MT1000A ネットワークマスタ プロ OTDRモジュール 取扱説明書

第20版

製品を適切・安全にご使用いただくために,製品をご使用になる 前に,本書を必ずお読みください。 本書は製品とともに保管してください。

アンリツ株式会社

管理番号: M-W3810AW-20.0

MT1000A ネットワークマスタ プロ OTDRモジュール 取扱説明書

2015年(平成27年)11月25日(初版) 2021年(令和3年)5月25日(第20版)

・予告なしに本書の本書の製品操作・取り扱いに関する内容を変更することがあります。
 ・許可なしに本書の一部または全部を転載・複製することを禁じます。
 © Copyright 2015-2021, ANRITSU CORPORATION.
 Printed in Japan

はじめに

MT1000Aネットワークマスタ プロ OTDRモジュール 取扱説明書は, MU100020A, MU100021A, MU100022A, または MU100023A OTDRモジュールを取り付けた機器を対 象としています。本書では, 機器の基本操作およびインタフェース オプション, アプリケーション の操作を説明しています。

MT1000A ネットワークマスタプロ OTDRモジュール 取扱説明書 (本書) MU100020A, MU100021A, MU100022A, MU100023A OTDRモジュールと MT1000A ネットワークマスタプロ 本体の取り扱い方法を記載しています。

MT1000A ネットワークマスタ プロ OTDRモジュール クイックリファレンスガイド 印刷されたクイックリファレンスガイドで,製品の基本的な操作方法を説明します。

MT1000A ネットワークマスタ プロ OTDRモジュール リモートスクリプティング 取扱説明書 リモート制御コマンドを使用した操作方法を記載しています。

本書の構成

本書の構成を以下に示します。

第1章 - はじめに

- 第2章 製品構成
- 第3章 ヒューマンマシンインタフェース
- 第4章 グラフィカルユーザインタフェース
- 第5章 光ファイバ試験アプリケーション
- 第6章 ユーティリティアプリケーション
- 第7章 性能試験と校正
- 第8章 仕様
- 第9章 サポート

第4章では,画面の一般的な操作方法を説明します。第5章は各画面,サブ画面,および主なダ イアログボックスを次の順番で説明します。

測定条件の設定画面

各アプリケーションの設定画面と測定結果画面

本書は,読者に次の知識と経験があることを前提として説明しています。 光通信に関する基礎知識および光部品,光ファイバの取扱経験 目次

0 目次	4
 1 はじめに 1.1 メインフレーム 1.2 OTDRモジュール 1310/1550m SMF (MU100020A) 1.3 OTDRモジュール 1310/1550/850/1300nm SMF/MMF (MU100021A) 1.4 OTDRモジュール 1310/1550/1625nm SMF (MU100022A) 1.5 OTDRモジュール 1310/1550/1650nm SMF (MU100023A) 1.6 記号および表記規則 1.6.1 本書中の表示について 1.6.2 本器に表示または本書に使用されるシンボルについて 1.6.3 注 1.6.4 ヒント 1.6.5 オプション 1.7 安全にお使いいただくために 1.7.1 危険 1.7.2 警告 1.7.3 注意 1.7.4 計測器のウイルス感染を防ぐための注意 1.8 使用前の注意 1.8.1 設置 1.8.2 通気 1.8.3 静電気放電 (ESD) 1.8.4 光コネクタ 1.8.5 光ファイパケーブルの取り扱い上の注意 1.8.6 無線LANが使える国や地域について 	<pre>9 10 11 11 11 12 12 12 12 12 13 13 14 15 16 17 17 18 18 19 20</pre>
 2 製品構成 2.1 同梱添付品 2.1.1 標準添付品 2.1.2 オプションの添付品 2.2 ACアダプタ 2.2.1 ACアダプタの接続 2.3 充電式バッテリ 2.3.1 バッテリの取り付け/交換 2.3.2 バッテリの充電 2.3.3 バッテリステータス情報 2.4 光ファイバ 2.5 サポートスタンドおよびキャリング ストラップ 2.5.1 サポート スタンド 2.5.2 キャリング ストラップおよびハンドル 2.6 モジュール構成 2.7 モジュールの交換方法 2.7.1 MU100010A 10Gマルチレート モジュールの取り外し 2.7.2 OTDRモジュールと10Gマルチレート モジュールの取り付け 	21 22 22 23 23 24 25 26 27 28 28 28 28 28 28 32 34 35 37
3 ヒューマン マシン インタフェース 3.1 タッチパネル ディスプレイ 3.2 キー操作 3.2.1 電源ボタン 3.3 ヘッドセット 3.4 コネクタパネル 3.4.1 テスト インタフェース 3.4.2 サービスインタフェース 3.4.3 光コネクタ・光アダプタのクリーニング 3.5 コマンドベースのリモート制御	 39 40 41 42 43 43 44 45 48

3.6 USBインタフェースによるファイルアクセス 3.7 イーサネットインタフェースによるファイルアクセス 3.7.1 PCからネットワークマスタのファイルにアクセスする 3.7.2 ネットワークマスタにPCの共有フォルダをマウントする 3.8 GPSレシーバ 3.8.1 G0325A GPSレシーバ 3.8.2 GPSレシーバの操作	49 50 50 50 53 53 53
 4 グラフィカル ユーザ インタフェース 4.1 GUIの一般的な取り扱い 4.1.1 GUIの概念 4.1.2 GUI内のナビゲーション 4.1.3 GUI画面のレイアウト 4.1.4 フィールドへのテキスト入力用キーパッド 4.2 ツールバー 4.2.1 機器ツールバー 4.2.2 アプリケーション ツールバー 4.3 機器の起動 4.3.2 アプリケーションの起動 4.3.3 前回のテストおよびテスト結果へのアクセス 4.3.4 アプリケーションの終了 4.3.5 電源をオフにする 	55 56 57 58 65 66 82 87 87 87 87 87 88 88
 5 光ファイバ試験 アプリケーション 5.1 Standard OTDR 5.1.1 測定条件の設定 5.1.2 テスト設定 5.1.3 テスト結果 5.1.4 測定 5.2 FTTA 5.2.1 測定条件の設定 5.2.2 テスト設定 5.2.3 テスト結果 5.3 Construction 5.3.1 アプリケーション ツールバー 5.3.2 測定条件の設定 5.3.3 テスト設定 5.3.4 テスト結果 5.4 OLTS 5.4.1 ロステストセットの設定 5.4.2 ロステーブル 	89 90 90 100 123 131 131 131 132 135 135 135 135 135 135 135 135 135 135
 6 ユーティリティ アプリケーション 6.1 Scenario 6.1.1 シナリオマネージャ 6.1.2 シナリオの実行 6.2 GPS/GNSS 6.2.1 テスト設定 6.2.2 テスト結果 6.3 VIP 6.3.1 アプリケーション ツールバー 6.3.2 ファイバスコープを接続する 6.3.3 テストの設定 6.3.4 テスト結果 6.4 PDF Viewer 6.5 Wireshark 	163 164 164 166 168 169 171 172 172 172 175 177 178
7 性能試験と校正	179

 7.1 性能試験 7.1.1 性能試験に必要な設備 7.1.2 波長 7.1.3 パルス幅 7.1.4 ダイナミックレンジ 7.1.5 距離測定確度 7.1.5 距離測定確度 7.1.6 リニアリティ 7.1.7 デッドゾーン 7.1.8 可視光源(VFL)の光出力パワーと波長 7.1.9 光源の光出力レベルおよび波長 7.1.10 パワーメータの測定確度 7.2 校正 7.2.1 後方散乱光レベルの校正 7.2.2 パワーメータの測定確度校正 7.3 性能試験記録表 	 180 182 183 184 186 187 189 192 193 194 195 196 197
8 仕様 8.1 MT1000A 8.1.1 構成 8.1.2 電気的性能・機能 8.1.3 環境性能 8.1.3 環境性能 8.1.4 機械的性能 8.2 MU100020A OTDRモジュール 1310/1550nm SMF 8.2.1 構成 8.2.2 OTDR 8.2.3 光パワーメータ 8.2.4 光源 8.2.5 可視光源 (オプション 002) 8.2.6 環境性能 8.3 MU100021A OTDRモジュール 1310/1550/850/1300nm SMF/MMF 8.3.1 構成 8.3.2 OTDR 8.3.3 光パワーメータ 8.3.4 光源 8.3.5 可視光源 (オプション 002) 8.3.6 環境性能 8.3 MU100022A OTDRモジュール 1310/1550/1625nm SMF 8.4.1 構成 8.4.2 OTDR 8.4.3 光パワーメータ 8.4.3 光パワーメータ 8.4.3 光パワーメータ 8.4.3 光パワーメータ 8.4.3 光パワーメータ 8.4.4 光源 8.4.5 可視光源 (オプション 002) 8.4.6 環境性能 8.4.7 機械的性能 8.5.7 機械的性能 8.5.7 機械的性能	 207 208 209 209 209 210 211 213 214 215 216 216 216 217 220 221 220 221 223 224 225 226 228 229 230 231
9 サホート 9.1 メンテナンスおよび清掃 9.1.1 メンテナンス 9.1.2 清掃	231 232 232 232

9.2 保管	233
9.3 ネットワークマスタのデータフォーマット	234
9.4 ソフトウェアの更新	235
9.5 サポートおよびサービスの利用	236
9.5.1 サポートを受ける前に	236
9.5.2 サポートまたはサービスを受けるには	236
9.6 輸送·廃棄	237
9.6.1 再梱包	237
9.6.2 輸送	237
9.6.3 廃棄	237
9.7 特別な情報	238
9.7.1 品質証明	238
9.7.2 保証	238
9.7.3 当社へのお問い合わせ	239
9.7.4 ライセンス情報	239
9.7.5 ソース コードの提供	239
9.8 ソフトウェアライセンス文書	240
9.9 ソフトウェア使用許諾	245
9.10 レーザの安全性について	247
9.10.1 レーザの安全性分類	247
9.10.2 製品の表示ラベル	250
9.10.3 レーザ光に関する表示	250
9.11 注意事項	254
9.11.1 輸出管理に関する注意	254
9.12 JSONファイル書式	255

1 はじめに

この章ではMT1000Aネットワークマスタ プロの概要を紹介し,本書で使用されている記号 および表記規則について説明します。

1.1 メインフレーム

MT1000Aネットワークマスタ プロ(以下では,「ネットワークマスタ」または「本器」と呼びま す)は、フィールドでの使用に適したバッテリ駆動型の通信テスタであり,同時に多くの目的 に沿ったテストをすることができます。たとえば、ネットワーク建設時の初期障害に対する迅 速なトラブルシューテングから,相互接続性の問題に対する包括的で詳細な分析まで、広範 な用途に使用することができます。インストールするオプションを選択することにより、ネット ワークマスタは複数の規格に対応したネットワーク回線の品質試験装置としても高度なシ グナリングアナライザとしても使用できます。

測定結果は大型のカラーLCDに表示され、試験結果の合格/不合格やエラーの有無がアイ コンのカラー表示によって簡単に読み取ることができます。タッチパネルによる操作設定と、 この大型LCDにより、ネットワークマスタは非常に使いやすいユーザインタフェースを実現し ています。特定のアプリケーションに対応する設定を本器に保存できます。本器にはデータ 転送および外部通信用のインタフェースとして、LANインタフェース、WLANインタフェー ス、Bluetooth[®]、および3つのUSBポートがあります。

ネットワークマスタは頑丈で可搬性が優れているため,障害箇所の特定を実施する場所を選 ばず,適切な測定ポイントで測定を実行できます。本器の電源は,充電式の交換可能なイン テリジェント大容量リチウムイオンバッテリで供給されます。ネットワークマスタは,長時間の 測定用にACアダプタ経由で電源を供給することもできます。

最新の情報については次のホームページを参照してください。 https://www.anritsu.com/ja-jp/test-measurement/products/mt1000a

1.2 OTDRモジュール 1310/1550nm SMF (MU100020A)

MU100020A OTDRモジュールは、シングルモードファイバ (SMF) 試験専用のモデルで す。シングルモードファイバ通信には、波長1310 nm または 1550 nmの光が使用さ れ、MU100020Aの光出力は、OTDR試験にも光源としても使用できます。 MU100020A は光レベルをチェックするのに便利な光パワーメータを装備しています。 光源と光パワーメー タを組み合わせることにより、光部品の損失を測定できます。 このアプリケーションをOLTS (Optical Loss Test Set)と呼びます。

可視光源機能 (VFL)

可視光(赤色)の光源です。光ファイバ内で反射する光を目視で確認できるため、デッドゾーンの障害を検索する際に便利です。

1.3 OTDRモジュール 1310/1550/850/1300nm SMF/MMF (MU100021A)

MU100021A OTDRモジュールは,シングルモードファイバとマルチモードファイバ (MMF) の両方を試験できます。マルチモードファイバ通信には,波長850 nm または 1300 nmの 光が使用されます。

1.4 OTDRモジュール 1310/1550/1625nm SMF (MU100022A)

MU100022A OTDRモジュールは,シングルモードファイバ (SMF) 試験専用のモデルで す。通信に使用する波長1310 nm および 1550 nmの光源と,通信に影響を与えない波 長 1625 nmの光源を内蔵しています。

1.5 OTDRモジュール 1310/1550/1650nm SMF (MU100023A)

MU100023A OTDRモジュールは,シングルモードファイバ (SMF) 試験専用のモデルで す。通信に使用する波長1310 nm および 1550 nmの光源と,通信に影響を与えない波 長 1650 nmの光源を内蔵しています。

1.6 記号および表記規則

1.6.1 本書中の表示について

当社では人身事故や財産の損害を避けるために,危険の程度に応じて下記のようなシグナ ルワードを用いて安全に関する情報を提供しています。記述内容を十分に理解した上で機器 を操作してください。下記の表示およびシンボルは,そのすべてが本器に使用されていると は限りません。また,外観図などが本書に含まれるとき,製品に貼り付けたラベルなどがその 図に記入されていない場合があります。

▲ 危険 回避しなければ,死亡または重傷に至る切迫した危険があることを示します。

▲ 注意 回避しなければ,軽度または中程度の人体の傷害に至るおそれがある潜在的危険,または,物的 損害の発生のみが予測されるような危険があることを示します。

1.6.2 本器に表示または本書に使用されるシンボルについて

本器の内部や操作箇所の近くに,または本書に,安全上および操作上の注意を喚起するための表示があります。これらの表示に使用しているシンボルの意味についても十分に理解して,注意に従ってください。

禁止行為を示します。丸の中や近くに禁止内容が描かれています。

守るべき義務的行為を示します。丸の中や近くに守るべき内容が描かれています。

警告や注意を喚起することを示します。三角の中や近くにその内容が描かれています。

注意すべきことを示します。四角の中にその内容が書かれています。

このマークを付けた部品がリサイクル可能であることを示しています。

本書では,情報をわかりやすくするために以下のアイコンを使用しています。

1.6.3 注

注の記号は正しい測定を行うためなどに従う必要がある情報,手順または推奨事項を示します。注の本文は,ページの他の文からの情報と区別するために,ゴシック体で書かれています。

1.6.4 ヒント

ヒントの記号は、ヒント、提案、推奨事項などとしてと扱うべき情報を示しています。ヒントの本文は、 ページの他の文からの情報と区別するために、ゴシック体で書かれています。

1.6.5 オプション

オプションの記号は記載された情報がオプション(ハードウェアおよびソフトウェア)を対象としており,使用する前にこのオプションを取り付けまたはインストールしなければならないことを示しています。オプションの本文は,ページの他の文からの情報と区別するために,ゴシック体で書かれています。

1.7 安全にお使いいただくために

この節では、人体の傷害、製品の損傷および環境への損害を防ぐために従わなければならないことを記載しています。

1.7.1 危険

1.7.2 警告

 をのアラートマークを表示した箇所の操作をするときは、必ず取扱説明書を参照してください。
 取扱説明書を読まないで操作などを行った場合は、負傷するおそれがあります。
 また、
 本器の特性劣化の原因にもなります。
 なお、このアラートマークは、
 危険を示すほかのマークや
 文言と共に用いられることもあります。

▲ 警告

- 過電圧カテゴリについて
 本器は、IEC 61010で規定する過電圧カテゴリⅡの機器です。過電圧カテゴリⅢ,および
 Ⅳに該当する電源には絶対に接続しないでください。
- レーザ光に関する警告
 本器のコネクタのケーブル接続面,および本器に接続されたケーブルをのぞかないでください。レーザ光が目に入ると,被ばくし,負傷するおそれがあります。

第9章に掲載した「<u>レーザの安全性について</u>」で示すように、本器には安全に使用していた だくためのラベルを表示しています。

校正

電池の溶液

LCD

たは当社代理店のサービスエンジニアに依頼してください。本器は,お客様自身では修理 できませんので,本体またはユニットを開け,内部の分解などしないでください。精密部品を 破損するおそれがあります。

本器の保守については、所定の訓練を受け、火災や感電事故などの危険を熟知した当社ま

- 機器本体またはユニットには、出荷時の品質を保持するために性能保証シールが貼られています。このシールは、所定の訓練を受け、火災や感電事故などの危険を熟知した当社または当社代理店のサービスエンジニアによってのみ開封されます。お客様自身で機器本体またはユニットを開け、性能保証シールを破損しないよう注意してください。第三者によってシールが開封、破損されると機器の性能保証を維持できないおそれがあると判断される場合があります。
- 電池をショートさせたり,分解や加熱したり,火に入れたりしないでください。電池が破損し 中の溶液が流出するおそれがあります。
 電池に含まれる溶液は有毒です。
 もし,電池が破損などにより溶液が流出した場合は,触れたり,口や目に入れたりしないでく ださい。誤って口に入れた場合は,直ちに吐き出し,口をゆすいでください。目に入った場合 は,こすらずに流水でよく洗ってください。いずれの場合も,直ちに医師の治療を受けてくだ さい。皮膚に触れた場合や衣服に付着した場合は,きれいな水でよく洗い流してください。

本器の表示部分にはLCD(Liquid Crystal Display)を使用しています。強い力を加えたり,落としたりしないでください。強い衝撃が加わると、LCDが破損し中の溶液(液晶)が流出するおそれがあります。

この溶液は強いアルカリ性で有毒です。 もし,LCDが破損し溶液が流出した場合は,触れたり,口や目に入れたりしないでください。 誤って口に入れた場合は,直ちに吐き出し,口をゆすいでください。目に入った場合は,こす らずに流水でよく洗ってください。いずれの場合も,直ちに医師の治療を受けてください。 皮膚に触れた場合や衣服に付着した場合は,せっけんでよく洗い流してください。

1.7.3 注意

\Lambda 注意

本器内のメモリの バック アップ用

電池交換について

ついて

本器はメモリのバックアップ用電池として,二酸化マンガンリチウム電池を使用しています。交換はア ンリツカスタマーサポート株式会社で行いますので,当社または当社代理店へ依頼してください。

注:本器の電池寿命は購入後,約8年です。早めの交換が必要です。

バックアップ用電池の寿命は,機器の稼働時間や使用している環境により異なります。

バックアップ用電池が消耗した場合,以下のような現象が発生します。

- 電源を入れるたびに,本器の時刻設定が実際の時刻と異なる。
- 電源を切断すると,パラメータやデータなどの設定値が消去される。

外部記憶媒体に 本器は,データやプログラムの外部記憶媒体として,USBメモリを使用しています。

USBメモリは,その使用方法に誤りがあった場合や故障などにより,大切な記憶内容を喪失してしま うおそれがあります。万一に備えて,定期的に記録内容のバックアップを取ることをお勧めします。

当社は,記憶内容の喪失について補償しません。 下記の点に十分に注意して使用してください。

- アクセス中にはUSBメモリを装置から抜き取らないでください。
- 静電気が加わると破損するおそれがあります。
- USBメモリなど添付品以外の外部記憶媒体については,すべての動作を保証するものでは ありません。あらかじめご確認のうえ,使用してください。

寿命がある部品に本器には,動作回数または通電時間により決まった寿命がある部品を使用しています。長時間連続して使用する場合は,これらの部品の寿命に注意してください。寿命超過後も使用し続けた場合,本器は安全に使用できなくなるおそれがあります。これらの部品は,保証期間内であっても寿命の場合は有償交換になります。

部品の寿命の詳細については,本書の関連する項を参照してください。

- LCD: 明るさ50%で,40,000時間後
- 電池バック: 容量70%時,300充電/放電サイクル後

住宅環境での 本器は,工業環境用に設計されています。住宅環境で使用すると,無線障害を起こすことがありま **使用について** す。その場合,使用者には適切な対策を施す必要が生じます。

腐食性雰囲気内での 誤動作や故障の原因となりますので,硫化水素・亜硫酸ガス・塩化水素などの腐食性ガスにさらさ 使用について ないようにしてください。

また,有機溶剤の中には腐食性ガスを発生させるものがありますので,事前に確認してください。

1.7.4 計測器のウイルス感染を防ぐための注意

ファイルやデータのコピー

当社より提供する,もしくは計測器内部で生成されるもの以外,計測器にはファイルやデー タをコピーしないでください。

前記のファイルやデータのコピーが必要な場合は、メディア(USBメモリ,CFメモリカードなど)も含めて事前にウイルスチェックを実施してください。

ソフトウェアの追加

当社が推奨または許諾するソフトウェア以外をダウンロードしたりインストールしたりしないでください。

ネットワークへの接続

接続するネットワークは,ウイルス感染への対策を施したネットワークを使用してください。

1.8 使用前の注意

この節では、ネットワークマスタの誤った使用、取り扱いおよび輸送による損傷や故障を防ぐための注意事項をいくつか紹介しています。

1.8.1 設置

本器は,以下のように水平に設置してください。

設置する向きが上図の〇印でない場合,わずかな衝撃でバランスを崩して倒れ,負傷する おそれがあります。

本器の背面パネルにはサポートスタンドがあります。本器を机上で使用する場合は,背面パネルの<u>サポートスタンド</u>を開いてください。

1.8.2 通気

本器には,装置内の温度上昇を防ぐために,内蔵ファンが装備されています。

\Lambda 注意

通気口をふさがないように注意してください。

本器は側面から冷却用の空気を吸入して、底面に排気します。本器を机上で使用する場合は、背面パネルの<u>サポートスタンド</u>を開いてください。

1.8.3 静電気放電(ESD)

ネットワークマスタ用のモジュールやオプションには,静電気放電(ESD)に敏感な電子装置が含まれています。このため,静電気に敏感な部品はすべて,当社から静電気防止パッケージに梱包されて出荷されています。

取り付け時の静電気放電によって、これらの部品が破損したり、劣化したりするおそれがあり ます。このような損傷は、後で機器の故障につながる場合があります。モジュールの取り付け または取り外し時には、静電気放電を管理する責任があります。静電気放電を管理するため に、次の点に注意してください。

帯電を防止する

 作業場に静電気が発生する部品(静電気防止材料で作られていない部品など)を置かな いようにしてください。

できるだけ静電気放電を受けないようにする

- 静電気に敏感な部品は,静電気防止パッケージから出している時間ができる限り短くなる ようにしてお使いください。
- アース用リストストラップ(後述)付きの装置に接続されている場合以外は,静電気に敏感 な部品を静電気防止パッケージから取り出さないでください。
- 静電気に敏感な部品は静電気防止パッケージに戻してください。

装置,静電気に敏感な部品およびユーザ自身を同じ静電位に保つ

- 作業場がすでに静電気に敏感な部品の取り扱いに対応している場合は,通常の手順に 従ってください。対応していない場合は,アース用リストストラップを使用して,以下の手順に 従ってください。
- 1. アース用リストストラップのリストの一方の端をしっかりと腕に巻き付け,他方の端を装置本 体またはアースプラグに接続します。
- 静電気に敏感な部品を取り付けまたは取り外しする間,アース用リストストラップを付けた ままにしておきます。静電気に敏感な部品を取り付け終わるか,取り外して静電気防止パッ ケージに戻すまで,アース用リストストラップを外さないでください。

1.8.4 光コネクタ

光コネクタは,汚れの影響を非常に受けやすい部分です。光コネクタの汚れが重大な信号の 損失につながるおそれがあることに注意してください。

光学面の汚れを防ぐために,光ファイバケーブルを接続していない場合は,光コネクタに保 護キャップを取り付けて塞いでください。

1.8.5 光ファイバケーブルの取り扱い上の注意

光ファイバケーブルは適切に取り扱わないと,性能劣化や破損することがあります。下記の 点に注意して取り扱ってください。

▲ 警告

光ファイバケーブルが破断したときは切断面に触れないでください

光ファイバが皮膚に刺さり、けがをします。

ケーブルを引っ張りながら、コネクタを外さないでください

ケーブルを引っ張ると,ケーブル内部の光ファイバが破断します。また,ケーブルの外皮が光 コネクタからはずれることがあります。

光ファイバケーブルを強く曲げたり,折ったり,挟んだりしないでください

ケーブル内部の光ファイバが破断します。

光ファイバケーブルの曲げ半径は30 mm以上にしてください。これよりも曲げ半径を小さく すると,光ファイバケーブルの損失が増加します。

\Lambda 注意

光ファイバケーブルを強く引っ張ったり、ねじったり、ケーブルを使って物をつり下げたりしな いでください

ケーブル内部の光ファイバが破断します。

▲ 注意

ファイバケーブルのコネクタを落としたりして 光コネクタ端面を床や机などにぶつけないでく ださい

光コネクタ端面に傷が付いて接続損失が増加します。

▲ 注意

光コネクタを分解しないでください

部品が破損することや,性能が劣化することがあります。

1.8.6 無線LANが使える国や地域について

無線LAN機能の使用は,国や地域ごとの法令等により規制されていることがあるため,違反 すると罰せられます。そのため,無線LAN機能が使用できる国や地域については,当社の Webサイトでご確認ください。

https://www.anritsu.com/ja-JP/testmeasurement/support/downloads/brochures-datasheets-andcatalogs/dwl16689

なお,それ以外の国や地域で無線LAN機能を使用した際のトラブル等については,当社は 一切責任を負いかねます。

2 製品構成

この章では,同梱の添付品について紹介しています。ACアダプタの接続方法,使用するバッ テリおよびバッテリの充電方法,ストラップの取り付け方法,およびモジュールの交換方法に ついても説明しています。

2.1 同梱添付品

最初に開梱するとき,ご注文の添付品が漏れなく梱包されていることを下記のリストに照らし 合わせてご確認ください。

2.1.1 標準添付品

以下は,常に同梱される添付品です。

MT1000A

J0979	A-2 電源コード
G0310A	リチウムイオン バッテリー
G0385A	ハイパワーACアダプター
B0690A	ソフトバッグ
B0728A	背面パネルキット
Z1746A	スタイラス
Z1747A	キャリングストラップ
Z1748A	ハンドル
Z1817A	ユーティリティ ROM
W3935AW	MT1000A トランスポートモジュール クイックリファレンスガイド

*: 次の取扱説明書が含まれます。

- W3933AW MT1000A トランスポートモジュール 取扱説明書
- W4041AW MT1000A/MT1100A/MT1040A リモートスクリプティング 取扱説明書
- W3810AW MT1000A ネットワークマスタ プロ OTDRモジュール 取扱説明書
- W3859AW MT1000A ネットワークマスタ プロ OTDRモジュール リモートスクリプティング 取扱説明書
- 10580-00443 MT1000A MU100040A/MU100040B Network Master Pro Operation Manual

2.1.2 オプションの添付品

以下は,ご注文された場合のみ同梱されるオプションの添付品です

B0691B	ハードケース
B0720A	背面カバー
B0729A	ネジ 1U
B0730A	ネジ 2U
B0731A	ネジ 3U
B0732A	ネジキット
B0733A	ハードケース
B0742A	ハードケース 5U
G0306B	ファイバスコープ
G0324A	バッテリーチャージャー
G0325A	GPSレシーバ
G0382A	オートフォーカスファイバスコープ
J1569B	Car 12 Vdc adapter
J1667A	GPIB-USB コンバータ
W3933AW	MT1000A トランスポートモジュール 取扱説明書

2.2 ACアダプタ

ネットワークマスタの電源はACアダプタから供給されます。

⚠ 注意

必ずアンリツから提供されたACアダプタを使用してください。

2.2.1 ACアダプタの接続

以下の手順に従って、ACアダプタをネットワークマスタに接続します。

1. ACアダプタのDC電源プラグを「18V DC」と書かれたソケットコネクタに差し込みます。 DC入力コネクタは,ネットワークマスタのコネクタパネルの一番右にあります。

オプション006がある場合は,DC入力コネクタの周りが黄色で印刷されています。 G0385A ハイパワーACアダプタを接続してください。

オプション006がない場合は、G0309A ACアダプタを接続してください。

2. ACアダプタのACプラグを電源コンセントに接続します。ネットワークマスタが起動している 間は電源ボタンが橙色で速く点滅します。充電時は電源ボタンが橙色で遅く点滅点灯しま す。

2.3 充電式バッテリ

ネットワークマスタには,交換可能な10.8 Vインテリジェントリチウムイオン充電式バッテリが 同梱されています。標準動作容量(バッテリをフル充電した場合)は,およそ4時間です。

本器の損傷や人体への傷害を防ぐために,アンリツから提供された純正バッテリのみご使 用ください。

バッテリは必ず室温で充電してください。

初期充電

バッテリはわずかに充電されているか,完全に放電された状態で出荷されます。購入後最 初に使用されるときはバッテリを充電することをお勧めします。 スタンバイ モードで,バッテリ がフル充電されると電源ボタンが点滅しなくなります。

温度

バッテリを長期間使用しない場合,最低でも20%の充電残量を保つことをお勧めします。必要に応じて,保管する前にバッテリを充電してください。

充電中はバッテリの温度が上がります。バッテリの温度が40°Cを超えるとバッテリ保護のため,ネットワークマスタは以下のメッセージを表示してバッテリ充電を停止させます。

早急にバッテリ充電を再開させるためには,測定器をより周辺温度の低い環境でお使いください。

またはアプリケーションを閉じ本体をシャットダウンしてください。

ネットワークマスタがバッテリで動作しているときにバッテリの温度が60°C以上になると, バッテリ 保護のため自動的にシャットダウンします。この場合は, 常温 (25°C程度) で1時間保持してネット ワークマスタの温度を下げてからご使用ください。

2.3.1 バッテリの取り付け/交換

以下の手順に従って,ネットワークマスタにバッテリを取り付け,または交換をします。

- 1. ACアダプタを接続している場合は,取り外します。
- 2. ネットワークマスタの電源を [オフ] にします。

- 3. ネットワークマスタの正面を上にして平らな面に置き,バッテリ収納部のロックネジを解除 マークの方向へ90度回転します。
- 4. バッテリ収納部のふたを取り外します。
- 5. バッテリを収納部から引き出します。

- 6. バッテリを取り付けるときに,バッテリ端子の方向に注意してください。本器の前面を上にして,バッテリ収納部が正面を向くようにして置いたとき,端子は左上角にあります。
- 7. バッテリ収納部のふたを再び取り付け,ロックネジを締めます。

2.3.2 バッテリの充電

バッテリは, ACアダプタを使用して機器をAC電源に接続すると自動的に充電されます。電源が切れているとき (スタンバイモード) では,より速くバッテリが充電されます。

充電中の表示

ACアダプタを接続すると,ネットワークマスタの起動中は電源ボタンがオレンジ色に速く点滅します。約30秒後に電源ボタンがゆっくりと点滅し,バッテリが充電中であることを示します。点滅が止まると,充電は完了です。

バッテリが不良の場合でも電源ボタンが点滅します。このため、ネットワークマスタのスイッチをオンにして、機器ツールバーの<u>機器情報</u>でバッテリー情報を確認してください。

Battery:		システム情報	
Manufacturer: B60B60			-6
Manufacturing date: 2013-1-1		コントローラ情報	
Device identity: 125 3.1 LION		モジュール情報	<mark>ф</mark> П
Nominal capacity: 89090 mWh	-	ソフトウェア情報	
Temperature: 36 C		パッテリー体表	-
Relative Charge: Fully Charged			?
Current battery operation: Inactive		自己診断結果	祏
Cycle count: 13			0
Obtainable capacity: 91710 mWh (102 percent of nominal capacity)			
Device name: ANRITSU		情報を更新	
Internal Memory:	•	ファイルへ保存	
- 	<u> </u>	x 🛃 🎲 13:42	

バッテリー情報の例

バッテリステータスはステータスラインのアイコンで確認できます。次の「バッテリステータ ス情報」を参照してください。

2.3.3 バッテリステータス情報

バッテリアイコンは,画面下のステータスラインに表示されます。 次のアイコンでバッテリスタータスが表示されます。

バッテリがフル充電されています。ネットワークマスタにACアダプタが接続されています。

ネットワークマスタにバッテリが装着されていないか,バッテリを認識できません。ネットワークマスタ にACアダプタが接続されています。

ネットワークマスタはバッテリで動作しています。ACアダプタは接続されていません。

バッテリが充電可能な温度範囲でないため、バッテリが充電されていないことを示します。ネットワークマスタにACアダプタが接続されています。

バッテリステータスが更新されるまでに数秒の遅れがあります。

バッテリアイコンをタッチすると,さらに詳しいバッテリ情報が表示されます。下の図の例は, フル充電されたバッテリのステータス画面を示しています。

2.4 光ファイバ

測定ポートの保護カバーを開いて,被測定光ファイバを接続します。

⚠ 注意

光コネクタの接続面は傷つきやすいため,無理にコネクタを押し込んだり,傾いた状態で差し込んだりしないでください。

画面に表示されるコネクタに,光ファイバケーブルを接続してください。他のコネクタに光ファ イバケーブルを接続すると,正しく測定できません。

- 1. 測定ポートの保護カバーを開けます。
- 光コネクタの端面をクリーニングします。「<u>光コネクタ・光アダプタのクリーニング</u>」を参照して ください。
- 3. 光ファイバケーブルを測定ポートに差し込みます。

良く使用される光コネクタ

光パワーメータ (OPM),可視光源 (VFL) のポートはユニバーサルタイプです。測定中にコ ネクタが緩まないようにしてください。

2.5 サポートスタンドおよびキャリング ストラップ

2.5.1 サポート スタンド

ネットワークマスタを使いやすい角度で使用するために,背面パネルにサポートスタンドがあ ります。スタンドを使用するには,背面にある金属棒を引き出します。スタンドは自動的に正 しい位置に固定されます。

サポート スタンドは必ず十分に開いてください。十分に開いていない場合, ネットワークマス タが倒れやすくなります。また,底面パネルからの換気が不十分になります。

2.5.2 キャリング ストラップおよびハンドル

同梱のキャリング ストラップは,ネットワークマスタを持ち運ぶとき,あるいは使用するとき に,簡単に取り付けることができます。

キャリング ストラップには,簡単に取り付けられるようにフックが付いています。

キャリング ストラップは肩に掛けて使用してください。首に掛けて使用しないでください。

キャリングストラップおよびハンドルの取り付け方法

キャリングストラップ(Z1747A) およびハンドル(Z1748A)は,以下の手順でネットワークマ スタに取り付けます。

OTDRモジュールについても手順は同じです。

1. ドライバを用いネットワークマスタからバッテリのふたを外します。

2. バッテリーパックを引き出します。

3. MU100010Aの四隅のネジを緩めます。

- 4. ネットワークマスタとMU100010Aを分離します。
- 5. ハンドルを左右どちらかに取り付けます。

6. 上下隅の詳細を示します。

7. ハンドルおよび,キャリングストラップの連結部を保護しているキャップを取り外します。

8. キャリングストラップを左右の上隅に取り付けます。

9. 1~3と逆の手順でネットワークマスタにMU100010Aを取り付け,バッテリーパックを挿入した後にバッテリのふたを取り付けます。

2.6 モジュール構成

```
    ネットワークマスタには,以下のモジュールがあります。
    トランスポートモジュール
MU100010A 10Gマルチレートモジュール
MU100011A 100Gマルチレートモジュール
    OTDRモジュール
    OTDRモジュール
    MU100020A OTDRモジュール 1310/1550/850/1300nm SMF/MMF
MU100021A OTDRモジュール 1310/1550/850/1300nm SMF/MMF
MU100022A OTDRモジュール 1310/1550/1625nm SMF
    CPRI RFモジュール
    MU100023A OTDRモジュール 1310/1550/1650nm SMF
    CPRI RFモジュール
    MU100040A CPRI RF モジュール
    GPSモジュール
    MU100090A 高精度GPSモジュール
    MU100090B 高精度GNSSモジュール
```

最大で3つのモジュールをネットワークマスタに装着することができます。モジュールの組み 合わせを次の表に示します。

OTDRモジュールは1つだけ装着できます。また,モジュールの組み合わせはこの表に示した11通りだけです。

モジュール1つの構成						
Carlos Carlos	Transport	OTDR [*]	CPRI RF [*]			
	MT1000A	MT1000A	MT1000A			
	モジ	ブュール2つの	構成	-		
A BBB	Transport	Transport	Transport	OTDR [*]	${\rm CPRI}\;{\rm RF}^*$	
	OTDR	GPS	CPRI RF	CPRI RF	OTDR	
	MT1000A	MT1000A	MT1000A	MT1000A	MT1000A	
モジュール3つの構成						
ABBR	Transport	Transport	Transport			
	OTDR	OTDR	CPRI RF			
	GPS	CPRI RF	OTDR			
	MT1000A	MT1000A	MT1000A			

*: OTDRモジュールまたはCPRI RFモジュールが一番後ろになる場合は,背面パネルを取り 付けます。B0728A 背面パネルキットには,長さが異なるネジが添付されています。

в — В0729А	形名	名称
2	B0729A	ネジ 1U
a B0730A	B0730A	ネジ 2U
B0731A	B0731A	ネジ 3U

MU100011A 100Gマルチレート モジュールを使用するモジュール構成では, MU100011Aの測定機能を使用しない場合であっても, ネットワークマスタにMT1000A-006 ハイパワーサプライが必要です。

2.7 モジュールの交換方法

OTDRモジュールは、次のどれかと組み合わせてネットワークマスタに取り付けます。

- 背面パネル
- MU100010A 10Gマルチレート モジュール
- MU100011A 100Gマルチレートモジュール

モジュール交換作業は,静電対策されたテーブルで実施してください。

ここではMU100010Aの取り外し、取り付け方法を説明します。

2.7.1 MU100010A 10Gマルチレート モジュールの取り外し

- 1. ネットワークマスタの電源をオフにします。
- 2. 作業をする前にACアダプタを外し,バッテリーパックを必ず取り外してください。
- 3. ネットワークマスタの正面パネルを下にして置きます。
- 4. 10Gマルチレート モジュールの背面パネルにある四隅のネジ (黄色の丸印)を緩めます。

5. すべてのネジを緩めたら,10Gマルチレートモジュールの両側を持ち上げて取り外します。取り外せない場合は四隅のネジを再度緩めてください。取り外すと,以下のようになります。

2.7.2 OTDRモジュールと10Gマルチレートモジュールの取り付け

- 1. ネットワークマスタの正面パネルを下にして置きます。
- ネットワークマスタにOTDRモジュールを取り付けます。以下が組み合うようにOTDRモジュールをネットワークマスタの上に置きます。
 1-4,2-5,3-6

▲ 注意

ガイドピン (2, 3, 5, 6) がコネクタ (1, 4) にぶつからないようにしてください。 モジュールを取り付けるときは四隅を合わせてください。

3. 10Gマルチレート モジュールの四隅のネジを抜き取り,B0728A 背面パネルキットの2Uネ ジに交換します。

4. OTDRモジュールに10Gマルチレートモジュールを取り付けます。以下が組み合うように 10GマルチレートモジュールをOTDRモジュールの上に置きます。 7-10,8-11,9-12

ガイドピン (8,9,11,12) がコネクタ (7,10) にぶつからないようにしてください。 モジュールを取り付けるときは四隅を合わせてください。

コネクタが破損する原因になります。

コネクタが破損する原因になります。

5. 四隅のネジを締めます。

取り付けが完了すると,以下のようになります。

6. モジュールの取り付けが終わりましたら,バッテリの装着や,電源コードの接続をしてください。
2.7.3 OTDRモジュール単体の取り付け

1. ネットワークマスタの正面パネルを下にして置きます。

コネクタが破損する原因になります。

ネットワークマスタにOTDRモジュールを取り付けます。以下が組み合うようにOTDRモジュールをネットワークマスタの上に置きます。
 1-4,2-5,3-6

⚠ 注意

ガイドピン (2, 3, 5, 6) がコネクタ (1, 4) にぶつからないようにしてください。 モジュールを取り付けるときは四隅を合わせてください。

3. B0728A 背面パネルキットの1Uネジを背面パネルの四隅に挿入します。

4. 背面パネルをOTDRモジュールに取り付けます。

37

5. 四隅のネジを締めます。

取り付けが完了すると,以下のようになります。

6. モジュールの取り付けが終わりましたら,バッテリの装着や,電源コードの接続をしてください。

3 ヒューマン マシン インタフェース

ヒューマンマシンインタフェース (HMI)は,ユーザがネットワークマスタを操作し,またユーザ がネットワークマスタからの情報を受け取るためのインタフェースです。

実際にはカラーLCDを通してユーザは情報を受け取り、タッチパネルを使用してネットワークマスタに情報を入力します。これに加えて入力コネクタへの接続もHMIにも含まれます。

3.1 タッチパネル ディスプレイ

WVGA解像度 (800x480ピクセル) の9インチアクティブTFTディスプレイは, 設定操作と 測定結果の表示に使用します。ユーザとネットワークマスタとのやり取りは,ほとんどがTFT ディスプレイを介して行われます。このディスプレイにはタッチパネル機能が装備されている ため,直接画面にタッチして,ナビゲーションや操作ができます。

タッチパネル ディスプレイは使用者の指先または同梱のスタイラス(アンリツ部品番号 Z1746A)でのみ操作できるように設計されています。 タッチパネルの表面はデリケートな材 料でできており, 誤った取り扱いをすると簡単にひっかき傷ができたり,損傷したりします。

⚠ 注意

タッチパネルに過度な圧力を加えないでください。機能が損なわれるおそれがあります。

先のとがった物(ペン,ペーパー クリップなど)でタッチパネルを操作しないでください。表面が損傷するおそれがあります。

タッチパネルの表面を清掃するには,刺激の少ない洗浄剤を染み込ませた柔らかい布のみを 使用してください。必ず電源を切って,ACアダプタを外してください。

3.2 キー操作

ここでは,唯一の物理的な操作キーである電源ボタンについて説明します。

3.2.1 電源ボタン

ネットワークマスタのフロント パネルの電源ボタンは電源のオン/オフに使用します。さらに,電源を オフにするときに表示されるメニューには,画面のロックなどのオプションもあります。

