

解析帯域幅1GHzに対応する シグナルアナライザ

シグナルアナライザ MS2850A

9 kHz \sim 32 GHz/44.5 GHz

シグナルアナライザ MS2850A

MS2850Aは、次世代の広帯域通信システムの開発・製造に必要な解析帯域幅と優れたフラットネス性能を実現した、スペクトラムアナライザ/シグナルアナライザです。今後5Gを代表とする広帯域通信システムの市場の成長が期待される中、積極的な設備投資をしつつ、コストをできる限り抑えたいというお客様の声に応えます。

周波数範囲	9 kHz~32 GHzまたは44.5 GHz(2モデル)			
	高性能導波管ミキサ、外部ミキサの接続により最大325 GHzまで対応			
解析帯域幅	255 MHz(標準)、510 MHz(オプション)、1 GHz(オプション)			
測定オプション	位相雑音測定、雑音指数(NF)測定、Noise Floor Reduction機能等			
測定ソフトウェア	5G、LTE、LTE-Advanced、W-CDMA、TD-SCDMA、GSM、 ベクトル変調解析			

【特長】

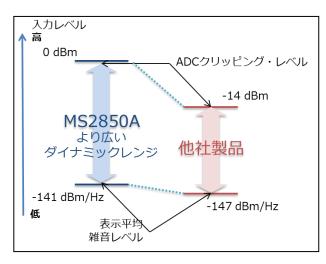
- ✓ 広帯域信号解析を、優れたダイナミックレンジと フラットネス性能で実現
- ✓ 5G 測定ソフトウェア(内蔵オプション)
 - ・全キャリアを一括測定
 - ・EVM性能: 1%未満*
- ✓ 設備投資の抑制に貢献

特長: MS2850A本体

■解析帯域幅: 1 GHz

- 内蔵の5G専用測定ソフトウェアによるマルチキャリア解析
- スペクトラム表示やスペクトログラム表示、時間経過に伴う周波数や 位相の変化などの解析が可能
- 大容量メモリによる長時間デジタイズ(1 GHz解析帯域幅で3sec) MS2850A-053/054で大容量のデジタイズデータを外部PCへ高速転送

■優れたフラットネス性能

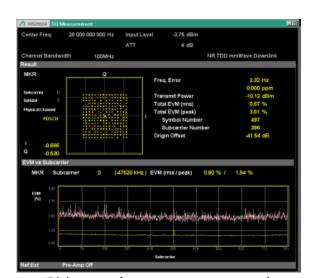

- 広帯域無線信号の評価で課題となるダイナミックレンジと フラットネス特性を優れた性能で両立
- 無線通信機器の正確な特性評価と品質向上に貢献

【性能】中心周波数: 28 GHz、中心周波数±500 MHzにおいて 帯域内周波数特性(振幅フラットネス): ±1.2 dB (nom.) 帯域内位相直線性(位相フラットネス): 5°p-p (nom.)

■広いダイナミックレンジ

- ADCクリッピング・レベル(0 dBm*) と表示平均雑音レベルの差
 → 140 dB以上*(28 GHzにて)
- 広帯域信号測定時に上昇する表示平均雑音レベルと、 入力レベルの差をより広くとることが可能→より正確なEVM測定値
- 広いSFDR (スプリアス・フリー・ダイナミックレンジ)
 - → 解析帯域幅1 GHzで -70 dBc (28 GHzにて)

特長: 5G測定ソフトウェア(1/2)


最大1 GHzの解析帯域幅を活用し、その高性能かつ高い測定ダイナミックレンジを生かした、詳細かつ高精度な測定を実現します。

規格	品名・形名	チャネル帯域幅 (1CC)	マルチ キャリア測定
V5G (Verizon 5GTF)	Pre-Standard CP-OFDM ダウンリンク MX285051A-001 Pre-Standard CP-OFDM アップリンク MX285051A-051	最大100 MHz	対応
5G NR (3GPP TS 38.211)	NR TDD sub-6GHz ダウンリンク MX285051A-011 NR TDD sub-6GHzアップリンク MX285051A-061	最大100 MHz	-
	NR TDD mmWave ダウンリンク MX285051A-021 NR TDD mmWave アップリンク MX285051A-071	最大400 MHz	対応(ダウンリンク)

