Inritsu envision : ensure

フィルタやアンプの伝送特性評価 内蔵信号発生器連携機能オプション (トラッキング・ジェネレータ相当機能)

シグナルアナライザ MS2830A

~ 目次 ~

- 1. 開発/製造/メンテナンスに幅広く活用
- 2. フィルタやアンプの伝送特性
 - 2-1. 主な機能のご紹介
 - 2-2. 周波数・出力レベル範囲
- 3. 必要なオプション構成
 - 3-1. 新規ご購入時
 - 3-2. 後付け時
- 4. 機能・操作方法
 - 4-1. 共通設定
 - 4-2. ノーマライズ機能
 - 4-3. N dB 帯域幅測定機能
 - 4-4. 補正値取得機能
 - 4-5. トレース演算機能
 - 4-6. 反射特性の測定

<u>1. 開発/製造/メンテナンスに幅広く活用</u>

シグナルアナライザ MS2830Aは、多様な無線方式の**送信/受信評価に必要な機能を1台で実現** できます。これにより、開発/製造/メンテナンスなど幅広く活用いただけます。

<u>1. 開発/製造/メンテナンスに幅広く活用</u>

スペクトラムアナライザの最小構成から**必要に応じた機能拡張が可能**です。測定機能の一部 を以下に紹介します。詳細は個別カタログをご覧ください。

	標準	オプション	
	スプリアス・エミッション	~	-
 フペクトラムアナライザ	周波数カウンタ	✓	-
	隣接チャネル漏洩電力	✓	-
	内蔵信号発生器連携機能	-	✓
	FFT(高速フーリエ変換)スペクトラム表示	-	~
シグナルアナライザ 	キャプチャ&プレイバック (キャプチャしたRF信号をVSGから出力)	-	~
	デジタル解析 (π/4DQPSK、4FSK方式など)	-	\checkmark
変調解析	アナログ解析 (FM、ΦM、AM)	-	✓
	LTE、W-CDMA、GSM解析など	-	✓
信号発生器	ベクトル信号発生器 (各種通信方式の波形を標準内蔵)	-	~
	アナログ信号発生器 (FM、ΦM、AM)	-	✓
	BER	-	\checkmark

- 1. 開発/製造/メンテナンスに幅広く活用
- 2. フィルタやアンプの伝送特性
 - 2-1. 主な機能のご紹介
 - 2-2. 周波数・出力レベル範囲
- 3. 必要なオプション構成
 - 3-1. 新規ご購入時
 - 3-2. 後付け時
- 4. 機能・操作方法
 - 4-1. 共通設定
 - 4-2. ノーマライズ機能
 - 4-3. N dB 帯域幅測定機能
 - 4-4. 補正値取得機能
 - 4-5. トレース演算機能
 - 4-6.反射特性の測定

内蔵信号発生器連携機能は、スペクトラムアナライザ機能(SPA)とオプションの内蔵信号発生器(SG)を連携して動作させることで、フィルタやアンプなどの伝送特性(周波数特性)を測定することができます。

✓ 多くの受動および能動部品が測定可能

DUTに入力する信号源は、周波数範囲100 kHz~6 GHz、出力レベル範囲 -136 dBm~+15 dBm、 ステップ分解能 0.01 dB、レベル確度 ±0.5 dBと、多くの受動および能動部品の測定を可能とする高性 能な内蔵信号発生器を採用しています。

✓ 周波数特性を忠実に表示

周波数特性の結果を表示するスペクトラムアナライザ機能は、直線性誤差が±0.07 dBと優れており、 バンドパスフィルタなどの周波数特性の形状を忠実に表示します。

<u>2-1. 主な機能のご紹介</u>

▶ <u>ノーマライズ機能</u>

・測定時に接続されるケーブル等の周波数特性を校正する機能です。 DUTの正確な測定が要求される場合に使用します。

▶ <u>N dB帯域幅測定機能</u>

・マーカのピーク点から任意の振幅(N dB)の周波数帯域幅を測定する 機能です。バンドパス・フィルタのカットオフ周波数の帯域幅を測定 する場合に使用します。

▶ 補正値取得機能

Frequency(Hz),Leve .CSV 197500000,10.102 197525000,10.101 1975550000,10.101 197575000,10.100

