak Magnitude Error

Program Message	Query Message	Response Message
	PMAGTDERR? a	b

■機能

Modulation Analysis 画面において, Magnitude Error の最大瞬時値を出力します。

■a の値

Magnitude Error の正負記号

а	正負記号
なし	ピーク値
+	正のピーク値
_	負のピーク値

■b の値

aで指定された符号の Magnitude Error の最大値

分解能	単位
0.01	%

■使用例

「Magnitude Error の最大値を読み出す」

<Program> DSPL MODANAL SWP PMAGTDERR?

<Response> 16.67
PMAGTDSYM

Symbol at Peak Magnitude Error

Program Message	Query Message	Response Message
	PMAGTDSYM? a	b

■機能

Modulation Analysis 画面において, Magnitude Error の最大瞬時値をとるときのシンボル値を出力します。

■aの値

Magnitude Error の正負記号

а	正負記号
なし	ピーク値
+	正のピーク値
_	負のピーク値

■b の値

シンボル値

分解能	単位
0.1	symbol

■使用例

「Magnitude Error の最大値をとるときのシンボル値を読み出す」

<Program> DSPL MODANAL PMAGTDSYM?

<Response> 13.1

POWER

Power

Program Message	Query Message	Response Message
	POWER? a	Ь

■機能

パワーメータによる RF 平均電力の絶対値または相対値を出力します。

■a の値

読み出し単位

а	単位
DBM	dBm
WATT	W
DB	dB

■b の値

RF 平均電力の絶対値または相対値

分解能	単位
0.01	dBまたは dBm
有効数字4桁(不動小数点型)	W

■使用例

「dBm 単位で RF 平均電力を読み出す」

<Program> POWER? DBM

<Response>

-1.43

PPHASEERR

Peak Phase Error

Program Message	Query Message	Response Message
	PPHASEERR? a	b

■機能

Modulation Analysis 画面において, 位相誤差の最大瞬時値を出力します。

■a の値

位相誤差の正負記号

а	正負記号
なし	ピーク値
+	正のピーク値
_	負のピーク値

■b の値

a で指定された符号の位相誤差の最大値

分解能	単位
0.01	deg

■使用例

「位相誤差絶対値の最大値を読み出す」

<Program> DSPL MODANAL PPHASEERR?

<Response>

7.21

PPHASESYM

Symbol at Peak Phase Error

Program Message	Query Message	Response Message
	PPHASESYM? a	Ь

■機能

Modulation Analysis 画面において, Peak Error が最大瞬時値をとるときのシンボル値を出力します。

■a の値

位相誤差の正負記号

а	正負記号
なし	ピーク値
+	正のピーク値
_	負のピーク値

■b の値

シンボル値

分解能	単位
0.1	symbol

■使用例

「Peak Error が最大値をとるときのシンボル値を読み出す」

<Program> DSPL MODANAL PPHASESYM?

<Response>

83.1

PRE

Preset

Program Message	Query Message	Response Message
PRE		

■機能

すべての初期化対象測定制御パラメータを初期化します。INI, IP コマンドと同機能です。

■使用例

「初期化対象のパラメータを初期化する」

<Program>

PRE

PREAMP

Pre Ampl

Program Message	Query Message	Response Message
PREAMP a	PREAMP?	a

■機能

Pre Ampl の On/Off を設定します。

■a の値

Pre Ampl の On/Off 設定

値	Pre Ampl	初期値
ON	Pre Ampl を On に設定します。	
OFF	Pre Amplを Off に設定します。	*

■設定の初期化

*RST

■使用例

「Pre Ampl を On にする」

<Program> PREAMP ON PREAMP?

<Response> ON

■注意

※この機能はオプションです。

PVECTERR

Peak EVM

Program Message	Query Message	Response Message
	PVECTERR?	a

■機能

Modulation Analysis 画面において, EVM のピーク値の測定結果を出力します。

■aの値

Peak EVM

分解能	単位
0.01	%

■使用例

「Peak EVM 値を読み出す」

<Program> DSPL MODANAL SWP PVECTERR?

<Response> 45.23

PWRCAL

Power Calibration

Program Message	Query Message	Response Message
PWRCAL	PWRCAL?	a

■機能

"PWRCAL"でパワー測定における校正, "PWRCAL?"で校正値の読み出しを行います。校正値の設定は "CALVAL"で,外部制御でのみ設定できます。

■a の値

校正値

範囲	分解能	初期値	単位
$-10.00 \sim 10.00$	0.01	0.00	dBm

■使用例

「パワー測定における校正を行う」

<Program> DSPL MODANAL CALVAL 2.33 PWRCAL? PWRCAL

<Response>

2.33

PWRREFABS_SPU

Absolute Power Reference for Spurious Emission

Program Message	Query Message	Response Message
PWRREFABS_SPU a	PWRREFABS_SPU?	a

■機能

Spurious Emission でのパワーの絶対値の基準を設定します。

■a の値

パワーの絶対値の基準

а	パワーの絶対値の基準		初期値
NONE	None	スペクトラムアナライザの測定値そのものです。	
TXPWR	Tx Power	Tx Power を基準に使用します。	*
SET	Set	Absolute Power Set Value(PWRVALABS_SPU)の設定値を基準に使用します。	

Absolute Power ReferenceとRelative Power Referenceの設定により、スプリアスの絶対値は下記の関係になります。スペクトラムアナライザの掃引データをx(dBm)とします。

		Absolute Power Reference (dBm)		
		None	Tx Power (a)	Set (b)
Relative	SPA (c)	x	a + x - c	b + x - c
Power Reference	Tx Power (a)	x	х	b + x - a
(dBm)	Set (d)	х	a + x - d	b + x - d

また,スプリアスの相対値は下記の関係になります。

Relative	SPA (c)	x – c
Power Reference	Tx Power (a)	x – a
(dBm)	Set (d)	x – d

■設定の初期化

PRE, INI, IP, *RST

■使用例

「パワーの絶対値の基準を Tx Power に設定します」

<Program> DSPL RELPWRREF PWRREFABS_SPU TXPWR PWRREFABS_SPU?

<Response> TXPWR

PWRVALABS_SPU

Absolute Power Set Value for Spurious Emission

Program Message	Query Message	Response Message
PWRVALABS_SPU a	PWRVALABS_SPU?	a

■機能

Spurious Emission の Setup Ref Power 画面においてパワーの絶対値の基準に Set を設定した場合の基準パワーを設定します。

■a の値

パワーの絶対値の基準

範囲	分解能	初期値	単位
-99.99~99.99	0.01	0.00	dBm

■設定の初期化

PRE, INI, IP, *RST

■制約条件

• Absolute Power Reference の設定が set の時のみ, 設定可能です。

■使用例

「基準パワーを 10dBm に設定します」

<Program> DSPL RELPWRREF PWRREFABS_SPU SET PWRVALABS_SPU 10 PWRVALABS_SPU?

<Response> 10.00

PWRREFREL_SPU

Relative Power Reference for Spurious Emission

Program Message	Query Message	Response Message
PWRREFREL_SPU a	PWRREFREL_SPU?	a

■機能

Spurious Emission でのパワーの相対値の基準を設定します。

■a の値

パワーの相対値の基準

а	パワーの相対値の基準		初期値
SPA	SPA	Setup Reference Power で設定したスペクトラムアナライザの設定 で掃引により得るパワーを基準に使用します。	*
TXPWR	Tx Power	Tx Power を基準に使用します。	
SET	Set	Relative Power Set Value(PWRVALREL_SPU)の設定値を基 準に使用します。	

Absolute Power ReferenceとRelative Power Referenceの設定により、スプリアスの絶対値は下記の関係になります。スペクトラムアナライザの掃引データをx(dBm)とします。

		Absolute Power Reference (dBm)		
		None	Tx Power (a)	Set (b)
Relative	SPA (c)	x	a + x - c	b + x - c
Power Reference	Tx Power (a)	x	х	b + x - a
(dBm)	Set (d)	х	a + x - d	b + x - d

また,スプリアスの相対値は下記の関係になります。

Relative	SPA (c)	x – c
Power Reference	Tx Power (a)	x – a
(dBm)	Set (d)	x - d

■設定の初期化

PRE, INI, IP, *RST

■使用例

「パワーの相対値の基準をTx Power に設定します」

<Program> DSPL RELPWRREF PWRREFREL_SPU TXPWR PWRREFREL_SPU?

<Response> TXPWR

PWRVALREL_SPU

Relative Power Set Value for Spurious Emission

Program Message	Query Message	Response Message
PWRVALREL_SPU a	PWRVALREL_SPU?	a

■機能

Spurious Emission の Setup Ref Power 画面においてパワーの相対値の基準に Set を設定した場合の基準パワーを設定します。

■a の値

パワーの相対値の基準

範囲	分解能	初期値	単位
-99.99~99.99	0.01	0.00	dBm

■設定の初期化

PRE, INI, IP, *RST

■制約条件

Relative Power Reference の設定が set の時のみ, 設定可能です。

■使用例

「基準パワーを 10dBm に設定します」

<Program> DSPL RELPWRREF PWRREFREL_SPU SET PWRVALREL_SPU 10 PWRVALREL_SPU?

<Response> 10.00

QLVL

Q Level (RMS)

Program Message	Query Message	Response Message
	QLVL? a	b

■機能

IQ Level 画面において、Q 信号の RMS 値の測定結果を読み出します。

■a の値

読み出し単位

а	読み出し単位
なし	既存の設定単位
MV	mV
DBMV	dBmV

■bの値

Q 信号の RMS 値

分解能	単位
0.01	a の値による

■使用例

「Q Level (RMS) 値を読み出す」

<Program> TERM IQAC MEAS IQLVL QLVL? MV

<Response> 0.53

QPPLVL

Q Level (Peak to Peak)

Program Message	Query Message	Response Message
	QPPLVL? a	b

■機能

IQ Level 画面において, Q 信号の Peak to Peak 値の測定結果を読み出します。

■a の値

読み出し単位

а	読み出し単位
なし	既存の設定単位
MV	mV
DBMV	dBmV

■b の値

Q 信号の Peak to Peak 値

分解能	単位
0.01	a の値による

■使用例

「Q Level (Peak to Peak) 値を読み出す」

<Program> TERM IQAC MEAS IQLVL

QPPLVL? MV

<Response> 3.55

RATIO

On/Off Ratio

Program Message	Query Message	Response Message
	RATIO? (a)	b

■機能

RF Power 測定において, バースト内平均電力(Tx Power)と送信オフ時平均電力(Carrier Off Power)の比を出力します。

引数が無い場合は Normal Burst の値を, Slot 番号が指定された場合は, その Slot の値を出力します。

なお Measuring Object が Normal Burst(Multi Slot)以外の設定になっている際に, Slot 番号を指定して Multi Slot の測定結果を出力した場合, アスタリスクが返ります。

■aの値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■b の値

On/Off 比

分解能	単位
0.01	dB

■使用例

「Normal Burst の On/Off ratio を読み出す」 <Program> DSPL RFPWR SWP RATIO?

<Response> 72.66

RBW_SETREF_SPU

Resolution Bandwidth for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
RBW_SETREF_SPU a	RBW_SETREF_SPU?	a

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の RBW (Resolution Bandwidth)を設定します。

■a の値

RBW

Detection により設定範囲が異なります(DET_SETREF_SPU 参照)。

Detection	範囲			分解能	初期値	単位	
Positive	300	1000	3000	10000			
Negative	30000	100000	300000	1000000			
Average	3000000	5000000	10000000	20000000	1	$1 \mathrm{MH}_{7}$	H_{7}
	10	30	100	300	T	1101112	112
RMS	1000	3000	10000	30000			
	100000	300000	10000000				

■設定の初期化

PRE, INI, IP, *RST

■使用例

「RBW を 3kHz に設定する」

<Program> RBW_SETREF_SPU 3000 RBW_SETREF_SPU?

<Response> 3000

RFINPUT

RF Input connector

Program Message	Query Message	Response Message
RFINPUT a	RFINPUT?	a

■機能

入力する RF 信号のコネクタを設定します。

■a の値

RF 信号の入力コネクタ

а	RF 信号の入力コネクタ	初期値
HIGH	High Power Input	*
LOW	Low Power Input	

■設定の初期化

*RST

■使用例

「RF 信号の入力コネクタを High Power Input に設定する」

<Program> RFINPUT HIGH RFINPUT?

<Response> HIGH

RFLVL

Reference Level

Program Message	Query Message	Response Message
RFLVL a	RFLVL?	a

■機能

Setup Common Parameter 画面において, Reference Level を設定します。

■a の値

Reference Level

範囲	RF Input	初期値	分解能	単位
$(-10.00 + \text{Reference Level Offset}) \sim (42.00 + \text{Reference Level Offset})$	High Power	30.00	0.01	dDaa
$(-30.00 + \text{Reference Level Offset}) \sim (22.00 + \text{Reference Level Offset})$	Low Power	22.00	0.01	uBm

ロサフィックスコード

なし: dBm DBM: dBm

■制約条件

・Terminal が RF 以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Reference Level を-10 dBm に設定する」

<Program> TERM RF RFINPUT HIGH RFLVLOFS 0 RFLVL -10 RFLVL?

<Response> -10.00

RFLVLOFS

Reference Level Offset

Program Message	Query Message	Response Message
RFLVLOFS a	RFLVLOFS?	a

■機能

Setup Common Parameter 画面において, Reference Level の Offset 値を設定します。

■a の値

Reference Level Offset

範囲	分解能	初期値	単位
-99.99~99.99	0.01	0.00	dB

□サフィックスコード なし: dB DB: dB

■制約条件

・Terminal が RF 以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Reference Level Offset を 0.00 dB に設定する」

<Program> TERM RF RFLVLOFS 0.00 RFLVLOFS?