以上のソフトウェアには、5G測定ソフトウェア (基本ライセンス) MX285051A が必要です。

■特長

- ▶ V5G/5G NR (sub-6GHz/mmWave) を1台でカバー 5Gの実証実験から5G NRによる実運用を想定したダウンリンク 信号またはアップリンク信号のRF特性を測定。
- ▶ 開発から製造まで適用可能な優れたEVM性能 MS2850Aとの組合せによる残留EVM性能は1%未満*。測定器の 影響を最小化し、より低い設備コストで5G無線システムの品質 向上に貢献します。
- ▶ **測定・試験効率を向上させる簡単な操作性** より正確なEVM測定のために、Auto Range機能によって、本来 は複雑な内部アッテネータの設定作業を、1回のボタン操作で 実行します。

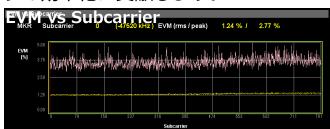
測定画面(EVM vs Subcarrier)

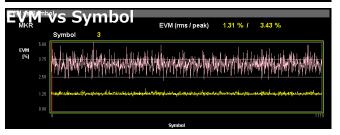
特長: 5G測定ソフトウェア(2/2)

■測定機能

> シングルキャリア測定

コンスタレーション、周波数誤差、送信電力、変調精度 (EVM)、各物理チャネルのEVMなどを測定。

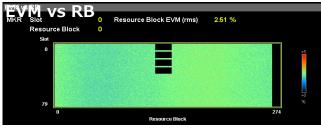

>マルチキャリア測定*


解析帯域幅510 MHzまたは1 GHz(オプション)と組み合わせ、マルチキャリア信号を一括で解析。 各キャリアの周波数誤差、送信電力、EVM、タイミング


各キヤリアの周波致誤差、达信電力、EVM、タイミング 差などを短時間で測定。

▶ 多彩なグラフ表示 (Trace Mode)

解析結果を周波数軸、時間軸、物理チャネルごとの数値 データなど多角的に検証することにより、開発やデバッ グの効率化に貢献します。



	Frequency Error	Transmit	EVM (rms)	EVM (peak)	Timing Difference
CC0 (Ref.)	1.19 Hz	-8.40 dBm	1.28 %	6.07 %	0.0 ns
CC1	1.19 Hz	-9.01 dBm	1.51 %	6.81 %	-0.8 ns
CC2	1.19 Hz	-9.56 dBm	1.70 %	1.51 %	0.0 ns
CC3	1.20 Hz	-10.95 dBm	1.89 %	25.41 %	-0.8 ns
CC4	1.20 Hz	-11.20 dBm	1.87 %	6.54 %	0.8 ns
CC5	1.20 Hz	-12.45 dBm	2.09 %	10.24 %	-0.8 ns
CC6	1.22 Hz	-12.40 dBm	1.98 %	9.88 %	0.0 ns
CC7	1.22 Hz	-14.65 dBm	2.42 %	10.91 %	0.0 ns

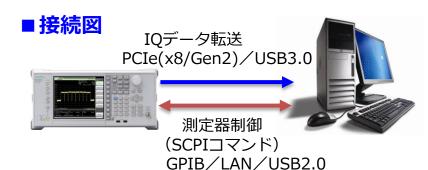
▲マルチキャリア測定画面(Pre-Standard CP-OFDM)