・測定経路の挿入損失の補正値をCSVファイルで取得する機能です。 取得したCSVファイルはMS2830A本体に読み込むことで補正するこ ともできます。

<u>2-2. 周波数・出力レベル範囲</u>

<u>搭載する信号発生器(SG)のタイプで周波数と出カレベル範囲が異なります</u>。 詳細は個別カタログをご覧ください。

MS2830A-052 内蔵信号発生器連携機能 *1

SGタイプ	周波数範囲	出カレベル範囲
ベクトルSG	250 kHz ~ 3.6 GHz または	–40 ~ +2 dBm (≤ 25 MHz) –40 ~ +20 dBm (> 25 MHz) または
	250 kHz ~ 6 GHz	–136 ~ –3 dBm (≤ 25 MHz) –136 ~ +15 dBm (> 25 MHz)
アナログSG	100 kHz ~ 3.6 GHz	–127 ~ –3 dBm (≤ 25 MHz) –127 ~ +15 dBm (> 25 MHz)
ベクトルSG + アナログSG	100 kHz ~ 3.6 GHz または 100 kHz ~ 6 GHz	–136 ~ –3 dBm (≤ 25 MHz) –136 ~ +15 dBm (> 25 MHz)

*1: MS2830A-020、021、088のいずれかが必要です

- 1. 開発/製造/メンテナンスに幅広く活用
- フィルタやアンプの伝送特性
 2-1. 主な機能のご紹介
 2-2. 周波数・出力レベル範囲
- 3. 必要なオプション構成
 - 3-1. 新規ご購入時

3-2. 後付け時

- 4. 機能・操作方法
 - 4-1. 共通設定
 - 4-2. ノーマライズ機能
 - 4-3. N dB 帯域幅測定機能
 - 4-4. 補正値取得機能
 - 4-5. トレース演算機能
 - 4-6.反射特性の測定

<u>3-1. 新規ご購入時</u>

新規ご購入いただく場合の必要な構成です。他にも多様なオプションをご用意しています。詳しくは、分かり易くステップを追って選択できる、構成ガイドをご覧ください。

◆ ベクトルSGを搭載する場合:

	形名	品名	備考
	MS2830A-040	3.6GHzシグナルアナライザ	
1	MS2830A-041	6GHzシグナルアナライザ	いずれか1つ選択します。
	MS2830A-043	13.5GHzシグナルアナライザ	
2	MS2830A-020	3.6GHzベクトル信号発生器	どちらか1つ選択します
2	MS2830A-021	6GHzベクトル信号発生器	
3	MS2830A-022	ベクトル信号発生器用ローパワー拡張	出カレベルの下限を標準の-40 dBmから-136 dBmに拡張します。 必要であれば選択します。
4	MS2830A-052	内蔵信号発生器連携機能	選択します。

◆ アナログSG または ベクトルSGとアナログSGの両方を搭載する場合:

	形名	品名	備考		
1	MS2830A-040	3.6GHzシグナルアナライザ	- どちらか1つ選択します。		
I	MS2830A-041	6GHzシグナルアナライザ			
			どちらか1つ選択します。		
2	MS2830A-088	3.6GHzアナログ信号発生器	▶ MS2830A-088: MS2830A-066、A0086、MX269018Aが別途必要です。		
Z	MS2830A-029	ベクトル信号発生器用アナログ機能拡張	▶ MS2830A-029: ベクトルSGにアナログSGを付加するオプションです。 ベクトルSG(MS2830A-020または021)、MS2830A-022、 MS2830A-066、A0086、MX269018Aが別途必要です。		
3	MS2830A-052	信号発生器連携機能	選択します。		

シグナルアナライザ MS2830Aをご購入済みで、内蔵信号発生器連携機能オプションを後付けする場合の 構成を説明します。実機をご用意の上、以下のステップに従って確認し、選択してください。

◆ <u>ステップ1.</u> 本オプションが後付けできるか確認:

3.6 GHz/6 GHz/13.5 GHzモデルに搭載できます。正面パネルの左上に周波数が印字されていますので確認ください。

搭載可否	周波数	/inritsu		
\bigcirc	9kHz-3.6GHz	M62020A	MS2330A	
\bigcirc	9kHz-6GHz	MJJJJJJUA Signal Analyzer	0.01	
\bigcirc^{*1}	9kHz-13.5GHz	9kHz-6GHz		
×	9kHz-26.5GHz			
×	9kHz-43GHz			

*1: MS2830A-066低位相雑音Opt.が搭載している場合は、SGの後付けはできません。

◆ <u>ステップ2.</u> 内蔵信号発生器(SG)が搭載しているか確認: 正面パネルの左下にN型のRFコネクタの有無で確認できます。

<u>3-2.後付け時</u>

◆ ステップ3. 内蔵信号発生器後付けのご注文: MS2830A本体の引取り改造が必要となります。

▶ ベクトルSGを搭載する場合

	形名	品名	備考	
1	MS2830A-120	3.6GHzベクトル信号発生器後付	どちらか1つ選択します	
I	MS2830A-121	6GHzベクトル信号発生器 後付		
2	MS2830A-122	ベクトル信号発生器用ローパワー拡張 後付	出力レベルの下限を標準の-40 dBmから-136 dBm に拡張します。必要であれば選択します。	
3	Z1345A	後付キット	選択します。	

> アナログSG、またはベクトルSGとアナログSGの両方を搭載する場合

*13.5 GHzモデル(MS2830A-043)にアナログSGは搭載できません。

_	形名	品名	備考
1	MS2830A-188	3.6GHzアナログ信号発生器後付	選択します。 MS2830A-066、A0086、MX269018Aが必要です。
2	MS2830A-189	アナログ信号発生器用ベクトル機能拡張 後付	アナログSGにベクトルSGを付加するオプションで す。必要であれば選択します。
3	Z1345A	後付キット	選択します。

◆ <u>ステップ4.</u> 本オプション後付けのご注文:

ライセンスがインストールされたDVDが納入されます。MS2830Aにライセンスをインストールすることで本機能をご使用できます。弊社に引き取っての改造は必要ありません。

-	形名	品名	備考
1	MS2830A-352	内蔵信号発生器連携機能ユーザ取付	選択します。
2	Z1345A	後付キット	選択します。

- 1. 開発/製造/メンテナンスに幅広く活用
- 2. フィルタやアンプの伝送特性
 - 2-1. 主な機能のご紹介
 - 2-2. 周波数・出力レベル範囲
- 3. 必要なオプション構成

3-1. 新規ご購入時

3-2. 後付け時

4. 機能・操作方法

4-1. 共通設定

4-2. ノーマライズ機能

4-3. N dB 帯域幅測定機能

4-4. 補正値取得機能

4-5. トレース演算機能

4-6. 反射特性の測定

200 MHz帯のバンドパスフィルタ(BPF)の周波数特性の測定を例に、機能と操作方法をご紹介します。はじめに、各機能に共通する主なパラメータの設定を行います。

■ BPFを接続し、各パラメータを設定します

> スペクトラムアナライザモードに切替

> [Application Switch] > [Spectrum Analyzer]

▶ パラメータを初期化

- > [Preset] > [F1:Preset]
- > 信号発生器連携機能をOn
 - > [Measure] > [] (20f2)] > [F6:SG Control] > [F1:SG Control] = On
- ▶ 出カレベルを設定し、出力On (例: -10 dBm)
 - > [F2:SG Output Level] = [-10] [F1:dBm] > [F3:SG Output] = On
 - *-3dBm以上出力する場合は、Start周波数を25MHz超えに設定してください。

▶ 周波数を設定 (例: 200 MHz)

- > [Frequency] > [F1:Center] = [200][F2:MHz]
 - * Frequency Start/Stopでも設定可能
- ▶ スパンを設定 (例: 5 MHz)
 - > [Span] > [5][F2:MHz] *上下キーでも設定可能
- ➢ RBWを設定 (例: 30 kHz)
 - > [BW] > [F2:RBW Value] > [30][F3:kHz] *上下キーでも設定可能 * RBWの設定値で掃引速度が変わります。
- ▶ 検波モードの設定 (例: RMS)
 - > [Trace] > [F8:Detection] > [F2:RMS]

次ページへ

4-1. 共通設定 (つづき)