<Response> 0.00

RL_SETREF_SPU

Reference Level for Setup Reference Power

Program Message	Query Message	Response Message
RL_SETREF_SPU a	RL_SETREF_SPU?	a

■機能

Spurious Emission 測定における Reference Level 設定します。

■a の値

Ref Level

範囲	分解能	初期値	単位
制約条件を参照してください	0.01	周波数による	dBm

□サフィックスコード

なし:dBm DBM :dBm

■設定の初期化

PRE, INI, IP, *RST

■制約条件

リファレンスレベルの設定範囲は、RF Input:High/Low (*cf.* RFINPUT)、Per Ampl:On/Off (*cf.* PREAMP)
により次のようになります。なお、RefLevelOffset については、RFLVLOFS を参照してください。

Pre Ampl	RF Input		
	High	Low	
Off	(-100.00+RefLevelOffset) to $(50.00+RefLevelOffset)$	(-120.00+RefLevelOffset) to $(40.00+RefLevelOffset)$	
On	(-120.00+RefLevelOffset) to $(30.00+RefLevelOffset)$	(-140.00+RefLevelOffset) to $(20.00+RefLevelOffset)$	

• RF Input または Per Ampl の変更によって, リファレンスレベルが設定範囲外になる場合は, 最も近い値に丸 められます。

■使用例

「Setup Reference Power 画面の Ref Level を-30 dBm に設定する」

<Program> DSPL RELPWRREF PWRREFREL_SPU SPA RL_SETREF_SPU -30 <Response> -30.00

Range

Program Message	Query Message	Response Message
RNG a		

■機能

パワーメータの測定レンジを上げ下げします。

■a の値

パワーメータのレンジ操作

а	パワーメータのレンジ操作
UP	測定レンジを1段階上げます
DN	測定レンジを1段階下げます

■使用例

「パワーメータの測定レンジを1段階上げる」

Range1

Program Message	Query Message	Response Message
RNG1		

■機能

パワーメータの測定レンジを最低レンジに設定します。 レンジ値は, Input RF level が High power の場合 0 dBm, Low power の場合-20 dBm です。

■使用例

「パワーメータの測定レンジを最低レンジに設定する」

Range2

Program Message	Query Message	Response Message
RNG2		

■機能

パワーメータの測定レンジを最低レンジから2番目のレンジに設定します。 レンジ値は, Input RF level が High power の場合 10 dBm, Low power または場合-10 dBm です。

■使用例

「パワーメータの測定レンジを下から2番目に設定する」

Range3

Program Message	Query Message	Response Message
RNG3		

■機能

パワーメータの測定レンジを中間レベルのレンジに設定します。 レンジ値は, Input RF level が High power の場合は+20 dBm, Low power の場合は 0 dBm です。

■使用例

「パワーメータの測定レンジを中間レベルに設定する」

Range4

Program Message	Query Message	Response Message
RNG4		

■機能

パワーメータの測定レンジを最低レンジから4番目のレンジに設定します。 レンジ値は, Input RF level が High power の場合+30 dBm, Low power の場合+10 dBm です。

■使用例

「パワーメータの測定レンジを最低レンジから4番目に設定します」

Range5

Program Message	Query Message	Response Message
RNG5		

■機能

パワーメータの測定レンジを最大レンジに設定します。 レンジ値は, Input RF level が High power の場合は+40 dBm, Low power の場合は+20 dBm です。

■使用例

「パワーメータの測定レンジを最大レンジに設定します」

SETREL

Set Relative Level

Program Message	Query Message	Response Message
SETREL		

■機能

Power Meter 画面に表示されている電力値を,相対値表示の基準値に設定します。

■使用例

「表示中の電力値を相対値表示の基準値にする」

<Program> DSPL PWRMTR SETREL

SLCTTEMP

Select Template for RF Power

Program Message	Query Message	Response Message
SLCTTEMP a	SLCTTEMP?	a
	SLCTTEMP?	NOT

■機能

RF Power画面において,現在表示されている標準テンプレートの初期化を行います。また,テンプレートの設定変 更などにより,標準以外のテンプレートが表示されている場合は Response として NOT が返されます。 SLCTTEMP_RFPWR コマンドと同機能です。

■a の値

テンプレート

а	内容	初期値
STD	現在表示されている標準テンプレートの初期化をします。	*

■設定の初期化

PRE, INI, IP, *RST

■使用例

「標準のテンプレートに値を戻す」

<Program> DSPL SETTEMP_RFPWR SLCTTEMP STD SLCTTEMP?

<Response> STD

SLCTTEMP_RFPWR

Select Template for RF Power

Program Message	Query Message	Response Message
SLCTTEMP_RFPWR a	SLCTTEMP_RFPWR?	a
	SLCTTEMP_RFPWR?	NOT

■機能

RF Power画面において,現在表示されている標準テンプレートの初期化を行います。また,テンプレートの設定変 更などにより,標準以外のテンプレートが表示されている場合は Response として NOT が返されます。

■a の値

テンプレート

а	内容	初期値
STD	現在表示されている標準テンプレートの初期化をします。	*

■設定の初期化

PRE, INI, IP, *RST

■使用例

「標準のテンプレートに値を戻す」

<Program> DSPL SETTEMP_RFPWR SLCTTEMP_RFPWR STD SLCTTEMP_RFPWR?

<Response>

STD

SLOTPWR

Slot Power

Program Message	Query Message	Response Message
	SLOTPWR? a	Ь

■機能

RF Power画面において、1フレーム間の各スロットの平均電力を出力します。

■a の値

スロット部分

範囲	分解能
0~7	1

■b の値

分解能	単位
1	dBm

■使用例

「6スロット目の平均電力を読み出す」

<Program> DSPL RFPWR SWP SLOTPWR? 6

<Response>

7.21

SNGLS

Single Sweep

Program Message	Query Message	Response Message
SNGLS		

■機能

測定/掃引を1回実行します。掃引/測定が終了しなくても次のメッセージを受け取ります。

■使用例
「測定/掃引を実行する」

<Program> SNGLS

SLTNO_RFPWR

Slot Number

Program Message	Query Message	Response Message
SLTNO_RFPWR a	SLTNO_RFPWR?	a

■機能

RF Power 画面において、Slot 番号の設定を行います。

■aの値

Slot 番号

範囲
SLOT0, SLOT1, SLOT2,, SLOT7

■制約条件

Setup Common Parameter 画面の Measuring Object が Normal Burst (Multi Slot)以外の場合は設定できません。 同様に RF Power 画面の Waveform Display が Off の場合も設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「RF Power 画面において Slot2 を選択する」

<Program> TERM RF MEASOBJ NBMS DSPL RFPWR SLTNO_RFPWR SLOT2 SLTNO_RFPWR?

<Response> SLOT2

SPECT_SPUF

Wave Data (Frequency Domain) for Spurious Emission

Program Message	Query Message	Response Message
-	SPECT_SPUF? a,b,c	<i>d(b),d(b+1),,d(c)</i>

■機能

Spurious Emission 画面における周波数軸掃引の測定結果を出力します。 Spurious Mode が Sweep, および Search 時において, 設定されている周波数テーブルに対して出力可能です。

■a の値

周波数テーブル

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し開始位置

Data Points	範囲	分解能
501	$0 \sim 500$	1
1001	$0 \sim 1000$	1

■cの値

読み出し個数

Data Points	範囲	分解能
501	$1 \sim 501$	1
1001	$1 \sim 1001$	1

■d(b)の値

周波数テーブル a における b 番目の波形データ

範囲	分解能
$-2147483648 \sim 2147483647$	1

• 1 dBm を 100 とした 0.01 dBm 単位の整数で読み出されます。

■制約条件

•

Spurious Mode が Spot 時は出力できません。

■使用例

「Sweep 測定における周波数テーブル F2 の掃引波形を0番地から5個読み出す」

<Program> DSPL SPURIOUS,SWEEP SWP SPECT_SPUF? F2,0,5

<Response> -2345,-2346,-2347,-2346,-2345

SPECT_SPUI

Wave Data (Integral) for Spurious Emission

Program Message	Query Message	Response Message
-	SPECT_SPUI? <i>a</i> , <i>b</i> , <i>c</i>	<i>d(b),d(b+1),,d(c)</i>

■機能

Spurious Emission 画面において, Integral BW で積算した波形データの結果を出力します。 Spurious Mode が Sweep, および Search 時において, 設定されている周波数テーブルに対して出力可能です。

■a の値

周波数テーブル

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し開始位置

Data Points	範囲	分解能
501	$0 \sim 500$	1
1001	0~1000	1

■cの値

読み出し個数

Data Points	範囲	分解能
501	$1 \sim 501$	1
1001	$1 \sim 1001$	1

■d(b)の値

周波数テーブル a における b 番目の波形データ

範囲	分解能
$-2147483648 \sim 2147483647$	1

• 1 dBm を 100 とした 0.01 dBm 単位の整数で読み出されます。

■制約条件

• 演算処理の関係で,一部無効なデータがあります。データが無効な場合は"-2147483648"が出力されます。

■使用例

「Sweep 測定における周波数テーブル F2の積算したデータを0番地から5個読み出す」
<Program> DSPL SPURIOUS,SWEEP SWP SPECT_SPUI? F2,0,5

<Response> -2345,-2346,-2347,-2346,-2345

SPECT_SPUT

Wave Data (Time Domain) for Spurious Emission

Program Message	Query Message	Response Message
-	SPECT_SPUT? <i>a</i> , <i>b</i> , <i>c</i>	d(b), d(b+1),, d(c)

■機能

Spurious Emission 画面における時間数軸掃引の測定結果を出力します。

Spurious Mode が Spot, および Search 時の Level Measure Mode で Spot が設定されている周波数テーブル でのみ出力可能です。

■a の値

周波数テーブル

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し開始位置

Data Points	範囲	分解能
501	$0 \sim 500$	1
1001	$0 \sim 1000$	1

■cの値

読み出し個数

Data Points	範囲	分解能
501	$1 \sim 501$	1
1001	$1 \sim 1001$	1

■d(b)の値

周波数テーブル aにおける b番目の波形データ

範囲	分解能
$-2147483648{\sim}2147483647$	1

1 dBm を 100 とした 0.01 dBm 単位の整数で読み出されます。

■制約条件

• Spurious Mode が Sweep 時は出力できません。

■使用例

「Spot 測定における周波数テーブル F2 の掃引波形を0番地から5個読み出す」

<Program> DSPL SPURIOUS,SPOT SWP SPECT_SPUT? F2,0,5

<Response> -2345,-2346,-2347,-2346,-2345

SPOTRSLT_SPU

Spot Result for Spurious

Program Message	Query Message	Response Message
SPOTRSLT_SPU a,b	SPOTRSLT_SPU? a	b

■機能

Spurious 測定において、Spot 法の結果の算出方法を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で測定した Spurious Level を対象とします
SEARCH	Search 法測定で測定した Spurious Level を対象とします

■b の値

算出法の選択

b	測定法
AVG	測定した Spurious Level を平均で算出します。
MAX	測定した Spurious Level の最大値を算出します

■使用例

「Spot 法の結果の算出方法を MAX に設定する」

<Program> DSPL Spurious,Spot SWP SPOTRSLT_SPU SPOT,MAX SPOTRSLT_SPU? SPOT

<Response> MAX

SPUALL

Frequency, Level, Judgement, Limit, Margin, Ref Level, Attenuator, RBW, VBW, Sweep Time

Program Message	Query Message	Response Message
_	SPUALL? <i>a,b,c</i>	$ \begin{array}{l} d(a), e(a), f(a), \dots, l(a), m(a), \\ d(a+1), e(a+1), f(a+1), \dots, l(a+1), m(a+1), \\ \dots, \\ d(a+b-1), e(a+b-1), f(a+b-1), \dots, l(a+b-1), m(a+b-1) \end{array} $

■機能

Spurious Emission 画面における, Frequency, Level, Judgement, Limit, Margin, Ref Level, Attenuator, RBW, VBW, Sweep Time の測定結果を同時に出力します。

■aの値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

出力単位

с	単位
なし	Unit で設定された単位に従います(UNIT_SPU 参照)
DBM	dBm
DB	dB
WATT	W

■dの値:Frequency 測定結果

SPUFREQ における cと同じです。

■eの値:Level 測定結果

SPULVL における dと同じです。

■fの値:判定結果

SPUPASS における bと同じです。

■*g*の値:Limit SPULMTJDG における *c*と同じです。

■hの値:Margin SPUMARGIN における cと同じです。

■*i*の値:Ref Level SPURL における *c*と同じです。

■*j*の値:Attenuator SPUATT における *c*と同じです。

■*k*の値:RBW SPURBW における*c*と同じです。

■/の値:VBW SPUVBW における *c* と同じです。

■*m*の値:Sweep Time SPUSWT における *c*と同じです。

■使用例「f1 から f2 までの全結果を読み出す」

<Program> DSPL SPURIOUS,SEARCH SWP SPUALL? F1,2

<Response> 2463264,1.06E-11,PASS,2.50E-19,-43.71,30.00,50,10000,10000,10000,166802000, 4.35E-10,PASS,2.50E-19,-27.59,30.00,50,100000,100000,10000

SPUFREQ

Frequency Result for Spurious Emission

Program Message	Query Message	Response Message
—	SPUFREQ? <i>a</i> , <i>b</i>	c(a), c(a+1),, c(b)

■機能

Spurious Emission 画面における Frequency の測定結果を出力します。

■a の値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

Frequency 測定結果

分解能	単位
1	Hz

■制約条件

• Spurious Mode が Spot の場合,出力される結果は, Setup Spot Table 画面で設定された Frequency と常 に一致します(DSPL 参照)。

■使用例

「f1 からf3 までの Frequency を読み出す」

<Program> DSPL SPURIOUS,SEARCH SWP SPUFREQ? F1,3

<Response> 1775300000,2162950000,2550600000

SPUFREQLVL

Frequency and Level

Program Message	Query Message	Response Message
-	SPUFREQLVL? <i>a,b,c</i>	d(a), e(a), d(a+1), e(a+1),, d(b), e(b)

■機能

Spurious Emission 画面における Frequency および Level の測定結果を同時に出力します。

■a の値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■bの値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

Levelの出力単位

С	単位
なし	Unit で設定された単位に従います(UNIT_SPU 参照)
DBM	dBm
DB	dB
WATT	W

■d の値

Frequency 測定結果	
分解能	単位
1	Hz

■e の値

Level 測定結果

分解能	単位
0.01	dBm
0.01	dB
有効数字4桁(浮動小数点型)	W

■使用例

「f1 からf3 までの Frequency と Level を読み出す」

<Program> DSPL SPURIOUS,SEARCH SWP SPUFREQLVL? F1,3,DB

 $\substack{< \text{Response} \\ 1775300000, -33.97, 2162950000, -37.87, 2550600000, -68.69 \\ }$

SPUJDG

Total Judgement

Program Message	Query Message	Response Message
—	SPUJDG?	a

■機能

Spurious Emission 画面において, Limit 値によるレベルの合否判定の総合結果を読み出します。 Spurious Mode が Spot の場合は, Setup Spot Table 画面で設定した Limit 値を, Search または Sweep の場合は, Setup Search/Sweep Table 画面で設定した Limit 値を基準として判定を行います。

■a の値

判定結果

а	合否判定
PASS	合格
FAIL	不合格
OFF	未測定

■制約条件

- Pass になるのは, f1 から f15 までのすべての有効な測定が終了し, 各ポイントの判定結果がすべて Pass に なった場合です。
- Fail になるのは, f1 から f15 までの任意の有効な測定で, そのポイントの判定結果が Fail になった場合です。

■使用例

「合否判定の総合結果を読み出す」

<Program> DSPL SPURIOUS,SWEEP SWP SPUJDG?