電源をオンにする

AC動作

ACアダプタをネットワークマスタに接続します。ブート動作中は電源ボタンが橙に点滅し, その後点灯に変わります。

電源ボタンを押すと,電源ボタンが緑に点灯して画面に形名が表示されます。ネットワーク マスタが動作を開始すると,アプリケーションセレクタが表示されます。

バッテリ動作

電源ボタンを押します。画面に形名が表示され,ブート動作中は電源ボタンが緑に点滅しま す。

その後,電源ボタンが緑の点灯に変わってネットワークマスタが動作を開始し,アプリケーショ ンセレクタが表示されます。

電源をオフにする

電源ボタンを押すと,[シャットダウン]を含む ポップアップ メニューが表示されます。

[シャットダウン] をタッチすると確認のダイアログボックスが表示されますので, [はい] を タッチしてシャットダウンします。

AC動作

ネットワークマスタをシャットダウンすると,ACアダプタを外すまで,ネットワークマスタはスタンバイまたは充電中になります。

バッテリ動作

ネットワークマスタをシャットダウンすると、電源はオフになります。

強制的に電源をオフにする

電源ボタンメニューでネットワークマスタの電源をオフにできない場合は,以下の手順で強 制的に電源をオフにできます。

- 1. ACアダプタが接続されている場合は,接続を外します。
- 2. 電源ボタンを数秒押し続けます。

緊急時を除いては,強制的に電源をオフにすることはお勧めしません。

電源オフメニューのその他のオプション

アプリケーションを切り替える

起動しているアプリケーションをすべて表示して、そのうちの1つに切り替えることができます。

画面をキャプチャする

表示されている画面を.PNG形式でファイルに保存します。 画像ファイルは「Internal/screens」フォルダ,または接続しているUSBメモリに保存されま す。

画面をロックする

画面のロック,またはロックの解除をします。

3.3 ヘッドセット

市販のヘッドセット(3.5 ø CTIA規格)を使用できます。

OTDRモジュールには、ヘッドセットを使用するアプリケーションがありません。

音量は「機器ツールバー」の一般で設定できます。

ヘッドセットはネットワークマスタのコネクタ パネルのヘッドセット アイコンでマークされたソケットに接続します。

3.4 コネクタパネル

コネクタパネルには. テストインタフェースとサービスインタフェースのコネクタが配置されています。

以下にメインフレームとMU100021Aのコネクタ パネルの図を示します。

3.4.1 テスト インタフェース

コネクタパネルにはテストに使用する以下のポートコネクタがあります。

VFL	オプションの可視光源が出力されます。
OPM	光パワーメータの入力コネクタです。標準添付品のユニバーサルコネクタを使 用して、1.25 mmøまたは2.5 mmøのフェルールを接続できます。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
OTDR/OLS (0.85/1.31 μ m) ^{*1}	このコネクタはMU100021AとMU100023Aにあります。 MU100021Aではマルチモードファイバを試験するときに使用するコネクタで す。波長 850 nmまたは1300 nmの光パルスが出力されます。 オプション011の場合でも、このコネクタはUPC研磨です。 MU100023Aではシングルモードファイバを試験するときに使用するコネクタ で、波長 1650 nmの光パルスが出力されます。オプションによって、コネクタ の研磨が異なります。 オプション010: UPCコネクタ オプション011: APCコネクタ
OTDR/OLS $(1.31/1.55 \ \mu \ m)^{*2}$	シングルモードファイバを試験するときに使用するコネクタです。波長 1310 nmまたは1550 nmの光パルスが出力されます。 MU100022Aでは, 波長 1310 nm, 1550 nm, または1625 nmの光パルス が出力されます。 オプションによってコネクタの研磨が異なります。 オプション010: UPCコネクタ オプション011: APCコネクタ

*1: MU100023Aの場合は, (1.65 µm)

*2: MU100022Aの場合は、(1.31/1.55/1.625 µm)

3.4.2 サービスインタフェース

他の機器との接続に使用するサービスインタフェースは、本器のパネルに配置されています。

オーディオ	このコネクタには,オプションのヘッドセットを接続します。
AUX	AUXコネクタは,オプションのG0325A GPSレシーバに使用します。
外部クロック	外部クロックコネクタは,基準クロックの入力に使用します。
USB B	3つのUSBコネクタ(コネクタ タイプAが2つとコネクタ タイプBミニが1つ)
USB A	は,USBメモリなどの接続に使用できます。 ネットワークマスタと他の機器 との間でデータの受け渡しに使用します。
イーサネット サービス インタフェース	イーサネットコネクタは,たとえばネットワークマスタをPCから遠隔操作する とき,ローカルエリアネットワークに接続するために使用します。

ネットワークマスタは、FAT32でフォーマットしたUSBメモリのみ対応しています。

ネットワークマスタに複数のUSBメモリを接続した場合,最初に接続したUSBメモリのみ認識されます。

ネットワークマスタで動作確認済みのWi-Fiドングルについては,当社の営業担当者にお問い合わせください。

3.4.3 光コネクタ・光アダプタのクリーニング

▲ 警告

フェルール端面を清掃・確認するときは、光が出射していないことを必ず確認してください。

\Lambda 注意

ちり,ほこりなどがフェルール端面に付着したまま使用すると性能が満足できなくなります。 また,この状態のまま高出力な光を出射させますと,接続したファイバおよび本器のフェルー ル端面を焼損する可能性があります。測定前には,接続するファイバおよび本器のフェルー ル端面を十分にクリーニングしてください。

光コネクタのフェルール端面のクリーニング

測定ポート内部のフェルールのクリーニングには,本器の関連用品のアダプタクリーナを使用してください。フェルールは定期的にクリーニングするようにしてください。FC アダプタを 例に説明してありますが,ほかのアダプタの場合も同じ方法・手順でクリーニングしてください。

1. 交換可能光コネクタのレバーを引き上げ,ラッチが外れたことを確認してからアダプタを静か にまっすぐ手前に引き抜きます。

交換可能光コネクタのレバー

2. アダプタクリーナをフェルール端面・側面に押し当て,クリーニングします。

3. 新しいアダプタクリーナの先端部をフェルール端面に押し当て,一方向に2~3回拭き,仕上 げます。

- 4. アダプタクリーナで交換可能光コネクタの内部を清掃します(下記光アダプタのクリーニン グ参照)。
- 5. 交換可能光コネクタを(1)と逆の手順で取り付けます。その際,フェルール端面を傷つけな いよう十分に注意してください。

光アダプタのクリーニング

光ファイバケーブル接続用の光アダプタのクリーニングには、本器の関連用品のアダプタク リーナを使用してください。FC アダプタを例に説明してありますが、ほかのアダプタの場合も 同じ方法・手順でクリーニングしてください。また、本器内蔵のフェルール端面のクリーニング で外したアダプタも以下の手順でクリーニングしてください。

- 1. 光アダプタを取り外します。
- 2. アダプタクリーナを光アダプタの割スリーブ内部に挿入し,前後に動かしながら一方向に回転させます。

フェルール径を確認し, ϕ 1.25 mm 専用または ϕ 2.5 mm 専用のアダプタクリーナを使用してください。

光ファイバケーブルのフェルール端面のクリーニング

測定ポート内部のフェルールのクリーニングには,本器の関連用品のアダプタクリーナを使用してください。フェルールは定期的にクリーニングするようにしてください。FC アダプタを 例に説明してありますが,ほかのアダプタの場合も同じ方法・手順でクリーニングしてください。 1. フェルールクリーナのレバーを引き,清掃面を出します。

2. レバーをそのままの状態で保持し、光コネクタのフェルール端面を清掃面に押しつけ、一方向にこすります。

クリーニングの注意事項

- 使用済みフェルールクリーナでクリーニングしないでください。
- 綿棒の繊維が付着するおそれがあるため,綿棒で仕上げの清掃をしないでください。
- クリーニングをしたコネクタはキャップをしてください。

3.5 コマンドベースのリモート制御

OTDRモジュールでは、バージョン6.00以降のソフトウェアでリモート制御を使用できます。

- ネットワークマスタのリモート制御通信機能は、サービスインタフェースのEthernetコネクタ で対応しています。
- ソフトウェアの仕様はIEEE488.2規格およびSCPIバージョン1999(プログラム可能な機器 の標準コマンド)に準拠しています。

リモート制御機能については,次の別のドキュメントで説明しています。

- MT1000A ネットワークマスタ プロ OTDRモジュール リモートスクリプティング 取扱説明書 (W3859AW)

ステータスバー上のこのアイコンは,ネットワークマスタがリモートコマンドで制御されているか どうかを表示します。このアイコンをタッチすると,ボタンが表示されます

[無効にする] ボタンをタッチすると,SCPI接続が切断されます。イーサネットケーブルを外す場 合に使用します。

[ローカル操作] ボタンをタッチすると、SCPI接続がオンのままパネルを操作できます。この機 能は制御ソフトウェアをデバッグするときに便利です。

3.6 USBインタフェースによるファイルアクセス

USBケーブルを接続して,ネットワークマスタ内部のメモリにアクセスできます。

この機能はPC (パーソナルコンピュータ) にファイルをコピーしたり,テスト結果を確認したり するのに役立ちます。

- 1. アプリケーションツールバーの [閉じる] アイコンをタッチして,すべてのアプリケーションを終 了します。
- 2. サービスインタフェースのUSB タイプBコネクタとPCをUSBケーブルで接続します。
- 3. PCがネットワークマスタを認識したら,PCのソフトウェア (Windowsのエクスプローラーなど)を使用してファイルやフォルダをコピーします。

ネットワークマスタでアプリケーションを実行中の場合は、メモリにアクセスできません。

3.7 イーサネットインタフェースによるファイルアクセス

3.7.1 PCからネットワークマスタのファイルにアクセスする

- イーサネットインタフェースを経由して、ネットワークマスタ内部のメモリをPCと共有できます。
 - 1. イーサネットケーブルをネットワークマスタのLANコネクタに接続して,これをローカル エリア ネットワークに接続します。
 - 2. ネットワークマスタにIPアドレスを割り当てます。これは,「グラフィカル ユーザ インタフェー ス」の章で説明されている<u>ネットワーク</u>画面の [イーサネット] で行います。
 - 3. ファイル共有で,[ファイルシステムを共有]を選択します。
 - 4. PCでエクスプローラーを起動します。
 - 5. アドレスバーにネットワークマスタのIPアドレスを入力します。 たとえば ¥¥192.168.10.4¥ と入力すると,共有フォルダが表示されます。

			- • •
	10.4 🕨	▼ 4 192.168.10.4の検索	ې
整理 ▼ Active Directory の検索 ネ	ットワークと共有センター	リモート プリンターを表示する	₩ = ▼ [] ()
 ▶ ■ ドキュメント ▶ ■ ピクチャ ▶ ■ ピグデオ ▶ ■ ビデオ ▶ ■ ミュージック 	nternal 共有		
▶ ■ コンピューター ▲ ♣ ネットワーク	E		
⊿ № 192.168.10.4			
 Winternal diagnostics favorites logs remote screens 	·		
internal (¥¥192.168.10.4) オ 共有 7	フラインで利用 利用不可 オフラインの状態: オンライン		

ネットワークマスタでアプリケーションを実行中の場合は、メモリにアクセスできません。

3.7.2 ネットワークマスタにPCの共有フォルダをマウントする

ネットワークマスタはネットワークPCの共有フォルダをマウントできます。

- 1. PCでフォルダを作成します。
- 2. フォルダを右クリックして,[プロパティ]をクリックします。
- 3. 共有タブをクリックします。[詳細な共有] ボタンをクリックしてフォルダの共有を設定します。

イーサネットインタフェースによるファイルアクセス

全般	共有	セキュリティ	以前のバージョン	カスタマイズ	
ネット	ワークのファイ	イルとフォルダーの	D共有		
	test 共有a	されていません			
ネット 共有	ワーク パス(<u>N</u>): さん			
+	共有(<u>S</u>)				
詳細	な共有				
カスら他の	7ムのアクセン 詳細な共有	ス許可を設定し 「のオブションを計	たり、複数の共有を 殳定したりできます。	作成したり、その	

- 4. スタートメニューから[コントロールパネル]をクリックします。
- 5. [システム] をクリックします。 ドメインの表示を記録します。

- 6. [コントロールパネルホーム]をクリックして、[ネットワークと共有センター]をクリックします。
- 7. [アダプターの設定の変更]をクリックします。
- 8. ネットワークのアイコンをクリックし、[この接続の状況を表示する] をクリックします。
- 9. 状態ダイアログボックスで [詳細] をクリックします。
- 10. IPv4 アドレスを記録します。

11. イーサネットケーブルをネットワークマスタのLANコネクタに接続して,これをローカル エリア ネットワークに接続します。

- 12. ネットワークマスタにIPアドレスを割り当てます。これは、「グラフィカル ユーザインタフェー ス」の章で説明されている<u>ネットワーク</u>画面の [イーサネット] で行います。
- 13. ファイル共有で,[リモートフォルダをマウントする]を選択します。
- 14. 手順10のIPアドレス,手順5のドメイン,ユーザ名,フォルダ名などを入力します。 ユーザ名はPCのユーザアカウントのユーザ名を入力してください。

- 15. [適用]をタッチします。フォルダがマウントされると、CONNECTEDが表示されます。[OK] をタッチしてダイアログボックスを閉じます。
- 16. ファイル マネージャアイコン (Let) をタッチします。PCの共有フォルダが,ネットワークマスタの Internal/remoteフォルダにマウントされます。

3.8 GPSレシーバ

3.8.1 G0325A GPSレシーバ

G0325A GPSレシーバは、GPSアンテナとレシーバが一体になっていて、ネットワークマスタのAUXコネクタに接続して使用します。UTCに対する同期精度は±1 µs以下です。

OTDRモジュールには、GPSレシーバを使用するアプリケーションがありません。

15ピン D-subコネクタは、コネクタパネルのAUXコネクタに接続します。

GPSレシーバを有効にする

ネットワークマスタのAUXコネクタにGPSレシーバを接続すると,自動的に有効になります。

3.8.2 GPSレシーバの操作

GPSアイコン

ステータス バーのアイコンは現在のGPSステータスを示します。次のいずれかのアイコンが 表示されます。

GPSレシーバが接続されていません。

このポップアップダイアログボックスには現在のGPSステータスが表示され,さらに位置決定に使用される衛星数,GPSレシーバの現在の地理位置情報が度数および10進数の分形式で表示されます。

MU100090AまたはMU100090Bを取り付けている場合は、ポップアップ ダイアログボッ クスにボタンと経過時間が表示されます。MU100090AおよびMU100090Bの操作につ いては、『MT1000Aトランスポートモジュール 取扱説明書』(W3933AW)を参照してくだ さい。

4 グラフィカル ユーザ インタフェース

この章では,グラフィカル ユーザ インタフェース(GUI)の概要を説明します。画面,サブ画 面,および特定のテクノロジやアプリケーション関連の主なダイアログは,別々の章にありま す。

4.1 GUIの一般的な取り扱い

ネットワークマスタに装備されているタッチパネルは,電源のオン/オフを除くすべての操作に 使用します。タッチ パネル ディスプレイに表示されるグラフィカル ユーザ インタフェース (GUI)は,一貫した思想に基づいてデザインされています。それは,特定のテストの実行に 必要なすべての設定手順をガイドし,最後にテスト結果を表示することです。また,一方向の ガイドを強制するだけでなく,必要に応じて,設定手順と結果表示の間を前後に移動して,新 しいパラメータでテストを再実行することもできます。

4.1.1 GUIの概念

GUIは,デスクトップとワークスペースという2つの機能スペースまたは機能レベルに分けられています。

- デスクトップは起動直後に表示される、いわばエントリレベルです。デスクトップは、新しい アプリケーションを開始できる「アプリケーションセレクタ」と、以前に作成して保存したテスト 結果を表示できる「結果ファイルブラウザ」で構成されています。
- ワークスペースは,特定のアプリケーション(設定やテストの実行,測定結果の評価など)を 操作する場所です。デスクトップでの選択により,ワークスペースが作成され,そこに関連 データが読み込まれます。

アプリケーションセレクタ

アプリケーションセレクタでアプリケーションを選択して、ワークスペースに新しいアプリケー ションを読み込みます。新しいアプリケーションは、機器とともに提供される標準アプリケー ションか、以前に保存されたアプリケーションのいずれか1つとして、インタフェース/テスト 設定パラメータが一部またはすべて構成済みで提供されます。

結果ファイルブラウザ

結果ファイルブラウザでファイルを読み込むことにより,以前のテスト結果と構成がワークスペースに読み込まれます。これにより,以下を実行できます。

- 測定結果ファイルのレポートを作成
- 測定結果ファイルと同じ設定での測定
- 測定結果ファイルの設定から条件を変更した測定

ワークスペースの作成時に固有のリソースのセット(ポートなど)がワークスペースに割り当てられます。このため、それぞれ別々のリソースに割り当てられた複数のワークスペースが同時に存在できます。

4.1.2 GUI内のナビゲーション

上の図からわかるように,アプリケーションセレクタとワークスペースは縦の関係です。また, アプリケーションセレクタと結果ファイルブラウザは横の関係です。この縦横の関係に基づ いて画面の切り替えがナビゲーションされます。

デスクトップレベルでの横方向のナビゲーション

アプリケーションセレクタ,または結果ファイルブラウザ画面下部の隅に表示されるタブを タッチすることにより,アプリケーション セレクタと結果ファイル ブラウザを切り替えます。

ワークスペース内の横方向のナビゲーション

ワークスペース内で画面下部の隅に表示されるナビゲーションタブをタッチして,設定を順 に切り替えることができます。右のタブで設定の次のステップに移動し,左のタブで前のス テップに戻ります。

また,画面の下の画面インジケータを使用して,設定,テスト,および結果を切り替えることが できます。

別の設定でテストを再実行する必要がある場合, [結果] 画面から直接 [設定] 画面に戻る こともできます。

新しいテスト中に [テスト] 画面から [結果] 画面に切り替えるには、テストを実行する必要があります。これは、アプリケーション ツールバー(画面右側に表示される拡張可能なツールバー)のまたは シをタッチすると実行されます。利用できるツールバーについては、別項の<u>ツールバー</u>を参照してください。

デスクトップとワークスペース間の縦方向のナビゲーション

アプリケーションが実行中のとき,アプリケーションセレクタ画面の下にタブが表示され,この タブによりアプリケーションのワークスペースで最後に表示した画面に直接移動できます。 同様に,結果ファイルブラウザ画面の下に実行中のアプリケーションの[結果]画面に移動 するタブが表示されます。

設定画面から,画面上のタブを使用してアプリケーションセレクタ画面に戻ることができま す。[結果] 画面には,結果ファイルブラウザに戻るタブがあります。

4.1.3 GUI画面のレイアウト

起動スプラッシュ 南面 GUI構成および各種の画面が表示されます。この画面では, デスクトップ/ワークスペースの [結果ファイルブラウザ]の2つがエントリポイントとして示されます。

ステータスアイコン 画面の一番下にバッテリ,ネットワーク接続,およびレーザ光出力のステータスアイコンがあり ます。この画面の下の青い領域は,"ステータスバー"です。

ネットワーク接続やGPSが使用できない場合,赤のx印 (¥) がアイコンに表示されます。

4.1.3.1 アプリケーションの開始

アプリケーション セレクタ

[アプリケーションセレクタ] 画面は,ネットワークマスタの起動後のメインエントリポイントで す。ここから,実行するアプリケーション/テスト (標準アプリケーションまたは [お気に入り] に登録したアプリケーションのいずれか)を選択できます。

アプリケーション

アプリケーションセレクタ画面には,アプリケーション ボタンのほかに 機器ツールバー を表示/非表示するためのタブと<u>結果ファイルブラウザ画面</u>へのナビゲーションタブがあります。

お気に入り

[お気に入り] は,使用するポートと特定の設定が組み合わさっているアプリケーションのこと です。[お気に入り] のアプリケーションを開始すると,使用するポートが自動で割り当てられ, そのあとで関連する設定が読み込まれます。

[お気に入り] のアプリケーションは,最初に登録したときと同じポートや設定を必要とします。 [お気に入り] のアプリケーションがこれらを使用できない場合は,代わりのポートを設定する 必要があります。

l	アプリケーシ	<u>ع</u> د	お気に入り		ユーティリティ	
	Optical-Fiber Testing	~				
		Standard OTDR 1310+1550_0015_1550	Construction construction_1310_1	Construction constructon_850_131		
	CPRI					
	100101101	BERT 88rate 3 CPRI~OBSAI	BERT CPRI rate 3 BERT.cf	BERT CPRI rate 3 RRH tow	BERT rate 3 CPRI~OBSAI B	
((([]# 🗃 🛪	🕨 V 💌 🔉 🕸 1	0:05

[お気に入り] ボタンをタッチすると次の画面が表示されます。

お気に入りの登録

- 1. 次の方法でアプリケーション画面に移動します。
 - [アプリケーション] ボタンをタッチします。
 - [Standard OTDR], [FTTA], または [Construction] アイコンをタッチします。 OLTSアプリケーションはお気に入りに登録できません。
- 2. アプリケーションツールバーのタブをタッチします。
- 3. [ロード/保存] アイコンをタッチします。
- 4. [ファイル名] フィールドをタッチします。
- 5. ダイアログボックスを使用してファイル名を入力します。
- 6. [ロード/保存] ダイアログボックスで [お気に入りへ追加] を選択します。

7. [設定の保存] ボタンをタッチします。

お気に入り画面に,現在のアプリケーションの設定がお気に入りとして新しく登録されます。

お気に入りの削除

- 1. ポップアップメニューが表示されるまでアイコンをタッチし続けます。
- 2. [お気に入りを削除] をタッチします。
- 3. [削除の確認] ダイアログボックスが表示された場合, [削除] をタッチします。

お気に入りの名前の変更

- 1. ポップアップメニューが表示されるまでアイコンをタッチし続けます。
- 2. [お気に入りの名前の変更]をタッチします。
- 3. ダイアログボックスで名前を入力します。

設定ファイルをアプリケーションに登録

<u>ファイル マネージャ</u>で設定ファイル (.cfg) を[お気に入り] 画面に登録できます。

- 1. 機器ツールバーからファイルマネージャを開きます。
- 2. お気に入りに追加する.cfg ファイルを選択します。

3. お気に入りに追加するボタン (♥♥)をタッチします。

[お気に入り] 画面に,同じ名前のアプリケーションを登録できません。同じ名前のアプリケーション がある場合は.cfg ファイル,またはすでにあるアプリケーションの名前をコピーする前に変更してく ださい。

ユーティリティ

[ユーティリティ]には,試験結果やファイバ端面を表示するアプリケーションがあります。

[ユーティリティ] ボタンをタッチすると次の画面が表示されます。

ĺ	アプリケーシ	ו	お気に入り		ユーティリティ	
	Scenario	Scenario Mgr.				
	Utility	GPS/GNSS	VIP			
	Viewer	PDF Viewer	Wireshark	Sync Analysis		
(((🕂 🗅 🖘	» V 📑 🔊 🛃 🐠	00 25

Scenario

- [Scenario Mgr.]: アプリケーションを自動で実行するシナリオファイルを管理します。ファイル内のパラメータを編集できます。
- シナリオファイルが読み込まれますと、Scenarioの行にアイコンが表示されます。

Utility

- [GPS/GNSS]: GPSまたはGNSSレシーバから受信したデータを保存し、衛星の位置を表示 します。
- [VIP]:応用部品のファイバスコープを使用してファイバ端面を表示します。

Viewer

- [PDF Viewer]: このユーティリティで レポート アイコンをタッチして作成したファイルを表示できます。
- [Wireshark]: イーサネット アプリケーションの [フレームキャプチャ] で保存された結果ファ イルを表示するために使用します。
- [Sync Analysis]: Sync Test アプリケーションで保存したファイルを読み込んで、データの 表示と解析ができます。

結果ファイル ブラウザ

[結果ファイルブラウザ] 画面は,ネットワークマスタの起動後のもう1つのエントリポイントです。ここから,PDFレポートを作成するか,結果を直接表示するか,あるいはその両方のために,以前の測定結果にアクセスできます。「<u>前回のテストおよびテスト結果へのアクセス</u>」を参照してください。

🧯 複数のファイルを選択

🔀 選択したファイルを削除

テスト結果にアクセスして,処理するためのボタンに加えて, [結果ファイルブラウザ] 画面に は <u>機器ツールバー</u>の表示/非表示用のタブと <u>アプリケーションセレクタ画面</u> へのナビゲー ション タブがあります。

4.1.3.2 アプリケーションの切り替え

アプリケーションを切り替 ビューモードで別のアプリケーションを実行している場合は,[アプリケーションを切り替える] でアプリケーションを切り替えることができます。[アプリケーションを切り替える] を表示する 方法は3つあります。

- デスクトップレベルで2つ以上のアプリケーションを実行している場合は,画面中央下部のナ ビゲーションボタンをタッチし続けます。
- ワークスペースでは,ステータスバー左側のアプリケーション名をタッチします。

• <u>電源オフメニュー</u>を使用します。

			アプリケーション セレクタ			
	ポート	測定	IOR/BSC	ヘッダ	測定機能	
	850nm					
	BSC		-62.00 dB			()
	群屈折率 (IOR)		1.496000			
	ファイバ		その他			
						?
ſ	1300nm]	
	BSC		-69.00 dB			
	群屈折率 (IOR)		1.491000			
	77415		Z mith			X
		ポート-1	ファイル:b.pdf		b	~
			ページ1/1)))

[アプリケーション切り替え] には,起動中のアプリケーションが表示されます。ボタンをタッチ すると表示されるアプリケーションが切り替わります。

4.1.3.3 アプリケーションの操作

測定条件設定画面

[設定] 画面は,ワークスペースの最初の画面です。この画面には1つ以上の設定ページがあり, 画面上部にあるボタンをタッチしてページを切り替えることができます。

この画面は次の複数の「エリア」で構成されています。

		アプリケーション セレクタ		
ポート	測定	IOR/BSC	ヘッダ	測定機能
E−ド	個別設定	▼ 波長	1550 nm	
同じ設定				
1310 nm				
距離レンジ	0.5 km	▼ 分解能	標準	
パルス幅	3 ns	▼ 平均化時間	15 秒	
1550 nm				
距離レンジ	10 km	→分解能	標準	
パルス幅	500 ns	▼ 平均化時間	5 秒	

- 画面上部の「ナビゲーションエリア」には,設定エリアの表示を切り替えるボタンがあります。
- 「設定エリア」(この画面のメインエリア)は、測定条件を設定するためのパラメータが表示 されている場所です。このエリアの中身はナビゲーションエリアでの現在の選択によって 変わります。

[設定] 画面には<u>アプリケーションツールバー</u>および横方向と縦方向のナビゲーション用の ナビゲーション タブもあります。

テスト画面 [テスト] 画面は,ワークスペースの2番目の画面です。この画面には1つ以上の設定ページ があり, 画面上部にあるナビゲーションボタンでページを切り替えることができます。

[テスト] 画面には,各種パラメータのほかに, アプリケーション ツールバー および横方向と 縦方向のナビゲーション用のナビゲーション タブもあります。

結果画面

[結果] 画面は,ワークスペースの最後の画面です。通常,この画面には,テスト結果を示す 複数のページがあります。画面の上部にあるナビゲーション ボタンでページを切り替えるこ とができます。

[結果] 画面には,結果のほかに右側にソフトキーがあります。結果をファイルに保存するに はアプリケーション ツールバーのをタッチします。

4.1.4 フィールドへのテキスト入力用キーパッド

フィールドにテキストを入力するには,キーパッドを使用します。フィールドをタッチするとキーパッドが表示されます。キーパッドのレイアウト(種類)は,そのフィールドで入力する内容によって異なります。

数字入力の場合,入力できる最小値と最大値が表示されます。フィールドからキーパッドを 起動すると,現在のフィールド値がキーパッドのディスプレイフィールドに表示されます。

[OK] をタッチして新しい入力を確定し,キーパッドを終了します。

変更を反映しないでキーパッドを終了するには,[キャンセル] をタッチするか,キーパッドの右 上角の「X」をタッチします。

4.2 ツールバー

画面の右側でデスクトップ ツールバー(「機器ツールバー」と呼びます)と拡張可能ワークス ペース ツールバー (「アプリケーション ツールバー」と呼びます)の2つのツールバーを使用 できます。

- <u>機器ツールバー</u>には、システム全般の機能と情報(機器構成、バッテリ時間など)がありま
 す。このツールバーはデスクトップ関連の画面で直接利用できますが、ワークスペース関連
 の画面でアプリケーションツールバー内の「サブツールバー」としても利用できます。
- アプリケーションツールバーには、アプリケーション関連の機能と情報があります(テストの開始/停止、ファイル操作など)。このツールバーは特定のアプリケーション関連の画面で利用でき、サブツールバーとして機器ツールバーが一緒に表示されます。

4.2.1 機器ツールバー

機器ツールバーを下図に示します。ツールバーが非表示の場合,画面の右上角のアイコン タブで表示されます。

機器ツールバーには次の機能/ステータスがあります。

- 機器情報
- 構成 (<u>一般</u>, <u>ネットワーク</u>)
- <u>ファイルマネージャ</u>
- ヘルプ
- <u>リソースモニタ</u>
- <u>クラウド接続</u>(シナリオ実行結果のアップロード, 詳細)

機器情報

[情報] アイコンをタッチすると, [System Information] 画面が表示されます。[情報を更新] ボタ ンをタッチすると,機器情報が生成されます。

System Information Network Master Pro 10.01for20200214	•	システム情報 コントローラ情報	C
Extended Installers:		モジュール情報	6 -
✓ MU100011A_DATA : installed(52083)		ソフトウェア情報	
RFS: 9.06		バッテリー情報	2
SDK: 10.01 SVN Rev 54332 from Framework/branches/tmp/9.XXCloud		白己診断結果	50
Applications:			Ť
Transport: SVN Rev 54309 from /branches/tmp/V10.XXCloud			G
FPGA: SVN Rev 52083		桂恕た再新	
Selftest: 8.11			
Install Tools: 8.01	•	ファイルへ保存	
	<u> </u>	x 🛃 🐼 17:58	

この画面には次の情報が表示されます。

- システム情報
- コントローラ情報
- モジュール情報
- ソフトウェア情報
- バッテリー情報
- 自己診断結果

MT1000A-006が実装されている場合, Extended Installersが表示されます。 MU100011Aのデータがインストールされると、インストーラのバージョンが表示されます。

機器情報をHTMLファイルに保存するには,[ファイルへ保存] ボタンをタッチします。[シス テム情報を保存] ダイアログボックスが表示され,ファイル名と場所を指定できます。アイコ ンの説明については,「ファイルマネージャ」を参照してください。

アフィルを 保存する 名前 サイズ 種類 ● Internal ● Usb マフィル名: Sample ファイル(*: html)		シス	テム情報を保存		×
名前 ▲ サイズ 種類 ● Internal ● Usb ファイル名: sample ファイルの種類: HTMLファイル(*.html) ▼ キャンセル	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・				ファイルを 保存する
▶ ■ Internal ■ Usb ファイル名: sample ファイルの確範: HTMLファイル(*.html) ▼ ++>セル	名前	名前	$\triangle \forall \tau \pi$	種類	
▶ ■ Usb ファイル名: sample ファイルの種類: HTMLファイル(*.html)	🕨 🚞 Internal				3
ファイル名: sample ファイルの種類: (HTMLファイル(*.html))	▶ 💼 Usb				
ファイルの種類: HTMLファイル(*.html)	ファイル名: sample				_
	ファイルの種類: HTMLファ	ァイル(*.html)			キャンセル

自己診断結果に「NG」が表示された場合は、ネットワークマスタを再起動してください。「NG」が再度表示されるときは、「本製品についてのお問い合わせ窓口」に連絡してください。

設定

[設定] アイコンをタッチすると,設定画面が表示されます。この画面から,機器の一般設定(日付/時間,パスワードなど)および各種ネットワーク設定ができます。

一般

[一般] 画面には,以下の設定オプションがあります。

LCD 明るさ

スライドバーで画面の明るさを変更できます。

電源

自動バックライト時間および自動電源オフ時間を指定できます。

この設定はバッテリ動作の場合に有効です。 Wiresharkアプリケーション起動中は、バックライト自動オフ機能が動作しません。

タッチパネル校正

タッチパネルの校正ができます。ダイアログボックスの [OK] をタッチすると,校正を開始します。

タッチパネル校正をする前に測定結果,または設定を保存してください。タッチパネル校正のあと, ネットワークマスタは再起動するため保存していないデータは失われます。 バッテリで動作している場合,ネットワークマスタは再起動しません。

言語

画面の言語,およびソフトウェアキーボードのレイアウトを選択できます。

サウンド

スピーカーとヘッドホンのオン/オフを設定します。スライドバーで音量を変更できます。

サウンド設定を変更
テスト
スピーカー オン 🔍
ヘッドフォン オン 💌
メインボリューム
ヘッドフォンポリューム
初期値 キャンセル OK

へピーカーがオンであることを示します。
 スピーカーがオフであることを示します。

自動保存

自動保存のオン/オフを指定できます。

- [都度、問いあわせる]: 測定の終了後に測定結果を保存するかどうかを確認します。
- [自動保存する]:確認せず自動でファイルに測定結果を保存します。
- [なし]:測定結果を保存しません。手動で保存しない場合,測定結果のデータは破棄されます。

システムパスワード

パスワード保護の有効/無効と,パスワードを設定します。パスワード保護を有効にすると,ア プリケーションの起動とアプリケーションに対する設定変更操作が保護されます。

システムパスワード変更
画面ロック保護を有効にする
設定変更保護を有効にする
初期値 キャンセル OK

パスワードを変更/設定するには、1つ以上のチェックボックスをオンにして、[OK] をタッチす ると、テンキーが表示されます。

キーパッドで入力するときに入力した数字を表示するには,[パスワードを表示] チェックボックスをオンにします。

工場出荷時の初期値として、パスワードは「0614」に設定されています。

日付/時刻

システムの日付と時刻を変更できます。[新しい時刻]または [新しい日付] フィールドを選択 し,上下矢印ボタンをタッチします。

[OK] をタッチすると,リブートを確認するダイアログボックスが表示されます。[はい] をタッ チします。

バッテリ動作時はリブートしません。電源ボタンを押して起動すると日付と時刻が変更されます。

その他の設定

[ロギング]はログに記録するレベルを指定できます。常に [オフ] を設定してください。ほかの 選択肢は保守時に使用します。

[設定変更確認を表示する] は依存性確認のメッセージを表示するかを設定します。この設定はMU100010A 10GマルチレートモジュールおよびMU100011A 100Gマルチレートモジュールに適用されます。

[テストサマリを表示] はステータスバーにテストステータスサマリを表示するかを設定しま す。この設定はMU100010A 10GマルチレートモジュールおよびMU100011A 100Gマ ルチレートモジュールに適用されます。

[CSVデリミタ] はCSV (Comma Separated Values) 形式で出力するときに使用する区切 り文字を設定します。

[動作試験周期] は動作試験日の有効期限を計算するために使用されます。0に設定する と,有効期限は注が表示されます。

[電源自動オン有効]を選択すると、ACアダプタを接続したときにネットワークマスタが自動的に起動します。

その	他の設定を変	更	,
ロギング:	オン		
設定変更確認を表示する:	オン		
テストサマリを表示:	オン		
CSV デリミタ:	マイト		
動作試験周期:		1	ケ月
電源自動オン有効			
初期値キ	ャンセル OK		

アプリケーションを初期化

[アプリケーションを初期化] をタッチすると, それぞれのアプリケーションの設定を初期設定 に戻します。

自己診断を実行

自己診断を実行する前に, 起動中のアプリケーションの測定結果または設定を保存してください。 自己診断を実行するとき, ネットワークマスタは再起動し, 保存されていない測定データは失われま す。

バッテリで動作している場合,ネットワークマスタは再起動しません。

[自己診断を実行]をタッチすると,自己診断を開始します。

全データ領域を初期化

[全データ領域を初期化] をタッチすると, 書き込み可能なデータ領域をすべて消去し, 工場 出荷時の状態に初期化します。

ネットワーク

[ネットワーク] 画面には,ネットワークマスタをネットワークに接続するための以下の設定があります。

₩		ネットワーク	
イーサネット	WLAN	Bluetooth	с•9 5-1
リモート創御	VNC	77イル共有	?
			*⊐ ₽
(∽	🔐 🗅 V 💽 🔉 🙅 🔺 17:58	

イーサネット

動的アドレス指定(DHCP),またはIPアドレス,サブネットマスクおよびデフォルトゲートウェ イの手動指定のどちらかでネットワークマスタをイーサネットに接続できます。これらの設定 は,<u>イーサネットサービス インタフェース</u>に適用されます。

イーサネット	設定を変更
✔ イーサネット有効 DHCP	
IPアドレス:	192.168.10.4
サブネットマスク:	255.255.255.0
デフォルトゲートウェイ:	
接続ステータス:	Off
初期値キャンセル	и ок 適用

イーサネットサービス インタフェースのリンク状態を示すアイコンが,ステータスバーに表示されます。

WLAN

ネットワークマスタをワイヤレスLAN (WLAN) 経由でネットワークに接続できます。WLAN が有効な場合,上記のイーサネット設定でネットワークマスタをイーサネットに接続できません。

この機能を使用するにはオプション (MT1000A-003) が必要です。 ネットワークマスタのUSBコネクタにWi-Fiドングルを接続しているときは, オプションがあっても内蔵WLANを使用できません。

1. [WLAN]をタッチすると,[WLANの設定]ダイアログボックスが表示されます。

		WLANの _見	۶E	· · · · · · · · · · · · · · · · · · ·
WLAN有	劾: ✔			
ネットワー	ク:			
	ステータス: INACT	IVE		
	IPアドレス:			
		拡張設定	スキャン/追加	閉じる

- 2. [スキャン/追加]をタッチして,スキャン結果を表示させます。
- 3. スキャン結果からネットワークを選択し,[ネットワークを追加]をタッチします。
- 4. パスワードを入力して [OK] をタッチします。SSIDには、ASCII文字のみを使用してください。

		Sample	e Network	
SSID:	Sample Netwo	rk		
認証:	WPA2-Persona	l (PSK)		
パスワード				
	STIRA-	甘花草	OK	*****
	an Kate	加加支援政府	UK I	++>+

SSID名に\(バックスラッシュ)と"(ダブルコーテーション)を使用した場合,ネットワークに接続するとそれぞれ、\\, \"と[WLANの設定]ダイアログボックスに表示されます。

5. [WLANの設定] ダイアログボックスでの[ステータス] が [COMPLETED] に変更したこと を確認します。

WLANの設定				
WLAN有効:		イベント履歴	手動/追加	ネットワークを編集:
インタフェース:	wlan0			▼
ネットワーク:	0: Sample N	etwork		▼]
R	テータス: CO 認証: WF 暗号化: CC SSID: Sai BSSID: 28	MPLETED A2-PSK MP mple Network :3f:69:45:eb:01 2.168.43.91		
		拡張設定	スキャン/追加	閉じる
オプションが追加されている場合またはWi-Fiドングルを接続している場合, WLANの接続 状態を示すアイコンがステータスバーに表示されます。

現在のネットワーク設定を編集するには、「ネットワークを編集] ボタンをタッチします。

[拡張設定] をタッチすると,詳細なパラメータを確認でき,暗号化方法などの高度な設定を変 更できます。

- -	Sample Network
SSID:	Sample Network
認証:	WPA2-Personal (PSK)
暗号化:	CCMP IV
パスワード	
EAP方式:	MD5 🛛
ID:	
パスワード:	
CA証明書:	
WEP+	
0	
0	
ļ II) <u>拡張設定</u> OK キャンセル

Bluetooth

ネットワークマスタで Bluetooth 接続を使用するための設定をします。

この機能を使用するにはオプション (MT1000A-003) が必要です。 ネットワークマスタのUSBコネクタにWi-Fiドングルを接続しているときは, オプションがあっても Bluetoothを使用できません。

Bluetooth 設定を変更
✔ Bluetoothを有効化する
可視化する
✔ FTPでファイルを共有する
初期値 キャンセル OK

- [Bluetoothを有効化する]: Bluetoothの使用を有効にします。
- [可視化する]: Bluetoothデバイスからネットワークマスタを検知可能にします。
- [FTPでファイルを共有する]: Bluetoothを介してネットワークマスタに格納されたファイルを 共有できます。FTP接続ではログインアカウントとパスワードは要求されません。ネットワー クマスタの共有フォルダは、「/property/mnt/internal」です。

オプションが追加されている場合,Bluetoothの有効/無効を示すアイコンがステータスバー に表示されます。

リモート制御

リモート制御に関するオプションを変更できます。

リモート制御オプション変更	リモート制御オプション変更 🎽
Ţ [*] 7 1 ₩ 7 ^{K*} Λ [*] >λ ⁺	7 [*] 74111 71* 1×1×1
SCPI制御 TCPポート: 56001	インバンド制御 TCPポート: 56002
GPIBアドレス: 1	ニックネーム: NetworkMaster
リモートリセットを有効化します	クラウド接続を有効にする
リモート制御許可:	
✓ 外部PC接続を許可	
✔ 外部PCからのシャットダウンを許可	
初期値 キャンセル OK	初期値 キャンセル OK

- [SCPI制御 TCPポート]: Ethernet <u>サービスインタフェース</u>経由でのリモート制御に使用するポート番号です。
- [GPIBアドレス]: フィールドをタッチして, GPIB (General Purpose Interface Bus) アドレスを設定します。
- [リモートリセットを有効化します]: チェックボックスを選択すると、ネットワークマスタをリモー トPCからリセットできます。
- [外部PC接続を許可]: チェックボックスを選択すると,イーサネット経由でリモートPCによる 制御ができます。
- [リモートPCシャットダウンを許可]: チェックボックスを選択すると、イーサネット経由でリモー トPCからネットワークマスタをシャットダウンできます。
- [インバンド制御 TCPポート]: トランスポートモジュール使用時にテストインタフェース経由 でのリモート制御に使用するポート番号です。必ず [SCPI制御 TCPポート] と違う数値にし てください。
- [ニックネーム]: MX109020A Site Over Remote Access 基本ライセンスで認識される ネットワークマスタの名前に使用されます。
- [クラウド接続を有効にする]: ネットワークマスタをアンリツが提供するサーバに接続します。
 また,以下の項目の設定を強制的に変更します。

VNC設定の [VNCサーバーを有効にする] チェックボックスが選択されます。 VNC設定の [VNCパスワードを有効にする] チェックボックス選択が解除されま す。

ファイル共有の設定の [ファイルシステムの共有] チェックボックスが選択されます。

ステータスバー上のこのアイコンは,リモートPCがネットワークマスタに接続されていることを 表します。

ステータスバー上のこのアイコンは,アンリツが提供するサーバサービスにネットワークマスタ が接続していることを表します。

VNC

バーチャル ネットワーク コンピューティング(VNC)により, ネットワークマスタをリモート制御 することができます。

VNC設定を変更	Ē
VNCサーバーオプション:	
✔ VNCサーバーを有効にす	8
VNCパスワードを有効に	する
パスワード	
TCPによるVNC接続	
TCPポート :	5900
HTTPによるVNC接続	
HTTPポート番号:	5800
初期値(キャンセル)(日	K

VNCの有効/無効を示すアイコンがステータスバーに表示されます。このアイコンをタッチして、VNCの有効/無効を切り替えられます。

ファイル共有

[ファイルシステムの共有]を選択すると,データフォルダをネットワークPCと共有できます。 [リモートフォルダをマウント]を選択すると,ネットワークPCのフォルダを入力するフィールドが 有効になります。

ファイル共有
✓ ファイルシステムの共有
✓ リモートフォルダをマウント
IPアドレス 192.168.0.100
ドメイン
ユーザ
パスワード
フォルダ名 test
マウント状態 NOT CONNECTED
初期値 キャンセル OK 適用

- [IPアドレス]: ネットワークPCのIPアドレス
- [ドメイン]: ネットワークPCのドメイン名
- [ユーザ]: ネットワークPCのユーザー名 (アカウント)
- [パスワード]: ユーザー アカウントのパスワード
- [フォルダ名]: ネットワークPCの共有フォルダ名

パラメータを入力した後で [適用] をタッチします。リモートフォルダのマウントが成功すると, [マウント状態] に CONNECTED が表示されます。

共有フォルダの名前だけを入力します。Windows画面に表示されるファイルパスは含みません。

以下の手順でネットワークPCに共有フォルダを作成します。

- 1. PCでフォルダを作成します。
- 2. フォルダを右クリックして,プロパティをクリックします。
- 3. 共有タブをクリックします。[詳細な共有] ボタンをクリックしてフォルダの共有を設定します。

PCの共有フォルダが,ネットワークマスタの Internal\remoteフォルダにマウントされます。

使用するPCの設定によって機能が制限されている場合は、ファイル共有を使用できないことがあります。

たとえば、Windows 10 Fall Creators Update (バージョン1709) の場合、セキュリティの 観点から [リモートフォルダをマウント] の機能を利用できません。 セキュリティリスクが増すことをご理解いただいたうえで以下の手順で設定をすることにより、 [リモートフォルダをマウント] の機能を利用できるようになります。

- 1. スタートメニューから, [コントロールパネル]を開きます。
- 2. [プログラムと機能]をクリックします。
- 3. [Windowsの機能の有効化または無効化]をクリックします。
- 4. [SMB 1.0/CIFS ファイル共有のサポート] のチェックボックスを選択し, [OK] をクリックします。

🔄 Wind	owsの機能	-		×
Windo	ws の機能の有効化または無効化			?
機能を有言 は、チェック 部が有効	効にするには、チェック ボックスをオンにしてください フ ボックスをオフにしてください。 塗りつぶされたチェッ になっていることを表します。	。機能を ック ボック	無効にす 7スは、機能	るに 能の一
•	MultiPoint Connector			^
± 🗆	NFS 用サービス			
	RAS 接続マネージャー管理キット (CMAK)			
	Remote Differential Compression API サポ	-ト		
	RIP リスナー			
± 🗹	SMB 1.0/CIFS ファイル共有のサポート			
	SMB ダイレクト			
	Telnet クライアント			
	TFTP クライアント			
	Windows Defender Application Guard			
	Windows Identity Foundation 3.5			\sim
	OK		キャン	セル

5. Windowsを再起動します。

ファイル マネージャ

ファイルマネージャアイコンをタッチすると,ファイルマネージャ画面が表示されます。この画面から ネットワークマスタのストレージ内のファイルの表示,移動,コピーなどの操作ができます。また,外部 ファイルストレージ(USBメモリなど)との間でファイル操作をすることができます。

ヘルプ

?