	${}^{ op}$						11	
Avg EVI (rms)	M	Ma EVM/Si	npcat x EV	M (pea rier/Sy	k) mbol	Avg Power	Symbol Clock I	Error 0.000 ppm
1.27 9	%	3.97	%	452	64	-13.420 dBm	IQ Skew	0.000 ns
1.28 %	%	4.48	%	450	6	-13.418 dBm	IQ Imbalance	0.000 TIS
1.30 %	%	4.25	%	499	341	-13.424 dBm		0.000 dB
1.30 %	%	4.13	%	484	429	-13.424 dBm	Quad Error	-0.010 deg.
1.32 9	%	5.75	%	590	174	-13.455 dBm		o.o.ro deg.
1.22 9	%	3.70	%	704	16	-13.461 dBm	Cell ID	
1.26 %	%	4.07	%	220	840	-13.303 dBm		
1.24 9	%	3.62	%	203	0	-13.302 dBm	11	
	1.27 1.28 1.30 1.30 1.32 1.22 1.26 1.26 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	1.27 % 1.28 % 1.30 % 1.30 % 1.32 % 1.22 % 1.26 %	(rms) EVM/St 1.27 % 3.97 1.28 % 4.48 1.30 % 4.25 1.30 % 4.13 1.32 % 5.75 1.22 % 3.70 1.26 % 4.07	(rms) EVMSubcar 1.27 % 3.97 % 1.28 % 4.48 % 1.30 % 4.25 % 1.30 % 4.13 % 1.32 % 5.75 % 1.22 % 3.70 % 1.26 % 4.07 %	(rms) EVMISubcarriertSy 1.27 % 3.97 % 452 1.28 % 4.48 % 450 1.30 % 4.25 % 499 1.32 % 5.75 % 590 1.22 % 3.70 % 704 1.26 % 4.07 % 220	(rms) EVMISubcarrierIsymbol 1.27 % 3.97 % 4.52 64 6 1.28 % 4.48 % 450 6 6 1.30 % 4.25 % 499 341 34 1.30 % 4.13 % 494 429 9 1.32 % 5.75 % 590 174 12 1.22 % 3.70 % 704 16 16 1.26 % 4.07 % 220 84	(rms) EVMSUbcarrier/Symbol Avg Power 128 % 357 % 452 64 .13420 dBm 1.28 % 448 % 450 6 .13.418 dBm 1.30 % 4.25 % 499 341 .13.424 dBm 1.32 % 6.75 % 590 174 .13.426 dBm 1.22 % 3.70 % 704 16 .13.461 dBm 1.26 % 4.07 % 220 840 .13.303 dBm	Company Comp

▼ Trace Modeごとのシングルキャリア測定画面

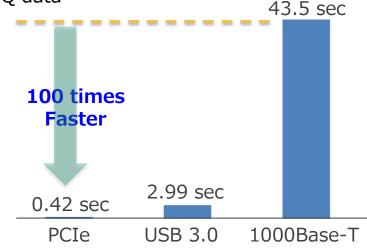
特長: 高速データ転送

■品名/形名


高速データ転送用外部インタフェース PCIe 高速データ転送用外部インタフェース USB3.0 MS2850A-053 MS2850A-054

■特長

- MS2850Aは1 GHz解析帯域幅信号を最大3 secの キャプチャが可能。
- キャプチャした大容量デジタイズデータを外部PCへ 高速転送(転送時間はEthernetの100分の1)。 開発効率化、製造コスト削減に貢献。
- 当社提供のAPI(MATLAB、C#、Linux)を介してデジタイズデータの読み出しが可能。お客様が作成したプログラムの有効活用や外部PCでの信号解析をアシスト。


■アプリケーション例

開発	MS2850Aをデジタイザとして使用し、 お客様が開発したソフトウェアで解析
製造	複数のMS2850Aで収集したデジタイズ データを製造ラインのサーバやワークス テーションに転送して集中的に解析・デー 夕管理
フィールド	広帯域信号の定期的なモニタリング用途

■転送時間比較(平均値*)

SPAN=1 GHz、5Gの10フレーム分(100 ms)の IO data

^{*:} 外部PCのパフォーマンスによって異なります。

周波数範囲を拡張するミキサ

MA2850AのLO/IFポートに接続して周波数上限を拡張

高性能導波管ミキサ MA2806A/MA2808A

MA2806A: 50 GHz∼75 GHz

MA2808A: 60 GHz∼90 GHz

- 7.5 GHz までイメージレスポンスの影響なしで測定可能

DANL	-150 dBm/Hz @75 GHz (meas.)
P1dB	> 0 dBm (typ.)
変換損失	< 15 dB (typ.)