<Response> PASS

SPULMTJDG

Limit Value for Spurious Emission Judgement

Program Message	Query Message	Response Message
_	SPULMTJDG? a,b	c(a), c(a+1),, c(b)

■機能

Spurious Emission 画面において、判定に使用した Limit 値を読み出します。

Judgement (JUDGUNIT_SPTBL, JUDGUNITSWTBL参照)がAbsolute または Relative が設定されている場合, 設定値を出力し, Rel & Abs が設定されている場合, Absolute または Relative のうち判定に使用した Limit 値を読み出します。

■a の値

読み出し開始周波数ポイント

範囲
F1,F2,F3,,F14,F15

■b の値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

Limit 値

分解能	単位
0.01	dBm
0.01	dB
有効数字4桁(浮動小数点型)	W

■使用例

「f1からf3までのLimitを読み出す」

<Program> DSPL SPURIOUS,SEARCH JUDGUNIT_SWTBL REL SWP SPULMTJDG? F1,3

<Response> -33.97,-37.87,-68.69

SPUMARGIN

Level Margin for Spurious Emission

Program Message	Query Message	Response Message
-	SPUMARGIN? a,b	c(a), c(a+1),, c(b)

■機能

Spurious Emission 測定の合否判定に使用した Limit 値に対するスプリアスレベルのマージンを出力します。

■a の値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■bの値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

Level 測定結果

分解能	単位
0.01	dB

■使用例

「Search 法測定のf3のマージンを読み出す」

<Program> DSPL SPURIOUS,SWEEP SWP SPUMARGIN? F3,1

<Response> 3.05

SPULVL

Spurious Level Result for Spurious Emission

Program Message	Query Message	Response Message
_	SPULVL? <i>a,b,c</i>	d(a), d(a+1),, d(b)

■機能

Spurious Emission 画面における Level の測定結果を出力します。

■a の値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

読み出し個数

範囲	分解能
$1 \sim 15$	1

■cの値

出力単位

С	単位
なし	Unit で設定された単位に従います(UNIT_SPU 参照)
DBM	DBm
DB	dB
WATT	W

■d の値

Level 測定結果

分解能	単位
0.01	dBm
0.01	dB
有効数字4桁(浮動小数点型)	W

■使用例

「f1からf3までのLevelを読み出す」

<Program> DSPL SPURIOUS,SEARCH SWP

SPULVL? F1,3,DB

<Response> -33.97,-37.87,-68.69

SPUPASS

Judgement Result for Spurious Emission

Program Message	Query Message	Response Message	
_	SPUPASS? a	b	

■機能

Spurious Emission 画面において, Limit 値によるレベルの合否判定の結果を読み出します。 Spurious Mode が Spot の場合は, Setup Spot Table 画面で設定した Limit 値を, Search または Sweep の場 合は, Setup Search/Sweep Table 画面で設定した Limit 値を基準として判定を行います。

■a の値

周波数ポイント

а	周波数ポイント
Fn	特定の周波数ポイントの結果を読み出します(n: 1,2,3,,14,15)
ALL	すべての周波数ポイントの結果を一度に読み出します

■b の値

判定結果

b	合否判定
PASS	合格
FAIL	不合格
OFF	未測定

■使用例

「f3の合否判定結果を読み出す」

<Program> DSPL SPURIOUS,SWEEP SWP SPUPASS? F3

<Response> PASS

SPUPWRABS

Absolute Reference Power for Spurious Emission

Program Message	Query Message	Response Message	
—	SPUPWRABS? a	b	

■機能

Spurious Emission 画面における絶対値の基準電力を読み出します。

■a の値

出力単位の指定

а	単位
DBM	dBm
WATT	W

■bの値

Tx Power

分解能	単位
0.01	dBm
有効数字4桁(浮動小数点型)	W

■使用例

「絶対値の基準電力を dBm で読み出します」

<Program> DSPL SPURIOUS, SPOT SWP SPUPWRABS? DBM

<Response>

-1.23

SPUPWRREL

Relative Reference Power for Spurious Emission

Program Message	Query Message	Response Message	
_	SPUPWRREL? a	b	

■機能

Spurious Emission 画面における相対値の基準電力を読み出します。

■a の値

出力単位の指定

а	単位
DBM	dBm
WATT	W

■bの値

Tx Power

分解能	単位
0.01	dBm
有効数字4桁(浮動小数点型)	W

■使用例

「相対値の基準電力をdBm で読み出します」

<Program> DSPL SPURIOUS,SPOT SWP SPUPWRREL? DBM

<Response>

-1.23

STANDARD_ACP

Select Template

Program Message	Query Message	Response Message
STANDARD_ACP a	STANDARD_ACP?	а

■機能

Output RF Spectrum 画面において、テンプレートの設定を行います。

■a の値

テンプレートの種類

а	Band	Station	テンプレートの種類	初期値	
GSM900MS39				GSM400/900/850 MS 39dB 以上	*
GSM900MS37		MS	GSM400/900/850 MS 37dB		
GSM900MS35		IVIS	GSM400/900/850 MS 35dB		
GSM900MS33	CCN 1400		GSM400/900/850 MS 33dB 以下		
GSM900BTS43	GSM400		GSM400/900/850 BTS 43dB 以上		
GSM900BTS41	GSM900		GSM400/900/850 BTS 41dB		
GSM900BTS39	GSM700	DTC	GSM400/900/850 BTS 39dB		
GSM900BTS37	GSM/00	B15	GSM400/900/850 BTS 37dB		
GSM900BTS35			GSM400/900/850 BTS 35dB		
GSM900BTS33			GSM400/900/850 BTS 33dB 以下		
GSM900MBTS33		Micro BTS	GSM400/900/850 Micro BTS 33dB 以下		
DCS1800MS36			DCS1800 MS 36dB 以上		
DCS1800MS34			DCS1800 MS 34dB		
DCS1800MS32			DCS1800 MS 32dB		
DCS1800MS30	DCS1800	DCS1800	MS	DCS1800 MS 30dB	
DCS1800MS28			DCS1800 MS 28dB		
DCS1800MS26			DCS1800 MS 26dB		
DCS1800MS24			DCS1800 MS 24dB 以下		

а	Band	Station	テンプレートの種類	初期値
DCS1800BTS43			DCS1800 BTS 43dB 以上	
DCS1800BTS41			DCS1800 BTS 41dB	
DCS1800BTS39		DTO	DCS1800 BTS 39dB	
DCS1800BTS37	DCG1000	812	DCS1800 BTS 37dB	
DCS1800BTS35	DC51800		DCS1800 BTS 35dB	
DCS1800BTS33			DCS1800 BTS 33dB 以下	
DCS1800MBTS35		Miero DTC	DCS1800 Micro BTS 35dB	
DCS1800MBTS33		MICTO BIS	DCS1800 Micro BTS 33dB 以下	
PCS1900MS33		MS	PCS1900 MS 33dB 以上	
PCS1900MS32			PCS1900 MS 32dB	
PCS1900MS30			PCS1900 MS 30dB	
PCS1900MS28			PCS1900 MS 28dB	
PCS1900MS26			PCS1900 MS 26dB	
PCS1900MS24			PCS1900 MS 24dB 以下	
PCS1900BTS43	DCG1000		PCS1900 BTS 43dB 以上	
PCS1900BTS41	PC51900		PCS1900 BTS 41dB	
PCS1900BTS39		DTO	PCS1900 BTS 39dB	
PCS1900BTS37		815	PCS1900 BTS 37dB	
PCS1900BTS35			PCS1900 BTS 35dB	
PCS1900BTS33			PCS1900 BTS 33dB 以下	
PCS1900MBTS35			PCS1900 Micro BTS 35dB	
PCS1900MBTS33	Micro BTS		PCS1900 Micro BTS 33dB 以下	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

• Setup Common Parameter 画面の Band が Free の場合, Output RF Spectrum 画面の Band, Select Station を参照 します。Free 以外が設定されている場合は Setup Common Parameter の Band, Select Station を参照します。

■使用例

「テンプレートを DCS1800(MS)の 34dB に設定する」

<Program> TERM RF FREQBAND DCS1800 BANDTRGT MS DSPL ADJ,HIGH

STANDARD_ACP DCS1800MS34 STANDARD_ACP?

<Response> DCS1800MS34

STRG_ADJ

Storage Mode for Output RF Spectrum

Program Message	Query Message	Response Message
STRG_ADJ a	STRG_ADJ?	a

■機能

Output RF Spectrum 画面において,表示形態の設定します。

■a の値

表示形態

а	内容	初期値
NRM	Normal:通常表示(1回測定)をします。	*
AVG	Average: Average Count で指定された回数を測定し, その結果の平均値表示を します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「平均値表示をする」

<Program> MEAS ADJ,HIGH STRG_ADJ AVG STRG_ADJ?

<Response> AVG

STRG_IQL

Storage Mode for IQ Level

Program Message	Query Message	Response Message
STRG_IQL a	STRG_IQL?	a

■機能

IQ Level 画面において, 測定結果の表示方法を設定します。

■a の値

表示方法

а	表示方法	初期値
NRM	Normal:通常表示(1回測定)をします。	*
AVG	Average: Average Count で指定された回数分測定を行い,その結果を平均して 表示します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「平均値表示をする」

<Program> MEAS MODANAL STRG_IQL AVG STRG_IQL?

<Response>

AVG

STRG_MOD

Storage Mode

Program Message	Query Message	Response Message
STRG_MOD a	STRG_MOD?	a

■機能

Modulation Analysis 画面において、表示形態を設定します。

■a の値

表示形態

а	表示方法	初期値
NRM	Normal:通常表示(1回測定)をします。	*
AVG	Average: Average Count で指定された回数を測定し, その結果の平均値表示を します。	
OVER	Overwrite: Continuous 測定の際, 測定結果のプロットを順次上書きして表示します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「平均値表示をする」

<Program> MEAS MODANAL STRG_MOD AVG STRG_MOD?

<Response> AVG

STRG_RFPWR

Storage Mode for RF Power

Program Message	Query Message	Response Message	
STRG_RFPWR a	TRG_RFPWR a STRG_RFPWR?		

■機能

RF Power 測定において, 測定結果の表示方法を設定します。

■a の値

表示方法

а	表示方法	初期値
NRM	Normal: 通常表示(1回測定)をします。	*
AVG	Average: Average Count で指定された回数を測定し, その結果の平均値表示を します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「平均値表示をする」

<Program> MEAS RFPWR STRG_RFPWR AVG STRG_RFPWR?

<Response>

AVG

STRG_SPU

Storage Mode for Spurious Emission

Program Message	Query Message	Response Message
STRG_SPU a	STRG_SPU?	a

■機能

Spurious Emission 測定において, 測定結果の表示方法を設定します。

■a の値

表示形態

а	表示形態	初期値
NRM	Normal :通常表示(1回測定)をします。	*
AVG	Average : Average Count で指定された回数を測定し, その結果の平均値表示をします。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「平均値表示に設定する」

<Program> DSPL SPURIOUS,SPOT STRG_SPU AVG STRG_SPU?

<Response> AVG

SWP

Single Sweep or Sweep Status

Program Message	Query Message	Response Message
SWP	SWP?	SWP a

■機能

掃引を1回実行します。SWPプログラムコマンドを受け取るとスイープモードを"SINGLE"にして掃引します。掃引が 終了するまでは次のコマンドは処理されずに待たされます。SWP?コマンドは、現在の掃引状態(掃引終了/掃引 中)を問い合わせます。

■a の値

掃引状態

а	測定/掃引の状態
0	掃引終了
1	掃引中

■使用例

「掃引を1回実行し,掃引の状態を調べる」

<Program>

SWP

SWP?

<Response> SWP 0

SWPWR

Switching Transients

Program Message	Query Message	Response Message
	SWPWR? <i>Fa,b,c</i>	d

■機能

Output RF Spurious 画面において, Switch Transients の値を読み出します。

■a の値

周波数テーブル

範囲	分解能
1~11	1

■b の値

Lower/Upper

b	Lower/Upper
UP	Upper
LOW	Lower

■cの値

出力単位

с	単位	
DB	dB	
DBM	dBm	

■d の値

Switch Transients

分解能	単位
0.01	c の値による

■制約条件

・a, b, c ともに設定しない場合は、 Carrier Frequency のレベルを dBm 単位で読み出します。

・ cのみを設定しない場合は、Unit for Output RF Spectrum で設定されている単位で読み出します。

■使用例

①「Carrier Frequency の Switching Transients を読み出す」

<Program> DSPL ADJ,HIGH SWP SWPWR?

<Response> -39.56

②「周波数テーブル f6 の Upper 側の Switching Transients を dB 単位で読み出す」 DSPL ADJ,HIGH SWP SWPWR? F6,UP,DB

<Response> -42.99

SWT_SETREF_SPU

Sweep Time for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
SWT_SETREF_SPU a	SWT_SETREF_SPU?	b

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の Sweep Time を設定します。

■a の値

Sweep Time

範囲	分解能	単位
10~1000000	5	msec

ロサフィックスコード

なし: msec

S : sec

 $MS \ : \ msec$

US :µsec

■b の値

Sweep Time		
分解能 単位		
1	μ sec	

■設定の初期化

PRE,INI,IP, *RST

■使用例

「Sweep Time を 10s に設定する」

<Program> DSPL RELPWRREF SWT_SETREF_SPU 10S SWT_SETREF_SPU?