[ヘルプ] アイコンタッチすると、デスクトップレベルの操作に関するヘルプ画面が表示されます。ヘルプテキストに表示されるトピック間のリンクを使用するほかに、ヘルプ内の特定の単語や語句を検索したり、以前に表示したヘルプトピックを表示したりすることもできます。

▲ ヘルプリストトピックに移動します。

← 戻る

→ 進む

♀ 画面下の検索ボックスとボタンを表示/非表示します。

•	後方検索

▶ 前方検索

[大文字小文字を区別]を選択すると,英文の大文字/小文字を区別して検索します。

リソースモニタリング

[リソースモニタリング] アイコンをタッチすると,現在動作中のアプリケーションやそれぞれのアプリケーションに割り当てられている機器のコネクタパネルのポートを表示する画面が起動します。

クラウド接続

別売のMX109020A Site Over Remote Access 基本ライセンスを利用すると、アンリツが提供するサーバを経由して、PCからネットワークマスタをリモート制御することができます。この画面では、ネットワークマスタをリモート制御するための設定をします。

この機能を使うためにはオプションMT1000A-011 が必要です。

[クラウド接続] 画面では,ステップの順番に設定をします。

	💁 クラウ	ド接続	シナリオ実行結果のアップロード	詳細	
ステップ	ステータス	カテゴリ	項目	詳細	C
1	~	ネットワーク	イーサネット 💌 敲定	IP: 10.17.41.181	
2	~	基本設定	ニックネーム	Anritsu	¢ –
-	•		VNC	有効	
3	•	アフリケーション設定	ファイル共有	有効	
4		クラウド	✔ 接続	失敗	?
					*-
		MT1000A-0110	ライセンスが有効ではありません。	[⊐−ド: 05-001]	
-To			□• → /+		
現目			設定値		
ユーザ					
パスワード					
				💾 🗈 🖘 🕅 V 🗾 🔉 🕂 🖎 14:21	1

ステータス欄には,ネットワークマスタとサーバとの接続状態がアイコンで表示されます。

正常に設定されました。

サーバに接続できますが,設定にエラーがあります。

設定にエラーがあり,サーバに接続できません。

設定内容のカテゴリ別に設定項目があります。詳細欄には設定内容または接続状態が表示されます。

- ネットワーク
 [WLAN]または [イーサネット]を選択して[設定]をタッチします。WLANまたはイーサネットの設定画面が表示されます。
- 基本設定

L

ネットワークマスタに識別用の名前を付けることができます。ここで設定した名前は MX109020A Site Over Remote Access 基本ライセンスの画面に表示されます。 アプリケーション設定

[VNC] と [ファイル共有] を設定します。サーバに接続するには [VNCサーバーを有効にする] のチェックボックスと [ファイルシステムの共有] のチェックボックスをそれぞれ選択して ください。

クラウド

[接続] チェックボックスを選択すると、ネットワークマスタはサーバに接続します。

また,次のネットワーク設定を強制的に変更します。

VNCの [VNCサーバーを有効にする] チェックボックスが選択されます。 VNCの [VNCパスワードを有効にする] チェックボックス選択が解除されます。 ファイル共有の設定の [ファイルシステムの共有] チェックボックスが選択されま す。

[接続]チェックボックスを選択したときに、ネットワーク接続環境や設定などの影響により サーバに接続できない場合でも、ネットワークマスタはサーバへの接続を一定回数試行しま す。

この回数だけ接続を試行してもサーバに接続できない場合は,接続処理を停止します。 この後でネットワーク接続環境などの変更によりサーバに接続できる環境が整った場合に は,[接続]チェックボックスをいったんクリアして再度選択してください。

• メッセージ欄

ステータスが正常でないときに、メッセージが表示されます。

ネットワークマスタがMX109020A Site Over Remote Access 基本ライセンスから制御 されているときに,以下の情報が表示されます。

• ユーザ

MX109020A Site Over Remote Access 基本ライセンスにログインしているユーザ名が 表示されます。

 パスワード MT1000A-011 オプション購入時に、ライセンス購入証書に記載されたパスワードが表示 されます。

シナリオ実行結果の アップロード

の [シナリオ実行結果のアップロード] 画面では, Utilitiesのシナリオの結果ファイルをストレージサー ビスまたはユーザ指定HTTPサーバにアップロードします。

未アップロードの結果ファイルが存在するテストの実行結果がリストに表示されます。アップ ロード欄には、アップロード済ファイル数とアップロードする全ファイル数が表示されます。

すべて選択

すべてのチェックボックスを選択します。

すべてクリア

すべてのチェックボックスの選択を解除します。

アップロード

選択したテストの結果ファイルをアップロードします。

削除

選択したテストをリストから外します。結果ファイルは削除されません。

ネットワークマスタからクラウドサーバに結果ファイルを送信し、クラウドサーバからストレージサー ビスまたはユーザ指定HTTPサーバにアップロードします。ストレージサービスへの認証は MX109020A Site Over Remote Access 基本ライセンスで設定します。

詳細

[詳細] 画面では、サーバから最新のソフトウェアをダウンロードできます。

ソフトウェアパージョン: 11.08 アップデートを確認 キャッシュをクリア	Ľ
	<u>ل</u>
	?
	衵
	Ŷ
📑 🖸 🖘 🕅 V 🝱 y 🕂 🐼 14 21	

ソフトウェアバージョン

ネットワークマスタにインストールされているソフトウェアバージョンが表示されます。

アップデートを確認

ソフトウェアの更新があるか確認します。更新データがある場合はソフトウェアのダウンロー ドを開始します。

キャッシュをクリア

更新データのダウンロードを停止すると、ダウンロード途中の一時的なファイルが保存され ます。ボタンをタッチすると、このファイルを削除します。

一時的なファイルが存在するときのみ,ボタンが操作できます。

4.2.2 アプリケーション ツールバー

「アプリケーションツールバー」は、2つの列と機器ツールバーで構成されています。下の図に 示すようにツールバーを展開/折り畳みすることができます。常に表示されている左端の列 には、よく使う機能があります。

左端の列

左端の列には以下の機能とステータス インジケータがあります。

アベレージ測定の開始

[アベレージ測定] アイコンをタッチすると,アベレージ測定を開始します。このアイコンは下に示した [停止] アイコンに変わり,このアイコンを使用して,テストを停止できます。

停止

現在実行中のテストを停止するには,[停止] アイコンをタッチします。テストが停止されると,このア イコンは上に示した [アベレージ測定] アイコンに変わります。

リアルタイムテストの開始

リアルタイムテストを開始するには、このアイコンをタッチします。

レポート

このアイコンをタッチして,実行中のアプリケーションの設定と結果を含むレポートを作成します。 Standard OTDRとOLTSアプリケーションでレポートを作成できます。 1. どの測定結果から生成するレポートファイルを生成するか選択します。

о. тещин олы.	
● 現在の結果のみ	🔵 フォルダ指定
オルダ:	
nternal/	

[現在の結果]:現在表示されている結果からレポートファイルを生成します。 [フォルダ指定]:指定したフォルダに保存されている結果ファイルからレポートファ イルを生成します。

フォルダパスを設定すると、結果ファイル数とレポート出力の予想時間が表示されます。

2. [レポートを選択]のフィールドをタッチして,生成するレポートファイルの形式を選択します。

	レポート生成	×
レボートを選択	OTDR Standard Report	
形式を選択	PDF XML CSV	
ロゴを含める		
	展る 次へ 間じる	3

- 3. [形式を選択] のチェックボックスを使用して、レポートファイルの書式を選択します。
- 4. レポートにロゴを出力する場合は.[ロゴを含める]を選択します。[...] ボタンをタッチすると, ファイルを選択するダイアログボックスが表示されます。

5. [次へ] をタッチします。

	にたばりオス		いたありオス
モジュール情報を挿入する		• 1~2171 -	ノビ押入りる
✔ 測定情報を挿入する		✔ イベントテーブルを挿入する	
✔ 良否判定を挿入する		✓ 波形を挿入する	
	選択する	コネクタ名	
ファイル::		vip_160217_0000.vipi	
VIP2			
VIP2	選択する	コネクタ名	
ファイル: :			

OLTSアプリケーションでは、[モジュール情報を挿入する] と [測定情報を挿入する] の チェックボックスだけが表示されます。

- 6. レポートに出力する項目を選択します。
- 7. [VIP1] または [VIP2] を選択した場合は,[選択する] をタッチしてVIPIファイルを設定しま す。
- 8. [生成する] をタッチすると,レポートが生成されます。

レポートファイルを開くまたは印刷するには、Adobe Acrobat Reader®をPDFビューアとして推奨します。

結果ファイルブラウザからレポートを作成すると,テストポートの使用に影響しません。結果ファイル ブラウザでレポートを作成する結果ファイルを選択して,レポート アイコン (🌄) をタッチします。

ヘルプ

このアイコンをタッチすると,現在表示されている画面やダイアログボックスのオンラインヘルプが 表示されます。ヘルプ内の特定の単語や語句を検索したり,以前に表示したヘルプトピックを表示 したりすることもできます。

▲ ヘルプリストトピックに移動します。

← 戻る

→ 進む

🗼 画面下の検索ボックスとボタンを表示/非表示します。

```
◆ 後方検索
```

▶ 前方検索

[大文字小文字を区別]を選択すると,英文の大文字/小文字を区別して検索します。

ファイルの保存

このアイコンをタッチすると[ファイルを保存]ダイアログボックスが表示されます。 ファイル名を入力するには,[ファイル名]フィールドをタッチします。 テスト設定のパラメータを保存するには,[設定保存]をタッチします。 テスト設定のパラメータとテスト結果を保存するには,[結果保存]をタッチします。 JSON形式でテスト設定のパラメータとテスト結果を保存するには,[JSON出力]をタッチします。

保存されるファイルには,次の種類があります。

測定結果ファイル (*.sor)	テスト設定のパラメータと,波形が1つのテスト結果を含むファイ ル
	ただし,次の画面のパラメータは保存されません。
	 設定画面の[測定機能]
圧縮結果ファイル (*.zip)	テスト設定のパラメータと,波形が2つのテスト結果を含むファイ ル
	このファイルには,2つの測定結果ファイル(*.sor)が圧縮されてい ます。
設定ファイル (*.cfg)	設定画面とテスト画面の全パラメータを含むファイル
解析結果ファイル (*.csv)	両端測定の解析結果を含むファイル
JSONファイル (*.json)	測定条件および結果を含むJSON(JavaScript Object
	Notation)形式ファイル
	ネットワークマスタでは,このファイルを読み込むことはできませ
	ん。 <u>iosnファイルの例</u> を参照してください。 注:
	複数の波長で同時に測定を行った場合は,主波形のみが出力さ
	れます。他の波長の波形を出力する場合は,その波形を主波形
	に切り替えてから出力してください。そのときはファイル名を変更
	してください。

ファイルの読み込み

このアイコンをタッチすると[ファイル読み込み]ダイアログボックスが表示されます。 リスト上のファイルをタッチすると,[ファイル名]に名称が表示されます。 [ファイルタイプ]を選択すると,リストに表示されるファイル名がフィルタされます。

[設定読み込み]	設定ファイル (*.cfg)を読み込みます。
[結果ファイル読み込み]	測定結果ファイル (*.sorまたは*.zip) を読み込みます。 測定結果ファイル (*.sor)を読み込んだ場合は測定波形を書き 換えます。
[結果ファイル読み込みと 設定]	測定結果ファイル (*.sorまたは*.zip)を読み込みます。 測定結果ファイル (*.sor)を読み込んだ場合は測定波形を書き 換え,テスト設定を読み込んだファイルの内容に変更します。 ただし,次の画面のパラメータは書き換えられません。
[結果ファイルオーバーレイ 読み込み]	測定結果ファイル (*.sorまたは*.zip) を読み込みます。 測定結果ファイル (*.sor) を読み込んだ場合は,オーバーレイ波形 が追加されます。オーバーレイ波形は12個まで追加できます。
[結果ファイルオーバーレイ 読み込みと設定]	測定結果ファイル (*.sorまたは*.zip)を読み込みます。 測定結果ファイル (*.sor)を読み込んだ場合は,オーバーレイ波形 が追加されます。また,テスト設定を読み込んだファイルの内容に 変更します ただし,次の画面のパラメータは書き換えられません。 ・ 設定画面の[測定機能]

FTTA アプリケーションでは [結果ファイル読み込み] だけが表示されます。

HINT

設定ファイルを読み込む場合,ファイルに保存されている出力ポートの設定(シングルモードまたは マルチモード)と実行しているアプリケーションの出力ポートの設定が一致している必要があります。 圧縮された結果ファイル(*.zip)を読み込むと,表示されている波形はクリアされ,ファイルから読み 込んだ結果に書き換えられます。

結果ファイルをビューアに読み込むだけですと,テストポートを使用しません。これは,前の試験結果 を見るだけで,同じ試験を繰り返し実行しないときに有用です。結果ファイルブラウザで表示する結 果ファイルを選択して,画面右上のビューモードアイコン (20) をタッチします。

閉じる

アプリケーションを終了するには,このアイコンをタッチします。

拡張アプリケーション ツールバー

拡張アプリケーション ツールバーは, U タブをタッチして表示または非表示にすることができます。拡張ツールバーには, パワーメータ機能が表示されます。チェックボックスを選択すると, 測定したパワーが表示されます。

[波長] のフィールドをタッチしてパワーメータに入力する光の波長を選択します。光源のモードがWave Codeの場合,波長は自動で設定されます。

パワーメータのゼロレベルを補正するには,[ゼロオフセット] をタッチします。光パワーメータのコネクタから光ファイバを外してカバーを閉めてから [OK] をタッチしてください。

4.3 機器の起動と電源オフ

ここでは、ネットワークマスタの電源のオン/オフおよびアプリケーションの起動/終了を説明します。

4.3.1 機器の起動

ネットワークマスタの電源をオンにすると,最初にデスクトップ/ワークスペースのGUIの構成 と,さまざまな画面の種類を紹介するスプラッシュ画面が表示されます(「GUIの構成」の図 を参照)。次に,<u>アプリケーションセレクタ</u>画面が表示されます。

4.3.2 アプリケーションの起動

[アプリケーションセレクタ] 画面でアプリケーションのアイコンをタッチすると, そのアプリ ケーションのワークスペースが作成されて,関連データが読み込まれます。読み込みが完了 すると,ポート設定画面が選択したアプリケーションに関連したインタフェース タイプと共に 表示されます。

[結果ファイルブラウザ] 画面で結果ファイルを選択してアプリケーションを開始することもで きます。<u>前回のテストおよびテスト結果へのアクセス</u>を参照してください。

4.3.3 前回のテストおよびテスト結果へのアクセス

[結果ファイルブラウザ] 画面でテスト結果ファイルを選択すると, 結果からのレポート作成またはテスト設定データとその結果を含むワークスペースの作成を選択できます。

前のテストのワークスペースを作成すると,GUIでテスト結果を表示できます。[ビューファイル]/[ファイル読込] ボタンをタッチすると,直接テスト結果画面に移動しますが,そこから ワークスペース内の他の画面にナビゲーションできます。

[ビューファイル] ボタンをタッチすると,アプリケーションはビューモードで開始します。このモードで は測定を開始できません。このモードはテスト結果を見るときに使用します。

sorまたはzipファイルを選択した場合、アプリケーションを指定するボタンをタッチします。

[ファイル読込] ボタンをタッチすると,ファイルの設定を読み込んでアプリケーションを起動します。 sorまたはzipファイルを選択した場合,アプリケーションを指定するボタンをタッチします。

他のアプリケーションが測定ポートを使用中の場合,下記のメッセージが表示されます。この場合, ビューアモードでアプリケーションを開始できます。

×,

[レポート生成] ボタンをタッチすると,レポート生成 ダイアログボックスが表示され,レポートに名前 を付けてPDF形式で保存できます。

[レポートを選択]欄で,アプリケーションを選択します。選択したアプリケーションの良否判定値を使用してレポートが作成されます。

4.3.4 アプリケーションの終了

「アプリケーションツールバー」の [閉じる] アイコン() をタッチすると,現在のアプリケー ションを終了するかどうかの確認を求められます。[はい] を選択すると,「ワークスペース」を 終了し,アプリケーションセレクタ画面に戻ります。以前にアプリケーションに割り当てられて いたリソースは,他のアプリケーションで使用するために開放されます。

4.3.5 電源をオフにする

正面パネルの<u>電源ボタン</u>を押すと,電源オフメニューが表示されます。メニューの [シャット ダウン] をタッチすると,シャットダウンを確認するダイアログボックスが表示されます。

[はい] をタッチすると、シャットダウンすることが通知され、しばらくして電源がオフになります。

シャットダウンするときにまだ動作しているアプリケーションがある場合,これらのアプリケーションの 設定データおよびテスト結果は保存されないで終了します。

5 光ファイバ試験 アプリケーション

この章では,光ファイバ試験アプリケーションに関連したグラフィカル ユーザ インタフェース (画面,サブ画面および主要なダイアログ)について説明します。サブ画面およびダイアログ ボックスについては,これらの画面がアクティブ化/起動されるメイン画面の下で説明してい ます。

以下のアプリケーションを利用できます。

- Standard OTDR
- <u>FTTA</u>
- <u>Construction</u>
- <u>OLTS</u>

5.1 Standard OTDR

Standard OTDR (Optical Time Domain Reflectrometer) アプリケーションは光ファイバの障 害点を特定できます。試験結果は Fiber Visualizer 画面または波形画面に表示されます。

5.1.1 測定条件の設定

アプリケーション実行の最初のステップは,測定条件を設定することです。これは [設定] 画 面で行われます。

5.1.1.1 ポート

_1550.sor		アプリケー	ション セレクタ				
ポート	測定	IOR/	вѕс	ヘッダ	測定機	難	5
出力ポート			シングルモード				
							?
● 可	●+ + ● ≹光源 パワ-) ← - メ- タ	(7 <i>1</i> , 7) t-k*	● •>>0*#±=+*		×
🔣 📶 Standa	rd OTDR	設定テ	・スト 結果	F# 🔿 🤋	(B) V 🗔 🗙 🖳) 09:15)))

ナビゲーション エリアで [ポート] ボタンをタッチすると,次の画面が表示されます。

出力ポート

この項目はMU100021AとMU100023Aで表示されます。フィールドをタッチして,テストに 使用するポートを選択します。

選択したポートのコネクタの位置が図に表示されます。

MU100021A: [シングルモード], [マルチモード]
 [シングルモード] を選択すると, ITU-T G.652 "Characteristics of a single-mode optical fibre and cable"に準拠したファイバを試験できます。

[マルチモード]を選択すると,コア径 50 µm または 62.5 µmのGI (Graded Index)ファ イバを試験できます。

MU100023A: [ポート1 (1310/1550 nm], [ポート2 (1650 nm)]
 MU100023Aでは,両方のポートでシングルモードファイバを試験できます。

[ポート1(1310/1550 nm] では、波長1310 nmと1550 nmを使用してファイバを試験できます。

[ポート2(1650 nm)] では、波長 1650 nmを使用してファイバを試験できます。

5.1.1.2 測定

ポート	測定	IOR/BSC	ヘッダ	測定機能
定モード	個別設定		1550 nm	
同じ設定				
_1310 nm				
距離レンジ	0.5 km	▼ 分解能	標準	
パルス幅	3 ns	▼ 平均化時間	15 秒	
_1550 nm				
距離レンジ	10 km	▼ 分解能	標準	
パルフカロ	500 ns	▼ 平均化時間	5 秒	▼
////A118				

ナビゲーション エリアで [測定] ボタンをタッチすると,次の画面が表示されます。

測定モード

フィールドをタッチして,モードを選択します。 [自動設定]を選択すると測定パラメータは自動で設定されます。 [個別設定]を選択すると測定パラメータを設定できます。

波長

フィールドをタッチして、試験に使用する波長を選択します。 [ALL] を選択すると、OTDRモジュールが対応しているすべての波長で試験をします。

MU100020A, MU100021A, MU100022Aの場合

出力ポート	設定できる波長
シングルモード	1310 nm, 1550 nm, 1625 nm, ALL
マルチモード	850 nm, 1300 nm, ALL

表示される波長は形名によって異なります。

MU100023Aの場合

出力ポート	設定できる波長
ポート1	1310 nm, 1550 nm, ALL
ポート2	1650 nm, ALL

1650 nmと他の波長の間で変更すると、ポートの設定が連動して変わります。

同じ設定

すべての波長に対して同じ設定を適用する場合,チェックボックスを選択します。 各波長について,以下の項目を設定できます。

距離レンジ

障害点を探索する距離を選択します。

パルス幅

光信号のパルス幅を選択します。時間単位には、µsの代わりにusが表示されます。

分解能

水平方向の分解能を選択します。

平均化時間

[アベレージ測定]において、波形を平均化する時間を選択します。

5.1.1.3 IOR/BSC

ナビゲーション エリアで [IOR/BSC] ボタンをタッチすると,次の画面が表示されます。

ボート	測定	IOR/BSC	ヘッダ	測定機能	
1310nm					L
BSC		-78.50 dB			(
群屈折率 (IOR)		1.467700			
ファイバ		その他			
1550nm					1
BSC		-81.50 dB			C
群屈折率 (IOR)		1.468200			l
ファイバ		その他			1

各波長について,以下の項目を設定できます。

BSC

フィールドをタッチしてBSCを設定します。

BSC (Backscatter Coefficient) は後方散乱係数で,1 mあたりの光パワー反射係数で す。BSC は光損失を計算するときに使用されます。

群屈折率 (IOR)

フィールドをタッチして群屈折率を設定します。

群屈折率 (Index of Refraction)は,反射パルスの時間差から距離を計算するときに使用 されます。

ファイバ

ファイバの種類を選択します。

この画面で設定した値は,次回以降に測定される波形に適用されます。以下の波形の群屈折率およびBSCを変更する場合は,波形画面の[群屈折率(IOR)]を使用してください。

- 測定済みの波形
- ファイルから読み込んだ波形

5.1.1.4 ヘッダ

_1550.sor		アプリケーション セレクタ			
ポート	測定	IOR/BSC	~~ <i>y§</i>	測定機能	
データフラグ		BC(敷設時)			
ケーブルID		alfa			()
ファイバID		beta			
ケーブルコード		gamma			-
起点		osaka			?
終点		tokyo			
方向		起点->終点		•	
作業者		aaa			
コメント		bbb			X
連番開始番号		9			
🔣 📆 Standard	IOTDR	<u>設定</u> テスト 結果	[\ ∰ 🗃 🎘 V	/ 💽 yy 🗜 📫 09:15)))

ナビゲーション エリアで [ヘッダ] ボタンをタッチすると,次の画面が表示されます。

この画面では,結果ファイル (*.sor) に保存されるファイルヘッダの内容を設定します。 次の項目は,<u>レポート</u>に出力されます。

ケーブルID, ファイバID, 起点, 終点, 作業者

データフラグ

波形のデータフラグを選択します。

- [BC(敷設時)]: ケーブルを敷設したときに測定した波形
- [RC(修復時)]: ケーブルを修理したときに測定した波形
- [OT(その他)]: それ以外の場合に測定した波形

ケーブルID

測定したケーブルの識別番号,または名称を入力します。

ファイバID

測定したファイバの識別番号,または名称を入力します。

ケーブルコード

測定したファイバのケーブルコードを入力します。

起点

測定開始点の名称を入力します。

終点

測定終了点の名称を入力します。

方向

測定方向を選択します。 [起点 -> 終点],または [終点 -> 起点]

作業者

測定した人に関する情報を入力します。

コメント

測定したファイバに関するコメントを入力します。

連番開始番号

ヘッダにつける番号の開始番号を入力します。

5.1.1.5 測定機能

ナビケーションエリアの [測定機能] ボタンをタッチすると,4つのタブが表示されます。

測定

[測定] タブをタッチすると,次の画面が表示されます。

測定	解析	表示	77415204	
			ファイル & ての他	
✔ 接続チェック				
✔ 通信光チェック				
ファイバ長チェック				
自動測定のモード			拡張	
マルチモードファイバ			62.5/125um	•
_リアルタイム				
アベレージ			低	
測定モード			通常	

接続チェック

チェックボックスを選択すると,測定開始前に<u>接続チェック</u>が表示され,光ファイバが光コネ クタに正しく接続されているかを確認できます。

通信光チェック

チェックボックスを選択すると,測定開始前に光ファイバ内の通信光(ほかの光信号)の有無 を確認できます。

- 通信光が検出されなければ、そのまま測定が開始します。
- 通信光が検出されると,警告が画面に表示されテストは中止されます。

850/1300 nm マルチモードファイバでは,通信光チェックをすることができません。

ファイバ長チェック

チェックボックスを選択すると、光パルス試験を開始する前に光ファイバの長さが距離レンジ 以下であるかを調べます。光ファイバの長さが距離レンジよりも長いときは、距離レンジの範 囲外の光ファイバで反射される光による影響を受けないように、光パルスの送出間隔が自動 で調整されます。この場合は、チェックボックスを選択しないときよりも測定を開始するまで の時間が長くなります。 この機能は,長距離の光ファイバをネットワークマスタに接続したときに,ネットワークマスタ から距離が近い部分を測定するときに有効です。たとえば,ネットワークマスタの測定ポート と被測定ファイバの間に接続したダミーファイバの接続損失を確認することができます。

自動測定のモード

自動測定の方法を選択します。

- [拡張]:イベントを正確に検出するために,複数のパルス幅を使用して試験します。 ただし,パルス幅を変えながら試験を繰り返すので時間がかかります。
- [標準]:1種類のパルス幅で試験します。

マルチモードファイバ

この設定は,ポート画面で [マルチモード] を選択したときに表示されます。 測定するマルチモードファイバのコア径を選択します。μmの代わりにumが表示されます。

リアルタイム

リアルタイム測定 (论) の処理方法を設定します。

アベレージ

リアルタイム測定でアベレージ処理をするかを選択します。

- [低]:アベレージ処理をしません。
- [高]: アベレージ処理をします。OTDRのノイズを低減できるため、測定する距離レンジが長いときに設定します。

測定モード

- [通常]:ファイバの後方散乱光を測定するときに設定します。
- [高反射測定]: フレネル反射など,レベル差が大きい波形を測定するときに設定します。[通 常] よりも測定時間が長くなります。

解析

[解析] タブをタッチすると,次の画面が表示されます。

_1	L550.sor		アプリケ	ーション セレクタ			
	ポート	測定	IOI	R/BSC	ヘッダ	測定機能	
	測定	解析	表示	ファイル &	その他		
	反射減衰量計算			自動			()
	全反射減衰量計算			波形全体			
	イベント間情報			イベント問距離			
	全反射滅衰量計算に遠	端を含める		遠端を含めない			?
	両端測定の解析範囲			2.000 %			
	<u>.</u>						X
(((📕 🛀 Standard	IOTDR	設定	テスト 結果	📑 🖬 🔊 🕅 V	🔀 y 🛃 🕠 09 16	5 <i>I</i> ///

反射減衰量計算

反射減衰量の計算方法を選択します。

- [オフ]: 反射減衰量を計算しません。
- [自動]: 全イベントの反射減衰量をカーソルAの位置を基準にして計算します。[自動] はお 互いに近接していない,またはネットワークマスタから離れている反射イベントに対して役に 立ちます。
- [手動]: [手動] に設定すると、イベントの反射減衰量を両方のカーソル位置 (AとB)を基準 にして計算します。[手動] はお互いに近接している、またはネットワークマスタの近傍の反射 イベントに対して役に立ちます。

詳細は,反射減衰量を参照してください。

全反射減衰量計算

反射減衰量測定の開始位置を選択します。

- [カーソル A]: カーソルAからカーソルBの間の反射減衰量を計算します。カーソルAの位置のパワーを入射パワーとします。
- [口元位置]: カーソルAからカーソルBの間の反射減衰量を計算します。口元位置のパワー を入射パワーとします (口元位置は0 km,またはコネクタの位置です)。
- [波形全体]: 口元位置から最後のデータポイント間の反射減衰量を計算します。口元位置のパワーを入射パワーとします (口元位置は0 km,またはコネクタの位置です)。

イベント間情報

イベントテーブルにイベント間距離を表示するか,伝送損失 (dB/km) を表示するか選択します。この設定は波形画面のイベントテーブルに適用されます。

全反射減衰量計算に遠端を含める

全反射減衰量を計算するときに,遠端イベントの反射を含めるかどうかを選択します。この設 定は次の測定で使用されます。

- Fiber Visualizer
- 全反射減衰量計算で[波形全体]を選択した場合,波形画面の全反射量の計算

両端測定の解析範囲

波形画面の<u>両端測定</u>表示で,方向を反転して表示されたオーバーレイ波形上の同じイベントを探す範囲を設定します。

探す範囲は,オーバーレイでない波形 (以後,主波形と呼ぶ)の遠端距離に,双方向の相関/100をかけた値です。

例:

主波形の遠端距離:50 km

両端測定の解析範囲:4%

主波形上のイベント距離: 12.5 km

オーバーレイ波形上でイベントを探す距離は、11.5~13.5 kmになります。

表示

[表示]タブをタッチすると,次の画面が表示されます。

-	1550.sor		アプリク	ーション セレ	109		
	ポート	測定	IC	R/BSC	ヘッダ	測定機能	-
	測定	解析	表示	דר	イル & その他		
	距離単位			km			
	✔ 全体波形						5
	 オートスケール 選択イベントをオ 						?
	解析後の表示モード			現在の表示	状態		æ.
	● ダミーファイバ表	行を有効にする					
							X
(((Standard	OTDR	<u>設定</u>	テスト	結果 📑 📑 💦	• V 🔀 🔊 🛃 🕪 09 16)))

距離単位

波形表示画面,波形解析画面に表示する距離の単位を選択します。

全体波形

チェックボックスを選択すると,波形画面左下に全体波形が表示されます。

オートスケール

チェックボックスを選択すると,遠端イベントが波形画面に表示されるよう水平方向のス ケールが自動で調整されます。

選択イベントをオートズーム

チェックボックスを選択すると,測定結果画面で選択中のイベントを拡大表示します。

解析後の表示モード

解析が終了した後の表示モードを選択します。

- [遠端/破断]:遠端イベントまたは破断点の位置を表示します。
- [波形全体]:波形全体を表示します。
- [現在の表示状態]:現在のスケールを維持して波形を表示します。

ダミーファイバ表示を有効にする

チェックボックスを選択すると,波形画面にダミーファイバ (ネットワークマスタ内部のファイバ) が表示されます。

遅延時間を表示

チェックボックスを選択すると,Fiber Visualizer画面に遠端までの遅延時間が表示されま す。遅延時間は,光パルスが口元から遠端に到達するまでの時間です。

ファイル & その他

[ファイル&その他] タブをタッチすると,次の画面が表示されます。

550.sor		アプリケーショ	ン セレクタ			1
ポート	測定	IOR/BSC		ヽ ッダ	測定機能	-
測定	解析	表示	ファイル & その他	.]		L
~ファイル]	(
✔ 自動ファイル名		_				1
開始番号		9				-
基本ファイル名		AU	TO_*Wavelength*_	*Number*		
校正期間		12	ヶ月			6
						1
						-
📶 Standard (DTDR	設定 テスト	、 結果 □₩	i 🗃 🤿 🕅 V Б	🕺 💓 📑 👘 09:17	

自動ファイル名

チェックボックスを選択すると,ファイルを保存するときにファイル名が自動生成されます。

機器ツールバーの一般画面で自動保存が [オン] または [都度、問い合わせる] に設定されている 場合は, チェックボックスが常に選択されます。

開始番号

フィールドをタッチすると,自動ファイル名のファイル番号初期値を設定できます。

基本ファイル名

自動ファイル名が選択されている場合に生成されるファイル名が表示されます。フィールド をタッチすると、70字までの文字列を設定できます。

校正期間

フィールドをタッチして,校正期間を月単位で設定します。

NOTE

校正の有効期限は,<u>レポート</u>に表示されます。

自動ファイル名設定	? X
ファイル名 AUTO_1310_1.sor (.zip)	
AUTO _ *Wavelength* _ *Number*	
ユーザ定義	マクロ
	Number
	Wavelength
	yy-mm-dd
	hh-mm-ss
	Location
キャンセル	ОК

[ファイル名]の下に最初に生成されるファイル名が表示されます。

次の方法で文字または変数を入力します。

- フィールドをタッチして,キーパッドダイアログボックスで文字を入力します。
- [ユーザ定義]の文字列が表示されているボタンをタッチします。
- 日付などの変数を入力する場合は,[マクロ]のボタンをタッチします。

入力した文字列および変数はボタンで表示されます。 このボタンを削除したり編集したりする場合は、ボタンをタッチします。

ユーザ定義

空のボタンをタッチするとキーパッドダイアログボックスが表示され,文字列を編集できます。

文字が表示されてるボタンをタッチすると,フィールドに文字が挿入されます。

ボタンの文字を編集するには,ボタンをタッチし続けます。キーパッド ダイアログボックスが 表示されます。

マクロ

ボタンをタッチすると以下の変数を挿入します。

Number

自動で番号を付けます。開始番号は測定機能の [ファイル&その他] タブで設定できます。

Wavelength

試験に使用したnm単位の波長です。

yy-mm-dd

試験の年月日 例: 2015-12-31

hh-mm-ss

試験の時刻(時分秒)例:23-59-00

Location

<u>ヘッダ</u>で設定した起点と終点例: osaka_tokyo

5.1.2 テスト設定

5.1.2.1 ファイバ

774		白動輸出	1 自不制定	
		自動映西	及皆判定	
「ッチコード設定				
開始点	なし	▼ 終了点	なし	
開始点距離	0.0000 km	終了点距離	0.0000 km	
開始点距離の相関	2.000 %	終了点距離の相関	2.000 %	
スプリッタ数		tæl		
	開始		終了	

ナビゲーション エリアで [ファイバ] ボタンをタッチすると,次の画面が表示されます。

パッチコード設定

パッチコードは被測定ファイバに接続する光ファイバです。

開始点

開始点は,ネットワークマスタ側パッチコードと被測定ファイバの接続点です。開始点の設定 方法を選択します。

- [なし]:開始点を設定しません。
- [イベント1]~[イベント3]:指定したイベントの位置を開始点にします。
- [距離]: [開始点距離] フィールドで指定した距離を開始点にします。

開始点距離

[開始点] が [距離] に設定されている場合,開始点の距離 (パッチコードの長さ) を設定します。

開始点距離の相関

パッチコードのイベントを検出する範囲を,開始点距離の比率で設定します。

設定例

開始点距離を30 m,係数を20%に設定したときの検出範囲は6 mとなります。

この場合は,距離 27~33 mの範囲で検出されたイベントが開始点イベントに設定されます。

この範囲にイベントが検出されないときは,開始点距離に開始点イベントが追加されます。

終了点

終了点は,遠端側パッチコードと被測定ファイバの接続点です。終了点の設定方法を選択します。

- [なし]:終了点を設定しません。
- [イベント1]~[イベント3]:指定したイベントの位置を終了点にします。
- [距離]: [終了点距離] フィールドで指定した遠端からの距離を終了点にします。

終了点距離

[終了点] が[距離] に設定されている場合,遠端から終了点までの距離 (パッチコードの長 さ) を設定します。

終了点距離の相関

パッチコードのイベントを検出する範囲を,終了点距離の比率で設定します。

設定例

終了点距離を20 m,係数を10%に設定したときの検出範囲は2 mとなります。 この場合,遠端距離が10000 mのときでは9979~9981 mの範囲で検出されたイベント が終了点イベントに設定されます。 この範囲にイベントが検出されないときは,遠端距離から終了点距離を差し引いた位置に 終了点イベントが追加されます。

スプリッタ設定 この設定はStandard OTDRアプリケーションで,出力ポートが [シングルモード] のときに表示されます。

ファイバ上のスプリッタ情報が既知の場合,スプリッタの数と分岐数を設定します。

設定したスプリッタ数とファイバ上に実際に存在するスプリッタの数が合っていない場合,正しくイ ベントが検出されないことがあります。

スプリッタ数

- [なし]:ファイバ上にスプリッタを設定しません。
- [1]~[3]:ファイバ上に指定した数のスプリッタを設定します。
- [検出]: スプリッタの数を自動で検出します。

スプリッタアイコンの下のフィールドをタッチして,分岐数を選択します。[1×??]を選択すると 分岐数が自動で検出されます。

5.1.2.2 自動検出

ナビゲーション エリアで [自動検出] ボタンをタッチすると,次の画面が表示されます。

		アプリケーション セレクタ		
ファイ	K J	自動検出	良否判定	
接続損失		0.05 dB		
反射減衰量		60.0 dB		()
ファイバ遠端		3 dB		
✔ マクロベンド解析		0.3 dB		
_スプリッタ				?
1x2	3.0 dB	1x32	15.0 dB	
1x4	6.0 dB	1x64	18.0 dB	
1x8	9.0 dB	1x128	21.0 dB	
1x16	12.0 dB			X
🔣 📆 Stand	dard OTDR	_{設定 <u>テスト</u> 結果}	🔐 🗈 🚿 V 📴 🔉 💆 🐠 10:5	2

この画面ではイベントを自動検出するためのしきい値を設定します。このしきい値を超えるイベントが,イベントテーブルに表示されます。

接続損失

イベントテーブルに表示する最低損失を設定します。

反射減衰量

最低反射減衰量を設定します。この値以上の反射があるすべてのイベントが,イベント解析 テーブルに表示されます。

ファイバ遠端

遠端イベントの最低損失を設定します。

マクロベンド解析

この設定はStandard OTDRアプリケーションで,出力ポートが [シングルモード] のときに 表示されます。MU100023Aでは常に表示されます。

マクロベンド (ファイバの微小な曲がり)を解析する場合は、チェックボックスを選択します。

マクロベンドイベントとして検出するしきい値を設定します。

スプリッタ この設定はStandard OTDRアプリケーションで,出力ポートが [シングルモード] のときに表示されます。MU100023Aでは常に表示されます。

イベント解析でスプリッタイベントとして表示するスプリッタ損失を設定します。

5.1.2.3 良否判定

ナビゲーション エリアで [良否判定] ボタンをタッチすると,次の画面が表示されます。

endevent.sor	アプリケーション セレクタ		
ファイバ	自動検出	良否判定	_
良否判定基準	手動		
✔ 接続損失(反射なし:融着)	0.20 dB		3
✔ 接続損失(反射有り:コネクタ、メカスプ)	0.50 dB		
✔ 反射滅衰量	35.0 dB		5
✔ 伝送損失(dB/km)	1.00 dB/km		?
✔ 全損失	3.0 dB		
✔ 全反射滅衰量	27.0 dB		
✔ スプリッタ損失	3.0 dB		
✓ 不確かなスプリッタ			×
K Standard OTDR	設定 <u>テスト</u> 結果	🔐 📾 🖘 🔯 V 💽 🖕 星 🐠 13 36	>>>

良否判定基準

良否判定の判断基準をリストから選択します。

- [手動]:損失や反射減衰量などの良否判定基準を個別に設定します。
- [ISO/IEC]: 国際規格に規定された値を判断基準として使用します。
- [JIS]:日本工業規格に規定された値を判断基準として使用します。

[手動]を選択すると,良否判定するしきい値を設定できます。

接続損失 (反射なし:融着)

非反射イベント(融着接続など)の損失が設定値を超えると,イベントテーブルの損失欄が赤 色で表示されます。

接続損失(反射有り:コネクタ、メカスプ)

反射イベント(コネクタ,メカニカルスプライスなど)の損失が設定値を超えると,イベントテー ブルの損失欄が赤色で表示されます。

反射減衰量

イベントの反射が設定値を超えると,イベントテーブルの反射欄が赤色で表示されます。

伝送損失 (dB/km)

イベントの伝送損失が設定値を超えると,イベントテーブルのdB/km欄が赤色で表示されます。

全損失

全損失(累積損失)が設定値を超えると、イベントテーブルの終端イベントの累積損失欄が赤 色で表示されます。また、Fiber Visualizerの全損失が赤字で表示されます。

全反射減衰量

全反射減衰量が設定値よりも低いと、Fiber Visualizerの全反射減衰量が赤字で表示されます。

スプリッタ損失

この設定はStandard OTDRアプリケーションで,出力ポートが [シングルモード] のときに表示されます。

スプリッタ損失が次の合計を超えた場合,イベントテーブルの損失欄が赤色で表示されま す。

- <u>自動検出</u>面面のスプリッタ
- ここで設定したスプリッタ損失

たとえば,自動検出の1×2スプリッタ損失が 4.1 dB, スプリッタ損失が1.0 dBの場合,1×2 スプリッタイベントの損失が5.1 dBを超えると不合格と判定されます。

