

64Gbaud PAM4 DAC G0374A

シグナル クオリティ アナライザ MP1900A/MP1800Aシリーズ

64 Gbaud PAM4 DAC概要

特長

Operating baud-rate: DC to 64 Gbaud Half-rate Data and Clock inputs High quality and low Intrinsic Jitter waveform Differential output: 0.7 Vp-p typ. (single-end) Amplitude control: >6 dB Jitter transparency Adjustable Duty cycle I/O Interface: DC-coupled Power consumption: <8.5 W Size: 210 (W) x 88 (H) x 230 (D) mm

アプリケーション

PAM4 Signal generation 200GbE/400GbE, CEI-56G, Fibre Channel Telecom high speed transmission G0374A

形名	個数	備考			
シグナル クオリティ アナライザ MP1900A	1	2 x 2ch PPG(MU195020A)および MU181000A/Bが必要。 MU181500Bはオプション。			
または MP1800A		2 x 2ch PPG(MU183020A)または4ch PPG(MU183021A) (BER, Jitter測定には2 x 2ch PPGを推奨)、 および MU181000A/Bが必要。MU181500Bはオプション。			
G0374A 64Gbaud PAM4 DAC	1				
電源コード	1	標準添付品			
サンプリングオシロスコープ	1	86100D (86118A 70 GHzヘッド + 86107A タイムベース)			
同軸ケーブル J1612A(80cm, 電気長規定, 個体差3ps以 内)	4	4 Data入力(標準添付品)			
J1611A(130cm) 34VV50アダプタまたはJ1655A(20cm) J1625A(1m)またはJ1342A(80cm)	1 1 2	クロック入力(標準添付品) スコープ用DAC出力(V, 20cm以下のもの) スコープ用トリガクロック			
V210 終端器	1	未使用のDAC出力用			
41V-6 V 6dB精密固定減衰器	1	スコープ入力用			
J1678A ESD Protection Adapter-K	(5)	データ入力およびクロック入力用			

* Duty Cycle Distortion、1 bitおきの出力パルス幅、CLKrefによる調整が可能

同軸ケーブルの接続(64Gx2ch Combination)

▶ 56 Gbaud動作の例

AUX Output (1/64 Clock Output)

設定手順(1/3)

- 1. すべての機器の電源コードをGND端子付き電源ソケットに接続します。
- 2. DAC、シグナル クオリティ アナライザ(SQA)、スコープの間に同軸ケーブルを接続します。 (ESDやEOS故障を防ぐためG0374Aのデータ入力およびクロック入力にJ1678Aを使用してくだ さい。)
- 3. G0374Aの電源をOnします。
- 4. Combination Settingを「64Gx2ch Combination」に設定します。
 - MP1900A本体、MU195020Aの場合: GUI画面下部の「Module Settings」ボタンをクリックし、Module Settings画面の「Combination Setting」ボタンをクリックします。Inter module combination設定で 「64Gx2ch Combination」を選択します。
 - MU183020Ax2の場合: GUI画面上部の「Combination Setting」ボタンをクリックして、モジュール間コン ビネーション機能で、「Channel Synchronization」内の「64Gx2ch Combination」を選択します。
 - MU183021Aの場合: Misc2タブの「Combination Setting」で、「64Gx2ch Combination」を選択します。
- 5. すべてのデータ出力の**振幅を1.0 Vp-pに、オフセットをVth 0 V**に設定します。Grouping Setting 機能が複数チャネルを同一設定にする場合に便利です。
 - MP1900A本体、MU195020Aの場合:「Module Settings」ボタンをクリックし、Module Settings画面の 「Module Grouping」ボタンをクリックします。Inter module grouping設定でPPG Slot1、2のOutputと PatternをONに設定します。これにより、Slot1_Data1の振幅、オフセット、パターン設定を他のData出力 へ反映させることができます。Inter module grouping設定で設定値を反映させる時は、「Menu」の 「Module Grouping」から「Execute」を実施します。
 - MU183020Ax2の場合:両PPGのMisc2タブで、「Grouping Setting」の「Setting...」を開き、「Output」 チェックボックスを選択してください。これにより、各PPGのData1の振幅、オフセット設定をData2へ反映 させることができます。
 - MU183021Aの場合: Misc2タブで、「Grouping Setting」の「Setting…」を開き、Group「Data1-4」を 選択し、「Output」チェックボックスを選択してください。これにより、Data1の振幅、オフセット設定を Data2,3,4へ反映させることができます。

設定手順(2/3)

- 6. MU195020AまたはMU18302xAのAUX出力を1/64クロック出力に設定し、スコープのトリガとして入力します。
- 7. MU195020AまたはMU18302xAクロック出力をDACのクロック入力に対してフルレートに設定 します。
- 8. Vamp1とVamp2をMaximum設定に、Data Dutyを0に調整します。
- 9. SQA出力をオンにします。
- 10. MU195020Ax2およびMU183020Ax2の場合は両PPGのData1設定画面で、MU183021Aの場合 はData1設定画面で、パターンを"Data"、16ビット長、「 0001 1011 0010 0111 」のビット 列に設定し、出力波形「01230213」が繰り返されることを確認します。
- 11. データ入力のすべてのDelay値は同じ値で、「01230213」が出力されるよう調整します。適正な 調整範囲は約0.5UI(/周期)存在するため、0.1UI単位で、適正範囲の中心値になるよう調整してく ださい。
- 12. パターンをPRBS15に設定し、タイムベーストリガーで波形を観測します。
- 13. Data DutyでDCD(1bit毎のパルス幅)を調整します。
- 14. Vamp1、2で振幅を調節します。