<Response> 10000000

SYMOFS

Symbol align offset

Program Message	Query Message	Response Message
SYMOFS a	SYMOFS?	а

■機能

Setup Common Parameter 画面において、シンボルの基準点を標準にあわせるか、0.5symbol ずらすかを設定します。

■a の値

Sweep Time(設定時)

а	Symbol align offset	初期値
NRM	Normal	
HALF	Half	*

■設定の初期化

*RST

■使用例

「Symbol align offset を Half に設定する」

<Program> SYMOFS HALF SYMOFS?

<Response>

HALF

TBLATT_SPU

Attenuator for Spurious Emission

Program Message	Query Message	Response Message
TBLATT_SPU <i>a,b,c</i>	TBLATT_SPU? a,b	С

■機能

Spurious Emission 測定における Attenuator を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Attenuator を対象とします
SWEEP	Search 法または Sweep 法測定で使用する Attenuator を対象とします

■b の値

周波数テーブル

範囲	対象周波数ポイント
F1,F2,F3,,F14,F15	f1~f15の周波数テーブル

■cの値

Attenuator

範囲	分解能	単位
0~62(注1)	2	dB

注 1: Attenuator の設定範囲は, Reference Level (TBLRL_SPU 参照)により変わります。

□サフィックスコード なし:dB DB :dB

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Spot 法測定の周波数ポイント 10の Attenuator を 20 dB に設定する」

<Program> TBLATTMD_SPU SPOT,AUTO TBLRL_SPU SPOT,F10,-30DBM TBLATT_SPU SPOT,F10,20DB

TBLATT_SPU? SPOT,F10

<Response> 20

TBLATTMD_SPU

Attenuator Mode: Manual/Auto for Spurious Emission

Program Message	Query Message	Response Message
TBLATTMD_SPU a,b	TBLATTMD_SPU? a	b

■機能

Spurious Emission 画面において, Spectrum AnalyzerのAttenuatorの設定を, 手動または自動のどちらで行うか設定します。Autoの場合は, Attenuatorの値が自動的に設定されます。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Attenuator を対象とします
SWEEP	Search 法または Sweep 法測定で使用する Attenuator を対象とします

■b の値

Attenuator 設定モード

b	モード	初期値
MAN	Attenuator を手動設定モードにします	
AUTO	Attenuator を自動設定モードにします	*

■設定の初期化

PRE, INI, IP, *RST

■制約条件

• Auto 時に Attenuator が変更された場合, 強制的に Manual になります。

■使用例

「Spot 法測定の Attenuator を自動設定モードにする」

<Program> TBLATTMD_SPU SPOT,AUTO TBLATTMD_SPU? SPOT

<Response> AUTO

TBLATTRLMD_SPU

Attenuator, Ref Level Mode: Manual/Auto for Spurious Emission

Program Message	Query Message	Response Message
TBLATTRLMD_SPU a,b	TBLATTRLMD_SPU? a	b

■機能

Spurious Emission 画面において, Spectrum Analyzer の Attenuator, Ref Level の設定を, 手動または自動 のどちらで行うか設定します。Auto の場合は, Ref Level および, Attenuator の値を自動的に設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Attenuator, Ref Level を対象とします
SWEEP	Search 法または Sweep 法測定で使用する Attenuator, Ref Level を対象とします

■b の値

Attenuator, Ref Level 設定モード

b	モード	初期値
MAN	Attenuator, Ref Level を手動設定モードにします	
AUTO	Attenuator, Ref Level を自動設定モードにします	*

■設定の初期化

PRE, INI, IP, *RST

■制約条件

• Auto 時に Attenuator または, Ref Level が変更された場合, 強制的に Manual になります。

■使用例

「Spot 法測定の Attenuator, Ref Level を自動設定モードにする」

<Program> TBLATTRLMD_SPU SPOT,AUTO TBLATTRLMD_SPU? SPOT

<Response> AUTO

TBLFREQ_SPU

Frequency for Spurious Emission

Program Message	Query Message	Response Message	Function
TBLFREQ_SPU SPOT,a,b	TBLFREQ_SPU? SPOT,a	b	Spot 法測定の周波数を設定します
TBLFREQ_SPU SPOT,HRM	_	_	Spot 法測定の周波数を Harmonics にします
TBLFREQ_SPU START,a,c	TBLFREQ_SPU? START,a	С	Search法またはSweep法測定の掃 引開始周波数を設定します
TBLFREQ_SPU STOP,a,d	TBLFREQ_SPU? STOP,a	d	Search法またはSweep法測定の掃 引終了周波数を設定します

■機能

Setup Spot Table, Setup Search Table, Setup Sweep Table 画面において, 各周波数テーブルの周波数を設定します。 第2引数を HRM にした場合, キャリア周波数の n 倍 (n:2,3,4,...)の周波数を, 周波数の上限値に達するまで自動的に設定する機能です。 測定法については, Spurious Mode を参照してください。

■a の値

周波数テーブル

範囲		
F1,F2,F3,,F14,F15		

■bの値

Frequency

範囲	分解能	初期値	単位
注1	1	注2	Hz

- ・ 注1:FREQと同じです。ただし、上限値は Pre Ampl の影響を受けません。
- ・ 注2: FREQの初期値に対して Harmonics 動作を行った場合と同じ値になります。詳しくは、初期値欄を参照 してください。
- ・ 0 Hz を設定すると、未設定状態になります。

□サフィックスコード なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■cの値

Start Frequency (Search/Sweep)

範囲	分解能	初期値	単位
注3	1	初期値欄を参照してください	Hz

• Setup Search Table と Setup Sweep Table とで値を共有します。

- 注3:下限値は1kHzに、上限値は、(FREQの上限値-1kHz)となります。また、上限値はPre Amplの 影響を受けません。
- Start Frequency の設定によって、Stop Frequency<(Start Frequency+1 kHz)の関係が成り立つとき、 Stop Frequency = (Start Frequency+1 kHz)となるような Stop Frequency が自動的に設定されます。 つまり、掃引する周波数の幅は必ず1 kHz 以上となります。
- ・ 0 Hz を設定すると、未設定状態になります。

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■d の値

Stop Frequency (Search/Sweep)

範囲	分解能	初期値	単位
注4	1	初期値欄を参照してください	Hz

• Setup Search Table と Setup Sweep Table とで値を共有します。

・ 注4:FREQと同様ですが、下限値は2kHzとなります。また、上限値はPre Amplの影響を受けません。

 Stop Frequency の設定によって、Start Frequency>(Stop Frequency-1 kHz)の関係が成り立つとき、 Start Frequency = (Stop Frequency-1 kHz)となるような Start Frequency が自動的に設定されます。 つまり、掃引する周波数の幅は必ず1 kHz 以上となります。

• 0 Hzを設定すると,未設定状態になります。

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Search 法測定の f1 の掃引区間を, 846 MHz から 860 MHz に設定する」

<Program> TBLFREQ_SPU START,F1,846MHZ TBLFREQ_SPU STOP,F1,860MHZ
TBLFREQ_SPU? START,F1 TBLFREQ_SPU? STOP,F1

<Response> 846000000 860000000

TBLINTRBW_SPU

Integrated RBW for Spurious Emission

Program Message	Query Message	Response Message
TBLINTRBW_SPU a,b	TBLINTRBW_SPU? a	b

■機能

Spurious Emission 測定の Search または Sweep 法において判定に用いる帯域幅を設定します。

■a の値

周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

判定に用いる帯域幅

範囲	分解能	初期値	単位
(スパン周波数/(データポイント数―1))~(スパン 周波数または 10000000 の小さい方)	1	設定 RBW (TBLRBW_SPU 参照)	Hz

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Search 法測定のf2のRBWを30kHzに設定する」

<Program> DSPL SETTBL_SPU,SWEEP TBLINTRBW_SPU F2,30KHZ TBLINTRBW_SPU? F2

TBLLMMD_SPU

Level Measurement Mode for Spurious Emission

Program Message	Query Message	Response Message
TBLLMMD_SPU a,b	TBLLMMD_SPU? a	b

■機能

Spurious Emission 測定の Spurious Mode: Search 時のスプリアス振幅測定方法を設定します。

■a の値

周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

測定法の選択

b	測定法	初期値
OFF	測定を行いません(周波数軸掃引の結果が最終結果となります)	ў 〕 1
SPOT	ゼロスパン掃引による振幅測定を行います	住1
-1	未設定(Query のみ)	

注1:TBLFREQ SPU の初期値欄を参照してください

■制約条件

 Spurious Mode が Search 時で、スプリアス探索用パラメータ(周波数、RBW など)が設定されている場合の み有効です。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「f3のスプリアス振幅測定を行わない」

<Program> DSPL SETTBL_SPU,SEARCH TBLLMMD_SPU F3,OFF TBLLMMD_SPU? F3

<Response> OFF

TBLLMT_ACP

Limit for Output RF Spectrum

Program Message	Query Message	Response Message
TBLLMT_ACP <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i>	TBLLMT_ACP? <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>	е

■機能

Setup Output RF Spectrum 画面において,指定対象の Limit 値の設定を行います。

■aの値

波形フォーマット対象

а	対象
MOD	Modulation 側の Limit 値を指定します。
SWTCH	Switching Transients 側の Limit 値を指定します。

■bの値

Upper/Lower 対象

b	対象
LOW	Lower 側の Limit 値を指定します。
UP	Upper 側の Limit 値を指定します。

■cの値

Unit 対象

с	対象
REL	dB。Relative 側の Limit 値を指定します。
ABS	dBm。Absolute 側の Limit 値を指定します。

■dの値

周波数テーブル

範囲	対象周波数ポイント
F1,F2,F3,,F10,F11	fl~fl1の周波数テーブル

■eの値

Limit 値

範囲	分解能
$-100.00 \sim 100.00$	0.01

ロサフィックスコード

- ・ なし:dB or dBm
- DB:dB
- dBm:dBm

ただし、パラメータを Relative/Absolute 指定とサフィックスコードの指定が相反する場合は、パラメータの方が優先されます。そのため、パラメータで Absolute 値指定をした場合、サフィックスコードで DB を指定しても、Absolute 値が dBm で設定されます。

■設定の初期化 PRE, INI, IP, *RST

■使用例

「Switching Transients の Upper 側、F7(1MHz)の Absolute 値を-50.00dBm に設定する。」

<Program> TERM RF DSPL SETTBL_ACP TBLVIEW_ACP SWTCH TBLLMT_ACP SWTCH,UP,ABS,F7,-50.00 TBLLMT_ACP?

<Response> -50.00

TBLLMT_SPU

Limit for Spurious Emission

Program Message	Query Message	Response Message		
TBLLMT_SPU a,b,c,d	TBLLMT_SPU? <i>a</i> , <i>b</i> , <i>d</i>	С		

■機能

Spurious Emission 測定で合否判定を行う際の Limit 値を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Limit 値を対象とします
SWEEP	Search 法または Sweep 法測定で使用する Limit 値を対象とします

$\blacksquare b$ の値

読み出し開始周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■cの値

Limit 値

範囲 分解能		初期値	単位	
$-100.00 \sim 100.00$	0.01	TBLFREQ SPU	dB	
$-100.00 \sim 100.00$	0.01	の初期値欄を参照し	dBm	
0.001~999.999	0.0001	てください	mW,µW,nW	

■d の値

判定に使用した Limit 値の単位

値	単位
DBM	dBm
MW	mW
UW	μW
NW	nW
DB	dB

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Search 法測定の f1 の Limit 値を, -13.00 dBm に設定する」

<Program> TBLLMT_SPU SWEEP,F1,-13.00,DBM TBLLMT_SPU? SWEEP,F1,DBM

<Response>

-13.00

TBLRBW_SPU

RBW for Spurious Emission

Program Message	Query Message	Response Message		
TBLRBW_SPU <i>a,b,c</i>	TBLRBW_SPU? <i>a</i> , <i>b</i>	С		

■機能

Spurious Emission 測定における RBW を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する RBW を対象とします
SWEEP	Search 法または Sweep 法測定で使用する RBW を対象とします

■b の値

周波数テーブル

範囲	対象周波数ポイント
F1,F2,F3,,F14,F15	f1~f15の周波数テーブル

■cの値

RBW

Detection により設定範囲が異なります(DET_SPU参照)。

Detection	範囲				分解能	初期値	単位
Positive Negative Sample Average	300	1000	3000	10000		1000000	Hz
	30000	100000	300000	1000000			
	3000000	5000000	10000000	20000000	- 1		
RMS	10	30	100	300			
	1000	3000	10000	30000			
	100000	300000	10000000				

□サフィックスコード なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化 PRE, INI, IP, *RST

■使用例

「Search 法測定のf2のRBWを30kHzに設定する」

<Program> DSPL SETTBL_SPU,SWEEP TBLRBW_SPU SWEEP,F2,30KHZ TBLRBW_SPU? SWEEP,F2

TBLRBWLM_SPU

RBW for Spurious Emission (Level Measurement)

Program Message	Query Message	Response Message		
TBLRBWLM_SPU a,b	TBLRBWLM_SPU? a	b		

■機能

Spurious Emission 測定の Spurious Mode: Search 時のスプリアス振幅測定で使用する RBW を設定します。

■a の値

周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

RBW

Detection により設定範囲が異なります(DETLM_SPU参照)。

Detection	範囲				分解能	初期値	単位
Positive Negative Sample Average	300	1000	3000	10000	-	1000000	Hz
	30000	100000	300000	1000000			
	3000000	5000000	10000000	20000000	1		
RMS	10	30	100	300			
	1000	3000	10000	30000			
	100000	300000	10000000				

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE,INI,IP,*RST

■使用例

「Search 法測定のf2のRBWを30kHzに設定する」

<Program> DSPL SETTBL_SPU,SWEEP

TBLRBWLM_SPU F2,30KHZ TBLRBWLM_SPU? F2

TBLRBWMD_SPU

RBW: Manual/Auto for Spurious Emission

Program Message	Query Message	Response Message
TBLRBWMD_SPU a,b	TBLRBWMD_SPU? a	b

■機能

Spurious Emission 画面において, RBW の設定を手動または自動のどちらで行うか設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する RBW を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する RBW を対象とします。

■bの値

RBW 設定モード

b	モード		初期値
MAN	RBW を手動設定モードに	します	*
AUTO	RBW を自動設定モードに	します	
RBW 設定	ミモードが Auto の場合, 下表	長の設定に	なります
	Frequency	RBW	
0.1 kHz	\leq f < 100 kHz	1 kHz	
100 kHz	\leq f < 50 MHz	10 kHz	
50 MHz≦	\leq f < 500 MHz	100 kHz	
500 MHz	$z \leq f$	3 MHz	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

•

Auto時に RBW が変更された場合は、強制的に Manual になります。

■使用例

「Spot 法測定の RBW を自動設定モードにする」

<Program> TBLRBWMD_SPU SPOT,AUTO TBLRBWMD_SPU? SPOT <Response> AUTO

TBLREFSTD_SPU

Select Setup Reference Power Table for Spurious Emission

Program Message	Query Message	Response Message
TBLREFSTD_SPU a	TBLREFSTD_SPU?	a

■機能

Spurious Emission 測定の Setup Reference Power 画面において, Reference Power の測定法を設定します。

■a の値

測定法の選択

а	測定法		初期値
0	Abs & Rel: Tx Power	絶対値,相対値の基準を Tx Power に設定します。	*
1	Abs & Rel:Set	絶対値, 相対値の基準を Set に設定する。この場合, 絶対値, 相対値の基準パワーの設定が必要となります。 (<i>cf.</i> ABSPWRVAL_SPU, RELPWRVAL_SPU)	

■使用例

「Reference Power の測定法を Abs & Rel:Set に設定します」

<Program> DSPL RELPWRREF TBLREFSTD_SPU 1 TBLREFSTD_SPU?