不確かなスプリッタ

[自動検出] 画面のスプリッタで設定したしきい値を超えるイベントが検出されないときは、ス プリッタイベントの候補となるイベントを探します。この候補となったイベントのアイコンには、 右上に?が表示されます。このイベントを「不確かなスプリッタ」と呼びます。

不確かなスプリッタのアイコン例

チェックボックスを選択すると,不確かなスプリッタの良否判定をします。 この場合は判定結果がFAILになる可能性が大きくなります。

チェックボックスを選択しないときは、不確かなスプリッタの良否判定はしません。常に PASSと判定されます。

良否判定基準に [ISO/IEC] または [JIS] を選択すると,次の画面が表示されます。

		アプリケーション セレクタ					
ファイバ		自動検出	良否判定				
良否判定基準		ISO/IEC	ISO/IEC				
適用規格		ISO/IEC 14763-3:20	ISO/IEC 14763-3:2014/Amd 1:2018				
ファイバカテゴリ		052					
✔ コネクタ数		2	2				
スプライス数		THE L	tau tau				
しきい値							
✔ ファイバ長	5000 m	反射減衰量	なし				
✓ 接続損失 (反射なし:融着)	0.30 dB	伝送損失 (dB/kr	n) なし				
 接続損失 (反射有り:基準コネクタ) 	0.75 dB		to L				
✓ 接続損失 (反射有り:コネクタ、メカスフ°	0.75 dB						
🔣 🔣 Standard 01	'DR 🖌	設定 <u>テスト</u> 結果	🛱 🖬 🖘 🕸 V 🖼 🗴 🕂)))) 15 20)))			

良否判定基準に [ISO/IEC] または [JIS] を選択したときは、パッチコード設定機能を使用して、試験 コードと被測定ファイバの接続点を開始点と終了点に設定します。 また、被測定ファイバと試験コードの後方散乱光係数の違いの影響を少なくして全損失を測定する

ために, <u>両端測定</u>機能を使用します。

この画面では,良否判定の基準とする規格とファイバのカテゴリを設定します。

適用規格

良否判定の基準とする規格をリストから選択します。次の規格を選択したときは,全損失として <u>パーマネントリンク減衰量</u>が測定されます。これ以外の規格では<u>チャネル減衰量</u>が測定 されます。

- ISO/IEC 4763-3:2014/Amd 1:2018 Permanent Link
- JIS X5151:2018 Permanent Link

ファイバカテゴリ

ファイバのカテゴリをリストから選択します。

コネクタ数

適用規格が次のときは [なし] になります。

- OF-300, OF-500, またはOF-2000の規格
- パーマネントリンク減衰量を測定する規格

これ以外の規格の場合は、チェックボックスを選択すると被測定ファイバ内のコネクタ数を 設定できます。試験コードと機器コード間のコネクタを除いた数を設定します。この値は全損 失の計算に使用されます。

スプライス数

適用規格が次のときは [なし] になります。

- OF-300, OF-500, またはOF-2000の規格
- パーマネントリンク減衰量を測定する規格

これ以外の規格の場合は、チェックボックスを選択すると被測定ファイバ内のスプライス数を設定できます。この値は全損失の計算に使用されます。

しきい値

規格で規定されている値が表示されます。<u>IEC/ISOの規格</u>および <u>JISの規格</u>を参照してください。

ファイバ長

被測定ファイバの長さです。測定した長さが設定値を超えると,遠端イベントの距離が赤色 で表示されます。 適用規格がOF-300, OF-500, OF-2000の規格でない場合は値を設定できます。

接続損失 (反射なし:融着)

非反射イベント(融着接続など)の損失が設定値を超えると、イベントテーブルの損失欄が赤 色で表示されます。

接続損失 (反射有り:基準コネクタ)

反射イベント(基準コネクタ)の損失損失が設定値を超えると、イベントテーブルの損失欄が 赤色で表示されます。

接続損失 (反射有り:コネクタ、メカスプ)

反射イベント(コネクタ,メカニカルスプライスなど)の損失が設定値を超えると、イベントテー ブルの損失欄が赤色で表示されます。

反射減衰量

イベントの反射が設定値を超えると,イベントテーブルの反射欄が赤色で表示されます。

伝送損失 (dB/km)

ファイバの1 kmあたりの損失です。イベントの伝送損失が設定値を超えると、イベントテーブルのdB/km欄が赤色で表示されます。

全損失

ファイバの全損失 (チャネル減衰量またはパーマネントリンク減衰量) です。被測定ファイバ の全損失が設定値を超えると,全損失欄が赤色で表示されます。

被測定ファイバ長から計算する場合,被測定ファイバ長が決まるまで [なし] と表示されま す。パッチコード設定と測定が完了して被測定ファイバ長が決まると,次の式から全損失しき い値が計算されます。

 $A_{\text{Lim}} = L \times T_{\text{d}} + C_{r1} \times T_{r1} + C_{r2} \times T_{r2} + C_{\text{s}} \times T_{\text{s}}$

A_{Lim} 全損失しきい値

- L 被測定ファイバ長
- C_{r1} 基準コネクタ数 チャネル減衰量を測定する場合は0になります。
- C_{r2} 基準コネクタ数を除くコネクタ数
 パーマネントリンク減衰量を測定する場合は0になります。
- C_s スプライス数
- T_d 伝送損失 (dB/km) しきい値
- T_{r1} 接続損失 (反射有り:基準コネクタ) しきい値
- Tr2 接続損失 (反射有り:コネクタ、メカスプ) しきい値
- T_s 接続損失 (反射なし:融着) しきい値

規格名	ファイバ カテゴリ	ファイバ長	非反射 イベント の損失	反射イベン 反射イベ トの損失 トの損失 (基準 (コネクタ コネクタ) メカスフ	反射イベン トの損失	反射減 衰量	波長	伝送損失 *1	全損失
79610-10					(コネクタ, メカスプ)			(dB/km)	TRV
ISO/IEC	OS1a	任意	0.2 JD	0.75 dB			1310 nm	1.0	
	OS2		0.5 UD		0.75 UB		$1550{ m nm}{ m *}^2$	0.4	*** ***
	OM2 4			0.5 dB			850 nm	3.5	被測定ファ イバ長から 求める
11801-3:2017	01013-4	化音	0.2 dB		0.75 dB		1300 nm	1.5	
	OME		0.5 UB				850 nm	3.0	
	01010						1300 nm	1.5	
	OS1a						1310 nm	1.0	1.8 dB
	OS2						$1550{ m nm}{ m *}^2$	0.4	1.62 dB
ISO/IEC 11801-3·2017	OM3-4	300 m					850 nm	3.5	2.55 dB
OF-300	01015-4	500 111					1300 nm	1.5	1.95 dB
	OM5						850 nm	3.0	2.4 dB
	01010						1300 nm	1.5	1.95 dB
	OS1a						1310 nm	1.0	2.0 dB
	OS2						$1550 \mathrm{nm}^{*2}$	0.4	1.7 dB
ISO/IEC	OM2 4	500 m					850 nm	3.5	3.25 dB
OF-500	01013-4						1300 nm	1.5	2.25 dB
01 000	OM5						850 nm	3.0	3.0 dB
	01010						1300 nm	1.5	2.25 dB
	OS1a	2000 m					1310 nm	1.0	3.5 dB
	OS2						1550 nm^{*2}	0.4	2.3 dB
ISO/IEC 11801-3·2017	OM3-4						850 nm	3.5	8.5 dB
OF-2000	01015-4						1300 nm	1.5	4.5 dB
01 2000	OM5						850 nm	3.0	7.5 dB
	01010						1300 nm	1.5	4.5 dB
	OS1a	化音	0.2 dB	0.75 dB	0 75 dB		1310 nm	1.0	
	OS2	江忌	0.5 UD	0.75 UB	0.75 UB		$1550{ m nm}{ m *}^2$	0.4	
ISO/IEC	OM2 4						850 nm	3.5	被測定ノア イバ트から
/Amd 1:2018	01013-4	化音	dF C O				1300nm	1.5	オパ長から 求める
,	OM5		0.5 uD	0.5 UD	0.75 UD		850 nm	3.0	
	01010						1300 nm	1.5	
ISO/IEC 14763-3:2014 /Amd 1:2018 Permanent Link	ISO/IEC	2 14763-3:20	014/Amd 1	1:2018と同じ	;				

適用規格のパラメータを以下の表に示します。

ISO/IECの規格

*1: 伝送損失は良否判定の対象ではありません。良否判定しきい値の伝送損失はなしと表示されます。

*2: 規格外の波長で測定された場合は, 1310 nm, 1550 nmと同じしきい値で良否判定されます。

規格名	ファイバ カテゴリ	ファイバ長	非反射 イベント の損失	反射イベン トの損失 (基準 コネクタ)	反射イベン トの損失 (コネクタ, メカスプ)	反射減 衰量	波長	伝送損失 *1 (dB/km)	全損失
	OS1	任意	0.3 dB	0.75 dB	0.75 dB	–35 dB	1310 nm	1.0	被測定ファ
US V5150-2016	OS2						$1550 \mathrm{nm}^{*2}$	0.4	
JIS X3130.2010	OM1-4	バ音	0 2 4P	0 5 dP	0.75 dP	20 dP	850 nm	3.5	すべ良から 求める
	0111-4		0.5 0.5	0.5 UD	0.75 UD	-20 uD	1300 nm	1.5	•
	OS1						1310 nm	1.0	1.8 dB
JIS X5150:2016	OS2	300 m					$1550 \mathrm{nm}^{*2}$	0.4	1.62 dB
OF-300	OM1-4	500 111					850 nm	3.5	2.55 dB
	01111 4						1300 nm	1.5	1.95 dB
	OS1	500 m					1310 nm	1.0	2.0 dB
JIS X5150:2016	OS2						1550 nm * ²	0.4	1.7 dB
OF-500	OM1-4						850 nm	3.5	3.25 dB
							1300 nm	1.5	2.25 dB
	OS1	2000 m					1310 nm	1.0	3.5 dB
JIS X5150:2016	OS2						1550 nm * ²	0.4	2.3 dB
OF-2000	OM1-4						850 nm	3.5	8.5 dB
							1300 nm	1.5	4.5 dB
	OS1	仁音	0.3 dB	0 75 dB	0.75 dB		1310 nm	1.0	被測定ファ イバ長から 求める
US X5151·2018	OS2		0.3 dB	0.75 UD			1550 nm * ²	0.4	
JIS X5151.2016	OM1-4	だ音	0 3 4P		0.75 dD		850 nm	3.5	
	0111-4		0.5 UD	0.5 UD	0.75 UD		1300 nm	1.5	• • •
JIS X5151:2018 Permanent Link	JIS X515	51:2018と同	じ						

JISの規格

*1: 伝送損失は良否判定の対象ではありません。良否判定しきい値の伝送損失はなしと表示されます。

*2: 規格外の波長で測定された場合は, 1310 nm, 1550 nmと同じしきい値で良否判定されます。
減衰量の測定方法

チャネル減衰量

減衰量を測定する範囲 (被測定チャネル) を次の図に示します。光ファイバの前後に機器 コードが接続されていて, チャネル減衰量には試験コードと機器コードを接続するコネクタの 損失を含みません。チャネル減衰量は, 損失モードを [2点間損失] にして測定されます。

△は2点間損失のカーソル位置を示します。

パーマネントリンク減衰量

減衰量を測定する範囲 (被測定パーマネントリンク) を次の図に示します。パーマネントリン ク減衰量には試験コードと光ファイバを接続するコネクタの損失を含みます。パーマネントリ ンク減衰量は,損失モードを [接続損失(LSA)] にして測定されます。

△はLSAカーソルの位置を示します。

5.1.3 テスト結果

アプリケーションツールバーの をタッチすると, 測定が始まります。MU100023Aで波長 を [ALL] に設定している場合は, 接続するコネクタを確認するダイアログボックスが表示さ れます。

波長 1650 nmで測定する前でレーザダイオードがウォーミングアップしている間は,次のダ イアログボックスが表示されます。

ウォー	ーミングアップ中	
レーザダイオ	ナードのウォーミングアップ	中
	キャンセル	

5.1.3.1 接続チェック

測定機能画面の測定タブで [接続チェック] を選択した場合,測定を開始すると接続状態が 表示されます。

イモンノノの已	按統損失
緑	<1 dB
黄	$1\sim 2 dB$
赤	>2 dB

*: 値は参考用です。光コネクタまたは光ファイバからの反射の状態によっ

ては,正しく測定できない場合があります。

50 µm マルチモードファイバを使用する場合は、1.5 dBが加算されます。

接続状態が良好の場合

接続状態が良ければ,緑で表示されます。棒グラフが[良] の近くまで表示されると,より良い 接続状態です。

接続状態が不良または良好でない場合

接続状態が不良の場合は赤,良好でない場合は黄色で棒グラフが表示されます。テストを 実行するには,[続行] キーをタッチします。 棒グラフが赤または黄色で表示される場合は,光ファイバをクリーニングしてください。

光ファイバをクリーニングしても接続状態が改善しない場合は,別の光ファイバに交換してく ださい。

光ファイバの長さが約50 m以下の場合,接続状態は通常 [不良] になります。 パッチコードの長さは3 m以下にしてください。パッチコードが3 mより長いと棒グラフの色が赤にな ることがあります。

5.1.3.2 Fiber Visualizer

ナビゲーション エリアで [Fiber Visualizer] ボタンをタッチすると,次の画面が表示されます。

Fiber Visualizer画面では、検出したイベントが<u>アイコン</u>で表示されます。イベントの説明 は<u>イベントの種類</u>を参照してください。赤く表示されているアイコンは、良否判定で否と判定 されたイベントです。

模式図

イベント位置や表示しているイベントアイコンの位置を表します。良否判定しきい値を超えて いるイベントは,赤線で表示されます。 イベントアイコン表示エリア

ファイバの接続点や融着点,スプリッタなどをアイコンで表示します。良否判定しきい値を超 えているアイコンは,赤色で表示されます。

イベントアイコンをタッチすると、マーカの設定およびイベントの編集ができます。

★ イベントにマーカAを設定した場合、イベントアイコンの下に表示されます。

┏ イベントにマーカBを設定した場合、イベントアイコンの下に表示されます。

メッセージエリア

次のどれかが表示されます。

- 不合格のアイコンを選択すると、不合格と判定した理由と解決のヒントが表示されます。
- AマーカとBマーカを設定しているとき、マーカ間の距離と損失が表示されます。
- 全損失または全反射減衰量が不合格のときの情報が表示されます。

メッセージ切り替え

AマーカとBマーカを設定しているときに ● をタッチすると,メッセージエリアに表示する 情報を切り替えます。

全体の結果

ファイバ全体の損失と反射減衰量が表示されます。

3つ以上の波長で測定した場合、波長表示の横に矢印が表示されます。

1550 1625

全損失または全反射減衰量が赤で表示されているときに数字をタッチすると,メッセージエ リアにその情報が表示されます。

良否判定結果

設定している良否判定しきい値をすべてクリアしている場合は,合格と表示されます。ひとつ でも満たしていないイベントがある場合は,不合格と表示されます。 イベントの説明については、<u>イベントの種類</u>を参照してください。赤いアイコンは良否判定で 不合格となったイベントです。

イベント編集

イベントアイコンをタッチして,[イベント編集]をタッチすると次の画面が表示されます。選択 したアイコンによって,表示されるアイコンは異なります。

アイコンをタッチすると,イベントアイコンが変更されます。 [キャンセル] をタッチすると,アイコンは変わりません。

ファイバの開始アイコンとファイバの遠端アイコンは編集できません。

ソフトキー

測定モード

[自動設定]と[個別設定]を切り換えます。個別設定の場合,測定条件を設定できます。

波長

試験に使用する波長を選択します。 波長の設定によってポートの設定が変わります。

測定条件

測定モードが [個別設定] の場合に,[距離レンジ],[パルス幅],[分解能],[平均化時間] を設定するダイアログボックスを表示します。

オーバーレイ

オーバーレイ波形を読み込んでいる場合にキーを操作できます。

可視光源はオプション002がある場合に表示されます。

• [オーバーレイ切換]: 測定波形に切り換えるオーバーレイ波形を選択するダイアログボック スを表示します。

可視光源

可視光源の出力を切り換えます。[点灯] または [点滅] にすると,画面左下に赤色のアイコン が点滅します。

5.1.3.3 波形

ナビゲーションエリアで [波形] ボタンをタッチすると,次の画面が表示されます。

波形画面では,距離対ファイバ損失がグラフで表示されます。グラフには次のアイコンが表示されます。

△ イベントの位置に表示されます。下に <u>イベントの種類</u>を示すアイコンが表示されます。

左のY軸上で,アクティブカーソルのレベルを表示します。

LSA (Least Squares Approximation) カーソルの位置を表示します。

<u>ファイバ</u>画面で開始点が [なし] 以外に設定されている場合に表示されます。こ の位置が測定するファイバの開始点です。

ファイバ画面で終了点が [なし] 以外に設定されている場合に表示されます。この位置が測定するファイバの終点です。

画面の左に次のアイコンが表示されます。

<

>

このアイコンが緑色の場合,ドラッグした範囲を拡大表示できます。

このアイコンが緑色の場合,タッチした点を中心に表示が縮小されます。

このアイコンをタッチすると,波形全体が表示されます。

このアイコンが緑色の場合,ウィンドウをタッチして波形を移動できます。

このアイコンをタッチすると,カーソルを移動するボタンと,[A], [B],[ユーティリティ] ボタンが波形ウィンドウの下に表示されます。

[接続損失(LSA)],[2点間 LSA],または [dB/km LSA] を選択している場合は, [LSA1]~[LSA4] ボタンが表示されます。

カーソルを選択するには,カーソルのボタンをタッチするか,画面のカーソルAまたはカーソルBをタッチします。

次の方法でカーソルを移動できます。

- ▲ または ≥ をタッチします。
- カーソルの移動先となるトレース上の位置をタッチします。

 \oplus

このアイコンをタッチすると,<u>イベントテーブル</u>が表示されます。

画面の下には次の項目が表示されます。:

```
カーソル
```

A: カーソルAの距離 B: カーソルBの距離 A-B: カーソルAとカーソルBの距離差 損失モード フィールドをタッチして,損失の種類を選択します。

[全反射減衰量]の場合に[計算]ボタンが表示されます。

詳細については損失モードを参照してください。

測定の設定

波長,SM(シングルモードファイバ) または MM (マルチモードファイバ) 距離レンジ パルス幅 群屈折率 (IOR) 分解能 平均化

ユーティリティ

カーソルの動作設定,カーソルを使用した機能を提供します。

- [LSA位置の初期化]: LSAカーソルの位置を初期値に移動します。LSAカーソルが表示されているときに操作できます。
- [カーソル間隔ロック]:
 - [ロック]を選択すると,カーソルAとカーソルBの間隔は固定されます。
 - [ロック解除]を選択すると,カーソルAとカーソルBの位置を別々に設定できます。
- [カーソルA位置にIORを合わせる]:カーソルAの実際の距離を設定することにより,群屈折 率を修正します。
 - 1. カーソルAを距離がわかっているイベントの位置に移動します。
 - 2. [ユーティリティ]をタッチします。
 - 3. [カーソルA位置にIORを合わせる] のフィールドをタッチします。
 - 4. キーパッドでカーソルAの実際の距離を設定します。
 - 5. [OK] をタッチすると,カーソルAの実際の距離に合うように群屈折率 (IOR) が変 更されます。

イベントテーブル

波形上で検出したイベントが表に表示されます。

- [No]: イベント番号
- [距離]:イベントの距離
- [タイプ]: イベントの種類 (アイコンで表示)
- [損失(dB)]: イベントの損失 マクロベンドのしきい値を超えたイベントには, 損失値の後にM が表示されます。
- [反射(dB)]: イベントの反射量
- [dB/km]: イベント間の伝送損失
- [イベント間]:1つ前のイベントからの距離
 - No.1のイベントは開始点からの距離
- [累積損失(dB)]: 口元からのレベル差

測定機能 - <u>解析</u>タブの [イベント間情報] の設定によって, [dB/km] または [イベント間] が 表示されます。

Л	反射 メカニカルスプライスやコネクタなどで発生するフレネル反射などの, 接続点からの反射イベントです。
$\sum_{}$	非反射 マクロベンドや融着接続などの損失が少ないイベントを含む,非反射イ ベントです。
M	グループ 個々のイベントとして解析するには接近しすぎている複数のイベント が,グループイベントとして表示されます。
Л	遠端 損失が自動検出画面のファイバ遠端設定値以上のイベントが,遠端イ ベントになります。
]?	 不確かな遠端 次の場合に最後のイベントが不確かな遠端イベントとして表示されます。 ・ 距離レンジがファイバ長より短い場合 ・ 遠端イベントが検出できない場合
Ð	スプリッタ 遠端しきい値よりも損失が大きいイベントで,遠端イベントを除くイベン トはすべてスプリッタイベントとして表示されます。
<u>∎</u> -?	不確かなスプリッタ [自動検出] 画面のスプリッタで設定したしきい値を超えるイベントが 検出されないときは,スプリッタイベントの候補となるイベントが不確 かなスプリッタイベントとして表示されます。
<	開始点 パッチコードの開始点に出射イベントが表示されます。ファイバ画面で 出射ファイバを [なし] に設定すると,表示されません。
>	終了点 パッチコードの終了点に受信イベントが表示されます。ファイバ画面で 受信ファイバを [なし] に設定すると,表示されません。

イベントの種類

イベントの追加

イベントを追加する前に,[カーソルA] をアクティブカーソル (赤色) にして,新しいイベントの 位置に移動しておいてください。

- 1. 損失モードをタッチして [接続損失(LSA)] を選択します。
- 2. ソフトキーの [イベント] をタッチします。
- 3. [イベント追加]をタッチすると,次のダイアログボックスが表示されます。

開始	0.4904 km	タイプ	反射	[▼]
終了	0.4907 km	スプリッタ	なし	
損失	0.000 dB	<i>ব</i> ০০শঃ	イド	
反射	64.579 dB			
愈和				
			014	

開始

[開始] フィールドをタッチして,数値キーパットで新しいイベントの開始位置を入力します。

終了

[終了] フィールドをタッチして,数値キーパットで新しいイベントの終了位置を入力します。

損失

[損失] フィールドをタッチして,数値キーパットで新しいイベントの損失を入力します。

反射

[反射] フィールドをタッチして,数値キーパットで新しいイベントの反射量を入力します。

飽和

[飽和] チェックボックスを選択すると,反射レベルが飽和したイベントであることを示す"S"が イベントテーブルの反射値の後に表示されます。

波形に追加されたイベントは手動で追加されたことがわかるように,イベントテーブルのイベント番号の前に "*"が追加されます。

元の波形とイベントテーブルは,編集した波形が保存されるまでは元に戻すことができます。 ソフトキーの [イベント] をタッチして, [解析実行] をタッチすると,波形とイベントテーブルが元の状態に戻ります。

タイプ

[タイプ] フィールドをタッチして,次からイベントのタイプを選択します。 [非反射], [反射], [グループ]

非反射イベントを選択すると、反射と飽和を設定できません。

スプリッタ

[スプリッタ] フィールドをタッチして,新しいイベントの分岐数を選択します。

マクロベンド

[マクロベンド] チェックボックスを選択すると,新しいイベントはマクロベンドイベントとして追加されます。

イベントの編集

イベントを編集する前に,[カーソルA] をアクティブカーソル (赤色) にして,新しいイベントの 位置に移動しておいてください。

- 1. 測定モードをタッチして [接続損失(LSA)] を選択します。
- 2. ソフトキーの [イベント] をタッチします。
- 3. [イベント編集]をタッチすると,次のダイアログボックスが表示されます。

	イベント	~編集 (3)	? X
開始	3.0497 km	タイプ	反射
終了	3.0905 km	スプリッタ	無 し ▼
損失	0.430 dB	۲/۵۸۵ الا	
反射	62.968 dB		
🖌 飽和			
	キャンセル		ОК

非反射イベントの場合は、反射と飽和を設定できません。

遠端イベントまたは不確かな遠端イベントの場合は、スプリッタとマクロベンドを設定できません。

開始

フィールドをタッチして,数値キーパットでイベントの開始位置を入力します。

終了

フィールドをタッチして,数値キーパットでイベントの終了位置を入力します。

損失

フィールドをタッチして,数値キーパットでイベントの損失を入力します。

反射

フィールドをタッチして,数値キーパットでイベントの反射量を入力します。

飽和

[飽和] チェックボックスを選択すると,反射レベルが飽和したイベントであることを示す"S"が イベントテーブルの反射値の後に表示されます。

変更されたイベントは手動で追加されたことがわかるように、イベントテーブルのイベント番号の前 に "*"が追加されます。

元の波形とイベントテーブルは,編集した波形が保存されるまでは元に戻すことができます。 ソフトキーの [イベント] をタッチして, [解析実行] をタッチすると,波形とイベントテーブルが元の状態に戻ります。

タイプ

フィールドをタッチして,次からイベントのタイプを選択します。

イベントのタイプ	選択できるタイプ
反射,非反射,グループ	[非反射], [反射], [グループ]
遠端, 不確かな遠端	[終了イベント]

不確かな遠端イベントを編集すると、遠端イベントに変更されます。

スプリッタ

フィールドをタッチして,イベントの分岐数を選択します。 [なし] 以外に設定すると,タイプの設定に関わらずスプリッタイベントになります。

マクロベンド

チェックボックスを選択すると,選択したイベントをマクロベンドイベントに変更します。

ソフトキー

測定モード

[自動設定]と[個別設定]を切り換えます。個別設定の場合,測定条件を設定できます。

波長

試験に使用する波長を選択します。 波長の設定によってポートの設定が変わります。

測定条件

測定モードが [個別設定] の場合に,[距離レンジ],[パルス幅],[分解能],[平均化時間] を設 定するダイアログボックスを表示します。

オーバーレイ

オーバーレイ波形を読み込んでいる場合にキーを操作できます。

- [オーバーレイ削除]: 削除するオーバーレイ波形を選択するダイアログボックスを表示します。
- [オーバーレイ切換]:測定波形に切り換えるオーバーレイ波形を選択するダイアログボック スを表示します
- [オーバーレイ整列]:次の整列方法を選択します。
 - [オフ]: 整列しません。
 - [1dBオフセット]:すべてのオーバーレイ波形を,レベルを1dBずつずらして整列しま す。
 - [オン]: すべてのオーバーレイ波形を,アクティブカーソルと測定波形の交点の位置 にそろえます。
- [オーバーレイ表示]:オーバーレイ波形の表示オン,オフを切り替えます。

イベント

- [解析実行]:イベント解析処理を開始します。
- [イベント追加]: イベント追加ダイアログボックスを表示します。
- [イベント編集]: イベント編集ダイアログボックスを表示します。
- [イベント削除]:イベントを削除します。

両端測定

このキーは、オーバーレイ波形が読み込まれている場合に操作できます。[オン] に設定する と、選択したオーバーレイ波形の距離方向を逆にして表示します。

両端測定は、次の2つの波形が表示されているときに使用します。

- ファイバの反対側から測定したオーバーレイ波形
- 同じファイバを測定した波形

両端測定を [オン] にすると両方の波形から次の値が計算され, イベント解析結果に反映します。

- 全損失
- 損失 (dB)
- dB/km
- 累積損失 (dB)

オーバーレイ波形上で,主波形のイベントと同じイベントを探す範囲を定義するには,測定機能画面の<u>解析</u>タブの [両端測定の解析範囲] で値を設定します。

パッチコード

- [選択カーソル->開始点]: 選択カーソルの位置を,パッチコード設定の開始点距離に設定します。
- [選択カーソル->終了点]: 選択カーソルの位置を,パッチコード設定の終了点距離に設定します。

可視光源

可視光源の出力を切り換えます。[点灯] または [点滅] にすると,画面左下に赤色のアイコン が点滅します。

可視光源はオプション002がある場合に表示されます。

5.1.3.4 光パワー測定

光パワーを測定するには、右上のタブをタッチして<u>アプリケーション ツールバー</u>を拡張表示します。

- 1. チェックボックスを選択します。
- 2. 波長を選択します。
- 3. OPMコネクタに光を入力すると,パワー測定値が表示されます。

ゼロオフセット

ゼロオフセットは,パワーメータの0レベルを校正します。ゼロオフセットをすることにより,入力 する光パワーが低い場合の測定誤差を改善できます。

- 1. OPMコネクタから光ファイバを外し,キャップを閉めます。
- 2. [ゼロオフセット] をタッチします。
- 3. 確認メッセージが表示されます。[OK] をタッチします。 ゼロオフセット処理が終了すると、メッセージが消えます。

5.1.4 測定

5.1.4.1 距離測定

測定波形が表示されている場合,口元から2つのカーソルまでのファイバ長 (A, B)と,カーソル間の距離 (A-B) が自動で測定されます。測定値は画面の左下に表示されます。カーソルを正しい位置に設定することは正確な測定をするために大切です。

群屈折率 (IOR) の設定が正しくないと,誤った距離測定値になります。

よく使われる距離測定は次の2つです。

- ファイバ長の測定(ファイバ全体の距離)
- 破断点までの距離測定(既知のファイバ破断点までの距離)

ファイバ長の測定

- 1. とをタッチします。
- 2. 2 をタッチします。
- 3. [A]をタッチします。
- 4. 次の図のようにカーソル Aをファイバボックス (パルス抑制器) の端,ファイバボックスを使用していなければ0.0000 kmの位置に移動します。

- 5. 正確にカーソルを配置するため、 ・ をタッチしてカーソル A付近を拡大表示します。
- 6. 次の図のように,カーソル A を反射イベントまたは非反射イベント直前 (すぐ左)の後方散 乱部分に移動します。

- 7. [B]をタッチします。
- 8. カーソル Bをファイバの端に移動します (手順4の図を参照)。
- 9. 正確にカーソルを配置するため,カーソル B付近を拡大表示します。
- 10. カーソル B を反射イベントまたは非反射イベント直前 (すぐ左)の後方散乱部分に移動しま す。(手順6の図を参照).
- 11. カーソル間の距離 A-B に表示される値がファイバ長になります。

破断点までの距離測定

ファイバの既知の位置から破断点までの距離を測定する手順は以下のとおりです。

- 1. とをタッチします。
- 2. 2. をタッチします。
- 3. [B]をタッチします。
- 4. カーソル B を次の図に示すように破断点に移動します。

- 5. 正確にカーソルを配置するため, 🗨 をタッチしてカーソルB付近を拡大表示します。
- 6. 次の図のように,カーソル B を反射イベントまたは非反射イベント直前 (すぐ左)の後方散 乱部分に移動します。

- 7. [A]をタッチします。
- 8. カーソルAを既知の位置に移動します(手順4の図を参照)。
- 9. 正確にカーソルを配置するため,カーソル A付近を拡大表示します。
- 10. カーソル A を反射イベントまたは非反射イベント直前 (すぐ左)の後方散乱部分に移動しま す (手順6の図を参照)。
- 11. カーソル間の距離 A-B に表示される値が破断点までの距離です。

5.1.4.2 損失測定

損失モード

測定波形が表示されている場合,損失モードで測定の種類を選択できます。

- <u>接続損失(LSA)</u>
- <u>2点間損失</u>
- <u>2点間LSA</u>
- <u>伝送損失2PA</u>
- <u>dB/km LSA</u>
- <u>2点間損失,dB/km</u>
- 全反射減衰量

イベントの例

2点間損失

1

2

3

4

5

6

7

2点間損失測定は,2点間のdB差の計算に,カーソルAの位置のデータとカーソルBの位置の データを使用します。通常はカーソルAのデータ (Y軸) がカーソルBのデータ (Y軸) より大 きく,損失が正の値で表示されます。一方で損失が負の値となる場合は「ゲイン」と呼びま す。

伝送損失2PA

伝送損失2PA測定は、2点間のdB差の計算に、カーソルAの位置のデータとカーソルBの位 置のデータを使用します。この値を2つのカーソル間の距離で割って,損失/距離を計算しま す。カーソルAのデータ (Y軸) がカーソルBのデータ (Y軸) より大きいと,伝送損失は正の値 になります。

2点間損失 損失/距離 (dB/km) = カーソルAとカーソルBの距離

接続損失 (LSA)

接続損失は,光ファイバケーブルのコネクタ,融着接続,カプラによる損失測定に使用します。 接続損失を測定する手順に関して,次の図を参照してください。

非反射

非反射 ゲイン

接続の起点

2 Y-切片

③ 接続損失 (接続損失は① のY軸位置から② のY軸位置を引いた値です。)

カーソルAを接続の起点に置きます。接続の起点のY軸位置 (①) が,カーソルAの左側の設 定間隔を使用して最小二乗近似で決定されます。接続の起点のY軸位置 (2) は,カーソル Aの右側の設定間隔を使用して最小二乗近似で決定されます。

接続損失モード用にLSA間隔を調整する

イベントによっては,接続損失をより良く見積もるためにLSA間隔を調整する必要がありま す。特にどちらかの間隔が実際の損失の位置にかかっている場合やイベントの立ち上がり位 置にある場合が該当します。

2点間 LSA はカーソルの現在位置の値から最適なY切片の計算に最小二乗近似を使用します。カーソルAの右側とカーソルBの左側の間隔が,切片の値の計算に使用されます。LSA 間隔の幅はユーザが設定できます。初期はおよそ 400 メートルです。選択しているLSA カーソルは ×マークで表示されます。次の図を参照してください。

2点間 LSAは2点間で計算されるdB差 (Y軸) です。カーソルAのデータ (Y軸) がカーソル Bのデータ (Y軸) より大きいと,損失は正の値になります。

波形のノイズがとても多い場合は,LSA(最小二乗近似)技術が有用です。

左側LSA間隔はカーソルAに連動し,右側LSA間隔はカーソルBに連動します。左側LSA間隔の初期位置はカーソルAのすぐ右です。右側LSA間隔の初期位置はカーソルBのすぐ左です。

右側LSA間隔と左側LSA間隔の調整

イベントによっては,2点間 LSAをより良く見積もるためにLSA間隔を調整する必要があります。接続損失モード用にLSA間隔を調整する</u>を参照してください。

dB/km LSA

dB/km LSA 損失は2点間LSA の損失を、2つのカーソル間の距離で割って求めます。

2点間 LSA

損失/距離 (dB/km) = _________ カーソルAとカーソルBの距離

全反射減衰量

ネットワークマスタは,全反射減衰量(光ファイバリンクへの入射エネルギーに対する反射エ ネルギーの比)を計算できます。

光ファイバリンク全体,または一部区間に対して反射減衰量を計算できます。

2点間損失, dB/km

2点間損失とdB/kmの組み合わせは両方の値を同時に表示します。コンマで区切られた損失値が波形ウィンドウの下に表示されます。

それぞれの測定の詳細については、2点間損失と伝送損失2PAを参照してください。

5.1.4.3 反射減衰量

概要

反射率は入射パワーに対する反射パワーの比率で,dBで表示されます。反射率測定はパルス幅と後方散乱係数に影響されます。

測定機能画面の解析タブで [反射減衰量計算] を [自動] または [手動] に設定した場合, 反射イベントの反射率は波形ウィンドウの下の [反射] に表示されます。反射率表示に は、"S"が含まれることがあります。[自動] に設定すると反射率はカーソルAに対する相対値, [手動] に設定すると反射率はカーソルAとBの相対値で測定されます。

自動測定モード

反射率の自動測定では,カーソルAの位置を設定するだけです。カーソル位置から反射率が 自動で測定されます。ただし以下の手順でカーソルAの配置に制限があります。

NOTE

反射率が飽和している場合は、反射率の値に"S"が付きます。

反射率測定の実施方法:

- 1. 画面の下の [設定] をタッチします。
- 2. ナビゲーションエリアの [測定機能]をタッチして, [解析] をタッチします。
- 3. [反射減衰量計算]をタッチして,[自動]を選択します。
- 4. ナビゲーションエリアの [測定] をタッチします。
- 5. [測定モード]をタッチして,[個別設定]を選択します。
 - 選択肢の中からファイバ長の25%増しの長さ以上で最も短いレンジを [距離レンジ] に設定します。
 - [パルス幅]を設定します。1 µ sが適当な値の代表です。この設定は一般的に良い範囲と良い分解能の組み合わせを提供します。
 - 。良好なデータ収集をするため,[分解能]を[超高密度]に設定します
 (平均化時間]を[1分]に設定します。
- ファイバの試験をするには、ツールバーの [アベレージ測定] アイコンをタッチします。
 試験が終わると、反射率が波形ウィンドウの下の [反射] に表示されます。 カーソルAを移動 すると、反射率の値が変わります。

7. 反射率を正確に測定するためには,カーソルAを反射イベントの直前(左端)の後方散乱の 位置に移動します。

8. カーソルAを反射の立ち上がりにできる限り近づけるために,波形を拡大表示します。カー ソルAは後方散乱の直線部分に置いてください。反射の立ち上がり部には置かないでくだ さい (手順7の1µsパルス幅で口元からカーソルAが200m離れている図を参照)。 カーソルAは,口元または波形の開始位置からパルス幅2つ分以内の位置に置いてもかま いません。

手動モード

この測定では,カーソルAとBの両方を使用します。

反射率測定の実施方法:

- 1. 画面の下の [設定] をタッチします。
- 2. ナビゲーションエリアの [測定機能]をタッチして,[解析] をタッチします。
- 3. [反射減衰量計算]をタッチして,[手動]を選択します。
- 4. ナビゲーションエリアの [測定] をタッチします。
- 5. [測定モード]をタッチして,[個別設定]を選択します。
 - 選択肢の中からファイバ長の25%増しの長さ以上で最も短いレンジを[距離レンジ] に設定します
 - [パルス幅]を設定します。1 μsが適当な値の代表です。この設定は一般的に良い 範囲と良い分解能の組み合わせを提供します。
 - ・ 良好なデータ収集をするため,[分解能]を[超高密度]に設定します
 ・
 [平均化時間]を[1分]に設定します。
- ファイバの試験をするには、ツールバーの [アベレージ測定] アイコンをタッチします。
 試験が終わると、反射率が波形ウィンドウの下の [反射] に表示されます。カーソルAを移動 すると、反射率の値が変わります。

7. 反射率を正確に測定するためには,カーソルAを反射イベントの直前(左端)の後方散乱の 位置に移動します。

- 8. カーソルAを反射の立ち上がりにできる限り近づけるために,波形を拡大表示します。カー ソルAは後方散乱の直線部分に置いてください。反射の立ち上がり部には置かないでくだ さい (手順7の図を参照)。
- 9. カーソルBを反射パルスの中央に置いてください(手順7の図を参照)。

小さく細いピークが存在することがあります(上の図を参照)。この場合にはカーソルBを最初の細い ピークに置かないでください。細いピークにカーソルBを置くと,反射率が正しく測定できません。

5.1.4.4 リアルタイム測定

リアルタイム測定は,波形画面を表示したときに波形をリアルタイムで表示します。このモード では波形データの平均化処理はされず,測定を繰り返すたびに波形が書き換えられます。 リ アルタイムモードでは,光コネクタの接続を変えるとその影響が表示されるので,OTDR近傍 の光ファイバ接続を最適化できます

リアルタイムモードで飽和イベントを減衰させるには,ユニットがイベントを自動で減衰する (飽和状態から抜け出す)まで,イベント内のアクティブなカーソルを移動させます。

5.2 FTTA

Fiber To The Antenna (FTTA)は,光ファイバを使用して移動通信システムの基地局を接続する 技術です。FTTAテストは基地局内部の光ファイバの障害位置探索用に設計されています。

- 短距離の光ファイバ測定用に距離レンジなどの測定パラメータを最適化
- 測定結果をFiber Visualizerと波形で表示し,解析パラメータの設定数を削減

5.2.1 測定条件の設定

アプリケーション実行の最初のステップは,ポートインタフェースを設定することです。これ は [設定] 画面で行われます。

以下の設定については、Standard OTDR アプリケーションの説明を参照してください。

- <u>ポート</u>
- <u>測定</u>
 - 測定画面では波長のみ設定できます。
- <u>IOR/BSC</u>
- <u>測定機能</u>

5.2.2 テスト設定

画面の説明については、Standard OTDRアプリケーションの説明を参照してください。

- <u>ファイバ</u>
- 自動検出
- <u>良否判定</u>

FTTAアプリケーションでは,スプリッタに関する設定は表示されません。 設定するパラメータ数は,Standard OTDRアプリケーションに比べて減っています。

5.2.3 テスト結果

5.2.3.1 Fiber Visualizer

ナビゲーション エリアで [Fiber Visualizer] ボタンをタッチすると,次の画面が表示されます。

画面の説明は、Standard OTDRアプリケーションのFiber Visualizerを参照してください。

ソフトキー

測定モード

[自動設定]と[個別設定]を切り換えます。個別設定の場合,測定条件を設定できます。

波長

試験に使用する波長を選択します。 波長の設定によってポートの設定が変わります。

測定条件

測定モードが [個別設定] の場合に,[距離レンジ],[パルス幅],[分解能],[平均化時間] を設定するダイアログボックスを表示します。

オーバーレイ

オーバーレイ波形を読み込んでいる場合にキーを操作できます。

• [オーバーレイ切換]: 測定波形に切り換えるオーバーレイ波形を選択するダイアログボック スを表示します。

可視光源

キーをタッチすると,可視光源の出力を切り換えられます。[点灯] または [点滅] にすると画面左下に赤色のアイコンが点滅します。

可視光源はオプション002がある場合に表示されます。

5.2.3.2 波形

ナビゲーション エリアで [波形] ボタンをタッチすると,次の画面が表示されます。

画面の説明は、Standard OTDRアプリケーションの波形を参照してください。

ソフトキー

測定モード

[自動設定]と[個別設定]を切り換えます。個別設定の場合,測定条件を設定できます。

波長

試験に使用する波長を選択します。 波長の設定によってポートの設定が変わります。

測定条件

測定モードが [個別設定] の場合に,[距離レンジ],[パルス幅],[分解能],[平均化時間] を設定するダイアログボックスを表示します。

オーバーレイ

オーバーレイ波形を読み込んでいる場合にキーを操作できます。

- [オーバーレイ削除]: 削除するオーバーレイ波形を選択するダイアログボックスを表示します。
- [オーバーレイ切換]: 測定波形に切り換えるオーバーレイ波形を選択するダイアログボック スを表示します
- [オーバーレイ整列]:次の整列方法を切り換えます。
 - o [オフ]: 整列しません。
 - [1dBオフセット]: すべてのオーバーレイ波形を,レベルを1 dBずつずらして整列しま す。
 - [オン]: すべてのオーバーレイ波形を,アクティブカーソルと測定波形の交点の位置 にそろえます。
- [オーバーレイ表示]:オーバーレイ波形の表示オン,オフを切り替えます。

イベント

- [解析実行]:イベント解析処理を開始します。
- [イベント追加]: イベント追加ダイアログボックスを表示します。
- [イベント編集]: イベント編集ダイアログボックスを表示します。

• [イベント削除]:イベントを削除します。

パッチコード

- [選択カーソル->開始点]: 選択カーソルの位置を,パッチコード設定の開始点距離に設定します。
- [選択カーソル->終了点]:選択カーソルの位置を,パッチコード設定の終了点距離に設定します。