> リファレンスレベルを調整 (例: -10 dBm)

- > [Amplitude] > [F1:Reference Level] > [-10][dBm] *上下キーでも設定可能
- ▶ トレースポイントの設定 (例: 201)
 - > [Time/Sweep] >[F4:Trace Points] > (201)[F7:Set] *上下キーでも設定可能
 - *トレースポイント数の設定で掃引速度が変わります。

▶ 周波数切換速度の設定 (例: Fast Tuning)

> [Frequency] > [F4:Switching Speed] > [F1:Fast Tuning]

Fast Tuning	周波数切換が高速になり測定速度が向上		
Normal	SPAの位相雑音性能が良くなります。狭帯域フィル タなど位相雑音性能を重視する場合に使用。		

■ DUT切換時などでSG出力をOFFにする場合

▷ SG出力レベルをOFF

- > [Measure] > [() (20f2)] > [F6:SG Control]
- > [F3:SG Output] = Off
 - *正面パネル左下の [SG On/Off]キーでも設定可能

測定時に接続されるケーブル等の周波数特性を校正する機能です。同軸ケーブルの挿入損失等が影響する ような正確な測定が要求される場合に使用します。以下に操作例を説明します。

図1

■ 図1のように、DUTを取り外し、校正用ケーブルだけを接続します。

> 各パラメータの設定

> 前項の「**共通設定**」を参照

≻ ノーマライズ機能をOn

- > [F6:Normalize]
- ≻ 単掃引
 - > [Single 🔄] * 掃引が完了するまで待ちます。

▶ 基準トレースを保存

- > [F6:Normalize] > [F3:Store Ref.]
 - * 必ず掃引が完了してから[F3:Store Ref.]を実行してください。 完了しないで実行した場合は、前回の掃引データが保存されノーマライ ズが正しく機能しません。

▶ ノーマライズ機能をOn

- > [F1:Nomalize] = On
- ≻ 連続掃引
 - > [Continuous 👝]
- ▶ 基準トレースをOff
 - > [F5:Ref Trace Display] > [F2:Blank]

次ページへ

4-2. ノーマライズ機能 (つづき)

■ 図2.のように、BPFを接続し測定します。

マーカ点のレベルは、ノーマライズを実行したレベルを基準とした相対値で表示されます。レベル表示の数値をそのまま挿入損失として読み取ることができます。

*ノーマイライズ実行後に、周波数、 トレースポイント、RBWなどのパラ メータを変更すると、**ノーマイライズ** が初期化されます。 初期化された場合は、再度ノーマイラ

イズを実行してください。

<u>4-3. N dB 帯域幅測定機能</u>

選択したマーカのピーク点からバンドパスフィルタ(BPF)の帯域幅を測定するときに使用します。 以下にBPFのカットオフ周波数 -3.01 dB(通過電力の2分の1)を例に、操作を説明します。

■ BPFを接続し、各パラメータを設定します

▶ 各パラメータの設定

> 前項の「**共通設定**」を参照

▶ ノーマライズを実行

> 前項の「ノーマライズ機能」を参照

➤ N dB帯域幅測定機能をOn (例: -3.01 dB)

- > [Measure] > [() (20f2)] > [F6:SG Control]
- > [F7:N dB Bandwidth]
- > [F2:N dB] = [-3.01][F1:dB]
- > [F1:N dB Bandwidth] = On

<u>4-4. 補正値取得機能</u>

無線機の送信/受信試験項目によっては、フィルタやアンプ、アッテネータなど、測定経路を切替えて測定 することがあります。本機能を使用することで測定経路の補正値をCSVファイルで取得することができま す。取得したCSVファイルは、MS2830A標準機能のCorrection Tableで読込むことができ、測定経路の周 波数特性を補正することもできます。

4-4. 補正値取得機能 (つづき)

■ 図1のように、校正用ケーブルを用意し、ノーマライズを実行します。

> 各パラメータの設定 *1

- > 前項の「**共通設定**」を参照
- ▶ ノーマライズを実行

> 前項の「ノーマライズ機能」を参照

*1:SPAのTrace pointは最大10001ポイント設定できますが、Correction Table 機能で読み込めるのは最大4096ポイントです。Trace point数の設定に注意してください。