<Response>

1

TBLRL_SPU

Reference Level for Spurious Emission

Program Message	Query Message	Response Message
TBLRL_SPU <i>a</i> , <i>b</i> , <i>c</i>	TBLRL_SPU? <i>a</i> , <i>b</i>	С

■機能

Spurious Emission 測定における Reference Level 設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Reference Level を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する Reference Level を対象とします。

■b の値

周波数テーブル

範囲	対象周波数ポイント
F1,F2,F3,,F14,F15	f1~f15の周波数テーブル

■cの値

Ref Level

範囲	分解能	初期値	単位
制約条件を参照してください。	0.01	周波数による	dBm

□サフィックスコード なし:dBm DBM :dBm

■設定の初期化 PRE, INI, IP, *RST

■制約条件

リファレンスレベルの設定範囲は、RF Input: High/Low (*cf.* RFINPUT), Per Ampl: On/Off (*cf.* PREAMP)
により次のようになります。なお、RefLevelOffset については、RFLVLOFS を参照してください。

Pre Ampl	RF Input		
	High	Low	
Off	(-100.00+RefLevelOffset) to $(50.00+RefLevelOffset)$	(-120.00+RefLevelOffset) to $(40.00+RefLevelOffset)$	
On	(-120.00+RefLevelOffset) to $(30.00+RefLevelOffset)$	(-140.00+RefLevelOffset) to $(20.00+RefLevelOffset)$	

• RF Input または Per Ampl の変更によって, リファレンスレベルが設定範囲外になる場合は, 最も近い値に丸 められます。

■使用例

「Sweep 法測定の周波数ポイント10の Ref Level を-30 dBm に設定する」

<Program> DSPL SETTBL_SPU,SPOT TBLATTMD_SPU SPOT,AUTO TBLRL_SPU SPOT,F10,-30DBM TBLRL_SPU? SPOT,F10

<Response>

-30.00

TBLSWT_SPU

Sweep Time for Spurious Emission

Program Message	Query Message	Response Message
TBLSWT_SPU <i>a,b,c</i>	TBLSWT_SPU? <i>a</i> , <i>b</i>	d

■機能

Spurious Emission 測定における Sweep Time を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Sweep Time を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する Sweep Time を対象とします。

■b の値

周波数テーブル

範囲	対象周波数ポイント
F1,F2,F3,,F14,F15	f1~f15の周波数テーブル

■cの値

Sweep Time

範囲	分解能	初期値	単位
10~1000000	5	TBLFREQ_SPU の初期値欄を参照してください	msec

ロサフィックスコード

なし:msec S:sec

MS :msec

 $US \ : \mu sec$

■d の値

Sweep Time

分解能	単位
1	μsec

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Sweep 法測定のf3の Sweep Time を 100 msec に設定する」

<Program> TBLSWT_SPU SWEEP,F3,100MS TBLSWT_SPU? SWEEP,F3

TBLSWTLM_SPU

Sweep Time for Spurious Emission (Level Measurement)

Program Message	Query Message	Response Message
TBLSWTLM_SPU a,b	TBLSWTLM_SPU? a	С

■機能

Spurious Emission 測定の Spurious Mode: Search 時のスプリアス振幅測定で使用する Sweep Time を設定します。

■a の値

周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

Sweep Time

範囲	分解能	初期値	単位
10~1000000	5	TBLFREQ_SPU の初期値欄を参照してください。	msec

□サフィックスコード なし:msec S :sec MS :msec US :µsec

■cの値

Sweep Time

分解能	単位
1	μsec

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Sweep 法測定のf3の Sweep Time を100 msec に設定する」

<Program> TBLSWTLM_SPU F3,100MS TBLSWTLM_SPU? F3

TBLSWTMD_SPU

Sweep Time Mode: Manual/Auto for Spurious Emission

Program Message	Query Message	Response Message
TBLSWTMD_SPU a,b	TBLSWTMD_SPU? a	b

■機能

Spurious Emission 画面において、Sweep Time の設定を、手動または自動のどちらで行うか設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する Sweep Time を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する Sweep Time を対象とします。

■b の値

Sweep Time 設定モード

b	Sweep Time 設定モード	初期値
MAN	Sweep Time を手動設定モードにします	*
AUTO	Sweep Time を自動設定モードにします	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

• Auto 時に Sweep Time が変更された場合は, 強制的に Manual になります。

■使用例

「Spot 法測定の Sweep Time を手動設定モードにする」

<Program> TBLSWTMD_SPU SPOT,MAN TBLSWTMD_SPU? SPOT

<Response> MAN

TBLVBW_SPU

VBW for Spurious Emission

Program Message	Query Message	Response Message
TBLVBW_SPU <i>a,b,c</i>	TBLVBW_SPU? <i>a</i> , <i>b</i>	С

■機能

Spurious Emission 測定における VBW を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する VBW を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する VBW を対象とします。

■b の値

周波数テーブル

範囲	対象周波数ポイント		
F1,F2,F3,,F14,F15	f1~f15の周波数テーブル		

■cの値

VBW

範囲						分解能	初期値	単位		
0(OFF)	1	3	10	30	100	300	1000	1	沙 1	11_
3000	10000	30000	100000	300000	1000000	3000000			住1	пz

注1:TBLFREQ_SPU の初期値欄を参照してください

□サフィックスコード なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE,INI,IP,*RST

■使用例

「Search 法測定の f2の VBW を 30 kHz に設定する」

<Program> TBLVBW_SPU SWEEP,F2,30KHZ TBLVBW_SPU? SWEEP,F2

TBLVBWLM_SPU

VBW for Spurious Emission (Level Measurement)

Program Message	Query Message	Response Message
TBLVBWLM_SPU a,b	TBLVBWLM_SPU? a	b

■機能

Spurious Emission 測定の Spurious Mode: Search 時のスプリアス振幅測定で使用する VBW を設定します。

■a の値

周波数ポイント

範囲	
F1,F2,F3,,F14,F15	

■b の値

VBW

範囲						分解能	初期値	単 位		
0(OFF)	1	3	10	30	100	300	1000	1	200000	11
3000	10000	30000	100000	300000	1000000	3000000		1	3000000	ΠZ

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE,INI,IP,*RST

■使用例

「Search 法測定の f2 の VBW を 30 kHz に設定する」

<Program> TBLVBWLM_SPU F2,30KHZ TBLVBWLM_SPU? F2

TBLVBWMD_SPU

VBW Mode: Manual/Auto for Spurious Emission

Program Message	Query Message	Response Message
TBLVBWMD_SPU a,b	TBLVBWMD_SPU? a	b

■機能

Spurious Emission 画面において、VBW の設定を、手動または自動のどちらで行うか設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する VBW を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する VBW を対象とします。

■b の値

VBW 設定モード

b	モード	初期値
MAN	VBW を手動設定モードにします	*
AUTO	VBW を自動設定モードにします	

■設定の初期化

PRE, INI, IP, *RST

■制約条件

- Auto 時に VBW が変更された場合は, 強制的に Manual になります。
- Autoの場合は, RBWの値とVBW/RBW Ratioの値からVBWの値が自動的に設定されます。

■使用例

「Spot 法測定の VBW を自動設定モードにする」

<Program> TBLVBWMD_SPU SPOT,AUTO TBLVBWMD_SPU? SPOT

<Response> AUTO

TBLVBWRT_SPU

VBW/RBW Ratio for Spurious Emission

Program Message	Query Message	Response Message
TBLVBWRT_SPU a,b	TBLVBWRT_SPU? a	b

■機能

Spurious Emission 画面における VBW の自動設定で使用する, VBW と RBW の比を設定します。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する VBW/RBW Ratio を対象とします。
SWEEP	Search 法または Sweep 法測定で使用する VBW/RBW Ratio を対象とします。

■bの値

VBW/RBW Ratio

	初期値						
0.0001	0.0003	0.001	0.003	0.01	0.03	0.1	1
0.3	1	3	10	30	100		1

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Search 法測定の VBW/RBW Ratio を3に設定する」

<Program> TBLVBWRT_SPU SWEEP,3 TBLVBWRT_SPU? SWEEP

<Response>

3

TBLVIEW_ACP

View Select for Setup Output RF Spectrum

Program Message	Query Message	Response Message
TBLVIEW_ACP a	TBLVIEW_ACP?	a

■機能

Setup Output RF Spectrum 画面において、表示する対象を設定します。

■aの値

表示項目の種類

а	表示項目	初期値
MOD	Modulation の設定値の表示を行います。	*
SWTCH	Switching Transients の設定値の表示を行います。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「表示対象をSwitching Transientsに設定する」

<Program> TERM RF DSPL SETTBL_ACP TBLVIEW_ACP SWTCH TBLVIEW_ACP?

<Response> SWTCH

TBLVIEW_SPU

View for Setup Spot, Sweep, Search Table

Program Message	Query Message	Response Message
TBLVIEW_SPU a,b	TBLVIEW_SPU? a	b

■機能

Setup Spot,Search,Sweep Table 画面において,画面右側に RBW, VBW を表示するか, Ref Level,ATT, SWT を表示するか, Limit を表示するかを選択します。また Search では, Measure Mode,Spurious Level Meas.の選択もできます。

■a の値

測定法の選択

а	測定法
SPOT	Spot 法測定で使用する設定画面を対象とします。
SWEEP	Sweep 法測定で使用する設定画面を対象とします。
SEARCH	Search 法測定で使用する設定画面を対象とします。

■b の値

表示項目

b	表示項目	初期値
なし	BW →Ref,ATT,SWT →Limit(dB) →Limit(W) →Level Meas. Mode → Level Meas. Set →BW の順で切り替わり表示します。	
BW	BW を表示します。	*
REFATTSWT	Ref,ATT,SWT を表示します。	
LMTDB	Limit(dB) を表示します。	
LMTW	Limit(W) を表示します。	
LVLMEASMD	Level Meas. Mode を表示します。	
LVLMEASSET	Level Meas. Set を表示します。	

■制約条件

•

Level Meas. Mode, Level Meas. Set は Setup Search Table 画面でのみ表示可能です。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Setup Sweep Table を Limit(dB)で表示させる」

<Program> DSPL SETTBL_SPU,SWEEP TBLVIEW_SPU SWEEP,LMTDB TBLVIEW_SPU? SWEEP

<Response> LMTDB

TEMPFORM

Format Type for RF Power Template

Program Message	Query Message	Response Message
TEMPFORM a	TEMPFORM?	a

■機能

RF Power 測定で使用する テンプレートの形式を設定します。各テンプレート線のレベル・単位の設定は BTS/MS で別々に保存されます。

■a の値

テンプレートの形式の選択

а	判定するレベルの単位の選択方法	初期値
BTS	BTS のテンプレートの形式で設定します。	*
MS	MS のテンプレートの形式で設定します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Judgment Type を MS に設定する」

<Program> DSPL SETTEMP_RFPWR TEMPFORM MS TEMPFORM?