可視光源

キーをタッチすると,可視光源の出力を切り換えられます。[点灯] または [点滅] にすると画面左下に赤色のアイコンが点滅します。

可視光源はオプション002がある場合に表示されます。

5.2.3.3 光パワー測定

光パワーを測定するには、右上のタブをタッチして<u>アプリケーション ツールバー</u>を拡張表示します。

- 1. チェックボックスを選択します。
- 2. 波長を選択します。
- 3. OPMコネクタに光を入力すると,パワー測定値が表示されます。

ゼロオフセット

ゼロオフセットは,パワーメータの0レベルを校正します。ゼロオフセットをすることにより,入力 する光パワーが低い場合の測定誤差を改善できます。

- 1. OPMコネクタから光ファイバを外し,キャップを閉めます。
- 2. [ゼロオフセット] をタッチします。
- 3. 確認メッセージが表示されます。[OK] をタッチします。 ゼロオフセット処理が終了すると,メッセージが消えます。

5.3 Construction

光ケーブルには多数の光ファイバが収容されています。このため、光ケーブルを敷設するときには、 多数のファイバを試験する必要があります。Constructionは、多数のファイバを連続して試験する よう設計されたアプリケーションです。

Constructionアプリケーションでは、[プロジェクト] 画面で測定するファイバの数を設定し ます。測定を開始すると設定したファイバの数だけ測定を繰り返します。途中でファイバの測 定をスキップすることもできます。 測定中は、測定条件の設定とテスト設定を変更できません。

5.3.1 アプリケーション ツールバー

Constructionアプリケーションでは、アプリケーションツールバーのいくつかのアイコンが変わります。

測定開始

[測定開始] アイコンをタッチすると,プロジェクトで定義した測定を開始します。 すべてのファイバの測定が終了すると,自動的に波形を保存して設定画面に戻ります。

全測定を中止

[全測定を中止] アイコンをタッチすると,プロジェクトで定義した測定を中止します。

現測定をスキップ

このアイコンは,測定中に操作できます。 [現測定をスキップ] アイコンをタッチすると,測定結果を保存しないで実行中のファイバ番号の測定をスキップします。

結果を承諾

 $\mathbf{\nabla}$

このアイコンを使用するには、ファイバの測定中にプレビューソフトキーを [オン] に設定します。1つ のファイバの測定が終了すると、このアイコンが操作できます。[結果を承諾] アイコンをタッチする と、そのファイバの測定結果を保存して次のファイバの測定に移ります。

5.3.2 測定条件の設定

アプリケーション実行の最初のステップは,測定条件を設定することです。これは [設定] 画 面で行われます。

5.3.2.1 プロジェクト

ナビゲーション エリアで [プロジェクト] ボタンをタッチすると,次の画面が表示されます。

		アプリケ・	ーション セレクタ			
プロジェクト	測定	テンプレート	IOR/BSC	ヘッダ	測定機能	
プロジェクト名称			Route_001			
測定ファイバ数			1			
測定開始ファイバ番号			1			
起点			tokyo			
終点			yokohama			?
方向			起点->終点			
保存先			Internal/]	
基本ファイル名			*Location*_*Wav	elength*_*Number*		
						X
フォルダ:	Internal/Route_(001/				-
()アイル名: (() III Opt-Cons	truction	na_850_0001.Sor	テスト 結果	🛱 🗃 🔿 🕅 V 🖸	📑 🏹 📮 📢 09 4	8)))

プロジェクト名称

フィールドをタッチして,プロジェクト名称を入力します。

測定ファイバ数

フィールドをタッチして、試験するファイバの数を設定します。

測定開始ファイバ番号

フィールドをタッチして,ファイバの開始番号を設定します。ファイバ数が20で開始ファイバ番号が5の場合,測定するファイバの番号は5から24までになります。

起点

測定開始点の名称を入力します。

終点

測定終了点の名称を入力します。

方向

測定方向を選択します。 [起点 -> 終点],または [終点 -> 起点]

保存先

結果ファイルを保存するフォルダを設定します。

実際にファイルが保存されるフォルダ名は、セットアップエリアの下部に表示されます。

基本ファイル名

自動ファイル名が選択されている場合に生成されるファイル名が表示されます。フィールド をタッチすると、70字までの文字列を設定できます。

フォルダパスと最初に保存されるファイルの名称が、セットアップエリアの下部に表示されます。

5.3.2.2 測定

ナビゲーション エリアで [測定] ボタンをタッチすると,2つのタブが表示されます。

波長

[波長] タブをタッチすると,次の画面が表示されます。

			アプリク	ーション セレクタ			
プロジェク	F .	測定	テンプレート	IOR/BSC	<u>ヘッダ</u>	測定機能	-
波	R.	測定条件					
出力ポート				シングルモード			
波長	0.000						V
✓ 151	50 nm						?
▼ マクロ	コベンド解析						
							X
			<u> </u>)))
	opt-Const	ruction	設定	テスト 結果	- 📑 🖼 🎿 🕅 [≻ <u>-</u> № <u>+</u> 1) 09:48	

出力ポート

この項目はMU100021Aで表示されます。フィールドをタッチして,テストに使用するポート を選択します。

- [シングルモード]: 波長を[1310 nm], [1550 nm] から選択できます。
- [マルチモード]: 波長を [850 nm], [1300 nm] から選択できます。

波長

試験に使用する波長のチェックボックスを選択します。表示される波長は形名と出力ポート の設定によって異なります。

- MU100020A: [1310 nm], [1550 nm]
- MU100021A: [1310 nm], [1550 nm], [850 nm], [1300 nm]
- MU100022A: [1310 nm], [1550 nm], [1625 nm]
- MU100023A: [1310 nm], [1550 nm], [1650 nm]

マクロベンド解析

MU100021Aでは出力ポートを [シングルモード] に設定すると表示されます。 MU100023Aでは常に表示されます。

チェックボックスを選択すると、測定結果からマクロベンドを解析します。

測定条件

[測定条件] タブをタッチすると,次の画面が表示されます。

コジェクト	測定	テンプレート	IOR/BSC	\	測定機能
波長	測定条件				
セモード			個別設定		
同じ設定					
_1310 nm					
距離レンジ	0.5 km	\	分解能	標準	
パルス幅	3 ns	▼	平均化時間	15 秒	
_1550 nm					
距離レンジ	0.5 km	▼]	分解能	標準	▼
パルス幅	3 ns	▼]	平均化時間	15 秒	

同じ設定

すべての波長に対して同じ設定を適用する場合,チェックボックスを選択します。

各波長について,以下の項目を設定できます。

測定モード

フィールドをタッチして,モードを選択します。 [自動設定]を選択すると測定パラメータは自動で設定されます。 [個別設定]を選択すると測定パラメータを設定できます。

距離レンジ

障害点を探索する距離を選択します。

パルス幅

光信号のパルス幅を選択します。

分解能

水平方向の分解能を選択します。

平均化時間

[アベレージ測定]において、波形を平均化する時間を選択します。

5.3.2.3 テンプレート

ナビゲーション エリアで [テンプレート] ボタンをタッチすると,次の画面が表示されます。

		アプリケー	ション セレクタ			
プロジェクト	測定	テンプレート	IOR/BSC	ヘッダ	測定機能	-
- テンプレートを	使用する					
テンプレートファイ	N		Internal/1310+155	0_0017_1310.sor		
イベントの決定方法			テンプレートと波形な	をマージする	 	
波形優先						
相対距離			3.0 %			?
絶対距離			1.0000 km			cla
Helix Factorの調節			なし		\	
						¢
						X
(((pt-c	construction	<u>設定</u> ラ	- スト 結果 []# 🖴 🦘 🕸 V 💽	y 🛃 📢 09 49	>>>

テンプレートを使用する

テンプレートを使用するには、チェックボックスを選択します。

テンプレートは,事前に定義したイベントテーブルを使用して,測定した波形にそのイベント テーブルのイベントをマッピングして表示する機能です。

同じケーブルに収容される光ファイバは、同じ距離で接続したり、ケーブルを曲げたりしますの で、各測定波形の同じ距離で反射や損失が発生すると考えられます。このため、事前に定義 した波形 (テンプレート)を使用して各測定波形の同じ距離でイベント解析をします。

テンプレートファイル

フィールドをタッチして,ファイル名を選択します。

イベントの決定方法

イベントの決定方法では,テンプレートのイベントをどのように対象とする波形に適用するか を選択します。

- [テンプレート]: テンプレートのすべてのイベントが,対象とする波形にコピーされます。 常にテンプレートのイベントの距離で解析がされます。
- [テンプレートと波形をマージする]: テンプレートのイベントと, 測定波形で検出されたイベントをマージ(合併)します。
 検出されたイベントとテンプレートのイベントの両方でイベント解析がされます。

波形優先

チェックボックスを選択すると、[テンプレートと波形をマージする] を選択しているときに、テ ンプレートのイベントと相関がある対象とする波形のイベント距離を優先します。

チェックボックスを選択しない場合は、次のとおり処理されます。

- 対象とする波形に相関関係が無いテンプレートのイベント テンプレートのイベントが対象とする波形のイベントとして挿入されます。
- 対象とする波形に相関関係が有るテンプレートのイベント
 対象とする波形のイベントがテンプレートのイベントに置き換えられます。
- これ以外の対象とする波形のイベント

イベントは変更されません。

相対距離

テンプレートのイベントが,対象とする波形のイベントと相関があると判定する距離差 (相関 ウィンドウ)をパーセント比で設定します。

絶対距離

テンプレートのイベントが,対象とする波形のイベントと相関があると判定する距離差 (相関 ウィンドウ)をkm 単位で設定します。

絶対距離と相対距離では、小さい方の値が相関ウィンドウに適用されます。

例

相対距離3%,絶対距離1kmの場合

イベントの距離	相対距離	絶対距離	相関ウィンドウ
10 km	0.3 km	1 km	0.3 km
50 km	1.5 km	1 km	1 km

Helix Factorの調節

1つのケーブルに収容されるファイバの長さが完全に等しくならないため,テンプレートの波 形と対象とする波形のイベント距離が完全に一致しないことがあります。Helix Factorの調 整は,テンプレートのイベントと測定した波形のイベントの相関を取る前に,両方の遠端イベ ントの距離の比率を計算して,各イベントの距離を補正します。

Helix Factorはらせん係数の意味です。

- [なし]: テンプレートのイベント距離と測定した波形のイベント距離をそのまま使用します。
 Helix Factorの調節はしません。
- [テンプレート遠端]: 測定した波形の遠端距離が, テンプレートの遠端距離となるように次の 計算式で測定した波形のすべてのイベント距離を変換します。

$$E'_{Mes}(i) = E_{Mes}(i) \times \frac{D_{Temp}}{D_{Mes}}$$

E_{Mes}(i): 測定した波形のi番目のイベント距離 E'_{Mes}(i): 変換後のi番目のイベント距離 D_{Temp}: テンプレートの遠端距離 D_{Mes}: 測定した波形の遠端距離

 [波形遠端]: テンプレートの遠端距離が、測定した波形の遠端距離となるように次の計算式 でテンプレートのすべてのイベント距離を変換します。

 $E'_{Temp}(i) = E_{Temp}(i) \times \frac{D_{Mes}}{D_{Temp}}$

E_{Temp}(i): テンプレートのi番目のイベント距離

E'_{Temp}(i): 変換後のi番目のイベント距離 D_{Temp}: テンプレートの遠端距離 D_{Mes}: 測定した波形の遠端距離

次の条件の場合,設定されるイベントの距離を表に示します。

テンプレートのイベント距離 (km): 10, 20, 40 測定した波形のイベント距離 (km): 20.1, 30.1, 40.1 相対距離: 3.0 % 絶対距離: 1.0000 km

テンプレート画面の設定とイベント解析の距離

テンプレートファイ ルを使用する	イベントの 決定方法	Helix Factorの 調整	波形 優先	イベント解析の距離 (km)
オフ	-	-	-	20.1, 30.1, 40.1
		なし	-	10, 20, 40
	アンノレートから」 ピー	テンプレート遠端	-	10, 20, 40
		波形遠端	-	10.025, 20.05, 40.1
		なし		10, 20, 30.1, 40
オン		テンプレート遠端	オフ	10, 20, 30.025, 40
	テンプレートと波形	波形遠端		10.025, 20.05, 30.1, 40.1
	をマージする	なし		10, 20.1, 30.1, 40.1
		テンプレート遠端	オン	10, 20.05, 30.025, 40
		波形遠端		10.025, 20.1, 30.1, 40.1

[Helix Factorの調整] の詳しい説明

これからの説明は, [Helix Factorの調整] 以外のテンプレート画面の設定が次のとおりであるという前提です。

- イベントの決定方法: テンプレートと波形をマージする
- 波形優先: 選択しない
- 距離: 30%
- 絶対距離:1 km

また、テンプレート波形と対象とする波形のイベント位置が次のとおりと仮定します。

対象とする波形のイベント位置 テンプレート波形のイベント位置

この例の場合において、[Helix Factorの調整] の選択肢によって処理される内容を以下に示します。

- [なし]を選択した場合
 - 1. テンプレート波形のイベント位置と対象とする波形のイベント位置は, [Helix Factorの調整] がされることなく, そのままイベントとして残ります。

- [テンプレート遠端]を選択した場合
 - 1. テンプレート波形の各イベントは、対象とする波形上のイベントに長さ比例で変換 されます。

次の表に, [Helix Factorの調整] の3つの選択肢によって得られるイベント位置の例を示します。

		結果			
テンプレート波形	対象とする波形の イベント位置	Helix Factoの調節:			
のイベント位置		なし	テンプレート 遠端	波形遠端	
10	15	10, 15	10,13.33	11.25, 15	
20	30	20, 30	20, 26.66	22.5, 30	
40	45	40	40.0	45	

得られる対象とする波形のイベント位置

5.3.2.4 IOR/BSC

1310nm			
BSC		-78.50 dB	
群屈折率 (IOR)		1.467700	
ファイバ		その他	
1550nm	 		
BSC		-81.50 dB	
群屈折率 (IOR)		1.468200	
ファイバ		その他	

ナビゲーション エリアで [IOR/BSC] ボタンをタッチすると,次の画面が表示されます。

各波長について,以下の項目を設定できます。

BSC

フィールドをタッチしてBSCを設定します。

BSC (Backscatter Coefficient) は後方散乱係数で,1 mあたりの光パワー反射係数です。BSC は光損失を計算するときに使用されます。

群屈折率 (IOR)

フィールドをタッチして群屈折率を設定します。

群屈折率 (Index of Refraction)は,反射パルスの時間差から距離を計算するときに使用 されます。

ファイバ

ファイバの種類を選択します。

この画面で設定した値は,次回以降に測定される波形に適用されます。以下の波形の群屈折率およびBSCを変更する場合は,波形画面の [群屈折率(IOR)]を使用してください。

- 測定済みの波形
- ファイルから読み込んだ波形

5.3.2.5 ヘッダ

ナビゲーション エリアで [ヘッダ] ボタンをタッチすると,次の画面が表示されます。

		アプリケ-	ーション セレクタ			
プロジェクト	測定	テンプレート	IOR/BSC	ヘッダ	測定機能	-
データフラグ			BC(敷設時)			
ケーブルID			alfa			\bigcirc
ファイバID			beta			
ケーブルコード			gamma			
起点			osaka			?
終点			tokyo			
方向			起点->終点			
作業者			aaa			
コメント			bbb			X
連番開始番号			10			
((() pt-C	onstruction	<u>設定</u> :	テスト 結果	🕂 🍽 🖘 🕅 V 🖸	🛃 🔊 🚰 📢 09:49)))

この画面では,結果ファイル (*.sor) に保存されるファイルヘッダの内容を設定します。 次の項目は,<u>レポート</u>に出力されます。

ケーブル番号,ファイバ番号,起点,終点,作業者

データフラグ

波形のデータフラグを選択します。

- [BC(敷設時)]: ケーブルを敷設したときに測定した波形
- [RC(修復時)]: ケーブルを修理したときに測定した波形
- [OT(その他)]: それ以外の場合に測定した波形

ケーブル番号

測定したケーブルの識別番号,または名称を入力します。

ファイバ番号

測定したファイバの識別番号,または名称を入力します。

ケーブルコード

測定したファイバのケーブルコードを入力します。

起点

測定開始点の名称を入力します。<u>プロジェクト</u>画面の [起点] もここで入力した名称に変更 されます。

終点

測定終了点の名称を入力します。<u>プロジェクト</u>画面の [終点] もここで入力した名称に変更 されます。

方向

測定方向を選択します。<u>プロジェクト</u>画面の [方向] もここで選択した方向に変更されます。 [起点 -> 終点],または [終点 -> 起点]

作業者
測定した人に関する情報を入力します。

コメント

測定したファイバに関するコメントを入力します。

連番開始番号

ヘッダにつける番号の開始番号を入力します。

5.3.2.6 測定機能

ナビケーションエリアの [測定機能] ボタンをタッチすると,4つのタブが表示されます。

測定

[測定] タブをタッチすると,次の画面が表示されます。

測定	解析	表示	ファイルをその	の他	
//J.				-]
すべてチェックする					
✔ 接続チェック					
🗸 通信光チェック					
✔ ファイバ長チェック					
リアルタイム測定					
 _ リアルタイム					
アベレージ			低		
測定モード			通常		

すべてチェックする

チェックボックスを選択すると,[接続チェック], [通信光チェック], [ファイバ長チェック], および [リアルタイム測定] のチェックボックスが選択されます。

接続チェック

チェックボックスを選択すると,測定開始前に接続チェックが表示され,光ファイバが光コネクタに正しく接続されているかを確認できます。

通信光チェック

チェックボックスを選択すると,測定開始前に光ファイバ内の通信光(ほかの光信号)の有無 を確認できます。

- 通信光が検出されなければ、そのまま測定が開始します。
- 通信光が検出されると,警告が画面に表示されテストは中止されます。

850/1300 nm マルチモードファイバでは,通信光チェックをすることができません。

ファイバ長チェック

チェックボックスを選択すると、光パルス試験を開始する前に光ファイバの長さが距離レンジ 以下であるかを調べます。光ファイバの長さが距離レンジよりも長いときは、距離レンジの範 囲外の光ファイバで反射される光による影響を受けないように、光パルスの送出間隔が自動 で調整されます。この場合は、チェックボックスを選択しないときよりも測定を開始するまで の時間が長くなります。

この機能は,長距離の光ファイバをネットワークマスタに接続したときに,ネットワークマスタ から距離が近い部分を測定するときに有効です。たとえば,ネットワークマスタの測定ポート と被測定ファイバの間に接続したダミーファイバの接続損失を確認することができます。

リアルタイム測定

チェックボックスを選択すると,測定開始前にリアルタイム測定を実行します。複数の波長を 選択している場合は,一番短い波長でリアルタイム測定をします。

アベレージ

リアルタイム測定でアベレージ処理をするかを選択します。

- [低]:アベレージ処理をしません。
- [高]: アベレージ処理をします。OTDRのノイズを低減できるため、測定する距離レンジが長いときに設定します。

測定モード

- [通常]:ファイバの後方散乱光を測定するときに設定します。
- [高反射測定]: フレネル反射など,レベル差が大きい波形を測定するときに設定します。[通 常] よりも測定時間が長くなります。

マルチモードファイバ

この設定は,測定画面の波長タブで [マルチモード] を選択したときに表示されます。 測定するマルチモードファイバのコア径を選択します。μmの代わりにumが表示されます。

解析

アプリケーション セレクタ プロジェクト テンプレート IOR/BSC 測定 ヘッタ ファイル & その他 測定 表示 解析 反射減衰量計算 自動 -全反射減衰量計算 ▼ 波形全体 \bigtriangledown イベント同情報 イベント同距離 ▼ ? 全反射減衰量計算に遠端を含める 遠端を含めない ▼ **₽** ø X >>> /// **Opt-Construction** 設定 テスト 結果 📑 🗃 🗇 🎀 🗸 🍱 😏 🗜 🕠 09:50

[解析] タブをタッチすると,次の画面が表示されます。

反射減衰量計算

反射減衰量の計算方法を選択します。

- [オフ]: 反射減衰量を計算しません。
- [自動]: 全イベントの反射減衰量をカーソルAに位置を基準にして計算します。[自動] はお 互いに近接していない,またはネットワークマスタから離れている反射イベントに対して役に 立ちます。
- [手動]: [手動] に設定すると、イベントの反射減衰量を両方のカーソル位置 (AとB)を基準 にして計算します。[手動] はお互いに近接している、またはネットワークマスタの近傍の反射 イベントに対して役に立ちます。

詳細は,反射減衰量を参照してください。

全反射減衰量計算

反射減衰量測定の開始位置を選択します。

- [カーソル A]: カーソルAからカーソルBの間の反射減衰量を計算します。カーソルAの位置のパワーを入射パワーとします。
- [口元位置]: カーソルAからカーソルBの間の反射減衰量を計算します。口元位置のパワー を入射パワーとします (口元位置は0 km,またはコネクタの位置です)。
- [波形全体]: 口元位置から最後のデータポイント間の反射減衰量を計算します。口元位置のパワーを入射パワーとします (口元位置は0 km,またはコネクタの位置です)。

イベント間情報

イベントテーブルにイベント間距離を表示するか,伝送損失 (dB/km) を表示するか選択します。この設定は波形画面のイベントテーブルに適用されます。

- dB/km
- イベント間距離

全反射減衰量計算に遠端を含める

全反射減衰量を計算するときに,遠端イベントの反射を含めるかどうかを選択します。この設 定は次の測定で使用されます。

遠端を含める

• 遠端を含めない

表示

[表示] タブをタッチすると,次の画面が表示されます。

		アプリケ	ーション セレクタ			
プロジェクト	測定	テンプレート	IOR/BSC	ヘッダ	測定機能	5
測定	解析	表示	ファイル &	その他		
距離単位			km			
✔ 全体波形						V
● オートスケー 選択イベント	・ル をオートズーム					?
解析後の表示モー	ĸ		現在の表示状態			(t)
	バ表示を有効にする					Â
						X
(((pt-c	onstruction	<u>設定</u>	テスト 結果	[]# 🖸 🖘 🕅 V	V 📑 ≽ 🛃 🐠 09:51)))

距離単位

波形表示画面,波形解析画面に表示する距離の単位を選択します。

全体波形

チェックボックスを選択すると,波形画面左下に全体波形が表示されます。

オートスケール

チェックボックスを選択すると,遠端イベントが波形画面に表示されるよう水平方向のス ケールが自動で調整されます。

選択イベントをオートズーム

チェックボックスを選択すると,測定結果画面で選択中のイベントを拡大表示します。

解析後の表示モード

解析が終了した後の表示モードを選択します。

- [遠端/破断]:遠端イベントまたは破断点の位置を表示します。
- [波形全体]:波形全体を表示します。
- [現在の表示状態]:現在のスケールを維持して波形を表示します。

ダミーファイバ表示を有効にする

チェックボックスを選択すると,波形画面にダミーファイバが表示されます。

ファイル & その他

[ファイル&その他] タブをタッチすると,次の画面が表示されます。

		アプリケー	ション セレクタ			
プロジェクト	測定	テンプレート	IOR/BSC	ヘッダ	測定機能	-
測定	解析	表示	ファイルをう	その他		
保存画面を表示す	する	-	_			
校正期間		(12 ヶ月			$\mathbf{\nabla}$
ファイル番号の桁数		(4			0
						•
						X
(((Dpt-Con	struction	設定テ	スト 結果	📋 🗈 🛪 🕅 🗸	🛒 🗙 🖳 動 06:19)))

保存画面を表示する

チェックボックスを選択すると,指定した波長の測定がすべて終了したときにファイル選択ダ イアログボックスを表示します。

校正期間

フィールドをタッチして,校正期間を月単位で設定します。

HINT

校正の有効期限は,<u>レポート</u>に表示されます。

ファイル番号の桁数

測定中に作成されるファイル名に付ける連続番号の桁数を選択します。

5.3.3 テスト設定

画面の説明については,Standard OTDRアプリケーションの説明を参照してください。

- <u>ファイバ</u>
- <u>自動検出</u>
- 良否判定

Constructionアプリケーションでは、スプリッタに関する設定は表示されません。 設定するパラメータ数は、Standard OTDRアプリケーションに比べて減っています。

5.3.4 テスト結果

5.3.4.1 インフォメーション

アプリケーションツールバーのスタートアイコンをタッチすると, [インフォメーション] ダイアロ グボックスが表示されます。

上の枠には, [ファイバ接続] の下にファイバの番号と, 接続するOTDRモジュールのコネクタ が表示されます。下の枠には保存されるファイル名が表示されます。

続行

測定機能画面の<u>測定</u>タブで [接続チェック] を選択している場合, [続行] ボタンをタッチする と<u>接続チェック</u>を開始します。

測定機能画面の<u>測定</u>タブで [接続チェック] を選択していない場合, [続行] ボタンをタッチ すると波形画面が表示され, 接続しているファイバの測定を開始します。

ファイバ番号を変更

試験するファイバの識別番号を変更できます。

現測定をスキップ

表示されている番号のファイバの試験をスキップします。次のファイバの番号がダイアログ ボックスに表示されます。

全測定を中止

すべてのファイバの試験を中止します。

5.3.4.2 接続チェック

接続機能画面で [接続チェック] を選択した場合,測定を開始すると接続状態が表示されます。

棒グラフの色	接続損失*
緑	<1 dB
黄	$1\sim 2 dB$
赤	>2 dB

*: 値は参考用です。光コネクタまたは光ファイバからの反射の状態によっ ては, 正しく測定できない場合があります。 50μmマルチモードファイバを使用する場合は, 1.5 dBが加算されま

50µmマルナセートノアイハを使用する場合は、1.5 dBか加昇されます。

接続状態が良好の場合

接続状態が良ければ,緑で表示されます。棒グラフが[良] の近くまで表示されると,より良い 接続状態です。

接続状態が不良または良好でない場合

接続状態が不良の場合は赤,良好でない場合は黄色で棒グラフが表示されます。黄色の場 合でテストを実行するには,「続行] キーをタッチします。

棒グラフが赤または黄色で表示される場合は、光ファイバをクリーニングしてください。

光ファイバをクリーニングしても接続状態が改善しない場合は,別の光ファイバに交換してく ださい。

光ファイバの長さが約48 m以下の場合,接続状態は通常 [不良] になります。

5.3.4.3 波形

Constructionアプリケーションの結果画面には,次の画面が表示されます。

波形画面では,距離対ファイバ損失がグラフで表示されます。グラフには次のアイコンが表示されます。

△ イベントの位置に表示されます。下に <u>イベントの種類</u>を示すアイコンが表示されます。

左のY軸上で,アクティブカーソルのレベルを表示します。

LSA (Least Squares Approximation) カーソルの位置を表示します。

ファイバ画面で開始点が [なし] 以外に設定されている場合に表示されます。この位置が測定するファイバの開始点です。

ファイバ画面で終了点が[なし]以外に設定されている場合に表示されます。この位置が測定するファイバの終点です。

画面の左に次のアイコンが表示されます。

このアイコンが緑色の場合,ドラッグした範囲を拡大表示できます。

このアイコンが緑色の場合、タッチした点を中心に表示が縮小されます。

このアイコンをタッチすると,波形全体が表示されます。

このアイコンが緑色の場合,ウィンドウをタッチして波形を移動できます。

このアイコンをタッチすると,カーソルを移動するボタンと,[A], [B],[ユーティリ ティ] ボタンが波形ウィンドウの下に表示されます。

[接続損失(LSA)],[2点間 LSA],または [dB/km LSA] を選択している場合は, [LSA1]~[LSA4] ボタンが表示されます。

カーソルを選択するには,カーソルのボタンをタッチするか,画面のカーソルAまたはカーソルBをタッチします。

次の方法でカーソルを移動できます。

- ≤ または ≥ をタッチします。
- カーソルの移動先となるトレース上の位置をタッチします。

このアイコンをタッチすると、イベントテーブルが表示されます。

画面の下には次の項目が表示されます。:

```
カーソル
```

A:カーソルAの距離 B:カーソルBの距離 A-B:カーソルAとカーソルBの距離差

損失モード

フィールドをタッチして,損失の種類を選択します。 [全反射減衰量] の場合に [計算] ボタンが表示されます。

詳細については損失モードを参照してください。

```
測定の設定
```

波長,SM(シングルモードファイバ) または MM (マルチモードファイバ) 距離レンジ パルス幅 群屈折率 (IOR) 分解能 平均化

ユーティリティ

カーソルの動作設定,カーソルを使用した機能を提供します。

- [LSA位置の初期化]: LSAカーソルの位置を初期値に移動します。LSAカーソルが表示されているときに操作できます。
- [カーソル間隔ロック]:
 - [ロック]を選択すると,カーソルAとカーソルBの間隔は固定されます。
 - o [ロック解除]を選択すると,カーソルAとカーソルBの位置を別々に設定できます。
- [カーソルA位置にIORを合わせる]:カーソルAの実際の距離を設定することにより,群屈折 率を修正します。
 - 1. カーソルAを距離がわかっているイベントの位置に移動します。
 - 2. [ユーティリティ] をタッチします。
 - 3. [カーソルA位置にIORを合わせる] のフィールドをタッチします。
 - 4. キーパッドでカーソルAの実際の距離を設定します。
 - 5. [OK] をタッチすると,カーソルAの実際の距離に合うように群屈折率 (IOR) が変 更されます。

ソフトキー

サマリ表示

[サマリ] ダイアログボックスを表示します。

プレビュー

このソフトキーはアベレージ測定中に操作できます。

- [オフ]: アベレージ測定後に, 波形をファイルに保存します。ファイル保存が終了すると波形 の表示が消えます。その後, 自動的に次の測定に移行します。

オーバーレイ

オーバーレイ波形を読み込んでいる場合にキーを操作できます。

- [オーバーレイ切換]: 測定波形に切り換えるオーバーレイ波形を選択するダイアログボック スを表示します
- [オーバーレイ表示]:オーバーレイ波形の表示オン,オフを切り替えます。

可視光源

L

可視光源の出力を切り換えます。[点灯] または [点滅] にすると,画面左下に赤色のアイコン が点滅します。

.

可視光源はオプション002がある場合に表示されます。

.

5.3.4.4 サマリ表示

プレビューが [オン] の場合, プロジェクト内の1つのファイバ測定が終了すると [サマリ] ダイ アログボックスが表示されます。

サマ	リ	<u>?</u>	
波長 (nm)	1310	1550	
遠端 / 検出失敗イベント位置 (km)	0.3542	0.3543	
1つ前のイベント位置 (km)	**.***	** ***	
全損失 (dB)	0.811	0.725	
全反射減衰量 (dB)	41.674	43.926	
閉じる	5		

サマリダイアログボックスでは、次の項目が波長ごとに表示されます。

- [遠端 / 検出失敗イベント位置 (km)]: 遠端イベントまたは検出失敗イベントの距離
- [1つ前のイベント位置 (km)]: 遠端イベントの1つ前のイベントの距離 遠端イベントが見つからない場合,**.**が表示されます。
- [全損失(dB)]: 被測定ファイバの全損失
- [全反射減衰量 (dB)]: 被測定ファイバ全体の反射減衰量

5.3.4.5 光パワー測定

光パワーを測定するには、右上のタブをタッチして<u>アプリケーション ツールバー</u>を拡張表示します。

- 1. チェックボックスを選択します。
- 2. 波長を選択します。
- 3. OPMコネクタに光を入力すると,パワー測定値が表示されます。

ゼロオフセットは,パワーメータの0レベルを校正します。ゼロオフセットをすることにより,入力 する光パワーが低い場合の測定誤差を改善できます。

- 1. OPMコネクタから光ファイバを外し,キャップを閉めます。
- 2. [ゼロオフセット] をタッチします。
- 3. 確認メッセージが表示されます。[OK] をタッチします。 ゼロオフセット処理が終了すると,メッセージが消えます。

5.4 OLTS

OLTS (Optical Loss Test Set) では,光ファイバの損失を測定できます。光パワーと光損失が測定結果として表示されます。

光損失の測定方法

1. 光源 (OTDR/OLS) とOPMを,アダプタを経由して接続します。光ファイバの種類,コア径が 適切であることを確認してください。

- 2. 光源のパワーを測定します。
- 3. [パワーを基準値に設定]をタッチします。
- 4. 光源 (OTDR/OLS) と被測定物を接続します。
- 5. 被測定物とOPMを接続します。被測定物を通過した光のパワーが測定されます。

基準値と測定値の差が損失として表示されます。

ネットワークマスタを2台使用する測定方法

パワーメータの基準値を直接測定できない場合は,基準値のフィールドをタッチしてパワーを 入力します。

送信側ネットワークマスタで光源の出力モードを [Wave Code] に設定すると,出力光に変 調をかけて光源の波長とパワーメータの基準値の値を送信します。受信側のネットワークマス タは,検出した波長と基準値を自動でパワーメータに設定して,損失を表示します。

- 1. ネットワークマスタ1の光源の出力モードを [CW] に設定します。
- 2. 「光損失の測定方法」の手順1~3を参照して、ネットワークマスタ1のすべての波長について パワーメータの基準値を測定します。
- 3. ネットワークマスタ1の光源 (OTDR/OLS) とネットワークマスタ2のOPMを,被測定物の両端に接続します。

4. ネットワークマスタ1の光源を次のとおり設定します。

波長: (任意)

- 出力モード: [Wave Code]
- 5. ネットワークマスタ1の光源を [点灯] にします。
- 6. ネットワークマスタ2は、受信したネットワークマスタ1の波長と基準値を検出します。パワー メータの波長が自動で設定され損失が表示されます。

5.4.1 ロステストセットの設定

		アプリケーション セレクタ		
ل حت	ストセット		ロステーブル	
~光源				光源
波長	1310 nm			消灯
出力モード	CW		77K	
_パワーメータ				
波長	1310 nm			パワーを
平均	1 🗆		DER	基準値に設定
基準値	ts L	損失		ゼロオフセット
良否判定のしきい値	なし)		
光源のモード	CW			
●●●	●● ●↓ ∧° ワーメータ	PORT2	PORT1	可視光源 消灯
巛 🚺 Орt-ОLTS		<u>olts</u>	H 🗈 V 💌 :	y 🛃 動 13 36 🕅

OLTSアプリケーションの [ロステストセット] をタッチすると,次の画面が表示されます。

この画面では光源とパワーメータを制御できます。

波長

光源の波長を選択します。光が出力されるコネクタに緑色の枠が表示されます。出力モードが [Wave Code] の場合,次の選択肢も表示されます。

- [ALL (シングルモード)]: MU100023A以外でシングルモード (SMF) のポートに出力する 光の波長を2つまたは3つの値に周期的に切り替えます (モジュールによって異なります)。
- [ALL (マルチモード)]: MU100021Aでマルチモード (MMF) のポートに出力する光の波長 を, 2つの値に周期的に切り替えます。
- [ALL (ポート1)]: MU100023Aでポート1に出力する光の波長を, 2つの値に周期的に切り 替えます。

出力モード

CW (Continuous Wave), 変調周波数, またはWave Codeを選択します。

[CW] を選択すると,変調はかかりません。[Wave Code] を選択すると,光源の波長とその 波長のパワーメータの基準値で出力光を変調します。

パワーメータ 受信した光がWave Codeで変調されている場合, 波長と基準値は自動で設定されます。

光源

		アプリケー	-ション セレクタ			
	テストセット			ロステーブル		5
_ 光源 波長 出カモード	All (אָאָל אָד-וּ*) Wave Code	▼ ▼	点灯	*	光源 点灯	
パワーメータ 波長 平均 ✓ 基準値 ✓ 良否判定のしきい値 光源のモード	1550 nm 1回 -5.22 dBm 0.00 dB Wave Code	 1310 1550 	パワー -4.96 dBn -5.23 dBn	_{損失} n -0.02 dB n 0.01 dB	パワーを 基準値に設定 ゼロオフセット	
● ● ● 可視光源	+・・+ パ* ワーメータ			اران ¢>> 0* № स− №*	可視光源 消灯	7
🔵 🔃 Opt-OLTS		<u>c</u>	<u>DLTS</u>	📋 💼 🦘 🕸 V 🗹	5 🔊 🕂 🛃 👘 🕺))

Wave Codeによって変調された光を受信中の画面

波長

光センサの感度の波長を選択します。光パワー測定値は,[パワー]の欄に表示されます。入 カパワーが測定範囲よりも低い場合,[UNDER]が表示されます。入力パワーが測定範囲を 超える場合,[OVER]が表示されます。

平均

フィールドをタッチしてパワー測定の平均回数を設定します。

基準値

光損失を測定する場合は,チェックボックスを選択します。 フィールドをタッチして基準となる光パワーレベルをdBm単位で設定します。

良否判定のしきい値

合否判定試験を実施する場合はチェックボックスを選択します。 フィールドをタッチして光損失のしきい値をdB単位で設定します。

損失測定値がこの値よりも大きいと,損失表示の背景色が赤になります。

光源のモード

受信した光を解析することにより、光源の出力モードが自動で表示されます。

ソフトキー

光源

光出力の点灯/消灯を切り替えます。[点灯] にすると,画面左下に赤色のアイコンが点滅します。

パワーを基準値に設定 現在のパワーを基準値に設定します。

ゼロオフセット

光パワーメータの0レベルを校正します。 ゼロオフセットを実行する前に光コネクタのキャップを閉めてください。

可視光源

可視光源の出力を切り換えます。[点灯] または [点滅] にすると,画面左下に赤色のアイコン が点滅します。

可視光源はオプション002がある場合に表示されます。

5.4.2 ロステーブル

OLTSアプリケーションの [ロステーブル] をタッチすると,次の画面が表示されます。

				アプリケーション・	セレクタ	
		ロステスト	セット		ロステーブル	
光源						
波長		1	550 nm		- Jun - 📈	追加
出力	€−×	C	w	いた	RKJ 🕺	
						上書き
_パワ・	-メータ			損失		
波長		1	550 nm	lд.Х		削除
光源(のモード	C	W		0.0T	1313
基準位	直	- 4	12.72 dBm			
						全削除
001	1310 nm	0.00 dB	-42.72 dB			
002	1310 nm	0.00 dB	-42.72 dB			コメント
003	1550 nm	0.02 dB	-42.74 dB			
			<u>ı </u>			可視光源 消灯
	i opt-c	OLTS		OLTS	T# 🗈 🖘 🕅 🗸	/ 📑 🗙 🖳 動 16:56

パワーメータの光源のモードに [Wave Code] と表示されている場合, パワーと損失が表示 されます。

MU100020Aの表示例

ロステーブルは,光損失測定結果のリストです。この画面ではロステーブルの表示と編集が できます。

結果をファイルに保存するにはアプリケーションツールバーの全をタッチします。

No	損失測定の番号
波長	パワーメータの波長
損失	損失測定値
パワー	光パワー測定値
	ロステストセット画面で,[良否判定のしきい値]を選択している
良否判定	場合,合否結果が表示されます。
	損失がしきい値以下の場合はOKが表示されます。
コメント	ソフトキーで入力したコメントが表示されます。

ソフトキー

追加

測定した損失をテーブルに追加します。

上書き

測定した損失を選択した番号に上書きします。

削除

最後に追加した番号をテーブルから削除します。

全削除

すべての番号をテーブルから削除します。

コメント

コメントを編集するダイアログボックスを表示します。

可視光源

可視光源の出力を切り換えます。[点灯] または [点滅] にすると,画面左下に赤色のアイコン が点滅します。

可視光源はオプション002がある場合に表示されます。

6 ユーティリティ アプリケーション

この章では,アプリケーションセレクタ - ユーティリティ画面のアプリケーションについて説明 します。

以下のアプリケーションを利用できます。

- <u>Scenario</u>
- <u>GPS/GNSS</u>
- <u>VIP</u>
- <u>PDF Viewer</u>
- Wireshark
- Sync Analysis
 『MT1000A トランスポートモジュール取扱説明書』を参照してください。

6.1 Scenario

Scenario アプリケーションは,シナリオファイルの記載に従ってアプリケーションを実行しま す。シナリオファイルは,パーソナルコンピュータ上で動作する「MX100003A MT1000A/MT1100A シナリオ編集環境キット」で作成・編集をします。

MX100003A MT1000A/MT1100A シナリオ編集環境キットは, Standard OTDRアプリケーションとOLTSアプリケーションの編集のみに対応しています。

シナリオファイルを読み込んでいない場合, <u>ユーティリィティ</u>画面にはシナリオマネージャのア イコンだけが表示されます。

シナリオファイルを読み込むと、そのアイコンがユーティリティ画面に表示されます。アイコン はシナリオで定義されるため、シナリオによって異なります。

シナリオアイコンの表示例

アイコンの表示/非表示は、シナリオマネージャで切り換えられます。

6.1.1 シナリオマネージャ

シナリオマネージャでは,次の画面が表示されます。

	アプリケーション セレクタ							
ľ				編集 エクスポート	削除	A		
		アイコン	テスト名	説明	表示/非表示			
	1		PTP(multicast)	This is demo application for the one button solution.	表示	?		
	2	t_]	PTP(unicast)	This is demo application for the one button solution.	隠す			
	3	Ð	PTP(unicast)	This is demo application for the one button solution.	隠す			
	4	Ð	SampleTest1	This is sample test 1.	表示			
	5	D	StartAppEtc	StartAppEtc	表示			
						^		
((🔊 Scer	nario Mgr.	設定 編集-1 📑 🔐 💎 🕅 🕇	V 📑 🔊 🖶 🐗	13:49		

この画面で,シナリオの読み込み,保存,アイコンの表示/非表示,表からの削除を設定できます。

シナリオの読み込み

- 1. <u>アプリケーション ツールバー</u>の 🗘 をタッチします。
- 2. ダイアログボックスでファイルを選択します。
- 3. [開く]をタッチします。
- 4. シナリオの内容が表に表示されます。アイコン,テスト名,および説明は,シナリオで定義されていてシナリオマネージャでは編集できません。

シナリオの編集

- 1. 行をタッチしてシナリオを選択します。
- 2. [設定値] フィールドをタッチするとダイアログボックスが表示されます。

	アプリケー	-ション セレクタ		
リソース設定				
アプリケーション名	コメント		設定値	
1 Ethernet Cable Test	Verify Approximate Length of Cable to Open Termination	1-PORT1		?
2 Ethernet Cable Test	Verify Approximate Length of Cable to Shorted Termination	1-PORT1		
3 Ethernet BERT	Bit Error Rate Test (BERT)	1-PORT1,1-PORT2		
名前		説明	設定値	
1 OPEN_LENGTH1	Cable length	of pair1	0.0	
2 OPEN_LENGTH2	Cable length	of pair2	0.0	
3 OPEN_LENGTH3	Cable length	of pair3	0.0	
	C-1-1	-£ : A	0.0	
🔣 🔊 Scenario Mg	r. 設定	<u>編集-2</u> ₩	🗈 🖘 🕅 V 🖂 🔊 🕂	•) 11 07)))

画面下の [設定] をタッチすると, 設定画面に戻ります。

シナリオに設定したポートが存在しない場合、リソース設定の右端に警告アイコ ンが表示されます。この場合,設定値フィールドをタッチして使用可能なポートを 設定してください。