・ 外部ミキサ MA2740C/MA2750Cシリーズ

MA2747C: 90 GHz∼140 GHz

MA2749C: 140 GHz∼220 GHz

- MA2751C: 220 GHz~325 GHz 等

測定機能を拡張するアクセサリ

・ USBパワーセンサ MA241xxシリーズ

MA2850AのUSBポートに接続、MA2850Aをパワーメータとして使用可能

主なセンサ

形名	周波数範囲
MA24108A	10 MHz∼8 GHz
MA24118A	10 MHz∼18 GHz
MA24126A	10 MHz∼26 GHz

・ノイズソース

- 受信機、アンプ、コンバータのNFを Yファクタ法で測定
- 対応ノイズソース:Noisecom社製 NC346シリーズ
- NC346C: 0.01 GHz~26.5 GHz
- NC346Ka: 0.10 GHz∼40.0 GHz

MS2850A 測定機能

測定機能・項目	シグナルアナライザ (解析帯域幅: 255 MHz 510 MHz/1 GHz)	スペクトラムアナライザ	オプション/ 応用製品
スペクトラム表示	0	0	
パワー/周波数/位相 vs. 時間表示	0		
キャプチャ&リプレイ	0		
CCDF/APD表示	0		
スペクトログラム表示	0		
サブトレース表示	0		
ゲートビュー(ゲート掃引時)		0	
チャネルパワー	0	0	
占有帯域幅	0	0	
隣接チャネル漏洩電力	0	0	
バースト平均電力	0	0	
マルチマーカ&リスト表示	0	0	
ハイエスト10	0	0	
スペクトラム・エミッション・マスク		0	
リミットライン		0	
周波数カウンタ		0	
2信号3次歪み		0	
USBパワーセンサ(別売)での測定			0
変調解析(5G、LTEなど)			0
位相雑音測定			0
雑音指数(NF)測定			0
外部ミキサ(別売)の接続によるミリ波帯	0	0	0
のスペクトラム測定			

MS2850A オプション

形名	品名	備考
MS2850A	シグナルアナライザ	MS2850A-047: 9 kHz - 32 GHz MS2850A-046: 9 kHz - 44.5 GHz
MS2850A-033	解析帯域幅拡張 510MHz	
MS2850A-034	解析帯域幅拡張 1GHz	MS2850A-033が必要です
MS2840A-068	マイクロ波帯プリアンプ	
MS2850A-010	位相雑音測定機能	
MS2850A-017	雑音指数測定機能	
MS2850A-051	Noise Floor Reduction	
MS2850A-053	高速データ転送用外部インタフェース PCIe	x8/Gen2 応用部品: U0088A PCIe HostAdapter J1749A PCIe x8 Cable (2m)
MS2850A-054	高速データ転送用外部インタフェース USB3.0	
MS2850A-076	低2次高調波歪	

MS2850A-046/047をオーダーの際、次のオプションが標準搭載されます。 いずれもオーダーの必要はありません。

MX269000A 標準ソフトウェア

MS2840A-032 解析帯域幅 255 MHz

MS2850A-067 マイクロ波プリセレクタバイパス

MS2850A 測定ソフトウェア

形名	品名	備考
MX285051A MX285051A-001 MX285051A-051 MX285051A-011 MX285051A-061 MX285051A-021 MX285051A-071	5G測定ソフトウェア (基本ライセンス) Pre-Standard CP-OFDM ダウンリンク Pre-Standard CP-OFDM アップリンク NR TDD sub-6GHz ダウンリンク NR TDD sub-6GHz アップリンク NR TDD mmWave ダウンリンク NR TDD mmWave アップリンク	MX285051Aだけでは動作 しません。 Opt.001/051/011/061 /021/071のいずれかが 必要です。
MX269011A MX269012A	W-CDMA/HSPA ダウンリンク測定ソフトウェア W-CDMA/HSPA アップリンク測定ソフトウェア	
MX269013A MX269013A-001	GSM/EDGE測定ソフトウェア EDGE Evolution測定ソフトウェア	
MX269015A	TD-SCDMA測定ソフトウェア	
MX269020A MX269020A-001 MX269021A MX269021A-001	LTE ダウンリンク測定ソフトウェア LTE-Advanced FDD ダウンリンク測定ソフトウェア LTE アップリンク測定ソフトウェア LTE-Advanced FDD アップリンク測定ソフトウェア	
MX269022A MX269022A-001 MX269023A MX269023A-001	LTE TDD ダウンリンク測定ソフトウェア LTE-Advanced TDD ダウンリンク測定ソフトウェア LTE TDD アップリンク測定ソフトウェア LTE-Advanced FDD アップリンク測定ソフトウェア	
MX269017A MX269017A-001 MX269017A-011	ベクトル変調解析ソフトウェア APSK Analysis Higher-Order Analysis	16APSK、32APSK 512QAM、1024QAM、2048QAM