<Response>

MS

TEMPLVLMS_RFPWR

Level Modify for RF Power Template

■機能

Setup Template for RF 画面において, Template Format が MS の時, 現在表示されているテンプレートのカスタマイ ズをします。Judgment Unit が BS の時は TEMPLVL_RFPWR を使って設定してください。(cf. TEMPLVL_RFPWR)

Program Message	Query Message	Response Message	
TEMPLVL_RFPWR <i>a,b,c,d</i>	TEMPLVL_RFPWR? <i>a,b,d</i>	С	

■a の値

テンプレートの上部枠/下部枠の選択

а	テンプレートの上部枠/下部枠の選択		
UP	Upper: 上部枠の設定変更		
LOW	Lowerr: 下部枠の設定変更		

■b の値

テンプレートの位置

範囲	aの値(上部枠/下部枠)	Template Type
1~6	Upper	ND at CMSV AD DTS1000 at CMSV
1	Lower	IND at GIMSK, AD, D151900 at GIMSK
1~7	Upper	ND at 9 DSV
1~3	Lower	ND at 6-PSK

■cの値

Power

範囲	分解能	単位	Template Type
$-110.0 \sim 10.0$	0.1	dB	
		$dBm(a = Upper \ b = 1,2,6 \ \mathcal{OP}$	NB at GMSK, AB, BTS1900 at GMSK
		dBm(a = Upper b = 1,2,7 $\mathcal{O}\mathcal{F}$)	NB at 8-PSK

■d の値

テンプレートの単位

d	単位	Template Type
なし	dB	
DB		
DBM	$dBm(a = Upper b = 1,2,6 \mathcal{OP})$	NB at GMSK, AB, BTS1900 at GMSK
	dBm(a = Upper b = 1,2,7 のみ)	NB at 8-PSK

a = Upper, *b* = 1,2,6(NB at 8-PSK の時は *a* = Upper *b* = 1,2,7)以外の時は DBM は無効です。

口初期值(Standard)

Template Type	Template Format	aの値 (上部枠/ 下部枠)	<i>b</i> の値 (位置)	<i>c</i> の初期値 (Standard)	Band
			1	-30.0 dB	Free, all BTS
			2	-30.0 dB	
	DTC	Upper	3	-6.0 dB	
	D15		4	4.0 dB	
			5	1.0 dB	
		Lower	1	-1.0 dB	
			1	-36.0 dB	GSM400,GSM8
				-59.0 dBm	50,GSM700 and GSM900MS
	MS		2	-30.0 dB	
		Upper		-17.0dBm	
ND at CMSV AD			3	-6.0 dB	
ND at OMSK, AD			4	4.0 dB	
			5	1.0 dB	
			6	-54.0dB	
				-59.0dBm	
		Lower	1	-1.0 dB	
			1	-48.0 dB	DCS1800MS,P
				-48.0 dBm	CS1900MS
			2	-30.0 dB	
		Upper		-20.0dBm	
			3	-6.0 dB	
			4	4.0 dB	
			5	1.0 dB	

Template Type	Template	a の値	bの値	c の初期値 (Standard)	Band
	Tomat	(上部枠/ 下部枠)	(位置)	(Stanuaru)	
NB at GMSK, AB	MS	Upper	6	-48.0dB	
				-48.0dBm	
		Lower	1	-1.0 dB	
			1	-30.0 dB	Free, all BTS
			2	-30.0 dB	
			3	-6.0 dB	
		Opper	4	4.0 dB	
	BTS		5	2.4 dB	
			6	4.0 dB	
			1	-2.0 dB	
		Lower	2	0.0 dB	
			3	-15.0 dB	
			1	-36.0 dB	GSM400,GSM8
				-59.0 dBm	50,GSM700 and GSM900MS
		Upper	2	-30.0 dB	
				-17.0dBm	
			3	-6.0 dB	
ND at 9 DSV			4	4.0 dB	
ND at 6-PSK			5	2.4 dB	
			6	4.0 dB	
			7	-54.0dB	
				-59.0dBm	
	MS	Lower	1	-2.0 dB	
			2	0.0 dB	
			3	-15.0 dB	
		Upper	1	-48.0 dB	DCS1800MS,P
				-48.0 dBm	CS1900MS
			2	-30.0 dB	
				-20.0dBm	
			3	-6.0 dB	
			4	4.0 dB	
			5	2.4 dB	
			6	4.0 dB	

第7章 コマンド詳細説明

Template Type	Template Format	<i>a</i> の値 (上部枠╱	<i>b</i> の値 (位置)	<i>c</i> の初期値 (Standard)	Band
		下部枠)			
NB at 8-PSK	MS	Upper	7	-48.0 dB	
				-48.0 dBm	
		Lower	1	-2.0 dB	
			2	0.0 dB	
			3	-15.0 dB	
			1	-30.0 dB	-
			2	-30.0 dB	
	BTS	Upper	3	0.0 dB	Free all BTS
	D15		4	4.0 dB	rice, an B15
			5	1.0 dB	-
		Lower	1	-1.0 dB	
			1	-36.0 dB	GSM400,GSM8 50,GSM700 and GSM900MS
	MS	Upper	2	-59.0 dBm	
				-30.0 dB	
				-17.0dBm	
			3	0.0 dB	
			4	4.0 dB	
DTS1000 at CMSV			5	1.0 dB	
BIS1900 at GWISK			6	-54.0dB	
				-59.0dBm	
		Lower	1	-1.0 dB	
	MS	Upper	1	-48.0 dB	
				-48.0 dBm	
			2	-30.0 dB	
				-20.0dBm	
			3	0.0 dB	DCS1800MS,P CS1900MS
			4	4.0 dB	
			5	1.0 dB	
			6	-48.0 dB	
				-48.0 dBm]
		Lower	1	-1.0 dB	

■設定の初期化 PRE, INI, IP, *RST

■制約条件

・Template Format が BS の時は設定できません。(Cf. TEMPFORM)

■使用例

「NB at 8-PSK テンプレート型の Upper1 のレベルを-49.5 dB に変更する」

DSPL SETTEMP_RFPWR TEMPFORM MS TEMPTYPE_RFPWR NB8PSK TEMPLVLMS_RFPWR UP,1,-49.5 TEMPLVLMS_RFPWR? UP,1

<Response> -49.5

TEMPLVL_RFPWR

Level Modify for RF Power Template

Program Message	Query Message	Response Message
TEMPLVL_RFPWR <i>a,b,c</i>	TEMPLVL_RFPWR? <i>a,b</i>	С

■機能

Setup Template for RF Power 画面において, Judgment unit が Manual の時, 現在表示されているテンプレートのカ スタマイズをします。Template Format が MS の時は TEMPLVLMS_RFPWR を使って設定してください。(cf. TEMPLVLMS_RFPWR)

■a の値

テンプレートの上部枠/下部枠の選択

а	テンプレートの上部枠/下部枠の選択
UP	Upper: 上部枠の設定変更
LOW	Lowerr: 下部枠の設定変更

■b の値

テンプレートの位置

範囲	aの値(上部枠/下部枠)	Template Type	
1~5	Upper	NB at GMSK, AB, BTS1900 at GMSK	
1	Lower		
1~6	Upper	- NB at 8-PSK	
1~3	Lower		

■cの値

Power

範囲	分解能	単位
$-110.0 \sim 10.0$	0.1	dB
		$dBm(a = Upper b = 1,2 \mathcal{O}\mathcal{F})$

ロサフィックスコード

なし : dB

DB : dB

DBM : dBm
■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Template Format が MS の時は設定できません。(Cf. TEMPFPRM)

■使用例

「NB at 8-PSK テンプレート型の Upper1 のレベルを-49.5 dB に変更する」

DSPL SETTEMP_RFPWR TEMPFORM BTS TEMPTYPE_RFPWR NB8PSK TEMPLVL_RFPWR UP,1,-49.5 TEMPLVL_RFPWR? UP,1

<Response>

-49.5

TEMPOFFLVL

Setup Off Level

Program Message	Query Message	Response Message
TEMPOFFLVL a	TEMPOFFLVL?	a

■機能

Setup Template for RF Power 画面において、テンプレート上部レベル1(送信 OFF 時の電力)の単位を設定します。

■a の値

テンプレート上部のレベル1の単位

а	テンプレート上部のレベル 1 の単位	初期値
DBM	dBm	
DB	dB	*

■設定の初期化

PRE, INI, IP, *RST

■制約条件

・Template Format が MS の時は設定できません。(Cf. TEMPFPRM)

■使用例

「テンプレート上部レベル1の単位をdBに設定する」

<Program> DSPL SETTEMP_RFPWR TEMPFORM MS TEMPOFFLVL DB TEMPOFFLVL?

<Response> DB

TEMPPASS

Template Pass

Program Message	Query Message	Response Message
	TEMPPASS? <i>a(,b)</i>	С

■機能

RF Power 測定において、テンプレートによる測定波形の合否判定結果を読み出します。 Slot 指定が無い場合は Normal Burst の値を、Slot 番号が指定された場合は、その Slot の値を出力します。

■a の値

バースト On 区間/Off 区間の選択。

а	On 区間/Off 区間の選択
ON	On 区間
OFF	Off区間

■bの値

Slot 番号

b	対応 Slot	
0	Slot0	
1	Slot1	
2	Slot2	
3	Slot3	
4	Slot4	
5	Slot5	
6	Slot6	
7	Slot7	
ALL	全 Slot の判定結果	

■*c*の値

合否判定

с	判定結果
PASS	Pass:合格
FAIL	Fail:不合格
OFF	未測定

■使用例

「Normal Burst の場合に RF Power 測定波形の合否判定を取得する」

<Program> DSPL RFPWR WINDOW SLOT TEMPTYPE_RFPWR NBGMSK SWP TEMPPASS? ON

<Response> PASS

TEMPPASS_ACP

Template Pass for Output RF spectrum

Program Message	Query Message	Response Message
	TEMPPASS_ACP? a	b(1),b(2)b(n)

■機能

Output RF Spectrum 画面において, Template による測定波形の合否を判定します。判定基準は, すべてのポイント において波形が Template 内に収まっていれば Pass(合格), 1 ポイントでも Template 外のものがあれば FAIL(不合格)です。

Modulation もしくは Switching Trans.を選択した場合はそれぞれの-1.8MHz~+1.8MHz の範囲のすべての判定結果を出力します。

All 指定の場合は, Modulation と Switching Trans.の総合判定結果を出力します。

■a の値

判定波形の選択。

а	判定波形の選択
MOD	Modulation
SWTCH	Switching Trans.
ALL	ModulationとSwitching Trans.のそれぞれの総合判定結果

■b の値

合否判定

b	判定結果
PASS	Pass:合格
FAIL	Fail:不合格

■使用例

「All 指定で Modulation と Switching Trans.の総合判定結果を取得する」

<Program> TERM RF DSPL ADJ,HIGH SWP TEMPPASS_ACP? ALL

<Response> PASS,FAIL

TEMPPASS_RFPWR

Template Pass

Program Message	Query Message	Response Message
	TEMPPASS_RFPWR? a(,b)	С

■機能

RF Power 画面において, Template による測定波形の合否を判定します。判定基準は, すべてのポイントにおいて 波形が Template 内に収まっていれば Pass(合格), 1 ポイントでも Template 外のものがあれば FAIL(不合格)です。 TEMPPASS コマンドと同意義です。

Slot 指定が無い場合は Normal Burst の値を, Slot 番号が指定された場合は, その Slot の値を出力します。

■a の値

バーストOn区間/Off区間の選択。

а	On 区間/Off 区間の選択
ON	On 区間
OFF	Off区間

■bの値

Slot 番号

b	対応 Slot	
0	Slot0	
1	Slot1	
2	Slot2	
3	Slot3	
4	Slot4	
5	Slot5	
6	Slot6	
7	Slot7	
ALL	全 Slot の判定結果	

■cの値

合否判定

с	判定結果
PASS	Pass:合格
FAIL	Fail:不合格
OFF	未測定

■使用例

「Normal Burst の場合に RF Power 測定波形の合否判定を取得する」

<Program> DSPL RFPWR WINDOW SLOT TEMPTYPE_RFPWR NBGMSK SWP TEMPPASS_RFPWR? ON

<Response> PASS

TEMPRPWR

Reference Power for Template

Program Message	Query Message	Response Message
	TEMPRPWR?	a

■機能

RF Power 画面において, テンプレートで規定されている送信 OFF 時の電力(テンプレートレベル 1)を, バースト内 平均電力の相対値で出力します。

■a の値

送信 OFF 時の規定電力

分解能	単位
0.01	dB

■使用例

「送信 OFF 時の規定電力」

<Program> DSPL RFPWR SWP TEMPRPWR?

<Response>

-59.00

TEMPTYPE_RFPWR

Template Type for RF Power

Program Message	Query Message	Response Message
TEMPTYPE_RFPWR a	TEMPTYPE_RFPWR?	a

■機能

RF Power 画面において,標準テンプレートの枠型を設定します。

■a の値

テンプレート型

а	テンプレート型	初期値
NBGMSK	NB at GMSK	*
AB	AB	
NB8PSK	NB at 8PSK	
B19GMSK	BTS1900 at GMSK	

■設定の初期化

PRE, INI, IP, *RET

■使用例

「テンプレートの型を NB at 8PSK に設定する」

<Program> DSPL SETTEMP_RFPWR TEMPTYPE_RFPWR NB8PSK TEMPTYPE_RFPWR?

<Response> NB8PSK

TERM

Input terminal

Program Message	Query Message	Response Message
TERM a	TERM?	a

■機能

Setup Common Parameter 画面において, 測定する入力信号のコネクタを設定をします。

■a の値

コネクタの種類

а	コネクタ	初期値
RF	RF	*
IQDC	IQ-DC	
IQAC	IQ-AC	
IQBAL	IQ-Balance	

■設定の初期化

*RST

■使用例

「入力信号を IQ-DC に設定する」

<Program> DSPL SETCOM TERM IQDC TERM?

<Response> IQDC

TRFORM

Trace Format

Program Message	Query Message	Response Message
TRFORM a	TRFORM?	a

■機能

Modulation Analysis 画面において, 波形表示のフォーマットを設定をします。

■a の値

波形フォーマット

а	波形フォーマット	変調方式	初期値
NON	None:数値結果のみを表示し,波形は表示しません	GMSK, 8PSK	*
TRLIS	Trellis:位相の時間に対する変異を表示します。	GMSK	
CONSTEL	Constellation: IQ ダイアグラムを表示します。	GMSK,8PSK	
VECT	EVM:ベクトル誤差の大きさを表示します。	8-PSK	
EYE	Eye Diagram: IQ 信号の時間に対する変異を表示します。	GMSK,8PSK	
PHASE	Phase Error:位相誤差を表示します。	GMSK,8PSK	
MAGTD	Magnitude Error:振幅誤差を表示します。	GMSK,8PSK	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「波形表示フォーマットを Phase Error に設定する」

<Program> MEAS MODANAL TRFORM PHASE TRFORM?

<Response> PHASE

TRFORM_ACP

Trance Format for Output RF Spectrum

Program Message	Query Message	Response Message
TRFORM_ACP a	TRFORM_ACP?	a

■機能

Output RF Spectrum 画面において, 波形表示のフォーマットを設定をします。

■a の値

波形フォーマット

а	波形フォーマット	初期値
NON	None:数値結果のみを表示し,波形は表示しません	*
MOD	Modulation: Modulation 測定結果を表示します。	
SWTCH	Switching Tran.: Switching Tran.測定結果を表示します。	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Output RF Spectrum の波形表示フォーマットを Modulation に設定する」

<Program> TERM RF MEAS ADJ,HIGH TRFORM_ACP MOD TRFORM_ACP?