シナリオの保存

編集したシナリオを保存できます。

- 1. 行をタッチしてシナリオを選択します。
- 2. [エクスポート] ボタンをタッチします。ダイアログボックスが表示されます。
- 3. ファイル名を入力して,[保存]をタッチします。

シナリオの削除

表からシナリオを削除します。シナリオのファイルは削除されません。

- 1. 行をタッチしてシナリオを選択します。
- 2. [削除] ボタンをタッチします。
- 3. 確認ダイアログが表示されます。[はい]をタッチします。

シナリオアイコンの表示/非表示

ボタンをタッチすると、シナリオのアイコン表示を切り替えます。

隠す: ユーティリティ画面にシナリオのアイコンを表示しません(現在は表示されています)。 表示: ユーティリティ画面にシナリオのアイコンを表示します(現在は表示されていません)。

6.1.2 シナリオの実行

シナリオが読み込まれていると、ユーティリティ画面のScenarioにアイコンが表示されます。 アイコンをタッチすると、次の画面が表示されます。

		アプリケーション セレクタ		
結果フォルダ: OTDR	_Selftest/	すべて選択		
アプリケー	ション名 ポート	コメント 進捗	結果ファイル名	
1 🗸 Standard	d OTDR 1-PORT1	未実施		
				?
				E
9147		メッセージ	^	
				×
			•	
	_Selftest	<u>テ᠌ᠵ</u> ᢣ 🛱	📸 🖘 🎘 🗸 💽 🐋 💂 🗤 10 2	7 >>>

この画面では、シナリオ実行時のステータスと合否結果が表示されます。シナリオを実行するには、アプリケーションツールバーの () をタッチします。

結果フォルダ

シナリオを実行して得られた結果を保存するフォルダ名が表示されます。フィールドをタッチ するとダイアログボックスが表示され、フォルダを選択できます。[自動]を選択すると、自動 でフォルダ名が付けられます。

ネットワークマスタにUSBメモリを挿入してからユーティリティ画面でアイコンをタッチすると, 保存先ドライブを設定するボタンが表示されます。

結果フォルダ: Internal OTN_Repeat_Test/ 結果フォルダ: Usb OTN_Repeat_Test/

[結果フォルダ:Usb] に設定した場合でも,結果ファイルは内部メモリにいったん保存され, シナリオの実行が終了した後にUSBメモリへ移動されます。

次の場合は,結果ファイルをUSBメモリへ移動するときに警告メッセージが表示されます。 結果ファイルをUSBメモリに保存できなかった場合は,内部メモリに結果ファイルが保存されます。

- USBメモリが抜き取られたとき
- USBメモリに空き容量が不足しているとき

アプリケーションと結果の表示

上の表には、シナリオに記載されているアプリケーション名、使用するポート番号、コメントが 表示されます。シナリオを実行すると、テスト結果がステータス欄に表示され、結果ファイル 名の欄にファイル名が表示されます。

シナリオ実行時のステータス表示

下の表には、アプリケーション実行時の状況と時刻が表示されます。

結果の保存

- 1. <u>アプリケーション ツールバー</u>の 心 をタッチします。
- 2. ダイアログボックスでファイル名を入力します。
- 3. [保存]をタッチします。

レポートの作成

- 1. アプリケーション ツールバー の きをタッチします。
- 2. ダイアログボックスでレポート生成の設定をします。詳細は<u>アプリケーションツールバー</u>の 「レポート」を参照してください。
- 3. [生成する]をタッチします。

結果ファイルのアップロード

シナリオに結果ファイルをアップロードするよう設定されている場合、シナリオは結果ファイルをストレージサービスまたはユーザ指定HTTPサーバにアップロードします。シナリオに記載されているアップロードの情報がアップロードの確認ダイアログボックスに表示されます。

	確認してください
ターゲット: 認証: ID: パスワード:	Basic認証 anritsu ******
アップロードを ネットワークマ:	開始しますか? スタがクラウドサーバに接続されていることを確認してください。
	uuž du

ネットワークマスタがクラウドサーバに接続していること (▲) を確認して, [はい] をタッチします。

[いいえ] をタッチするとアップロードを中止します。結果ファイルはクラウド接続の<u>シナリオ実</u> <u>行結果のアップロード</u>でアップロードすることができます。

アップロードを途中で中止した場合も,残りのファイルをクラウド接続の<u>シナリオ実行結果の</u> アップロードでアップロードすることができます。

アップロード中の表示

6.2 GPS/GNSS

GPS/GNSS アプリケーションは、GPSレシーバまたはGNSSレシーバから受信したNMEAフォーマットのデータを記録します。また、NMEAフォーマットのデータに従って衛星の位置を図に表示します。

GPS: Gloable Positioning System GNSS: Global Navigation Satellite System

6.2.1 テスト設定

GPSアプリケーションのテスト設定では,次の画面が表示されます。

	アプリケーション セレクタ	
テスト時間		
hh:mm:ss		2
		×
GPS GPS	テスト 結果	阱 🗃 🖘 🕷 V 🖼 📎 📮 動 13:53 🚿

テスト時間

テストの停止方法を選択します。

- [バッファフルまでログ実行]: バッファメモリがログデータでいっぱいになると測定を停止しま す。約13時間分の記録ができます。
- [時間指定(もしくはバッファフル)]:指定した時間が経過すると測定を停止します。指定した時間が経過する前でも、バッファメモリがログデータでいっぱいになると測定を停止します。

日, 時間, 分

フィールドをタッチして、テスト時間を設定します。

6.2.2 テスト結果

GPS/GNSSアプリケーションのテスト結果では、次の画面が表示されます。

この画面では衛星の位置とログデータが表示されます。左上のボタンをタッチして結果表示を切り替えます。

- [サテライト]:衛星の位置をグラフおよび表で表示します。
- [コンソール]: GPSレシーバから受信したログデータを表示します。

テストを開始するには、 をタッチします。

テストを開始すると、衛星の情報が表示されます。右側のスクロールバーを使用して、今まで 受信したデータを表示できます。一定量のデータがたまったとき、または測定を停止したとき にファイルが自動で保存されます。

テスト中は,ファイルに保存されたデータを表示することができません。このデータはテスト が終了した後で,ファイルを読みこむことで表示することができます。

バッファフルまでテストを実行した場合,最大で10個のファイルが保存されます。 ファイル名:測定データ保存時刻_1.txt ~ 測定データ保存時刻_10.txt

現在のGMT時間

GPSまたはGNSSから受信した時刻が表示されます。

ステータス

- アクティブ: GPSまたはGNSSレシーバからデータを受信中
- 停止: GPSまたはGNSSレシーバからのデータ受信を停止中

残り時間

テスト画面で [時間指定(もしくはバッファフル)] を選択した場合, 試験の残り時間が表示されます。

サテライト

サテライト

受信した衛星のデータが表示されます。

• PRN: 衛星番号の表示 (Pseudo-Random Noise sequences)

衛星の種類	識別文字	例
GPS	G	G23
GLONASS	R	R68
Galileo	Е	E12
BeiDou	В	B18
QZSS	Q	Q04

- 仰角
- 水平角
- SNR: 信号対雑音比 (Signal to Noise Ratio)
 SNRの値によって文字の色が緑, 青, または赤に変わります。

コンソール

テキストコンソール

ログデータがテキストで表示されます。ログデータはアプリケーションツールバーの 🖄 を タッチして保存できます。

	アプリケーショ	ンセレクタ			
サテライト コンソール	現在のGMT時間 00:33:56	ステータス: アクティブ	残り時間:() seconds	
~テキストコンソール					
00:33:53 \$GPGLL.3526.74	892.N.13920.57453.E.003353.00.A	.A*64			
00:33:53 \$GPZDA,003353	.00,25,01,2016,00,00*63				17-47
00:33:54 \$GPRMC,003354	.00,A,3526.74893,N,13920.57458,E	E,0.013,,250116,,,A*73			
00:33:54 \$GPVTG,,T,,M,0.0	13,N,0.024,K,A*27		_		_0_
00:33:54 \$GPGGA,003354	.00,3526.74893,N,13920.57458,E,1	L,08,1.00,96.0,M,38.9,M,,*6	8		
00:33:54 \$GPGSA,A,3,02,1	2 84 166 38 05 58 319 30 06 38 1	45*0B 36 // 07 30 072 22*76			
00:33:54 \$GPG5V.3.2.10.0	9.14.04513.44.217.48.15.07.229	.33.20.15.284.*7C			0
00:33:54 \$GPGSV,3,3,10,2	9,21,309,29,30,34,110,46*77				
00:33:54 \$GPGLL,3526.74	893,N,13920.57458,E,003354.00,A	,A*69			
00:33:54 \$GPZDA,003354	.00,25,01,2016,00,00*64				
00:33:55 \$GPRMC,003355	.00,A,3526.74896,N,13920.57463,E	E,0.014,,250116,,,A*78			
00:33:55 \$GPCIG,,1,,M,0.0	14,N,U.U25,K,A*21 00 3526 74996 N 13920 57463 E 1	09121062 M 390 M *6	5		
00:33:55 \$GPGSA.A.3.02.1	5.13.07.29.30.06.052.01.1.21.1	60*0C	5		
00:33:55 \$GPGSV.3.1.10.0	2.84.166.38.05.58.319.29.06.38.1	36.44.07.30.072.24*78			
00:33:55 \$GPGSV,3,2,10,0	9,14,045,,13,44,217,48,15,07,229	,32,20,15,284,*7D			
00:33:55 \$GPGSV,3,3,10,2	9,21,309,30,30,34,110,46*7F				V
00:33:55 \$GPGLL,3526.74	B96,N,13920.57463,E,003355.00,A	,A*65		and the second	~
00:33:55 \$GPZDA,003355	.00,25,01,2016,00,00*65				
00:33:56 \$GPRMC,003356	.00,A,3526.74898,N,13920.57467,E	-,0.014,,250116,,,A*71		-	
					-
	= 7 1		/ 📼 🔊 💌	4 01 22)))

ログデータのフォーマットは,業界で標準のNMEA 0183 rev4.0です。

VIP (Video Inspection Probe) アプリケーションは,応用部品のファイバスコープを使用して光ファイバの端面を観察します。取得した画像および解析結果をファイルに保存できます。

6.3.1 アプリケーション ツールバー

アプリケーションツールバーにはVIP用のアイコンが表示されます。

キャプチャ開始

[キャプチャ開始] アイコンをタッチすると,ファイバスコープで撮影している画像をキャプチャします。 設定画面で [オートフォーカス] を選択している場合は,アイコンをタッチするとピントを自動で調整 して画像をキャプチャします。

ライブイメージ

[ライブイメージ] アイコンをタッチすると,ファイバスコープで撮影している画像が表示されます。

解析イメージ

[解析イメージ] アイコンをタッチすると,キャプチャした画像を解析します。

保存

[保存] アイコンをタッチすると,キャプチャした画像および解析結果をファイルに保存します。

読み出し

[読み出し] アイコンをタッチすると,次のファイルを読み込むことができます。

- 画像ファイル (*.png)
- 解析結果ファイル (*.vipi)

拡張アプリケーション ツールバーには,[読み出し/保存] アイコンが表示されます。解析結果 ファイルを読み込むことができます。

解析結果ファイル (拡張子 vipi) は以下の機器と互換性があります。

- MT9083 シリーズ アクセスマスタ
- MU909014x, MU909015x ファイバメンテナンステスタモジュール

6.3.2 ファイバスコープを接続する

ファイバスコープをネットワークマスタのUSBコネクタに接続します。

G0382A オートフォーカスファイバスコープ

ファイバスコープのプローブを光コネクタに応じて交換します。 ファイバスコープの取り扱いについては,ファイバスコープに添付されている取扱説明書を参照してください。

G0382Aは, 60秒間操作を行わないとスタンバイ状態になります。スタンバイ状態になった 場合はG0382Aの測定ボタン (M) を押すか, ネットワークマスタの

 をタッチしてから使
 用してください。

以下のファイバスコープも使用できます。

- OPTION-545VIP ファイバスコープ
- G0293A 400倍ファイバスコープ
- G0306A 400倍ファイバスコープ
- G0306B 400倍ファイバスコープ

○ 画面の左下にはファイバスコープの接続状態を示すアイコンが表示されます。

6.3.3 テストの設定

VIPアプリケーションの設定では,次の画面が表示されます。

		l	アプリケーショ	ン セレクタ	7		
~ プローブ	設定				自動ファイル名	設定	
プローブ	モデル:	G0382A			保存先:	フォルダ設定	\bigcirc
フェルー	ルアダプタ:	1.25PC-M					
テストプ	ロファイル:	SM UPC >45 (IEC 61300	-3-35)		Internal/		
自動機能						(.	
🗸 自動	測定				ファイル名設定	:ур	_ ?
✓ オ-	トフォーカス				開始番号: 2		
🖌 🖌	トキャプチャ					z	
✓ + +	プチャ後自動	解析				7	
✔ 自重	ファイル名生	成			▲ 45 € 10 17	0	
自動露出	設定		175		vip_170607_00	002.vipi	×
(((🟹	VIP C	2	<u>設定</u>	結果	🛱 🖪 🤿	🛚 🕸 V 💽 ⋗ 🛃 📢	(11 32

この画面で、VIPテストに関連したパラメータを設定できます。

プローブ設定 プローブモデル

G0306A, G0306B, またはG0382Aをネットワークマスタに接続している場合は, ファイバスコープの形名が表示されます。それ以外の場合は使用するファイバスコープの形名を選択します。

フェルールアダプタ

使用するフェルールアダプタの形名を選択します。

テストプロファイル

観察するファイバの種類を選択します。合格の判定基準を以下の表に示します。

以下の表で"無し"は,欠陥または傷が無いことです。"制限なし"は,欠陥または傷の数に制限が無いことです。たとえば"無し >3 μ m"は,3 μ mを超える大きさの欠陥または傷が無いことです。

• [SM PC>45]: シングルモードファイバ, 球面研磨, リターンロス 45 dB以上

領域名	欠陥	傷
Core	無し	無し
Cladding	制限無し <2 μm 5個 2 μmから5 μmまで 無し >5 μm	制限無し ≤3 μm 無し > 3μm
Adhesive	制限無し	制限無し
Contact	無し ≥10 µm	制限無し

• [SM APC]: シングルモードファイバ, 斜め球面研磨

領域名	欠陥	傷
Core	無し	≤4個
Cladding	制限無し <2 μm 5個 2 μmから5 μmまで 無し >5 μm	制限無し
Adhesive	制限無し	制限無し
Contact	無し ≥10 µm	制限無し

• [SM PC>26]: シングルモードファイバ, 球面研磨, リターンロス 26 dB以上

領域名	欠陥	傷
Carra	2個 ≤3 µm	2個 ≤3 µm
Core	無し > 3 μm	無し > 3 μm
Cladding	制限無し ≤2μm 5個 2 μmから5 μmまで 無し >5 μm	制限無し ≤3µm 3個 > 3µm
Adhesive	制限無し	制限無し
Contact	無し ≥10 µ m	制限無し

• [MM PC 62.5]: マルチモードファイバ, 球面研磨, コア径 62.5 µm

領域名	欠陥	傷
Core	4個 ≤5 µm	制限無し ≤3μm
	無し >5 μm	0個 > 5µm
Cladding	制限無し ≤2μm 5個 ≤2 μmから≤5 μm 無し >5 μm	制限無し ≤5μm 0個 > 5μm
Adhesive	制限無し	制限無し
Contact	無し ≥10 µm	制限無し

 [MM PC 50.0]: マルチモードファイバ,球面研磨,コア径 50 μm 制限は [MM PC 62.5] と同じです。

自動機能

自動測定

ファイバ端面の画像を認識すると,オートフォーカス,キャプチャ,解析,およびファイル保存を自動で実行します。

[自動測定]は,G0306A,G0306B,およびG0382Aで使用できます。

オートフォーカス

ファイバ端面の画像を認識すると、画像のピントを自動で合わせてキャプチャをします。

ファイバ端面の画像が認識できないと,オート フォーカスをしないことがあります。そのときは G0382Aの [<] または [>] ボタンを使用してピ ントを合わせてください。

[オートフォーカス]は、G0382Aで使用できます。

自動キャプチャ

ファイバ端面にピントが合ったことを認識すると,自動的に画面をキャプチャします。

[自動キャプチャ]は、G0306A、G0306B、およびG0382Aで使用できます。

キャプチャ後自動解析

画面をキャプチャしたときに自動解析を実行します。

自動ファイル名生成

ファイルを保存するときに,ファイル名を自動で付与します。チェックボックスを選択すると, [自動ファイル名設定] が有効になります。

自動露出設定

[自動測定] のチェックボックスを選択しているときに値を設定できます。自動露出の目標値 を160~190の範囲で設定します。

自動ファイル名設定

保存先

[フォルダ設定] ボタンをタッチして,ファイルを保存するフォルダを選択します。

ファイル名設定

ファイル名に付ける文字列を設定します。[ファイル先頭編集] ダイアログボックス下側の [Quick Matrix] をタッチすると, [テキストの入力] ダイアログボックスが表示され, 文字列 を登録することができます。

ファイル先頭編集
SMUPC
長さ: 5/30
1 2 3 4 5 6 7 8 9 0 - = 4
qwertyuiop[]
asdfghjkl; '`
Z X C V D N M , . / \
クリア K ← AltGr → → → ポースト すべてコピー
レイアウト: English マ Quick Matrix キャンセル Ok

空欄のボタンをタッチすると文字を登録できます。文字が表示されているボタンをタッチする と、その文字列がファイル名に追加されます。

		テ	キストの入力	1		>
テキスト : SMUPC SM UPC 長さ : 5/30						消去
Title_1	Title_2	Title_3	Title_4	Title_5	Title_6	L*#147
SM	UPC					-
ММ	APC					_
						·
						-
インポート/エク	スポート	リセット		キャンセル	ок	

- [インポート/エクスポート]: ボタンの文字列をファイルに保存,またはファイルからの読み込みをします。
- [リセット]: すべてのボタンの文字列を消去します。
- [キャンセル]:編集した文字列を破棄してダイアログボックスを閉じます。
- [OK]: 編集した文字列を反映してダイアログボックスを閉じます。

開始番号

ファイル名に付ける数字の開始番号を設定します。

日付を入れる

チェックボックスを選択すると,ファイル名に日付を追加します。

番号を入れる

チェックボックスを選択すると,ファイル名にファイル番号を追加します。

自動生成される最初のファイル名がこの下に表示されます。

6.3.4 テスト結果

VIPのテスト結果には,次の画面が表示されます。

ファイバスコープで撮影した画像が表示されます。また,ファイバ端面の画像を解析できます。

画像の解析

- 2. Q をタッチします。
 解析が正常に終了すると,解析結果が表に表示されます。
 [枠線 On]を選択している場合は,解析範囲を示す円が表示されます。
 3. [ズーム], [移動] ボタンをタッチして,画像表示を調整します。

G0382Aの場合は、ファイバスコープ のMボタンを押すと画面のキャプチャと 解析をします。

表には以下が表示されます。

- [領域名]:領域の名前
- [直径 (μm)]: 直径の測定結果
- [欠陥]: 欠陥の判定結果
- [欠陥数]: 欠陥の計測数
- [エリア (μm²)]: 検出した欠陥の合計面積
- [傷]:傷の判定結果
- [傷の数]:傷の計測数

枠線 On

チェックボックスを選択すると,解析範囲を示す円を表示します。

自動露出補正

このボタンはプローブモデルが [G0382A] の場合に表示されます。 ボタンをタッチすると,露出補正をすることによって,画像を適正な明るさにします。

6.4 PDF Viewer

NOT

PDF ビューアは,ネットワークマスタが作成したレポートファイル,取扱説明書などのPDFファイルを表示できます。

ファイル:te	st.pdf		アプリケー	-ション セl	-09						
	Test Information										
	Operator			Date/Ti	ne		2016-	04-20 14:50			6
	Cable ID			Fiber I	D						
	Location A			Location	пB						
	Test Parameters								ʻ		
	Wavelength	Distance Ran	ge Puls	e Width	A	/erage Tir	ne	Resolution			
	1310 nm SM	2500 m	1	0 ns		10 Sec		0.102 m			
	Test Result Summary										
	Wavelength	Fiber Length	Total Loss	Total Eve	ents		ORL	DASS			
	1310 nm SM	151.77 m	1.641 dB	1		47	.706 dB	PASS			
	Pass/Fail Thresholds										
	Non Reflective Loss	Reflective Loss	Reflectance	Fiber Loss	Tota	al Loss	ORL	Splitter Loss			
	0.20 dB	0.50 dB	-35.0 dB	1.00 dB/km	3.	0 dB	27.0 dE	3.0 dB			
	Events (m) 0.00 151.7	77									×
			1310	nm SM							
	No Dist (m) Li	oss (dB)	Refl. (dB)		Span	(m)	Cum.L (dB)			
	1 151.	77 F	iber End	** ***		151	.77	1.641			-
(((🧇	PDF Viewer		~	-ジ1/1		C	• 🗅 🤋	× 🕸 V 📧 💉	🛃 📫 10	9 29)))

ファイルを開く

アプリケーションツールバーの読み出しアイコン (心) をタッチすると,ダイアログボックスが 開きます。PDFファイルを選択してください。

画面のスクロール

画面の下中央にPDFファイルのページが表示されます。ページの両隣りにある<,>をタッチ すると、ページを移動できます。

右側にあるスクロールバーを使用して表示を上下方向に移動できます。

次の機能はサポートしていません。

- 拡大,縮小
- リンク
- 検索
- しおり

6.5 Wireshark

Wiresharkアプリケーションは、キャプチャしたイーサネットフレームを解析できます。

このアプリケーションは, トランスポートモジュールのイーサネットアプリケーション用に用意されています。

Wiresharkアプリケーション開始時は、次の画面が表示されます

	アプリケーション セレクタ	
<u>File E</u> dit <u>V</u> iew <u>Go</u> <u>Capture</u> <u>Analyze</u> <u>S</u> tatisti	rs Telephony <u>H</u> elp	
Apply a display filter <ctrl-></ctrl->		
Wireshark		
1.12.1		
Capture live packets from your network	Capture filter:	
	Interface information not available	
Open a recent capture file		
more about Wireshark		
		×
Ready to load file	No Packets	Profile: Default
📈 Wireshark	🔐 🗅 🔊	🔉 🗸 💽 🔊 😽 📫 15:52

OTDRモジュールでは、Wiresharkを使用して解析するアプリケーションはありません。

7 性能試験と校正

この章では,本器の性能を確認する方法と測定値を校正する方法について説明します。ここ で述べる性能試験で,規格を満たさないことが判明した場合は,当社または当社代理店へご 連絡ください。

7.1 性能試験

試験をする前に光コネクタをクリーニングしてください。

各試験項目の規格値

以下の規格値は,特に記載がない限り温度25±5℃で保証しています。

7.1.1 性能試験に必要な設備

性能試験に必要な設備と,試験項目に対して必要な設備を次の表に示します。 マルチモードファイバ,マルチモード光カプラ,マルチモード可変光減衰器,および850 nm用 O/EコンバータはMU100021Aの場合に必要です。

項目	必要性能	推奨機器名
光スペクトラムアナライ ザ	波長: 600~1650 nm レベル: –65~+20 dBm 波長確度: ±0.3 nm シングルモード/マルチモードファイバ対応	MS9740B (アンリツ)
シングルモード 可変光減衰器	波長: 1200~1650 nm 挿入損失: 3 dB 以下 減衰量: 0~30 dB 分解能: 0.001 dB 以下	8163B+81570A (キーサイト テクノロ ジーズ)
マルチモード 可変光減衰器	波長: 800~1350 nm 挿入損失: 3 dB 以下 減衰量: 0~30 dB 分解能: 0.001 dB 以下	8163B+81578A (キーサイト テクノロ ジーズ)
O/E コンバータ	波長:1100~1650 nm 立ち上がり/立ち下がり:500 ps 以下 適合ファイバ: シングルモードファイバ, 62.5 μm マルチモードファイバ	P6703B (テクトロニクス)
O/E コンバータ	波長: 800~900 nm 立ち上がり/立ち下がり: 500 ps 以下 適合ファイバ: 62.5 μm マルチモードファイバ	P6701B (テクトロニクス)
オシロスコープ	帯域: DC~1 GHz	TDS5104B (テクトロニクス)
シングルモード 光ファイバ	ファイバ長: 2 km 1 本, 40~50 km 1 本, 20 km 2 本, 500~800 m 1 本, 2~3 m 2 本	
シングルモード 光カプラ (1:1)	形状: 1×2 分岐比: 50%:50% 過剰損失: 1 dB 以下	
シングルモード 光カプラ (10:1)	形状: 1×2 分岐比: 10%:90% 過剰損失: 1 dB 以下	
マルチモード 光ファイバ	ファイバ長: 2 km 1 本, 20~25 km 1 本, 500~800 m 1 本, 2~3 m 2 本	

性能試験で必要な設備
項目	必要性能	推奨機器名
マルチモード 光カプラ (1:1)	形状: 1×2 分岐比: 50%:50% 過剰損失: 1 dB 以下	
マルチモード 光カプラ (10:1)	形状: 1×2 分岐比: 10%:90% 過剰損失: 1 dB 以下	
光パワーメータ	波長:800~1650 nm レベル: -50~+10 dBm 確度: ±2.5%	8163B+81623A (キーサイト テクノロ ジーズ)
光パワーメータ (波長: 650 nm)	波長: 650 nm レベル: –65~+10 dBm 確度: ±0.3 dB	OPM37LAN (三和電気計器株式会 社)
	波長:1310±5 nm レベル: +10 dBm 以上 レベル安定度: ±0.1 dB 適合ファイバ:シングルモード	81635A #131 (キーサイト テクノロ ジーズ)
光源	波長:1550±5 nm レベル: +10 dBm 以上 レベル安定度: ±0.1 dB	81635A #155 (キーサイト テクノロ ジーズ)
	波長:850±5 nm レベル: +10 dBm 以上 レベル安定度: ±0.1 dB	

性能試験で必要な設備 (続き)

7.1.2 波長

接続図

試験手順

- 1. 本器と,測定器を図のとおりに接続します。
- 光スペクトラムアナライザを次のとおりに設定します。 Span: 50 nm Res: 0.05 nm VBW: 1 kHz Sampling Point: 2001 Analysis: RMS K=1, S.Level: 20 dB (1650 nm 以外) Threshold, S.Level: 20 dB (1650 nm)
- 3. Standard OTDRアプリケーションを起動します。
- 4. MU100021AおよびMU100023Aの場合,ポート画面でポートを設定します。
- 5. 測定画面で波長を設定します。
- 6. 設定 測定画面で測定モードを [個別設定] にして以下のとおりに設定します。

波長	1310/1550/1625/1650 nm	850/1300 nm
距離レンジ	$25 \mathrm{km}$	$2.5\mathrm{km}$
分解能	標準	
パルス幅	1 us	100 ns

- 7. 本器の波長と同じ値を光スペクトラムアナライザのCenter波長に設定します。
- 8. 🜔をタッチします。
- 光スペクトラムアナライザで本器のスペクトルを測定します。
 光スペクトラムアナライザで測定される波形のレベルが飽和するときは,可変光減衰器の 減衰量を調整します。
- 10. 光スペクトラムアナライザで測定した中心波長を記録します。
- 11. 設定 測定画面で波長を変更して,手順6~10を繰り返します

7.1.3 パルス幅

接続図

試験手順

- 1. 本器と,測定器を図のとおりに接続します。
- 2. Standard OTDRアプリケーションを起動します。
- 3. MU100021AおよびMU100023Aの場合,ポート画面でポートを設定します。
- 4. 設定 測定画面で波長を設定します。
- 5. 測定画面で測定モードを [個別設定] にして以下のとおりに設定します。 距離レンジ: 0.5 km パルス幅: 3 ns
- 6. 🜔をタッチします。
- オシロスコープのトリガレベル,振幅,および時間軸スケールを調整して,波形をオシロスコー プに表示させます。
 このとき波形モニタが飽和しないように,可変光減衰器の減衰量を調整します。

8. オシロスコープの波形を観測し,図に示すようにピークレベルの半分の振幅でパルス幅を 測定し,測定結果を記録します。

波形の測定箇所

9. 手順5のパルス幅を変更し,手順6~8を繰り返します。

10. 設定 - 測定画面で波長を変更して,手順5~9を繰り返します

7.1.4 ダイナミックレンジ

接続図

波長が1650 nm以外の場合は,次のとおりにファイバを接続します。

波長が1650 nm以外のときの測定系

850 nm, 1300 nmのダイナミックレンジを試験する場合は,接続図の光ファイバをマルチ モードファイバ (20~25 km) に変更してください。

波長が1650 nmの場合は,次のとおりにファイバ,光カプラ,可変減衰器,および波長1550 nmの基準光源を接続します。

波長が1650 nmのときの測定系

試験手順

- 1. 本器に光ファイバを図のとおりに接続します。
- 2. Standard OTDRアプリケーションを起動します。
- 3. MU100021AおよびMU100023Aの場合,ポート画面でポートを設定します。
- 4. 測定画面で波長を設定します。
- 5. 設定 測定画面で測定モードを [個別設定] にして,[同じ設定] のチェックを外します。以下 のとおりに設定します。

波長	1310/1550/ 1625/1650 nm	850 nm	1300 nm
距離レンジ	100 km	25 km	25 km
分解能		標準	
パルス幅	20 us	500 ns	4 us
平均化時間		3分	

6. 結果 - 波形画面で計算種別を [2点間損失] に設定します。

7. をタッチします。

- 8. 測定が終了したら,カーソルAを口元位置に移動します。
- 9. カーソルBをノイズピークの位置に移動して、2点間損失を記録します。
- 10.9 で記録した値に2.6 dB を加えます。測定結果を記録します。
- 11. 測定画面でポートと波長を変更して,手順7~10を繰り返します。

7.1.5 距離測定確度

長さと屈折率がわかっている光ファイバを測定して,水平軸すなわち測定距離の確かさの確認をします。この試験はある1 つの距離レンジで行えば,ほかのレンジで行う必要はありません。

接続図

850 nm, 1300 nmの距離測定確度を試験する場合は,接続図の光ファイバをマルチモードファイバ (2 km) に変更してください。

試験手順

- 1. 本器に光ファイバを図のとおりに接続します。
- 2. Standard OTDRアプリケーションを起動します。
- MU100021Aの場合,ポート画面でポートを [シングルモード] に設定します。
 MU100023Aの場合,ポート画面でポートを [ポート1] に設定します。
- 4. 設定 測定画面で波長を [1310nm] に設定します
- 測定画面で測定モードを [個別設定] にして,次のとおりに設定します。
 距離レンジ: 2.5 km
 分解能: 高密度
 パルス幅: 10 ns
 平均化時間: 3 分
- 6. IOR/BSC画面で光ファイバの屈折率を,群屈折率 (IOR) に設定します。
- 7. 結果 波形画面で計算種別を [2点間損失] に設定します。
- 8. をタッチします。
- 9. 測定が終了したら,結果 波形画面で 🚹 をタッチします。
- 10. カーソルAを0kmの位置に移動します。
- 11. カーソルBをフレネル反射の位置に移動します。
- 12. 💽をタッチして, 横軸の目盛間隔を0.005 kmにします。
- 13. **1**8. をタッチして,カーソルBをフレネル反射の立ち上がり点に正確に合わせ,絶対距離を読み取ります。 測定結果を記録します。
- 14. 設定 測定画面で波長を変更して,手順6~13を繰り返します

波形の測定位置

7.1.6 リニアリティ

850 nmのリニアリティを試験する場合は,接続図の光ファイバをマルチモードファイバ (20 ~25 km) に変更してください。

シングルモードポートの試験手順

- 1. 本器にシングルモード光ファイバを接続します。
- 2. Standard OTDRアプリケーションを起動します。
- 3. MU100021Aの場合,ポート画面でポートを [シングルモード] に設定します。

MU100023Aの場合,ポート画面でポートを[ポート1]に設定します。

- 4. 設定 測定画面で波長を [1310nm] に設定します
- 5. 設定 測定画面で測定モードを [個別設定] にして,次のとおりに設定します。
 距離レンジ: 100 km
 パルス幅: 2 us
 分解能:標準
 平均化時間: 3 分
- 6. 結果 波形画面で計算種別を [2点間 LSA] に設定します。
- 7. をタッチします。
- 8. 測定が終了したら,結果 波形画面で 👎 をタッチします。
- 9. カーソルAを0kmの位置に移動します。
- 10. カーソルBを3kmの位置に移動します。
- 11. [ユーティリティ]をタッチして,カーソル間ロックを [ロック] にします。

- 12. LSA1を0.05 km の位置に移動します。
- 13. LSA2を0.3 km の位置に移動します。
- 14. LSA3を2.7 km の位置に移動します。
- 15. LSA4を3.3 km の位置に移動します。
- 16. 損失を記録します。
- 17. カーソルAを1.5 kmの位置に移動します。カーソルBは4.5 kmの位置に移動します。
- 18. LSA1を1.2 kmの位置に移動します。
- 19. 損失を記録します。
- 20. カーソルA の位置が28.5 kmになるまで,1.5 kmずつカーソルA の位置を移動して,損失 を記録します。
- 21. 手順16~20までで記録した値の平均値を計算します。
- 22. 手順21の平均値と,手順16で記録した値との差を計算し,その値を3倍にします。

マルチモードポートの試験手順

- 1. 本器にマルチモード光ファイバを接続します。
- 2. Standard OTDRアプリケーションを起動します。
- 3. 設定 ポート画面でポートを [マルチモード] に設定します。
- 4. 設定 測定画面で波長を [850nm] に設定します
- 5. 設定 測定画面で測定モードを [個別設定] にして,次のとおりに設定します。
 距離レンジ: 10 km
 パルス幅: 100 ns
 分解能:標準
 平均化時間: 3 分
- 6. 結果 波形画面で計算種別を [2点間 LSA] に設定します。
- 7. をタッチします。
- 8. 測定が終了したら,結果 波形画面で 12をタッチします。
- 9. カーソルAを0kmの位置に移動します。
- 10. カーソルBを0.6 km の位置に移動します。
- 11. [ユーティリティ]をタッチして,カーソル間ロックを [ロック] にします。
- 12. LSA1を0.05 km の位置に移動します。
- 13. LSA2を0.15 km の位置に移動します。
- 14. LSA3を0.5 km の位置に移動します。
- 15. LSA4を0.7 km の位置に移動します。
- 16. 損失を記録します。
- 17. カーソルAを0.3 kmの位置に移動します。カーソルBは0.9 kmの位置に移動します。
- 18. LSA1を0.2 kmの位置に移動します。
- 19. LSA2を0.4 km の位置に移動します。
- 20. 損失を記録します。
- 21. カーソルA の位置が5.7 kmになるまで,0.3 km ずつカーソルA の位置を移動して,損失を 記録します。

22. 手順17~21までで記録した値の平均値を計算します。

23. 手順22の平均値と,手順16で記録した値との差を計算し,その値を3倍にします。

7.1.7 デッドゾーン

接続図

850 nm, 1300 nmのデッドゾーンを試験する場合は,接続図の光ファイバと光カプラをマルチモード光ファイバに変更してください。また,マルチモード光ファイバ用の光可変光減衰器を使用してください。

試験手順

- 1. 本器と,測定器を接続図のとおりに接続します
- 2. Standard OTDRアプリケーションを起動します。
- 3. MU100021Aの場合,ポート画面でポートを[シングルモード]に設定します。

MU100023Aの場合,ポート画面でポートを[ポート1]に設定します。

- 4. 設定 測定画面で波長を [1310nm] に設定します
- 5. 設定 測定画面で測定モードを [個別設定] にして, 次のとおり設定します。 距離レンジ: 25 km 分解能: 高密度 パルス幅: 500 ns 平均化: 10 秒
- 6. をタッチします。
- 7. 測定が終了したら,結果 波形画面で をタッチします。
- 8. イベントテーブルで300~400 m地点のフレネル反射の反射減衰量を確認します。
- 9. 反射減衰量が40±0.2 dBになるように,可変光減衰器の減衰量を調整します。
- 10. イベントテーブル上の反射減衰量が40±0.2 dBになるまで,手順6~9を繰り返します。
- 11. 設定 測定画面で,次のとおり設定します。

距離レンジ:1 km 分解能:高密度 パルス幅:3 ns 平均化:10 秒

12. 結果 - 波形画面で計算種別を [2点間損失] に設定します。

- 13. をタッチします。
- 14. 測定が終了したら,結果 波形画面で 👎 をタッチします。
- 15. フレネル反射の前で,フレネル反射のピーク位置からレベルが1.5 dB低下する位置にカー ソルAを移動します。
- 16. フレネル反射の後で,フレネル反射のピーク位置からレベルが1.5 dB低下する位置にカー ソルBを移動します。

フレネルデッドゾーンを測定するカーソルの位置

- 17. カーソルAとカーソルBの位置の差を記録します (フレネルデッドゾーン)。
- 設定 測定画面で次のとおり設定します。
 距離レンジ: 25 km 分解能: 高密度 パルス幅: 500 ns 平均化: 10 秒
- 19. をタッチします。
- 20. 測定が終了したら,結果 波形画面で をタッチします。
- 21. イベントテーブルで300~400 m地点のフレネル反射の反射減衰量を確認します。
- 22. 反射減衰量が55±0.2 dBになるように,可変光減衰器の減衰量を調整します。
- 23. イベントテーブル上の反射減衰量が55±0.2 dBになるまで,手順19~22を繰り返します。
- 24. 設定 測定画面で,次のとおり設定します。 距離レンジ:1 km

分解能:高密度 パルス幅:3 ns 平均化:10 秒

- 25. をタッチします。
- 26. 測定が終了したら,結果 波形画面で 📪 をタッチします。
- 27. フレネル反射後の後方散乱光レベルから0.5 dB高い位置に,カーソルBを移動します。

28. フレネル反射の立ち上がり位置に,カーソルAを移動します。

後方散乱光デッドゾーンを測定するカーソルの位置

29. カーソルAとカーソルBの位置の差を記録します(後方散乱光デッドゾーン)。30. 設定 - 測定画面で波長を変更して,手順5~29を繰り返します。

850 nm, 1300 nmのデッドゾーンを測定する場合は,手順18~26を省略します。

7.1.8 可視光源(VFL)の光出カパワーと波長

オプションの可視光源の出力パワーレベルと波長が,それぞれの仕様を満たすことを確認します。

接続図

試験手順

- 1. 光スペクトラムアナライザと本器のVFLポートを接続します。
- 2. 光スペクトラムアナライザを次のとおりに設定します。
 - Center: 650 nm Span: 50 nm Res: 0.05 nm VBW: 1 kHz Sampling Point: 2001 Analysis: Threshold, Cut.Level: 3 dB
- 3. OLTSアプリケーションを起動します。
- 4. ソフトキーの [可視光源]をタッチします。
- 5. [点灯]をタッチします。
- 6. 光スペクトラムアナライザの中心波長を測定し,結果を記録します。
- 7. 光パワーメータの波長を650 nm に設定します。
- 8. 光パワーメータと本器のVFLポートを接続します。
- 9. 光パワーメータでレベルを測定し,その結果を記録します。

7.1.9 光源の光出力レベルおよび波長

光源の出力パワーレベル,波長およびスペクトル幅が,それぞれの仕様を満たすことを確認します。

接続図

試験手順

波長1310 nm を例にして説明します。別の波長の試験をする場合は,光スペクトラムアナラ イザと光パワーメータの波長設定を変更してください。

- 1. OTLSアプリケーションを起動します。
- 2. ロステストセット画面で光源の波長を [1310nm] にします。
- 3. 光スペクトラムアナライザと本器の光源ポートを接続します。
- 4. 光スペクトラムアナライザを次のとおりに設定します。

Center: 1310 nm Span: 50 nm Res: 0.05 nm VBW: 1 kHz Sampling Point: 2001 Analysis: Threshold, Cut.Level: 3 dB

- 5. 光源の変調を [CW] にします。
- 6. ソフトキーの光源をタッチして,表示を [点灯] にします。
- 7. 光スペクトラムアナライザの中心波長およびスペクトル幅を測定し,結果を記録します。
- 8. 光パワーメータの波長を1310 nm に設定します。
- 9. 光パワーメータと光源ポートを接続します。
- 10. 光パワーメータで出力レベルを測定し,その結果を記録します。

7.1.10 パワーメータの測定確度

光パワーメータの測定確度が規格を満足することを確認します。測定前に必ず光パワーメー タのゼロオフセットを実行してください。

接続図

試験手順

波長 1550 nm を例にして説明します。別の波長の試験をする場合は,光源と光パワーメータの波長設定を変更してください。

- 1. 光源と可変光減衰器を,光ファイバで接続図のとおりに接続します。
- 2. 可変光減衰器の出力を,光ファイバで光パワーメータに接続します。
- 3. 光源の波長を1550 nm に設定し,出力します。
- 4. 光パワーメータの波長を1550 nm に設定します。
- 5. 光パワーメータの表示が,-10±0.005 dBm になるよう,可変光減衰器の減衰量を調節します。

光パワーメータの表示レベルを記録します。

- 6. 光パワーメータに接続している光ファイバを外して,本器のOPMポートに接続します。
- 7. OTLSアプリケーションを起動します。
- 8. ロステストセット画面でパワーメータの波長を [1550nm] にします。
- 9. パワー表示を記録します。
- 10. 手順6と10で記録した表示レベルの差を計算します。

7.2 校正

本器では,後方散乱光レベルとパワーメータの測定確度を校正します。

- 後方散乱光レベルについては、1年ごとの定期校正を推奨します。
 ただし、初回の校正に限り工場出荷日から3年を推奨します
- パワーメータの測定確度については、年に1~2回程度の校正を推奨します。

7.2.1 後方散乱光レベルの校正

後方散乱光レベル校正に必要な設備

項目	規格値	数量
シングルモード光ファイバ	長さ5 km 以上	2
光コネクタ	反射減衰量が既知であること	1

接続図

校正手順

- 1. 反射減衰量R0 dBがわかっている光コネクタを準備して,本器と光ファイバを接続します。
- 2. Standard OTDRアプリケーションを起動します。
- MU100021Aの場合,ポート画面でポートを [シングルモード] に設定します。
 MU100023Aの場合,ポート画面でポートを [ポート1] に設定します。
- 4. 設定 測定画面で波長を [1310nm] に設定します
- 5. 設定 測定画面で測定モードを [個別設定] にして,次のとおりに設定します。
 距離レンジ: 10 km
 パルス幅: 100 ns
 分解能:標準
 平均化時間: 3 分
- 6. 結果 波形画面で計算種別を [2点間 LSA] に設定します。
- 7. をタッチします。
- 8. 測定が終了したら,結果 波形画面で をタッチします。
- 9. ソフトキーのイベントをタッチして,「解析実行]をタッチします。
- 10. 光コネクタのイベントが表示されることを確認し,反射減衰量を記録します。この値をR₁ dB とします。
- 11. 光コネクタの反射減衰量の値R₀ dB との差 △ R = (R₁-R₀)を求めます。

校正

- 12. 設定 IOR/BSC画面で,現在設定されている後方散乱係数 (BSC) の値に, ΔRを加算し た値を設定します。
- 13. 手順7~12を繰り返して,表示される反射減衰量がR0に等しくなったら校正が完了です。