■ 図2のように、補正値を取得する経路に接続します。

▶ 単掃引

> [Single 🔄] * 掃引が完了するまで待ちます。

▶ 補正値の保存

> [Save] > [F6:Save Correction CSV DATA]

※保存名称を設定

デフォルト: Corr + 年月日 + 追番 (例) Corr20161024_003

> [F7:Set] = On

補正値は、CSVファイルで以下に保存されます。 [MS2830A]

"D:¥Anritsu Corporation¥Signal Analyzer¥User Data¥Corrections¥"

4-4. 補正値取得機能 (つづき)

MS2830A Configuration					
					🙀 Configuration
					Recall
No confirme					
In Comgus	ation				
Recall Cor	rection Table				
(a)					
(D) 102	513,292 Kbytes	Free / 102,/59,/72 Kbytes To	otal		
Name		Date / Time	Size[KB]	Protect	
Corr20	161024_000	8/22/2016 6:00:14 PM	4	Off	
Corr20	161024 002	8/22/2016 6:02:05 PM	4	Off	
Gorr20	161024_003	8/22/2016 6:04:32 PM	4	Off	
Conv Setup P					
1/10					
				Close	
					T I
					Recall
	Interface	Setting			
					Cancel
					Galicer

■ Correction Table機能を使用

前述で取得したCSVファイルは、MS2830A標準機能の Correction Tableとして読込むことができ、測定経路の周波数特 性を補正することができます。

▶ 補正値の読込み

- > [System Config] > [() (20f2)]]
- > [F7:Correction] > [F1:Correction] = On
- > [F3:Recall Correction Table] > [F7:Recall Correction Table] *読込みたい補正値ファイルをカーソルキーで選択します。

D

- > [F7:Recall]
- *Correction Table機能はSystem Configの一部の機能であり、初期化 (Preset)を実行しても設定は保持していますので注意してください。 たとえば、Correction = Onにした場合、Presetを実行しても Correction設定は" On " の状態のままです。

*SPA画面下に

Correction On と表示されます。

C =

Correction On

<u>4-5. トレース演算機能</u>

各トレースには、測定ごとに表示の更新を行う方式(Write)や測定データを一時的に保持する方式(View)が用意されています。 これらのトレース方式を使用することで、各トレースの比較や測定データ間の演算を利用することができます。

演算タイプ *1	機能		
Op1 – Op2 (Power)	対数(dBm)を真値(W)に変換して減算します。その結果を対数(dBm)に戻します。		
Op1 + Op2 (Power)	対数(dBm)を真値(W)に変換して加算します。その結果を対数(dBm)に戻します。		
Op1 – Op2 (Log)	対数(dBm)のまま減算します。		
Op1 + Op2 (Log)	対数(dBm)のまま加算します。		

*1:Op(Operand)は、トレースA,B,C,D,E,Fから選択します。

■トレースA(-10dBm)とトレースB(-10dBm)のパワーを真値(W)で加算し、トレースC(-7dBm)に結果を表示 する操作を例に説明します。

<u>4-6. 反射特性の測定</u>

リターンロス ブリッジ(SWRブリッジ) または方向性ブリッジ・カプラ等と併用することにより、反射特性を測定することが できます。測定誤差は使用するブリッジの方向性(Directivity)の性能で決まります *1

■ 図1のように接続し、ノーマライズを実行します。

DUTに接続する端子はオープンまたはショートしてください。 接続する端子に注意してください。

- > 各パラメータの設定
 - > 前項の「**共通設定**」を参照
- > ノーマライズを実行
 - > 前項の「ノーマライズ機能」を参照

次ページへ

*1: 例えば、リターンロスが20dBのDUTを方向性が35dBのブリッジで測 定した場合は、測定誤差は +1.7dB / -1.4dBとなります。

4-6. 反射特性の測定 (つづき)

■ BPFを接続し、リターンロスを測定します。

下図のような測定結果が得られます。マーカのレベル表示の数値を そのまま反射損(リターンロス)として読み取ることができます。

▶ リターンロス(RL)からVSWRへの変換式

VSWR =
$$\frac{10^{(\frac{RL}{20})} + 1}{10^{(\frac{RL}{20})} - 1}$$