<Response> MOD

TRG

Trigger

Program Message	Query Message	Response Message
TRG a	TRG?	a

■機能

Setup Common Parameter 画面において, 測定を内部のタイミングで開始するか外部トリガで開始するかを選択します。

■a の値

トリガの設定

а	トリガ設定	初期値
FREE	Free Run	*
EXT	External	

■設定の初期化

*RST

■使用例

「トリガを外部から入力する」

<Program>

TRG EXT TRG?

<Response> EXT

TRGDLY

Trigger Delay

Program Message	Query Message	Response Message
TRGDLY a	TRGDLY?	a

■機能

Setup Common Parameter 画面において、トリガが入力されてから実際にタイミングをとる時間差を設定します。

■a の値

トリガディレイ値

範囲	分解能	初期値	単位
$-120.000 \sim 120.000$	0.001	0.000	ms

ロサフィックスコード

なし :ms

 $US \qquad : \mu s$

MS :ms

S :S

■制約条件

・Trigger が Free Run の場合は設定できません。

■設定の初期化

*RST

■使用例

「Trigger Delay 値を 50.000 ms に設定する」

<Program> TRG EXT TRGDLY 50.000 TRGDLY?

<Response> 50.000

TRGEDGE

Trigger Edge

Program Message	Query Message	Response Message
TRGEDGE a	TRGEDGE?	a

■機能

Setup Common Parameter 画面においてトリガのタイミングを,立ち上がりに同期させるか立ち下がりに同期させるかを設定します。

■a の値

トリガ標準

値	トリガ標準	初期値
RISE	立ち上がりに設定します。	*
FALL	立ち下がりに設定します。	

■制約条件

・Trigger が Free Run の場合は設定できません。

■設定の初期化

*RST

■使用例

「立ち上がりに設定する」

<Program> TRG EXT TRGEDGE RISE TRGEDGE?

<Response> RISE

TXPWR

Transmitter Power

Program Message	Query Message	Response Message
	TXPWR? <i>a(,b)</i>	С

■機能

RF Power, Spurious Emission 画面において, バースト内平均電力を出力します。 引数が無い場合は Normal Burst の値を, Slot 番号が指定された場合は, その Slot の値を出力します。

■a の値

出力単位

а	単位
DBM	dBm
WATT	W

■b の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■cの値

バースト内平均電力

分解能	単位	
0.01	a の値による	

■使用例

「Normal BurstのTX Powerの測定結果を読み出す」

<Program> DSPL SPURIOUS,SPOT SWP TXPWR? DBM

<Response> 25.03

UBIT_MSPS

Training Sequence Bit Pattern by user setting for Multi Slot Parameter Setup

Program Message	Query Message	Response Message
UBIT_MSPS <i>a</i> , <i>b</i>	UBIT_MSPS? b	a

■機能

Multi Slot Parameter Setup 画面において, 同画面, 同 Slot の Training Sequence をユーザ設定にした時の Training Sequence Bit Pattern を設定します。

■a の値

Training Sequence Bit Pattern

範囲※	変調方式	分解能	初期値	単位
$0 \sim$ FFFFFFFFFFFFFFFFF	GMSK	1	0000000	bit
$0 \sim 77777777777777777777777777777777777$	8-PSK	1	00000000	bit

※設定範囲は同 Slot の User Pattern Length の値によって決定されます。

■b の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■制約条件

・同 Slot の Training Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Multi Slot Parameter Setup 画面, Slot1 のユーザ定義の Training Sequence ビットパターンを FFFF に設定する」

<Program> MODTYPE GMSK MEASOBJ NBMS DSPL MSPS PATT_MSPS USER,1 ULEN_MSPS 16,1 UBIT_MSPS FFFF,1 UBIT_MSPS? 1 <Response> FFFF

ULEN_MSPS

Training Sequence Length by user setting for Multi Slot Parameter Setup

Program Message	Query Message	Response Message
ULEN_MSPS a,b	ULEN_MSPS? b	a

■機能

Multi Slot Parameter Setup 画面において, 同画面, 同 Slot の Training Sequence をユーザ設定にした時の Training Sequence 長を設定します。

■a の値

Training Sequence Bit Pattern

範囲	変調方式	分解能	初期値	単位
$1 \sim 64$	GMSK	1	26	symbol
$1 \sim 26$	8-PSK	1	26	symbol

■b の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■制約条件

・同 Slot の Training Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Multi Slot Parameter Setup 画面, Slot1 の Training Sequence 長を 64symbol に設定する」

<Program> MODTYPE GMSK MEASOBJ NBMS DSPL MSPS PATT_MSPS USER,1 ULEN_MSPS 64,1 ULEN_MSPS? 1

<Response> 64

UNIT_ADJ

Unit for Output RF Spectrum

Program Message	Query Message	Response Message
UNIT_ADJ a	UNIT_ADJ?	a

■機能

Output RF Spectrum 画面において, 測定結果の表示/読み出し単位を設定します。

■a の値

表示/読み出し単位

а	表示/読み出し単位	初期値
DBM	dBm	*
DB	dB	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Output RF Spectrum の単位を dB にする」

<Program> MEAS ADJ,HIGH UNIT_ADJ DB UNIT_ADJ?

<Response>

DB

UNIT_IQL

Unit for IQ Level

Program Message	Query Message	Response Message
UNIT_IQL a	UNIT_IQL?	a

■機能

IQ Level 画面において, IQ Level の測定結果の単位を設定します。

■a の値

IQ Level の単位

а	レベル読み出しの単位	初期値
MV	mV	
DBMV	dBmV	*

■設定の初期化

PRE, INI, IP, *RST

■使用例

「IQ Level の単位を mV にする」

<Program> TERM IQAC MEAS IQLVL UNIT_IQL MV UNIT_IQL?

<Response> MV

UNIT_SPU

Unit for Spurious Emission

Program Message	Query Message	Response Message
UNIT_SPU a	UNIT_SPU?	a

■機能

Spurious Emission 画面において、f1~f15のレベル(測定結果)の単位を設定します。

■a の値

各レベルの単位

а	単位	初期値
AUTO	判定に使用した単位	*
DB	dB	
DBM	dBm	
WATT	W	

■設定の初期化

PRE, INI, IP, *RST

■使用例

「f1 から f15 の各レベルの単位を dB にする」

<Program> UNIT_SPU DB UNIT_SPU?

<Response> DB

USTART_MSPS

Start Point of Training Sequence by user setting for Multi Slot Parameter Setup

Program Message	Query Message	Response Message
USTART_MSPS a,b	USTART_MSPS? b	a

■機能

Multi Slot Parameter Setup 画面において, 同画面, 同 Slot の Training Sequence をユーザ設定にした時, 1 バース ト内のどの位置を Training Sequence の開始位置にするかを設定します。

■a の値

Training Sequence の開始位置

範囲	変調方式	Measuring Object	分解能	初期値	単位
$0 \sim (87 - \text{User Pattern Length})$	CMCK	AB			1. 14
$0 \sim (147 - \text{User Pattern Length})$	GMSK	AB 以外	1	61	bit
$0 \sim (147 - \text{User Pattern Length})$	8-PSK	NB			symbol

■b の値

Slot 番号

範囲	分解能	初期値
0~7	1	1

■制約条件

・同 Slot の Training Sequence Bit Pattern が User 設定以外の場合は設定できません。

■設定の初期化

*RST

■使用例

「Multi Slot Parameter Setup 画面, Slot1の Training Sequence 開始ビットを Obit に設定する」

<Program> MODTYPE GMSK MEASOBJ NBMS DSPL MSPS PATT_MSPS USER,1 USTART_MSPS 0,1 USTART_MSPS? 1 <Response>

0

VBW_SETREF_SPU

Video Bandwidth for Reference Power of Spurious Emission

Program Message	Query Message	Response Message
VBW_SETREF_SPU a	VBW_SETREF_SPU?	a

■機能

Spurious Emission の Reference Power を Spectrum 法で測定する際の VBW (Video Bandwidth)を設定します。

■a の値

VBW

範囲			分解能	初期値	単 位					
0(OFF)	1	3	10	30	100	300	1000	1	1MU-	U-
3000	10000	30000	100000	300000	1000000	3000000		1	IMITZ	пz

□サフィックスコード

なし:Hz HZ :Hz KHZ,KZ :kHz MHZ,MZ :MHz GHZ,GZ :GHz

■設定の初期化

PRE,INI,IP,*RST

■使用例

「VBWを30kHzに設定する」

<Program> VBW_SETREF_SPU 30KHZ VBW_SETREF_SPU?

<Response> 30000

VECTERR

RMS EVM

Program Message	Query Message	Response Message
	VECTERR?	a

■機能

Modulation Analysis 画面において, EVM の RMS 値の測定結果を出力します。

■a の値

RMS EVM

分解能	単位
0.01	%

■使用例

「RMS EVM 値をを読み出す」

<Program> DSPL MODANAL SWP VECTERR?

<Response> 23.48

VIEW_ACP

View Select for Output RF Spectrum

Program Message	Query Message	Response Message
VIEW_ACP a	VIEW_ACP?	a

■機能

Output RF Spectrum 画面において, Non 表示の場合に Limit 値の表示する対象を設定します。

■aの値

表示項目の種類

а	表示項目	初期値
LOW	Lower 側の Limit 値を表示します。	*
UP	Upper 側の Limit 値を表示します。	

■制約条件

・Output RF Spectrum 画面の Trace Format が Non に設定されている場合のみ設定可能。

■設定の初期化 PRE, INI, IP, *RST

■使用例 「表示対象をUpper側に設定する」

<Program> TERM RF DSPL ADJ,HIGH VIEW_ACP UP VIEW_ACP?

<Response> UP

VIEW_SPU

View for Spurious Emission

Program Message	Query Message	Response Message
VIEW_SPU a	VIEW_SPU?	a

■機能

Spurious Emission 画面において, 画面右側に, Judgement の結果を表示するか, RBW, VBW を表示するか, Ref Level, ATT, SWT を表示するかを選択します。

■a の値

表示項目

Spurious Emission 画面

а		表示項目	初期値
なし		Judgement \rightarrow RBW, VBW \rightarrow Ref Level, ATT, SWT \rightarrow Level Meas.(注) \rightarrow Judgement の順で切り替わり表示しま す。	
JDG	Judgement	Judgement を表示します。	*
BW	BW	RBW, VBW を表示します。	
REFATTSWT	Ref,ATT,SWT	Ref Level, ATT, Sweep Time を表示します。	
LVLMEAS	Level Meas.	スプリアス振幅測定時の測定条件を表示します。(注)	

注: Spurious Mode : Search 時のみ

■制約条件

・ Waveform Display が ON の場合は, 設定できません。(cf. WAVEFORM_SPU)

■設定の初期化

PRE, INI, IP, *RST

■使用例

「RBW, VBW を表示する」

<Program> DSPL SPURIOUS,SPOT WAVEFORM_SPU OFF VIEW_SPU BW VIEW_SPU?

<Response> BW

VSCALE

Vertical Scale for EVM, Phase Error and Magnitude Error

Program Message	Query Message	Response Message
VSCALE a	VSCALE?	a

■機能

Modulation Analysis 画面において, Trace Format が EVM, Phase Error, Magnitude Error のとき, 表示座標の縦軸 目盛りの上限値を設定します。

■a の値

縦軸目盛りの上限値

а	縦軸目盛りの上限値	初期値
5	5 [deg] or [%]	
10	10 [deg] or [%]	
20	20 [deg] or [%]	*
50	50 [deg] or [%]	
100	100 [deg] or [%]	

■制約条件

・Trace Format が EVM, Phase Error, Magnitude Error の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Phase Error の縦軸目盛り上限値を 50[deg]に設定する」

<Program> MEAS MODANAL TRFORM PHASE VSCALE 50 VSCALE?

<Response> 50

WAVEFORM_RFPWR

Waveform Display for RF Power

Program Message	Query Message	Response Message
WAVEFORM_RFPWR a	WAVEFORM_RFPWR?	а

■機能

RF Power 画面において, 波形表示の可否を設定をします。

■a の値

波形表示の可否

а	波形表示の可否	初期値
ON	波形を表示します。	*
OFF	波形を表示しません。	

■制約条件

・ Measuring Object が Normal Burst (Multi Slot)以外の場合は設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「RF Powerの波形表示をOffに設定する」

<Program> TERM RF MEASOBJ NBMS DSPL RFPWR WAVEFORM_RFPWR OFF WAVEFORM_RFPWR?

<Response> OFF

WAVEFORM_SPU

Waveform Display for Spurious Emission

Program Message	Query Message	Response Message
WAVEFORM_SPU a	WAVEFORM_SPU?	a

■機能

Spurious Emission 画面において, 波形表示の On/Off を設定します。

■a の値

波形表示の On/Off

а	波形表示の On/Off	初期値
ON	波形を表示します	*
OFF	波形を表示しません	

■制約条件

• すべての周波数テーブルの測定が終了するまで、表示を切り替えることはできません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「波形を表示する」

<Program> DSPL SPURIOUS,SWEEP WAVEFORM_SPU ON WAVEFORM_SPU?

<Response> ON

WAVETBLNO_SPU

Waveform Display for Spurious Emission

Program Message	Query Message	Response Message
WAVETBLNO_SPU Fa,b	WAVETBLNO_SPU?	Fa

■機能

Spurious Emission 画面において,指定した周波数テーブル番号の掃引波形を表示します。

■a の値

周波数テーブル番号

範囲	分解能	初期値
$1 \sim 15$	1	1

■bの値

表示波形

b	表示波形
なし	Frequency:国油粉提引油形を表示する
FREQ	Trequency . 向波数师引放形を衣木する
TIME	TIME :時間軸掃引波形を表示する

■制約条件

- ・ Waveform Display が OFF の場合は、設定できません。(cf. WAVEFORM_SPU)
- ・ bの値は Search 法を選択している場合のみ入力できます。(cf. DSPL)

■設定の初期化

PRE, INI, IP, *RST

■使用例

「周波数テーブル番号10の掃引波形を表示する」

<Program> DSPL SPURIOUS,SWEEP WAVEFORM_SPU ON SWP WAVETBLNO_SPU F10 WAVETBLNO_SPU?