7.2.2 パワーメータの測定確度校正

パワーメータの測定確度校正は、年に1~2回程度行うことを推奨します。

この校正は,アンリツカスタマーサポート株式会社に依頼してください。

7.3 性能試験記録表

測定不確かさは、「性能試験で必要な設備」の推奨機器を使用した場合の値です。

波長

波長設定値	仕様最小値	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	1285 nm	nm	1335 nm	$\pm 1.83\mathrm{nm}$	合・否
1550 nm	1525 nm	nm	1575 nm	±1.83 nm	合・否
1625 nm	1600 nm	nm	1650 nm	$\pm 1.83\mathrm{nm}$	合・否
1650 nm	1645 nm	nm	1655 nm	$\pm 0.5\mathrm{nm}$	合・否
850 nm	820 nm	nm	880 nm	±1.86 nm	合・否
1300 nm	1270 nm	nm	1330 nm	±1.86 nm	合・否

パルス幅 (1310 nm)

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否
1 μs	0.93 μs	μs	1.07 μs	±2.31%	合・否
2 μs	1.86 μs	μs	2.14 µs	±2.31%	合・否
5μs	4.65 μs	μs	5.35 μs	±2.31%	合・否
10 µ s	9.3 μs	μs	10.7 μs	±2.31%	合・否
20 µ s	18.6 μs	μs	21.4 μs	±2.31%	合・否

パルス幅 (1550 nm)

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否
1 μs	0.93 μs	μs	1.07 μs	±2.31%	合・否
2μs	1.86 μs	μs	2.14 μs	±2.31%	合・否
5μs	4.65 μs	μs	5.35 μs	±2.31%	合・否
10 µs	9.3 μs	μs	10.7 μs	±2.31%	合・否
20 μs	18.6 μs	μs	21.4 μs	±2.31%	合・否

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否
1 μs	0.93 μs	μs	1.07 μs	±2.31%	合・否
2μs	1.86 μs	μs	2.14 μs	±2.31%	合・否
5μs	4.65 μs	μs	5.35 μs	±2.31%	合・否
10 µ s	9.3 μs	μs	10.7 μs	±2.31%	合・否
20 µ s	18.6 μs	μs	21.4 μs	±2.31%	合・否

パルス幅 (1625 nm)

パルス幅 (1650 nm)

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否
1 μs	0.93 μs	μs	1.07 μs	±2.31%	合・否
2μs	1.86 μs	μs	2.14 μs	±2.31%	合・否
5μs	4.65 μs	μs	5.35 μs	±2.31%	合・否
10 µ s	9.3 μs	μs	10.7 μs	±2.31%	合・否
20 μs	18.6 μs	μs	21.4 μs	±2.31%	合・否

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否

パルス幅 (850 nm)

パルス幅 (1300 nm)

パルス幅 設定値	仕様最小値 (参考値)	測定値	仕様最大値 (参考値)	測定 不確かさ	合否
3 ns	-	ns	-		合・否
10 ns	7 ns	ns	13 ns	±2.31%	合・否
20 ns	14 ns	ns	26 ns	±2.31%	合・否
50 ns	35 ns	ns	65 ns	±2.31%	合・否
100 ns	85 ns	ns	115 ns	±2.31%	合・否
200 ns	170 ns	ns	230 ns	±2.31%	合・否
500 ns	465 ns	ns	535 ns	±2.31%	合・否
1 μs	0.93 μs	μs	1.07 μs	±2.31%	合・否
2μs	1.86 μs	μs	2.14 μs	±2.31%	合・否
4 μs	3.72 μs	μs	4.24 μs	±2.31%	合・否

ダイナミックレンジ (MU100020A-020)

波長	仕様最小値	測定値	測定 不確かさ	合否
1310 nm	38 dB	dB	±0.39 dB	合・否
1550 nm	36.5 dB	dB	±0.39 dB	合・否

ダイナミックレンジ (MU100020A-021)

波長	仕様最小値	測定値	測定 不確かさ	合否
1310 nm	41 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否
1550 nm	40 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否

ダイナミックレンジ (MU100020A-022)

波長	パルス幅 設定値	仕様最小値	測定値	測定 不確かさ	合否
1310 nm	20 µs	45 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否
1550 nm	20 µs	45 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否
1310 nm	100 ns	24 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否
1550 nm	100 ns	24 dB	dB	±0.39 dB	合・否

波長	パルス幅 設定値	仕様最小値	測定値	測定 不確かさ	合否
850 nm	500 ns	28 dB	dB	±0.39 dB	合・否
1300 nm	1 μs	27 dB	dB	±0.39 dB	合・否
1310 nm	20 µs	41 dB	dB	±0.39 dB	合・否
1550 nm	20 μs	40 dB	dB	±0.39 dB	合・否

ダイナミックレンジ (MU100021A-021)

ダイナミックレンジ (MU100022A-022)

波長	パルス幅 設定値	仕様最小値	測定値	測定 不確かさ	合否
1310 nm	20 µs	45 dB	dB	±0.39 dB	合・否
1550 nm	20 µs	45 dB	dB	±0.39 dB	合・否
1625 nm	20 µs	43 dB	dB	$\pm 0.39~\mathrm{dB}$	合・否
1310 nm	100 ns	24 dB	dB	±0.39 dB	合・否
1550 nm	100 ns	24 dB	dB	$\pm 0.39~\mathrm{dB}$	合・否
1625 nm	100 ns	22 dB	dB	±0.39 dB	合・否

ダイナミックレンジ (MU100023A-021)

波長	パルス幅 設定値	仕様最小値	測定値	測定 不確かさ	合否
1310 nm	20 µs	41 dB	dB	$\pm 0.39 \mathrm{dB}$	合・否
1550 nm	20 µs	40 dB	dB	±0.39 dB	合・否
1650 nm	20 µs	34 dB	dB	±0.39 dB	合・否

距離測定確度

波長	光ファイバの 長さ (km)	仕様最小値 (m)	測定値 (km)	仕様最大値 (m)	合否
850 nm		-1.27		+1.27	合・否
1300 nm		-1.27		+1.27	合・否
1310 nm		-1.27		+1.27	合・否
1550 nm		-1.27		+1.27	合・否
1625 nm		-1.27		+1.27	合・否
1650 nm		-1.27		+1.27	合・否

仕様: ±1 m ±(3 m×測定距離 (m)×10⁻⁵ ±カーソル分解能

距離レンジが2.5 km,水平軸スケールが0.005 km/divの場合,測定距離は2500 m,カー ソル分解能は0.2 mです。

カーソルA の 位置 (km)	カーソルB の 位置 (km)	損失 (dB)	仕様最小値 (dB)	損失の平均 値との差 ×3 (dB)	仕様最大値 (dB)	合否
0 nm	3		-0.1		+0.1	合・否
1.5	4.5		-0.1		+0.1	合・否
3	6		-0.1		+0.1	合・否
4.5	7.5		-0.1		+0.1	合・否
6	9		-0.1		+0.1	合・否
7.5	10.5		-0.1		+0.1	合・否
9	12		-0.1		+0.1	合・否
10.5	13.5		-0.1		+0.1	合・否
12	15		-0.1		+0.1	合・否
13.5	16.5		-0.1		+0.1	合・否
15	18		-0.1		+0.1	合・否
16.5	19.5		-0.1		+0.1	合・否
18	21		-0.1		+0.1	合・否
19.5	22.5		-0.1		+0.1	合・否
21	24		-0.1		+0.1	合・否
22.5	25.5		-0.1		+0.1	合・否
24	271		-0.1		+0.1	合・否
25.5	28.5		-0.1		+0.1	合・否
27	30		-0.1		+0.1	合・否

リニアリティ (波長 1310 nm, パルス幅 2 µs)

損失の平均値	dB
差の平均値	dB

カーソルA の 位置 (km)	カーソルB の 位置 (km)	損失 (dB)	仕様最小値 (dB)	損失の平均 値との差 ×3 (dB)	仕様最大値 (dB)	合否
0 nm	0.6		-0.1		+0.1	合・否
0.3	0.9		-0.1		+0.1	合・否
0.6	1.2		-0.1		+0.1	合・否
0.9	1.2		-0.1		+0.1	合・否
1.2	1.8		-0.1		+0.1	合・否
1.5	2.1		-0.1		+0.1	合・否
1.8	2.4		-0.1		+0.1	合・否
2.1	2.7		-0.1		+0.1	合・否
2.4	3		-0.1		+0.1	合・否
2.7	3.3		-0.1		+0.1	合・否
3	3.6		-0.1		+0.1	合・否
3.3	3.9		-0.1		+0.1	合・否
3.6	4.2		-0.1		+0.1	合・否
3.9	4.5		-0.1		+0.1	合・否
4.2	4.8		-0.1		+0.1	合・否
4.5	5.1		-0.1		+0.1	合・否
4.8	5.4		-0.1		+0.1	合・否
5.1	5.7		-0.1		+0.1	合・否
5.4	6		-0.1		+0.1	合・否

リニアリティ (波長 850 nm, パルス幅 100 ns)

損失の平均値	dB
差の平均値	dB

波長	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	m	0.8 m	±0.05 m	合・否
1550 nm	m	0.8 m	± 0.05 m	合・否
1625 nm	m	0.8 m	±0.05 m	合・否
1650 nm	m	0.8 m	± 0.05 m	合・否
850 nm	m	0.8 m	±0.05 m	合・否
1300 nm	m	0.8 m	±0.05 m	合・否

フレネルデッドゾーン

後方散乱光デッドゾーン (MU100020A, MU100021A, MU100022A)

波長	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	m	3.8 m	±0.3 m	合・否
1550 nm	m	4.3 m	±0.3 m	合・否
1625 nm	m	4.8 m	±0.3 m	合・否
850 nm	m	4.0 m	±0.3 m	合・否
1300 nm	m	5.0 m	±0.3 m	合・否

後方散乱光デッドゾーン (MU100023A)

波長	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	m	5.0 m	±0.3 m	合・否
1550 nm	m	5.5 m	±0.3 m	合・否
1650 nm	m	6.5 m	±0.3 m	合・否

波長設定値	仕様最小値	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	1280 nm	nm	1340 nm	$\pm 1.83\mathrm{nm}$	合・否
1550 nm	1520 nm	nm	1580 nm	$\pm 1.83\mathrm{nm}$	合・否
1625 nm	1595 nm	nm	1655 nm	$\pm 1.83\mathrm{nm}$	合・否
1650 nm	1645 nm	nm	1655 nm	$\pm 1.83\mathrm{nm}$	合・否
850 nm	820 nm	nm	880 nm	±1.86 nm	合・否
1300 nm	1270 nm	nm	1330 nm	±1.86 nm	合・否

光源 - 波長

光源 - スペクトル幅

波長設定値	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	nm	5 nm	$\pm 0.23\mathrm{nm}$	合・否
1550 nm	nm	10 nm	±0.23 nm	合・否
1625 nm	nm	10 nm	$\pm 0.23\mathrm{nm}$	合・否
1650 nm	nm	3 nm	±0.23 nm	合・否
850 nm	nm	10 nm	±0.23 nm	合・否
1300 nm	nm	10 nm	±0.23 nm	合・否

光源 - レベル

波長設定値	仕様最小値	測定値	仕様最大値	測定 不確かさ	合否
1310 nm	-6.5 dBm	dBm	–3.5 dBm	$\pm 0.25 \mathrm{dB}$	合・否
1550 nm	-6.5 dBm	dBm	–3.5 dBm	$\pm 0.25\mathrm{dB}$	合・否
1625 nm	-6.5 dBm	dBm	–3.5 dBm	$\pm 0.25\mathrm{dB}$	合・否
1650 nm	-6.5 dBm	dBm	–3.5 dBm	$\pm 0.25\mathrm{dB}$	合・否
850 nm	-6.5 dBm	dBm	–3.5 dBm	$\pm 0.25\mathrm{dB}$	合・否
1300 nm	-6.5 dBm	dBm	-3.5 dBm	±0.25 dB	合・否

							_
波	長設定値	仕様最小値	測定値	仕様最大値	測定 不確かさ	合否	
	1310 nm	-5%	%	+5%	±1.87%	合・否	
	1550 nm	-5%	%	+5%	±1.87%	合・否	
	850 nm	-10%	%	+10%	±6.01%	合・否	
	波長	光パワ 表	ーメータ 長示	ネットワークマ 表示	779	レベル差	
	1310 n	m	dBm		dBm		dB
	1550 n	m	dBm		dBm		dB
	850 n	m	dBm		dBm		dB

パワーメータ

可視光源

項目	仕様最小値	測定値	仕様最大値	測定 不確かさ	合否
波長	635 nm	nm	665 nm	$\pm 1.83\mathrm{nm}$	合・否
レベル	-2.5 dBm	dBm	+2.5 dBm	$\pm 0.26 \mathrm{dB}$	合・否