設定手順(3/3)

- ▶ ビットレートを変える場合は、手順10、11の調整が必要です。
- ▶ NRZ信号へ変えるには、
 - MP1900A本体、MU195020Aの場合: GUI画面下部の「Module Settings」ボタンをクリックし、Module Settings画面の「Combination Setting」ボタンをクリックします。Inter module combination設定で 「2CH Combination」を選択します。Inter module grouping設定で設定値を反映させる時は、「Menu」の「Module Grouping」から「Execute」を実施します。
 - MU183020Ax2を使っている場合は、GUI画面上部の「Combination Setting」ボタンをクリックしてモジュール間コンビネーション機能で、「Channel Synchronization」設定の「2ch Combination」へ設定します。
 - MU183021Aの場合はMisc2タブで「2ch CH Sync」へ変更します。

これにより、MSB、LSB入力用の各2ch Combinationパターンのスタートビット位置が一致し、パターンは初期値のPRBS15に設定されるため、出力をOnするとPRBS15 NRZ波形が確認できます。

設定中の標準的波形

Outling of the sector field of the

パターン設定「0001 1011 0010 0111」の 場合、「01230213」のパターンを確認でき ます。

「01230213」のズーム波形。

Anritsu envision : ensure

標準的波形 (1/2)

Vamp1,2をMaximumに設定

Vamp1,2により振幅を調整

標準的波形 (2/2)

64Gbaud, DCD調整前の波形例

56Gbaud, DCD調整前の波形例

NRZ 2Tap Emphasisの設定手順 (1/2)

前述の設定が完了し、NRZ信号を観測してから以下の手順でEmphasisを加えること ができます。

1. D0A、D0B入力用ケーブル接続をスライド4の図から変更します

AUX Output (1/64 Clock Output)

Ancitsu envision : ensure

NRZ 2Tap Emphasisの設定手順 (2/2)

2. Combination settingをNRZ出力時と同じ設定にします。(スライド8参照) 3. 2ch Combinationが設定されているData1,2、Data3,4のコンビに同じパターンを 設定します。

- 4. Data3,4のパターンのLogic設定を"NEG"にします。
- 5. Data4 (DOA入力に接続しているPPG出力)のDelay設定値に1UI足します。

56Gbaud 2Tap Emphasis, sample waveform

64Gbaud, 16bit "11...00..." pattern

各波形パターンに対するMP1900A/MP1800Aの設定

Output		PPG settings			G0374A settings					
Modulation	Baud- rate	Composition	Combination setting	Amplitude Offset	CLK out	D1A	D1B	D0A	D0B	Comment
PAM4	>32.1G	2ch	-	-	-	-	-	-	-	-
	2.4 to 32.1G	2ch	2ch Combination	2V Vth 0V		Divided Data1	Divided Data1	Divided Data2	Divided Data2	
	4.8 to 64G	2ch x 2slot Or 4ch	64Gx2ch Combination	1.0V Vth 0V	Full	PPG1_Data1 Or Data1	PPG1_Data2 Or Data2	PPG2_Data1 Or Data3	PPG2_Data2 Or Data4	
		4ch	4ch Combination			Data1	Data3	Data2	Data4	
NRZ 4	4.8 to 64G 2ch x 2slot 4ch	2ch	2ch Combination	1.0V Vth 0V	Full	Data1	Data2	(open or 0V)	(open or 0V)	Max. amplitude is typical 0.6V. AC coupling input is not available Set Vamp2 to minimum.
			Combination	2.0V Vth 0V		Divided Data1	Divided Data2	Divided Data1	Divided Data2	
		2ch x 2slot	2ch Comb. and 2ch CH Sync.	1.0V Vth 0V		PPG1_Data1	PPG1_Data2	PPG2_Data1	PPG2_Data2	Pattern of PPG2 is same with PPG1,Pos logic and not delayed
		4ch	2ch Comb. and 2ch CH Sync.			Data1	Data2	Data3	Data4	Pattern of Data3/4 combination is same with Data1/2,Pos. logic and not delayed
NRZ with Emphasis	4.8 to 64G	2ch x 2slot	2ch Comb. and 2ch CH Sync.	1.0V Vth 0V	Full	PPG1_Data1	PPG1_Data2	PPG2_Data2 +1UI Delay	PPG2_Data1	Pattern of PPG2 is same with PPG1,Neg. logic
		4ch	2ch Comb. and 2ch CH Sync.			Data1	Data2	Data4 +1UI Delay	Data3	Pattern of Data3/4 combination is same with Data1/2,Neg. logic

2018-1 MG No. MP1800A_G0374A-J-T-1-(2.00)