<Response> F10

WIDE_RFPWR

Wide Dynamic Range

Program Message	Query Message	Response Message
WIDE_RFPWR a	WIDE_RFPWR?	a

■機能

RF Power 画面において, Wide Dynamic Range の On/Offを設定します。

■a の値

Wide Dynamic Range の On/Off 設定

а	Wide Dynamic Range の On/Off 設定	初期値
ON	On: Wide Dynamic Range を有効にします。	
OFF	Off: Wide Dynamic Range を無効にします。	*

■設定の初期化

PRE, INI, IP, *RST

■使用例

「Wide Dynamic Range を有効にする」

<Program> MEAS RFPWR WIDE_RFPWR ON WIDE_RFPWR?

<Response> ON

WINDOW

Wave Window

Program Message	Query Message	Response Message
WINDOW a	WINDOW?	a

■機能

RF Power 画面において, 波形ウィンドウを設定します。

■a の値

波形ウィンドウの種類

а	波形ウィンドウの種類	Modulation Type	初期値
SLOT	Slot:1スロット分の波形を表示します。	GSMK, 8-PSK	*
ONPORT	On Portion:バースト・オン部分の波形を拡大表示します。	GSMK	
FRAME	Frame:1フレーム(8 スロット)分の波形を表示します。	GSMK, 8-PSK	
LEAD	Leading:バースト立ち上がり部分の波形を表示します。	GSMK, 8-PSK	
TRAIL	Trailing: バースト立ち下がり部分の波形を表示します。	GSMK, 8-PSK	

■制約条件

・ Modulation Type が 8-PSK の場合は On Portion に設定できません。

・ Measuring Object が Normal Burst (Multi Slot)で,同画面の Waveform Display が Off の場合も設定できません。

■設定の初期化

PRE, INI, IP, *RST

■使用例

「波形ウィンドウを On Portion に設定する」

<Program> MEAS RFPWR WINDOW ONPORT WINDOW?

<Response> ONPORT

XMB

Wave Data for Output RF Spectrum

Program Message	Query Message	Response Message
XMB <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i>	XMB? <i>a,b,c,e</i>	$f(1), f(2), \dots, f(d)$

■機能

Output RF Spectrum 画面において、Spot 波形データの読み出しや加工を行います。

■a の値

領域の指定

範囲	対象領域
0	Carrier
1	Upper (+100kHz~+1.8MHz)
2	Lower (-100kHz~-1.8MHz)

■b の値

周波数帯の指定

範囲	対象領域
0	$\pm 100 \mathrm{kHz}$
1	$\pm 200 \mathrm{kHz}$
2	$\pm 250 \text{kHz}$
3	$\pm 400 \mathrm{kHz}$
4	$\pm 60 \mathrm{kHz}$
5	\pm 800kHz
6	$\pm 1 MHz$
7	$\pm 1.2 MHz$
8	± 1.4 MHz
9	$\pm 1.6 MHz$
10	$\pm 1.8 MHz$

■cの値

データ書き込み / 読み込み開始アドレス

範囲	分解能
0~374	1

<Marker Position とデータ格納アドレスの関係について>

Marker Position の範囲である-20.0symbol~167.00Symbol までのデータに対して、データ格納アドレス0~376 が割り当てられています。

Marker Position [symbol]	-20.0	-19.5	0.0	167.0
データ格納アドレス	0	1	40	374

■d の値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1dBを100とした 0.01dB 単位の整数で設定します。

■e の値

データ読み出し個数(データ読み出し開始アドレスから順に読み出すデータの個数です)

範囲	分解能
1~375	1

これ以前に指定する読み込み開始アドレスとの合計値が最大値である 376 を越える場合は読み出す事が出来ません。

■f*(n)*の値

読み出された 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1dBを100とした 0.01dB 単位の整数で設定します。
■使用例

「Output RF Spectrum の Carrier の波形データをメモリアドレス0番地から5個読み出す」

<Program> TERM RF DSPL ADJ,HIGH SWP XMB? 0,0,0,5

<Response>

-1012, -1743, -1823, -1272, -1055

XMC

Wave Data for I-Q Signal

Program Message	Query Message	Response Message
XMC <i>a,b,c</i>	XMC? <i>d</i> , <i>e</i> , <i>f</i>	g(1),g(2),,g(f)

■機能

Modulation Analysis 画面において, IQ 信号の波形データの読み出しや加工を行います。

■a の値

IQ の選択

а	IQ の選択
0	I信号
1	Q信号

■b の値

データ書き込みアドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMK	1
$0 \sim 1550$	Continuous	GSIMK	1
$0 \sim 1410$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Eye Diagram の Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してアドレス 0~1470 が割り 当てられています。ConstellationのMarker Position は分解能が 1.0symbol なので, Marker Position 0.0symbol, 1.0symbol い147.0symbol に対して 0, 10・・・1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Eye Diagram の Marker Position 3.0symbol~144.0symbol(分解能 0.1symbol)に対してアドレス 0~1410 が割り当てられています。Constellation の Marker Position は分解能が 1.0 なので, Marker Position 3.0symbol, 4.0symbol ・・・144.0symbol に対してアドレス 0, 10・・・1410 が割り当て られています。

■cの値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・理想信号"1"を10000とした0.0001単位の整数で設定します。

■d の値

IQ の選択

d	IQ の選択	
0	I 信号	
1	Q信号	

■e の値

データ読み出しアドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMK	1
$0 \sim 1550$	Continuous	USIMK	1
$0 \sim 1410$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Eye Diagramの Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してアドレス 0~1470 が割り 当てられています。Constellationの Marker Position は分解能が 1.0symbolなので, Marker Position 0.0symbol, 1.0symbol ・・・147.0symbol に対して 0, 10・・・1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Eye Diagram の Marker Position 3.0symbol~144.0symbol(分解能 0.1symbol)に対してアドレス 0~1410 が割り当てられています。Constellation の Marker Position は分解能が 1.0 なので, Marker Position 3.0symbol, 4.0symbol ・・・144.0symbol に対してアドレス 0, 10・・・1410 が割り当て られています。

■fの値

データ読み出し個数(データ読み出し開始アドレスから順に読み出すデータの個数です)

範囲	Measuring Object	Modulation Type	分解能
$1 \sim 1471$	NA, AB, SB	CSMK	1
$1 \sim 1551$	Continuous	GSMK I	
$1 \sim 1411$	NB, Continuous	8-PSK	1

■g (n)の値

読み出された 16bit 波形データ

範囲	分解能	
$-32768 \sim 32767$	1	

・理想信号"1"を10000とした 0.0001 単位の整数で読み出されます。

■使用例

「IQ 信号の波形データをメモリアドレス0番地から5個読み出す」

<Program> DSPL MODANAL SWP XMC? 0,0,5

<Response> 0, -1, 0, -1, 0

XMD

Wave Data for RF Power

Program Message	Query Message	Response Message
XMD <i>a</i> , <i>b</i>	XMD? <i>c,d</i>	e(1), e(2),, e(d)

■機能

RF Power 画面において、Waveform Displayの波形データの読み出しや加工を行います。

■a の値

データ書き込みアドレス

範囲	Measuring Object	分解能
0~13010	Normal Burst	1
0 15010	(Multi Slot 以外)	1
0~,26020	Nomal Burst	1
0, -20020	(Multi Slot)	1

<Marker Position とデータ格納アドレスの関係について>

Marker Position の範囲, Widow が Slot 時の横軸最小値-27.0symbol から Window が Frame 時の横軸最大値 1274.0symbol まで(分解能 0.1symbol)に対して、データ格納アドレス 0~13010(Normal Burst(Multi Slot)の場合は 26020。)が割り当てられています。(下表参照)

Marker Position [symbol]	-27.00	-26.90	0.00	1274.00
データ格納アドレス	0	1	270	13010
データ格納アドレス	0	2	540	26020

■b の値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1dBmを100とした0.01dBm単位の整数で設定します。

■cの値

データ読み出し開始アドレス

範囲	Measuring Object	分解能
0~13010	Normal Burst	1
	(Multi Slot)以外	
0~26020	Nomal Burst	1
	(Multi Slot)	

■d の値

データ読み出し個数

範囲	Measuring Object	分解能
1~13011	Normal Burst	1
	(Multi Slot)以外	
1~26021	Nomal Burst	1
	(Multi Slot)	

■e*(n)*の値

読み出された 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1dBmを100とした0.01dBm単位の整数で設定します。

■使用例

「RF Power の波形データをメモリアドレス0番地から5個読み出す」

<Program> DSPL RFPWR SWP XMD? 0.0,5

<Response> -1012, -1743, -1823, -1272, -1055

XMN

Wave Data for Magnitude Error

Program Message	Query Message	Response Message
XMN <i>a,b</i>	XMN? <i>c,d</i>	e(1), e(2),, e(d)

■機能

Modulation Analysis 画面において, Magnitude Error の波形データの読み出しや加工を行います。

■a の値

データ書き込みアドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMV	1
$0 \sim 1550$	Continuous	GSIMK	1
$0 \sim 141$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Modulation Type が GMSK の場合, Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してア ドレス 0~1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Marker Position 3.0symbol~144.0symbol(分解能 1symbol)に対してアドレス 0~141 が割り当てられています。

■b の値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1%を100とした0.01%単位の整数で設定します。

■cの値

データ読み出し開始アドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMK	1
$0 \sim 1550$	Continuous	GSIMK	1
$0 \sim 141$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Modulation Type が GMSK の場合, Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してア ドレス 0~1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Marker Position 3.0symbol~144.0symbol(分解能 1symbol)に対してアド レス 0~141 が割り当てられています。

■d の値

データ読み出し個数(データ読み出し開始アドレスから順に読み出すデータの個数です)

範囲	Measuring Object	Modulation Type	分解能
$1 \sim 1471$	NA, AB, SB	CSMV	1
$1 \sim 1551$	Continuous	GSIMK	1
$1 \sim 142$	NB, Continuous	8-PSK	1

■eの値

読み出された 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1%を100とした0.01%単位の整数で設定します。

■使用例

「Magnitude Error の波形データをメモリアドレス0番地から5個読み出す」

<Program> DSPL MODANAL SWP XMN? 0,5

<Response>

0, 1413, -1, -7415, -1

XMP

Wave Data for Phase Error

Program Message	Query Message	Response Message
XMP <i>a</i> , <i>b</i>	XMP? <i>c</i> , <i>d</i>	e(1), e(2),, e(d)

■機能

Modulation Analysis 画面において, Phase Error の波形データの読み出しや加工を行います。

■aの値

データ書き込みアドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMV	1
$0 \sim 1550$	Continuous	GSIMK	1
$0 \sim 141$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Modulation Type が GMSK の場合, Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してア ドレス 0~1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Marker Position 3.0symbol~144.0symbol(分解能 1symbol)に対してアドレス 0~141 が割り当てられています。

■b の値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・ 1deg を 100 とした 0.01deg 単位の整数で設定します。

■cの値

データ読み出し開始アドレス

範囲	Measuring Object	Modulation Type	分解能
$0 \sim 1470$	NA, AB, SB	CSMK	1
$0 \sim 1550$	Continuous	GSIMK	1
$0 \sim 141$	NB, Continuous	8-PSK	1

<Marker Position とデータ格納アドレスの関係について>

- *1: Modulation Type が GMSK の場合, Marker Position 0.0symbol~147.0symbol(分解能 0.1symbol)に対してア ドレス 0~1470 が割り当てられています。
- *2: Modulation Type が 8-PSK の場合, Marker Position 3.0symbol~144.0symbol(分解能 1symbol)に対してアド レス 0~141 が割り当てられています。

■d の値

データ読み出し個数(データ読み出し開始アドレスから順に読み出すデータの個数です)

範囲	Measuring Object	Modulation Type	分解能
$1 \sim 1471$	NA, AB, SB	CSMK	1
$1 \sim 1551$	Continuous	GSIMK	1
$1 \sim 142$	NB, Continuous	8-PSK	1

■eの値

読み出された 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・ 1deg を 100 とした 0.01deg 単位の整数で設定します。

■使用例

「Phase Error の波形データをメモリアドレス0番地から5個読み出す」

<Program> DSPL MODANAL SWP XMP? 0,5

<Response>

-1, -1660, 0, 8679, 0

XMV

Wave Data for EVM

Program Message	Query Message	Response Message
XMV a,b	XMV? <i>c,d</i>	e(1), e(2),, e(d)

■機能

Modulation Analysis 画面において, EVM の波形データの読み出しや加工を行います。

■a の値

データ書き込みアドレス

範囲	分解能
0~141	1

<Marker Position とデータ格納アドレスの関係について>

Marker Position 3.0symbol ~ 144.0symbol(分解能 1symbol)に対して、アドレス 0~141 が割り当てられています。

■b の値

書き込む 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1%を100とした0.01%単位の整数で設定します。

■cの値

データ読み出し開始アドレス

範囲	分解能
0~141	1

<Marker Position とデータ格納アドレスの関係について>

Marker Position 3.0symbol ~ 144.0symbol(分解能 1symbol)に対して、アドレス 0~141 が割り当てられています。

■d の値

データ読み出し個数(データを読み出し開始アドレスから順に読み出すデータの個数です)

範囲	分解能
1~142	1

■e*(n)*の値

読み出された 16bit 波形データ

範囲	分解能
$-32768 \sim 32767$	1

・1%を100とした0.01%単位の整数で設定します。

■使用例

「EVMの波形データをメモリアドレス0番地から5個読み出す」

<Program> DSPL MODANAL SWP XMV? 0,5

<Response> 0, 3743, 0, 9272, 0

ZAJ

Zero Set

Program Message	Query Message	Response Message
ZAJ		

■機能

パワーメータのゼロ点校正を実行します。ZEROSET コマンドと同機能です。

■使用例

<Program> DSPL PWRMTR ZAJ

ZEROSET

Zero Set

Program Message	Query Message	Response Message
ZEROSET		

■機能

パワーメータのゼロ点校正を実行します。ZAJコマンドと同機能です。

■使用例

<Program> DSPL PWRMTR ZEROSET