8 仕様

8.1 MT1000A

ここではネットワークマスタ プロ,MT1000A (メインフレーム) の仕様について説明します。

8.1.1 構成

	- メインフレーム -
MT1000A	ネットワークマスタプロ
	- 標準添付品 -
J0979	A-2 電源コード
G0310A	リチウムイオンバッテリー
G0385A	ハイパワー AC アダプター
B0728A	背面パネルキット
B0745A	ソフトケース
Z1746A	スタイラス
Z1747A	キャリングストラップ
Z1748A	ハンドル
Z1817A	ユーティリティ ROM*
W3935AW	MT1000A トランスポートモジュール クイックリファレンスガイド
*: 次の取扱説明書が含	含まれます。
• W3933AW MT	~1000A トランスポートモジュール 取扱説明書
• W4041AW MT	「1000A/MT1100A/MT1040Aリモートスクリプティング 取扱説
明書	
• W3810AW MT	1000A ネットワークマスタ フロ OTDRモジュール 取扱説明書
● W3859AW M1	1000A ネットワークマスタ ノロ OIDRセンユール リモートスクリノ 四書
テインク 収扱祝	明音 MT10004 MII1000404 /MII100040B Notwork Master Pro
• 10500-004451 Operation Ma	nual
o por du on ma	
	- オプション -
MT1000A-x03	WLAN/Bluetooth接続
MT1000A-x05	AUX I/O
MT1000A-x06	ハイパワーサプライ*
MT1000A-x11	Site Over Remote Access接続
MT1000A-ES210	2年保証サービス
MT1000A-ES310	3年保証サービス
MT1000A-ES510	5年保証サービス
*: MU100011Aを使用	目する場合に必要です。
	- 応用部品 -
B0691B	ハードケース
B0720A	背面カバー
B0729A	ネジ 1U
B0730A	ネジ 2U
B0731A	ネジ 3U
B0732A	ネジキット
B0733A	ハードケース
G0306B	ファイバスコープ
G0309A	ACアダプター
~~~~	

G0325A	GPSレシーバ
G0382A	オートフォーカスファイバスコープ
J1569B	Car 12 Vdc adapter
W3933AW	MT1000A トランスポートモジュール 取扱説明書
	- モジュール -
MU100010A	10G マルチレートモジュール
MU100011A	100G マルチレートモジュール
MU100020A	OTDRモジュール 1310/1550nm SMF
MU100021A	OTDRモジュール 1310/1550/850/1300nm SMF/MMF
MU100022A	OTDRモジュール 1310/1550/1625nm SMF
MU100023A	OTDRモジュール 1310/1550/1650nm SMF
MU100040A	CPRI RFモジュール
MU100040B	CPRI RFモジュール
MU100090A	高精度GPS同期発振器
MU100090B	高精度GNSS同期発振器

# 8.1.2 電気的性能·機能

外部インタフェース	内部クロック	精度	±4.6 ppm 以下, STRATUM 3 準拠
	基準クロック入力	BITS (DS1 1.544	Mbit/s), SETS (E1 2.048 Mbit/s), 2MHz
		Clock, 10MHz C	lock
		ITU-T G.703 準拠	L
		コネクタ	BNC Jack
		範囲	±100 ppm
	周辺接続	USB (A x 2, mini	B x 1 Port, Revision 2.0)
		RJ45 イーサネット	(10/100/1000 BASE-T)
		WLAN (2.4GHz I	EEE802.11b/g/n)
		Bluetooth (BT2.1	L+EDR)
		3.5mm Audio Ja	ck
		AUX コネクタ (G0	325A GPS レシーバとの接続用)
	AUX I/O	AUX I/Oオブショ せて使用	ン設定時, J1705A AUX変換アダブタと組み合わ
		J1705A AUX変換	&アダプタはMU100090AまたはMU100090B
		の添付品	
	基準1PPS入力	TTL $50\Omega/DC$	
	被測定1PPS入力	TTL $50\Omega/DC$	
リモート制御	イーサネット, GPIB		
入力装置	電源ボタン,タッチパネル		
LCD	WVGA 解像度 (800x480	) ピクセル),9イン	£
LED	オン, スタンバイ, 充電中		
スピーカ	内蔵モノラルスピーカ		
記憶容量	MT1000A-x06なし: 1 GF MT1000A-x06あり: 7 GF	3	

# 8.1.3 環境性能

#### 仕様

電源	DC AC バッテリ	定格 18 V 100 ~ 240 V, 50/60 Hz 専用10.8 V リチャージャブルスマートリチウムイオンバッテリ
<i>泊</i> 賀電刀	MT1000A-x06なし: 65 V MT1000A-x06あり: 120	V以下 W以下
バッテリ充電時間	3~6時間 (25°Cにおいて,	代表値)
動作温湿度範囲	0 ~ +50°C, ≤85%RH バッテリ充電時: 0 ~ +40°C, (結露なきこと)	≤85%RH
保管温湿度範囲	-30 ~ +60°C, ≤90%RH (ノ` -20 ~ +50°C, ≤90%RH (ノ` (結露なきこと)	「ッテリ, ACアダプタ除く) 「ッテリ, ACアダプタ含む)
EMC	EN61326-1 および EN6	1000-3-2
LVD	EN61010-1	
無線認証	無線LAN機能が使用できる	る国や地域については,以下のURLを参照してください。
	https://www.anritsu.com measurement/support/ catalogs/dwl16689	<u>n/ja-JP/test-</u> downloads/brochures-datasheets-and-
8.1.4 機械的性能		

- 寸法
- 163 (H) x 257.6 (W) x 43.5(D) mm (突起物は除く)
- 質量 1.6 kg以下 (バッテリ (G0310A) を含む)

# 8.2 MU100020A OTDRモジュール 1310/1550nm SMF

以下では,MU100020A OTDRモジュールの仕様を説明します。ここではネットワークマス タにMU100020Aを取り付けて追加される機能についても説明しています。ネットワークマ スタの基本機能については,MT1000Aの項を参照してください。

# 8.2.1 構成

	- モジュール -			
MU100020A	OTDRモジュール 1310/1550nm SMF			
	- 標準添付品 -			
J1693A	OPM用ユニバーサルコネクタ 2.5mm			
J1694A	OPM用ユニバーサルコネクタ 1.25mm			
V72Q11AV7	MT1000A ネットワークマスタ OTDRモジュール クイックリ			
W 3011AW	ファレンスガイド			
	- オプション -			
MU100020A-002	可視光源			
MU100020A-ES210	2年保証サービス			
MU100020A-ES310	3年保証サービス			
MU100020A-ES510	5年保証サービス			
	- 研磨タイプオプション -			
MU100020A-010	UPC研磨			
MU100020A-011	APC研磨			
	- ダイナミックレンジオプション -			
MU100020A-020	スタンダードダイナミックレンジ			
MU100020A-021	エンハンストダイナミックレンジ			
MU100020A-022	ハイパフォーマンスダイナミックレンジ			
	- コネクタオプション -			
MU100020A-025	FCコネクタ key width 2.0mm			
MU100020A-026	SCコネクタ			
MU100020A-037	FCコネクタ			
MU100020A-039	DIN 47256コネクタ			
MU100020A-040	SCコネクタ			

# 8.2.2 OTDR

**波長** 1310 ±25 nm, 1550 ±25 nm

温度:25°C パルス幅:1 µs バッテリ充電中を除く

**被測定ファイバ** 10/125 µm シングルモードファイバ (ITU-T G.652)

#### 仕様

ション010の場合

FC:	オプション037
DIN47256:	オプション039
SC:	オプション040

オプション011の場合

FC-APC:	オプション025
SC-APC:	オプション026

#### パルス幅

3, 10, 20, 50, 100, 200, 500 ns, 1, 2, 4, 10, 20  $\,\mu\,{\rm s}$ 

#### ダイナミックレンジ (S/N=1) MU100020A-020

1310 nm: 39 dB

1550 nm: 37.5 dB

代表値, パルス幅: 20 µ s, 保証値は上記から1 dB減じた値 測定条件は下記

SNR=1, 温度: 25°C, 距離レンジ: 100 km, アベレージ: 180秒 バッテリ充電中を除く

#### MU100020A-021

1310 nm: 42 dB

1550 nm: 41 dB

代表値, パルス幅: 20 µs, 保証値は上記から1 dB減じた値 測定条件は下記

SNR=1, 温度: 25°C, 距離レンジ: 100 km, アベレージ: 180秒 バッテリ充電中を除く

#### MU100020A-022

1310 nm: 46 dB (パルス幅: 20 µs)

1550 nm: 46 dB (パルス幅: 20 µs)

1310 nm: 25 dB (パルス幅: 100 ns)

1550 nm: 25 dB (パルス幅: 100 ns)

代表値,保証値は上記から1 dB減じた値 測定条件は下記

SNR=1, 温度: 25°C, 距離レンジ: 100 km, アベレージ: 180秒 バッテリ充電中を除く

**デッドゾーン** 1310 nm: ≦ 3.8 m (後方散乱光)

 $1550 \text{ nm} \le 4.3 \text{ m}$ 

IOR=1.500000 パルス幅: 10 ns, 反射減衰量: 55 dB, ディビエイション: ±0.5 dB, 温度: 25 °C バッテリ充電中を除く

デッドゾーン (フレネル反射)

0.8 m

IOR=1.500000
代表値,パルス幅:3ns,反射減衰量:40dB,温度:25°C
反射波形のピークから1.5 dB下がったところの幅
バッテリ充電中を除く

- **損失測定確度** ±0.05 dB/dB または ±0.1 dB (どちらか大きい方) (リニアリティ)
- **反射減衰量確度** ±2 dB
- 距離測定確度  $\pm 1 \text{ m} \pm 3 \times d \times 10^{-5} \pm mr$

**距離レンジ** 0.5/1/2.5/5/10/25/50/100/200/300 km

IOR=1.500000

- **サンプリング分解能** 0.02/0.05/0.1/0.2/0.5/1/2/5/10/20/40 m
- サンプリングポイント数 最大250001ポイント
- **IOR設定** 1.300000 ~ 1.700000 (0.000001 ステップ)
- リアルタイム掃引時間 0.2秒以下

測定モード: 個別設定 距離レンジ: 50km 分解能: 標準

ゼロオフセット実行後

## 8.2.3 光パワーメータ

適合ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)
	62.5/125 μm GIファイバ
測定波長範囲	$800 \sim 1700 \text{ nm}$
設定波長	850, 1300, 1310, 1490, 1550, 1625, 1650 nm
光パワー測定範囲	-67~+6 dBm (CW光, 1550 nm)
	-60 ~ +3 dBm (CW光, 850 nm)
	-70 ~ +3 dBm (変調光, 1550 nm)
	-63 ~ 0 dBm (変調光, 850 nm)
測定確度	$\pm 5\%$
	−10 dBm, 波長: 1310/1550 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時
	±10%
	-10 dBm, 波長: 850 nm, CW光, 温度: 25°C,

マスタFCコネクタ付ファイバおよび2.5mmユニバーサルコネクタ使用時

変調光測定	CW, 270 Hz, 1 kHz, 2 kHz, Wave Code	

**コネクタ** 2.5 mm ユニバーサル, 1.25 mm ユニバーサル

8.2.4 光源

- **適合ファイバ** 10/125 µm シングルモードファイバ (ITU-T G.652)
- 測定ポート 各波長のOTDRポートと共用
- **中心波長** 1310 ±30 nm
  - 1550 ±30 nm

CW光,温度:25°C

- **スペクトル幅** 1310 nm: ≦5 nm
  - 1550 nm: ≦10 nm

CW光,温度:25°C

**光出カパワー** -5 ±1.5 dBm

CW光,温度:25°C,SMまたはGIファイバ長:2m,ウォーミングアップ後

**光出力パワー瞬時安定** ≦0.1 dB 度

CW光, 0~50°Cの1点 [±1°C], 1分間の最大と最小の差, SMファイバ長: 2 m 反射減衰量40 dB以上の光パワーメータ使用時 ウォーミングアップ後

**変調** CW, 270 Hz, 1 kHz, 2 kHz, Wave Code

**ウォーミングアップ時間** 10分 (光出力ON後)

### 8.2.5 可視光源 (オプション 002)

**中心波長** 650 ±15 nm

温度: 25°C

**光出カパワー** 0 ±3 dBm

CW光,温度:25°C

- **光コネクタ** 2.5 mm, ユニバーサル
- **出力光ファイバ** 10/125 μm シングルモードファイバ (ITU-T G.652)

**光出力機能** 消灯, 点灯, 点滅

### 8.2.6 環境性能

バッテリ動作時間 連続動作時間: 6.0 時間 (代表値)

Telcordia GR-196-CORE Issue2, September 2010

	温度:25℃ バッテリ満充電,MT1000Aと組み合わせた状態において
動作温湿度範囲	0~+50°C,≤85%RH (結露なきこと)
保管温湿度範囲	-30 ~ +60°C, ≤90%RH (バッテリ,ACアダプタ除く) -20 ~ +50°C, ≤90%RH (バッテリ,ACアダプタ含む) (結露なきこと)
レーザ安全	IEC 60825-1:2007 Class 1M
	21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く
	MU100020A-002 IEC 60825-1:2007 Class 3R
	21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く
EMC	EN61326-1, EN61000-3-2
LVD	EN61010-1
8.2.7 機械的性能	
寸法	MU100020A 単体: 163 (H) x 257.6 (W) x 25 (D) mm (突起物および背面パネルを除く)
	MT1000Aとの組み合わせ時: 163 (H) x 257.6 (W) x 84.3 (D) mm (突起物を除く)
	MT1000A, MU100010Aとの組み合わせ時: 163 (H) x 257.6 (W) x 102.2 (D) mm (突起物を除く)
質量	MU100020A 単体: 0.8 kg 以下 (背面パネルを除く)
	MT1000Aとの組み合わせ時: 2.7 kg 以下 (G0310Aを含む)
	MT1000A, MU100010Aとの組み合わせ時: 3.5 kg 以下 (G0310Aを含む)

# 8.3 MU100021A OTDRモジュール 1310/1550/850/1300nm SMF/MMF

以下では,MU100021A OTDRモジュールの仕様を説明します。ここではネットワークマス タにMU100021Aを取り付けて追加される機能についても説明しています。ネットワークマ スタの基本機能については,MT1000Aの項を参照してください。

# 8.3.1 構成

	- モジュール -
MU100021A	OTDRモジュール 1310/1550/850/1300nm SMF/MMF
	- 標準添付品 -
J1693A	OPM用ユニバーサルコネクタ 2.5mm
J1694A	OPM用ユニバーサルコネクタ 1.25mm
W3811AW	MT1000A ネットワークマスタ OTDRモジュール クイックリ
W 3011AW	ファレンスガイド
	- オプション -
MU100021A-002	可視光源
MU100021A-ES210	2年保証サービス
MU100021A-ES310	3年保証サービス
MU100021A-ES510	5年保証サービス
	- 研磨タイプオプション -
MU100021A-010	UPC研磨
MU100021A-011	APC研磨
	- ダイナミックレンジオプション -
MU100021A-021	エンハンストダイナミックレンジ
	- コネクタオプション -
MU100021A-025	FCコネクタ key width 2.0mm
MU100021A-026	SCコネクタ
MU100021A-037	FCコネクタ
MU100021A-039	DIN 47256コネクタ
MU100021A-040	SCコネクタ

# 8.3.2 OTDR

波長	850 ±30 nm, 1300 ±30 nm, 1310 ±25 nm, 1550 ±25 nm			
	温度: 25°C パルス幅: 1 μs (1310/1550 nm), 100 ns (850/1300 nm) バッテリ充電中を除く			
被測定ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)			
	62.5/125 μm GIファイバ			
光コネクタ	オプション010の場合			
----------------------	---------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------------------	--	--
	FC:	オプション037		
	DIN47256:	オプション039		
	SC:	オプション040		
	オプション011の場合			
	FC-APC:	オプション025		
	SC-APC: オプション026			
	ただしMMF側はUPCとなり,オプション037および040と同じコネクタが取 り付けられます。			
パルス幅	1310/1550 nm: 3, 10, 20, 50, 100, 200, 500 ns, 1, 2, 4, 10, 20 $\mu{\rm s}$			
	850 nm: 3, 10, 20, 50, 100, 200, 500 ns			
	1300 nm: 3, 10, 20, 50, 100, 200, 500 ns, 1, 2, 4 $\mu{\rm s}$			
ダイナミックレンジ (S/N=1)	MU100021A-021 850 nm: 29 dB (パルス幅: 500 ns, 距離レンジ: 25 km) *			
	1300 nm: 28 dB (パルス幅: 4 μs, 距離レンジ: 25 km) *			
	1310 nm: 42 dB (パルス幅: 20 µs, 距離レンジ: 100 km)			
	1550 nm: 41 dB (パルス幅: 20 µs, 距離レンジ: 100 km)			
	代表値, 保証値は上記から1 dB減じた値 測定条件は下記			
	SNR=1, 温度: 25°C, アベレージ: 180秒 バッテリ充電中を除く *: 50/125 μmの光ファイバを使用時,ダイナミックレンジは約3 dB低下します。			
デッドゾーン	850 nm: $\leq 4.0$ m			
(後方散乱光)	$1300 \text{ nm}: \le 5.0 \text{ m}$			
	$1310 \text{ nm}: \le 3.8 \text{ m}$			
	$1550 \text{ nm}: \le 4.3 \text{ m}$			
	IOR=1.500000, ディビエイション: ±0.5 dB, 温度: 25°C 1310 nm, 1550 nmの場合 パルス幅: 10 ns, 反射減衰量: 55 dB 850 nm, 1300 nmの場合 パルス幅: 3 ns, 反射減衰量: 40 dB バッテリ充電中を除く			
デッドゾーン (フレネル反射)	0.8 m			
	IOR=1.5000 代表値, パル 反射波形のと バッテリ充電	100 ス幅: 3 ns, 反射減衰量: 40 dB, 温度: 25°C ピークから1.5 dB下がったところの幅 中を除く		
損失測定確度 (リニアリティ)	±0.05 dB/dB また	は ±0.1 dB (どちらか大きい方)		
反射減衰量確度	850/1300 nm: ±4 dB			

	1310/1550 nm: ±2 dB
距離測定確度	$\pm 1 \text{ m} \pm 3 \times d \times 10^{-5} \pm mr$
	<i>d</i> : 測定距離 (m) <i>mr</i> : カーソル分解能 ただし, ファイバの屈折率による不確定性は除く
距離レンジ	850/1300 nm: 0.5/1/2.5/5/10/25/50/100 km
	1310/1550 nm: 0.5/1/2.5/5/10/25/50/100/200/300 km
	IOR=1.500000
サンプリング分解能	0.02/0.05/0.1/0.2/0.5/1/2/5/10/20/40 m
サンプリングポイント数	最大250001ポイント
IOR設定	1 300000 ~ 1 700000 (0 000001 ステップ)
リアルタイム掃引時間	1.300000 - 1.700000 (0.000001 本) クク)
	<ul> <li>3.247 以下</li> <li>測定モード: 個別設定</li> <li>距離レンジ: 50km</li> <li>分解能: 標準</li> </ul>
8.3.3 光パワーメ-	ータ
適合ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)
	62.5/125 μm GIファイバ
測定波長範囲	$800 \sim 1700 \text{ nm}$
設定波長	850, 1300, 1310, 1490, 1550, 1625, 1650 nm
光パワー測定範囲	-67~+6 dBm (CW光, 1550 nm)
	$-60 \sim +3$ dBm (CW光, 850 nm)
	-70 ~ +3 dBm (変調光, 1550 nm)
	-63 ~ 0 dBm (変調光, 850 nm)
測定確度	$\pm 5\%$
	−10 dBm, 波長: 1310/1550 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時
	±10%
	−10 dBm, 波長: 850 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時
変調光測定	CW, 270 Hz, 1 kHz, 2 kHz, Wave Code
コネクタ	2.5 mm ユニバーサル, 1.25 mm ユニバーサル

### 8.3.4 光源

**適合ファイバ** 10/125 μm シングルモードファイバ (ITU-T G.652) 62.5/125 μm GIファイバ

測定ポート 各波長のOTDRポートと共用

- **中心波長** 850 ±30 nm
  - $1300\pm30$  nm
  - $1310 \pm 30 \text{ nm}$
  - $1550\pm\!\!30~\mathrm{nm}$

CW光, 温度: 25°C

- **スペクトル幅** 850 nm: ≦10 nm
  - 1300 nm: ≦10 nm
  - 1310 nm: ≦5 nm
  - 1550 nm: ≦10 nm

CW光,温度:25°C

**光出カパワー** -5 ±1.5 dBm

CW光, 温度: 25°C, SMまたはGIファイバ長: 2 m, ウォーミングアップ後

**光出力パワー瞬時安定** 1310/1550 nm: ≦0.1 dB 度

CW光, 0~50°Cの1点 [±1°C], 1分間の最大と最小の差, SMファイバ長:2m 反射減衰量40dB以上の光パワーメータ使用時 ウォーミングアップ後

- 850/1300 nm: 規定なし
- **変調** CW, 270 Hz, 1 kHz, 2 kHz, Wave Code
- **ウォーミングアップ時間** 10分 (光出力ON後)

# 8.3.5 可視光源 (オプション 002)

中心波長	650 ±15 nm	
	温度:25°C	
光出力パワー	$0 \pm 3 \text{ dBm}$	
	CW光, 温度: 25°C	
光コネクタ	2.5 mm, ユニバーサル	
出力光ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)	
光出力機能	消灯, 点灯, 点滅	

# 8.3.6 環境性能

バッテリ動作時間	連続動作時間: 6.0 時間 (代表値)
	Telcordia GR-196-CORE Issue2, September 2010 温度: 25°C バッテリ満充電,MT1000Aと組み合わせた状態において
<b>盐作泪识</b> 度箝曲	
<u> 郑</u> 叶/血/业/文 <b>祀</b> /四	0~+50 C,≤85%RH (結露なきこと)
保管温湿度範囲	-30 ~ +60°C, ≤90%RH (バッテリ,ACアダプタ除く) -20 ~ +50°C, ≤90%RH (バッテリ,ACアダプタ含む) (結露なきこと)
レーザ安全	IEC 60825-1:2007 Class 1M
	21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く
	MU100021A-002 IEC 60825-1:2007 Class 3R
	21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く
EMC	EN61326-1, EN61000-3-2
LVD	EN61010-1
8.3.7 機械的性能	
寸法	MU100021A 単体: 163 (H) x 257.6 (W) x 25 (D) mm (突起物および背面パネルを除く)
	MT1000Aとの組み合わせ時: 163 (H) x 257.6 (W) x 84.3 (D) mm (突起物を除く)
	MT1000A, MU100010Aとの組み合わせ時: 163 (H) x 257.6 (W) x 102.2 (D) mm (突起物を除く)
質量	MU100021A 単体: 0.8 kg 以下 (背面パネルを除く)
	MT1000Aとの組み合わせ時: 2.7 kg 以下 (G0310Aを含む)

MT1000A, MU100010Aとの組み合わせ時: 3.5 kg 以下 (G0310Aを含む)

# 8.4 MU100022A OTDRモジュール 1310/1550/1625nm SMF

以下では,MU100022A OTDRモジュールの仕様を説明します。ここではネットワークマス タにMU100022Aを取り付けて追加される機能についても説明しています。ネットワークマ スタの基本機能については,MT1000Aの項を参照してください。

## 8.4.1 構成

	- モジュール -
MU100022A	OTDRモジュール 1310/1550/1625nm SMF
	- 標準添付品 -
J1693A	OPM用ユニバーサルコネクタ 2.5mm
J1694A	OPM用ユニバーサルコネクタ 1.25mm
W2011AW	MT1000A ネットワークマスタ OTDRモジュール クイックリ
W 3011AW	ファレンスガイド
	- オプション -
MU100022A-002	可視光源
MU100022A-ES210	2年保証サービス
MU100022A-ES310	3年保証サービス
MU100022A-ES510	5年保証サービス
	- 研磨タイプオプション -
MU100022A-010	UPC研磨
MU100022A-011	APC研磨
	- ダイナミックレンジオプション -
MU100022A-022	ハイパフォーマンスダイナミックレンジ
	- コネクタオプション -
MU100022A-025	FCコネクタ key width 2.0mm
MU100022A-026	SCコネクタ
MU100022A-037	FCコネクタ
MU100022A-039	DIN 47256コネクタ
MU100022A-040	SCコネクタ

### 8.4.2 OTDR

**波長** 1310 ±25 nm, 1550 ±25 nm, 1625 ±25 nm

温度:25°C パルス幅:1μs バッテリ充電中を除く

**被測定ファイバ** 10/125 µm シングルモードファイバ (ITU-T G.652)

#### 仕様

光コネクタ	オプション010の場合		
	FC:	オプション037	
	DIN47256:	オプション039	
	SC:	オプション040	
	オプション011の場合		
	FC-APC:	オプション025	
	SC-APC:	オプション026	
パルス幅	3, 10, 20, 50, 100,	, 200, 500 ns, 1, 2, 4, 10, 20 μs	
ダイナミックレンジ (S/N=1)	<b>MU100022A-022</b> 1310 nm: 46 dB (パルス幅: 20 μs)		
	1550 nm: 46 dB (パルス幅: 20 μs)		
	1625 nm: 44 dB (パルス幅: 20 μs)		
	1310 nm: 25 dB (	パルス幅: 100 ns)	
	1550 nm: 25 dB (	パルス幅: 100 ns)	
	1625 nm: 23 dB (パルス幅: 100 ns)		
	代表値,保証値は上記から1 dB減じた値 測定条件は下記		
	SNR=1, 温度: 25°C, 距離レンジ: 100 km, アベレージ: 180秒 バッテリ充電中を除く		
デッドゾーン	$1310 \text{ nm}: \le 3.8 \text{ m}$		
(後万散乱光)	$1550 \text{ nm}: \le 4.3 \text{ m}$		
	$1625 \text{ nm}$ : $\leq 4.8 \text{ m}$		
	IOR=1.500000 パルス幅: 10 ns, 反射減衰量: 55 dB, ディビエイション: ±0.5 dB, 温度: 25 °C バッテリ充電中を除く		
デッドゾーン (フレネル反射)	0.8 m		
. ,	IOR=1.5000 代表値,パルン 反射波形のピ バッテリ充電中	00 ス幅: 3 ns, 反射減衰量: 40 dB, 温度: 25°C ークから1.5 dB下がったところの幅 中を除く	
損失測定確度 (リニアリティ)	±0.05 dB/dB または ±0.1 dB (どちらか大きい方)		
反射減衰量確度	$\pm 2 \text{ dB}$		
距離測定確度	$\pm 1 \text{ m} \pm 3 \times d \times 10^{-5} \pm mr$		
	d:測定距離 (m) mr.カーソル分解能 ただし,ファイバの屈折率による不確定性は除く		

0.5/1/2.5/5/10/25/50/100/200/300 km		
IOR=1.500000		
0.02/0.05/0.1/0.2/0.5/1/2/5/10/20/40 m		
最大250001ポイント		
1.300000 ~ 1.700000 (0.000001 ステップ)		
0.2秒以下		
測定モード: 個別設定 距離レンジ: 50km 分解能: 標準		
-タ		
10/125 μm シングルモードファイバ (ITU-T G.652)		
62.5/125 μm GIファイバ		
$800 \sim 1700 \text{ nm}$		
850, 1300, 1310, 1490, 1550, 1625, 1650 nm		
-67~+6 dBm (CW光, 1550 nm)		
-60~+3 dBm (CW光, 850 nm)		
-70 ~ +3 dBm (変調光, 1550 nm)		
-63 ~ 0 dBm (変調光, 850 nm)		
$\pm 5\%$		
–10 dBm, 波長: 1310/1550 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時		
±10%		
−10 dBm, 波長: 850 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時		
CW, 270 Hz, 1 kHz, 2 kHz, Wave Code		
2.5 mm ユニバーサル, 1.25 mm ユニバーサル		
10/125 μm シングルモードファイバ (ITU-T G.652)		
各波長のOTDRポートと共用		
1310 ±30 nm		
$1550 \pm 30 \text{ nm}$		
1625 ±30 nm		

CW光, 温度: 25°C

**スペクトル幅** 1310 nm: ≦5 nm

1550 nm: ≦10 nm

1625 nm: ≦10 nm

CW光, 温度: 25°C

**光出カパワー** -5 ±1.5 dBm

CW光,温度:25°C,SMまたはGIファイバ長:2m,ウォーミングアップ後

光出力パワー瞬時安定 ≦0.1 dB
 皮
 CW光, 0~50°Cの1点 [±1°C], 1分間の最大と最小の差, SMファイバ長: 2 m
 反射減衰量40 dB以上の光パワーメータ使用時
 ウォーミングアップ後

**変調** CW, 270 Hz, 1 kHz, 2 kHz, Wave Code

**ウォーミングアップ時間** 10分 (光出力ON後)

# 8.4.5 可視光源 (オプション 002)

中心波長	650 ±15 nm	
	温度:25°C	
光出力パワー	$0 \pm 3 \text{ dBm}$	
	CW光,温度:25°C	
光コネクタ	2.5 mm, ユニバーサル	
出力光ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)	
光出力機能	消灯, 点灯, 点滅	

## 8.4.6 環境性能

バッテリ動作時間	連続動作時間: 6.0 時間 (代表値)	
	Telcordia GR-196-CORE Issue2, September 2010 温度: 25°C バッテリ満充電,MT1000Aと組み合わせた状態において	
動作温湿度範囲	0~+50°C,≤85%RH (結露なきこと)	
保管温湿度範囲	-30 ~ +60°C, ≤90%RH (バッテリ,ACアダプタ除く) -20 ~ +50°C, ≤90%RH (バッテリ,ACアダプタ含む) (結露なきこと)	
レーザ安全	IEC 60825-1:2007 Class 1M	

21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く

### MU100022A-002

IEC 60825-1:2007 Class 3R

21 CFR 1040.10および1040.11

[Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く

- **EMC** EN61326-1, EN61000-3-2
- LVD EN61010-1

## 8.4.7 機械的性能

寸法	MU100022A 単体: 163 (H) x 257.6 (W) x 25 (D) mm (突起物および背面パネルを除く)
	MT1000Aとの組み合わせ時: 163 (H) x 257.6 (W) x 84.3 (D) mm (突起物を除く)
	MT1000A, MU100010Aとの組み合わせ時: 163 (H) x 257.6 (W) x 102.2 (D) mm (突起物を除く)
質量	MU100022A 単体: 0.8 kg 以下 (背面パネルを除く)
	MT1000Aとの組み合わせ時: 2.7 kg 以下 (G0310Aを含む)
	MT1000A, MU100010Aとの組み合わせ時: 3.5 kg 以下 (G0310Aを含む)

# 8.5 MU100023A OTDRモジュール 1310/1550/1650nm SMF

以下では,MU100023A OTDRモジュールの仕様を説明します。ここではネットワークマス タにMU100023Aを取り付けて追加される機能についても説明しています。ネットワークマ スタの基本機能については,MT1000Aの項を参照してください。

## 8.5.1 構成

	- モジュール -	
MU100023A	OTDRモジュール 1310/1550/1650nm SMF	
	- 標準添付品 -	
J1693A	OPM用ユニバーサルコネクタ 2.5mm	
J1694A	OPM用ユニバーサルコネクタ 1.25mm	
11/2011 4 11/	MT1000A ネットワークマスタ OTDRモジュール クイックリ	
W 3811AW	ファレンスガイド	
	- オプション -	
MU100023A-002	可視光源	
MU100023A-ES210	2年保証サービス	
MU100023A-ES310	3年保証サービス	
MU100023A-ES510	5年保証サービス	
	- 研磨タイプオプション -	
MU100023A-010	UPC研磨	
MU100023A-011	APC研磨	
	- ダイナミックレンジオプション -	
MU100023A-021	エンハンストダイナミックレンジ	
	- コネクタオプション -	
MU100023A-025	FCコネクタ key width 2.0mm	
MU100023A-026	SCコネクタ	
MU100023A-037	FCコネクタ	
MU100023A-039	DIN 47256コネクタ	
MU100023A-040	SCコネクタ	

### 8.5.2 OTDR

**波長** 1310 ±25 nm, 1550 ±25 nm, 1645~1655 nm * 温度: 25°C パルス幅: 1 µs バッテリ充電中を除く *: 尖頭値から20 dB下の波長範囲

**被測定ファイバ** 10/125 µm シングルモードファイバ (ITU-T G.652)

光コネクタ	オプション010の場合		
	FC:	オプション037	
	DIN47256:	オプション039	
	SC:	オプション040	
	オプション011の場合		
	FC-APC:	オプション025	
	SC-APC:	オプション026	
パルス幅	3, 10, 20, 50, 100,	, 200, 500 ns, 1, 2, 4, 10, 20 μs	
ダイナミックレンジ (S/N=1)	<b>MU100023A-021</b> 1310 nm: 42 dB (パルス幅: 20 μs)		
	1550 nm: 41 dB (パルス幅: 20 μs)		
	1650 nm: 35 dB (パルス幅: 20 μs)		
	代表値, 保証値は上記から1 dB減じた値 測定条件は下記		
	SNR=1, 温度: 25°C, 距離レンジ: 100 km, アベレージ: 180秒 バッテリ充電中を除く		
	1650 nmは1310または1550 nm, -19 dBm CWの背景光あり。		
デッドゾーン (後ち数1 米)	$1310 \text{ nm}: \le 5.0 \text{ m}$		
	$1550 \text{ nm}: \le 5.5 \text{ m}$		
	$1650 \text{ nm}: \le 6.5 \text{ m}$		
	IOR=1.500000 パルス幅: 10 ns, 反射減衰量: 55 dB, ディビエイション: ±0.5 dB, 温度: 25 °C バッテリ充電中を除く		
デッドゾーン (フレネル反射)	0.8 m		
() () () () () () () () () () () () () (	IOR=1.5000 代表値,パルン 反射波形のピ バッテリ充電中	00 ス幅: 3 ns, 反射減衰量: 40 dB, 温度: 25°C 「ークから1.5 dB下がったところの幅 中を除く	
損失測定確度 (リニアリティ)	±0.05 dB/dB または ±0.1 dB (どちらか大きい方)		
反射減衰量確度	$\pm 2 \text{ dB}$		
距離測定確度	$\pm 1 \text{ m} \pm 3 \times d \times 10^{-1}$	$)^{-5} \pm mr$	
	d: 測定距離 (: mr: カーソルク ただし, ファイク	m) 分解能 バの屈折率による不確定性は除く	
距離レンジ	0.5/1/2.5/5/10/25/50/100/200/300 km		
	IOR=1.500000		

サンプリング分解能	0.02/0.05/0.1/0.2/0.5/1/2/5/10/20/40 m			
サンプリングポイント数	最大250001ポイント			
IOR設定	1 300000 ~ 1 700000 (0 000001 ステップ)			
リアルタイム掃引時間	0.2秒以下			
	測定モード: 個別設定 距離レンジ: 50km 分解能: 標準			
8.5.3 光パワーメ-	-タ			
適合ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)			
	62.5/125 μm GIファイバ			
測定波長範囲	$800 \sim 1700 \text{ nm}$			
設定波長	850, 1300, 1310, 1490, 1550, 1625, 1650 nm			
光パワー測定範囲	-67~+6 dBm (CW光, 1550 nm)			
	-60 ~ +3 dBm (CW光, 850 nm)			
	-70 ~ +3 dBm (変調光, 1550 nm)			
	-63 ~ 0 dBm (変調光, 850 nm)			
測定確度	$\pm 5\%$			
	−10 dBm, 波長: 1310/1550 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時			
	±10%			
	–10 dBm, 波長: 850 nm, CW光, 温度: 25°C, ゼロオフセット実行後 マスタFCコネクタ付ファイバおよび2.5 mmユニバーサルコネクタ使用時			
変調光測定	CW, 270 Hz, 1 kHz, 2 kHz, Wave Code			
コネクタ	2.5 mm ユニバーサル, 1.25 mm ユニバーサル			
8.5.4 光源				
適合ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)			
測定ポート	各波長のOTDRポートと共用			
中心波長	1310 ±30 nm			
	$1550 \pm 30 \text{ nm}$			
	1650 ±5 nm			
	CW光,温度:25°C			
スペクトル幅	1310 nm: ≦5 nm			

#### 仕様

1550 nm: ≦10 nm

1650 nm: ≦3 nm

CW光, 温度: 25°C

**光出カパワー** -5 ±1.5 dBm

CW光,温度:25°C,SMまたはGIファイバ長:2m,ウォーミングアップ後

**光出カパワー瞬時安定** ≦0.1 dB **度** 

CW光, 0~50°Cの1点 [±1°C], 1分間の最大と最小の差, SMファイバ長:2m 反射減衰量40 dB以上の光パワーメータ使用時 ウォーミングアップ後

**変調** CW, 270 Hz, 1 kHz, 2 kHz, Wave Code

**ウォーミングアップ時間** 10分 (光出力ON後)

# 8.5.5 可視光源 (オプション 002)

中心波長	650 ±15 nm
	温度:25°C
光出力パワー	$0 \pm 3 \text{ dBm}$
	CW光, 温度: 25°C
光コネクタ	2.5 mm, ユニバーサル
出力光ファイバ	10/125 μm シングルモードファイバ (ITU-T G.652)
光出力機能	消灯, 点灯, 点滅
056酒時季光	

### 8.5.6 環境性能

バッテリ動作時間	連続動作時間: 6.0 時間 (代表値)
	Telcordia GR-196-CORE Issue2, September 2010 温度: 25°C バッテリ満充電,MT1000Aと組み合わせた状態において
動作温湿度範囲	0 ~ +50°C,≤85%RH (結露なきこと)
保管温湿度範囲	-30 ~ +60°C, ≤90%RH (バッテリ,ACアダプタ除く) -20 ~ +50°C, ≤90%RH (バッテリ,ACアダプタ含む) (結露なきこと)
レーザ安全	IEC 60825-1:2007 Class 1M
	21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く
	MU100023A-002

IEC 60825-1:2007 Class 3R

21 CFR 1040.10および1040.11 [Laser Notice No.50] (2007年6月24日発行)に準ずることにより生じる逸脱を除く

**EMC** EN61326-1, EN61000-3-2

LVD EN61010-1

### 8.5.7 機械的性能

寸法	MU100023A 単体: 163 (H) x 257.6 (W) x 25 (D) mm (突起物および背面パネルを除く)
	MT1000Aとの組み合わせ時: 163 (H) x 257.6 (W) x 84.3 (D) mm (突起物を除く)
	MT1000A, MU100010Aとの組み合わせ時: 163 (H) x 257.6 (W) x 102.2 (D) mm (突起物を除く)
質量	MU100023A 単体: 0.8 kg 以下 (背面パネルを除く)
	MT1000Aとの組み合わせ時: 2.7 kg 以下 (G0310Aを含む)
	MT1000A, MU100010Aとの組み合わせ時: 3.5 kg 以下 (G0310Aを含む)

9 サポート

この章では,ネットワークマスタのメンテナンス全般について説明します。また,サポートやサービスを受ける方法についても説明します。

# 9.1 メンテナンスおよび清掃

ここでは、ネットワークマスタのメンテナンスおよび清掃全般について説明します。

#### 9.1.1 メンテナンス

ネットワークマスタには定期的な調整は必要ありません。

ネットワークマスタを通常の環境,通常の条件で使用する場合,一般的なメンテナンスは不要です。

ネットワークマスタにはユーザが整備できる部品はありません。保守または修理が必要に なった場合は,アンリツカスタマーサポート株式会社にご依頼ください。

### 9.1.2 清掃

ネットワークマスタは適宜清掃が必要になります。ネットワークマスタの表面は溶剤を含まな い刺激の少ない洗浄剤で清掃できます。

清掃を行う前に,下の警告に注意してください。



#### 液体を使用する清掃を行う前に、ネットワークマスタを電源から切り離してください。

- タッチスクリーンの表面を清掃するには、刺激の少ない洗浄剤を染み込ませた柔らかい布のみを使用してください。
- ACアダプタを定期的に清掃してください。電源ピンの周辺にほこりがたまると,発火のおそ れがあります。
- 冷却ファンは常にきれいに保って,通気口がふさがることのないように気を付けてください。
   通気が阻害されると,キャビネットが過熱して,発火するおそれがあります。





MT1000AとOTDRモジュール



# 9.2 保管

保管する前に本器に付着したほこり,手あか,そのほかの汚れ,しみなどをふき取ってください。

本器から電池を取り外してください。

光アダプタ,ACアダプタ,ユーティリティROM などの添付品は,アクセサリーボックスに収納して本器と一緒に保管してください。

下記の場所での保管は避けてください。

- 直射日光が当たる場所
- ほこりが多い場所
- 水滴が付着するような高湿度の場所
- 活性ガスが発生している場所
- 本器が酸化するおそれがある場所
- 振動・衝撃が発生するおそれがある場所
- 本器が落下・転倒するおそれがある場所
- 次の温度と湿度の場所 温度 -20°C以下,または50°C以上 湿度 90%以上

#### 推奨できる保管条件

長期保管するときは,上記の保管の注意条件を満たすほかに,下記の環境条件の範囲内で 保管することをお勧めします。

- 温度 5~45°Cの範囲
- 湿度 40~80%の範囲
- 1日の温度,湿度の変化が少ないところ

# 9.3 ネットワークマスタのデータフォーマット

測定器レンタルなどの後に,ネットワークマスタ内部の格納データの削除が必要になる場合 があります。ネットワークマスタでは内部データエリアをフォーマットするソフトウェアツールを 提供しています。

データエリアには「データエリア」と「プロパティエリア」の2種類あります。データエリアには 使用者が読み書き可能なデータが格納され、プロパティエリアはシステムデータが格納され ています。それぞれのエリアは、USBメモリに格納して使用するツールによってフォーマット されます。このツールはユーティリティROMに同梱されています。下記の手順を参考にして フォーマットしてください。

- データエリアをフォーマットする場合は、REFORMTA_DATA_AREA.MT1000_SWファイルをUSBメモリのルートフォルダヘコピーします。
- プロパティエリアをフォーマットする場合 は,REFORMTA_PROPERTY_AREA.MT1000_SWファイルをUSBメモリのルートフォル ダヘコピーします。
- フォーマットツールを空のUSBメモリに格納してください。両方のフォーマットを同時に実施 する際には両ファイルを同じ場所に格納します。USBメモリデバイスの準備が整った後、以 下の手順に従ってフォーマットしてください。

#### 手順

- 1. 電源コードを抜き,ネットワークマスタの電源をオフにしてください。電源ボタンのランプが消 えます。
- 2. ソフトウェアをコピーしたUSBメモリをいずれかのUSB Type-Aポートに挿入します。
- 3. 電源コードを接続するか電源ボタンを押し,電源をオンにします。電源をオンにすると自動的 にフォーマット作業が行われ,フォーマットが完了すると測定器は自動的にリブートします。
- 4. USBメモリを取り外します。以上でフォーマットは完了です。

# 9.4 ソフトウェアの更新



ソフトウェアの更新する場合は,ネットワークマスタにACアダプタを接続してください。バッテリ動作 でソフトウェアの更新する場合は,バッテリの残容量が40%以上であることを確認してください。

#### USBメモリを使用してインストールする場合

弊社Webサイトを確認して最新版をダウンロードしてください。Webサイトには,以下の2種類のインストーラが公開されています。

MT1000A_Software with MU100011A: MU100011Aを含む構成のMT1000Aを使用する場合

MT1000A_Software:

MU100011Aを含まない構成のMT1000Aを使用す る場合



「MT1000A_Software with MU100011A」は2つのファイルから構成されています。2つのファイルをそれぞれUSBメモリにコピーしてインストールを実施してください。 「MT1000A_Software」をインストールした場合は、MU100011Aを動作させることができません。

- 1. インストーラを空のUSBメモリにコピーします。
- ネットワークマスタに USBメモリが挿入されているときは、USBメモリを外してください。 USBメモリを挿入したまま、電源をオンにすると、インストール後にUSBメモリが正常に使用 できなくなることがあります。
- 3. 電源ボタンを押して,ネットワークマスタをシャットダウンします。このとき強制的に電源をオフ にしないでください。
- ACアダプタまたは電源コードを外して、ネットワークマスタの電源ボタンが消灯することを確認します。
- 5. USBメモリをネットワークマスタに挿入します。
- 6. ACアダプタをネットワークマスタに接続します。
- 電源ボタンを押します。
   ネットワークマスタがUSBメモリのインストーラを検出すると、インストール処理が開始します。
   インストール処理が終了すると、ネットワークマスタが再起動します。
   ACアダプタを接続しないでバッテリ動作でインストール処理をすると、ネットワークマスタは
   再起動しません。この場合は電源ボタンを押してネットワークマスタを起動してください。
   MU100011Aを含むMT1000Aのソフトウェアをインストールする場合は、ネットワークマスタ
   タが起動時にMU100011Aのデータのインストールが自動で開始されます。
- 8. 機器ツールバーのシステム情報でソフトウェアのバージョンを確認します。
- 9. USBメモリをネットワークマスタから外します。

# 9.5 サポートおよびサービスの利用

ネットワークマスタにサポートやサービスが必要な場合は,下記の手順に従ってください。

#### 9.5.1 サポートを受ける前に

アンリツの担当者またはアンリツカスタマー サービスから迅速なサポートを受けるには, ネットワークマスタおよびネットワークマスタに関する問題についての詳細な情報が必要で す。最低限必要な情報は以下のとおりです。

- システム情報を含むファイル。このファイルは、機器のツールバーの [19] アイコンを使用して生成できます。
- タッチパネルに表示される可能性のあるエラーコード,またはその他のエラー表示。
- 問題と,どのようにすると発生するかの説明。図を描いたり,関連するスクリーンキャプチャを 保存したりして,できるだけ詳しく説明してください。

### 9.5.2 サポートまたはサービスを受けるには

上記の必要な情報の用意ができたら,別ファイルに記載の「本製品についてのお問い合わせ 窓口」に連絡してください。

# 9.6 輸送·廃棄

本器を輸送・廃棄する際の注意事項について,以下に説明します。

#### 9.6.1 再梱包

本器が最初に入っていた梱包材料(箱)を使って,再梱包してください。その梱包材料を破棄または破損した場合は,次の方法で再梱包してください。

- 1. 本器と,本器の周りを囲む緩衝材料が入れられる十分な大きさのダンボール,木箱,または アルミ製の箱を用意します。
- 2. ビニールなどでほこり・水滴が入らないように,本器を包みます。
- 3. 箱の中に本器を入れます。
- 4. 本器が箱の中で動かないように,本器の周囲に緩衝材を入れます。
- 5. 箱が開かないように,外側を梱包紐,粘着テープ,バンドなどでしっかりと固定します。

#### 9.6.2 輸送

できる限り振動を避けるとともに,推奨できる保管条件を満たしたうえで,輸送することをお勧めします。

### 9.6.3 廃棄

本器を廃棄するときは,地方自治体の条例に従ってください。

本器の内蔵メモリに保存した情報が漏えいすることを防ぐには,本器を破壊してから廃棄して ください。

# 9.7 特別な情報

### 9.7.1 品質証明

アンリツ株式会社は,本製品が出荷時の検査により公表規格を満足していること,ならびに それらの検査には,産業技術総合研究所 (National Institute of Advanced Industrial Science and Technology) および情報通信研究機構 (National Institute of Information and Communications Technology) などの国立研究所によって認められ た公的校正機関にトレーサブルな標準器を基準として校正した測定器を使用したことを証明 します。

## 9.7.2 保証

アンリツ株式会社は,納入後1年以内に製造上の原因に基づく故障が発生した場合は,本 製品を無償で修復することを保証します。ソフトウェアの保証内容は別途「ソフトウェア使用 許諾書」に基づきます。

ただし,次のような場合は上記保証の対象外とさせていただきます。

- この取扱説明書に別途記載されている保証対象外に該当する故障の場合。
- お客様の誤操作,誤使用または無断の改造もしくは修理による故障の場合。
- 通常の使用を明らかに超える過酷な使用による故障の場合。
- お客様の不適当または不十分な保守による故障の場合。
- 火災,風水害,地震,落雷,降灰またはそのほかの天災地変による故障の場合。
- 戦争,暴動または騒乱など破壊行為による故障の場合。
- 本製品以外の機械,施設または工場設備の故障,事故または爆発などによる故障の場合。
- 指定外の接続機器もしくは応用機器,接続部品もしくは応用部品または消耗品の使用による故障の場合。
- 指定外の電源または設置場所での使用による故障の場合。
- 特殊環境における使用(注)による故障の場合。
- 昆虫,くも,かび,花粉,種子またはそのほかの生物の活動または侵入による故障の場合。

また,この保証は,原契約者のみ有効で,お客様から再販売されたものについては保証しか ねます。

なお,本製品の使用,あるいは使用不能によって生じた損害およびお客様の取引上の損失 については,責任を負いかねます。ただし,その損害または損失が,当社の故意または重大 な過失により生じた場合はこの限りではありません。

注:

「特殊環境における使用」には,以下のような環境での使用が該当します。

- 直射日光が当たる場所
- 粉じんが多い環境
- 水,油,有機溶剤もしくは薬液などの液中,またはこれらの液体が付着する場所
- 潮風,腐食性ガス(亜硫酸ガス,硫化水素,塩素,アンモニア,二酸化窒素,塩化水素など)がある場所
- 静電気または電磁波の強い環境
- 電源の瞬断または異常電圧が発生する環境
- 部品が結露するような環境
- 潤滑油からのオイルミストが発生する環境
- 高度2000 mを超える環境
- 車両,船舶または航空機内など振動または衝撃が多く発生する環境

### 9.7.3 当社へのお問い合わせ

本製品の故障については,本書(紙版説明書では巻末,電子版説明書では別ファイル)に 記載の「本製品についてのお問い合わせ窓口」へすみやかにご連絡ください。

### 9.7.4 ライセンス情報

本製品には,著作権保護され,GNU General Public Licenseに基づいてライセンスされ た第三者のソフトウェアが含まれています。

このライセンスの正確な使用条件については,GNU General Public Licenseをご覧ください。

特に,本製品の以下の部分は,GNU GPLの対象となります。

- Linuxオペレーティング システム カーネル
- BusyBox(swiss army knife of embedded linux)
- e2fsprogs ext2ファイルシステムで使用するファイルシステム ユーティリティ

上記のソフトウェア パッケージはすべてそれぞれの作成者が著作権を保有しています。詳し くはソース コードをご覧ください。

### 9.7.5 ソース コードの提供

アンリツ株式会社は,オブジェクト コードのコンパイルを制御するスクリプトを含めて, GPLラ イセンスされたソフトウェアのソース コードをすべて保有しています。

# 9.8 ソフトウェアライセンス文書

ネットワークマスタには次の表に示すパッケージソフトウェアが含まれています。 ただし,当社のソフトウェア使用許諾の対象外です。

各ライセンスの詳細は、下記URL を参照してください。 <u>https://www.anritsu.com/ja-JP/test-</u> measurement/support/downloads/manuals/dwl16668

ソフトウェアライセンス

名前	パージョン	ライセンス	
ace_tao	2.2a	custom	
alsa-lib	1.0.24.1	LGPL	
alsa-utils	1.0.24.2	GPL	
atk	2.10.0-1	LGPL	
at-spi	1.32.0-5	GPL	
at-spi2-atk	2.10.2-1	GPL2	
at-spi2-core	2.10.2-1	GPL2	
attr	2.4.47-1	LGPL	
avahi	0.6.31-11	LGPL	
bash	2.05b	GPL2	
binutils	2.24-1	GPL	
bluez	4.101	GPL	
bluez-tools	0.1.38	GPL	
busybox	1.20.2	GPL2	
cairo	1.12.16-1	LGPL,MPL	
compositeproto	0.4	MIT	
coreutils	8.23-1	GPL3	
cups-filters	1.0.41-1	GPL	
damageproto	1.1.0	MIT	
dbus	1.4.14	GPL,custom	
dbus-glib	0.82	GPL2,custom	
DirectFB	1.4.0	LGPL	
dosfstools	3.0.26-1	GPL2	
e2fsprogs	1.41.4	GPL	
expat	2.0.1	MIT	
fontconfig	2.11.0-1	custom	
font-util	1.0.1	MIT	
freetype	2.3.9	GPLorFTL	
gdb	6.6	GPL	
gdk-pixbuf2	2.30.2-1	LGPL2.1	
glib	1.2.10-11	LGPL	
glib2	2.38.2-1	LGPL	

名前	パージョン	ライセンス
glibc	2.17-5.1	GPL,LGPL
gmp	5.1.3-2	LGPL3
gnutls	3.2.7-1	GPL3,LGPL2.1
graphite	1:1.2.4-1	LGPL,GPL,custom
gsettings-desktop-schemas	3.10.1-1	GPL
gtk2	2.14.3	LGPL
gtk3	3.10.6-1	LGPL
gzip	1.6-1	GPL3
harfbuzz	0.9.24-1	MIT
hicolor-icon-theme	0.12-2	GPL2
hplip	3.14.1	custom
icewm	1.3.7	GPL
inputproto	1.4.4	MIT
jack	0.121.3-7	GPL,LGPL
kbproto	1.0.3	MIT
keyutils	1.5.8-1	GPL2,LGPL2.1
kobs-ng	12.09.01	GPL
krb5	1.11.4-1	custom
lcms2	2.5-2	MIT
libcap	2.22-5	GPL2
libcups	1.7.0-2	GPL
libdbus	3.5.7	GPL,custom
libdrm	2.3.1	MIT
liberation-fonts	20070509	GPL+exception
libffi	3.0.13-4	MIT
libfontenc	1.0.4	MIT
libgcrypt	1.5.3-1	LGPL
libgpg-error	1.12-1	LGPL
libICE	1.0.4	MIT
libidn	1.28-2	GPL3,LGPL
libjpeg-turbo	1.3.0-3	GPL,custom
liblzma	5.0.5-2	PublicDomain
libnfnetlink	0.0.25	GPL
libnl	3.2.23-1	GPL
libpciaccess	0.10.6	MIT
libpng	1.6.7-1	custom
libpthread-stubs	0.1	MIT
libSM	1.0.2	MIT
libtasn1	3.4-1	GPL3,LGPL
libtermcap	2.0.8	LGPL

ソフトウェアライセンス (続き)

#### ソフトウェアライセンス (続き)

名前	パージョン	ライセンス
libtiff	4.0.3-4	custom
libusb	1.0.9	LGPL
libusbx	1.0.17-1	LGPL
libx11	1.6.2-1	custom
libXau	1.0.4	MIT
libXaw	1.0.4	MIT
libxcb	1.9.1-2	custom
libxcomposite	0.4.4-1	custom
libxcursor	1.1.14-1	custom
libXext	1.0.4	MIT
libXfixes	4.0.3	MIT
libXfont	1.3.3	MIT
libXft	2.1.13	MIT
libxi	1.7.2-1	custom
libxinerama	1.1.3-2	custom
libxkbcommon	0.3.2-1	custom
libxkbfile	1.0.5	MIT
libxml2	2.6.28	MIT
libXmu	1.0.4	MIT
libXpm	3.5.7	MIT
libXrandr	1.3.0	MIT
libXrender	0.9.4	MIT
libXt	1.0.4	MIT
libxtst	1.2.2-1	custom
libxxf86vm	1.1.3-1	custom
linux-gpib	3.2.20	GPL2
linux_kernel	3.0.35	GPL2
lua	5.2.3-1	MIT
merge	0.1	GPL
mesa	10.0.1-1	custom
mesa-libgl	10.0.1-1	custom
modeps	1	GPL
ncurses	5.9-6	MIT
nettle	2.7.1-1	GPL2
newfs_msdos	1.33	BSD
obexftp	0.23	LGPL
opencv	3.1	BSD
openobex	1.5	LGPL
openssl	0.9.8g	custom
pl1-kit	0.20.1-1	BSD

名前	パージョン	ライセンス
pango	1.36.1-1	LGPL
pcre	8.34-1	BSD
perf	3.0.35	GPL
pixman	0.32.4-1	custom
poppler	0.26.4-1	GPL
poppler-data	0.4.6-1	custom,GPL2
poppler-qt4	0.26.3-1	GPL
portaudio	19_20111121-	custom
portmap	5beta	BSD
qt4	4.8.2	GPL3,LGPL, FDL,custom
qwt	6.1.0rc3	LGPL
randrproto	1.2.2	MIT
readline	6.2.004-2	GPL
recordproto	1.13.2	MIT
renderproto	0.9.3	MIT
resourceproto	1.0.2	MIT
samba	3.6.23	GPL3
scrnsaverproto	1.1.0	MIT
talloc	2.1.1-1	GPL3
tcpdump	4.5.1-1	BSD
tcp_wrappers	7.6	BSD
timezone	2006n	BSD
tslib	1	LGPL
u-boot	Jan-13	GPL
udev	117	GPL
wayland	1.3.0-1	MIT
wget	1.15-1	GPL3
wireless_tools	29	GPL
wireshark	1.12.1	GPL2
wpa_supplicant	0.5.9	GPL
xllvnc	0.9.13-6	GPL2
xcb-proto	1.2	MIT
xcmiscproto	1.1.2	MIT
xextproto	7.0.3	MIT
xf86bigfontproto	1.1.2	MIT
xf86driproto	2.0.4	MIT
xorg-server	1.6.1	MIT
xorg-x11-drv-keyboard	1.3.2	MIT

#### ソフトウェアライセンス (続き)

#### ソフトウェアライセンス (続き)

名前	パージョン	ライセンス
xorg-x11-drv-mouse	1.4.0	MIT
xorg-x11-proto-devel	7.5	MIT
xorg-x11-xkb-utils	7.2	MIT
xproto	7.0.13	MIT
xterm	234	MIT
xtrans	1.2.3	MIT
zlib	1.2.8	zlibv

# 9.9 ソフトウェア使用許諾

お客様は、ご購入いただいたソフトウェア (プログラム、データベース、電子機器の動作・設 定などを定めるシナリオ等を含み、以下「本ソフトウェア」と総称します)を使用 (実行、インス トール、複製、記録等を含み、以下「使用」と総称します)する前に、本「ソフトウェア使用許 諾」 (以下「本使用許諾」といいます)をお読みください。お客様から本使用許諾の規定にご 同意いただいた場合のみ、お客様は、本使用許諾に定められた範囲において本ソフトウェア をアンリツが推奨または指定する装置 (以下、「本装置」といいます)に使用することができま す。お客様が本ソフトウェアを使用したとき、当該ご同意をいただいたものとします。

#### 第1条 (許諾,禁止内容)

- 1. お客様は、本ソフトウェアを有償・無償にかかわらず第三者へ販売,開示,移転,譲渡,賃貸, リース,頒布し,または再使用させる目的で複製,開示,使用許諾することはできません。
- 2. お客様は,本ソフトウェアをバックアップの目的で,1部のみ複製を作成できます。
- 3. 本ソフトウェアのリバースエンジニアリング, 逆アセンブルもしくは逆コンパイル, または改変 もしくは派生物 (二次的著作物)の作成は禁止させていただきます。
- 4. お客様は,本ソフトウェアを本装置1台で使用できます。

#### 第2条 (免責)

アンリツは,お客様による本ソフトウェアの使用または使用不能から生ずる損害,第三者からお客様 に請求された損害を含め,一切の損害について責任を負わないものとします。ただし,当該損害が アンリツの故意または重大な過失により生じた場合はこの限りではありません。

#### 第3条(修補)

- お客様が、取扱説明書に書かれた内容に基づき本ソフトウェアを使用していたにもかかわらず、本ソフトウェアが取扱説明書もしくは仕様書に書かれた内容どおりに動作しない場合 (以下「不具合」といいます)には、アンリツは、アンリツの判断に基づいて、本ソフトウェアを 無償で修補、交換し、または不具合回避方法のご案内をするものとします。ただし、以下の 事項による本ソフトウェアの不具合および破損、消失したお客様のいかなるデータの復旧を 除きます。ただし、以下の事項に係る不具合を除きます。。
  - a. 取扱説明書・仕様書に記載されていない使用目的での使用
  - b. アンリツが指定した以外のソフトウェアとの相互干渉
  - c. アンリツの承諾なく,本ソフトウェアまたは本装置の修理,改造がされた場合
  - d. 他の装置による影響,ウイルスによる影響,災害,その他の外部要因などアンリツの 責めとみなすことができない要因があった場合
- 2. 前項に規定する不具合において,アンリツが,お客様ご指定の場所で作業する場合の移動 費,宿泊費および日当に係る現地作業費については有償とさせていただきます。
- 本条第1項に規定する不具合に係る保証責任期間は本ソフトウェア購入後6か月または修 補後30日いずれか遅い方の期間とさせていただきます。

#### 第4条 (法令の遵守)

お客様は,本ソフトウェアを,直接,間接を問わず,核,化学・生物兵器およびミサイルなど大量破壊兵 器および通常兵器,ならびにこれらの製造設備等・関連資機材等の拡散防止の観点から,日本国 の「外国為替及び外国貿易法」およびアメリカ合衆国「輸出管理法」その他国内外の関係する法律, 規則,規格等に違反して,いかなる仕向け地,自然人もしくは法人に対しても輸出しないものとし,ま た輸出させないものとします。

#### 第5条 (規定の変更)

アンリツは、本使用許諾の規定の変更が、お客様の一般の利益に適う場合、または本使用許諾の 目的および変更に係る諸事情に照らして合理的な場合に、お客様の承諾を得ることなく変更を実施 することができます。変更にあたりアンリツは、原則として45日前までに、その旨(変更後の内容およ び実施日)を自己のホームページに掲載し、またはお客様に書面もしくは電子メールで通知します。

#### 第6条 (解除)

- アンリツは,お客様が,本使用許諾のいずれかの条項に違反したとき、アンリツの著作権お よびその他の権利を侵害したとき、暴力団等反社会的な団体に属しもしくは当該団体に属 する者と社会的に非難されるべき関係があることが判明したとき、または法令に違反したと き等、本使用許諾を継続できないと認められる相当の事由があるときは、直ちに本使用許 諾を解除することができます。
- 2. お客様またはアンリツは,30日前までに書面で相手方へ通知することにより,本使用許諾を 終了させることができます。

#### 第7条(損害賠償)

お客様が本使用許諾の規定に違反した事に起因してアンリツが損害を被った場合,アンリツはお客様に対して当該損害の賠償を請求することができます。

#### 第8条 (解除後の義務)

お客様は,第6条により,本使用許諾が解除されまたは終了したときは直ちに本ソフトウェアの使用 を中止し,アンリツの求めに応じ,本ソフトウェアおよびそれらに関する複製物を含めアンリツに返却 または廃棄するものとします。

#### 第9条(協議)

本使用許諾の条項における個々の解釈について生じた疑義,または本使用許諾に定めのない事項 について,お客様およびアンリツは誠意をもって協議のうえ解決するものとします。

#### 第10条 (準拠法)

本使用許諾は,日本法に準拠し,日本法に従って解釈されるものとします。本使用許諾に関する紛 争の第一審の専属的合意管轄裁判所は,東京地方裁判所とします。

(改定履歴)

2020年 2月 29日

# 9.10 レーザの安全性について

### 9.10.1 レーザの安全性分類

Class 1, 1M,および 3Rは,レーザ光について危険の程度を示すものです。IEC 60825-1:2007では以下のように定められています。

Class 1:

設計上安全であるレーザ光です。この条件には,ビーム内観察用の光学器具の使用を含み ます。

Class 1M:

設計上安全な302.5~4000 nmの波長範囲の光を放出するレーザ光です。しかし,以下のように使用者がビーム内で光学器具を使用する場合には,これらのレーザ光は危険なものとなります。

- a. 発散性ビームに対しては,距離100 mm以内で,ルーペ,拡大鏡,または顕微鏡のようなある種の光学器具を用いてレーザ出力を観察する場合
- b. 平行ビームに対しては,望遠鏡または双眼鏡のようなある種の光学器具を用いて レーザ出力を観察する場合

Class 3R:

直接のビーム内観察は潜在的に危険ですが,その危険性はClass 3Bのレーザ光に対する ものよりも低い302.5~10⁶ nmの波長範囲で放出するレーザ光です。



光出力に対する安全は,光出力警告用手段の正常動作によって確保されます。光出力を使用する前に電源をONまたは光出力スイッチをONにした際,光出力警告用手段の発光が確認できない場合は,光出力警告用手段の故障が考えられます。そのときは本器を使用しないで安全のため,必ず当社または当社代理店に修理を依頼してください。

本器には、Class 1, 1M, および 3R(関連規格IEC 60825-1:2007)に相当するレーザ光 を放射する部分を含むモジュールがあります。

Class 1Mにおいて、レーザ放射は目に危険を及ぼす場合がありますので、光学器具を用いて直接レーザ出力を観察しないよう注意してください。

## <u> 注</u>意

本書に規定した以外の手順による制御および調整をすると、危険なレーザ放射により、被ば くするおそれがあります。

モデル名	クラス	最大光出力 (mW)*	パルス幅(s)/ 繰り返し率	発振波長 (nm)	ビーム 放射角度 (度)	レーザ 開口部	組み込まれた レーザの仕様
MU100020A	1M	0.15	20×10 ⁻⁶ / 0.019	1310	11.5	図 1,[1]	表 2 (a)
	1	0.15	20×10 ⁻⁶ / 0.019	1550	11.5		表 2 (b)
MU100021A	1M	0.15	20×10 ⁻⁶ / 0.019	1310	11.5	図 2,[1]	表 2 (a)
	1	0.15	20×10 ⁻⁶ / 0.019	1550	11.5		表 2 (b)
	1M	0.012	0.5×10 ⁻⁶ / 0.036	850	36.9	図 2,[3]	表 2 (c)
	1	0.15	4×10 ⁻⁶ / 0.037	1300	36.9		表 2 (d)
MU100022A	1M	0.15	20×10 ⁻⁶ / 0.019	1310	11.5	図 3,[1]	表 2 (a)
	1	0.15	20×10 ⁻⁶ / 0.019	1550	11.5		表 2 (b)
	1	0.15	20×10 ⁻⁶ / 0.019	1625	11.5		表 2 (f)
MU100023A	1M	0.15	20×10 ⁻⁶ / 0.019	1310	11.5	図 2,[1]	表 2 (a)
	1	0.15	20×10 ⁻⁶ / 0.019	1550	11.5		表 2 (b)
	1	0.15	20×10 ⁻⁶ / 0.019	1650	11.5	図 2,[3]	表 2 (g)
オプション 002	3R	0.003	CW	650	11.5	図 1,[2] 図 2,[2] 図 3,[2]	表 2 (e)
* 最大光出力パワーは合理的に予見できる個々の,そしてすべての単一故障条件を含んだときに出力し得る光出力パワーを表しています。							

#### 表1 IEC 60825-1:2007に基づくレーザの安全性分類

	最大光出力 (mW)*	パルス幅(s) /繰り返し率	発振波長(nm)	ビーム放射角 (度)
(a)	0.3	20×10 ⁻⁶ / 0.019	1310	11.5
(b)	0.3	20×10 ⁻⁶ / 0.019	1550	11.5
(c)	0.024	0.5×10 ⁻⁶ / 0.036	850	36.9
(d)	0.3	4×10 ⁻⁶ / 0.037	1300	36.9
(e)	0.003	CW	650	11.5
(f)	0.3	20×10 ⁻⁶ / 0.019	1625	11.5
(g)	0.3	20×10 ⁻⁶ / 0.019	1650	11.5
* 最大光出力パワーは合理的に予見できる個々の,そしてすべての単一故障条件を含んだときに 出力し得る光出力パワーを表しています。				

#### 表2 MU100020A, MU100021A, MU100022A, MU100023Aに組み込まれたレーザ の仕様

# 9.10.2 製品の表示ラベル

	種類	ラベル	貼付位置	モデル名
1	説明ラベル	▲         IEC 60825-1:2007           INVISIBLE LASER RADIATION         DO NOT VIEW DIRECTLY WITH           OPTICAL INSTRUMENTS           (MAX OUTPUT POWER) (PULSE DURATION) (WAVELENGTH)           4mW         CW           150mW         ≤500ns           150mW         ≤20µs           150mW         ≤20µs           150mW         ≤20µs           150mW         ≤20µs           150mW         ≤20µs	図 4, A 図 7, A	MU100020A, MU100021A, MU100022A, MU100023A
2	説明ラベル	▲ IEC 60825-1:2007 VISIBLE LASER RADIATION AVOID DIRECT EYE EXPOSURE (MAX OUTPUT POWER) (PULSE DURATION) (WAVELENGTH) 5mW CW 650±15mm CLASS 3R LASER PRODUCT	図 4, B 図 6, B 図 7, B	MU100020A, MU100021A, MU100022A, MU100023A
3	証明ラベル	THIS PRODUCT COMPLIES WITH 21 CFR 1040. 10 AND 1040. 11 EXCEPT FOR DEVIATIONS PURSUANT TO LASER NOTICE NO. 50 DATED JUNE 24, 2007	図 4, C 図 5, C	MU100020A, MU100021A, MU100022A, MU100023A
4	識別ラベル	ANRITSU CORP 5-1-1, ONNA, ATSUGI-SHI, KANAGAWA 243-8555, JAPAN MANUFACTURED AT:ATP . 20	図 6, D	MU100020A, MU100021A, MU100022A, MU100023A
5	警告ラベル		図 4, E 図 5, E 図 6, E 図 7, E	MU100020A, MU100021A, MU100022A, MU100023A
6	開口ラベル	Laser aperture	図 8, F	MU100020A, MU100021A, MU100022A, MU100023A オプション002有り

表3 製品の表示ラベル

# 9.10.3 レーザ光に関する表示



図1 レーザ光の開口位置 (MU100020A)



図2 レーザ光の開口位置 (MU100021A, MU100023A)



図3 レーザ光の開口位置 (MU100022A)



図4 ラベルの貼付位置 (背面パネル付きのMU100020A, MU100021, MU100022A, MU100023A)



図5 ラベルの貼付位置 (MU100010Aと組み合わせたときの MU100020A, MU100021A, MU100022A, MU100023A)



図6 ラベルの貼付位置 (MU100020A, MU100021A, MU100022A, MU100023Aの 底面)


図7 ラベルの貼付位置 (MU100020A, MU100021A, MU100022A, MU100023Aの 前面)



図8 ラベルの貼付位置 (オプション002付きの MU100020A, MU100021A, MU100022A, MU100023A)

## 9.11 注意事項

## 9.11.1 輸出管理に関する注意

本製品および製品のマニュアルはご使用の国から再輸出する場合,製品の原産国の政府による輸出ライセンス/承認が必要です。

製品またはマニュアルを再輸出する前に,当社にお問い合わせの上,輸出管理された品目 かどうかをご確認ください。

輸出管理された品目を廃棄する場合,製品/マニュアルを破壊/裁断して,軍事目的で不法 に使用されないようにしてください。

## 9.12 JSONファイル書式

光パルス試験の測定条件と測定結果は、以下の書式でファイルに保存されます。実際のファイルにはインデントは含まれません。整形したフォーマットでファイルを表示するには、 Visual Studio Codeなどのツールを使用してください。

[		
-	"autoDetectThresholds": {	
	"eventLoss": "0.05 dB",	
	"fiberEnd": "3 dB",	
	"macroBend": "None",	
	"reflectance": "-60.0 dB",	
	"splitter1x128": "21.0 dB",	
	"splitter1x16": "12.0 dB",	
	"splitter1x2": "3.0 dB",	
	"splitter1x32": "15.0 dB",	
	"splitter1x4": "6.0 dB",	
	"splitter1x64": "18.0 dB",	
	"splitter1x8": "9.0 dB"	
	},	
	"eventTable": {	
	"eventRows": [	
	{	
	"cumulative_loss": "5.880 dB",	
	"distance": "20.5456 km",	
	"fiberLoss": "0.188 dB/km",	
	"loss": "-0.578 dB",	
	"number": "1",	
	"reflectance": "-44.914 dB",	
	"type": "Reflective"	
	},	
	{	
	"cumulative_loss": "9.299 dB",	
	"distance": "40.6518 km",	
	"fiberLoss": "0.199 dB/km",	
	"loss": "Fiber End",	
	"number": "2",	
	"reflectance": "-16.602 dB",	
	"type": "End Event"	
	…イベント数分だけ続く…	
	}, 	
	"generalInformation": {	

jsonファイルの例

```
"cableCode": "",
    "cableID": "",
    "comment": "",
    "dataFlag": "BC(built)",
    "dateTime": "2018-06-04 05:32",
    "direction": "A->B",
    "fiberID": "".
    "locatonA": ""
    "locatonB": "",
    "modelNumber": "MU100021A-021",
    "operator": "",
    "sequenceNumber": "164",
    "serialNumber": " "
},
"measurementParameters": {
   "averaged": "11776",
    "averagedSeconds": "30 Sec",
    "bsc": "-81.50 dB",
    "distanceRange": "50 km",
    "fiberType": "SM",
    "horizontalShift": "0.0000 km",
    "ior": "1.468200",
    "pulseWidth": "2 us",
    "resolution": "10.217 m",
    "wavelength": "1550 nm"
},
"passFailThresholds": {
   "fiberLoss": "1.00 dB/km";
    "nonReflectiveLoss": "0.20 dB",
   "orl": "27.0 dB",
    "reflectance": "-35.0 dB",
    "reflectiveLoss": "0.50 dB",
    "splitterLoss": "3.0 dB",
    "totalLoss": "3.0 dB"
},
"splitterSetup": {
    "splitter": []
},
"testSummary": {
    "fiberLength": "40.6518 km",
    "latency": "199.09 us",
    "orl": "34.780 dB",
    "passFail": "FAIL",
    "totalEvents": "2",
    "totalLoss": "9.299 dB"
},
"trace":{
    "dataPoints": [
       "0.000",
       "41.685",
       "43.581",
       ...波形データポイント数分だけ続く...
```

] } }